Doctoral Program
Computational Mathematics

Mehler-Heine type formulas for the Krawtchouk polynomials

Diego Dominici

Supported by

Der Wissenschaftsfonds.

Editorial Board: Bruno Buchberger
Evelyn Buckwar
Bert Jüttler
Ulrich Langer
Manuel Kauers
Peter Paule
Veronika Pillwein
Silviu Radu
Ronny Ramlau
Josef Schicho
Managing Editor: Diego Dominici
Communicated by: Peter Paule
Manuel Kauers

DK sponsors:

- Johannes Kepler University Linz (JKU)
- Austrian Science Fund (FWF)
- Upper Austria

Mehler-Heine type formulas for the Krawtchouk polynomials.

Diego Dominici *
Johannes Kepler University Linz
Doktoratskolleg "Computational Mathematics"
Altenberger Straße 69
4040 Linz
Austria
Permanent address: Department of Mathematics
State University of New York at New Paltz
1 Hawk Dr.
New Paltz, NY 12561-2443
USA

June 12, 2019

Abstract

We derive Mehler-Heine type asymptotic expansions for the Krawtchouk polynomials. These formulas provide good approximations for the polynomials in the neighborhood of $x=0$, and determine the asymptotic limit of their zeros as the degree n goes to infinity.

Keywords: Mehler-Heine formulas, discrete orthogonal polynomials. MSC-class: 41A30 (Primary), 33A65, 33A15, 44A15 (Secondary)

[^0]
1 Introduction

Let \mathbb{N}_{0} denote the set

$$
\mathbb{N}_{0}=\mathbb{N} \cup\{0\}=0,1,2, \ldots
$$

The monic Krawtchouk polynomials are defined by [54, 18.20.6]

$$
K_{n}(x ; p, N)=p^{n}(-N)_{n}{ }_{2} F_{1}\left(\begin{array}{c}
-n,-x \tag{1}\\
-N
\end{array} ; \frac{1}{p}\right)
$$

where $p \in[0,1], \quad n, N \in \mathbb{N}_{0}, \quad n \leq N,{ }_{r} F_{s}$ denotes the generalized hypergeometric function [54, Chapter 16]

$$
{ }_{r} F_{s}\left(\begin{array}{c}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} ; z\right)=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \cdots\left(a_{r}\right)_{k}}{\left(b_{1}\right)_{k} \cdots\left(b_{s}\right)_{k}} \frac{z^{k}}{k!}
$$

and $(x)_{k}$ the Pochhammer symbol (or rising factorial) [54, 5.2.4],

$$
\begin{equation*}
(x)_{z}=\frac{\Gamma(x+z)}{\Gamma(x)}, \quad x, z \in \mathbb{C} \tag{2}
\end{equation*}
$$

where in general we need $-(x+z) \notin \mathbb{N}_{0}$. Note that when $x=0$, we have

$$
\begin{equation*}
K_{n}(0 ; p, N)=p^{n}(-N)_{n} \tag{3}
\end{equation*}
$$

If we set $p=1$ in (1) and use the Chu-Vandermonde identity [54, 15.4.24],

$$
{ }_{2} F_{1}\left(\begin{array}{c}
-n, b \tag{4}\\
c
\end{array} ; 1\right)=\frac{(c-b)_{n}}{(c)_{n}}
$$

we get

$$
\begin{equation*}
K_{n}(x ; 1, N)=(x-N)_{n} \tag{5}
\end{equation*}
$$

Using the identity [54, 15.8.7]

$$
{ }_{2} F_{1}\left(\begin{array}{c}
-n, b \\
c
\end{array} ; z\right)=z^{n} \frac{(c-b)_{n}}{(c)_{n}}{ }_{2} F_{1}\left(\begin{array}{c}
-n, 1-c-n \\
1+b-c-n
\end{array} ; 1-z^{-1}\right)
$$

in (1), we obtain

$$
K_{n}(x ; p, N)=(x-N)_{n}{ }_{2} F_{1}\left(\begin{array}{c}
-n, 1+N-n \tag{6}\\
1+N-n-x
\end{array} ; 1-p\right) .
$$

Setting $p=0$ in (6) and using (4), we get

$$
K_{n}(x ; 0, N)=(x-N)_{n} \frac{(-x)_{n}}{(1+N-n-x)_{n}}
$$

and using the identity [53, 18:5:1]

$$
\begin{equation*}
(-x)_{n}=(-1)^{n}(x+1-n)_{n}, \tag{7}
\end{equation*}
$$

we conclude that

$$
\begin{equation*}
K_{n}(x ; 0, N)=(-1)^{n}(-x)_{n}=(x-n+1)_{n} . \tag{8}
\end{equation*}
$$

The Krawtchouk polynomials are one of the families of discrete classical orthogonal polynomials [52]. They satisfy the orthogonality relation

$$
\sum_{x=0}^{N} K_{n}(x ; p, N) K_{m}(x ; p, N)\binom{N}{x} p^{x}(1-p)^{N-x}=(n!)^{2}\binom{N}{n}[p(1-p)]^{n} \delta_{n, m}
$$

the three-term recurrence relation

$$
x K_{n}=K_{n+1}+(N p+n-2 n p) K_{n}+n p(1-p)(N-n+1) K_{n-1},
$$

and have the generating function

$$
\sum_{n=0}^{\infty} K_{n}(x ; p, N) \frac{t^{n}}{n!}=[1+(1-p) t]^{x}(1-p t)^{N-x}
$$

from which we obtain the symmetry relation

$$
K_{n}(x ; p, N)=(-1)^{n} K_{n}(N-x ; 1-p, N) .
$$

The Krawtchouk polynomials are important in the study of the Hamming scheme of classical coding theory [35], [39], [46], [55], [60], [62]. Lloyd's theorem [42] states that if a perfect code exists in the Hamming metric, then the Krawtchouk polynomial must have integral zeros [5], [10], [38]. Not surprisingly, the zeros of $K_{n}(x ; p, N)$ have been the subject of extensive research [3], [8], [15], [26], [27], [29], [32], [36], [66], [72].

The Krawtchouk polynomials also have applications in probability theory [19], queueing models [14], stochastic processes [56], quantum mechanics [4], [43], [71], face recognition systems [1], combinatorics [18], and biology [31].

Multivariate [17], [20], [22], [23], [50], [58], [59], [68], and q extensions [6], [7], [21], [24], [25], [34], [37], [61], [65], [63], [64], have also been considered.

The asymptotic behavior of the Krawtchouk polynomials have been studied by many authors, including [9], [13], [30], [40], [49], [57], [67].

In this article, we focus on a very special type of asymptotic analysis in a region around the smallest zero of the Krawtchouk polynomials. These so-called Mehler-Heine type formulas were introduced by Heinrich Heine in 1861 [28] and Gustav Mehler [48] in 1868 to analyze the asymptotic behavior of Legendre polynomials. See Watson's book [69, 5.71] for some historical remarks. Mehler-Heine type formulas are very important in the field of Sobolev orthogonal polynomials, see [2], [41], [44], [45], [51], [47].

In [12], we studied Mehler-Heine type formulas for the Charlier and Meixner polynomials, and extended our results to full asymptotic expansions in [11]. Although it seems that one could apply these results to the Krawtchouk polynomials using the relation

$$
K_{n}(x ; p, N)=M_{n}\left(x ; \frac{p}{p-1},-N\right)
$$

where $M_{n}(x ; z, a)$ denotes the monic Meixner polynomials defined by [54, 18.20.7]

$$
M_{n}(x ; z, a)=(a)_{n}\left(\frac{z}{z-1}\right)^{n}{ }_{2} F_{1}\left(\begin{array}{c}
-n,-x \\
a
\end{array} ; 1-\frac{1}{z}\right),
$$

we see that this presents many problems because for the Meixner polynomials (i) $z \in(0,1)$, (ii) $a>0$, and (iii) $a=O(1)$, while for the Krawtchouk polynomials we need (i') $z \in(-\infty, 0$), (ii') $a<0$, and (iii') $|a|>n$.

Thus, we should use a different approach based on the asymptotic analysis of the differential equation satisfied by $K_{n}(x ; p, N)$ as a function of p. A similar idea was followed by Dunster in [16] to study the asymptotic behavior of the Charlier polynomials.

2 Asymptotic approximation

Using the identity [54, 15.8.1]

$$
{ }_{2} F_{1}\left(\begin{array}{c}
a, b \\
c
\end{array} ; z\right)=(1-z)^{c-a-b}{ }_{2} F_{1}\left(\begin{array}{c}
c-a, c-b \\
c
\end{array} ; z\right)
$$

in (6), we obtain

$$
\frac{K_{n}(x ; p, N)}{(x-N)_{n} p^{n-x}}={ }_{2} F_{1}\left(\begin{array}{l}
N-x+1,-x \\
N-n-x+1
\end{array} ; 1-p\right) .
$$

If we set $n=r N, r=O(1)$ and let $N \rightarrow \infty$, we obtain [33, 1.4.5]

$$
\begin{gathered}
\lim _{N \rightarrow \infty} \frac{K_{n}(x ; p, N)}{(x-N)_{n} p^{n-x}}=\lim _{N \rightarrow \infty}{ }_{2} F_{1}\left(\begin{array}{c}
N-x+1,-x \\
N-r N-x+1
\end{array} ; 1-p\right) \\
={ }_{1} F_{0}\left(\begin{array}{c}
-x \\
-
\end{array} ; \frac{1-p}{1-r}\right)=\left(1-\frac{1-p}{1-r}\right)^{x} .
\end{gathered}
$$

Thus, if $0 \leq r<p \leq 1$,

$$
\begin{equation*}
\frac{K_{n}(x ; p, N)}{(x-N)_{n} p^{n-x}} \sim\left(\frac{p-r}{1-r}\right)^{x}, \quad N \rightarrow \infty \tag{9}
\end{equation*}
$$

From (1) we see that $K_{n}(x ; p, N)$ satisfies the ODE

$$
\begin{equation*}
p(1-p) \frac{d^{2} f}{d p^{2}}+[x-n+1-(N-2 n+2) p] \frac{d f}{d p}+n(N-n+1) f=0 \tag{10}
\end{equation*}
$$

while (5) and (8) give the boundary conditions

$$
f(0)=(x-n+1)_{n}, \quad f(1)=(x-N)_{n} .
$$

Setting

$$
n=r N, \quad r=O(1), \quad 0<r<1, \quad N=\varepsilon^{-1}, \quad \varepsilon>0
$$

in (10), we have

$$
\begin{equation*}
\varepsilon^{2} p(1-p) \frac{d^{2} f}{d p^{2}}+\varepsilon[(x+1-2 p) \varepsilon+2 p r-r-p] \frac{d f}{d p}+r(\varepsilon+1-r) f=0 . \tag{11}
\end{equation*}
$$

Replacing

$$
\begin{equation*}
f(p)=\exp \left[\varepsilon^{-1} \psi(p)\right] \xi(p ; x) \tag{12}
\end{equation*}
$$

in (11) we obtain, to leading order,

$$
\left[(p-1) \psi^{\prime}(p)+1-r\right]\left[p \psi^{\prime}(p)-r\right]=0
$$

with solutions

$$
\begin{equation*}
\psi_{1}(p)=r \ln (p)+C_{1}, \quad p>0 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{0}(p)=(r-1) \ln (1-p)+C_{0}, \quad p<1 \tag{14}
\end{equation*}
$$

Using (12) and (13) in (11), we get

$$
\begin{equation*}
\varepsilon p^{2}(1-p) \xi_{1}^{\prime \prime}+[\varepsilon(x+1-2 p)+r-p] p \xi_{1}^{\prime}+r x \xi_{1}=0 \tag{15}
\end{equation*}
$$

and using (12) and (14) in (11), we obtain

$$
\begin{gather*}
\varepsilon p(1-p)^{2} \xi_{0}^{\prime \prime}+[\varepsilon(x+1-2 p)+p-r](1-p) \xi_{0}^{\prime} \tag{16}\\
+(x+1-r x-p) \xi_{0}=0
\end{gather*}
$$

It is clear from the analysis so far that the solution

$$
\begin{equation*}
f_{1}(p)=(x-N)_{n} \exp \left[\varepsilon^{-1} \psi_{1}(p)\right] \xi_{1}(p ; x), \tag{17}
\end{equation*}
$$

should satisfy the boundary condition at $p=1$, and

$$
\begin{equation*}
f_{0}(p)=(x-n+1)_{n} \exp \left[\varepsilon^{-1} \psi_{0}(p)\right] \xi_{0}(p ; x) \tag{18}
\end{equation*}
$$

the boundary condition at $p=0$. Hence, as $N \rightarrow \infty$

$$
\begin{align*}
& K_{n}(x ; p, N) \sim k_{0}(x)(x-n+1)_{n}(1-p)^{n-N} \xi_{0}(p ; x) \tag{19}\\
& \quad+k_{1}(x)(x-N)_{n} p^{n} \xi_{1}(p ; x), \quad 0 \leq p<r
\end{align*}
$$

and

$$
\begin{equation*}
K_{n}(x ; p, N) \sim(x-N)_{n} p^{n} \xi_{1}(p ; x), \quad r<p \leq 1 \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi_{0}(0 ; x)=1, \quad \xi_{1}(1 ; x)=1, \tag{21}
\end{equation*}
$$

and $k_{0}(x), k_{1}(x)$ are unknown functions. In order to satisfy the condition (3), we need

$$
\begin{equation*}
k_{1}(0)=\xi_{1}(p ; 0)=1 \tag{22}
\end{equation*}
$$

2.1 The function ξ_{1}

In this section, we assume that $r<p \leq 1$. If we let $\varepsilon \rightarrow 0$ in (15), we get

$$
(r-p) p y^{\prime}+r(p-r+x) y=0
$$

with solution

$$
y(p)=C\left(1-\frac{r}{p}\right)^{x}
$$

Using (21) and (22), we see that

$$
\xi_{1}(p ; x) \sim(1-r)^{-x}\left(1-\frac{r}{p}\right)^{x}, \quad \varepsilon \rightarrow 0
$$

in agreement with (9).
To find higher order terms, we set

$$
\xi_{1}(p ; x)=(1-r)^{-x}\left(1-\frac{r}{p}\right)^{x} g(p), \quad g(1)=1
$$

in (15) and obtain the ODE

$$
\begin{gathered}
\varepsilon p(1-p)(p-r)^{2} g^{\prime \prime}+\varepsilon(p-r)\left(p-r+2 p r+p x+r x-2 p^{2}-2 p r x\right) g^{\prime} \\
-(p-r)^{3} g^{\prime}+\varepsilon r(1-r) x(x-1) g=0
\end{gathered}
$$

If we fix some $m \in \mathbb{N}$ and define

$$
\begin{equation*}
g(p)=\sum_{k=0}^{m} g_{k}(p) \varepsilon^{k}, \quad g_{0}(p)=1 \tag{23}
\end{equation*}
$$

then

$$
\begin{equation*}
(p-r)^{3} \frac{d g_{k}}{d p}=U_{p} g_{k-1}, \quad g_{k}(1)=0, \quad k \in \mathbb{N} \tag{24}
\end{equation*}
$$

where U_{p} denotes the differential operator

$$
\begin{aligned}
U_{p} & =p(1-p)(p-r)^{2} \frac{d^{2}}{d p^{2}} \\
& +(p-r)\left(p-r+2 p r+p x+r x-2 p^{2}-2 p r x\right) \frac{d}{d p} \\
& +r(1-r) x(x-1) .
\end{aligned}
$$

Solving (24) with initial condition $g_{k}(1)=0$, we get

$$
\begin{equation*}
g_{k}(p)=\int_{1}^{p} \frac{U_{s} g_{k-1}(s)}{(s-r)^{3}} d s, \quad k \in \mathbb{N} . \tag{25}
\end{equation*}
$$

For $k=1$, we have

$$
U_{p} g_{0}=r(1-r) x(x-1),
$$

and therefore

$$
\begin{equation*}
g_{1}(p)=\int_{1}^{p} \frac{r(1-r) x(x-1)}{(s-r)^{3}} d s=\frac{r x(x-1)(p-1)(p-2 r+1)}{2(1-r)(p-r)^{2}} . \tag{26}
\end{equation*}
$$

The next functions $g_{k}(p), k \geq 2$ can be easily computed using (25), but the expressions become increasingly cumbersome, so we shall not list them here.

Since from (7) we have

$$
\begin{equation*}
(x-N)_{n}=(-1)^{n} \frac{\Gamma(N-x+1)}{\Gamma(N-x-n+1)}, \tag{27}
\end{equation*}
$$

we can use Stirling's formula $[54,5.11 .1]$

$$
\begin{equation*}
\ln \Gamma(z) \sim z[\ln (z)-1]-\frac{1}{2} \ln (z)+\frac{1}{2} \ln (2 \pi)+\frac{1}{12 z}, \quad z \rightarrow \infty \tag{28}
\end{equation*}
$$

and obtain

$$
(-1)^{n}(x-N)_{n} \sim(1-r)^{x-\frac{1}{2}} \exp \left[\frac{(r-1) \ln (1-r)-(1+\ln \varepsilon) r}{\varepsilon}\right]
$$

Using this approximation in (9) gives

$$
\begin{equation*}
(-1)^{n} K_{n}(x ; p, N) \sim \frac{1}{\sqrt{1-r}} \exp \left[\frac{\tau_{1}(p)}{\varepsilon}\right]\left(1-\frac{r}{p}\right)^{x}, \quad \varepsilon \rightarrow 0 \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau_{1}(p)=(r-1) \ln (1-r)+[\ln (p)-\ln (\varepsilon)-1] r . \tag{30}
\end{equation*}
$$

2.2 The function ξ_{0}

In this section, we assume that $0 \leq p<r$. If we let $\varepsilon \rightarrow 0$ in (16), we get

$$
(p-r)(1-p) y^{\prime}+[(1-r) x+1-p] y=0
$$

with solution

$$
y(p)=C(1-p)^{x}(r-p)^{-x-1}
$$

Using (21), we see that

$$
\xi_{0}(p ; x) \sim(1-p)^{x}\left(1-\frac{p}{r}\right)^{-x-1}, \quad \varepsilon \rightarrow 0
$$

To find higher order terms, we set

$$
\xi_{0}(p ; x)=(x-n+1)_{n}(1-p)^{x}\left(1-\frac{p}{r}\right)^{-x-1} h(p), \quad h(0)=1
$$

in (16) and obtain the ODE

$$
\begin{gathered}
\varepsilon p(1-p)(p-r)^{2} h^{\prime \prime}+\varepsilon(p-r)(x+1)(2 p r-p-r) h^{\prime}+(p-r)^{3} h^{\prime} \\
+\varepsilon(x+1)\left(r x+p+r-r^{2} x-2 p r\right) h=0
\end{gathered}
$$

If we fix $m \in \mathbb{N}$, and define

$$
\begin{equation*}
h(p)=\sum_{k=0}^{m} h_{k}(p) \varepsilon^{k}, \quad h_{0}(p)=1 \tag{31}
\end{equation*}
$$

then

$$
\begin{equation*}
(r-p)^{3} \frac{d h_{k}}{d p}=V_{p} h_{k-1}, \quad h_{k}(0)=0, \quad k \in \mathbb{N} \tag{32}
\end{equation*}
$$

where V_{p} denotes the differential operator

$$
\begin{aligned}
V_{p} & =p(1-p)(p-r)^{2} \frac{d^{2}}{d p^{2}}+(p-r)(x+1)(2 p r-p-r) \frac{d}{d p} \\
& +(x+1)\left(p-2 p r+r+r x-r^{2} x\right)
\end{aligned}
$$

Solving (32) with initial condition $h_{k}(0)=0$, we get

$$
\begin{equation*}
h_{k}(p)=\int_{0}^{p} \frac{V_{s} h_{k-1}(s)}{(r-s)^{3}} d s, \quad k \in \mathbb{N} . \tag{33}
\end{equation*}
$$

For $k=1$, we have

$$
V_{p} h_{0}=(x+1)\left(p-2 p r+r+r x-r^{2} x\right),
$$

and therefore

$$
\begin{aligned}
h_{1}(p) & =(x+1) \int_{0}^{p} \frac{s-2 s r+r+r x-r^{2} x}{(r-s)^{3}} d s \\
& =\frac{p(x+1)}{(p-r)^{2}}\left(p x \frac{r-1}{2 r}-p-r x+x+1\right) .
\end{aligned}
$$

Similarly, the functions $h_{k}(p), k \geq 2$ can be easily computed using (33).
Since from (7) we have

$$
(x-n+1)_{n}=(-1)^{n} \frac{\Gamma(n-x)}{\Gamma(-x)},
$$

we can use Stirling's formula (28), and obtain

$$
(-1)^{n}(x-n+1)_{n} \sim \frac{\sqrt{2 \pi} r^{-x-\frac{1}{2}}}{\Gamma(-x)} \exp \left[\frac{(\ln r-\ln \varepsilon-1) r}{\varepsilon}+\left(x+\frac{1}{2}\right) \ln (\varepsilon)\right] .
$$

Using this approximation in (19) gives

$$
\begin{align*}
& (-1)^{n} K_{n}(x ; p, N) \sim \frac{k_{1}(x)}{\sqrt{1-r}} \exp \left[\frac{\tau_{1}(p)}{\varepsilon}\right]\left(1-\frac{r}{p}\right)^{x} \tag{34}\\
& +k_{0}(x) \sqrt{2 \pi \varepsilon r} \frac{[\varepsilon(1-p)]^{x}}{\Gamma(-x)} \exp \left[\frac{\tau_{0}(p)}{\varepsilon}\right](r-p)^{-x-1}
\end{align*}
$$

where

$$
\begin{equation*}
\tau_{0}(p)=(r-1) \ln (1-p)+[\ln (r)-\ln (\varepsilon)-1] r . \tag{35}
\end{equation*}
$$

The formula (34) is undefined at $p=r$ for all $x>-1$. Therefore, in the next section we shall find a new asymptotic approximation in the neighborhood of $p=r$.

2.3 The turning point at $p=r$

If we set

$$
\begin{equation*}
p=r+u \sqrt{a \varepsilon}, \quad a>0, \quad u=O(1), \tag{36}
\end{equation*}
$$

in (11), we have

$$
\begin{gather*}
\varepsilon\left[\varepsilon a u^{2}+\sqrt{a \varepsilon}(2 r-1) u+r(r-1)\right] \frac{d^{2} f}{d u^{2}} \\
+\sqrt{\varepsilon}\left[2 \varepsilon^{\frac{3}{2}} a u+\varepsilon \sqrt{a}(2 r-x-1)+\sqrt{\varepsilon} a u(1-2 r)+2 \sqrt{a} r(1-r)\right] \frac{d f}{d u} \tag{37}\\
-(\varepsilon+1-r)^{2} a r f=0
\end{gather*}
$$

Replacing

$$
\begin{equation*}
f(u)=\exp \left[\frac{\phi(u)}{\sqrt{\varepsilon}}\right] \eta(u) \tag{38}
\end{equation*}
$$

in (37) and letting $\varepsilon \rightarrow 0$, we get

$$
\left(\phi^{\prime}-\sqrt{a}\right)^{2}=0
$$

with solution

$$
\begin{equation*}
\phi(u)=u \sqrt{a}+C . \tag{39}
\end{equation*}
$$

Using (38) and (39) in (37) and letting $\varepsilon \rightarrow 0$, we obtain

$$
\begin{equation*}
r(1-r) \eta^{\prime \prime}-a\left[u(2 r-1) \eta^{\prime}+\left(a u^{2}+r-x-1\right) \eta\right]=0 \tag{40}
\end{equation*}
$$

Setting $a=r(1-r)$ and

$$
\eta(u)=\exp \left(\frac{2 r-1}{4} u^{2}\right) \lambda(u),
$$

in (40), we see that $\lambda(u)$ satisfies

$$
\lambda^{\prime \prime}=\left(\frac{u^{2}}{4}-x-\frac{1}{2}\right) \lambda,
$$

whose linearly independent solutions are the parabolic cylinder functions $D_{x}(u), D_{x}(-u)[70,16.5]$.

Hence, we conclude that

$$
\begin{equation*}
\eta(u)=\exp \left(\frac{2 r-1}{4} u^{2}\right)\left[C_{p}(x) D_{x}(u)+C_{m}(x) D_{x}(-u)\right], \tag{41}
\end{equation*}
$$

where $C_{p}(x)$ and $C_{m}(x)$ are functions to be determined. Combining (38), (39), and (41), we get

$$
\begin{equation*}
f(u)=\left[C_{p}(x) D_{x}(u)+C_{m}(x) D_{x}(-u)\right] \exp \left[\tau_{2}(u)+\frac{u^{2}}{4}\right] \tag{42}
\end{equation*}
$$

where

$$
\tau_{2}(u)=u \sqrt{\frac{r(1-r)}{\varepsilon}}+\frac{1}{2} u^{2}(r-1) .
$$

Using (36) in (30), we obtain

$$
\frac{\tau_{1}(p)}{\varepsilon} \sim \frac{\tau_{1}(r)}{\varepsilon}+\tau_{2}(u), \quad p \rightarrow r^{+}
$$

and since

$$
1-\frac{r}{p}=\frac{p-r}{p} \sim \frac{u}{r} \sqrt{r(1-r) \varepsilon}, \quad p \rightarrow r^{+}
$$

we see from (29) that

$$
\begin{align*}
& (-1)^{n} K_{n}(x ; p, N) \sim \frac{1}{\sqrt{1-r}}\left(u \sqrt{\frac{1-r}{r} \varepsilon}\right)^{x} \tag{43}\\
& \quad \times \exp \left[\frac{\tau_{1}(r)}{\varepsilon}+\tau_{2}(u)\right], \quad p \rightarrow r^{+}
\end{align*}
$$

Using the asymptotic approximation [70, 16.5]

$$
D_{x}(u) \sim \exp \left(-\frac{u^{2}}{4}\right) u^{x}, \quad u \rightarrow \infty
$$

in (42) and comparing with (43), we conclude that $C_{m}(x)=0$ and

$$
C_{p}(x)=\frac{1}{\sqrt{1-r}}\left(\frac{1-r}{r} \varepsilon\right)^{\frac{x}{2}} \exp \left[\frac{\tau_{1}(r)}{\varepsilon}\right]
$$

Therefore,

$$
\begin{align*}
& (-1)^{n} K_{n}(x ; p, N) \sim \frac{1}{\sqrt{1-r}}\left(\frac{1-r}{r} \varepsilon\right)^{\frac{x}{2}} \tag{44}\\
\times & \exp \left[\frac{\tau_{1}(r)}{\varepsilon}+\tau_{2}(u)+\frac{u^{2}}{4}\right] D_{x}(u), \quad \varepsilon \rightarrow 0
\end{align*}
$$

Using (36) in (35), we obtain

$$
\frac{\tau_{0}(p)}{\varepsilon} \sim \frac{\tau_{0}(r)}{\varepsilon}+\tau_{2}(u)+\frac{u^{2}}{2}, \quad p \rightarrow r^{-}
$$

and since

$$
(1-p)^{x}(r-p)^{-x-1} \sim(1-r)^{x}(-u \sqrt{r(1-r) \varepsilon})^{-x-1}, \quad p \rightarrow r^{-}
$$

we see from (34) that as $p \rightarrow r^{-}$

$$
\begin{align*}
& (-1)^{n} K_{n}(x ; p, N) \sim \frac{k_{1}(x)}{\sqrt{1-r}}\left(\frac{1-r}{r} \varepsilon\right)^{\frac{x}{2}} \exp \left[\frac{\tau_{1}(r)}{\varepsilon}+\tau_{2}(u)\right] u^{x} \tag{45}\\
& +\frac{\sqrt{2 \pi}}{\Gamma(-x)} \frac{k_{0}(x)}{\sqrt{1-r}}\left(\frac{1-r}{r} \varepsilon\right)^{\frac{x}{2}} \exp \left[\frac{\tau_{0}(r)}{\varepsilon}+\tau_{2}(u)+\frac{u^{2}}{2}\right](-u)^{-x-1}
\end{align*}
$$

Using the asymptotic approximation [70, 16.52]

$$
D_{x}(u) \sim \exp \left(-\frac{u^{2}}{4}\right)(-u)^{x}+\frac{\sqrt{2 \pi}}{\Gamma(-x)} \exp \left(\frac{u^{2}}{4}\right)(-u)^{-x-1}, \quad u \rightarrow-\infty
$$

in (44) and comparing with (45), we conclude that

$$
\begin{equation*}
k_{1}(x)=(-1)^{x}, \quad k_{0}(x)=1, \tag{46}
\end{equation*}
$$

since $\tau_{1}(r)=\tau_{0}(r)$. Using (46) in (19) gives

$$
\begin{array}{cl}
K_{n}(x ; p, N) \sim(x-n+1)_{n}(1-p)^{n-N+x} & \left(1-\frac{p}{r}\right)^{-x-1} h(p) \\
\quad+(x-N)_{n} p^{n-x}\left(\frac{r-p}{1-r}\right)^{x} g(p), & 0 \leq p<r
\end{array}
$$

for $N \rightarrow \infty$, with $g(p), h(p)$ defined by (23) and (31) respectively.

3 Summary of results

Theorem 1 Let $K_{n}(x ; p, N)$ be defined by (1), with $p \in[0,1], x=O(1)$, $n=r N, r \in(0,1)$, and $\varepsilon=N^{-1}$. Then, as $\varepsilon \rightarrow 0$ we have the following asymptotic approximations:
(i) For $0<r<p \leq 1$,

$$
\begin{equation*}
(-1)^{n} K_{n}(x ; p, N) \sim \frac{1}{\sqrt{1-r}} \exp \left[\frac{\tau_{1}(p)}{\varepsilon}\right]\left(1-\frac{r}{p}\right)^{x} \sum_{k=0}^{m} g_{k}(p) \varepsilon^{k} \tag{47}
\end{equation*}
$$

Figure 1: A plot of the scaled polynomial $K_{10}(x ; 0.347,50)$ (solid line), the

where

$$
\begin{gathered}
\tau_{1}(p)=(r-1) \ln (1-r)+[\ln (p)-\ln (\varepsilon)-1] r, \\
g_{0}(p)=1, \quad g_{k}(p)=\int_{1}^{p} \frac{U_{s} g_{k-1}(s)}{(s-r)^{3}} d s, \quad k \in \mathbb{N},
\end{gathered}
$$

and the differential operator U_{p} is defined by

$$
\begin{aligned}
U_{p} & =p(1-p)(p-r)^{2} \frac{d^{2}}{d p^{2}}+(p-r)\left(p-r+2 p r+p x+r x-2 p^{2}-2 p r x\right) \frac{d}{d p} \\
& +r(1-r) x(x-1)
\end{aligned}
$$

In Figure 1, we plot $K_{10}(x ; 0.347,50)$ and the approximation (47) for $m=0,1$. Both functions are divided by $p^{n}(-N)_{n} \simeq 9.43 \times 10^{11}$. Note that in this case $r=0.2<p$ and $\varepsilon=0.02$.
(ii) For $0 \leq p<r<1$,

$$
\begin{gather*}
(-1)^{n} K_{n}(x ; p, N) \sim \frac{\sqrt{2 \pi \varepsilon r}}{r-p} \frac{\varepsilon^{x}}{\Gamma(-x)} \exp \left[\frac{\tau_{0}(p)}{\varepsilon}\right] \\
\times\left(\frac{1-p}{r-p}\right)^{x} \sum_{k=0}^{m} h_{k}(p) \varepsilon^{k} \tag{48}\\
+\frac{1}{\sqrt{1-r}} \exp \left[\frac{\tau_{1}(p)}{\varepsilon}\right]\left(\frac{r}{p}-1\right)^{x} \sum_{k=0}^{m} g_{k}(p) \varepsilon^{k}
\end{gather*}
$$

where

$$
\begin{gathered}
\tau_{0}(p)=(r-1) \ln (1-p)+[\ln (r)-\ln (\varepsilon)-1] r \\
h_{0}(p)=1, \quad h_{k}(p)=\int_{0}^{p} \frac{V_{s} h_{k-1}(s)}{(r-s)^{3}} d s, \quad k \in \mathbb{N}
\end{gathered}
$$

and the differential operator V_{p} is defined by

$$
\begin{aligned}
V_{p} & =p(1-p)(p-r)^{2} \frac{d^{2}}{d p^{2}}+(p-r)(x+1)(2 p r-p-r) \frac{d}{d p} \\
& +(x+1)\left(p-2 p r+r+r x-r^{2} x\right)
\end{aligned}
$$

In Figure 2, we plot $K_{40}(x ; 0.347,50)$ and the approximation (47) for $m=0,1,2$. All functions are divided by the scaling factor

$$
(-1)^{n} \Gamma(n-x)(1-p)^{x+n-N}\left(1-\frac{p}{r}\right)^{-x-1} \frac{\Gamma(x+1)}{\pi}
$$

Note that in this case $r=0.8>p$ and $\varepsilon=0.02$.
(iii) For $p=r+O(\sqrt{\varepsilon})$,

$$
\begin{equation*}
(-1)^{n} K_{n}(x ; p, N) \sim \frac{1}{\sqrt{1-r}}\left(\frac{1-r}{r} \varepsilon\right)^{\frac{x}{2}} \exp \left[\frac{\tau_{1}(r)}{\varepsilon}+\tau_{2}(u)+\frac{u^{2}}{4}\right] D_{x}(u) \tag{49}
\end{equation*}
$$

where $D_{x}(u)$ denotes the Parabolic Cylinder function,

$$
p=r+u \sqrt{r(1-r) \varepsilon}, \quad u=O(1)
$$

Figure 2: A plot of the scaled polynomial $K_{40}(x ; 0.347,50)$ (solid line), the one term approximation $(+++)$, the two term approximation $\left({ }^{* * *}\right)$, and the three term approximation (ooo).

Figure 3: A plot of the scaled polynomial $K_{17}(x ; 0.347,50)$ (solid line) and its approximation (ooo).
and

$$
\tau_{2}(u)=u \sqrt{\frac{r(1-r)}{\varepsilon}}+\frac{1}{2} u^{2}(r-1) .
$$

In Figure 3, we plot $K_{17}(x ; 0.347,50)$ and the approximation (49). Both functions are divided by the scaling factor $N^{\frac{x}{2}} p^{n}(x-N)_{n}$. Note that in this case $r=0.34<p, u=0.1044$ and $\varepsilon=0.02$.
In Figure 4, we plot $K_{18}(x ; 0.347,50)$ and the approximation (49). Both functions are divided by the scaling factor $N^{\frac{x}{2}} p^{n}(x-N)_{n}$. Note that in this case $r=0.36>p, u=-0.1915$ and $\varepsilon=0.02$.

Remark 2 Note that from (30) and (35) we see that

$$
\tau_{1}(p)-\tau_{0}(p)=(r-1) \ln \left(\frac{1-p}{1-r}\right)+r \ln \left(\frac{r}{p}\right) \leq 0, \quad r \in[0,1]
$$

Figure 4: A plot of the scaled polynomial $K_{18}(x ; 0.347,50)$ (solid line) and its approximation (ooo).
with equality when $p=r$. Thus, from (34) we obtain

$$
\begin{gather*}
\exp \left[-\frac{\tau_{0}(p)}{\varepsilon}\right](-1)^{n} K_{n}(x ; p, N) \sim \frac{\sqrt{2 \pi \varepsilon r}}{r-p} \frac{\varepsilon^{x}}{\Gamma(-x)}\left(\frac{1-p}{r-p}\right)^{x} \tag{50}\\
+\frac{1}{\sqrt{1-r}} \exp \left[\frac{\tau_{1}(p)-\tau_{0}(p)}{\varepsilon}\right]\left(\frac{r}{p}-1\right)^{x}, \quad \varepsilon \rightarrow 0
\end{gather*}
$$

and the second term is exponentially small, except when $x \rightarrow 0$.
In Figure 5, we plot $K_{40}(x ; 0.347,50)$, the one term approximation

$$
(x-n+1)_{n}(1-p)^{n-N+x}\left(1-\frac{p}{r}\right)^{-x-1}
$$

and the composite approximation

$$
(x-n+1)_{n}(1-p)^{n-N+x}\left(1-\frac{p}{r}\right)^{-x-1}+(x-N)_{n} p^{n-x}\left(\frac{r-p}{1-r}\right)^{x}
$$

in the small interval $\left[0,10^{-8}\right]$, to show the need for the second term when $x \rightarrow 0$. All functions are divided by $p^{n}(-N)_{n} \simeq 3.43 \times 10^{39}$.

We now have all the elements needed to state the Mehler-Heine type formulas for the Krawtchouk polynomials.

Corollary 3 With the same definitions as in Theorem 1, we have:
(i) For $0<r<p \leq 1$,

$$
\lim _{N \rightarrow \infty} \frac{K_{n}(x ; p, N)}{(x-N)_{n} p^{n}}=\left[\frac{p-r}{(1-r) p}\right]^{x}
$$

(ii) For $0 \leq p<r<1$,

$$
\lim _{N \rightarrow \infty} \frac{(-1)^{n} K_{n}(x ; p, N)}{\Gamma(n-x)(1-p)^{n-N}}=\frac{(1-p)^{x}}{\Gamma(-x)}\left(1-\frac{p}{r}\right)^{-x-1} .
$$

(iii) For $p=r+O(\sqrt{\varepsilon})$,

$$
\lim _{N \rightarrow \infty} \frac{N^{\frac{x}{2}} K_{n}(x ; p, N)}{(x-N)_{n} p^{n}}=[r(1-r)]^{-\frac{x}{2}} \exp \left(\frac{u^{2}}{4}\right) D_{x}(u)
$$

Figure 5: A plot of the scaled polynomial $K_{40}(x ; 0.347,50)$ (solid line), the one term approximation $\left({ }^{* * *}\right)$, and the composite approximation (ooo).

4 Zeros

If we set $x=1$ in (1), we have

$$
K_{n}(1 ; p, N)=p^{n}(-N)_{n}\left(1-\frac{n}{N p}\right)
$$

and hence

$$
\begin{equation*}
K_{n}(1 ; p, N)=0, \quad n=N p \tag{51}
\end{equation*}
$$

Note that this agrees with (44), since [54, 12.7.2]

$$
\exp \left(\frac{u^{2}}{4}\right) D_{1}(u)=u
$$

and therefore if $u=0$ (i.e., $n=N p$), we get (51).
For the special case $p=\frac{1}{2}$ (the so called binary Krawtchouk polynomials), we can use the identity [54, 15.4.30]

$$
{ }_{2} F_{1}\left(\begin{array}{c}
a, 1-a \\
b
\end{array} ; \frac{1}{2}\right)=\frac{2^{1-b} \sqrt{\pi} \Gamma(b)}{\Gamma\left(\frac{a+b}{2}\right) \Gamma\left(\frac{b-a+1}{2}\right)}
$$

in (6), and obtain

$$
K_{n}\left(x ; \frac{1}{2}, 2 n\right)=(x-2 n)_{n} \frac{2^{x-n} \sqrt{\pi} \Gamma(n+1-x)}{\Gamma\left(\frac{1-x}{2}\right) \Gamma\left(n+1-\frac{1}{2} x\right)}=(-2)^{n}\left(\frac{1-x}{2}\right)_{n}
$$

Hence, $K_{n}\left(x ; \frac{1}{2}, 2 n\right)$ has zeros at the odd integers $x=2 k-1, k=1, \ldots, n$.
If we use the two-term expansion

$$
\frac{K_{n}(x ; p, N)}{(x-N)_{n} p^{n}} \sim\left(\frac{p-r}{1-r} \frac{1}{p}\right)^{x}\left[1+g_{1}(p) N^{-1}\right], \quad N \rightarrow \infty
$$

where $g_{1}(p)$ was defined in (26), we can solve for x and obtain an approximation for the smallest zero of $K_{n}(x ; p, N)$ in the region $r<p \leq 1$,

$$
x_{1} \sim(p-r) \sqrt{\frac{2(1-r) N}{(1-p)(p-2 r+1) r}}+\frac{1}{2}, \quad N \rightarrow \infty
$$

For example, when $n=10, N=50$, and $p=0.347$, we get $x_{1} \simeq 4.23$, while the exact value is $x_{1}=4.11$.

If we expand (50) as $x \rightarrow 0$, we have
$\exp \left[-\frac{\tau_{0}(p)}{\varepsilon}\right](-1)^{n} K_{n}(x ; p, N) \sim \frac{\sqrt{2 \pi \varepsilon r}}{r-p}(-x)+\frac{1}{\sqrt{1-r}} \exp \left[\frac{\tau_{1}(p)-\tau_{0}(p)}{\varepsilon}\right]$,
and therefore the smallest zero of $K_{n}(x ; p, N)$ in the region $0 \leq p<r<1$ is asymptotically given by

$$
\begin{equation*}
x_{1} \sim \frac{r-p}{\sqrt{2 \pi \varepsilon r(1-r)}} \exp \left[\frac{\tau_{1}(p)-\tau_{0}(p)}{\varepsilon}\right], \quad \varepsilon \rightarrow 0 \tag{52}
\end{equation*}
$$

For example, when $\varepsilon=\frac{1}{50}, p=0.347$, and $r=\frac{40}{50}$, the approximation (52) gives $x_{1} \simeq 1.35 \times 10^{-9}$ while the exact solution is $x_{1}=1.31 \times 10^{-9}$.

5 Conclusions

We have found asymptotic expansions for the monic Krawtchouk polynomials $K_{n}(x ; p, N)$, valid for $n=O(N), x=O(1)$ and all values of $p \in[0,1]$. We have also obtained asymptotic approximations for the smallest zero. In a sequel, we plan to use similar methods to study the Hahn polynomials.

6 Acknowledgments

This work was done while visiting the Johannes Kepler Universität Linz and supported by the strategic program "Innovatives OÖ- 2010 plus" from the Upper Austrian Government.

References

[1] S. H. Abdulhussain, A. R. Ramli, S. A. R. Al-Haddad, B. M. Mahmmod, and W. A. Jassim. Fast recursive computation of Krawtchouk polynomials. J. Math. Imaging Vision, 60(3):285-303, 2018.
[2] M. Alfaro, J. J. Moreno-Balcázar, A. Peña, and M. L. Rezola. A new approach to the asymptotics of Sobolev type orthogonal polynomials. J. Approx. Theory, 163(4):460-480, 2011.
[3] I. Area, D. K. Dimitrov, E. Godoy, and V. Paschoa. Bounds for the zeros of symmetric Kravchuk polynomials. Numer. Algorithms, 69(3):611-624, 2015.
[4] N. M. Atakishiyev, G. S. Pogosyan, L. E. Vicent, and K. B. Wolf. Separation of discrete variables in the 2-dim finite oscillator. In Quantum theory and symmetries (Kraków, 2001), pages 255-260. World Sci. Publishing, River Edge, NJ, 2002.
[5] L. A. Bassalygo. Generalization of Lloyd's theorem to arbitrary alphabet. Problems of Control and Information Theory/Problemy Upravlenija i Teorii Informacii, 2(2):133-137, 1973.
[6] G. Bergeron, E. Koelink, and L. Vinet. $S U_{q}(3)$ corepresentations and bivariate q-Krawtchouk polynomials. J. Math. Phys., 60(5):051701, 13, 2019.
[7] C. Campigotto, Y. F. Smirnov, and S. G. Enikeev. q-analogue of the Krawtchouk and Meixner orthogonal polynomials. In Proceedings of the Fourth International Symposium on Orthogonal Polynomials and their Applications (Evian-Les-Bains, 1992), volume 57, pages 87-97, 1995.
[8] L. Chihara and D. Stanton. Zeros of generalized Krawtchouk polynomials. J. Approx. Theory, 60(1):43-57, 1990.
[9] D. Dai and R. Wong. Global asymptotics of Krawtchouk polynomials-a Riemann-Hilbert approach. Chin. Ann. Math. Ser. B, 28(1):1-34, 2007.
[10] P. Delsarte. An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl., (10):vi+97, 1973.
[11] D. Dominici. Mehler-Heine type formulas for Charlier and Meixner polynomials II. Higher order terms. J. Class. Anal., 12(1):9-13, 2018.
[12] D. Dominici. Mehler-Heine type formulas for Charlier and Meixner polynomials. Ramanujan J., 39(2):271-289, 2016.
[13] D. Dominici. Asymptotic analysis of the Krawtchouk polynomials by the WKB method. Ramanujan J., 15(3):303-338, 2008.
[14] D. Dominici and C. Knessl. Asymptotic analysis by the saddle point method of the Anick-Mitra-Sondhi model. J. Appl. Math. Stoch. Anal., (1):19-71, 2004.
[15] P. D. Dragnev and E. B. Saff. A problem in potential theory and zero asymptotics of Krawtchouk polynomials. J. Approx. Theory, 102(1):120140, 2000.
[16] T. M. Dunster. Uniform asymptotic expansions for Charlier polynomials. J. Approx. Theory, 112(1):93-133, 2001.
[17] G. K. Eagleson. A characterization theorem for positive definite sequences on the Krawtchouk polynomials. Austral. J. Statist., 11:29-38, 1969.
[18] P. Feinsilver. Sums of squares of Krawtchouk polynomials, Catalan numbers, and some algebras over the Boolean lattice. Int. J. Math. Comput. Sci., 12(1):65-83, 2017.
[19] P. Feinsilver and R. Schott. Krawtchouk polynomials and finite probability theory. In Probability measures on groups, X (Oberwolfach, 1990), pages 129-135. Plenum, New York, 1991.
[20] V. X. Genest, S. Post, and L. Vinet. An algebraic interpretation of the multivariate q-Krawtchouk polynomials. Ramanujan J., 43(2):415-445, 2017.
[21] V. X. Genest, S. Post, L. Vinet, G.-F. Yu, and A. Zhedanov. q-rotations and Krawtchouk polynomials. Ramanujan J., 40(2):335-357, 2016.
[22] V. X. Genest, L. Vinet, and A. Zhedanov. The multivariate Krawtchouk polynomials as matrix elements of the rotation group representations on oscillator states. J. Phys. A, 46(50):505203, 24, 2013.
[23] R. Griffiths. Multivariate Krawtchouk polynomials and composition birth and death processes. Symmetry, 8(5):Art. 33, 19, 2016.
[24] V. A. Groza and I. I. Kachurik. Addition and multiplication theorems for Krawtchouk, Hahn and Racah q-polynomials. Dokl. Akad. Nauk Ukrain. SSR Ser. A, (5):3-6, 89, 1990.
[25] L. Habsieger. Integer zeros of q-Krawtchouk polynomials in classical combinatorics. Adv. in Appl. Math., 27(2-3):427-437, 2001.
[26] L. Habsieger. Integral zeroes of Krawtchouk polynomials. In Codes and association schemes (Piscataway, NJ, 1999), volume 56 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 151-165. Amer. Math. Soc., Providence, RI, 2001.
[27] L. Habsieger and D. Stanton. More zeros of Krawtchouk polynomials. Graphs Combin., 9(2):163-172, 1993.
[28] E. Heine. Handbuch der Kugelfunctionen. Theorie und Anwendungen. Band I, II. Zweite umgearbeitete und vermehrte Auflage. Thesaurus Mathematicae, No. 1. Physica-Verlag, Würzburg, 1961, 1961.
[29] J. Heo and Y.-H. Kiem. On characterizing integral zeros of Krawtchouk polynomials by quantum entanglement. Linear Algebra Appl., 567:167179, 2019.
[30] M. E. H. Ismail and P. Simeonov. Strong asymptotics for Krawtchouk polynomials. J. Comput. Appl. Math., 100(2):121-144, 1998.
[31] C. Ivan. A multidimensional nonlinear growth, birth and death, emigration and immigration process. In Proceedings of the Fourth Conference on Probability Theory (Braşov, 1971), pages 421-427. Editura Acad. R. S. R., Bucharest, 1973.
[32] A. Jooste and K. Jordaan. Bounds for zeros of Meixner and Kravchuk polynomials. LMS J. Comput. Math., 17(1):47-57, 2014.
[33] R. Koekoek, P. A. Lesky, and R. F. Swarttouw. Hypergeometric orthogonal polynomials and their q-analogues. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2010.
[34] H. T. Koelink. q-Krawtchouk polynomials as spherical functions on the Hecke algebra of type B. Trans. Amer. Math. Soc., 352(10):4789-4813, 2000.
[35] I. Krasikov and S. Litsyn. On the distance distributions of BCH codes and their duals. Des. Codes Cryptogr., 23(2):223-231, 2001.
[36] I. Krasikov and S. Litsyn. On integral zeros of Krawtchouk polynomials. J. Combin. Theory Ser. A, 74(1):71-99, 1996.
[37] J.-H. Lee and H. Tanaka. Dual polar graphs, a nil-DAHA of rank one, and non-symmetric dual q-Krawtchouk polynomials. SIGMA Symmetry Integrability Geom. Methods Appl., 14:Paper No. 009, 27, 2018.
[38] H. W. Lenstra, Jr. Two theorems on perfect codes. Discrete Math., 3:125-132, 1972.
[39] V. I. Levenshtein. Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces. IEEE Trans. Inform. Theory, 41(5):1303-1321, 1995.
[40] X.-C. Li and R. Wong. A uniform asymptotic expansion for Krawtchouk polynomials. J. Approx. Theory, 106(1):155-184, 2000.
[41] L. L. Littlejohn, J. F. Mañas Mañas, J. J. Moreno-Balcázar, and R. Wellman. Differential operator for discrete Gegenbauer-Sobolev orthogonal polynomials: eigenvalues and asymptotics. J. Approx. Theory, 230:3249, 2018.
[42] S. P. Lloyd. Binary block coding. Bell System Tech. J., 36:517-535, 1957.
[43] M. Lorente. Quantum mechanics on discrete space and time. In New developments on fundamental problems in quantum physics (Oviedo, 1996), volume 81 of Fund. Theories Phys., pages 213-224. Kluwer Acad. Publ., Dordrecht, 1997.
[44] J. F. Mañas Mañas, F. Marcellán, and J. J. Moreno-Balcázar. Asymptotics for varying discrete Sobolev orthogonal polynomials. Appl. Math. Comput., 314:65-79, 2017.
[45] J. F. Mañas Mañas, F. Marcellán, and J. J. Moreno-Balcázar. Asymptotic behavior of varying discrete Jacobi-Sobolev orthogonal polynomials. J. Comput. Appl. Math., 300:341-353, 2016.
[46] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes. I. North-Holland Publishing Co., Amsterdam, 1977.
[47] F. Marcellán, R. Zejnullahu, B. Fejzullahu, and E. Huertas. On orthogonal polynomials with respect to certain discrete Sobolev inner product. Pacific J. Math., 257(1):167-188, 2012.
[48] F. G. Mehler. Ueber die Vertheilung der statischen Elektricität in einem von zwei Kugelkalotten begrenzten Körper. J. Reine Angew. Math., 68:134-150, 1868.
[49] A. R. Minabutdinov. Asymptotic expansion of Krawtchouk polynomials. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 436(Teoriya Predstavleniŭ, Dinamicheskie Sistemy, Kombinatornye Metody. XXV):174-188, 2015.
[50] H. Mizukawa. Orthogonality relations for multivariate Krawtchouk polynomials. SIGMA Symmetry Integrability Geom. Methods Appl., 7:Paper 017, 5, 2011.
[51] J. J. Moreno-Balcázar. Δ-Meixner-Sobolev orthogonal polynomials: Mehler-Heine type formula and zeros. J. Comput. Appl. Math., 284:228234, 2015.
[52] A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov. Classical orthogonal polynomials of a discrete variable. Springer Series in Computational Physics. Springer-Verlag, Berlin, 1991.
[53] K. Oldham, J. Myland, and J. Spanier. An atlas of functions. Springer, New York, second edition, 2009.
[54] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, editors. NIST handbook of mathematical functions. U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010.
[55] A. Poli and L. Huguet. Error correcting codes. Prentice Hall International, Hemel Hempstead, 1992.
[56] W. Schoutens. Stochastic processes and orthogonal polynomials, volume 146 of Lecture Notes in Statistics. Springer-Verlag, New York, 2000.
[57] I. I. Sharapudinov. Asymptotic properties of Krawtchouk polynomials. Mat. Zametki, 44(5):682-693, 703, 1988.
[58] B. D. Sharma and N. Sookoo. Generalized Krawtchouk polynomials and the complete weight enumerator of the dual code. J. Discrete Math. Sci. Cryptogr., 14(6):503-514, 2011.
[59] G. Shibukawa. Multivariate Meixner, Charlier and Krawtchouk polynomials according to analysis on symmetric cones. J. Lie Theory, 26(2):439-477, 2016.
[60] N. J. A. Sloane. An introduction to association schemes and coding theory. In Theory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), pages 225-260. Math. Res. Center, Univ. Wisconsin, Publ. No. 35. Academic Press, New York, 1975.
[61] Y. F. Smirnov and C. Campigotto. The quantum q-Krawtchouk and q-Meixner polynomials and their related D-functions for the quantum groups $\mathrm{SU}_{q}(2)$ and $\mathrm{SU}_{q}(1,1)$. In Proceedings of the 10th International Congress on Computational and Applied Mathematics (ICCAM-2002), volume 164/165, pages 643-660, 2004.
[62] P. Solé. An inversion formula for Krawtchouk polynomials with applications to coding theory. J. Inform. Optim. Sci., 11(2):207-213, 1990.
[63] D. Stanton. A partially ordered set and q-Krawtchouk polynomials. J. Combin. Theory Ser. A, 30(3):276-284, 1981.
[64] D. Stanton. Three addition theorems for some q-Krawtchouk polynomials. Geom. Dedicata, 10(1-4):403-425, 1981.
[65] D. Stanton. Some q-Krawtchouk polynomials on Chevalley groups. Amer. J. Math., 102(4):625-662, 1980.
[66] R. J. Stroeker and B. M. M. de Weger. On integral zeroes of binary Krawtchouk polynomials. Nieuw Arch. Wisk. (4), 17(2):175-186, 1999.
[67] G. Szegő. Orthogonal polynomials. American Mathematical Society, Providence, R.I., fourth edition, 1975.
[68] M. V. Tratnik. Multivariable Meixner, Krawtchouk, and MeixnerPollaczek polynomials. J. Math. Phys., 30(12):2740-2749, 1989.
[69] G. N. Watson. A treatise on the theory of Bessel functions. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1995.
[70] E. T. Whittaker and G. N. Watson. A course of modern analysis. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1996.
[71] A. Zhedanov. Oscillator $9 j$-symbols, multidimensional factorization method, and multivariable Krawtchouk polynomials. In Calogero-Moser-Sutherland models (Montréal, QC, 1997), CRM Ser. Math. Phys., pages 549-561. Springer, New York, 2000.
[72] X. F. Zhu and X. C. Li. Asymptotic expansions of zeros for Krawtchouk polynomials with error bounds. Appl. Math. Mech., 27(12):1424-1430, 2006.

Technical Reports of the Doctoral Program
 "Computational Mathematics"

2019-01 A. Seiler, B. Jüttler: Approximately \mathcal{C}^{1}-smooth Isogeometric Functions on Two-Patch Domains Jan 2019. Eds.: J. Schicho, U. Langer
2019-02 A. Jiménez-Pastor, V. Pillwein, M.F. Singer: Some structural results on D^{n}-finite functions Feb 2019. Eds.: M. Kauers, P. Paule
2019-03 U. Langer, A. Schafelner: Space-Time Finite Element Methods for Parabolic Evolution Problems with Non-smooth Solutions March 2019. Eds.: B. Jüttler, V. Pillwein
2019-04 D. Dominici, F. Marcellán: Discrete semiclassical orthogonal polynomials of class 2 April 2019. Eds.: P. Paule, V. Pillwein

2019-05 D. Dominici, V. Pillwein: A sequence of polynomials generated by a Kapteyn series of the second kind May 2019. Eds.: P. Paule, J. Schicho
2019-06 D. Dominici: Mehler-Heine type formulas for the Krawtchouk polynomials June 2019. Eds.: P. Paule, M. Kauers

2018

2018-01 D. Dominici: Laguerre-Freud equations for Generalized Hahn polynomials of type I Jan 2018. Eds.: P. Paule, M. Kauers
2018-02 C. Hofer, U. Langer, M. Neumüller: Robust Preconditioning for Space-Time Isogeometric Analysis of Parabolic Evolution Problems Feb 2018. Eds.: U. Langer, B. Jüttler
2018-03 A. Jiménez-Pastor, V. Pillwein: Algorithmic Arithmetics with DD-Finite Functions Feb 2018. Eds.: P. Paule, M. Kauers
2018-04 S. Hubmer, R. Ramlau: Nesterov's Accelerated Gradient Method for Nonlinear Ill-Posed Problems with a Locally Convex Residual Functional March 2018. Eds.: U. Langer, R. Ramlau
2018-05 S. Hubmer, E. Sherina, A. Neubauer, O. Scherzer: Lamé Parameter Estimation from Static Displacement Field Measurements in the Framework of Nonlinear Inverse Problems March 2018. Eds.: U. Langer, R. Ramlau

2018-06 D. Dominici: A note on a formula of Krattenthaler March 2018. Eds.: P. Paule, V. Pillwein
2018-07 C. Hofer, S. Takacs: A parallel multigrid solver for multi-patch Isogeometric Analysis April 2018. Eds.: U. Langer, B. Jüttler

2018-08 D. Dominci: Power series expansion of a Hankel determinant June 2018. Eds.: P. Paule, M. Kauers

2018-09 P. Paule, S. Radu: A Unified Algorithmic Framework for Ramanujan's Congruences Modulo Powers of 5, 7, and 11 Oct 2018. Eds.: M. Kauers, V. Pillwein
2018-10 D. Dominici: Matrix factorizations and orthogonal polynomials Nov 2018. Eds.: P. Paule, M. Kauers

2018-11 D. Dominici, V. Pillwein: Difference equation satisfied by the Stieltjes transform of a sequence Dec 2018. Eds.: P. Paule, M. Kauers
2018-12 N.A. Smoot: A Family of Congruences for Rogers-Ramanujan Subpartitions Dec 2019. Eds.: P. Paule, V. Pillwein

The complete list since 2009 can be found at https://www.dk-compmath.jku.at/publications/

Doctoral Program "Computational Mathematics"

Director:

Dr. Veronika Pillwein
Research Institute for Symbolic Computation

Deputy Director:

Prof. Dr. Bert Jüttler
Institute of Applied Geometry

Address:

Johannes Kepler University Linz
Doctoral Program "Computational Mathematics"
Altenbergerstr. 69
A-4040 Linz
Austria
Tel.: ++43 732-2468-6840

E-Mail:

office@dk-compmath.jku.at

Homepage:

http://www.dk-compmath.jku.at

[^0]: *e-mail: diego.dominici@dk-compmath.jku.at

