
Space-Time Finite Element Methods

for Parabolic Evolution Problems with

Non-smooth Solutions

Ulrich Langer Andreas Schafelner

DK-Report No. 2019-03 03 2019

A–4040 LINZ, ALTENBERGERSTRASSE 69, AUSTRIA

Supported by

Austrian Science Fund (FWF) Upper Austria



Editorial Board: Bruno Buchberger
Evelyn Buckwar
Bert Jüttler
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Abstract

We propose consistent locally stabilized, conforming finite element
schemes on completely unstructured simplicial space-time meshes for the
numerical solution of non-autonomous parabolicevolution problems under
the assumption of maximal parabolic regularity. We present new a priori
estimates for low-regularity solutions. In order to avoid reduced conver-
gence rates appearing in the case of uniform mesh refinement, we also
consider adaptive refinement procedures based on residual a posteriori er-
ror indicators. The huge system of space-time finite element equations is
then solved by means of GMRES preconditioned by algebraic multigrid.

1 Introduction

Parabolic initial-boundary value problems of the form

∂tu− divx(ν∇xu) = f in Q, u = 0 on Σ, u = u0 on Σ0 (1)

describe not only heat conduction and diffusion processes but also 2D eddy cur-
rent problems in electromagnetics and many other evolution processes, where
Q = Ω × (0, T ), Σ = ∂Ω × (0, T ), and Σ0 = Ω × {0} denote the space-time
cylinder, its lateral boundary, and the bottom face, respectively. The spatial
computational domain Ω ⊂ Rd, d = 1, 2, 3, is supposed to be bounded and
Lipschitz. The final time is denoted by T . The right-hand side f is a given
source function from L2(Q). The given coefficient ν may depend on the spatial
variable x as well as the time variable t. In the latter case, the problem is
called non-autonomous. We suppose at least that ν is uniformly positive and
bounded almost everywhere. We here consider homogeneous Dirichlet boundary

∗Supported by the Austrian Science Fund (FWF) under the grant W1214, project DK4.
†Institute for Computational Mathematics, Johannes Kepler University Linz.
‡Doctoral Program Computational Mathematics, Johannes Kepler University Linz.
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conditions for the sake of simplicity. In practice, we often meet mixed bound-
ary conditions. Discontinuous coefficients, non-smooth boundaries, changing
boundary conditions, non-smooth or incompatible initial conditions, and non-
smooth right-hand sides can lead to non-smooth solutions.

In contrast to the conventional time-stepping methods in combination with
some spatial discretization method, or the more advanced, but closely related
discontinuous Galerkin (dG) methods based on time slices, we here consider
space-time finite element discretizations treating time as just another variable
and the term ∂tu in (1) as convection term in time. Following [8], we derive
consistent, locally stabilized, conforming finite element schemes on completely
unstructured simplicial space-time meshes under the assumption of maximal
parabolic regularity; see, e.g., [6]. Unstructured space-time schemes have clear
advantages with respect to adaptivity, parallelization, and the numerical treat-
ment of moving interfaces or special domains. We refer the reader to the survey
paper [10] that provides an excellent overview of completely unstructured space-
time methods and simultaneous space-time adaptivity. In particular, we would
like to mention the papers [9] that is based on an inf-sup-condition, [4] that uses
mesh-grading in time, and [1] that also uses stabilization techniques. All three
papers treat the autonomous case.

We here present new a priori discretization error estimates for low-regularity
solutions. In order to avoid reduced convergence rates appearing in the case of
uniform mesh refinement, we also consider adaptive refinement procedures in
the numerical experiments presented in Section 5. The adaptive refinement pro-
cedures are based on residual a posteriori error indicators. The huge system of
space-time finite element equations is then solved by means of Generalized Mini-
mal Residual Method (GMRES) preconditioned by an algebraic multigrid cycle.
In particular, in the 4D space-time case that is 3D in space, simultaneous space-
time adaptivity and parallelization can considerably reduce the computational
time. The space-time finite element solver was implemented in the framework
of MFEM. The numerical results nicely confirm our theoretical findings. The
parallel version of the code shows an excellent parallel performance.

2 Weak formulation and maximal parabolic reg-
ularity

The weak formulation of the model problem (1) reads as follows: find u ∈
H1,0

0 (Q) := {u ∈ L2(Q) : ∇xu ∈ [L2(Q)]d, u = 0 on Σ} such that (s.t.)∫
Q

(
−u ∂tv + ν∇xu · ∇xv

)
d(x, t) =

∫
Q

f v d(x, t) +

∫
Ω

u0 v|t=0 dx (2)

for all v ∈ Ĥ1
0 (Q) = {u ∈ H1(Q) : u = 0 on Σ ∪ ΣT }, where ΣT := Ω × {T}.

The existence and uniqueness of weak solutions is well understood; see, e.g., [7].
It was already shown in [7] that ∂tu ∈ L2(Q) and ∆u ∈ L2(Q) provided that
ν = 1, f ∈ L2(Q), and u0 = 0. This case is called maximal parabolic regularity.
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Similar results can be obtained under more general assumptions imposed on the
data; see, e.g., [6] for some very recent results on the non-autonomous case.

3 Locally stabilized space-time finite element
methods

In order to derive the space-time finite element scheme, we need an admissible,
shape regular decomposition Th = {K} of the space-time cylinderQ =

⋃
K∈Th K

into finite elements K. On Th, we define a H1 conforming finite element space
Vh by means of polynomial simplicial finite elements of the degree p in the
usual way; see, e.g., [2]. Let us assume that the solution u of (2) belongs to

the space V0 = HL,10,0 (Th) := {u ∈ L2(Q) : ∂tu ∈ L2(K), Lu := divx(ν∇xu) ∈
L2(K) ∀K ∈ Th, and u|Σ∪Σ0

= 0}, i.e., we only need some local version of
maximal parabolic regularity, and, for simplicity, we assume homogeneous initial
conditions, i.e., u0 = 0. Multiplying the PDE (1) on K by a local time-upwind
test function vh + θKhK∂tvh, with vh ∈ V0h = {vh ∈ Vh : vh = 0 on Σ ∪ Σ0},
hK = diam(K), and a parameter θK > 0 which we will specify later, integrating
over K, integrating by parts, and summing up over all elements K ∈ Th, we
arrive at the following consistent space-time finite element scheme: find uh ∈ V0h

s.t.
ah(uh, vh) = lh(vh), ∀vh ∈ V0h, (3)

with

ah(uh, vh) =
∑
K∈Th

∫
K

[
∂tuhvh + θKhK∂tuh∂tvh (4)

+ ν∇xuh · ∇xvh − θKhKdivx(ν∇xuh)∂tvh
]
d(x, t),

lh(vh) =
∑
K∈Th

∫
K

fvh + θKhKf∂tvhd(x, t). (5)

The bilinearform ah( . , . ) is coercive on V0h × V0h wrt to the norm

‖v‖2h =
1

2
‖v‖2L2(ΣT ) +

∑
K∈Th

[
θKhK‖∂tv‖2L2(K) + ‖∇xv‖2Lν2 (K)

]
, (6)

i.e., ah(vh, vh) ≥ µc‖vh‖2h, ∀vh ∈ V0h, and bounded on V0h,∗ × V0h wrt to the
norm

‖v‖2h,∗ = ‖v‖2h +
∑
K∈Th

[
(θKhK)−1‖v‖2L2(K) + θKhK‖divx(ν∇xv)‖2L2(K)

]
, (7)

i.e., ah(uh, vh) ≤ µb‖uh‖h,∗‖vh‖h, ∀uh ∈ V0h,∗,∀vh ∈ V0h, where V0h,∗ :=

HL,10,0 (Q) + V0h; see [8, Lemma 3.8] and [8, Remark 3.13], respectively. The
coercivity constant µc is robust in hK provided that we choose θK = O(hK);
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see Section 5 or [8, Lemma 3.8] for the explicit choice. From the above deriva-
tion of the scheme, we get consistency ah(u, vh) = lh(vh), ∀vh ∈ V0h, provided

that the solution u belongs to HL,10,0 (Q) that is ensured in the case of maximal
parabolic regularity. The space-time finite element scheme (3) and the consis-
tency relation immediately yield Galerkin orthogonality

ah(u− uh, vh) = 0, ∀vh ∈ V0h. (8)

We deduce that (3) is nothing but a huge linear system of algebraic equations.
Indeed, let V0h = span{p(j), j = 1, . . . , Nh}, where {p(j), j = 1, . . . , Nh} is the
nodal finite element basis and Nh is the total number of space-time degrees of
freedom (dofs). Then we can express each function in V0h in terms of this basis,
i.e., we can identify each finite element function vh ∈ V0h with its coefficient
vector vh ∈ RNh . Moreover, each basis function p(j) is also a valid test function.
Hence, we obtain Nh equations from (3), which we rewrite as a system of linear
algebraic equations, i.e.

Kh uh = fh,

with the solution vector uh = (uj)j=1,...,Nh , the vector fh =
(
lh(p(i))

)
i=1,...,Nh

,

and system matrix Kh =
(
ah(p(j), p(i))

)
i,j=1,...,Nh

that is non-symmetric, but

positive definite.

4 A priori discretization error estimates

Galerkin orthogonality (8), together with coercivity and boundedness, enables
us to prove a Cèa-like estimate, where we bound the discretization error in the
‖ . ‖h-norm by the best-approximation error in the ‖ . ‖h,∗-norm.

Lemma 1. Let the bilinearform (4) be coercive [8, Lemma 3.8] with constant
µc and bounded [8, Lemma 3.11, Remark 3.13] with constant µb, and let u ∈
HL,10,0 (Th) be the solution of the space-time variational problem (2). Then there
holds

‖u− uh‖h ≤
(

1 +
µb
µc

)
inf

vh∈V0h

‖u− vh‖h,∗, (9)

where uh ∈ V0h is the solution to the space-time finite element scheme (3).

Proof. Estimate (9) easily follows from triangle inequality and Galerkin-ortho-
gonality; see [8, Lemma 3.15, Remark 3.16] for details.

Next, we estimate the best approximation error by the interpolation error,
where we have to choose a proper interpolation operator I∗. For smooth so-
lutions, i.e., u ∈ H l(Q) with l > (d + 1)/2, we obtained a localized a priori
error estimate, see [8, Theorem 3.17], where we used the standard Lagrange
interpolation operator Ih; see e.g. [2]. In this paper, we are interested in non-
smooth solutions, which means that we only require u ∈ H l(Q), with some real
l > 1. Hence, we cannot use the Lagrange interpolator. We can, however, use
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so-called quasi-interpolators, e.g. Clément [3] or Scott-Zhang [2]. For this kind
of operators, we need a neighborhood SK of an element K ∈ Th which is defined

as SK := {K ′ ∈ Th : K ∩K ′ 6= ∅}. Let u ∈ H l(Q), with some real l > 1, then,
for the Scott-Zhang quasi-interpolation operator ISZ : L2(Q) → V0h, we have
the local estimate (see e.g. [2, (4.8.10)])

‖v − ISZv‖Hk(K) ≤ CISZh
l−k
K |v|Hl(SK), k = 0, 1. (10)

For details on the construction of such a quasi-interpolator, we refer to [2]
and the references therein. For simplicity, we now assume that the diffusion
coefficient ν is piecewise constant, i.e., ν|K = νK , for all K ∈ Th. Then we can
show the following lemma.

Lemma 2. Let l > 1 and v ∈ V0 ∩ H l(Th). Then the following interpolation
error estimates are valid:

‖v − ISZv‖L2(ΣT ) ≤ c1
(∑
K∈Th

∂K∩ΣT 6=∅

h2s−1
K |v|2Hs(K)

)1/2

, (11)

‖v − ISZv‖h ≤ c2
( ∑
K∈Th

h
2(s−1)
K |v|2Hs(SK)

)1/2

, (12)

‖v − ISZv‖h,∗ ≤ c3
( ∑
K∈Th

h
2(s−1)
K

(
|v|2Hs(SK) + ‖divx(ν∇xv)‖2L2(K)

))1/2

,

(13)

with s = min{l, p + 1} and positive constants c1, c2 and c3, that do not depend
on v or hK provided that θK = O(hK) for all K ∈ Th. Here, p denotes the
polynomial degree of the finite element shape functions on the reference element.

Proof. For the first estimate, we use the scaled trace inequality and the quasi-
interpolation estimate (10) with k = 0, 1

‖v − ISZv‖2L2(ΣT ) =
∑
K∈Th

∂K∩ΣT 6=∅

‖v − ISZv‖2L2(∂K∩ΣT ) ≤
∑
K∈Th

∂K∩ΣT 6=∅

‖v − ISZv‖2L2(∂K)

≤
∑
K∈Th

∂K∩ΣT 6=∅

[
c2Trh

−1
K (‖v − ISZv‖2L2(K) + h2

K‖∇(v − ISZv)‖2L2(K))
]

≤ c2Tr
∑
K∈Th

∂K∩ΣT 6=∅

[
C2

ISZ h−1
K h2l

K |v|2Hl(SK) + C2
ISZ hK h

2(l−1)
K |v|2Hl(SK)

]
≤ max
K∈Th

(
2 c2TrC

2
ISZ

)∑
K∈Th

∂K∩ΣT 6=∅

[
h2l−1
K |v|2Hl(SK)

]
,

which corresponds to (11) with c1 = maxK∈Th
(
2 c2TrC

2
ISZ

)
. To show the second

estimate (12), we use definition (6) and that ν is piecewise constant, the quasi-
interpolation error estimate (10) with k = 1, and the above estimate (11), and
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obtain

‖v−ISZv‖2h
=
∑
K∈Th

[
θKhK ‖∂t(v − ISZv)‖2L2(K) + ‖ν1/2∇x(v − ISZv)‖2L2(K)

]
+

1

2
‖v − ISZv‖2L2(ΣT )

≤
∑
K∈Th

[
θKhKC

2
ISZh

2(l−1)
K |v|2Hl(SK) + νKC

2
ISZh

2(l−1)
K |v|Hl(SK)

]
+ c1

∑
K∈Th

∂K∩ΣT 6=∅

h2l−1
K |v|2Hl(SK)

≤
∑
K∈Th

(
C2

ISZ (θKhK + νK) + c1hK
)
h

2(l−1)
K |v|2Hl(SK) ≤ c2

∑
K∈Th

h
2(l−1)
K |v|2Hl(SK),

with c2 = maxK∈Th
(
C2

ISZ
(θKhK + νK) + c1hK

)
. For the third estimate, we

deduce from (7) that we only have to estimate the additional sum∑
K∈Th

[
(θKhK)−1‖v − ISZv‖2L2(K) + θKhK‖divx(ν∇x(v − ISZv))‖2L2(K)

]
.

We start with the first L2-term. We apply the quasi-interpolation estimate (10)
with k = 0 and obtain∑

K∈Th

(θKhK)−1‖v − ISZv‖2L2(K) ≤
∑
K∈Th

(θKhK)−1C2
ISZh

2l
K |v|2Hl(SK)

≤
∑
K∈Th

C2
ISZ

(hK
θK

)
h

2(l−1)
K |v|2Hl(SK).

Note that the term (hK/θK) is bounded for θK = O(hK). For the L2-norm
of the spatial divergence, we can distinguish between two cases: linear basis
functions (p = 1) and higher order basis functions (p ≥ 2). For linear basis
functions, we split the divergence of the gradient, obtaining

‖divx(ν∇x(v − ISZv))‖2L2(K) = ‖divx(ν∇xv)− divx(ν∇x(ISZv))‖2L2(K)

for each element K ∈ Th. Since ISZv is a linear polynomial and ν is piecewise
constant, we deduce

divx(ν∇x(ISZv)) = νK divx(∇x(ISZv)) = 0

for each element K ∈ Th. Hence, we get∑
K∈Th

θKhK‖divx(ν∇xv)‖2L2
=
∑
K∈Th

h
2(l−1)
K θKh

1−2(l−1)
K ‖divx(ν∇xv)‖2L2(K),
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where the norm is bounded since v ∈ V0. Moreover, for θK = O(hK), the term

θKh
1−2(l−1)
K is bounded for 1 ≤ l ≤ 2, and the case l > 2 is already treated in

[8]. Combining all above estimates, we obtain

‖v − ISZv‖2h,∗ ≤c2
∑
K∈Th

h
2(l−1)
K |v|2Hl(SK) +

∑
K∈Th

C2
ISZ

(hK
θK

)
h

2(l−1)
K |v|2Hl(SK)

+
∑
K∈Th

(θKh
3−2l
K )h

2(l−1)
K ‖divx(ν∇xv)‖2L2(K)

≤c3
∑
K∈Th

h
2(l−1)
K

(
|v|2Hl(SK) + ‖divx(ν∇xv)‖2L2(K)

)
,

with c3 = c2+maxK∈Th
{
C2

ISZ
(hK/θK), θKh

3−2l
K

}
. For the general case of higher

order basis functions, i.e., p ≥ 2, the divergence of the gradient does not vanish.
First we split the divergence of the gradient and also the norms, obtaining∑

K∈Th

θKhK‖divx(ν∇xv)− divx(ν∇x(ISZv))‖2L2

≤
∑
K∈Th

2 θKhK
(
‖divx(ν∇xv)‖2L2

+ ‖divx(ν∇x(ISZv))‖2L2

)
The first term in the sum we have already estimated above, where we now
replace l by s = min{l, p + 1}, which is in our case (l ≤ 2) again just l. For
the second term, we insert νKdivx(∇x(I1

SZv)) into the norm, where I1
SZv is

the linear quasi-interpolation of v. We observe that I1
SZv − ISZv is a finite

element function, i.e., we can apply the inverse equality for the H(divx)-norm
[8, Lemma 3.5]. Since the diffusion coefficient is piecewise constant, we obtain∑

K∈Th

2 θKhK‖divx(ν∇x(I1
SZv − ISZv))‖2L2

≤
∑
K∈Th

2 θKhKh
−2
K c2I,3‖ν∇x(I1

SZv − ISZv)‖2L2(K)

≤
∑
K∈Th

2 θKh
−1
K c2I,3ν

2
K‖∇x(I1

SZv − ISZv)‖2L2(K)

Now we insert and subtract ∇xv and use the triangle inequality, which yields∑
K∈Th

2 θKh
−1
K c2I,3ν

2
K‖∇x(I1

SZv − ISZv)‖2L2(K)

≤
∑
K∈Th

4 θKh
−1
K c2I,3ν

2
K

(
‖∇x(v − I1

SZv)‖2L2(K) + ‖∇x(v − ISZv)‖2L2(K)

)
.
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For both terms we can apply (10) (quasi-interpolation) and obtain∑
K∈Th

4 θKh
−1
K c2I,3ν

2
K

(
‖∇x(v − I1

SZv)‖2L2(K) + ‖∇x(v − ISZv)‖2L2(K)

)
≤
∑
K∈Th

4 θKh
−1
K c2I,3ν

2
K

(
C2

ISZh
2(l−1)
K |v|2Hl(SK) + C2

ISZh
2(l−1)
K |v|2Hl(SK)

)
≤
∑
K∈Th

8 θKh
−1
K c2I,3ν

2
KC

2
ISZh

2(l−1)
K |v|2Hl(SK).

Combining all of the above,

‖v−ISZv‖2h,∗
≤ c2

∑
K∈Th

h
2(l−1)
K |v|Hl(SK) +

∑
K∈Th

2(θKh
3−2l
K )h

2(l−1)
K ‖divx(ν∇xv)‖2L2(K)

+
∑
K∈Th

(
8 θKh

−1
K c2I,3ν

2
KC

2
ISZ

)
h

2(l−1)
K |v|2Hl(SK)

≤ c3,p
∑
K∈Th

h
2(l−1)
K

(
|v|2Hl(SK) + ‖divx(ν∇xv)‖2L2(K)

)
,

where c3,p = c2 + maxK∈Th
{

8 θKh
−1
K c2I,3ν

2
KC

2
ISZ

, 2(θKh
3−2l
K )

}
.

Now we are in the position to prove our main theorem.

Theorem 3. Let p be the polynomial degree used, and let u ∈ H l(Q)∩ V0, with
l > 1, be the exact solution, and uh ∈ V0h be the approximate solution of the
finite element scheme (3). Furthermore, let the assumptions of Lemma 1 (Céa-
like estimate) and 2 (quasi-interpolation estimates) hold. Then the a priori
discretization error estimate

‖u− uh‖h ≤ C
( ∑
K∈Th

h
2(s−1)
K

(
|u|Hs(SK) + ‖divx(ν∇xu)‖2L2(K)

))1/2

, (14)

holds, with s = min{l, p+ 1} and a positive generic constant C.

Proof. Choosing the quasi-interpolant vh = ISZu in (9), we can apply the quasi-
interpolation estimate (13) to obtain

‖u− uh‖h ≤
(

1 +
µb
µc

)
‖u− ISZu‖h,∗

≤ c3
(

1 +
µb
µc

)( ∑
K∈Th

h
2(s−1)
K

(
|u|2Hs(SK) + ‖divx(ν∇xu)‖2L2(K)

))1/2

.

We set C = c3(1 + µb/µc) to obtain (14), which closes the proof.
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5 Numerical results

We implemented the space-time finite element scheme (3) in C++, where we
used the finite element library MFEM1 and the solver library hypre2. The
linear system was solved by means of the GMRES method, preconditioned by
the algebraic multigrid BoomerAMG. We stopped the iterative procedure if the
initial residual was reduced by a factor of 10−8. Both libraries are already fully
parallelized with the Message Passing Interface (MPI). Therefore, we performed
all numerical tests on the distributed memory cluster RADON13 in Linz. For
each element K ∈ Th, we choose θK = hK/(c̃

2νK), where c̃ is computed by
solving a local generalized eigenvalue problem which comes from an inverse
inequality, see [8] for further details.

5.1 Example: Highly oscillatory solution

As first test example, we consider the unit (hyper-)cube Q = (0, 1)d+1, with
d = 2, 3, as space-time cylinder, and ν ≡ 1. The manufactured function

u(x, t) = sin

 1

1
10π +

√∑d
i=1 x

2
i + t2


serves as the exact solution, where we compute the right hand side f accord-
ingly. This solution is highly oscillatory. Hence, we do not expect optimal rates
for uniform refinement in the pre-asymptotic range. However, using adaptive
refinement, we may be able to recover the optimal rates. We used the residual
based error indicator proposed by Steinbach and Yang in [10]. For each element
K ∈ Th, we compute

η2
K := h2

K‖Rh(uh)‖2L2(K) + hK‖Jh(uh)‖2L2(∂K),

where uh is the solution of (3), Rh(uh) := f + divx(ν∇xuh) − ∂tuh in K, and
Jh(uh) := [ν∇xuh]e on e ⊂ ∂K, with [ . ]e denoting the jump across one face e ⊂
∂K. We mark each element where the condition ηK ≥ σmaxK∈Th ηK is fulfilled,
with σ an a priori chosen threshold, e.g., σ = 0.5. Note that σ = 0 results in
uniform refinement. In Figure 1, we observe indeed reduced convergence rates
for all polynomial degrees and dimensions tested. However, using an adaptive
procedure, we are able to recover the optimal rates. Moreover, we significantly
reduce the number of dofs required to reach a certain error threshold. For
instance, in the case d = 3 and p = 2, we need 276 922 881 dofs to get an error
in the ‖ . ‖h-norm of ∼ 10−1, whereas we only need 26 359 dofs with adaptive
refinement. In terms of runtime, the uniform refinement needed 478.57s for
assembling and solving, while the complete adaptive procedure took 156.5s only.
The parallel performance is also shown in Figure 1, where we obtain a nice strong

1http://mfem.org/
2https://www.llnl.gov/casc/hypre/
3https://www.ricam.oeaw.ac.at/hpc/
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scaling up to 64 cores. Then the local problems are too small (only ∼ 10 000
dofs for 128 cores) and the communication overhead becomes too large.
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Figure 1: Example 5.1: Error rates in the ‖ . ‖h-norm for d = 2 (upper left)
and d = 3 (upper right), the dotted lines indicate the optimal rate; Plot of the
approximate solution uh centered at the origin (0, 0, 0) [8] (lower left); Strong
scaling on a mesh with 1 185 921 dofs for p = 1, 2 and 5 764 801 dofs for p = 3
(lower right).

5.2 Example: Moving peak

For the second example, we consider the unit-cube Q = (0, 1)3, i.e. d = 2. As
diffusion coefficient, the choice ν ≡ 1 is made. We choose the function

u(x, t) = (x2
1 − x1)(x2

2 − x2)e−100((x1−t)2+(x2−t)2),

as exact solution and compute all data accordingly. This function is smooth,
and almost zero everywhere, except in a small region around the line from
the origin (0, 0, 0) to (1, 1, 1). This motivates again the use of an adaptive
method. We use the residual based indicator ηK introduced in Example 5.1. In
Figure 2, we can observe that we indeed obtain optimal rates for both uniform
and adaptive refinement. However, using the a posteriori error indicator, we
reduce the number of dofs needed to reach a certain threshold by one order of
magnitude. For instance, in the case p = 2, we need 16 974 593 dofs to obtain

10



an error of ∼ 7× 10−5 with uniform refinement. Using adaptive refinement, we
need 1 066 777 dofs only.
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Figure 2: Example 5.2: Error rates in the ‖ . ‖h-norm for d = 2, the dotted lines
indicate the optimal rates (left); Diagonal cut through the space-time mesh Th
along the line from (0, 0, 0) to (1, 1, 1) after 8 adaptive refinements (right).

6 Conclusions

Following [8], we introduced a space-time finite element solver for non-auto-
nomous parabolic evolution problems on completely unstructured simplicial
meshes. We only assumed that we have so-called maximal parabolic regularity,
i.e., the PDE is well posed in L2. We note that this property is only required
locally in order to derive a consistent space-time finite element scheme. We
extended the a priori error estimate in the mesh-dependent energy norm to the
case of non-smooth solutions, i.e. u ∈ H1+ε(Q), with 0 < ε ≤ 1. This is nec-
essary, since we cannot expect a smooth solution, especially when dealing with
discontinuous diffusion coefficients. For simplicity, we considered only piecewise
constant diffusion coefficients. The extension to piecewise smooth coefficients is
straight-forward, but more technical. In comparison to the previous result for
sufficiently smooth solutions, we no longer have a completely localized estimate.
We also have to include the neighborhood of an element K ∈ Th. This may not
be sufficient if we have to deal with solutions that have different regularity in
different subdomains of the whole space-time cylinder. In applications, these
subdomains correspond, for instance, to different materials. However, Duan et
al. [5] have shown a quasi-interpolation estimate that fits into this setting.
We performed two numerical examples with known solutions. The first example
had a highly oscillatory solution, and the second one was almost zero everywhere
except along a line through the space-time cylinder. Using a high-performance
cluster, we solved both problems on a sequence of uniformly refined meshes,
where we also obtained good strong scaling rates. In order to reduce the com-
putational cost, we also applied an adaptive procedure, using a residual based
error indicator. Indeed, using a simultaneously in space and time adaptive pro-
cedure reduced the computational as well as the memory cost by a large factor.
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Moreover, we could observe that, especially for d = 3, the AMG preconditioned
GMRES method solves the problem quite efficiently.
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