Doctoral Program Computational Mathematics

Recurrence coefficients of Toda－type orthogonal polynomials I． Asymptotic analysis．

Diego Dominici

Editorial Board: Bruno Buchberger
Evelyn Buckwar
Bert Jüttler
Ulrich Langer
Manuel Kauers
Peter Paule
Veronika Pillwein
Silviu Radu
Ronny Ramlau
Josef Schicho
Managing Editor: Diego Dominici
Communicated by: Peter Paule
Manuel Kauers

DK sponsors:

- Johannes Kepler University Linz (JKU)
- Austrian Science Fund (FWF)
- Upper Austria

Recurrence coefficients of Toda-type orthogonal polynomials I. Asymptotic analysis.

Diego Dominici *
Johannes Kepler University Linz
Doktoratskolleg "Computational Mathematics"
Altenberger Straße 69
4040 Linz
Austria
Permanent address: Department of Mathematics
State University of New York at New Paltz
1 Hawk Dr.
New Paltz, NY 12561-2443
USA

Abstract

We study the three-term recurrence coefficients β_{n}, γ_{n}, of polynomial sequences orthogonal with respect to a perturbed linear functional depending on a variable z. We obtain power series expansions in z and asymptotic expansions as $n \rightarrow \infty$.

We use our results to settle some conjectures proposed by Walter Van Assche and collaborators.

Keywords: Toda lattice, orthogonal polynomials, recurrence coefficients.
Subject Classification Codes: 33C47 (primary), 37K10, 40A05 (secondary).

[^0]
1 Introduction

Let \mathbb{N}_{0} denote the set

$$
\mathbb{N}_{0}=\mathbb{N} \cup\{0\}=0,1,2, \ldots
$$

and \mathbb{F} the ring of formal power series on the variable $z, \mathbb{F}=\mathbb{C}[[z]]$. Suppose that $D_{z}: \mathbb{F} \rightarrow \mathbb{F}$ is a derivation (on the variable z), i.e., a linear operator satisfying the product rule

$$
D_{z}(f g)=f D_{z}(g)+g D_{z}(f), \quad f, g \in \mathbb{F}
$$

If $\kappa(x, z)$ is an eigenfunction of D_{z} with eigenvalue x,

$$
D_{z} \kappa(x, z)=x \kappa(x, z)
$$

we define the vector space \mathcal{S}_{κ} over the ring \mathbb{F} generated by the monomial basis $\left\{x^{n}\right\}_{n \geq 0}$ and the function $\kappa(x, z)$,

$$
\mathcal{S}_{\kappa}=\{p(x) \kappa(x, z): p \in \mathbb{F}[x]\}
$$

Examples of D_{z} and $\kappa(x, z)$ include

$$
D_{t}=\partial_{t}, \quad \kappa(x, t)=e^{x t},
$$

where ∂_{t} denotes the derivative operator,

$$
D_{z}=z \partial_{z}, \quad \kappa(x, z)=z^{x}
$$

and

$$
D_{w}=w(1-w) \partial_{w}, \quad \kappa(x, w)=\left(\frac{w}{w-1}\right)^{x}
$$

Note that we have

$$
\begin{gather*}
e^{t}=z \rightarrow \partial_{t}=z \partial_{z} \\
\frac{w}{w-1}=z \rightarrow w(1-w) \partial_{w}=z \partial_{z} \tag{1}
\end{gather*}
$$

and in general

$$
z=g(s) \rightarrow z \partial_{z}=\frac{g(s)}{g^{\prime}(s)} \partial_{s}
$$

Thus, up to a suitable change of variables, we can take $D_{z}=z \partial_{z}$ and $\kappa(x, z)=z^{x}$.

If $\mathcal{L} \in \mathcal{S}_{\kappa}^{*}$ (the dual space) commutes with the derivation D_{z}, we define $L: \mathbb{F}[x] \rightarrow \mathbb{F}$ by

$$
\begin{equation*}
L[p]=\mathcal{L}[p(x) \kappa(x, z)], \quad p \in \mathbb{F}[x] \tag{2}
\end{equation*}
$$

where we always think of L as acting on the variable x. A sequence $\left\{P_{n}\right\}_{n \geq 0}$, $\operatorname{deg}\left(P_{n}\right)=n$, is called an orthogonal polynomial sequence with respect to L if

$$
\begin{equation*}
L\left[P_{k} P_{n}\right]=h_{n} \delta_{k, n}, \quad k, n \in \mathbb{N}_{0}, \quad h_{n} \neq 0 \tag{3}
\end{equation*}
$$

where $\delta_{k, n}$ denotes the Kronecker delta. If $h_{n}=1$, then $\left\{P_{n}\right\}_{n \geq 0}$ is called an orthonormal polynomial sequence.

Let's denote by $P_{n}(x ; z)$, the sequence of monic polynomials orthogonal with respect to L. From (3) we see that

$$
L\left[x P_{k} P_{n}\right]=0, \quad k \neq n, n \pm 1
$$

and therefore the polynomials $P_{n}(x ; z)$ satisfy the three term recurrence relation

$$
\begin{equation*}
x P_{n}(x ; z)=P_{n+1}(x ; z)+\beta_{n}(z) P_{n}(x ; z)+\gamma_{n}(z) P_{n-1}(x ; z) \tag{4}
\end{equation*}
$$

with $P_{-1}=0, P_{0}=1$. The coefficients β_{n}, γ_{n} are given by [12]

$$
\begin{equation*}
\beta_{0}=\frac{\mu_{1}}{\mu_{0}}, \quad \gamma_{0}=0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{n}=\frac{L\left[x P_{n}^{2}\right]}{h_{n}}, \quad \gamma_{n}=\frac{L\left[x P_{n} P_{n-1}\right]}{h_{n-1}}, \quad n \in \mathbb{N} . \tag{6}
\end{equation*}
$$

Note that using (3) we have

$$
h_{n}=L\left[x^{n} P_{n}\right]=L\left[x P_{n} P_{n-1}\right]=\gamma_{n} h_{n-1},
$$

and hence

$$
\begin{equation*}
\gamma_{n}=\frac{h_{n}}{h_{n-1}}, \quad n \in \mathbb{N} \tag{7}
\end{equation*}
$$

Orthogonal polynomials associated with deformed functionals have been studied by many authors, see [1], [3], [28], [29], [38]. Particular examples include continuous [11], [19], [23], discrete [5], [34], elliptic [36], [37], matrix
[2], [9], multiple [4], multivariate [6], q [10], and skew [24] orthogonal polynomials. Applications to combinatorics have also been considered in [7] and [25].

In this paper, we focus on linear functionals of the form

$$
\begin{equation*}
L[r]=\sum_{x=0}^{\infty} r(x) \frac{(\mathbf{a})_{x}}{(\mathbf{b}+1)_{x}} \frac{z^{x}}{x!}, \quad r \in \mathbb{F}[x], \tag{8}
\end{equation*}
$$

where

$$
\begin{gathered}
\mathbf{a}=\left(a_{1}, \ldots, a_{p}\right), \quad \mathbf{b}=\left(b_{1}, \ldots, b_{q}\right), \quad p, q \in \mathbb{N}_{0}, \\
(\mathbf{a})_{n}=\prod_{i=1}^{p}\left(a_{i}\right)_{n}, \quad(\mathbf{b})_{n}=\prod_{i=1}^{q}\left(b_{i}\right)_{n}, \quad n \in \mathbb{N}_{0},
\end{gathered}
$$

and the Pochhammer polynomial $(x)_{n}$ is defined by $(x)_{0}=1$ and $[27,18: 12]$

$$
\begin{equation*}
(x)_{n}=\prod_{j=0}^{n-1}(x+j), \quad n \in \mathbb{N} \tag{9}
\end{equation*}
$$

These functionals are both particular cases of (2) with $\kappa(x, z)=z^{x}$, and also discrete semiclassical [18].

Our main objective is to analyze the asymptotic behavior of the threeterm recurrence coefficients (6) as $n \rightarrow \infty$. We illustrate our results with several examples of discrete semiclassical polynomials of class $s \leq 2$. Among these we are able to prove some conjectures proposed by Walter Van Assche and collaborators in [20] and [32].

2 Orthogonal polynomials

Let $L: \mathbb{F}[x] \rightarrow \mathbb{F}$ be defined by (2). Then, we have
$D_{z} L[p]=\mathcal{L}\left[D_{z}(p) \kappa(x, z)\right]+\mathcal{L}[x \kappa(x, z) p]=L\left[D_{z}(p)\right]+L[x p], \quad p \in \mathbb{F}[x]$.
If we denote the moments of L by

$$
\begin{equation*}
L\left[x^{n}\right]=\mu_{n}(z) \in \mathbb{F}, \tag{10}
\end{equation*}
$$

we see that

$$
D_{z} \mu_{n}=D_{z} L\left[x^{n}\right]=L\left[x x^{n}\right]=\mu_{n+1}, \quad n \in \mathbb{N}_{0}
$$

and conclude that

$$
\begin{equation*}
\mu_{n}=D_{z}^{n} \mu_{0}, \quad n \in \mathbb{N}_{0} \tag{11}
\end{equation*}
$$

If we write

$$
\begin{equation*}
P_{n}(x ; z)=x^{n}-\sigma_{n}(z) x^{n-1}+q_{n}(x ; z), \quad \operatorname{deg}\left(q_{n}\right) \leq n-2 \tag{12}
\end{equation*}
$$

then we have $\sigma_{0}=0$, and using (4) we get
$x^{n+1}-\sigma_{n} x^{n}+x q_{n}=x^{n+1}-\sigma_{n+1} x^{n}+q_{n+1}+\beta_{n}\left(x^{n}-\sigma_{n} x^{n-1}+q_{n}\right)+\gamma_{n} P_{n-1}$.
Comparing coefficients of x^{n}, we obtain $-\sigma_{n}=-\sigma_{n+1}+\beta_{n}$, or

$$
\begin{equation*}
\beta_{n}=\sigma_{n+1}-\sigma_{n} \tag{13}
\end{equation*}
$$

The connection between $\sigma_{n}, \gamma_{n}, h_{n}$, and β_{n} is given in the next proposition.
Proposition 1 Let h_{n} be defined by (3), β_{n}, γ_{n} be defined by (6), and σ_{n} be defined by (12). Then, we have

$$
\begin{equation*}
D_{z} \sigma_{n}=\gamma_{n} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{z} \ln h_{n}=\beta_{n} \tag{15}
\end{equation*}
$$

Proof. From (12) we have

$$
D_{z} P_{n}(x ; z)=-D_{z} \sigma_{n}(z) x^{n-1}+D_{z} q_{n}(x ; z)
$$

and using (3) we get

$$
\begin{equation*}
L\left[P_{n-1} D_{z} P_{n}\right]=-D_{z}\left(\sigma_{n}\right) L\left[x^{n-1} P_{n-1}\right]=-D_{z}\left(\sigma_{n}\right) h_{n-1} \tag{16}
\end{equation*}
$$

On the other hand, since $L\left[P_{n} P_{n-1}\right]=0$ and $\operatorname{deg}\left(D_{z} P_{n-1}\right)=n-2$,

$$
\begin{aligned}
0 & =D_{z} L\left[P_{n} P_{n-1}\right]=L\left[P_{n-1} D_{z} P_{n}\right]+L\left[P_{n} D_{z} P_{n-1}\right]+L\left[x P_{n} P_{n-1}\right] \\
& =-D_{z}\left(\sigma_{n}\right) h_{n-1}+\gamma_{n} h_{n-1},
\end{aligned}
$$

and we obtain (14). Since $\operatorname{deg}\left(D_{z} P_{n}\right)=n-1$ we have

$$
D_{z} h_{n}=D_{z} L\left[P_{n}^{2}\right]=L\left[2 P_{n} D_{z} P_{n}\right]+L\left[x P_{n}^{2}\right]=L\left[x P_{n}^{2}\right]=\beta_{n} h_{n}
$$

and (15) follows.
As a direct consequence, we see that $\left(\beta_{n}, \gamma_{n}\right)$ are solutions of the Toda lattice [33].

Corollary 2 Toda equations. The coefficients of the 3-term recurrence relation (4) are solutions of the differential-difference equations

$$
\begin{equation*}
D_{z} \beta_{n}=\Delta \gamma_{n}, \quad D_{z} \ln \gamma_{n}=\nabla \beta_{n}, \tag{17}
\end{equation*}
$$

with initial conditions (5), where

$$
\begin{equation*}
\Delta f(n)=f(n+1)-f(n), \quad \nabla f(n)=f(n)-f(n-1) . \tag{18}
\end{equation*}
$$

Proof. From (13) and (14) we get

$$
D_{z} \beta_{n}=D_{z} \sigma_{n+1}-D_{z} \sigma_{n}=\gamma_{n+1}-\gamma_{n},
$$

while (7) and (15) give

$$
D_{z} \ln \gamma_{n}=D_{z} \ln h_{n}-D_{z} \ln h_{n-1}=\beta_{n}-\beta_{n-1} .
$$

Let H_{n} be the $n \times n$ Hankel matrix defined by

$$
\left(H_{n}\right)_{i, j}=\mu_{i+j}, \quad 0 \leq i, j \leq n-1,
$$

and the Hankel determinants \mathcal{H}_{n} be defined by $\mathcal{H}_{0}=1$ and $\mathcal{H}_{n}=\operatorname{det}\left(H_{n}\right)$. The following result gives a relation between σ_{n} and \mathcal{H}_{n}.

Proposition 3 Let $\sigma_{n}(z)$ defined by (12) and

$$
\begin{equation*}
\mathcal{H}_{n}(z)=\operatorname{det}_{0 \leq i, j \leq n-1}\left(\mu_{i+j}\right) . \tag{19}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\mathcal{H}_{n}=\prod_{k=0}^{n-1} h_{k}, \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{n}=D_{z} \ln \left(\mathcal{H}_{n}\right) \tag{21}
\end{equation*}
$$

Proof. Writing

$$
P_{n}(x ; z)=\sum_{k=0}^{n} \mathfrak{c}_{n, k}(z) x^{k},
$$

and using (3) and (10), we have

$$
\sum_{k=0}^{n} \mu_{i+k} \mathfrak{c}_{n, k}=h_{n} \delta_{i, n}
$$

Using Cramer's rule, we get

$$
\mathfrak{c}_{n, k}=(-1)^{k+n} h_{n} \frac{M_{k, n}}{\mathcal{H}_{n+1}}
$$

where $M_{k, n}$ is the minor defined by

$$
M_{k, l}=\operatorname{iet}_{\substack{0 \leq i, j \leq n \\ i \neq k, j \neq l}}\left(\mu_{i+j}\right)
$$

In particular, since $\mathfrak{c}_{n, n}=1$, we have

$$
h_{n}=\frac{\mathcal{H}_{n+1}}{M_{n, n}}=\frac{\mathcal{H}_{n+1}}{\mathcal{H}_{n}}
$$

and (20) follows. From (13) and (15), we get

$$
\sigma_{n+1}-\sigma_{n}=\beta_{n}=D_{z} \ln \left(h_{n}\right)=D_{z} \ln \left(\mathcal{H}_{n+1}\right)-D_{z} \ln \left(\mathcal{H}_{n}\right)
$$

and since $\sigma_{0}=0=D_{z} \ln \left(\mathcal{H}_{0}\right)$, we obtain (21).
The functions $\sigma_{n}, \beta_{n}, \gamma_{n}, h_{n}$, and \mathcal{H}_{n} are known exactly in very few cases. Below we present two of the classical discrete orthogonal polynomials as examples.

Example 4 The monic Charlier polynomials are defined by [27, 18.20.8]

$$
C_{n}(x ; z)=(-z)^{n}{ }_{2} F_{0}\left[\begin{array}{c}
-n,-x \\
-
\end{array} ;-\frac{1}{z}\right],
$$

where ${ }_{p} F_{q}$ denotes the generalized hypergeometric function defined by [27, 16.2]

$$
{ }_{p} F_{q}\left(\begin{array}{c}
a_{1}, \ldots, a_{p} \tag{22}\\
b_{1}, \ldots, b_{q}
\end{array} ; z\right)=\sum_{k=0}^{\infty} \frac{(\mathbf{a})_{k}}{(\mathbf{b})_{n}} \frac{z^{k}}{k!}
$$

The first few $C_{n}(x ; z)$ are given by $C_{0}(x ; z)=1, C_{1}(x ; z)=x-z$,

$$
\begin{aligned}
& C_{2}(x ; z)=x^{2}-(2 z+1) x+z^{2} \\
& C_{3}(x ; z)=x^{3}-3(z+1) x^{2}+\left(3 z^{2}+3 z+2\right) x-z^{2}
\end{aligned}
$$

and we can see that in this case the coefficients of $C_{n}(x ; z)$ are polynomials in z.

The Charlier polynomials are orthogonal with respect to the linear functional

$$
L[p]=\sum_{x=0}^{\infty} p(x) \frac{z^{x}}{x!}, \quad p \in \mathbb{F}[x]
$$

from which we obtain the moments of L [17]

$$
\mu_{n}(z)=e^{z} \sum_{k=0}^{n}\left\{\begin{array}{l}
n \tag{23}\\
k
\end{array}\right\} z^{k}, \quad n \in \mathbb{N}_{0}
$$

where $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ denote the Stirling numbers of the second kind, defined by [27, 26.8.6]

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} j^{n}
$$

The three-term recurrence coefficients are given by [27, 18.22(i)]

$$
\begin{equation*}
\beta_{n}(z)=n+z, \quad \gamma_{n}(z)=n z \tag{24}
\end{equation*}
$$

and using (7) and (13) we get

$$
h_{n}(z)=n!z^{n} e^{z}, \quad \sigma_{n}(z)=\frac{n(n-1)}{2}+n z .
$$

Finally, using (20) we obtain [14]

$$
\mathcal{H}_{n}(z)=\left(\prod_{k=0}^{n-1} k!\right) z^{\frac{n(n-1)}{2}} e^{n z}
$$

Example 5 The monic Meixner polynomials are defined by [27, 18.20.7]

$$
M_{n}(x ; z)=(a)_{n}\left(1-\frac{1}{z}\right)^{-n}{ }_{2} F_{1}\left[\begin{array}{cc}
-n,-x & ; 1-\frac{1}{z}
\end{array}\right]
$$

where $a>0$ and $z \in(0,1)$. The first few $M_{n}(x ; z)$ are given by $M_{0}(x ; z)=1$,

$$
\begin{aligned}
& M_{1}(x ; z)=x+\frac{a z}{z-1} \\
& M_{2}(x ; z)=x^{2}+\frac{2 a z+z+1}{z-1} x+a(a+1)\left(\frac{z}{z-1}\right)^{2},
\end{aligned}
$$

and we note that the coefficients of $M_{n}(x ; z)$ are rational functions of z.
The Meixner polynomials are orthogonal with respect to the linear functional

$$
L[p]=\sum_{x=0}^{\infty} p(x) \frac{(a)_{x}}{x!} z^{x}, \quad p \in \mathbb{F}[x]
$$

and the moments of L are given by [17]

$$
\mu_{n}(z)=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \tag{25}\\
k
\end{array}\right\}(a)_{k} z^{k}(1-z)^{-(a+k)} \quad n \in \mathbb{N}_{0}
$$

The three-term recurrence coefficients are given by [27, 18.22(i)]

$$
\begin{equation*}
\beta_{n}(z)=\frac{n+(n+a) z}{1-z}, \quad \gamma_{n}(z)=\frac{(n+a-1) n z}{(1-z)^{2}} \tag{26}
\end{equation*}
$$

and using (7) and (13) we get

$$
h_{n}(z)=\frac{(a)_{n} n!z^{n}}{(1-z)^{2 n+a}}, \quad \sigma_{n}(z)=\frac{n(n-1)}{2}+\frac{(a+n-1) n z}{1-z} .
$$

Finally, using (20) we obtain [14]

$$
\mathcal{H}_{n}(z)=\left[\prod_{k=0}^{n-1} k!(a)_{k}\right] z^{\frac{n(n-1)}{2}}(1-z)^{-n(n+a-1)} .
$$

Since the Charlier and Meixner polynomials have hypergeometric representations, and the function

$$
\mu_{0}(z)={ }_{p} F_{q}\left(\begin{array}{c}
\mathbf{a} \tag{27}\\
\mathbf{b}+1
\end{array} ; z\right)
$$

satisfies the differential equation $[27,16.8 .3]$

$$
\begin{equation*}
\left[D_{z}\left(D_{z}+b_{1}\right) \cdots\left(D_{z}+b_{q}\right)-z\left(D_{z}+a_{1}\right) \cdots\left(D_{z}+a_{p}\right)\right] \mu_{0}=0 \tag{28}
\end{equation*}
$$

with $D_{z}=z \partial_{z}$, we see that the monic Charlier polynomials satisfy the ODE

$$
\begin{equation*}
\left[D_{z}^{2}+(x-n-z) D_{z}+n z\right] C_{n}=0, \tag{29}
\end{equation*}
$$

and the monic Meixner polynomials satisfy the ODE

$$
\begin{equation*}
\left[D_{z}^{2}+\left(x-\frac{n+a z+n z}{1-z}\right) D_{z}+\frac{(n+a-1) n z}{(1-z)^{2}}\right] M_{n}=0 . \tag{30}
\end{equation*}
$$

In the next result, we find an ODE for general polynomials.

Proposition 6 The polynomials $P_{n}(x ; z)$ defined by (3) satisfy the $O D E$

$$
\begin{equation*}
D_{z}^{2} P_{n}+\left(x-\beta_{n}\right) D_{z} P_{n}+\gamma_{n} P_{n}=0 . \tag{31}
\end{equation*}
$$

Proof. If we write

$$
D_{z} P_{n}=\sum_{k=1}^{n-1} v_{k} P_{k}
$$

then (16) and (14) give

$$
v_{n-1}=\frac{1}{h_{n-1}} L\left[P_{n-1} D_{z} P_{n}\right]=-D_{z} \sigma_{n}=-\gamma_{n} .
$$

Moreover, for all $k=0,1, \ldots, n-2$
$0=D_{z} L\left[P_{n} P_{k}\right]=L\left[P_{k} D_{z} P_{n}\right]+L\left[P_{n} D_{z} P_{k}\right]+L\left[x P_{n} P_{k}\right]=L\left[P_{k} D_{z} P_{n}\right]=h_{k} v_{k}$,
and therefore we obtain

$$
\begin{equation*}
D_{z} P_{n}=-\gamma_{n} P_{n-1} . \tag{32}
\end{equation*}
$$

From (4) and (32), we have

$$
D_{z} P_{n}=-\gamma_{n} P_{n-1}=P_{n+1}+\left(\beta_{n}-x\right) P_{n} .
$$

Using (13), we get

$$
\begin{aligned}
D_{z}^{2} P_{n} & =D_{z} P_{n+1}+P_{n} D_{z} \beta_{n}+\left(\beta_{n}-x\right) D_{z} P_{n} \\
& =-\gamma_{n+1} P_{n}+\left(\gamma_{n+1}-\gamma_{n}\right) P_{n}+\left(\beta_{n}-x\right) D_{z} P_{n}
\end{aligned}
$$

and (31) follows.
Using (24) in (31) we obtain (29), and using (26) in (31) we get (30).
Remark 7 The convergence of the series (22) depends on the values of p and q. We have three different cases [27, 16.2]:

1. If $p<q+1$, then ${ }_{p} F_{q}$ is an entire function of z.
2. If $p=q+1$, then ${ }_{p} F_{q}$ is analytic inside the unit circle, $|z|<1$, and can be extended by analytic continuation to the cut plane $\mathbb{C} \backslash[1, \infty)$. Let

$$
\begin{equation*}
\gamma=b_{1}+\cdots+b_{q}-\left(a_{1}+\cdots+a_{q+1}\right) . \tag{33}
\end{equation*}
$$

On the unit circle $|z|=1$, the series (22) is
(i) absolutely convergent if $\operatorname{Re}(\gamma)>0$,
(ii) convergent except at $z=1$ if $\operatorname{Re}(\gamma) \in(-1,0]$,
and
(iii) divergent if $\operatorname{Re}(\gamma) \leq-1$.
3. If $p>q+1$, then ${ }_{p} F_{q}$ diverges for all $z \neq 0$, up to $a_{i}=-N$, with $N \in \mathbb{N}$ for some $1 \leq i \leq p$. In this case, ${ }_{p} F_{q}$ becomes a polynomial of degree N.

If the first moment of L is given by (27), we can use the formulas [27, 16.3.1]

$$
\partial_{z}^{n}{ }_{p} F_{q}\left(\begin{array}{l}
\mathbf{a} \\
\mathbf{b}
\end{array} ; z\right)=\frac{(\mathbf{a})_{n}}{(\mathbf{b})_{n}}{ }_{p} F_{q}\left(\begin{array}{l}
\mathbf{a}+n \\
\mathbf{b}+n
\end{array} ; z\right),
$$

and $[30,6.6]$

$$
\left(z \partial_{z}\right)^{n}=D_{z}^{n}=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \tag{34}\\
k
\end{array}\right\} z^{k} \partial_{z}^{k}
$$

in (11) and obtain [17]

$$
\mu_{n}(z)=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} z^{k} \frac{(\mathbf{a})_{k}}{(\mathbf{b})_{k}}{ }_{p} F_{q}\left(\begin{array}{l}
\mathbf{a}+k \\
\mathbf{b}+k
\end{array} ; z\right) .
$$

Thus, the analytic properties (with respect to z) of all the functions $\mu_{n}, \sigma_{n}, \beta_{n}, \gamma_{n}, h_{n}$, and \mathcal{H}_{n} depend on the analyticity of $\mu_{0}(z)$, and in view of Remark (7) this depends just on the parameters (p, q). In the next section, we find power series expansions for $\sigma_{n}(z)$.

3 Series expansion of $\sigma_{n}(z)$

In [15], we studied power series expansions of Hankel determinants of the form (19) with $\mu_{n} \in \mathbb{F}$. Below we state one of the main results we obtained.

Theorem 8 Let the Hankel determinant $\mathfrak{D}_{n}(z)$ be defined by (19) and

$$
\begin{equation*}
\mathfrak{D}_{1}(z)=\mu_{0}(z)=\sum_{k=0}^{\infty} c_{k} z^{k} \in \mathbb{F} \tag{35}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
\mathcal{H}_{n}(z)=z^{\binom{n}{2}} g_{n}(z) \prod_{j=0}^{n-1}\left[(j!)^{2} c_{j}\right], \quad n \geq 2 \tag{36}
\end{equation*}
$$

where
$g_{n}(z)=1+\binom{n}{1}^{2} \frac{c(n)}{c(n-1)} z+\left[\binom{n+1}{2}^{2} \frac{c_{n+1}}{c(n-1)}+\binom{n}{2}^{2} \frac{c(n)}{c_{n-2}}\right] z^{2}+O\left(z^{3}\right), \quad z \rightarrow 0$.
Using (21) we obtain the following result.
Corollary 9 Let $\sigma_{n}(z)$ defined by (12). Then,

$$
\begin{equation*}
\sigma_{n}(z)=\frac{n(n-1)}{2}+n^{2} \frac{c(n)}{c(n-1)} z+O\left(z^{2}\right), \quad z \rightarrow 0 \tag{37}
\end{equation*}
$$

We can now state one of our main results.
Theorem 10 Let $\sigma_{n}(z)$ defined by (12). If we write

$$
\begin{equation*}
\sigma_{n}(z)=\sum_{k=0}^{\infty} s_{n, k} z^{k} \in \mathbb{F} \tag{38}
\end{equation*}
$$

then we have

$$
\begin{equation*}
s_{n, 0}=\frac{n(n-1)}{2}, \quad s_{n, 1}=n^{2} \frac{c(n)}{c(n-1)}, \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{n, k}=\frac{1}{k(k-1)} \sum_{j=1}^{k-1}(k-j) s_{n, k-j} \nabla \Delta s_{n, j}, \quad k \geq 2 \tag{40}
\end{equation*}
$$

where the coefficients $c(n)$ were defined in (35).
Proof. The initial values (39), just follow from (37). From (13), (14), and (17) we get

$$
D_{z} \ln \left(D_{z} \sigma_{n}\right)=D_{z} \ln \left(\gamma_{n}\right)=\beta_{n}-\beta_{n-1}=\sigma_{n+1}-2 \sigma_{n}+\sigma_{n-1} .
$$

Using the difference operators (18), we can write

$$
\sigma_{n+1}-2 \sigma_{n}+\sigma_{n-1}=\nabla \Delta \sigma_{n}
$$

and since we are using $D_{z}=z \partial_{z}$, we have

$$
\begin{equation*}
\sigma_{n}^{\prime \prime}(z)=\sigma_{n}^{\prime}(z) \frac{\nabla \Delta \sigma_{n}(z)-1}{z} \tag{41}
\end{equation*}
$$

Since

$$
\nabla \Delta s_{n, 0}=\nabla \Delta \frac{n(n-1)}{2}=1
$$

we see that from (38) that

$$
\frac{\nabla \Delta \sigma_{n}-1}{z}=\sum_{k=1}^{\infty} \nabla \Delta s_{n, k} z^{k-1}=\sum_{k=0}^{\infty} \nabla \Delta s_{n, k+1} z^{k}
$$

Also,

$$
\sigma_{n}^{\prime}(z)=\sum_{k=1}^{\infty} k s_{n, k} z^{k-1}=\sum_{k=0}^{\infty}(k+1) s_{n, k+1} z^{k}
$$

and

$$
\sigma_{n}^{\prime \prime}(z)=\sum_{k=2}^{\infty} k(k-1) s_{n, k} z^{k-2}=\sum_{k=0}^{\infty}(k+2)(k+1) s_{n, k+2} z^{k}
$$

Comparing coefficients of z in (41) gives

$$
(k+2)(k+1) s_{n, k+2}=\sum_{j=0}^{k}(k-j+1) s_{n, k-j+1} \nabla \Delta s_{n, j+1},
$$

and (40) follows after shifting $k \rightarrow k-2$ and $j \rightarrow j-1$.
Remark 11 Note that we have

$$
\begin{gathered}
s_{n, 2}=\frac{s_{n, 1}}{2} \nabla \Delta s_{n, 1} \\
s_{n, 3}=\frac{1}{3} s_{n, 2} \nabla \Delta s_{n, 1}+\frac{1}{6} s_{n, 1} \nabla \Delta s_{n, 2}=\frac{s_{n, 1}}{6}\left[\left(\nabla \Delta s_{n, 1}\right)^{2}+\nabla \Delta s_{n, 2}\right]
\end{gathered}
$$

and using induction we see that

$$
s_{n, k}=\frac{s_{n, 1}}{k!} \widetilde{s}_{n, k}
$$

From (13) and (14), we immediately obtain the following.

Corollary 12 The coefficients of the 3-term recurrence relation (4) admit the power series

$$
\begin{equation*}
\beta_{n}(z)=\sum_{k=0}^{\infty} \Delta s_{n, k} z^{k}, \quad \gamma_{n}(z)=\sum_{k=1}^{\infty} k s_{n, k} z^{k} \tag{42}
\end{equation*}
$$

where the coefficients $s_{n, k}$ are defined in (38).
In particular,

$$
\beta_{n}(0)=n, \quad \gamma_{n}(0) .
$$

We now give some examples. We start with the discrete classical orthogonal polynomials [26].

Example 13 Charlier polynomials. From (23) we have

$$
\mu_{0}(z)=e^{z},
$$

and using (35) we get

$$
c(n)=\frac{1}{n!} .
$$

Therefore, (39) gives

$$
s_{n, 1}=n,
$$

and using (40) we conclude that

$$
s_{n, k}=0, \quad k \geq 2 .
$$

Hence, we obtain

$$
\sigma_{n}(z)=\frac{n(n-1)}{2}+n z,
$$

and

$$
\beta_{n}=n+z, \quad \gamma_{n}=n z
$$

in agreement with (24).
Example 14 Meixner polynomials. From (23) we have

$$
\mu_{0}(z)=(1-z)^{-a}
$$

and using (35) we get

$$
\begin{equation*}
c(n)=\frac{(a)_{n}}{n!} \tag{43}
\end{equation*}
$$

Therefore, (39) gives

$$
s_{n, 1}=n(n+a-1),
$$

and using (40) we conclude that

$$
s_{n, k}=s_{n, 1}, \quad k \geq 2 .
$$

Hence, we obtain

$$
\begin{aligned}
\sigma_{n}(z) & =\frac{n(n-1)}{2}+n(n+a-1) \sum_{k=1}^{\infty} z^{k} \\
& =\frac{n(n-1)}{2}+n(n+a-1) \frac{z}{1-z},
\end{aligned}
$$

and

$$
\beta_{n}=n+(2 n+a) \frac{z}{1-z}, \quad \gamma_{n}=n(n+a-1) \frac{z}{(1-z)^{2}} .
$$

in agreement with (26).
Next, we consider the discrete semiclassical orthogonal polynomials of class $s=1[18]$.

Example 15 Generalized Charlier polynomials. These polynomials were introduced in [22], and studied in [13], [18], [21], [32], [35]. They are orthogonal with respect to the linear functional

$$
L[p]=\sum_{x=0}^{\infty} p(x) \frac{1}{(b+1)_{x}} \frac{z^{x}}{x!}, \quad p \in \mathbb{F}[x],
$$

and from (35) we get

$$
c(n)=\frac{1}{(b+1)_{n} n!} .
$$

Therefore, (39) gives

$$
s_{n, 1}=\frac{n}{n+b}
$$

and using (40) we have

$$
s_{n, 2}=-\frac{b}{(n+b-1)_{3}} s_{n, 1}, \quad s_{n, 3}=-\frac{2 b(n-b)}{(n+b)(n+b-2)_{5}} s_{n, 1} .
$$

From (42), we obtain

$$
\beta_{n}(z)=n+\frac{b z}{(n+b)_{1}}\left[1+\frac{3 n^{2}+(2 b+3) n-b(b-1)}{(n+b-1)_{4}} z\right]+O\left(z^{3}\right)
$$

and

$$
\gamma_{n}(z)=s_{n, 1} z\left[1-\frac{2 b}{(n+b-1)_{3}} z-\frac{6 b(n-b)}{(n+b)(n+b-2)_{5}} z^{2}\right]+O\left(z^{4}\right)
$$

as $z \rightarrow 0$.
Example 16 Generalized Meixner polynomials. These polynomials were introduced in [31], and studied in [8], [13], [18], [32]. They are orthogonal with respect to the linear functional

$$
L[p]=\sum_{x=0}^{\infty} p(x) \frac{(a)_{x}}{(b+1)_{x}} \frac{z^{x}}{x!}, \quad p \in \mathbb{F}[x],
$$

and from (35) we get

$$
c(n)=\frac{(a)_{n}}{(b+1)_{n} n!}
$$

Therefore, (39) gives

$$
s_{n, 1}=\frac{n(n+a-1)}{n+b}
$$

and using (40) we have

$$
s_{n, 2}=\frac{b(b+1-a)}{(n+b-1)_{3}} s_{n, 1}, \quad s_{n, 3}=\frac{b(b+1-a)(n-b)(n+2 a-b-2)}{(n+b-2)_{5}(n+b)} s_{n, 1} .
$$

Note that if $a=b+1$, then $s_{n, k}=0, k \geq 2$ since then we recover the Charlier polynomials.

From (42), we obtain

$$
\beta_{n}(z)=n+\frac{n(n+2 b+1)+a b}{n+b} z+O\left(z^{2}\right)
$$

and

$$
\gamma_{n}(z)=\frac{n(n+a-1)}{n+b} z+\frac{2 b(b+1-a) n(n+a-1)}{(n+b)(n+b-1)_{3}} z^{2}+O\left(z^{3}\right)
$$

as $z \rightarrow 0$.

Example 17 Generalized Krawtchouk polynomials. These polynomials were introduced in [18], and studied in [13]. They are orthogonal with respect to the linear functional

$$
L[p]=\sum_{x=0}^{\infty} p(x)(a)_{x}(-N)_{x} \frac{z^{x}}{x!}, \quad p \in \mathbb{F}[x]
$$

where $N \in \mathbb{N}$ and from (35) we get

$$
c(n)=\frac{(a)_{n}(-N)_{n}}{n!}
$$

Therefore, (39) gives

$$
s_{n, 1}=n(n+a-1)(n-N-1),
$$

and using (40) we have

$$
\sigma_{n}(z)=\frac{n(n-1)}{2}+s_{n, 1} z\left[1+q_{1}(n) z+q_{2}(n) z^{2}\right]+O\left(z^{4}\right), \quad z \rightarrow 0
$$

where

$$
\begin{aligned}
& q_{1}(n)=3 n-N-2+a \\
& q_{2}(n)=12 n^{2}-8(N-a+2) n+5 N-5 a-3 N a+N^{2}+a^{2}+6 .
\end{aligned}
$$

From (42), we obtain

$$
\beta_{n}(z)=n+\left[3 n^{2}+n(-1+2 a-2 N)-a N\right] z+O\left(z^{2}\right),
$$

and

$$
\gamma_{n}(z)=s_{n, 1} z\left[1+2 q_{1}(n) z+3 q_{2}(n) z^{2}\right]+O\left(z^{4}\right),
$$

as $z \rightarrow 0$.
Note that $\gamma_{N+1}(z)=0$, and from (7) it follows that $h_{N+1}(z)=0$. Therefore, in this case the polynomials $P_{n}(x ; z)$ are a finite family for $0 \leq n \leq N$.

Example 18 Generalized Hahn polynomials of type I. These polynomials were introduced in [18], and studied in [13], [16], [20]. They are orthogonal with respect to the linear functional

$$
L[p]=\sum_{x=0}^{\infty} p(x) \frac{\left(a_{1}\right)_{x}\left(a_{2}\right)_{x}}{(b+1)_{x}} \frac{z^{x}}{x!}, \quad p \in \mathbb{F}[x],
$$

with $a_{1}, a_{2} \neq b+1$, and from (35) we get

$$
\begin{equation*}
c(n)=\frac{\left(a_{1}\right)_{n}\left(a_{2}\right)_{n}}{(b+1)_{n} n!} \tag{44}
\end{equation*}
$$

Therefore, (39) gives

$$
s_{n, 1}=\frac{n\left(n+a_{1}-1\right)\left(n+a_{2}-1\right)}{n+b}
$$

and using (40) we have

$$
\sigma_{n}(z)=\frac{n(n-1)}{2}+s_{n, 1} z\left[1+\frac{q_{1}(n)}{(n+b-1)_{3}} z\right]+O\left(z^{3}\right), \quad z \rightarrow 0
$$

where

$$
q_{1}(n)=n^{3}+3 b n^{2}+\left(3 b^{2}-1\right) n+\left[\left(a_{1}+a_{2}-2\right) b+a_{1}+a_{2}-a_{1} a_{2}-2\right] b .
$$

From (42), we obtain

$$
\beta_{n}(z)=n+\frac{q_{2}(n)}{n+b} z+O\left(z^{2}\right)
$$

and

$$
\gamma_{n}(z)=s_{n, 1} z\left[1+\frac{2 q_{1}(n)}{(n+b-1)_{3}} z\right]+O\left(z^{3}\right)
$$

as $z \rightarrow 0$, where
$q_{2}(n)=2 n^{3}+\left(3 b+a_{1}+a_{2}+1\right) n^{2}+\left(a_{1}-b+a_{2}+2 b a_{1}+2 b a_{2}-1\right) n+b a_{1} a_{2}$.
Remark 19 It is clear from (40) that if $s_{n, 1} \in \mathbb{C}(n)$ (i.e., is a rational function of n), then $s_{n, k} \in \mathbb{C}(n)$ for all $k \geq 1$. This will be the case for all families of orthogonal polynomials for which $\mu_{0}(z)$ is a hypergeometric function.

Note that from the previous examples we have, as $n \rightarrow \infty$

$$
\begin{array}{rll}
\text { Meixner: } & s_{n, 1} \sim n^{2}, \quad s_{n, k} \sim n^{2}, \quad k \geq 2, \\
\text { Generalized Charlier: } & s_{n, 1} \sim 1, \quad s_{n, k} \sim n^{-2 k+1}, \quad k \geq 2, \\
\text { Generalized Meixner: } & s_{n, 1} \sim n, \quad s_{n, k} \sim n^{-k}, \quad k \geq 2, \\
\text { Generalized Krawtchouk: } & s_{n, 1} \sim n^{3}, \quad s_{n, k} \sim n^{k+2}, \quad k \geq 2, \\
\text { Generalized Hahn: } & s_{n, 1} \sim n^{2}, \quad s_{n, k} \sim n^{2}, \quad k \geq 2 .
\end{array}
$$

Therefore, it seems that in some cases the coefficients $s_{n, k}$ form an asymptotic sequence as $n \rightarrow \infty$. We show that this is the case in the next section.

4 Asymptotic analysis

We begin with a simple lemma.
Lemma 20 Suppose that for $j \geq 1$

$$
\begin{equation*}
s_{n, j} \sim n^{\theta_{j}} \sum_{l \geq 0} A_{j, l} n^{-l}, \quad n \rightarrow \infty \tag{45}
\end{equation*}
$$

with $A_{j, 0} \neq 0$. Then, for all $1 \leq j \leq k-1$,
$s_{n, k-j} \nabla \Delta s_{n, j} \sim 2 n^{\theta_{k-j}+\theta_{j}}\left[\sum_{m \geq 2} n^{-m} \sum_{l=2}^{m} \sum_{i=1}^{\frac{l}{2}} A_{k-j, m-l} A_{j, l-2 i}\binom{\theta_{j}+2 i-l}{2 i}\right], \quad n \rightarrow \infty$.

Proof. First, we observe that

$$
\begin{equation*}
\nabla \Delta n^{\theta}=2 \sum_{i \geq 1}\binom{\theta}{2 i} n^{\theta-2 i} \tag{47}
\end{equation*}
$$

since

$$
\nabla \Delta n^{\theta}=(n+1)^{\theta}+(n-1)^{\theta}-2 n^{\theta}=-2 n^{\theta}+\sum_{i \geq 0}\binom{\theta}{i}\left[1+(-1)^{i}\right] n^{\theta-i}
$$

Using (47) in (45), we get

$$
\nabla \Delta s_{n, j} \sim 2 \sum_{l \geq 0} A_{j, l} \sum_{i \geq 1}\binom{\theta_{j}-l}{2 i} n^{\theta_{j}-l-2 i}, \quad n \rightarrow \infty
$$

and changing the index of summation to $m=l+2 i$, we have

$$
\begin{equation*}
\nabla \Delta s_{n, j} \sim 2 n^{\theta_{j}} \sum_{m \geq 2} n^{-m} \sum_{i=1}^{\frac{m}{2}} A_{j, m-2 i}\binom{\theta_{j}+2 i-m}{2 i}, \quad n \rightarrow \infty \tag{48}
\end{equation*}
$$

Computing the Cauchy product of $s_{n, k-j}$ and $\nabla \Delta s_{n, j}$, we obtain (46).
We now have all the elements to prove our main result.

Theorem 21 Let $c(n)$ be defined by (35) and the coefficients $s_{n, k}$ be defined by (40). If

$$
\begin{equation*}
n^{2} \frac{c(n)}{c(n-1)} \sim n^{\theta_{1}} \sum_{l \geq 0} A_{1, l} n^{-l}, \quad n \rightarrow \infty \tag{49}
\end{equation*}
$$

then:
(i) If $\theta_{1} \neq 0,1$, then for all $k \geq 2$

$$
\begin{equation*}
s_{n, k} \sim A_{k, 0} n^{\left(\theta_{1}-2\right) k+2}, \quad n \rightarrow \infty \tag{50}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{k, 0}=\frac{2}{k(k-1)} \sum_{j=1}^{k-1}(k-j) A_{k-j, 0} A_{j, 0}\binom{\theta_{j}}{2} \tag{51}
\end{equation*}
$$

(ii) If $\theta_{1}=0$, then for all $k \geq 2$

$$
s_{n, k} \sim-\frac{A_{1,1}}{2} \frac{\left(A_{1,0}\right)^{k-1} 4^{k}}{k!}\left(-\frac{1}{2}\right)_{k} n^{-2 k+1}, \quad n \rightarrow \infty .
$$

(iii) If $\theta_{1}=1$, then for all $k \geq 2$

$$
s_{n, k} \sim A_{1,2}\left(A_{1,0}\right)^{k-1} n^{-k}, \quad n \rightarrow \infty
$$

Proof. Using (46) in (40), we have

$$
\begin{equation*}
n^{\theta_{k}} \sum_{l \geq 0} A_{k, l} n^{-l}=\frac{2}{k(k-1)} \sum_{j=1}^{k-1}(k-j) n^{\theta_{k-j}+\theta_{j}} \sum_{m \geq 2} n^{-m} \sum_{l=2}^{m} \sum_{i=1}^{\frac{l}{2}} A_{k-j, m-l} A_{j, l-2 i}\binom{\theta_{j}+2 i-l}{2 i} \tag{52}
\end{equation*}
$$

For $k=2$, we get

$$
\begin{aligned}
& n^{\theta_{2}} \sum_{l \geq 0} A_{2, l} n^{-l}=n^{2 \theta_{1}} \sum_{m \geq 2} n^{-m} \sum_{l=2}^{m} \sum_{i=1}^{\frac{l}{2}} A_{1, m-l} A_{1, l-2 i}\binom{\theta_{1}+2 i-l}{2 i} \\
& =n^{2 \theta_{1}-2}\left\{\left(A_{1,0}\right)^{2}\binom{\theta_{1}}{2}+A_{1,0} A_{1,1}\left(\theta_{1}-1\right)^{2} n^{-1}+\left[\left(A_{1,0}\right)^{2}\binom{\theta_{1}}{4}\right.\right. \\
& \left.\left.+\left(A_{1,1}\right)^{2}\binom{\theta_{1}-1}{2}+A_{1,2} A_{1,0}\left(\theta_{1}^{2}-3 \theta_{1}+3\right)\right] n^{-2}+O\left(n^{-3}\right)\right\},
\end{aligned}
$$

and therefore we need to consider three cases.
(i) $\theta_{1} \neq 0,1$. In this case,

$$
\theta_{2}=2 \theta_{1}-2, \quad A_{2,0}=\left(A_{1,0}\right)^{2}\binom{\theta_{1}}{2}
$$

and a simple induction argument shows that

$$
\theta_{k}=k \theta_{1}-2(k-1), \quad k \geq 1
$$

We conclude from (52) that the leading coefficient satisfies

$$
A_{k, 0}=\frac{2}{k(k-1)} \sum_{j=1}^{k-1}(k-j) A_{k-j, 0} A_{j, 0}\binom{\theta_{j}}{2}, \quad k \geq 2
$$

since

$$
\theta_{k-j}+\theta_{j}-\theta_{k}=2, \quad 1 \leq j \leq k-1, \quad k \geq 2
$$

(ii) $\theta_{1}=0$. In this case,

$$
\theta_{2}=-3, \quad A_{2,0}=A_{1,0} A_{1,1},
$$

and we can show by induction that

$$
\theta_{k}=-2 k+1, \quad k \geq 2
$$

Hence,

$$
\theta_{k}=-2 k+1+\delta_{k, 1}, \quad k \geq 1
$$

and if $k \geq 2$ we get

$$
\theta_{k-j}+\theta_{j}-\theta_{k}=1+\delta_{k-j, 1}+\delta_{j, 1}=\left\{\begin{array}{cc}
1, & 2 \leq j \leq k-2 \tag{53}\\
2, & j=1, k-1
\end{array}\right.
$$

From (52) we see that for $k \geq 3$

$$
\begin{equation*}
n^{\theta_{k}} \sum_{l=0}^{1} A_{k, l} n^{-l}=\frac{2}{k(k-1)} \sum_{j=1}^{k-1}(k-j) n^{\theta_{k-j}+\theta_{j}-2} A_{k-j, 0} A_{j, 0}\binom{\theta_{j}}{2} \tag{54}
\end{equation*}
$$

and we conclude from (53) that

$$
A_{k, 0}=\frac{2}{k(k-1)} A_{1,0} A_{k-1,0}\binom{\theta_{k-1}}{2}=2 \frac{2 k-3}{k} A_{1,0} A_{k-1,0}, \quad k \geq 3
$$

Thus,

$$
A_{k, 0}=-\frac{A_{1,1}}{2} \frac{\left(A_{1,0}\right)^{k-1} 4^{k}}{k!}\left(-\frac{1}{2}\right)_{k}, \quad k \geq 2
$$

(iii) $\theta_{1}=1$. In this case we have

$$
\theta_{2}=-2, \quad A_{2,0}=A_{1,0} A_{1,2}
$$

and using induction we get

$$
\theta_{k}=-k, \quad k \geq 2
$$

Therefore,

$$
\theta_{k}=-k+2 \delta_{k, 1}, \quad k \geq 1,
$$

and if $k \geq 2$ we have

$$
\theta_{k-j}+\theta_{j}-\theta_{k}=2\left(\delta_{k-j, 1}+\delta_{j, 1}\right)=\left\{\begin{array}{cc}
0, & 2 \leq j \leq k-2 \tag{55}\\
2, & j=1, k-1
\end{array}\right.
$$

Using (54), we obtain

$$
A_{k, 0}=\frac{2}{k(k-1)} A_{1,0} A_{k-1,0}\binom{\theta_{k-1}}{2}=A_{1,0} A_{k-1,0}, \quad k \geq 3
$$

and hence

$$
A_{k, 0}=A_{1,2}\left(A_{1,0}\right)^{k-1}, \quad k \geq 2 .
$$

We now specialize our main result to the case when $\mu_{0}(z)$ is a hypergeometric function.

Corollary 22 Suppose that the first moment $\mu_{0}(z)$ is given by (27). Then:
(i) If $p=q-1$ and $m \geq 1$,

$$
\begin{equation*}
\sigma_{n}(z)=\sum_{k=0}^{m} s_{n, k} z^{k}+O\left(n^{-2 m-1}\right), \quad n \rightarrow \infty \tag{56}
\end{equation*}
$$

(ii) If $p=q$ and $m \geq 1$,

$$
\begin{equation*}
\sigma_{n}(z)=\sum_{k=0}^{m} s_{n, k} z^{k}+O\left(n^{-m-1}\right), \quad n \rightarrow \infty \tag{57}
\end{equation*}
$$

(iii) If $p<q-1$ and $m \geq 1$,

$$
\begin{equation*}
\sigma_{n}(z)=\sum_{k=0}^{m} s_{n, k} z^{k}+O\left(n^{-(q-p+1) m-(q-p-1)}\right), \quad n \rightarrow \infty . \tag{58}
\end{equation*}
$$

Proof. All we need to observe is that if $\mu_{0}(z)$ is given by (27), then

$$
c(n)=\frac{(\mathbf{a})_{n}}{(\mathbf{b}+1)_{n} n!},
$$

and therefore

$$
s_{n, 1}=n^{2} \frac{c(n)}{c(n-1)} \sim n^{p-q+1}, \quad n \rightarrow \infty .
$$

Remark 23 If $p>q+1$, then $\theta_{1}>2$ and therefore

$$
\theta_{k+1}-\theta_{k}=\theta_{1}-2>0, \quad k \geq 1
$$

Thus, in this case $\left\{s_{n, k}\right\}_{k \geq 1}$ is not an asymptotic sequence as $n \rightarrow \infty$. This agrees with Remark 7, since ${ }_{p} F_{q}$ is divergent for $p>q+1$. For these orthogonal polynomials we need to take $a_{1}=-N$, for some $N \in \mathbb{N}$, and they will be finite families, with $0 \leq n \leq N$.

Example 24 Generalized Charlier. In this case, $(p, q)=(0,1)$ and from (56) we get

$$
\sigma_{n}=\frac{n(n-1)}{2}+z-\frac{b z}{n}+\frac{b^{2} z}{n^{2}}-\frac{b\left(b^{2}+z\right) z}{n^{3}}+O\left(n^{-4}\right), \quad n \rightarrow \infty .
$$

From (42), we obtain

$$
\beta_{n}=n+\frac{b z}{n^{2}}-\frac{b(2 b+1) z}{n^{3}}+O\left(n^{-4}\right), \quad n \rightarrow \infty
$$

and

$$
\gamma_{n}=z-\frac{b z}{n}+\frac{b^{2} z}{n^{2}}-\frac{b z\left(b^{2}+2 z\right)}{n^{3}}+O\left(n^{-4}\right), \quad n \rightarrow \infty .
$$

These results agree with the limiting values conjectured from numerical experiments by Smet and Van Assche in [32].

Example 25 Generalized Meixner. In this case, $(p, q)=(1,1)$ and from (57) we get as $n \rightarrow \infty$
$\sigma_{n}=\frac{n^{2}}{2}+\left(z-\frac{1}{2}\right) n+(a-b-1) z-\frac{(a-b-1) b z}{n}-\frac{(a-b-1) b z(z-b)}{n^{2}}+O\left(n^{-3}\right)$.
From (42), we obtain

$$
\beta_{n}=n+z+\frac{(a-b-1) b z}{n^{2}}-\frac{(a-b-1) b z(2 b+1-2 z)}{n^{3}}+O\left(n^{-4}\right)
$$

and
$\gamma_{n}=z n+(a-b-1) z-\frac{(a-b-1) b z}{n}+\frac{(a-b-1) b z(b-2 z)}{n^{2}}+O\left(n^{-3}\right)$, as $n \rightarrow \infty$. These results agree with the limiting values conjectured from numerical experiments by Smet and Van Assche in [32].

In ([13]), we studied the discrete semiclassical orthogonal polynomials of class $s=2$. We named the families based on the (p, q) parameters for the hypergeometric representation of the first moment $\mu_{0}(z)$.

Example 26 Polynomials of type (0,2). These polynomials are orthogonal with respect to the linear functional

$$
L[p]=\sum_{x=0}^{\infty} p(x) \frac{1}{\left(b_{1}+1\right)_{x}\left(b_{2}+1\right)_{x}} \frac{z^{x}}{x!}, \quad p \in \mathbb{F}[x],
$$

and therefore

$$
s_{n, 1}=\frac{n}{\left(n+b_{1}\right)\left(n+b_{2}\right)} .
$$

Using (58), we have as $n \rightarrow \infty$

$$
\sigma_{n}(z)=\frac{n^{2}}{2}-\frac{n}{2}+\frac{z}{n}-\frac{\left(b_{1}+b_{2}\right) z}{n^{2}}+\frac{\left(b_{1}^{2}+b_{2}^{2}+b_{1} b_{2}\right) z}{n^{3}}+O\left(n^{-4}\right)
$$

and from (42), we obtain

$$
\beta_{n}=n-\frac{z}{n^{2}}+\frac{\left(2 b_{1}+2 b_{2}+1\right) z}{n^{3}}+O\left(n^{-4}\right)
$$

and

$$
\gamma_{n}=\frac{z}{n}-\frac{\left(b_{1}+b_{2}\right) z}{n^{2}}+\frac{\left(b_{1}^{2}+b_{2}^{2}+b_{1} b_{2}\right) z}{n^{3}}+O\left(n^{-4}\right)
$$

as $n \rightarrow \infty$.

Example 27 Polynomials of type (1,2). These polynomials are orthogonal with respect to the linear functional

$$
L[p]=\sum_{x=0}^{\infty} p(x) \frac{(a)_{x}}{\left(b_{1}+1\right)_{x}\left(b_{2}+1\right)_{x}} \frac{z^{x}}{x!}, \quad p \in \mathbb{F}[x],
$$

and therefore

$$
s_{n, 1}=\frac{n(n+a-1)}{\left(n+b_{1}\right)\left(n+b_{2}\right)}
$$

Using (56), we have as $n \rightarrow \infty$

$$
\sigma_{n}=\frac{n^{2}}{2}-\frac{n}{2}+z+\frac{\left(a-1-b_{1}-b_{2}\right) z}{n}+O\left(n^{-2}\right)
$$

and from (42), we obtain

$$
\beta_{n}=n-\frac{\left(a-1-b_{1}-b_{2}\right) z}{n^{2}}+O\left(n^{-3}\right),
$$

and

$$
\gamma_{n}=z+\frac{\left(a-1-b_{1}-b_{2}\right) z}{n}+O\left(n^{-2}\right)
$$

as $n \rightarrow \infty$.
Example 28 Polynomials of type (2,2). These polynomials are orthogonal with respect to the linear functional

$$
L[p]=\sum_{x=0}^{\infty} p(x) \frac{\left(a_{1}\right)_{x}\left(a_{2}\right)_{x}}{\left(b_{1}+1\right)_{x}\left(b_{2}+1\right)_{x}} \frac{z^{x}}{x!}, \quad p \in \mathbb{F}[x],
$$

and therefore

$$
s_{n, 1}=\frac{n\left(n+a_{1}-1\right)\left(n+a_{2}-1\right)}{\left(n+b_{1}\right)\left(n+b_{2}\right)} .
$$

Using (57), we have as $n \rightarrow \infty$

$$
\sigma_{n}(z)=\frac{n^{2}}{2}+\left(z-\frac{1}{2}\right) n+\left(a_{1}+a_{2}-2-b_{1}-b_{2}\right) z+O\left(n^{-1}\right)
$$

and from (42), we obtain

$$
\beta_{n}=n+z+O\left(n^{-2}\right),
$$

and

$$
\gamma_{n}=z n+\left(a_{1}+a_{2}-2-b_{1}-b_{2}\right) z+O\left(n^{-1}\right)
$$

as $n \rightarrow \infty$.

Remark 29 If $\theta_{1}=2$, then (39) and (50) give

$$
s_{n, k} \sim A_{k, 0} n^{2}, \quad n \rightarrow \infty,
$$

for all $k \geq 0$. From (51) we get

$$
A_{k, 0}=\frac{2}{k(k-1)} \sum_{j=1}^{k-1}(k-j) A_{k-j, 0} A_{j, 0}
$$

and therefore $A_{k, 0}=\left(A_{1,0}\right)^{k}$ for all $k \geq 1$. If $A_{1,0}=1$, it follows that
$\sigma_{n}(z)=\left(\frac{1}{2}+\sum_{k=1}^{\infty} A_{1,0}^{k} z^{k}\right) n^{2}+O(n)=\left(\frac{1}{2}-\frac{z}{z-1}\right) n^{2}+O(n), \quad n \rightarrow \infty$.
We conclude that in this case, the natural variable to use is $w=\frac{z}{z-1}$.

4.1 The variable w

In this section, we "translate" our previous results to the variable $w=\frac{z}{z-1}$.
Theorem 30 Let $\sigma_{n}(z)$ defined by (12). If we write

$$
\sigma_{n}(w)=\sum_{k=0}^{\infty} \xi_{n, k} w^{k}
$$

with $w=\frac{z}{z-1}$, then we have

$$
\begin{equation*}
\xi_{n, 0}=\frac{n(n-1)}{2}, \quad \xi_{n, 1}=-n^{2} \frac{c_{n}}{c(n-1)}, \tag{59}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi_{n, k}=\frac{1}{k(k-1)} \sum_{j=1}^{k-1}(k-j) \xi_{n, k-j}\left(\nabla \Delta \xi_{n, j}+k \delta_{1, j}\right), \quad k \geq 2 \tag{60}
\end{equation*}
$$

where the coefficients $c(n)$ were defined in (35). In particular,

$$
\begin{equation*}
\xi_{n, 2}=\xi_{n, 1}\left(1+\frac{1}{2} \nabla \Delta \xi_{n, 1}\right) \tag{61}
\end{equation*}
$$

Proof. If we use the identity [27, 26.3.4]

$$
\sum_{k=0}^{\infty}\binom{n+k}{k} w^{k}=(1-w)^{-n-1}
$$

we have

$$
\begin{equation*}
\left(\frac{w}{w-1}\right)^{n}=(-w)^{n} \sum_{k=0}^{\infty}\binom{n+k-1}{k} w^{k} \tag{62}
\end{equation*}
$$

Using (62) in (37), we get

$$
\sigma_{n}(w)=\frac{n(n-1)}{2}-n^{2} \frac{c(n)}{c(n-1)} w+O\left(w^{2}\right), \quad w \rightarrow 0
$$

and (59) follows. Using (1) in (41), we obtain

$$
(1-w) \sigma_{n}^{\prime \prime}(w)-2 \sigma_{n}^{\prime}(w)=\sigma_{n}^{\prime}(w) \frac{\nabla \Delta \sigma_{n}(w)-1}{w}
$$

and since

$$
\frac{\nabla \Delta \sigma_{n}(w)-1}{w}=\sum_{k=1}^{\infty} \nabla \Delta \xi_{n, k} w^{k-1}=\sum_{k=0}^{\infty} \nabla \Delta \xi_{n, k+1} w^{k}
$$

we see that

$$
(1-w) \sigma_{n}^{\prime \prime}(w)=\sigma_{n}^{\prime}(w) \sum_{k=0}^{\infty}\left(2 \delta_{k, 0}+\nabla \Delta \xi_{n, k+1}\right) w^{k}
$$

Comparing coefficients of w, we conclude that

$$
\xi_{n, k}=\xi_{n, k-1}+\frac{1}{k(k-1)} \sum_{j=1}^{k-1}(k-j) \xi_{n, k-j} \nabla \Delta \xi_{n, j}
$$

Remark 31 If we use (1) in (14), we see that

$$
\gamma_{n}=z \sigma_{n}^{\prime}(z)=w(1-w) \sigma_{n}^{\prime}(w)
$$

and therefore

$$
\gamma_{n}=(1-w) \sum_{k=1}^{\infty} k \xi_{n, k} w^{k}
$$

Theorem 32 Let $c(n)$ be defined by (35) and the coefficients $\xi_{n, k}$ be defined by (40). If

$$
\begin{equation*}
-\frac{c(n)}{c(n-1)} \sim \sum_{l \geq 0} B_{1, l} n^{-l}, \quad n \rightarrow \infty \tag{63}
\end{equation*}
$$

we have:
(i) If $B_{1,0} \neq-1$, then for all $k \geq 1$

$$
\xi_{n, k}=B_{1,0}\left(1+B_{1,0}\right)^{k-1} n^{2}+O(n), \quad n \rightarrow \infty
$$

(ii) If $B_{1,0}=-1$ and $B_{1,3} \neq 0$, then for all $k \geq 2$,

$$
\begin{equation*}
\xi_{n, k}=O\left(n^{-k+1}\right), \quad n \rightarrow \infty . \tag{64}
\end{equation*}
$$

Proof. Suppose that for $j \geq 1$

$$
\xi_{n, j} \sim n^{\tau_{j}} \sum_{l \geq 0} B_{j, l} n^{-l}, \quad n \rightarrow \infty
$$

with $B_{j, 0} \neq 0$. Using (46) in (60), we obtain

$$
\begin{gather*}
n^{\tau_{k}} \sum_{l \geq 0} B_{k, l} n^{-l} \sim n^{\tau_{k-1}} \sum_{l \geq 0} B_{k-1, l} n^{-l} \tag{65}\\
+\frac{2}{k(k-1)} \sum_{j=1}^{k-1}(k-j) n^{\tau_{k-j}+\tau_{j}} \sum_{m \geq 2} n^{-m} \sum_{l=2}^{m} \sum_{i=1}^{\frac{l}{2}} B_{k-j, m-l} B_{j, l-2 i}\binom{\tau_{j}+2 i-l}{2 i} .
\end{gather*}
$$

From (59) and (63) we see that

$$
\xi_{n, 1} \sim n^{2} \sum_{l \geq 0} B_{1, l} n^{-l}, \quad n \rightarrow \infty
$$

and using (61) we get
$\xi_{n, 2}=\left(1+B_{1,0}\right)\left(B_{1,0} n^{2}+B_{1,1} n+B_{1,2}\right)+\left(1+2 B_{1,0}\right) B_{1,3} n^{-1}+O\left(n^{-2}\right), \quad n \rightarrow \infty$.
Thus, we need to consider two cases.
(i) $B_{1,0} \neq-1$. In this case, $\tau_{2}=2$, and it follows from (65) that $\tau_{k}=\tau_{k-1}=$ $2, \quad k \geq 2$. To leading order, (65) gives

$$
B_{k, 0}=B_{k-1,0}+\frac{2}{k(k-1)} \sum_{j=1}^{k-1}(k-j) B_{k-j, 0} B_{j, 0}
$$

and therefore

$$
B_{k, 0}=B_{1,0}\left(1+B_{1,0}\right)^{k-1}
$$

(ii) $B_{1,0}=-1, B_{1,3} \neq 0$. We now have $\tau_{2}=-1$, and we can show by induction that $\tau_{k}=-k+1, k \geq 2$. Hence, $\tau_{k}=-k+1+2 \delta_{1, k}, k \geq 1$ and we observe that

$$
\tau_{k-j}+\tau_{j}-\tau_{k}=1+2\left(\delta_{k-j, 1}+\delta_{j, 1}\right)=\left\{\begin{array}{cc}
1, & 2 \leq j \leq k-2 \tag{66}\\
3, & j=1, k-1
\end{array} .\right.
$$

Using (66) in (65), we have for $k \geq 3$

$$
B_{k, 0}=B_{k-1,0} n+B_{k-1,1}+B_{k-1,0} B_{1,0} n+\frac{k+2}{k} B_{1,0} B_{k-1,1}+\frac{k-2}{k} B_{k-1,0} B_{1,1}
$$

and since $B_{1,0}=-1$,

$$
\begin{equation*}
B_{k, 0}=-\frac{2}{k} B_{k-1,1}+\frac{k-2}{k} B_{k-1,0} B_{1,1}, \quad k \geq 3 \tag{67}
\end{equation*}
$$

Example 33 Meixner polynomials. From (43), we see that

$$
\begin{equation*}
\frac{c(n)}{c(n-1)}=-\frac{n+a-1}{n}=-1+\frac{1-a}{n} . \tag{68}
\end{equation*}
$$

Therefore, we are in case (ii) of Theorem 32. Using (68) in (59) we get

$$
\xi_{n, 1}=-n(n+a-1),
$$

and (60) gives

$$
\xi_{n, k}=0, \quad k \geq 2
$$

Hence, we conclude that

$$
\sigma_{n}(w)=\frac{1}{2} n(n-1)-n(n+a-1) w=\left(\frac{1}{2}-w\right) n^{2}+\left(w-a w-\frac{1}{2}\right) n
$$

and

$$
\beta_{n}(w)=n-(2 n+a) w, \quad \gamma_{n}(w)=n(n+a-1) w(w-1),
$$

in agreement with (26).
Example 34 Generalized Hahn polynomials of type I. From (44), we see that

$$
\begin{align*}
-\frac{c(n)}{c(n-1)} & =-\frac{\left(n+a_{1}-1\right)\left(n+a_{2}-1\right)}{n(n+b)}-1+\frac{b+2-a_{1}-a_{2}}{n} \tag{69}\\
& -\left(b+1-a_{1}\right)\left(b+1-a_{2}\right) \sum_{k=0}^{\infty} \frac{(-b)^{k}}{n^{k+2}} .
\end{align*}
$$

Since $B_{1,0}=-1$ and $B_{1,3} \neq 0$, we are in case (ii) of Theorem 32. Using (69) in (59), we get $B_{1,1}=b+2-a_{1}-a_{2}$ and

$$
B_{1, k}=-\left(b+1-a_{1}\right)\left(b+1-a_{2}\right)(-b)^{k}, \quad k \geq 2
$$

Thus, (60) gives
$\xi_{n, 2}=-b\left(b+1-a_{1}\right)\left(b+1-a_{2}\right)\left[n^{-1}-\left(4 b+2-a_{1}-a_{2}\right) n^{-2}\right]+O\left(n^{-3}\right)$,
and

$$
\xi_{n, 3}=-b\left(b+1-a_{1}\right)\left(b+1-a_{2}\right)\left(3 b+2-a_{1}-a_{2}\right) n^{-2}+O\left(n^{-3}\right),
$$

as $n \rightarrow \infty$, in agreement with (64). Note that
$B_{3,0}=\left[-\frac{2}{3}\left(4 b+2-a_{1}-a_{2}\right)-\frac{1}{3}\left(b+2-a_{1}-a_{2}\right)\right] b\left(b+1-a_{1}\right)\left(b+1-a_{2}\right)$,
in agreement with (67).
We conclude that

$$
\begin{aligned}
\sigma_{n}(w) & =\left(\frac{1}{2}-w\right) n^{2}+\left[\left(b+2-a_{1}-a_{2}\right) w-\frac{1}{2}\right] n-\left(b+1-a_{1}\right)\left(b+1-a_{2}\right) w \\
& -b\left(b+1-a_{1}\right)\left(b+1-a_{2}\right) w(w-1) n^{-1}+O\left(n^{-2}\right) \\
\beta_{n}= & (1-2 w) n+\left(b+1-a_{1}-a_{2}\right) w+b\left(b+1-a_{1}\right)\left(b+1-a_{2}\right) w(w-1) n^{-2}+O\left(n^{-3}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\gamma_{n}}{w(w-1)} & =n^{2}-\left(b+2-a_{1}-a_{2}\right) n+\left(b+1-a_{1}\right)\left(b+1-a_{2}\right) \\
& +b\left(b+1-a_{1}\right)\left(b+1-a_{2}\right)(2 w-1) n^{-1}+O\left(n^{-2}\right)
\end{aligned}
$$

as $n \rightarrow \infty$.
Remark 35 In ([20]), the authors considered the sequences $\left(x_{n}, y_{n}\right)$, defined by

$$
\begin{align*}
x_{n} & =\beta_{n}-\frac{n+\left(n+a_{1}+a_{2}\right) z-(b+1)}{1-z} \tag{70}\\
& =\beta_{n}+(2 w-1) n+b+1+\left(a_{1}+a_{2}-b-1\right) w
\end{align*}
$$

and

$$
\begin{align*}
y_{n} & =\frac{1-z}{z} \gamma_{n}-\sigma_{n}-\left(a_{1}+a_{2}\right) n-\frac{1}{2} n(n-1) \tag{71}\\
& =-\frac{\gamma_{n}}{w}-\sigma_{n}-\left(a_{1}+a_{2}\right) n-\frac{1}{2} n(n-1) .
\end{align*}
$$

Using the results from our previous example, we see that

$$
x_{n}=b+1+b\left(b+1-a_{1}\right)\left(b+1-a_{2}\right) w(w-1) n^{-2}+O\left(n^{-3}\right)
$$

and
$y_{n}=-(b+1) n+\left(b+1-a_{1}\right)\left(b+1-a_{2}\right)-b\left(b+1-a_{1}\right)\left(b+1-a_{2}\right)(w-1)^{2} n^{-1}+O\left(n^{-2}\right)$.
These expansions agree with the limiting values conjectured from numerical experiments by Filipuk and Van Assche.

Example 36 Polynomials of type $(3,2)$. These polynomials were introduced in [13], and are orthogonal with respect to the linear functional

$$
L[p]=\sum_{x=0}^{\infty} p(x) \frac{\left(a_{1}\right)_{x}\left(a_{2}\right)_{x}\left(a_{3}\right)_{x}}{\left(b_{1}+1\right)_{x}\left(b_{2}+1\right)_{x}} \frac{z^{x}}{x!}, \quad p \in \mathbb{F}[x],
$$

with $b_{1} \neq b_{2}$ and $a_{i} \neq b_{j}+1,1 \leq i \leq 3,1 \leq j \leq 2$. We have

$$
\begin{gather*}
-\frac{c(n)}{c(n-1)}=-\frac{\left(n+a_{1}-1\right)\left(n+a_{2}-1\right)\left(n+a_{3}-1\right)}{n\left(n+b_{1}\right)\left(n+b_{2}\right)} \tag{72}\\
-1+\frac{b_{1}+b_{2}+3-a_{1}-a_{2}-a_{3}}{n}-\sum_{k=0}^{\infty} \frac{\eta_{k}\left(b_{2}\right)-\eta_{k}\left(b_{1}\right)}{b_{2}-b_{1}} n^{-k-2}
\end{gather*}
$$

where

$$
\eta_{k}(x)=(-x)^{k} \prod_{j=1}^{3}\left(x+1-a_{j}\right)
$$

Since $B_{1,0}=-1$ and $B_{1,3} \neq 0$, we are in case (ii) of Theorem 32 and therefore $\xi_{n, 2}=O\left(n^{-1}\right), n \rightarrow \infty$. We conclude that

$$
\begin{gathered}
\sigma_{n}(w)=\left(\frac{1}{2}-w\right) n^{2}+\left[\left(b_{1}+b_{2}+3-a_{1}-a_{2}-a_{3}\right) w-\frac{1}{2}\right] n-\frac{\eta_{0}\left(b_{2}\right)-\eta_{0}\left(b_{1}\right)}{b_{2}-b_{1}} w+O\left(n^{-1}\right), \\
\beta_{n}=(1-2 w) n-\left(a_{1}+a_{2}+a_{3}-b_{1}-b_{2}-2\right) w+O\left(n^{-1}\right)
\end{gathered}
$$

and
$\frac{\gamma_{n}}{w(w-1)}=n^{2}-\left(b_{1}+b_{2}+3-a_{1}-a_{2}-a_{3}\right) n+\frac{\eta_{0}\left(b_{2}\right)-\eta_{0}\left(b_{1}\right)}{b_{2}-b_{1}}+O\left(n^{-1}\right)$ as $n \rightarrow \infty$.

5 The shifted lattice

In [32] and [20], the authors consider shifted linear functionals of the form

$$
\begin{equation*}
\widetilde{L}[r]=\sum_{x=0}^{\infty} r(x) \frac{(\mathbf{a})_{x-b}}{(b+1)_{x-b}} \frac{z^{x-b}}{(x-b)!}, \quad r \in \mathbb{F}[x] . \tag{73}
\end{equation*}
$$

The moments of L and \widetilde{L} are related by

$$
\mu_{n}(z)=\sum_{k \geq 0} k^{n} c(k-b) z^{k-b}=z^{-b} \widetilde{\mu}_{n}(z), \quad n \in \mathbb{N}_{0}
$$

and the Hankel determinants by

$$
z^{n b} \mathcal{H}_{n}=z^{n b} \underset{0 \leq i, j \leq n-1}{\operatorname{det}}\left(\mu_{i+j}\right)=\underset{0 \leq i, j \leq n-1}{\operatorname{det}}\left(z^{b} \mu_{i+j}\right)=\underset{0 \leq i, j \leq n-1}{\operatorname{det}}\left(\widetilde{\mu}_{i+j}\right)=\widetilde{\mathcal{H}}_{n} .
$$

Therefore, we see from (36) that

$$
\mathcal{H}_{n}(z)=z^{\binom{n}{2}-n b} \widetilde{g}_{n}(z) \prod_{j=0}^{n-1}\left[(j!)^{2} c(j-b)\right], \quad n \geq 2
$$

where

$$
\widetilde{g}_{n}(z)=1+\binom{n}{1}^{2} \frac{c(n-b)}{c(n-b-1)} z+O\left(z^{2}\right) .
$$

We conclude that

$$
\begin{equation*}
\widetilde{\sigma}_{n}(z)=\frac{n(n-1)}{2}-n b+n^{2} \frac{c(n-b)}{c(n-b-1)} z+O\left(z^{2}\right), \quad z \rightarrow 0 \tag{74}
\end{equation*}
$$

and we can apply the results of Theorem 21 if we replace $n^{2} \frac{c(n)}{c(n-1)}$ by

$$
n^{2} \frac{c(n-b)}{c(n-b-1)}
$$

Let's look at some examples.
Example 37 Generalized Charlier polynomials on the shifted lattice. We have

$$
n^{2} \frac{c(n-b)}{c(n-b-1)}=\frac{n}{n-b}=1+\frac{b}{n}+\frac{b^{2}}{n^{2}}+O\left(n^{3}\right), \quad n \rightarrow \infty
$$

and
$\widetilde{\sigma}_{n}(z)=\frac{n^{2}}{2}-\left(b+\frac{1}{2}\right) n+z+\frac{b z}{n}+\frac{b^{2} z}{n^{2}}+\frac{b z\left(b^{2}+z\right)}{n^{3}}+O\left(n^{-4}\right), \quad n \rightarrow \infty$.
From (42), we obtain

$$
\widetilde{\beta}_{n}=n-b-\frac{b z}{n^{2}}+\frac{(1-2 b) b z}{n^{3}}+O\left(n^{-4}\right), \quad n \rightarrow \infty
$$

and

$$
\widetilde{\gamma}_{n}=z+\frac{b z}{n}+\frac{b^{2} z}{n^{2}}+\frac{b z\left(b^{2}+2 z\right)}{n^{3}}+O\left(n^{-4}\right), \quad n \rightarrow \infty .
$$

These results agree with the limiting values conjectured from numerical experiments by Smet and Van Assche in [32].

Example 38 Generalized Meixner polynomials on the shifted lattice. We have

$$
n^{2} \frac{c(n-b)}{c(n-b-1)}=\frac{n(n+a-b-1)}{n-b}=n+a-1+\frac{b(a-1)}{n}+\frac{b^{2}(a-1)}{n^{2}}+O\left(n^{3}\right),
$$

and
$\widetilde{\sigma}_{n}(z)=\frac{n^{2}}{2}+\left(z-b-\frac{1}{2}\right) n+(a-1) z+\frac{(a-1) b z}{n}+\frac{(a-1) b z(z+b)}{n^{2}}+O\left(n^{3}\right)$,
as $n \rightarrow \infty$. From (42), we get

$$
\widetilde{\beta}_{n}=n+z-b-\frac{(a-1) b z}{n^{2}}-\frac{(a-1) b z(2 b+2 z-1)}{n^{3}}+O\left(n^{-4}\right)
$$

and

$$
\widetilde{\gamma}_{n}=z n+(a-1) z+\frac{(a-1) b z}{n}+\frac{(a-1) b z(2 z+b)}{n^{2}}+O\left(n^{3}\right)
$$

as $n \rightarrow \infty$. These results agree with the limiting values conjectured from numerical experiments by Smet and Van Assche in [32].

Example 39 Generalized Hahn polynomials of type I on the shifted lattice.
We have

$$
\begin{gathered}
-n^{2} \frac{c(n-b)}{c(n-b-1)}=-\frac{n\left(n+a_{1}-b-1\right)\left(n+a_{2}-b-1\right)}{n-b}=-n^{2} \\
-\left(a_{1}+a_{2}-b-2\right) n-\left(a_{1}-1\right)\left(a_{2}-1\right)-\frac{\left(a_{1} a_{2}-a_{1}-a_{2}+1\right) b}{n}+O\left(n^{-2}\right)
\end{gathered}
$$

and

$$
\begin{aligned}
\widetilde{\sigma}_{n}(w) & =\left(\frac{1}{2}-w\right) n^{2}+\left(2 w-w a_{1}-w a_{2}+b w-b-\frac{1}{2}\right) n \\
& +\left(a_{1}+a_{2}-a_{1} a_{2}-1\right) w+\frac{\left(a_{1}-1\right)\left(a_{2}-1\right) b(w-1) w}{n}+O\left(n^{-2}\right)
\end{aligned}
$$

as $n \rightarrow \infty$. We conclude that
$\beta_{n}=(1-2 w) n+w-w a_{1}-w a_{2}+b w-b-\frac{\left(a_{1}-1\right)\left(a_{2}-1\right) b w(w-1)}{n^{2}}+O\left(n^{-3}\right)$,
and
$\frac{\gamma_{n}}{w(w-1)}=n^{2}+\left(a_{1}+a_{2}-b-2\right) n+\left(a_{1}-1\right)\left(a_{2}-1\right)+\frac{\left(a_{1}-1\right)\left(a_{2}-1\right) b(2 w-1)}{n}+O\left(n^{-2}\right)$, as $n \rightarrow \infty$.

In terms of the sequences $\left(x_{n}, y_{n}\right)$ defined by (70) and (71, we get

$$
x_{n}=1-\frac{\left(a_{1}-1\right)\left(a_{2}-1\right) b w(w-1)}{n^{2}}+O\left(n^{-3}\right), \quad n \rightarrow \infty
$$

and
$y_{n}=-n+\left(a_{1}-1\right)\left(a_{2}-1\right)+\frac{\left(a_{1}-1\right)\left(a_{2}-1\right) b(w-1)^{2}}{n}+O\left(n^{-2}\right), \quad n \rightarrow \infty$.
These results agree with the limiting values conjectured from numerical experiments by Filipuk and Van Assche in [20].

6 Conclusions

We have analyzed the three-term recurrence coefficients $\left(\beta_{n}, \gamma_{n}\right)$ of orthogonal polynomials associated to a perturbed linear functional depending on a variable z. The functions $\beta_{n}(z), \gamma_{n}(z)$ satisfy the Toda system

$$
D_{z} \beta_{n}=\Delta \gamma_{n}, \quad D_{z} \ln \gamma_{n}=\nabla \beta_{n},
$$

and we have obtained asymptotic expansions of $\beta_{n}(z), \gamma_{n}(z)$ as $n \rightarrow \infty$.
We have shown that our methods can be used to prove some conjectures stated by Walter Van Assche and collaborators.

In follow-up papers, we will use our results to obtain nonlinear ODEs for the functions $\beta_{n}(z), \gamma_{n}(z)$, and we will analyze the polynomials $P_{n}(x ; z)$ asymptotically as $n \rightarrow \infty$.

Acknowledgement 40 This work was done while visiting the Johannes Kepler Universität Linz and supported by the strategic program "Innovatives OO-2010 plus" from the Upper Austrian Government.

References

[1] M. Adler and P. van Moerbeke. Generalized orthogonal polynomials, discrete KP and Riemann-Hilbert problems. Comm. Math. Phys., 207(3):589-620, 1999.
[2] C. Álvarez Fernández, G. Ariznabarreta, J. C. García-Ardila, M. Mañas, and F. Marcellán. Christoffel transformations for matrix orthogonal polynomials in the real line and the non-Abelian 2D Toda lattice hierarchy. Int. Math. Res. Not. IMRN, (5):1285-1341, 2017.
[3] A. I. Aptekarev, A. Branquinho, and F. Marcellán. Toda-type differential equations for the recurrence coefficients of orthogonal polynomials and Freud transformation. J. Comput. Appl. Math., 78(1):139-160, 1997.
[4] A. I. Aptekarev, M. Derevyagin, H. Miki, and W. Van Assche. Multidimensional Toda lattices: continuous and discrete time. SIGMA Symmetry Integrability Geom. Methods Appl., 12:Paper No. 054, 30, 2016.
[5] A. I. Aptekarev and W. Van Assche. Asymptotics of discrete orthogonal polynomials and the continuum limit of the Toda lattice. J. Phys. A, 34(48):10627-10637, 2001.
[6] G. Ariznabarreta and M. Mañas. Multivariate orthogonal polynomials and integrable systems. Adv. Math., 302:628-739, 2016.
[7] P. Barry. The restricted Toda chain, exponential Riordan arrays, and Hankel transforms. J. Integer Seq., 13(8):Article 10.8.4, 19, 2010.
[8] L. Boelen, G. Filipuk, and W. Van Assche. Recurrence coefficients of generalized Meixner polynomials and Painlevé equations. J. Phys. A, 44(3):035202, 19, 2011.
[9] M. Cafasso and M. D. de la Iglesia. The Toda and Painlevé systems associated with semiclassical matrix-valued orthogonal polynomials of Laguerre type. SIGMA Symmetry Integrability Geom. Methods Appl., 14:Paper No. 076, 17, 2018.
[10] C.-T. Chan and H.-F. Liu. A q-generalization of the Toda equations for the q-Laguerre/Hermite orthogonal polynomials. Random Matrices Theory Appl., 7(4):1840002, 20, 2018.
[11] Y. Chen and D. Dai. Painlevé V and a Pollaczek-Jacobi type orthogonal polynomials. J. Approx. Theory, 162(12):2149-2167, 2010.
[12] T. S. Chihara. An introduction to orthogonal polynomials. Gordon and Breach Science Publishers, New York-London-Paris, 1978.
[13] D. Dominici and F. Marcellán. Discrete semiclassical orthogonal polynomials of class 2. Number 2019-04 in DK Report Series. Johannes Kepler University Linz, 2019.
[14] D. Dominici. A note on a formula of Krattenthaler. Number 2018-06 in DK Report Series. Johannes Kepler University Linz, 2018.
[15] D. Dominici. Power series expansion of a Hankel determinant. Number 2018-08 in DK Report Series. Johannes Kepler University Linz, 2018.
[16] D. Dominici. Laguerre-Freud equations for generalized Hahn polynomials of type I. J. Difference Equ. Appl., 24(6):916-940, 2018.
[17] D. Dominici. Polynomial sequences associated with the moments of hypergeometric weights. SIGMA Symmetry Integrability Geom. Methods Appl., 12:Paper No. 044, 18, 2016.
[18] D. Dominici and F. Marcellán. Discrete semiclassical orthogonal polynomials of class one. Pacific J. Math., 268(2):389-411, 2014.
[19] G. Filipuk and M. N. Rebocho. Differential equations for families of semi-classical orthogonal polynomials within class one. Appl. Numer. Math., 124:76-88, 2018.
[20] G. Filipuk and W. Van Assche. Discrete orthogonal polynomials with hypergeometric weights and Painlevé VI. SIGMA Symmetry Integrability Geom. Methods Appl., 14:Paper No. 088, 19, 2018.
[21] G. Filipuk and W. Van Assche. Recurrence coefficients of generalized Charlier polynomials and the fifth Painlevé equation. Proc. Amer. Math. Soc., 141(2):551-562, 2013.
[22] M. N. Hounkonnou, C. Hounga, and A. Ronveaux. Discrete semiclassical orthogonal polynomials: generalized Charlier. J. Comput. Appl. Math., 114(2):361-366, 2000.
[23] M. E. H. Ismail and W.-X. Ma. Equations of motion for zeros of orthogonal polynomials related to the Toda lattices. Arab J. Math. Sci., 17(1):1-10, 2011.
[24] H. Miki, H. Goda, and S. Tsujimoto. Discrete spectral transformations of skew orthogonal polynomials and associated discrete integrable systems. SIGMA Symmetry Integrability Geom. Methods Appl., 8:Paper 008, 14, 2012.
[25] Y. Nakamura and A. Zhedanov. Toda chain, Sheffer class of orthogonal polynomials and combinatorial numbers. In Symmetry in nonlinear mathematical physics. Part 1, 2, 3, volume 3 of Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 50, Part 1, 2, pages 450-457. Natsīonal. Akad. Nauk Ukraïni, Īnst. Mat., Kiev, 2004.
[26] A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov. Classical orthogonal polynomials of a discrete variable. Springer Series in Computational Physics. Springer-Verlag, Berlin, 1991.
[27] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, editors. NIST handbook of mathematical functions. U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010.
[28] F. Peherstorfer. On Toda lattices and orthogonal polynomials. In Proceedings of the Fifth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Patras, 1999), volume 133, pages 519-534, 2001.
[29] F. Pekherstorfer, V. P. Spiridonov, and A. S. Zhedanov. The Toda chain, the Stieltjes function, and orthogonal polynomials. Teoret. Mat. Fiz., 151(1):81-108, 2007.
[30] J. Riordan. Combinatorial identities. John Wiley \& Sons, Inc., New York-London-Sydney, 1968.
[31] A. Ronveaux. Discrete semiclassical orthogonal polynomials: generalized Meixner. J. Approx. Theory, 46(4):403-407, 1986.
[32] C. Smet and W. Van Assche. Orthogonal polynomials on a bi-lattice. Constr. Approx., 36(2):215-242, 2012.
[33] M. Toda. Theory of nonlinear lattices, volume 20 of Springer Series in Solid-State Sciences. Springer-Verlag, Berlin-New York, 1981.
[34] W. Van Assche. Orthogonal polynomials and Painlevé equations, volume 27 of Australian Mathematical Society Lecture Series. Cambridge University Press, Cambridge, 2018.
[35] W. Van Assche and M. Foupouagnigni. Analysis of non-linear recurrence relations for the recurrence coefficients of generalized Charlier polynomials. J. Nonlinear Math. Phys., 10(suppl. 2):231-237, 2003.
[36] L. Vinet and A. Zhedanov. Elliptic solutions of the restricted Toda chain, Lamé polynomials and generalization of the elliptic Stieltjes polynomials. J. Phys. A, 42(45):454024, 16, 2009.
[37] A. Zhedanov. Elliptic solutions of the Toda chain and a generalization of the Stieltjes-Carlitz polynomials. Ramanujan J., 33(2):157-195, 2014.
[38] A. S. Zhedanov. Toda lattice: solutions with dynamical symmetry and classical orthogonal polynomials. Teoret. Mat. Fiz., 82(1):11-17, 1990.

Technical Reports of the Doctoral Program
 "Computational Mathematics"

2019
2019-01 A. Seiler, B. Jüttler: Approximately \mathcal{C}^{1}-smooth Isogeometric Functions on Two-Patch Domains Jan 2019. Eds.: J. Schicho, U. Langer
2019-02 A. Jiménez-Pastor, V. Pillwein, M.F. Singer: Some structural results on D^{n}-finite functions Feb 2019. Eds.: M. Kauers, P. Paule
2019-03 U. Langer, A. Schafelner: Space-Time Finite Element Methods for Parabolic Evolution Problems with Non-smooth Solutions March 2019. Eds.: B. Jüttler, V. Pillwein
2019-04 D. Dominici, F. Marcellán: Discrete semiclassical orthogonal polynomials of class 2 April 2019. Eds.: P. Paule, V. Pillwein

2019-05 D. Dominici, V. Pillwein: A sequence of polynomials generated by a Kapteyn series of the second kind May 2019. Eds.: P. Paule, J. Schicho
2019-06 D. Dominici: Mehler-Heine type formulas for the Krawtchouk polynomials June 2019. Eds.: P. Paule, M. Kauers

2019-07 M. Barkatou, A. Jiménez-Paster: Linearizing Differential Equations Riccati Solutions as D^{n} Finite Functions June 2019. Eds.: P. Paule, M. Kauers
2019-08 D. Dominici: Recurrence coefficients of Toda-type orthogonal polynomials I. Asymptotic analysis. July 2019. Eds.: P. Paule, M. Kauers

Doctoral Program "Computational Mathematics"

Director:

Dr. Veronika Pillwein
Research Institute for Symbolic Computation

Deputy Director:

Prof. Dr. Bert Jüttler
Institute of Applied Geometry

Address:

Johannes Kepler University Linz
Doctoral Program "Computational Mathematics"
Altenbergerstr. 69
A-4040 Linz
Austria
Tel.: ++43 732-2468-6840

E-Mail:

office@dk-compmath.jku.at

Homepage:

http://www.dk-compmath.jku.at

[^0]: *e-mail: diego.dominici@dk-compmath.jku.at

