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An Implementation of Radu’s

Ramanujan-Kolberg Algorithm

Nicolas Allen Smoot

Abstract

In 2015 Cristian-Silviu Radu designed an algorithm to detect identi-
ties of a class studied by Ramanujan and Kolberg. This class includes the
famous identities by Ramanujan which provide a witness to the divisibil-
ity properties of p(5n + 4), p(7n + 5). We give an implementation of this
algorithm using Mathematica. The basic theory is first described, and an
outline of the algorithm is briefly given, in order to describe the function-
ality and utility of our package. We thereafter give multiple examples of
applications to recent work in partition theory. In many cases we have
used our package to derive alternate proofs of various identities or congru-
ences; in other cases we have improved previously established identities,
and in at least one case we have confirmed a standing conjecture.

1 Introduction

Given some n ∈ Z≥0, we define a partition of n as a weakly decreasing sequence
of positive integers which sum to n. Thus, the number 4 has 5 different parti-
tions: 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1. We define p(n) as the number
of partitions of n. Thus, p(4) = 5 (we define p(0) = 1).

The function p(n) has been seriously studied since 1748 [13], when Euler
identified the generating function for p(n) (with q a formal indeterminate):

∞∑
n=0

p(n)qn =

∞∏
m=1

1

1− qm
. (1)

However, almost nothing was known of the arithmetic properties of p(n) before
the twentieth century. One of the first major breakthroughs in this area came
from Ramanujan [31]:

Theorem 1.

∞∑
n=0

p(5n+ 4)qn = 5 ·
∞∏
m=1

(1− q5m)5

(1− qm)6
, (2)

∞∑
n=0

p(7n+ 5)qn = 49q ·
∞∏
m=1

(1− q7m)7

(1− qm)8
+ 7 ·

∞∏
m=1

(1− q7m)3

(1− qm)4
. (3)

These are among the most iconic results in partition theory. They are par-
ticularly remarkable in that they reveal arithmetic information about p(n):
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Corollary. For all n ∈ Z≥0,

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7).

Moreover, the overall form of the identities conveys a deep relationship in
the underlying theory of modular functions.

Nearly 40 years later, Kolberg realized [18] that these identities of Ramanu-
jan could, with a very slight generalization, be extended to include a much larger
variety of similar identities for p(5n+ j), p(7n+ j), and p(3n+ j). For instance,

( ∞∑
n=0

p(5n+ 1)qn

)( ∞∑
n=0

p(5n+ 2)qn

)
(4)

=25q

∞∏
m=1

(1− q5m)10

(1− qm)12
+ 2

∞∏
m=1

(1− q5m)4

(1− qm)6
,

( ∞∑
n=0

p(7n+ 1)qn

)( ∞∑
n=0

p(7n+ 3)qn

)( ∞∑
n=0

p(7n+ 4)qn

)
(5)

=117649q4
∞∏
m=1

(1− q7m)21

(1− qm)24
+ 50421q3

∞∏
m=1

(1− q7m)17

(1− qm)20

+ 8232q2
∞∏
m=1

(1− q7m)13

(1− qm)16
+ 588q

∞∏
m=1

(1− q7m)9

(1− qm)12

+ 15

∞∏
m=1

(1− q7m)5

(1− qm)8
,

( ∞∑
n=0

p(3n)qn

)( ∞∑
n=0

p(3n+ 1)qn

)( ∞∑
n=0

p(3n+ 2)qn

)
(6)

=9q

∞∏
m=1

(1− q3m)(1− q9m)6

(1− qm)10
+ 2

∞∏
m=1

(1− q3m)(1− q9m)3

(1− qm)7
.

There are many different approaches by which these sorts of identities may
be derived. Kolberg, for example, proved each of the examples above (including
Ramanujan’s results) by manipulation of certain formal power series. We will
study them using the theory of modular functions.

The principle behind these identities is that by changing variables to q =
e2πiτ , τ ∈ H, the generating function for p(n) is (very nearly) the multiplicative
inverse of the Dedekind η function. This allows us to isolate and express the
series

∞∑
n=0

p(mn+ j)qn, j,m ∈ Z≥0, 0 ≤ j < m, 1 ≤ m.
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in terms of linear combinations of η (with a fractional input). We can then take
advantage of the symmetric properties of η to construct a modular function using∑
n≥0 p(mn + j)qn, over an appropriately chosen congruence subgroup Γ0(N).

Finally, we can ask whether this modular function is a linear combination of
suitably defined eta quotients, by manipulating and studying its behavior at
the cusps of Γ0(N).

What makes this a particularly powerful approach from a computational
standpoint is that certain theorems from complex analysis impose a finiteness
condition on the behavior of any modular function near a cusp of its corre-
sponding subgroup. This allows us to check the equality of two given modular
functions by checking the equality of only a finite number of coefficients.

Cristian-Silviu Radu recognized [29] that this approach could be used to
construct an algorithm to compute identities in the form of those discovered by
Ramanujan and Kolberg above. Indeed, he designed an algorithm which takes
any arithmetic function a(n) with generating function

∞∑
n=0

a(n)qn =
∏
δ|M

∞∏
m=1

(1− qδm)rδ ,

with rδ ∈ Z for all δ|M , and a generating function for a(mn + j), with 0 ≤
j ≤ m − 1. From here, and an appropriately chosen N ∈ Z≥2, the algorithm
attempts to produce a set Pm,r(j) ⊆ {0, 1, 2, ...,m − 1} with member j; an
integer-valued vector s = (sδ)δ|N ; and some α ∈ Z such that

fLHS :=fLHS(s,N,M, r,m, j)(τ)

=qα
∏
δ|N

∞∏
n=1

(1− qδn)sδ ·
∏

j′∈Pm,r(j)

∞∑
n=0

p(mn+ j′)qn (7)

is a modular function with a single pole at ∞ over the subgroup Γ0(N).
From here, a basis for the Q-algebra generated by all eta quotient modular

functions with a single pole at∞ over Γ0(N) can be constructed. We can check
membership of fLHS in this algebra by examining only its principal part over q
(including its constant term).

This paper summarizes our successful implementation of Radu’s algorithm.
Section 2.1 will provide a very brief review the basic theory, and in Sections
2.2 to 2.3 an outline of our software package’s structure will be given, following
the design of Radu’s algorithm. Due to matters of space, we cannot provide
more than a short description of the algorithm, or the underlying theory. We
highly recommend that this paper be read as a companion to [29] and [28]. We
have changed the notation of these papers: notably, we denote an arithmetic
progression with the letters m, j, rather than m, t to avoid confusion with the
use of t as a modular function. We have also denoted by hm,j what would be
referred to in [29] and [28] as gm,j , and have generally reserved the letter g to
denote an arbitrary eta quotient.

In addition to some small notational changes from Radu’s original work, we
have also designed separate procedures, which account for various theoretical or
computational difficulties. We discuss these separate procedures in Section 2.4.
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We refer the reader to [11], [20], and especially [17] for a more comprehensive
treatment of the theory of modular forms.

Apart from a description of the basic features of our package, the bulk of our
paper will be examples computed by our software package. We cover the classic
cases of Ramanujan, Kolberg, and Zuckerman in Sections 3.1, 3.2. In Section
3.3-3.4 we show examples which Radu has previously computed, and which we
have given slight improvements to. In Sections 3.5-3.9 we give applications of
our package to recently discovered identities and congruences. In many cases
we are able to improve previous results. In one case (Section 3.5.2) we prove a
conjecture by Xia. Section 4 explains the availability of the package, as well as
its installation.

2 Background

2.1 Basic Theory

Let N ∈ Z>0. We will denote H as the upper half complex plane, and we will
let q = e2πiτ , with τ ∈ H (except in Section 3.10, wherein we will use z ∈ H) .
Hereafter, we will use the notation

(qa; qb)∞ :=

∞∏
m=0

(1− qbm+a).

In particular,

∞∑
n=0

p(n)qn =
1

(q; q)∞
. (8)

We now give only the necessary preliminaries for an understanding of the RK
algorithm and its underlying theory.

Denote SL(2,Z) to be the set of all 2× 2 integer matrices with determinant
1.

SL(2,Z) =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
.

Furthermore, we let I =

(
1 0
0 1

)
, and

Γ0(N) =

{(
a b
c d

)
∈ SL(2,Z) : N |c

}
,

Definition 1. Let a/c ∈ Q∪{∞}. The cusp over Γ0(N) represented a/c is the
coset

Γ0(N) · a
c
.

If a1/c1 ∈ Γ0(N) · ac , then a1/c1 represents the same cusp as a/c.
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Notice that because Γ0(N) is a finite-index subgroup of SL(2,Z) [11, Section
1.2], any congruence subgroup admits only a finite number of distinct cusps.

Definition 2. Let q = e2πiτ , with τ ∈ H, and suppose that f : H → C is a
holomorphic function for all τ ∈ H. In this case, f is a modular function over
Γ0(N) if the following conditions apply:

1. For any

(
a b
c d

)
∈ Γ0(N), we have

f

(
aτ + b

cτ + d

)
= f(τ);

2. For any γ =

(
a b
c d

)
∈ SL(2,Z), we have

f

(
aτ + b

cτ + d

)
=

∞∑
n=nγ(f)

αγ(n)qgcd(c
2,N)n/N ,

with nγ(f) ∈ Z, and αγ(n) ∈ C for all n ≥ nγ(f).

Here, we refer to nγ(f) = na/c(f) as the order of f at the cusp represented by

by γ =

(
a b
c d

)
∈ SL(2,Z), respectively by a/c, over Γ0(N). If na/c(f) < 0,

then f is said to have a pole at a/c, with principal part

−1∑
n=na/c(f)

αγ(n)qgcd(c
2,N)n/N .

If na/c(f) > 0, then f is said to have a zero at a/c.

We now give an extremely important theorem in the subject of modular
forms, upon which the entirety of our paper relies:

Theorem 2. Let N ∈ Z≥1. If f is a modular function with nonnegative order
at every cusp of Γ0(N), then f must be a constant.

A proof can be found in [17, Chapter 2, Theorem 7]. Its usefulness becomes
clear upon comparing any two modular functions. If f, g are both modular
functions over Γ0(N), and their principal parts at each of their poles match,
then f − g must be a modular function with no poles at any cusp. This forces
f − g to be a constant. If their constants also match, then f and g must be
equal, since f − g = 0.

The question of equality between modular functions can therefore be reduced
to the question of comparing their finite principal parts and constants—which
can of course be quickly reduced to the question of comparing polynomials.

Hereafter, we will denote M(N) as the set of all modular functions over
Γ0(N). We also defineM∞(N) as the set of all modular functions f over Γ0(N)
in which nγ(f) ≥ 0 for all γ ∈ SL(2,Z)\Γ0(N). Finally, for any set S ⊆M(N),
and any field K ⊆ C, define SK as the set of functions in f ∈ S whose coefficients
at infinity are all members of K, i.e., αI(n) ∈ K for all n ≥ nI(f).

Finally, we will define the eta function and its extraordinary properties:
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Definition 3. For τ ∈ H, let

η(τ) = q1/24(q; q) = eπiτ/12
∞∏
n=1

(1− e2πinτ ).

Theorem 3. For any

(
a b
c d

)
∈ SL(2,Z), we have

η

(
aτ + b

cτ + d

)
= ε(a, b, c, d) (−i(cτ + d))

1/2
η(τ),

with z1/2 defined in terms of its principal branch, and ε(a, b, c, d) a certain 24th
root of unity.

The near-modular symmetry of η enables us to construct a very large number
of modular functions over Γ0(N). For example, it can be shown that

(
η(5τ)

η(τ)

)6

∈M(5).

Definition 4. An eta quotient over Γ0(N) is an object of the form

∏
λ|N

η(λτ)sλ ∈M(N).

Denote E(N) as the set of all eta quotients over Γ0(N). We denote E∞(N) =
E(N) ∩M∞(N). Finally, for any set S of functions over C, denote

〈S〉K :=

{
v∑

u=1

ru · gu : gu ∈ S, ru ∈ K

}
.

It is easy to see that 〈E∞(N)〉K fulfills the conditions of a K-algebra.
We will want to determine whether a given f ∈ M(N) can be expressed as

a linear combination of eta quotients, i.e., whether f ∈ 〈E(N)〉Q. To do this
directly, we would be forced to have a complete set of generators for 〈E(N)〉Q,
and to study the behavior of f at each cusp of Γ0(N).

To simplify the problem, we introduce the following theorem:

Theorem 4. For every N ∈ Z≥2, there exists a function µ ∈ E∞(N) which has
positive order at every cusp of Γ0(N) except ∞.

A proof can be found in [29, Lemma 20].
This theorem is useful in that, for any f ∈M(N), there exists a µ ∈ E∞(N)

and a sufficiently large k1 ∈ Z≥0, such that µk1 · f ∈ M∞(N). Then we need
only examine the single principal part of µk1 · f .

On the other hand, the elements of E∞(N) also have only a single principal
part to examine; moreover, as we shall see, 〈E∞(N)〉Q contains a very precise
algebra structure which can be adapted to check membership for any given
element ofM∞(N). If µk1 · f ∈ 〈E∞(N)〉Q for a specific k1, then we must have
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µk1 · f ∈ M∞(N)Q ∩ 〈E(N)〉Q. However, the converse is not necessarily true.
In other words, we know that

M∞(N)Q ∩ 〈E(N)〉Q ⊇ 〈E
∞(N)〉Q ,

but we have not yet established that

M∞(N)Q ∩ 〈E(N)〉Q = 〈E∞(N)〉Q .

Current evidence suggests that this equality holds, and we strongly suspect that
it is true. Unfortunately, we are as of yet unable to prove it. However, Radu
was able [29, Lemma 28] to establish a weaker theorem:

Theorem 5. Given some N ∈ Z≥2 and a µ ∈ E∞(N) with positive order at
every cusp except ∞, there exists a k0 ∈ Z≥0 such that

µk0 ·
(
M∞(N)Q ∩ 〈E(N)〉Q

)
⊆ 〈E∞(N)〉Q .

The ambiguity of whether k0 = 0 will become important later. But what is
important for the time being is that an upper bound for k0 is at least computable
[29, Proof of Lemma 28]. With the previous two theorems, in order to check
whether f ∈ 〈E(N)〉Q, we need only check the equivalent statement that

µk0+k1 · f ∈ 〈E∞(N)〉Q .

2.2 Membership Algorithm

Suppose that for some N ∈ Z≥2 we have a function f ∈ M∞(N)Q. We know
that we can expand f as the following:

f =
c(−m1)

qm1
+
c(−m1 + 1)

qm1−1
+ ...+

c(−1)

q
+ c(0) +

∞∑
n=1

c(n)qn. (9)

Here we will refer to pord(f) := m1 as the minimal exponent of f .
Moreover, we can identify c(−m1), the leading coefficient of f , with the

notation LC(f) := c(−m1).
We now need to define an algorithm to check the potential membership of a

given f in 〈E∞(N)〉Q . We can take advantage of the very precise algebra basis
which 〈E∞(N)〉Q admits.

Theorem 6. For any N ∈ Z≥2, E∞(N) is a finitely generated monoid. More-
over, there exist functions t, g1, g2, ..., gv ∈M∞(N) such that

pord(t) = v, (10)

pord(gi) < pord(gj), for 1 ≤ i < j ≤ v (11)

pord(gi) 6≡ pord(gj) (mod pord(t)), for 1 ≤ i < j ≤ v (12)

pord(gi) 6≡ 0 (mod pord(t)), for 1 ≤ i ≤ v (13)

〈E∞(N)〉Q = 〈1, g1, ..., gv〉Q[t] , (14)
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The proof can be found in [29, Sections 2.1, 2.2]. Given any N ∈ Z≥2, the
corresponding monoid generators of E∞(N) can be computed through a termi-
nating algorithm [29, Lemma 25].

PROCEDURE: etaGenerators (Eta Monoid Generators)

INPUT:
N ∈ Z≥2

OUTPUT:

{E1, E2, ..., Er} such that
{
Ek11 · E

k2
2 · ... · Ekrr : k1, k2, ..., kr ∈ Z≥0

}
= E∞(N).

Similarly, the corresponding basis elements of 〈E∞(N)〉Q can be computed
through a terminating algorithm [29, Theorem 16].

PROCEDURE: AB (Eta Algebra Basis)

INPUT:
N ∈ Z≥2

OUTPUT:
t, g1, g2, ..., gv ∈M∞(N) such that conditions (10)-(14) are satisfied.

The algebra basis algorithm is the most immediately important for the out-
line of Radu’s algorithm. However, we mention the monoid algorithm because
it will prove useful in later examples.

We now suppose that f ∈ µk0 · M∞(N)Q. To determine whether f ∈
〈E(N)〉Q, we need only determine whether f ∈ 〈E∞(N)〉Q. The previous theo-
rem reduces this to the problem of checking whether

f ∈ 〈1, g1, g2, ..., gv〉Q[t] . (15)

By Theorem 2.1, we need only examine the principal parts and constants of f
to determine whether (15) is correct.

Because the orders of the functions gj give a complete set of representatives
of the residue classes modulo v, we know that m1 ≡ pord(gj1) (mod v), for
some j1 with 1 ≤ j1 ≤ v.

Suppose first that m1 ≥ pord(gj1). Let gj1 have the expansion

gj1 =
b1(−n1)

qn1
+
b1(−n1 + 1)

qn1−1
+ ...+

b1(−1)

q
+ b1(0) +

∞∑
n=1

b1(n)qn. (16)

Then clearly, we can write

f1 = f − c(−m1)

LC
(
gj1 · t

m1−n1
v

) · gj1 · tm1−n1
v , (17)

pord (f1) = m2 < m1. (18)
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We can identify m2 as the residue of the order of another gj2 modulo v. If again
we have m2 ≥ pord(gj2), we may similarly construct a function f2 subtract
a product of gj2 with a suitable power of t to reduce the resulting order still
further.

In this way, we may construct a sequence of functions (fl)l≥1, with decreasing
absolute order at infinity. One possible result of this process is that we find some
k ∈ Z>1 such that fk−1 ∈ Q[[q]], having no negative powers of q—that is,

fk−1 = ck−1(0) +

∞∑
n=1

ck−1(n)qn. (19)

Of course, ck−1(0) ∈ 〈1, g1, g2, ..., gv〉Q[t], so that fk = fk−1 − ck−1(0) has no
principal part and no constant. In this case, we have shown that the principal
part and constant of f can be constructed through combinations of the princi-
pal parts and constants of 1, g1, g2, ..., gv, t. Since we only need to match the
principal parts and constants, we can conclude that f ∈ 〈1, g1, g2, ..., gv〉Q[t].

On the other hand, let us suppose that before the principal part is completely
reduced, we produce a function fl such that pord(fl) = ml < pord(gjl). In this
case, no power of gjl can reduce the order of fl, and no other element in our
basis can have a matching order modulo v. We must immediately conclude that
the principal part of f cannot be reduced in terms of the principal parts of
〈1, g1, g2, ..., gv〉Q[t]. Of course, this implies that f 6∈ 〈1, g1, g2, ..., gv〉Q[t].

As we reduce the principal part of f , we can collect the terms

c(−ml)

LC
(
gjl · t

ml−nl
v

) · gjl · tml−nlv

into a set V of v polynomials, each a sum of all the terms which use the same
element gjl . In the event that we can completely reduce the principal part of f ,
V represents the basis decomposition of f over 〈1, g1, g2, ..., gv〉Q[t]. Below, let

Princ(f) be the principal part of f (including its constant):

PROCEDURE: MW (Membership Witness)

INPUT:

• N ∈ Z≥2,

• t, g1, g2, ..., gv ∈M∞(N) satisfying (10)-(14),

• Princ(f), for some f ∈M∞(N).

OUTPUT:

IF f ∈ 〈E∞(N)〉Q , RETURN {p0, p1, ..., pk} ⊆ Q[x] such that

f =

v∑
k=0

gk · pk(t) with g0 = 1;

ELSE, PRINT “NO MEMBERSHIP”.

9



2.3 Main Procedure

The previous two sections discussed how to determine whether f ∈ 〈E(N)〉Q,
for some modular function f . We now need to construct the modular function
fLHS discussed in Section 1. Let us take an arithmetic function a(n) with the
generating function

Fr(τ) =

∞∑
n=0

a(n)qn =
∏
δ|M

(qδ; qδ)rδ∞, (20)

with r = (rδ)δ|M an integer-valued vector. Suppose we are interested in a
possible RK identity for a(mn+ j), with 0 ≤ j < m.

In [28, Section 2], Radu demonstrates that

q
24j+

∑
δ|M δ·rδ

24m

∞∑
n=0

a(mn+ j)qn

=
1

m

m−1∑
λ=0

e−
2πiκλ
24m (24j+

∑
δ|M δ·rδ)

∏
δ|M

η

(
δ · τ + κλ

m

)rδ
,

with κ = gcd(m2 − 1, 24). Therefore, if we define

hm,j(τ) = q
24j+

∑
δ|M δ·rδ

24m

∞∑
n=0

a(mn+ j)qn, (21)

then the functional equation on η gives hm,j(τ) a rough modular symmetry with
respect to Γ0(N), for a suitably chosen N ∈ Z≥2. However, due to the imperfect
symmetry of the modularity of η, it is extremely unlikely that hm,j(τ) will have
a perfect modular symmetry. Indeed, [28, Theorem 2.14], for some

(
a b
c d

)
∈ Γ0(N) with a > 0, c > 0, and gcd(a, 6) = 1,

hm,j

(
aτ + b

cτ + d

)
= ρ · (−i (cτ + d))

∑
δ|M rδ/2 hm,j′(τ),

with ρ := ρ(a, b, c, d,M, r,m, j) a certain root of unity, and j′ an integer, which
can be computed precisely, with 0 ≤ j′ < m.

Because m serves as an upper bound for all possible j′, we can take a product
over all possible hm,j′ that can be derived from hm,j as a result of a transfor-
mation over Γ0(N). Denote the set of all possible j′ produced in this manner
as Pm,r(j). Then a transformation over Γ0(N) will send

∏
j′∈Pm,r(j) hm,j′(τ) to

itself, multiplied by

∏
j′∈Pm,r(j)

ρ · (−i (cτ + d))
∑
δ|M rδ/2 . (22)
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To cancel the unwanted factors (22), we can construct a specific

∏
δ|N

η(δτ)sδ ,

with an integer-valued vector s = (sδ)δ|N . This product of eta factors will
produce the multiplicative inverse of the factors we wish to cancel. The vector
s is chosen so that a transformation over Γ0(N) will produce the multiplicative
inverse of the factors (22).

Moreover, we also adjust s so as to push the order of
∏
j′ hm,j′ at every cusp

of Γ0(N) to the nonnegative integers. That is, we incorporate the function µk1

into our system s. The reasoning behind this will become clear shortly.
We can obtain s as the solution to a system of equations and inequalities

found in [29, Theorems 45, 47]. Such a vector is guaranteed to exist for an
appropriately chosen N ∈ Z≥2 [29, Lemma 48].

Multiplying this eta quotient by our product of hm,j′ factors, we obtain

fLHS :=fLHS(s,N,M, r,m, j)(τ) (23)

=
∏
δ|N

η(δτ)sδ ·
∏

j′∈Pm,r(j)

hm,j′(τ) ∈M∞(N)Q. (24)

We compute the set of possible solutions, and then select the optimal vector
such that fLHS will have minimal order at ∞. This is why we incorporate µk1

into our s vector: doing so will greatly simplify our later calculations, since a
smaller total order on the left hand side of our prospective identity ensures that
fewer computation time will be needed to determine membership of fLHS (we
completely ignore µk0 for the time being; see Section 2.4.3).

We now define f1 as our prefactor, together with the fractional powers of q
taken in each hm,j′ . This gives us another way to write fLHS :

f1(s,N,M, r,m, j) =
∏
δ|N

η(δτ)sδ · q
∑
j′∈Pm,r(j)

24j′+
∑
δ|M δ·rδ

24m , (25)

fLHS(s,N,M, r,m, j) =
∏
δ|N

η(δτ)sδ ·
∏

j′∈Pm,r(j)

hm,j′(τ) (26)

= f1(s,N,M, r,m, j) ·
∏

j′∈Pm,r(j)

( ∞∑
n=0

a(mn+ j′)qn

)
. (27)

At last, we come to the question of how to program fLHS into a computer.
Because we have previously established that fLHS has only one pole over Γ0(N),
we only need to examine its principal part and constant.

Notice that f1 has a principal part in q, and
∏
j′∈Pm,r(j) (

∑∞
n=0 a(mn+ j′)qn)

has no principal part in q. To take the full principal part and constant of
fLHS , we need only take the principal part of f1, and every term of the form
a(mn+ j′)qn, with n ≤ pord(f1).

Let us take pord(f1) = n1, and write
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f1 =

∞∑
n=−n1

c(n)qn

=
c(−n1)

qn1
+
c(−n1) + 1

qn1−1
+ ...+

c(1)

q
+ c(0) +

∞∑
n=1

c(n)qn,

f
(−)
1 :=

c(−n1)

qn1
+
c(−n1) + 1

qn1−1
+ ...+

c(1)

q
+ c(0).

Because 0 ≤ j′ ≤ m− 1, we define

L :=

m·(pord(f1)+1)∑
n=0

a(n)qn,

with an extra multiple of m defined so that we have a(m ·pord(f1) + j′) defined
for all necessary j′. We need not consider any larger values of a(n).

Now define

f
(−)
LHS := Princ

f (−)1 ·
∏

j′∈Pm,r(j)

(
m∑
n=0

[mn+ j′]L · qn
) ,

where by [k]f(q) we mean the coefficient of qk in the expansion of f(q) about
q = 0, and by Princ(f) we mean the principal part of f (including its constant

term). We see that f
(−)
LHS is a polynomial in q−1. In particular, f

(−)
LHS is finite,

and can therefore be examined by a computer.
At last we define our main procedure. We want to determine whether our

constructed fLHS ∈ 〈E∞(N)〉Q. We construct [29, Section 2.1] the functions
t, g1, g2, ..., gv ∈M∞(N), satisfying conditions (10)-(14):

〈E∞(N)〉Q = 〈1, g1, g2, ..., gv〉Q[t] .

We may now use our MW procedure to check whether fLHS ∈ 〈1, g1, g2, ..., gv〉Q[t]

by examining f
(−)
LHS .

Notice that we cannot merely construct the principal parts of the functions

t, gl, and disregard the rest of each function. We reduce f
(−)
LHS by subtracting

monomials of the form gl · tn; terms other than the principal parts of t, gl will
influence the overall principal part of the product. We must therefore be careful
to construct the complete principal part of each gl · tn.

If MW returns “NO MEMBERSHIP”, then the suspected identity does not
exist—at least over Γ0(N). One may attempt a different N to find an identity.
Otherwise, MW will return

{p0, p1, ..., pv} ⊆ Q[x], (28)
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and we have the complete identity

f1(s,N,M, r,m, j) ·
∏

j′∈Pm,r(j)

( ∞∑
n=0

a(mn+ j′)qn

)
=

v∑
k=0

gk · pk(t). (29)

Finally, we make note of an application so ubiquitous that we include it in our
main procedure. We will attempt to extract the GCD of all of the coefficients
of the pk. Mathematica has a GCD procedure. If all of the coefficients of the
pk are integers, the procedure returns the GCD, which we will denote here as
D. On the other hand, if there exists some K ∈ Z≥2 such that the coefficients
are elements in 1

KZ, then the GCD procedure will return 1
KD, with D defined

as the GCD of the coefficients with the factor 1/K removed.
Our procedure, RKDelta[N,M, r,m, j], takes as input an N ∈ Z≥2 which

defines the congruence subgroup Γ0(N) to work over; a generating function (de-
fined by M and r), an arithmetic progression mn+ j, with 0 ≤ j ≤ m.

PROCEDURE: RKDelta (Ramanujan–Kolberg Implementation, Case Delta)

INPUT:

M ∈ Z≥1, (30)

r = (rδ)δ|M , rδ ∈ Z (31)

m, j ∈ Z such that 0 ≤ j < m. (32)

N ∈ Z≥2, satisfying ∆∗ [29, Definition 35] (33)

OUTPUT:

{N,M,r,m,j} = {N,M, r,m, j} (34)∏
δ|M

(qδ; qδ)rδ∞ =

∞∑
n=0

a(n)qn (35)

f1(q) ·
∏

j∈Pm,r(j)

∞∑
n=0

a(mn + j′)qn =
∑
g∈AB

g · pg(t) (36)

Pm,r(j) = Pm,r(j) (37)

f1(q) = f1(q) (38)

t = t (39)

AB = {1, g1, g2, ..., gv} (40)

{pg(t):g ∈ AB} = {p1, pg1 , ..., pgv} (41)

Common Factor = D (42)

Line (34) returns the input (30) to (33). Lines (35), (36) are unsubstituted
expressions, indicating the form of a potential RK identity; they are meant to
serve as a guide for the remainder of the output.
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The following lines give appropriate substitutions found by the algorithm.
If a vector s cannot be found, then line (38) will return

f1(q) = Select Another N

indicating that we are unable to construct the necessary modular function over
the given Γ0(N). Similarly, if fLHS 6∈ 〈E∞(N)〉Q, then line (41) will return

{pg(t):g ∈ AB} = No Membership

Otherwise, the corresponding membership witness is returned.
Finally, if a greatest common factor exists and is greater than one, then D

is returned in line (42); otherwise, the line will return

Common Factor = None

2.4 Some Remarks

2.4.1 Delta

To make use of the techniques discussed so far, we must find an appropriate
N ∈ Z≥2 such that a generating function defined by M, r = (rδ)δ|M , and an
arithmetic progression mn+j, 0 ≤ j < m, can be effectively studied over Γ0(N).
The key criterion, called the ∆∗ criterion by Radu [29, Definitions 34, 35], is
checked with the procedure Delta[N, M, r, m, j].

PROCEDURE: Delta

INPUT:

N ∈ Z≥2 (43)

M ∈ Z≥1 (44)

r = (rδ)δ|M , rδ ∈ Z (45)

m, j ∈ Z such that 0 ≤ j < m. (46)

OUTPUT:

IF ∆∗ IS SATISFIED, RETURN TRUE,

ELSE, RETURN FALSE

Radu also includes a case in his algorithm in which the ∆∗ criterion may
be disregarded [29, Section 3.1, Second Case]. We have prepared a prototype
of this second condition; however, we are as yet unable to find any identities
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from this condition. We include here only the case in which the ∆∗ criterion is
necessary.

At any rate, for any given M, r = (rδ)δ|M ,m, j with 0 ≤ j < m, there must
exist an N ∈ Z≥2 such that the ∆∗ criterion is satisfied [29, Section 3.1]. It
is generally convenient to work with the smallest possible N that satisfies the
criterion. However, we will see in subsequent examples that the smallest possible
case is not always the most useful.

We will therefore leave the criterion for establishing N as separate from the
main algorithm, and define N as part of the input.

2.4.2 RKDeltaMan

We also include a slightly modified implementation that we refer to as RKDeltaMan.
This procedure is nearly identical to that used for Radu’s algorithm, except that
the algebra basis is included in the input. This is often helpful because, as we
will see in some examples, construction of the algebra basis for 〈E∞(N)〉Q is
often inefficient. If we already have a suitable algebra basis calculated (per-
haps from a database, or a general study of eta quotient spaces), we may easily
shorten the computation time.

2.4.3 RKDeltaE

Regarding the value of k0 in Theorem 5, we very strongly suspect that k0 may
always be set to 0, and that therefore

M∞(N)Q ∩ 〈E(N)〉Q = 〈E∞(N)〉Q .

for all N ∈ Z≥2. This is important, because the computation of a bound for
k0 is costly, and increases the runtime of our package. We therefore include the
procedure RKDeltaE in addition to RKDelta command. The two commands are
nearly identical, except that RKDeltaE includes the power µk0 in our prefactor.

We also include the procedure RKDeltaEMan, which is identical to RKDeltaMan,
except that it includes µk0 .

In the examples below, we use the procedures RKDelta, RKDeltaMan.

3 Examples

We now give an overview of applications of our package. Except for Sections
3.1-3.2, which cover the classic cases, each of our examples is chosen from con-
temporary work done in partition theory over the last ten years—in most cases,
within the last five years. Our proofs are of course based on the computa-
tional theory of modular functions. In many cases, these results may be proved
with more elementary methods, and we happily invite the interested reader to
attempt them.

3.1 Ramanujan’s Classics

The most obvious examples to check are the classic identities of Ramanujan and
Kolberg for p(5n+ 4) and p(7n+ 5).
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The generating function for p(n) is of course 1/(q; q)∞, which can be de-
scribed by setting M = 1, r = (−1). If we now take m = 5, guess N = 5, and
take j = 4, then we have

In[1] = RKDelta[5, 1, {−1}, 5, 4]

Out[1] =

{N,M,r,m,j} = {5, 1, {−1}, 5, 4}∏
δ|M

(qδ; qδ)rδ∞ =

∞∑
n=0

a(n)qn

f1(q) ·
∏

j∈Pm,r(j)

∞∑
n=0

a(mn + j′)qn =
∑
g∈AB

g · pg(t)

Pm,r(j) = {4}

f1(q) =
((q; q)∞)6

((q5; q5)∞)5

t =
((q; q)∞)6

q((q5; q5)∞)6

AB =

{1}
{pg(t):g ∈ AB} =

{5}
Common Factor = 5

We see that Pm,r(j) = {4}, indicating that our left hand side will only
contain the series

∑
n≥0 p(5n+ 4)qn. With f1, we have the left hand side of any

possible identity as

fLHS =
(q; q)6∞

(q5; q5)5∞

∞∑
n=0

p(5n+ 4)qn ∈M∞(5).

In this case our algebra basis is extremely simple:

〈E∞(5)〉Q = 〈1〉Q[t] = Q[t],

with

t =
(q; q)6∞

q(q5; q5)6∞
.

Because the basis contains only the identity, we only need a single polynomial
in t. In this case, the polynomial is 5.

(q; q)6∞
(q5; q5)5∞

∞∑
n=0

p(5n+ 4)qn = 5.
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A quick rearrangement gives us (2)
Similarly, taking m = 7, j = 5, and guessing N = 7, we have

In[2] = RKDelta[7, 1, {−1}, 7, 5]

Out[2] =

{N,M,r,m,j} = {7, 1, {−1}, 7, 5}∏
δ|M

(qδ; qδ)rδ∞ =

∞∑
n=0

a(n)qn

f1(q) ·
∏

j∈Pm,r(j)

∞∑
n=0

a(mn + j′)qn =
∑
g∈AB

g · pg(t)

Pm,r(j) = {5}

f1(q) =
((q; q)∞)8

q((q7; q7)∞)7

t =
((q; q)∞)4

q((q7; q7)∞)4

AB =

{1}
{pg(t):g ∈ AB} =

{49 + 7t}
Common Factor = 7

This gives us

(q; q)8∞
q(q7; q7)7∞

∞∑
n=0

p(7n+ 5)qn = 49 + 7
(q; q)4∞

q(q7; q7)4∞
,

which yields (3) on rearrangement.
In the following examples, we will omit the first three lines of output from

each example for the sake of brevity.

3.2 Classic Identities by Kolberg and Zuckerman

A large number of classic analogues to Ramanujan’s results have been found.
We start with an identity discovered by Zuckerman [40] for p(13n+ 6).

Theorem 7.

∞∑
n=0

p(13n+ 6)qn =11
(q13; q13)∞

(q; q)2∞
+ 468q

(q13; q13)3∞
(q; q)4∞

+ 6422q2
(q13; q13)5∞

(q; q)6∞

+ 43940q3
(q13; q13)7∞

(q; q)8∞
+ 171366q4

(q13; q13)9∞
(q; q)10∞

+ 371293q5
(q13; q13)11∞

(q; q)12∞
+ 371293q6

(q13; q13)13∞
(q; q)14∞

.
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In[3] = RKDelta[13, 1, {−1}, 13, 6]

Out[3] =

Pm,r(j) = {6}

f1(q) =
((q; q)∞)14

q6((q13; q13)∞)13

t =
((q; q)∞)2

q((q13; q13)∞)2

AB =

{1}
{pg(t):g ∈ AB} =

{371293 + 371293t+ 171366t2 + 43940t3 + 6422t4 + 468t5 + 11t6}
Common Factor = None

We will now use our algorithm to derive the identities which Kolberg found
[18] for p(5n+ j), p(7n+ j), and p(3n+ j).

Starting with p(5n+ j) for 0 ≤ j ≤ 4, if we take N = 5 once more, and set
j = 1, [18, (4.2)] we have

In[4] = RKDelta[5, 1, {−1}, 5, 1]

Out[4] =

Pm,r(j) = {1, 2}

f1(q) =
((q; q)∞)12

((q5; q5)∞)10

t =
((q; q)∞)6

q((q5; q5)∞)6

AB =

{1}
{pg(t):g ∈ AB} =

{25 + 2t}
Common Factor = None

Working over the same congruence subgroup Γ0(5), we keep the same algebra
basis and t. The most notable difference is that we have the product

∑
n≥0

p(5n+ 1)qn

∑
n≥0

p(5n+ 2)qn


on the left hand side. Our right-hand side is given as a more complicated 25+2t,
and we have

(q; q)12∞
(q5; q5)10∞

( ∞∑
n=0

p(5n+ 1)qn

)( ∞∑
n=0

p(5n+ 2)qn

)
= 25 + 2

(q; q)6∞
q(q5; q5)6∞

.
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We can similarly examine j = 3 [18, (4.3)] and derive the identity

(q; q)12∞
(q5; q5)10∞

( ∞∑
n=0

p(5n+ 3)qn

)( ∞∑
n=0

p(5n)qn

)
= 25 + 3

(q; q)6∞
q(q5; q5)6∞

.

On the other hand, we can set m = 7, j = 1, N = 7, [18, (5.2)] and we will
derive

In[5] = RKDelta[7, 1, {−1}, 7, 1]

Out[5] =

Pm,r(j) = {1, 3, 4}

f1(q) =
((q; q)∞)24

q((q7; q7)∞)21

t =
((q; q)∞)4

q((q7; q7)∞)4

AB =

{1}
{pg(t):g ∈ AB} =

{117649 + 50421t+ 8232t2 + 588t3 + 15t4}
Common Factor = None

and the identity

(q; q)24∞
q4(q7; q7)21∞

( ∞∑
n=0

p(7n+ 1)qn

)( ∞∑
n=0

p(7n+ 3)qn

)( ∞∑
n=0

p(7n+ 4)qn

)

=117649 + 50421
(q; q)4∞

q(q7; q7)4∞
+ 8232

(q; q)8∞
q2(q7; q7)8∞

+ 588
(q; q)12∞

q3(q7; q7)12∞
+ 15

(q; q)16∞
q4(q7; q7)16∞

.

The corresponding identity for p(7n+ 2) [18, (5.3)] can be easily found.
Finally, we set m = 3, j = 1, N = 9, [18, (3.4)] and derive

In[6] = RKDelta[9, 1, {−1}, 3, 1]

Out[6] =

Pm,r(j) = {0, 1, 2}

f1(q) =
((q; q)∞)10

q(q3; q3)∞((q9; q9)∞)6

t =
((q; q)∞)3

q((q9; q9)∞)3

AB =

{1}
{pg(t):g ∈ AB} =

{9 + 2t}
Common Factor = None
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And we have

(q; q)10

q(q3; q3)(q9; q9)6

( ∞∑
n=0

p(3n)qn

)( ∞∑
n=0

p(3n+ 1)qn

)( ∞∑
n=0

p(3n+ 2)qn

)

=9 + 2
(q; q)3

q(q9; q9)3
.

3.3 Radu’s Identity for 11

A substantial amount of work has been done attempting a witness identity for
p(11n + 6) ≡ 0 (mod 11). We will show one interesting attempt by Radu,
though we hasten to add that a great deal of work has been done by others on
the problem (for an interesting approach, see [14]). If we were to attempt to
find such an identity for M = 1, r = (−1), m = 11, N = 11, j = 6, then our
algorithm returns

In[7] = RKDelta[11, 1, {−1}, 11, 6]

Out[7] =

Pm,r(j) = {6}

f1(q) =
(q; q)12∞

q4(q11; q11)11∞

t =
(q; q)12∞

q5(q11; q11)12∞
AB =

{1}
{pg(t):g ∈ AB} =

No Membership

Common Factor = None

Our membership witness returns a null result, indicating that our con-
structed modular function does not lie within 〈E∞(11)〉Q.

If we were to take N = 22, however, we get

In[8] = RKDelta[22, 1, {−1}, 11, 6]

Out[8] =

Pm,r(j) = {6}

f1(q) =
(q; q)12∞(q2; q2)2∞(q11; q11)11∞

q14(q22; q22)22∞

t = − 1

8

(q2; q2)∞(q11; q11)11∞
q5(q; q)∞(q22; q22)11∞

+
1

11

(q2; q2)8∞(q11; q11)4∞
q5(q; q)4∞(q22; q22)8∞

+
3

88

(q; q)7∞(q11; q11)3∞
q5(q2; q2)3∞(q22; q22)7∞
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AB =

{1,−1

8

(q2; q2)∞(q11; q11)11∞
q5(q; q)∞(q22; q22)11∞

+
2

11

(q2; q2)8∞(q11; q11)4∞
q5(q; q)4∞(q22; q22)8∞

+
5

88

(q; q)7∞(q11; q11)3∞
q5(q2; q2)3∞(q22; q22)7∞

,

5

4

(q2; q2)∞(q11; q11)11∞
q5(q; q)∞(q22; q22)11∞

− 3

11

(q2; q2)8∞(q11; q11)4∞
q5(q; q)4∞(q22; q22)8∞

+
1

44

(q; q)7∞(q11; q11)3∞
q5(q2; q2)3∞(q22; q22)7∞

}

{pg(t):g ∈ AB} =

{6776 + 9427t+ 15477t2 + 13332t3 + 1078t4,−9581 + 594t+ 5390t2 + 187t3,

− 6754 + 5368t+ 2761t2 + 11t3}
Common Factor = 11

Our procedure returns a variation on a result that Radu already computed
[29]. The result is as tantalizing as it is annoying. It has a form resembling
the classic witness identities which Ramanujan discovered for his congruences
of p(5n + 4), p(7n + 5) by 5, 7, respectively. In particular, the coefficients of t
in the membership witness are all divisible by 11, indicating a potential witness
identity.

However, it is not obvious that the functions in our algebra basis have integer
coefficients in their expansions around q = 0. In particular, the prevalence of 11
throughout the denominators of each function makes the overall congruence of
p(11n+ 6) modulo 11 far from obvious. Peter Paule was the first to realize this
[25, Discussion, pp. 541-542], and successfully demonstrated that the functions
gl in the algebra basis do in fact have integer coefficients.

3.4 An Identity for Broken 2-Diamond Partitions

Broken k-diamond partitions, denoted by ∆k(n), were defined by Andrews and
Paule in 2007 [4]. They conjectured that

Theorem 8. For all n ∈ Z≥0,

∆2(25n+ 14) ≡ ∆2(25n+ 24) ≡ 0 (mod 5).

This was subsequently proved in 2008 by Chan [7]. In 2015 Radu was able
[29] to give a proof by studying another arithmetic function with a simpler
generating function. Our complete implementation allows us to verify these
congruences by directly examining the generating function for ∆2(n).

We take N = 10,M = 10, r = (−3, 1, 1,−1),m = 25, j = 14. Our package
returns

In[9] = RKDelta[10, 10, {−3, 1, 1,−1}, 25, 14]

Out[9] =

Pm,r(j) = {14, 24}

f1(q) =
(q; q)126∞ (q5; q5)70∞

q58(q2; q2)2∞(q10; q10)190∞
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t =
(q2; q2)∞(q5; q5)5∞
q(q; q)∞(q10; q10)5∞

AB =

{1}
{pg(t):g ∈ AB} =

{...}
Common Factor = 25

The membership witness returns a lengthy result, with terms of the order
of 1076. However, the computation time is short—less than 40 seconds with a
2.6 GHz Intel Processor on a modest laptop. The complete witness is available,
and easily computed, at [35, RaduRKexamples.nb].

Each term in the membership witness is divisible by 25. By expanding the
generating function for ∆2(n), one determines that ∆2(14) = 10445, and that
∆2(49) = 1022063815.

Because each of these numbers is divisible by 5 but not by 25, therefore∑
n≥0 ∆2(25n+ 14),

∑
n≥0 ∆2(25n+ 24) must each be divisible by exactly one

power of 5. This completes the proof.

3.5 Congruences with Overpartitions

An enormous amount of work has been published in recent years on the con-
gruence properties of overpartition functions, and our package has a great deal
of utility in this subject. We will examine three distinct problems here: two
will involve the standard overpartition function p̄(n), and one will involve an
overpartition function with additional restrictions Am(n). In each case, we are
able to make substantial improvements to previously established results.

As a preliminary, an overpartition of n is a partition of n in which the first
occurrence of a part may or may not be “marked.” Generally, this “mark” is
denoted with an overline (hence the term “overpartition”). For example, the
number 3 has 8 overpartitions:

3,

3̄,

2 + 1,

2̄ + 1,

2 + 1̄,

2̄ + 1̄,

1 + 1 + 1,

1̄ + 1 + 1.

We denote the number of overpartitions of n by p̄(n). The generating function
for p̄(n) has the form

∞∑
n=0

p̄(n)qn =
(−q; q)∞
(q; q)∞

=
(q2; q2)∞
(q; q)2∞
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Part of the appeal of p̄(n) is the simplicity of the combinatoric interpretation,
given the relative complexity of its generating function [10].

3.5.1 Congruences Over p̄(n)

We will begin by giving some remarkable improvements to previously established
congruences over p̄(n). Moreover, we have the opportunity to apply our “man-
ual” procedure, and use the connection of modular functions with the topology
of associated Riemann surfaces in order to construct a suitable algebra basis.

In 2016 Dou and Lin showed [12] that

p̄(80n+ 8) ≡ p̄(80n+ 52) ≡ p̄(80n+ 68) ≡ p̄(80n+ 72) ≡ 0 (mod 5). (47)

Hirschhorn in 2016 [16], and Chern and Dastidar in 2018 [8] have studied these
congruences as well, with the latter improving these congruences:

p̄(80n+ 8) ≡ p̄(80n+ 52) ≡ p̄(80n+ 68) ≡ p̄(80n+ 72) ≡ 0 (mod 25).

Chern and Dastidar go on to point out that

p̄(135n+ 63) ≡ p̄(135n+ 117) ≡ 0 (mod 5).

However, a quick computation of each of these sequences of overpartition
numbers reveals much more. For instance,

n p̄(80n+ 8)

0 100

1 8638130600

2 350865646632400

3 1512900775311002400

4 1919738036947929590800

5 1092453314947897908542800

6 348534368588210202093102600

7 71377855377904690816918291600

8 10261762697785410674339371853700

A very much stronger congruence clearly suggests itself. We are able to make
the following substantial improvements in each case:

Theorem 9.

p̄(80n+ 8) ≡ p̄(80n+ 72) ≡ 0 (mod 100),

p̄(80n+ 52) ≡ p̄(80n+ 68) ≡ 0 (mod 200).

Theorem 10.

p̄(135n+ 63) ≡ p̄(135n+ 117) ≡ 0 (mod 40).
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Our package can be used to demonstrate each of these, though with some
adjustments. In the case of p̄(80n+ j), we are forced to work over the congru-
ence subgroup Γ0(40). The generating set G0(40) of the corresponding monoid
E∞(40) of monopolar eta quotients can be computed with relative ease using
etaGenerators; however, the set is nevertheless extremely large, and our pro-
cedure to compute the algebra basis using AB would be extremely inefficient.

We can remedy the problem by taking advantage of the Weierstrass gap
theorem, (see [38, Part 2, Section 17] for a classical introduction to the subject;
see [26] for a more modern treatment of the theorem). We use [11, Theorem
3.1.1] to compute the genus of the corresponding modular curve X0(40) as 3,
which implies that all monopolar modular functions with a single pole at∞ over
Γ0(40) must have order 4 or greater. Radu’s refinement of Newmann’s conjec-
ture [27, Conjecture 9.4] suggests that a suitable combination of eta quotients
will yield functions in 〈E∞(40)〉Q with orders 4, 5, 6, 7. Such a set of functions
would be a sufficient algebra basis for 〈E∞(40)〉Q.

In this case, we are lucky, because a simple ordering of G0(40) by the order
of the elements at ∞ reveals that

G0(40)[1] =
(q4; q4)3∞(q20; q20)∞
q4(q8; q8)∞(q40; q40)3∞

,

G0(40)[4] =
(q2; q2)3∞(q5; q5)∞(q20; q20)2∞
q5(q; q)∞(q10; q10)∞(q40; q40)4∞

,

G0(40)[7] =
(q2; q2)6∞(q5; q5)2∞(q8; q8)∞(q20; q20)3∞
q6(q; q)2∞(q4; q4)3∞(q10; q10)2∞(q40; q40)5∞

,

G0(40)[17] =
(q; q)2∞(q5; q5)2∞(q8; q8)2∞(q20; q20)3∞

q7(q2; q2)∞(q4; q4)∞(q10; q10)∞(q40; q40)6∞
.

Here for any ordered, enumerable set S, we define the term S[j] as the jth term
in the ordering of S.

We can then define our algebra basis as

T = G0(40)[1],

Ab40 = {T, {1,G0(40)[4],G0(40)[7],G0(40)[17]}} .

Since we computed our algebra basis separately, we may now employ the
manual case of our package, RKDeltaMan (See Section 2.4.2):

In[10] = RKDeltaMan[40, 2, {−2, 1}, 80, 8, Ab40]

Out[10] =

Pm,r(j) = {8, 72}

f1(q) =
(q; q)333∞ (q8; q8)66∞(q10; q10)36∞(q20; q20)165∞

q400(q2; q2)168∞ (q4; q4)31∞(q5; q5)65∞(q40; q40)334∞

t =
(q4; q4)3∞(q20; q20)∞
q4(q8; q8)∞(q40; q40)3∞
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AB =

{1, (q2; q2)3∞(q5; q5)∞(q20; q20)2∞
q5(q; q)∞(q10; q10)∞(q40; q40)4∞

,

(q2; q2)6∞(q5; q5)2∞(q8; q8)∞(q20; q20)3∞
q6(q; q)2∞(q4; q4)3∞(q10; q10)2∞(q40; q40)5∞

,

(q; q)2∞(q5; q5)2∞(q8; q8)2∞(q20; q20)3∞
q7(q2; q2)∞(q4; q4)∞(q10; q10)∞(q40; q40)6∞

}

{pg(t):g ∈ AB} =

{...}
Common Factor = 10000

The membership witness is too lengthy to present in this article. The com-
plete output of the algorithm can be found in [35, OverpartitionExamples.nb].
It is trivial to compute p̄(80n+ 8), p̄(80n+72) for a handful of small n in order
to demonstrate that neither is divisible by 23 or 53. Since the left hand side
consists of a prefactor (with initial coefficient 1) and a product of the form

∑
n≥0

p̄(80n+ 8)qn

∑
n≥0

p̄(80n+ 72)qn

 ,

with neither factor divisible by 23 or 53, the only remaining possibility is that
each factor is divisible by 22 · 52 = 100.

An almost identical output is produced for

In[11] = RKDeltaMan[40, 2, {−2, 1}, 80, 52, Ab40]

but with an output of 40000 for congruences. This is also available at [35,
OverpartitionExamples.nb]. We may show that p̄(80n + 52), p̄(80n + 68) are
each divisible by 200, in a similar manner to the case of p̄(80n+8), p̄(80n+ 72).

Finally, we consider the case of p̄(135n + 63), p̄(135n + 117). We may sim-
ilarly construct an algebra basis manually. In this case, the most convenient
congruence subgroup to work over is Γ0(30) (N = 30). The genus of X0(30) is
3, but we are at a slight disadvantage: there are eta quotients in E∞(30) with
orders 4, 6, and 7, but none with order 5. But we can construct a difference of
eta quotients, each with order 6, to produce a function of order 5. If we order
the generators of E∞(30) by order at ∞, then

G0(30)[1] =
(q; q)∞(q6; q6)6∞(q10; q10)2∞(q15; q15)3∞
q4(q2; q2)2∞(q3; q3)3∞(q5; q5)∞(q30; q30)6∞

,

G0(30)[4]− G0(30)[3] =
(q2; q2)4∞(q10; q10)4∞(q15; q15)4∞
q6(q; q)2∞(q5; q5)2∞(q30; q30)8∞

− (q; q)∞(q6; q6)2∞(q10; q10)10∞(q15; q15)5∞
q6(q2; q2)2∞(q3; q3)∞(q5; q5)5∞(q30; q30)10∞

,
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G0(30)[2] =
(q; q)∞(q2; q2)∞(q5; q5)∞(q6; q6)∞(q10; q10)∞(q15; q15)3∞

q6(q3; q3)∞(q30; q30)7∞
,

G0(30)[6] =
(q; q)∞(q5; q5)2∞(q6; q6)∞(q10; q10)∞(q15; q15)3∞

q7(q30; q30)8∞
.

The orders here are (respectively) 4, 5, 6, 7, again sufficient for an algebra basis:

T = G0(30)[1],

G1 = G0(30)[4]− G0(30)[3]

G2 = G0(30)[2]

G3 = G0(30)[6]

Ab30 = {T, {1, G1, G2, G3}} .

Employing RKDeltaMan once again, we get

In[11] = RKDeltaMan[30, 2, {−2, 1}, 135, 63, Ab30]

Out[11] =

Pm,r(j) = {63, 117}

f1(q) =
(q; q)653∞ (q6; q6)235∞ (q10; q10)272∞ (q15; q15)358∞

q507(q2; q2)359∞ (q3; q3)275∞ (q5; q5)226∞ (q30; q30)656∞

t =
(q; q)∞(q6; q6)6∞(q10; q10)2∞(q15; q15)3∞
q4(q2; q2)2∞(q3; q3)3∞(q5; q5)∞(q30; q30)6∞

AB =

{1, (q2; q2)4∞(q10; q10)4∞(q15; q15)4∞
q6(q; q)2∞(q5; q5)2∞(q30; q30)8∞

− (q; q)∞(q6; q6)2∞(q10; q10)10∞(q15; q15)5∞
q6(q2; q2)2∞(q3; q3)∞(q5; q5)5∞(q30; q30)10∞

,

(q; q)∞(q2; q2)∞(q5; q5)∞(q6; q6)∞(q10; q10)∞(q15; q15)3∞
q6(q3; q3)∞(q30; q30)7∞

,

(q; q)∞(q5; q5)2∞(q6; q6)∞(q10; q10)∞(q15; q15)3∞
q7(q30; q30)8∞

}

{pg(t):g ∈ AB} =

{...}

Common Factor =
1600

3

Once again, the membership witness is too large to present here. It can be
found in its entirety at [35, OverpartitionExamples.nb]. However, the fractional
common factor emerges because each polynomial pg in the witness has integer
coefficients, except for pG1 , which is a polynomial over 1

3Z. Because the remain-
ing polynomials have integer coefficients (and all of the eta quotients involved
have integer-coefficient expansions), we can conclude that G1 has coefficients di-
visible by 3. At any rate, this makes no difference for congruences with respect
to powers of 2 or 5.
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We may again quickly demonstrate that p̄(135n+ 63), p̄(135n+ 117) are not
divisible by 24 or 52, indicating that they must each be divisible by 23 · 5 = 40.

As we have previously mentioned, there are almost certainly simpler proofs
of these congruences. In any case, it is striking that these stronger congruences
were not at least conjectured, given how many people studied the sequences in
(47), and how clearly these congruences are revealed when even a handful cases
are actually computed.

3.5.2 A Conjecture For p̄(n)

In 2015 Xia conjectured [39] that

p̄(96n+ 76) ≡ 0 (mod 35)

for all n ∈ Z≥0. We have not only confirmed this conjecture, but extended it:

Theorem 11.

p̄(96n+ 76) ≡ 0 (mod 2335)

for all n ∈ Z≥0.

In[12] = RKDelta[24, 2, {−2, 1}, 96, 76]

Out[12] =

Pm,r(j) = {76}

f1(q) =
(q; q)213∞ (q6; q6)33∞(q8; q8)77∞(q12; q12)113∞

q150(q2; q2)107∞ (q3; q3)64∞(q4; q4)37∞(q24; q24)227∞

t =
(q6; q6)3∞(q8; q8)∞

q2(q2; q2)∞(q24; q24)3∞
AB =

{1, (q6; q6)3∞(q8; q8)∞
q2(q2; q2)∞(q24; q24)3∞

+
(q; q)∞(q3; q3)∞(q12; q12)∞(q4; q4)3∞

q3(q2; q2)2∞(q24; q24)4∞
}

{pg(t):g ∈ AB} =

{...}
Common Factor = 1944

The theorem is then established, since 1944 = 23 · 35. The full identity can
be found at [35, OverpartitionExamples.nb]

3.5.3 A Restricted Overpartition Function

Let Am(n) be the number of overpartitions of n in which only the parts not
divisible by m may be overlined. Then it can be showed that [21]

∞∑
n=0

Am(n)qn =
(q2; q2)∞(qm; qm)∞
(q; q)2∞(q2m; q2m)∞

.
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In 2016, Munagi and Sellers give a variety of interesting congruences for Am(n).
For instance, [21, Corollary 4.4, Theorem 4.5]:

Theorem 12.

A3(3n+ 1) ≡ 0 (mod 2),

A3(3n+ 2) ≡ 0 (mod 4).

Both of these can be proved quickly with our package. For example, to prove
A3(3n+ 1) ≡ 0 (mod 2):

In[13] = RKDelta[6, 6, {−2, 1, 1,−1}, 3, 1]

Out[13] =

Pm,r(j) = {1}

f1(q) =
(q; q)3∞(q2; q2)∞(q3; q3)6∞

q(q6; q6)9∞

t =
(q; q)5∞(q3; q3)∞

q(q2; q2)∞(q6; q6)5∞
AB =

{1}
{pg(t):g ∈ AB} =

{16 + 2t}
Common Factor = 2

On the other hand, [21, Theorem 4.7, Theorem 4.9] A3(27n + 26) ≡ 0
(mod 3), and A9(27n + 24) ≡ 0 (mod 3). Using our package, we can prove
more:

Theorem 13.

A3(27n+ 26) ≡ 0 (mod 12),

A9(27n+ 24) ≡ 0 (mod 24).

For example, to show that A9(27n+ 24) ≡ 0 (mod 24):

In[14] = RKDelta[6, 18, {−2, 1, 0, 0, 1,−1}, 27, 24]

Out[14] =

Pm,r(j) = {24}

f1(q) =
(q; q)47∞(q3; q3)12∞

q9(q2; q2)7∞(q6; q6)51∞

t =
(q; q)5∞(q3; q3)∞

q(q2; q2)∞(q6; q6)5∞
AB =

{1}
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{pg(t):g ∈ AB} =

{7703510787293184 + 5456653474332672t

+ 1649478582927360t2 + 276646783352832t3

+ 27989228519424t4 + 1735943602176t5

+ 63885293568t6 + 1269340416t7 + 10941888t8 + 22056t9}
Common Factor = 24

We expect that a very large variety of other congruences and associated
results for overpartition functions still await discovery. Those researchers who
study partitions outside of the theory of modular forms (e.g., from the perspec-
tive of q-series or combinatorial approaches) may find our package extremely
useful. As in the case with our first example of p̄(n), our implementation can be
used to give optimal congruences (that might otherwise be missed), from which
more elementary proofs may be attempted.

3.6 Some Identities by Baruah and Sarmah

For r ∈ Z, define

∞∑
n=0

pr(n)qn = (q; q)r∞.

In 2013 Baruah and Sarmah [6] gave a large variety of results for pr(n), all of
which are accessible through our package. One especially interesting example,
[6, Theorem 2.1, (2.10)] is not a congruence, but rather a simple identity:

Theorem 14.

p8(3n+ 1) = 0.

We can verify this by taking M = 1, r = (8),m = 4, j = 3, N = 4:

In[15] = RKDelta[4, 1, {8}, 4, 3]

Out[15] =

Pm,r(j) = {3}

f1(q) =
(q2; q2)12∞

q(q; q)4∞(q4; q4)16∞

t =
(q; q)8∞

q(q4; q4)8∞
AB =

{1}
{pg(t):g ∈ AB} =

{0}
Common Factor = 0

Baruah and Sarmah list several congruences [6, Theorem 5.1] which may
easily be proved. For example:
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Theorem 15.

p−4(4n+ 3) ≡0 (mod 8),

p−8(4n+ 3) ≡0 (mod 64),

p−2(5n+ 2) ≡ p−2(5n+ 3) ≡ p−2(5n+ 4) ≡0 (mod 5),

p−4(5n+ 3) ≡ p−4(5n+ 4) ≡0 (mod 5).

We prove the first case by setting M = 1, r = (−4),m = 4, j = 3, N = 8.

In[16] = RKDelta[8, 1, {−4}, 4, 3]

Out[16] =

Pm,r(j) = {3}

f1(q) =
(q; q)19∞(q4; q4)15∞

q4(q2; q2)8∞(q8; q8)22∞

t =
(q4; q4)12∞

q(q2; q2)4∞(q8; q8)8∞
AB =

{1}
{pg(t):g ∈ AB} =

{512t+ 1408t2 + 480t3 + 40t4}
Common Factor = 8

The other cases of this theorem can be proved similarly.
In another example, they prove [6, Theorem 5.1, (5.3)] that p−8(8n+ 7) ≡ 0

(mod 29), but we prove even more:

Theorem 16.

p−8(8n+ 7) ≡ 0 (mod 211).

We set N = 4:

In[17] = RKDelta[4, 1, {−8}, 8, 7]

Out[17] =

Pm,r(j) = {7}

f1(q) =
(q; q)84∞

q8(q2; q2)4∞(q4; q4)72∞

t =
(q; q)8∞

q(q4; q4)8∞
AB =

{1}
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{pg(t):g ∈ AB} =

{576460752303423488 + 162129586585337856t

+ 18718085951258624t2 + 1139094046375936t3

+ 38970385760256t4 + 737593524224t5 + 7041187840t6

+ 27033600t7 + 22528t8}
Common Factor = 2048

3.7 5-Regular Bipartitions

In 2016 Liuquan Wang developed [36] a large class of interesting congruences
for the 5-regular bipartition function B5(n), with the generator

∞∑
n=0

B5(n)qn =
(q5; q5)2∞
(q; q)2∞

.

Among many results were the following:

B5(4n+ 3) ≡ 0 (mod 5),

B5(5n+ 2) ≡ B5(5n+ 3) ≡ B5(5n+ 4) ≡ 0 (mod 5),

B5(20n+ 7) ≡ B5(20n+ 19) ≡ 0 (mod 25).

We are able to make the following improvements:

Theorem 17.

B5(4n+ 3) ≡ 0 (mod 10),

B5(5n+ 2) ≡ B5(5n+ 3) ≡ B5(5n+ 4) ≡ 0 (mod 5),

B5(20n+ 7) ≡ B5(20n+ 19) ≡ 0 (mod 100).

In[18] = RKDelta[20, 5, {−2, 2}, 4, 3]

Out[18] =

{N,M,r,m,j} = {20, 5, {−2, 2}, 4, 3}
Pm,r(j) = {3}

f1(q) =
(q; q)6∞(q2; q2)∞(q4; q4)∞(q10; q10)7∞

q7(q5; q5)2∞(q20; q20)13∞

t =
(q4; q4)4∞(q10; q10)2∞
q2(q2; q2)2∞(q20; q20)4∞

AB =

{1, (q4; q4)∞(q5; q5)5∞
q3(q; q)∞(q20; q20)5∞

− (q4; q4)4∞(q10; q10)2∞
q2(q2; q2)2∞(q20; q20)4∞

}

{pg(t):g ∈ AB} =

{50− 40t− 50t2 + 40t3,−50 + 40t+ 10t2}
Common Factor = 10
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In[19] = RKDelta[5, 5, {−2, 2}, 5, 2]

Out[19] =

{N,M,r,m,j} = {5, 5, {−2, 2}, 5, 2}
Pm,r(j) = {2, 4}

f1(q) =
(q; q)20∞

q2(q5; q5)20∞

t =
((q; q)∞)6

q((q5; q5)∞)6

AB =

{1}
{pg(t):g ∈ AB} =

{15625 + 2500t+ 100t2}
Common Factor = 25

In[20] = RKDelta[5, 5, {−2, 2}, 5, 3]

Out[20] =

{N,M,r,m,j} = {5, 5, {−2, 2}, 5, 3}
Pm,r(j) = {2, 4}

f1(q) =
(q; q)20∞

q2(q5; q5)20∞

t =
((q; q)∞)6

q((q5; q5)∞)6

AB =

{1}
{pg(t):g ∈ AB} =

{125 + 10t}
Common Factor = 25

In[21] = RKDelta[10, 5, {−2, 2}, 20, 7]

Out[21] =

{N,M,r,m,j} = {10, 5, {−2, 2}, 20, 7}
Pm,r(j) = {7, 19}

f1(q) =
(q; q)77∞(q5; q5)31∞

q27(q2; q2)21∞(q10; q10)87∞

t =
(q2; q2)∞(q5; q5)5∞
q(q; q)∞(q10; q10)5∞
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AB =

{1}
{pg(t):g ∈ AB} =

{7388718138654720000t2 + 153008038121308160000t3

+ 1257731351012966400000t4 + 5675499664745431040000t5

+ 16507857641427435520000t6 + 34080767872618987520000t7

+ 53266856094927421440000t8 + 65937188949118156800000t9

+ 66700597538020392960000t10 + 56314162511641313280000t11

+ 40234227634725191680000t12 + 24527816166851215360000t13

+ 12802067441385472000000t14 + 5714660420762992640000t15

+ 2169098785981726720000t16 + 691839480120197120000t17

+ 181850756413399040000t18 + 38175700204339200000t19

+ 6075890734530560000t20 + 680092466755680000t21

+ 49080942745680000t22 + 2083485921960000t23 + 46908276350000t24

+ 483406090000t25 + 1812970000t26 + 1190000t27}
Common Factor = 10000

3.8 Some Congruences Related to the Tau Function

Please note that in this section we will assume q = e2πiz with z ∈ H, to avoid
confusion with τ , which will be used to identify a certain arithmetic function.

Ramanujan’s tau function is defined as the coefficient τ(n) of the discrimi-
nant modular form:

∞∑
n=1

τ(n)qn = q(q; q)24 = η(z)24.

This function is defined by taking the 24th power of Dedekind’s eta function,
and is among the most studied objects in the theory of modular forms. In
particular, numerous interesting congruences have been found. Many classic
examples include the following, discovered by Ramanujan [32]:

Theorem 18.

τ(7n+m) ≡ 0 (mod 7)

for m ∈ {0, 3, 5, 6}.

Our algorithm can easily handle each of these cases. For example, we take
the case of τ(7n) (notice that we study (q; q)24∞, rather than with the proper
generator for τ(n); because of this, we need to examine the progression 7n+ 6):
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In[22] = RKDelta[7, 1, {24}, 7, 6]

Out[22] =

{N,M,r,m,j} = {7, 1, {24}, 7, 6}
Pm,r(j) = {6}

f1(q) =
1

q6(q7; q7)24∞

t =
(q; q)4∞

q(q7; q7)4∞
AB =

{1}
{pg(t):g ∈ AB} =

{−1977326743− 16744t6}
Common Factor = 7

We will give a more recent example discovered by Koustav Banerjee [5]:

Theorem 19.

τ(8(14n+ k)) ≡ 0 (mod 23 · 3 · 5 · 11),

for all n ∈ Z≥0 and k an odd integer mod 14.

This may be broken up into three distinct RK identities. We give the case
of 112n+ 56 (here shifted to 112n+ 55)

In[23] = RKDelta[14, 1, {24}, 112, 55]

Out[23] =

{N,M,r,m,j} = {14, 1, {24}, 112, 55}
Pm,r(j) = {55}

f1(q) =
(q2; q2)12∞(q7; q7)30∞
q25(q; q)6∞(q14; q14)60∞

t =
(q2; q2)∞(q7; q7)7∞
q2(q; q)∞(q14; q14)7∞

AB =

{1, (q2; q2)8∞(q7; q7)4∞
q3(q; q)4∞(q14; q14)8∞

− 4
(q2; q2)∞(q7; q7)7∞
q2(q; q)∞(q14; q14)7∞

}

{pg(t):g ∈ AB} =

{1483245480837120 + 22804899267870720t

− 281353127146291200t2 + 4813307313059266560t3

− 2117115491136307200t4 − 3347863578673152000t5
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+ 845098635118510080t6 + 77358598094131200t7

− 25371836549283840t8 − 1132615297820160t9

− 512964938787840t10 − 114993988032000t11 − 349389680640t12,

− 1483245480837120− 6489198978662400t+ 990900684041748480t2

− 151791226737131520t3 − 1234180893392240640t4

+ 461934380423577600t5 − 65498418207129600t6

+ 2233732210913280t7 + 170807954042880t8 + 855016378191360t9

− 4703322624000t10 − 1414533120t11}
Common Factor = 591360

The congruence here is even stronger than in the more general case, since
591360 = 29 · 3 · 5 · 7 · 11.

3.9 An Identity Related to Rogers–Ramanujan Subparti-
tions

We finish with an application of our package to studying infinite families of con-
gruences. In 2017 Choi, Kim, and Lovejoy discovered a congruence [9, Proposi-
tion 6.4], based on a subpartition function studied by Kolitsch [19].

For any partition λ, define the corresponding Rogers–Ramanujan subpar-
tition of λ as the unique subpartition of λ with a maximal number of parts,
in which the parts are nonrepeating, nonconsecutive, and larger than the re-
maining parts of λ. For example, the partition 8 + 5 + 3 + 2 + 2 + 1 + 1 + 1
contains the Rogers–Ramanujan subpartition 8 + 5 + 3, whereas the partition
8 + 8 + 2 + 2 + 1 + 1 + 1 contains the empty Rogers–Ramanujan subpartition.

Let us define Rl(n) as the number of partitions of n which contain a Rogers–
Ramanujan subpartition of length l, and then

A(n) =
∑
l≥0

l ·Rl(n).

In [9] the following was demonstrated:

Theorem 20. For n ∈ Z≥0,

A(25n+ 9) ≡ A(25n+ 14) ≡ A(25n+ 24) ≡ 0 (mod 5).

This was proved by connecting A(n) with the coefficient a(n) of

∞∑
n=0

a(n)qn =
(q2; q2)5∞

(q; q)3∞(q4; q4)2∞
.

The authors of [9] pointed to other suspected congruences and compared the
generating function for a(n) with that of cφ2(n). From this, they conjectured
the existence of an infinite family for A(n), in the style of Ramanujan’s classic
congruences, modulo powers of 5 [17, Chapter 7]. This infinite family was given
a precise formulation after careful investigation using our standard package, as
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well as a modified version [30] of the package designed to check large congru-
ences. After substantial evidence was gathered, the conjecture was proved [34].
We will here consider the case A(25n+ 24) by examining a(25n+ 24).

Taking M = 4, r = (−3, 5,−2),m = 25, j = 24, and setting N = 20, we find
that

In[24] = RKDelta[20, 4, {−3, 5,−2}, 25, 24]

Out[24] =

Pm,r(j) = {24}

f1(q) =
(q; q)35∞(q4; q4)18∞(q10; q10)30∞

q26(q2; q2)27∞(q5; q5)8∞(q20; q20)48∞

t =
(q4; q4)4∞(q10; q10)2∞
q2(q2; q2)2∞(q20; q20)4∞

AB =

{1, (q4; q4)∞(q5; q5)5∞
q3(q; q)∞(q20; q20)5∞

− (q4; q4)4∞(q10; q10)2∞
q2(q2; q2)2∞(q20; q20)4∞

}

{pg(t):g ∈ AB} =

{126953125 + 74218750t− 174609375t2 + 25390625t3

− 1237031250t4 + 1542084375t5 + 3798876250t6

− 7568402750t7 + 3755535625t8 + 210440100t9

− 754603995t10 + 190492925t11 + 10649860t12 + 5735t13,

− 78125000 + 62500000t− 46093750t2 + 128906250t3

+ 551875000t4 − 1636475000t5 + 430767500t6 + 1615951500t7

− 1247744000t8 + 145803400t9 + 72090170t10 + 543930t11}
Common Factor = 5

4 Accessibility

Our software package is freely available as RaduRK via the software page of
the Computer Algebra for Combinatorics Group at RISC (https://risc.jku.
at/research_topic/computer-algebra-for-combinatorics/). The imple-
mentation uses Mathematica, and requires installation of a Diophantine soft-
ware package called 4ti2 [1]. In particular, we used the interface developed
by Ralf Hemmecke and Silviu Radu. Unfortunately, because 4ti2 is a Linux
program, some additional steps are necessary in order to properly install our
program. We list the instructions for full installation below. Any difficulty
in installation should be communicated immediately to the author’s email,
nsmoot@risc.uni-linz.ac.at.

Step 1:
Install the 64 bit Cygwin, which can be found at https://cygwin.com/setup-x86_
64.exe. Be sure to install the latest non-test versions of the following packages:
binutils, gcc-core, gcc-g++, gmp, and make.
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Step 2:
Once installed, open the Cygwin terminal. This will establish a folder in the
directory in cygwin64\home, which we will call ME (i.e., cygwin64\home\ME),
but which may have a different name.

Step 3:
Download 4ti2, version 1.6.7 or higher, which can be found online at [1]. Be
sure to place the file 4ti2-1.6.7.tar.gz into cygwin64\home\ME.

Step 4:
In the Cygwin terminal, extract and compile 4ti2 by typing the following:

cd /home/ME

tar xzf 4ti2-1.6.7.tar.gz

cd 4ti2.1.6.7

./configure --prefix=/home/ME/4ti2

make

make install-exec

This should properly define the zsolve command, which is used throughout our
software package.

Step 5:
Open Mathematica and type $UserBaseDirectory. A possible directory would
resemble
C:\Users\USERNAME\AppData\Roaming\Mathematica.

Step 6:
Install the package math4ti2.m by Ralf Hemmecke and Silviu Radu, which can
be found online at [15]. Be sure to place the file math4ti2.m in the directory
C:\Users\USERNAME\AppData\Roaming\Mathematica \Applications.

Step 7:
We need to modify math4ti2.m so as to recognize the separately installed
zsolve command (see Step 4). Open math4ti2.m, and go to the line
zsolvecmd = "/usr/bin/4ti2-zsolve".
Replace /usr/bin/4ti2-zsolve with the path to zsolve as defined through
Windows. For example,
zsolvecmd = "C:\\cygwin64\\home\\ME\\4ti2\\bin";.

Step 8:
Download the package RaduRK from https://risc.jku.at/research_topic/

computer-algebra-for-combinatorics/ [35].

The notebooks RaduRKexamples.nb and OverpartitionExamples.nb can also
be found at [35].
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