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Abstract

This paper is devoted to techniques for adaptive spline projection via quasi-interpolation, enabling
the efficient approximation of given functions. We employ local least-squares fitting in restricted
hierarchical spline spaces to establish novel projection operators for hierarchical splines of degree
p. This leads to efficient spline projectors that require O(pd) floating point operations and O(1)
evaluations of the given function per degree of freedom, while providing essentially the same
accuracy as global approximation. Our spline projectors are based on a unifying framework for
quasi-interpolation in hierarchical spline spaces. We present a detailed comparison with the scheme
of Speleers and Manni (2016).
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1. Introduction

Geometric modeling relies on the extensive use of spline technology for the description and
manipulation of arbitrary shapes (Farin, 2002). More recently, the introduction of Isogeometric
Analysis (IgA) by Hughes et al. (2005) proved the effectiveness of splines also in the context of
numerical simulation, where it has been noted that this technology leads to a better accuracy per
degree of freedom than classical finite element methods.

The standard approach to multivariate spline functions – both in geometric modeling and iso-
geometric simulation – relies on the use of the tensor-product construction. As a major drawback,
this construction prevents any possibility of employing adaptive (rather than uniform) refinement
strategies. This fact has triggered intense research on adaptive spline refinement, resulting in
a substantial number of publications. These include the rich literature on T-splines that were
introduced by Sederberg et al. (2003) as a generalization of NURBS. The problem of missing
adaptivity is addressed by control grids with T-junctions. Properties such as linear independence
and suitability for IgA were further analyzed by Li et al. (2012). The related approach of polyno-
mial splines over hierarchical T-meshes (PHT-splines) was introduced by Deng et al. (2008) and
has subsequently been employed both in geometric modeling and isogeometric analysis. Another
approach was proposed by Dokken et al. (2013), resulting in the framework of LR-splines.

We focus our attention on the hierarchical spline refinement originally introduced by Forsey
and Bartels (1988). These spline spaces are constructed in terms of a sequence of subdomains
representing different refinement levels, and they can be equipped with the basis of hierarchical B-
splines (HB-splines) that was introduced and analyzed by Kraft (1998). Even though HB-splines
do not form a partition of unity (PoU), several important properties such as linear independence
and approximation power were established in Kraft’s seminal work. In order to restore the PoU
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property, HB-splines were modified via the truncation mechanism described by Giannelli et al.
(2012), resulting in the construction of truncated hierarchical B-splines (THB-splines). Besides
PoU, these splines provide properties such as strong stability (Giannelli et al., 2014), algebraic
completeness under certain assumptions (Mokrǐs et al., 2014), and better conditioning of the
resulting system matrices (Giannelli et al., 2016).

Local and global methods for adaptive spline fitting with hierarchical splines have been an
active topic of research ever since the pioneering work of Forsey and Bartels (1995). In partic-
ular, global fitting methods were investigated by Greiner and Hormann (1997) and subsequently
extended and applied to relevant industrial applications (Kiss et al., 2014).

In this work, we focus on adaptive spline fitting via local schemes for quasi-interpolation (QI).
These schemes enable the efficient approximation of given functions. Quasi-interpolants for tensor-
product splines were extensively analyzed by de Boor and Fix (1973) and Lyche and Schumaker
(1975) and subsequently studied by Sablonnière (2005), while the first extension to hierarchical
splines was presented already in the aforementioned work of Kraft (1998), based on a telescopic
construction.

Lee et al. (2005) were the first that made use of a QI operator to perform multilevel spline
surface reconstruction from scattered data sets. More recently, Speleers and Manni (2016) and
Speleers (2017) showed how to construct efficient QI schemes for THB-splines. These results led
to renewed interest in quasi interpolants and paved the way to different theoretical and practical
results. Bracco et al. (2017, 2018) originally proposed an adaptive scattered data fitting for given
data sets and subsequently extended the results to suitable industrial applications. The QI schemes
found applications to IgA-related issues such as the formulation of reliable error indicators (Buffa
and Giannelli, 2017) and the derivation of efficient quadrature rules (Calabró et al., 2018).

The most advanced QI schemes for hierarchical splines were established in two articles by
Speleers and Manni (2016) and Speleers (2017). The first one introduces THB-spline projectors
that require O(pd) floating point operations and O(pd) evaluations of the given function per
degree of freedom. The authors also note that these projectors are equivalent to Kraft’s HB-spline
projector under certain conditions. The second article (Speleers, 2017) derives QI schemes that
are no spline projectors but require fewer evaluations (only O(1) per degree of freedom) of the
input function, where polynomial reproduction is used to ensure optimal approximation power.

QI schemes with and without the spline projector property were compared in Table 2 of the
article by Speleers and Manni (2016), leading the authors of that paper to conclude that “On
average, the projector Qs performs slightly better than the less complicated quasi-interpolant
Qp”. In addition, spline projectors for hierarchical splines are useful for generating (T)HB-spline
representations of functions that are known to belong to the hierarchical spline space, such as the
Jacobian determinant of domain parameterizations. In principle, these representations could be
derived by employing rules for derivatives and products of splines, but the use of a QI scheme is
more convenient in practice. Clearly, only QI schemes that are spline projectors guarantee the
exact reproduction of these functions.

In this paper, we focus on spline projectors and employ local least-squares fitting in restricted
hierarchical spline spaces to establish novel QI schemes for hierarchical splines of any degree p.
This leads to efficient spline projectors that require O(pd) floating point operations and O(1)
evaluations of the given function per degree of freedom, while providing essentially the same
accuracy as global approximation. Numerical and theoretical results are presented in order to
compare our spline projectors, which are based on a unifying framework for quasi-interpolation
in hierarchical spline spaces, with the scheme of Speleers and Manni (2016). In particular, we
establish spline projector QI schemes that require only O(1) evaluations of the given function per
degree of freedom.

The remainder of the paper is organized as follows. Section 2 recalls some known concepts
related to hierarchical splines and quasi-interpolation operators. In order to prepare the construc-
tion of the fitting-based spline projector, Section 3 presents some results relating to hierarchical
splines on full and restricted domains. Based on these observations, Section 4 describes the con-
struction, providing also a detailed analysis of the corresponding computational complexity. The
resulting adaptive refinement algorithm is discussed in Section 5, along with the derivation of
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Figure 1: Sequence of subdomains and corresponding hierarchical mesh. From left to right: Ω0, Ω1, Ω2 and final
hierarchical mesh

the approximation order of the projector. In Section 6 we describe some experimental tests that
illustrate relevant features of our construction. Finally, Section 7 concludes the paper with some
remarks and a summary of the achieved results.

2. Preliminaries

We recall the construction of hierarchical spline bases and the use of the truncation mechanism.
We also summarize several known results related to quasi-interpolation methods in this context.

2.1. Hierarchical B-splines

In order to define hierarchical B-splines (HB-splines) on a bounded domain Ω0 ⊂ Rd, we
consider d-variate tensor product spline spaces V ` satisfying

V 0 ⊂ V 1 ⊂ · · · ⊂ V N ,

where the upper index ` = 0, . . . , N is called the level. All spline spaces have the same degree p,
and they are defined by d univariate bi-infinite knot sequences 2−`Z at level `, one per coordinate
direction. The spline spaces are spanned by uniform tensor-product B-splines

B` = {β`i , i ∈ Zd}

of degree p possessing maximum smoothness Cp−1. The restrictions of the spline functions in V `

to cells of level `
2−`(Zd + [0, 1]d)

are simply tensor-product polynomials of degree p. While the results presented below can be
extended to a more general setting (such as splines with non-uniform knot vectors), we try to keep
the exposition simple by restricting ourselves to the uniform setting.

In addition, we consider a sequence of subdomains Ω` ⊂ Rd satisfying

Ω0 ⊇ Ω1 ⊇ · · · ⊇ ΩN ,

see Fig. 1. Moreover, it is assumed that Ω̄` is created by forming the union of finitely many square
blocks (which are not required to be mutually disjoint) containing dp+1

2 e cells of level ` − 1 per
coordinate direction. Consequently, the subdomain Ω` is a union of the (set-theoretic, i.e., without
boundaries) supports of a finite number of B-splines β`. Note that this includes the assumption
that Ω0 is the union of square blocks of cells of level −1 .

The level ` cells contained in
Ξ` = Ω` \ Ω`+1

are said to be active. These cells cover Ξ`, since there are no cells that are only partially refined.
The corresponding hierarchical mesh (cf. Fig. 1) is formed by all the active cells of all levels.

Hierarchical B-splines (HB-splines) are based on the selection mechanism devised by Kraft
(1998): A level ` B-spline is selected, i.e., it is included into the hierarchical basis, if its support
is contained in the associated domain but not in the next finer one. We obtain the basis

H = {β`i : i ∈ J`, ` = 0, . . . , N}

3



with the index sets
J` = {i ∈ Zd : suppβ`i ⊆ Ω` ∧ suppβ`i * Ω`+1} (1)

where we set ΩN+1 = ∅ and we consider supports with respect to the domain Ω0 (on which we
approximate the given function). The selected B-splines are denoted as active basis functions.
Any active cell of level ` belongs to the support of at least one function of that level, since Ω` is
assumed to be the union of supports of level ` B-splines.

For future reference we state an assumption that we will need in Theorem 5 (see Section 4.2).

Assumption I (Mesh grading). Only elements of two consecutive levels are present in the support
of any selected basis function β`i . Consequently, the active cells in the support of any selected
basis function
• have level `, or
• have either level ` or level `+ 1.

Hierarchical B-splines form a non-negative basis of the hierarchical spline space

H = span H = {σ ∈ V N : σ|Ω0\Ω`+1 ∈ V `|Ω0\Ω`+1 ∀` = 0, . . . , N}, (2)

but they do not form a partition of the unity. This property can be restored by the truncation
mechanism of Giannelli et al. (2012). We define the single-level truncation operator trunc` : V ` →
V ` as

trunc`(σ) =
∑

i∈Zd\J`
c`iβ

`
i = σ −

∑
i∈J`

c`iβ
`
i if σ =

∑
i∈Zd

c`iβ
`
i , (3)

and the corresponding multi-level version Trunc` : V ` → V N

Trunc`(
∑
i∈Zd

c`iβ
`
i ) = truncN

(
truncN−1

(
. . .
(
trunc`(

∑
i∈Zd

c`iβ
`
i )
)
. . .
))

(4)

Clearly, in order to apply the single level operators to different levels, the output of each operator
has to be represented with respect to the basis of the next level. This can be done easily by the
spline refinement rules, due to the nestedness of the spaces V `.

Truncated hierarchical B-splines (THB-splines) are obtained by applying multi-level truncation
(4) to the basis functions of H,

T = {τ `i = Trunc`+1(β`i ) : i ∈ J`, ` = 0, . . . , N} .

They form another basis, which is a non-negative partition of unity, of the hierarchical spline
space.

In addition, they possess the preservation of coefficients (PoC) property: By definition, any
function σ ∈ H of the hierarchical spline space has local representations

σ|Ω0\Ω`+1 =
∑
i∈Zd

d`iβ
`
i |Ω0\Ω`+1 , ` = 1 . . . , N (5)

on each subdomain Ω0 \ Ω`+1. All coefficients of the representation of σ with respect to the
truncated basis are simply inherited from these representations,

σ =

N∑
`=0

∑
i∈J`

d`iτ
`
i . (6)

In other words, the coefficient of each THB-spline τ `i coincides with the coefficient of its mother
B-spline β`i in the local representation (Giannelli et al., 2014).
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2.2. Quasi-interpolation in hierarchical spline spaces
We consider linear functionals λ`i : C(Rd) → R, the construction of which will be discussed

below. For any index set J ⊆ Zd and level `, these define operators

Q`J(f) =
∑
i∈J

λ`i(f)β`i (7)

that transform a continuous function f into a tensor-product spline. In particular, choosing J = Zd
gives a scheme that generates an approximation in the full tensor-product spline space V `.

Each value λ`i(f) depends on the values of f in a certain subdomain, which is called the support
of the linear functional λ`i . More precisely, we have that

λ`i(f) = 0 if suppλ`i ∩ supp f = ∅,

and suppλ`i is the smallest set with this property. In order to benefit from the PoC property,
linear functionals that satisfy the condition

suppλ`i ⊆ suppβ`i ∩ (Ω` \ Ω`+1) if i ∈ J` (8)

have been considered (Speleers and Manni, 2016). The functionals λ`i are said to define tensor-
product spline projectors if Q`Zdf = f for all f ∈ V `. Given functionals λ`i with this property, two
particular QI schemes for hierarchical splines have been studied:

• Kraft (1998) proposed to use the telescopic construction

K0f = Q0
J0f,

K`f = K`−1f +Q`J`(f −K
`−1f), ` = 1, . . . , N ,

Kf = KNf .

• Speleers and Manni (2016) exploit the PoC property and define their scheme, which we will
call the Speleers-Manni scheme (SMS), in terms of THB-splines,

Sf =

N∑
`=0

∑
i∈J`

λ`i(f)τ `i .

These authors also noted that both schemes are equivalent, i.e., they generate the same1 spline
function Kf = Sf for any given f , provided that the one level QI schemes (7) are spline projectors
with coefficient functionals that fulfill the condition (8). This condition also ensures that both
schemes perform spline projection.

However, both constructions involve the rather strong restriction (8) on the support of the
linear functionals λ`i . Fig. 2 (left) shows the support of a cubic (T)HB-spline whose support is
refined, except for the top left cell. The associated coefficient is determined by the values of the
function in that cell. This cell covers only a small portion of the support of the function, and does
not even contain its maximum. Nevertheless, the two spline projectors evaluate the associated
coefficient solely by examining the value of the given function within that cell.

We employ local fitting (Section 4) based on restricted hierarchical spline spaces (Section 3)
for the construction of spline projectors for the hierarchical space H. These will take the form

Pβf =

N∑
`=0

∑
i∈J`

µ`i(f)β`i and Pτf =

N∑
`=0

∑
i∈J`

ν`i (f)τ `i (9)

with linear functionals µ`i(f) and ν`i (f) for HB- and THB-splines, respectively. For future reference
we note that

ν`i (s) = d`i for s ∈ H (10)

where d`i is the coefficient appearing in the associated local representation (5), according to PoC
(6).

1although represented with respect to THB-splines for S and HB-splines for K
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Figure 2: Left: Support of a cubic HB-spline (entire box) and of a THB-spline (grey) of level 0 on a hierarchy with
two levels, N = 1. The associated coefficient functional is supported on the larger cell (that belongs to Ω0 \ Ω1)

in the top left corner. Right: Hierarchy of 2 levels Ω0 and Ω1, subdomain ∆ = Ω̂0 highlighted in red. We have
Ω̂0 = Ω1, hence Ĵ0 = ∅ and Ĵ1 * J1.

3. Hierarchical splines on restricted domains

We consider the restricted domain, which is a subset ∆ ⊂ Ω0 formed by active cells, i.e., by cells
of the hierarchical mesh. We also associate with ∆ the nested restricted subdomains Ω̂` = ∆∩Ω`,
in particular Ω̂0 = ∆. Analogously to (2), the restricted spline spaces and subdomains define the
restricted hierarchical spline space Ĥ. Note that this space Ĥ is not simply the restriction of the
original one to the restricted domain ∆, see Fig. 2 (right). Still we have the following result:

Lemma 1. The restriction of the hierarchical spline space H to the restricted domain ∆ is a
subspace of the restricted hierarchical spline space Ĥ, i.e., H|∆ ⊆ Ĥ.

Proof. Consider s ∈ H. By definition, it satisfies

s|Ω0\Ω`+1 ∈ V `|Ω0\Ω`+1 ∀` = 0, . . . , N,

see (2). Since

Ω̂0 \ Ω̂`+1 = (∆ ∩ Ω0) \ (∆ ∩ Ω`+1) = ∆ ∩ (Ω0 \ Ω`+1) ⊆ Ω0 \ Ω`+1,

it also satisfies
s|Ω̂0\Ω̂`+1 ∈ V `|Ω̂0\Ω̂`+1 ∀` = 0, . . . , N,

and thus it is an element of the restricted hierarchical spline space Ĥ.

We denote with β̂`i and τ̂ `i the HB- and THB-splines defined by the restricted spline bases with

respect to the restricted subdomains Ω̂`. Their indices form the sets

Ĵ` = {i ∈ Zd : ŝuppβ`i ⊆ Ω̂` ∧ ŝuppβ`i * Ω̂`+1},

which are defined analogously to (1), but based on the hierarchy of nested restricted subdomains
Ω̂` and using the supports (which are denoted by ŝupp) with respect to Ω̂0.

It should be noted that the index sets J` and Ĵ` are generally not nested, i.e., J`+Ĵ` in general.
Thus, the restricted index sets are not simply the restrictions of their un-restricted counterparts,
see Fig. 2 for a counterexample.

Clearly, the HB-splines are identical on ∆, i.e.

β̂`i = β`i |∆, (11)

if i ∈ J` ∩ Ĵ`. This, however, is not valid for THB-splines. Nevertheless, the THB-splines satisfy

τ̂ `i |Ω̂`\Ω̂`+1 = τ `i |Ω̂`\Ω̂`+1 = β`i |Ω̂`\Ω̂`+1

We have the following simple result.
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Lemma 2. A selected B-spline β`i , i ∈ J`, is present in the restricted hierarchical basis, i.e.,

i ∈ Ĵ`, if its support is contained in the restricted domain, suppβ`i ⊆ ∆. This also applies to the
associated truncated hierarchical B-spline.

In addition to the spline projectors introduced in (9), we will need the restricted spline pro-
jectors with respect to restricted domains ∆. The coefficient functionals will be denoted by µ̂`i(f)
and ν̂`i (f) for HB- and THB-splines, respectively.

Given a THB-spline τ `i , i ∈ Ĵ`, we identify a simple sufficient condition2 on the restricted
domain ∆, which guarantees that the coefficients of any hierarchical spline function s ∈ H are
identical.

Proposition 3. Consider the coefficient of a level ` THB-spline τ `j with index j ∈ J`. The original
and restricted THB-spline coefficients are identical,

ν`j (s) = ν̂`j (s|∆) for all s ∈ H,

if the restricted domain ∆ contains the support of the associated HB-spline, i.e., if suppβ`j ⊆ ∆.

Proof. According to Lemma 2, the index j ∈ J` also belongs to Ĵ`, since the support of β`j is
contained in the restricted domain ∆.

Any spline function s ∈ H possesses local representations

s|Ω0\Ω`+1 =
∑
i∈Zd

d`iβ
`
i |Ω0\Ω`+1 , and s|Ω̂0\Ω̂`+1 =

∑
i∈Zd

d̂`i β̂
`
i |Ω̂0\Ω̂`+1 ,

on the “rings” of the original and the restricted hierarchical spline space, respectively. The local
linear independence of the B-splines, combined with (11), implies that the coefficients are identical,

d`i = d̂`i , if the associated basis functions contribute to this representation, i.e., if β̂`i |Ω̂0\Ω̂`+1 6= 0

(which implies β`i |Ω0\Ω`+1 6= 0). In particular, this condition is satisfied for the considered index

j ∈ J`, hence
d`j = d̂`j . (12)

Indeed, the support of the associated basis function satisfies suppβ`j ⊆ ∆ = Ω̂0 according to the

assumption, and supp β̂`j 6⊆ Ω̂`+1 since j ∈ Ĵ`, thus β̂`j |Ω̂0\Ω̂`+1 6= 0. Finally we combine (12) with

the PoC property, see (10), to conclude

ν`j (s) = d`j = d̂`j = ν̂`j (s|∆).

We define the extended support of a HB-spline,

supp?β`j = aabb
(⋃
{suppβki : suppβki ⊃ suppβ`j , i ∈ Jk, k = 1, . . . , `− 1}

)
,

where aabb denotes the axis-aligned bounding box. For future reference we state an assumption
that we will need in Theorem 6 (see Section 4.3).

Assumption II (Strong mesh grading). Only elements of two consecutive levels are present in the
extended support of any selected basis function β`i . Consequently, the active cells in the extended
support of any selected basis function
• have level `, or
• have either level ` or level `− 1, or
• have either level ` or level `+ 1.

2While the detailed investigation of weaker conditions is beyond the scope of the present paper, we note that it
suffices if ∆ contains at least one active cell of level ` that belongs to suppβ`

j , according to PoC.

7



Now we extend the sufficient condition3 stated in the previous proposition to HB-splines.

Proposition 4. Consider a level ` HB-spline β`j with index j ∈ J`. The original and restricted
HB-spline coefficients are identical,

µ`j(s) = µ̂`j(s|∆) for all s ∈ H, (13)

if the restricted domain ∆ contains the extended support of the HB-spline, i.e., if supp? β`j ⊆ ∆.

Proof. According to Lemma 2, the index j ∈ J` also belongs to Ĵ`, since the support of β`j , which
is a subset of the extended support, is contained in the restricted domain ∆. Any given function
s ∈ H possesses two representations on ∆,

s|∆ =

N∑
k=0

∑
i∈Jk

νki (s)τki |∆ and s|∆ =

N∑
k=0

∑
i∈Ĵk

ν̂ki (s|∆)τ̂ki , (14)

with respect to the restrictions of the globally defined THB-splines and with respect to the THB-
splines defined by the restricted spline bases, respectively. The previous result guarantees the
equality νki (s) = ν̂ki (s|∆) of the coefficients whenever the associated B-splines satisfy suppβki ⊆ ∆.

Both versions of the THB-splines admit representations in terms of HB-splines, from which
they are constructed via truncation, see (3). These representations take the form

τki |∆ = βki |∆ −
N∑

k′=k+1

∑
i′∈Jk′

ck,k
′

i,i′ β
k′

i′ |∆ and τ̂ki = β̂ki −
N∑

k′=k+1

∑
i′∈Ĵk′

ĉk,k
′

i,i′ β̂
k′

i′ (15)

with certain truncation coefficients ck,k
′

i,i′ and ĉk,k
′

i,i′ The following observations are in order.

(i) The corresponding truncation coefficients are identical, i.e. ck,k
′

i,i′ = ĉk,k
′

i,i′ , if the support of

the associated HB-spline satisfies suppβki ⊆ ∆.

(ii) The truncation coefficients ck,k
′

i,i′ and ĉk,k
′

i,i′ are non-zero only if the supports satisfy suppβk
′

i′ ⊆
suppβki and supp β̂k

′

i′ ⊆ supp β̂ki , respectively,

Substituting (15) into (14) transforms the THB-spline representation into the HB-spline represen-
tation. After re-arranging the sums we arrive at

s|∆ =

N∑
k=0

∑
i∈Jk

µki (s)βki |∆ and s|∆ =

N∑
k=0

∑
i∈Ĵk

µ̂ki (s|∆)β̂ki .

In particular, the two coefficients considered in (13) evaluate to

µ`j(s) = ν`j (s)−
`−1∑
k=0

∑
i∈J`

ck,`i,j ν
k
i (s)︸ ︷︷ ︸

(?)

and µ̂`j(s|∆) = ν̂`j (s|∆)−
`−1∑
k=0

∑
i∈Ĵ`

ĉk,`i,j ν̂
k
i (s|∆)

︸ ︷︷ ︸
(?)

In both sums, the two coefficients ck,`i,j and ĉk,`i,j are nonzero only if

suppβki ⊇ suppβ`j and supp β̂ki ⊇ supp β̂`j ,

according to (ii). Moreover, under these conditions, the coefficients even take the same values,

ck,`i,j = ĉk,`i,j , since suppβki ⊆ supp?β`j ⊆ ∆, as noted in (i). Finally we note that the latter condition

also ensures that the associated THB-spline coefficients are identical, νki (s) = ν̂ki (s|∆), according
to Proposition 3. These three observations imply that the two double sums (?) take the same value.
We complete the proof by using Proposition 3 once more, which confirms ν`j (s) = ν̂`j (s|∆).

3Again we note that the investigation of necessary and sufficient conditions is beyond the scope of this paper.
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4. Defining spline projectors by local fitting

We recall the local fitting procedure and use it for defining THB- and HB-spline projectors.

4.1. Local fitting

We consider a linearly independent system of functions Φ = {φk : k ∈ K} defined on a given
restricted domain ∆, where K is a finite index set. We assume that the domain is equipped with
nodes (i.e., sampling points) us ∈ ∆ with associated positive weights ws, s ∈ S, where S is another
finite index set.

Discrete least-squares fitting considers the over-constrained linear system Ac = f with

A = (
√
wsφk(us))s∈S,k∈K , c = (ck)k∈K , and f = (

√
wsf(us))s∈S ,

which is solved in the least-squares sense, resulting in c = (ATA)−1AT f . A unique least-squares
solution exists for certain configurations of nodes that are determined by the system Φ. The
resulting function

σ =
∑
s∈S

csφs

minimizes the Euclidean norm of the residual vector ‖(√ws
(
f(us)−σ(us))s∈S‖ among all functions

in span Φ.
Two specific cases will be considered in the next two sections. Clearly, the result depends on

the choice of nodes and weights. If we consider spline functions φk, then the resulting function
is the best approximation with respect to the L2 norm if the quadrature rule defined by nodes
and weights exactly integrates the products φkφk′ and fφk, and it produces an approximation
otherwise.

We focus on two possibilities to define the nodes and weights:

(a) We consider the Gauss points and weights on the restricted mesh. More precisely, we choose
(p + 1)d Gauss points per element, and we scale the Gauss weights by the volume of the
element.

(b) We consider a tensor-product grid of interpolation points, which is unisolvent for the finest
tensor product space that is active on ∆. All the weights are set to 1.

Appendix A describes the smart sampling method, which efficiently generates the points needed
for the second choice (b). It will be shown that the total number of required function evaluations
does not exceed 10d|H|.

4.2. The THB-spline projector

We define the functionals ν`i that generate the coefficients of the THB-spline projector. Given
a fixed level `0 and an index i0 ∈ J`0 , we choose the restricted domain ∆ = suppβ`0i0 and we

consider the THB-splines τ̂ `i defined on it. These functions form the system Φ. Now, given a
function f , we perform local fitting as described in the previous section and assign the value of
the coefficient associated with τ̂ `0i0 to ν`0i0 (f).

For the first choice (a) of nodes, the least-squares solution of the linear system is unique, since
the matrix ATA is simply the mass matrix of the system Φ. The uniqueness is also given for the
second choice (b), since one may consider the inner product defined by the tensor-product grid of
interpolation points instead of the L2 inner product. This procedure defines a spline projector (9)
according to Proposition 3.

We analyze the computational costs per coefficient, focusing on the second choice (b) of nodes:
The restricted domain ∆ consists of at most (p + 1)d cells of level `0. The active cells belong to
the levels `0 and `0 + 1 of the subdomain hierarchy, due to Assumption I about the mesh grading.

The number of possible cases is thus bounded by 2(p+1)d , since cells of level `0 + 1 are created by
refining blocks of cells of level `0.

Figure 3 lists the 44 possible configurations for p = d = 2. The upper bound is rather
pessimistic.

9



Figure 3: Possible configurations of the restricted domain ∆ for p = 2 in the case of THB-splines (up to symmetries).

Assumption I also implies that the grid of nodes can be chosen such that it contains no more
than Cg p

d points, where the constant Cg does not depend on the polynomial degree p. See
Appendix A for more details.

We may assume that all the matrices (ATA)−1AT that may occur have been pre-computed
and stored in a look-up table. In fact, it suffices to store the row vectors that correspond to the
coefficients ν`0i0 (f). In each specific situation, finding the right entry in the table via binary search

requires not more than log 2(p+1)d = O(pd) steps.
In addition, we need to evaluate f at a tensor-product grid of nodes containingO(pd) nodes, and

to compute the inner product with the pre-computed row vector. If smart sampling is employed,
then the total number of function evaluations (which are assumed to take constant time) is O(|H|).

We summarize the results:

Theorem 5. Consider the functionals ν`i defined by local fitting with respect to the restricted
domain suppβ`i , using a unisolvent set of nodes.

(i) The linear operator Pτ is a THB-spline projector.

(ii) When using the second choice of nodes, the evaluation of the spline coefficients requires O(pd)
flops and O(1) function evaluations per degree of freedom if Assumption I is satisfied.

In contrast to this, the first choice (a) leads to higher computational costs, since the values of f
at O(p2d) nodes are used. Even though the first choice should give a better approximation of the
(local) L2 projection, our experiments did not lead us to observe significant differences between
the computational results for the two different choices of the nodes.

In addition to this result, we also obtain a bound

|ν`i0(f)| ≤ Cτ‖f‖∞,supp β`i
(16)

with the constant
Cτ = Cg p

d max
all cases

‖(ATA)−1AT ‖∞

where ‖.‖∞ is the element-wise maximum norm of a matrix. Recall that Cg p
d is an upper bound

on the number of evaluation points.

4.3. The HB-spline projector

Now we define the functionals µ`i that generate the coefficients of the HB-spline projector.
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Given a fixed level `0 and an index i0 ∈ J`, we choose the restricted domain ∆ as the extended
support supp? β`0i0 and we consider the HB-splines β̂`i defined on it. These functions form the
system Φ. Similar to the previous case, we have the two main possibilities (a) and (b) for defining
interpolation nodes and weights.

Now, given a function f , we perform local fitting as described in the previous section and assign
the value of the coefficient associated with β̂`0i0 to µ`0i0 (f). The same arguments as for THB-splines
prove the uniqueness of the solution. This procedure defines a spline projector (9) according to
Proposition 4.

We analyze the computational costs per coefficient, focusing on the second choice of nodes. Any
restricted domain ∆ contains at most two levels, due to Assumption II. We distinguish between
two cases: First, if ∆ = suppβ`0i0 , only cells of levels `0 and `0 + 1 are present. The number

of possible cases does not exceed 2(p+1)d , since there are (p + 1)d cells of level `0. Second, if
∆ 6= suppβ`0i0 , only cells of levels `0 and `0−1 are present. In this situation, the number of cells of

level `0 − 1 does not exceed d 3p+3
2 e

d. Consequently, the number of possible cases does not exceed

2d
3p+3

2 ed .
Again, Assumption II also implies that the grid of nodes can be chosen such that it contains

no more than Cg p
d points, where the constant Cg does not depend on the polynomial degree p.

See Appendix A for more details.
Once more, we may assume that all possible matrices (ATA)−1AT (more precisely, the row

vectors that corresponds to the coefficient µ`0i0 (f)) have been pre-computed and stored in a look-up
table. In each specific situation, finding the right entry in the table via binary search requires
O(pd) steps. In addition, we need to evaluate f at a tensor-product grid containing O(pd) nodes,
and to compute the inner product with the pre-computed row vector.

We summarize the results:

Theorem 6. Consider the functionals µ`i defined by local fitting with respect to the restricted
domain supp? β`i , using a unisolvent set of nodes.

(i) The linear operator Pβ is a HB-spline projector.

(ii) When using the second choice of nodes, the evaluation of the spline coefficients requires O(pd)
flops and O(1) function evaluations per degree of freedom if Assumption II is satisfied.

Similar to the case of THB-splines, we additionally obtain a bound

|µ`i(f)| ≤ Cβ‖f‖∞,supp∗β`i
. (17)

with the constant
Cβ = Cgp

d max
all cases

‖(ATA)−1AT ‖∞.

5. Approximation using adaptive refinement

Given a function f : Ω0 → R, we compute a hierarchical spline approximation as follows:

1. The number of levels is initialized by N = 0.

2. Compute the spline approximation Pγf with respect to one of two bases, i.e., for γ = β and
γ = τ , see (9). The coefficient functions are defined by local fitting, see Section 4.

3. Mark the elements e ∈ E of the hierarchical mesh associated with Pγ that are identified by the
refinement indicator and collect the marked elements, and the elements in the neighborhood
whose size is specified by the extension parameter, in the set E?.

4. Terminate the iteration if E? = ∅. Otherwise create the refined subdomain hierarchy, as
follows:

• Increase N by 1 and initialize ΩN by the empty set.

• Increase the level of each marked element e ∈ E? by one. More precisely, add e to
Ωlevel(e)+1 where level(e) = max{` : e ⊆ Ω`}.
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• Restore the mesh grading by applying a suitable closure operation to the subdomain hi-
erarchy. See Buffa et al. (2016) for a detailed discussion of mesh refinement algorithms.

5. Continue with Step 2.

The refinement is driven by the maximum error. Given a tolerance ε, we mark an element e if

‖f − Pγf‖∞,e ≥ ε, (18)

where either γ = β or γ = τ . In addition, the refinement depends on the extension parameter,
which controls the locality of the refinement process. While the refinement region needs to be
large enough to create sufficiently many new degrees of freedom, it should also remain as local as
possible in order to keep the data volume small. Moreover, it is desirable to avoid the frequent
re-computation of individual coefficients. A more detailed analysis of the choice of the refinement
strategies is beyond the scope of the present paper, see also Kiss et al. (2014).

Given a hierarchical mesh, which is defined by a subdomain hierarchy, we define for each
element e the index sets that contains indices of active basis functions,

J`,eγ = {i ∈ J` : γ`i |e 6= 0}, ` = 0, . . . , N

for the cases of HB-splines (γ = β) and THB-splines (γ = τ). Clearly we have J`,eτ ⊆ J`,eβ . We
use these sets to define the support extension

ext(e) =
⋃

`=0,...,N

i∈J`,eτ

suppβ`i ,

and the extended support extension

ext?(e) =
⋃

`=0,...,N

i∈J`,eβ

supp? β`i .

Again we get e ⊆ ext(e) ⊆ ext?(e). After these preparations we can now state our result concerning
the approximation order, which is based on the fact that spline projectors reproduce polynomials:

Theorem 7. Given a function f ∈ Cp+1(Ω), the element-wise maximum error can be estimated
by

‖f − Pγf‖∞,e ≤ Cdiam(e)p+1 max
|α|=p+1

‖Dαf‖∞,ext[?](e) (19)

where either γ = β for HB-splines or γ = τ for THB-splines, where the maximum norm on
the right-hand side considers the restriction to the extended support extension ext?(e) or to the
(standard) support extension ext(e), respectively.

Proof. Denoting by Tef the Taylor polynomial of degree p of f at the center of e, the triangle
inequality gives

‖f − Pγf‖∞,e ≤ ‖f − Tef‖∞,e + ‖Pγ(f − Tef)‖∞,e
since Pγ reproduces polynomials of degree p. A bound for the first term is obtained by the standard
error estimate for Taylor expansions,

‖f − Tef‖∞,e ≤ Cp diam(e)p+1 max
|α|=p+1

‖Dαf‖∞,e

where the constant is independent of f .
We now analyze the second term in the case of THB-splines, obtaining

‖Pτ (f − Tef)‖∞,e = ‖
N∑
`=0

∑
i∈J`

ν`i (f − Tef)τ `i ‖∞,e ≤ max
`=0,...,n

max
i∈J`,eτ

|ν`i (f − Tef)|

12



since the THB-splines form a convex partition of unity. Using (16) and again the standard estimate
for Taylor series gives

|ν`i (f − Tef)| ≤ Cτ‖f − Tef‖∞,ext(e) ≤ CτCpdiam(ext(e))p+1 max
|α|=p+1

‖Dαf‖∞,ext(e)

According to Assumption I (mesh grading), the support extension satisfies

diam(ext(e)) ≤ (4p+ 2)diam(e).

Combining this observation with the previous four inequalities confirms (19) for THB-splines with

C = Cp(1 + (4p+ 2)p+1Cτ ).

The case of HB-splines can be dealt with similarly: Analyzing the second term gives

‖Pβ(f − Tef)‖∞,e = ‖
N∑
`=0

∑
i∈J`

µ`i(f − Tef)β`i ‖∞,e ≤ 2 max
`=0,...,n

max
i∈J`,eτ

|µ`i(f − Tef)|

since B-splines of no more than two levels are present in each cell (according to the mesh grading
assumptions) and the B-splines within each level form a convex partition of unity. Using (17) and
the standard result for Taylor series gives

|µ`i(f − Tef)| ≤ Cβ‖f − Tef‖∞,ext?(e) ≤ CβCpdiam(ext?(e))p+1 max
|α|=p+1

‖Dαf‖∞,ext?(e)

According to the Assumption II (strong mesh grading), the extended support extension satisfies

diam(ext?(e)) ≤ (4p+ 2)diam(e).

Combining this observation with the previous four inequalities confirms (19) with

C = Cp(1 + 2(4p+ 2)p+1Cβ).

6. Experimental results

We perform several numerical experiments to validate and underline some relevant features of
our approach. The entire implementation has been carried out in C++ with the use of the G+Smo
library (Mantzaflaris et al., 2019).

Example 1. We perform adaptive approximation of the function

f(x, y) = 1− tanh

(√
x2 + y2 − 0.3

0.05
√

2

)
, (x, y) ∈ [−1, 1]2,

which was taken from the work of Hennig et al. (2018). The approximation obtained with our
scheme is compared with the global fitting strategy described by Kiss et al. (2014), and with
uniform refinement. The value of the extension parameter (see Step 3) is set to p. The algorithms
terminate if the maximum error is below a certain threshold (in this example ε = 1e-4).

Table 1 summarizes the obtained results. The results obtained by global fitting and by local
fitting-based quasi-interpolation with HB and THB-splines are quite similar (We even obtain the
same meshes and virtually the same maximum error, except for depth 5). In fact, a slightly smaller
number of degrees of freedom suffices to reach the desired accuracy via quasi-interpolation. As to
be expected, many more degrees of freedom are needed to achieve the same accuracy when using
uniformly refined tensor-product (TP) splines. The convergence rates are depicted in Fig. 4.
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Quasi interpolation Global fitting

p depth DoF error (HB) error (THB) DoF (THB) error (HB & THB) DoF (TP) error (TP)

2

1 324 1.684e-1 1.684e-1 324 1.243e-1 324 1.243e-1
2 1012 2.213e-2 2.213e-2 1128 1.811e-2 1156 1.811e-2
3 2076 2.016e-3 2.016e-3 2512 1.545e-3 4356 1.545e-3
4 4648 1.688e-4 1.688e-4 4948 1.485e-4 16900 1.485e-4
5 7248 9.103e-5 9.103e-5 7420 7.227e-5 66564 1.903e-5

3

1 361 1.343e-1 1.343e-1 361 9.676e-2 361 9.676e-2
2 1225 1.491e-2 1.491e-2 1225 1.142e-3 1225 1.142e-2
3 2593 5.780e-4 5.780e-4 2977 3.526e-4 4489 3.527e-4
4 4753 5.019e-5 2.845e-5 4921 3.913e-5 17161 1.972e-5

Table 1: Example 1 – Maximum errors and degrees of freedom for approximation via quasi interpolation or global
fitting with HB-splines, THB-splines and tensor-product (TP) splines.
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Figure 4: Example 1 – Convergence rates for p = 2 (left) and p = 3 (right)

HB THB
p depth DoF error DoF error

2

1 324 1.684e-1 324 1.684e-1
2 760 2.213e-2 760 2.213e-2
3 1580 2.016e-3 1580 2.016e-3
4 3672 1.688e-4 3696 1.688e-4
5 5360 8.933e-5 5384 8.933e-5

Table 2: Example 1 – Results for biquadratic HB- and
THB-splines with extension parameter 1

Figure 5: Error distribution for the HB- (left) and
THB-spline (right) approximations for depth 5, cf. Ta-
ble 2

While we got identical meshes for HB- and THB-splines in this experiment, this is not always
the case. Table 2 reports the result for biquadratic splines using the extension parameter 1, where
the generated hierarchical meshes and the associated numbers of degrees of freedom for HB- and
THB-splines are slightly different. Even though the maximum errors are again identical, the
distribution of the error (shown in Fig. 5) is not.

Example 2. We approximate the function

f(x, y) =
1

9
(tanh(9y − 9x) + 1) +

1

1.5 exp((10x− 6)2 + (10y + 7)2)
, (x, y) ∈ [−1, 1]2

that has been considered by Bracco et al. (2018), using adaptive spline refinement. We set again
ε = 1e-4. Here we exploit the observation that many of the coefficients have been computed during
previous steps of the iterative refinement process. This is in contrast with global approximation
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strategies that require the solution of one large linear system per iteration. Table 3 shows the
error and the number of computed coefficients per iteration. It is worth noting than even though
the use of HB-splines leads to a larger restricted domain ∆ associated with each basis function,
this does not have much impact on the locality of the approach. (Again, the refinement processes
creates the same meshes for HB- and THB-splines, and also the values of the error are virtually
identical in almost all cases.)

Quasi interpolation Computed coeffs.

p depth DoF error (HB) error (THB) HB THB

2

1 324 1.185e-1 1.185e-1 324 324
2 1044 2.088e-2 2.088e-2 1016 1016
3 2678 1.421e-3 1.421e-3 2408 2384
4 3376 1.245e-4 1.245e-4 1064 1030
5 3785 9.688e-5 9.688e-5 616 616

3

1 361 1.660e-1 1.660e-1 361 361
2 1150 1.081e-2 1.081e-2 1135 1135
3 3040 2.220e-4 2.220e-4 2826 2793
4 3421 4.408e-5 2.781e-5 617 617

Table 3: Example 2 – Maximum errors and computed coefficients

Example 3. We explore the impact of Assumptions I and II, and of the extension parameter.
The latter parameter controls the size of the neighborhood of a marked element that is subject to
refinement, see Step 3 of the algorithm in Section 5. We perform adaptive approximation of the
function

f(x, y) =
1

5 exp((10x)4 + (10y)4)

with Ω = [−1, 1]2 and ε = 1e-4. We use either HB- or THB-splines and vary the degree and the
extension parameter. We compare the average size of the linear systems.

Three observations are in order. First, the use of mesh grading leads to a smaller average size
of the linear systems. According to the theory, Assumptions I and II ensure that the size varies
between (p + 2)d and (2p + 3)d for THB-splines, and between (p + 2)d and (p + 2b 3p+3

2 c)
d for

HB-splines. In practice, the average size is far less than the upper bound. Second, increasing the
extension parameter has a similar effect as mesh grading. Third, the linear systems for HB-splines
have a larger size.

THB-splines HB-splines
without grading with grading without grading with grading

p ext. #lin. syst. avg. size #lin. syst. avg. size #lin. syst. avg. size #lin. syst. avg. size

2
1 5244 27.272 5520 26.962 5244 45.682 5520 39.342

2 6888 26.802 6960 26.762 6888 38.162 6960 37.722

3
1 3160 52.732 3412 51.882 3160 103.512 3412 82.642

2 4024 52.672 4228 52.352 4024 89.392 4228 82.442

3 5320 50.952 5344 50.942 5320 79.382 5344 78.702

4

1 3976 94.332 5412 82.642 4672 347.012 5864 125.002

2 4608 89.352 5740 82.922 4608 192.622 5740 128.972

3 6264 83.482 6620 80.932 6264 144.802 6620 116.222

4 7128 82.692 7324 81.252 7128 130.392 7324 115.272

Table 4: Example 3 – Number and average size of the linear systems during the refinement process

We compare our QI scheme with SMS (Speleers and Manni, 2016), which was constructed in
terms of THB-splines. In order to do so, we apply our scheme to two given functions, both defined
in [−1, 1]2, that were considered in that paper, adopting the same setting. More precisely,
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Figure 6: Comparison of the maximum error for the Examples 4 (left) and 5 (right) with manually created meshes
and errors with respect to a fixed grid (top row) and for meshes created by automatic refinement (bottom row).

• we adopt manually created sequences of refined meshes (see Fig. 3 of Speleers and Manni,
2016), and

• we evaluate the maximum error on a fixed regular grid of 150× 150 points.

In addition, we also compare the results created by the automatic mesh refinement algorithm.

Example 4. The first function is

f(x, y) =
tanh(9y − 9x) + 1

9

Figure 6 (left column) compares the approximations obtained by the two schemes. Our method
results in a slightly better or comparable accuracy in almost all the cases4. Note that the finest
grid (level 6), when considered on the entire domain, consists of 128 × 128 points. Using only
150× 150 points for error estimation may not suffice. The higher accuracy of our method is also
present for meshes created by automatic refinement. We used ε = 1e− 5 for p = 2 and ε = 1e− 6
for p ≥ 3.

Example 5. The same setting as in the previous example is applied to the function

f(x, y) = 2

3 exp
(√

(10x−3)2+(10y−3)2
) + 2

3 exp
(√

(10x+3)2+(10y+3)2
) + 2

3 exp
(√

(10x)2+(10y)2
)

The obtained results are shown in the right column of Figure 6. Also in this case, our method
reveals a slightly better accuracy in almost all cases. For the manually created meshes (top row),

4Speleers (2017) applies his QI schemes (which reproduce polynomials but not splines) to this function also.
While the (manually created) sequence of refined meshes is slightly different in that paper, the results still indicate
that sacrificing the spline projector property leads to a slight increase of the error, while the rate of convergence
remains the same.
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the grid of points used to estimate the error might lead to inaccurate results. We used ε = 1e− 2
for the automatic mesh refinement algorithm (bottom row).

Example 6. Finally, we present an example that reveals another significant advantage of out
method. We fit the function from Example 3

f(x, y) =
1

5 exp((10x)4 + (10y)4)

on Ω = [−1, 1]2 using automatic refinement with threshold ε = 1e-4. Figure 7 shows the errors
and the DoFs obtained with the two schemes (our scheme and SMS) using THB-splines of degree
3. SMS leads to non–symmetric meshes, even though the function is symmetric, see Fig. 8. This
is due to the choice of performing quasi-interpolation via interpolation in only one of cells that
form the support of the selected basis function, in agreement with (8).
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Figure 7: Maximum error obtained by adaptive refine-
ment using our QI scheme and SMS for p = 3.

Figure 8: Meshes obtained at the finest level, see Fig-
ure 7, using our QI scheme (left) and SMS (right) for
p = 3.

Example 7. Finally we present a simple one-dimensional example that illustrates the differences
between our scheme for THB-splines and SMS. We use both schemes to approximate y = |x| by
quadratic hierarchical splines on [-1,1] defined on two levels with knot spans of length 1/8 and
1/16, where refinement took place on the interval [−1/8, 1/8], see Fig. 9. SMS (blue) preserves
the original approximation outside of the refined domain, whereas our scheme recomputes the
coefficients of all functions in the support extension of the refined domain. In the first case, the
error is more concentrated and larger, while it is more spread out and thus lower for the second
method.
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Figure 9: Approximation (left) and comparison of the error (right)
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Remark. Finally we compare the computational costs of our spline projector for THB-splines
with SMS:

• First we analyze the number of required sample points. We give a rather conservative (but
degree-independent) upper bound (10d) for the number of such points per degree of freedom
in Proposition 9. In practice, the ratio is closer to the lower bound of 2d, which is realized
when considering uniform meshes (N = 0), see Fig. 10. As noted by Speleers (2017) for
d = 2, SMS requires “on average pd” (and not more than (p + 1)d) samples per degree of
freedom.

• Both schemes generate the THB-spline coefficients by evaluating linear combinations of
samples values with predefined weights, and the number of floating point operations (flops)
amounts to twice the number of sample points. Our method requires 2(4(p+ 1) + 1)d flops
per coefficient, thus approximately 4d times as many as SMS, which needs 2(p + 1)d flops
per coefficient. Clearly, the evaluation of the THB-spline coefficients is ideally suited for
parallel computing. Without using pre-computed inverse matrices, the computational costs
would amount to O(p3d) flops per degree of freedom for both methods, again with a smaller
constant for SMS and with the option of parallelizing the computations.

7. Conclusion

We proposed a novel QI scheme based on a local least-squares fitting. This defines two new
spline projectors, one each for HB- and for THB-splines, which are formulated within a unifying
framework. Moreover, we provided a detailed analysis of the computational complexity, which
showed that the costs are comparable to Kraft (1998) for HB-splines and Speleers and Manni (2016)
for THB-splines. We also analyzed the required number of sampled function values, showing that
O(1) evaluations are sufficient to obtain spline projectors. Naturally, the computational costs grow
with the degree p and with the dimension d, thereby imposing limitations on the applicability of the
method, which can, however, be addressed to some extent via parallel computing. The theoretical
results ensure the efficiency of the proposed scheme and provides meaningful indications on how to
apply it effectively. The approximation properties of the projector were analyzed, and an adaptive
refinement strategy was presented. The interdependence between the theoretical results achieved
in the paper is summarized in Fig. 11. Numerical experiments were performed, showing that one
obtains an accuracy comparable to the one of global approximation techniques.

Furthermore, a comparison with the QI scheme proposed by Speleers and Manni (2016) was
carried out. Our construction
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• is based on a unifying framework for HB- and THB-splines, while SMS is limited to THB-
splines,

• guarantees the spline projector property with O(1) evaluations per degree of freedom,

• was shown experimentally to preserve certain symmetries of the given function better than
SMS, and

• seems to give slightly lower errors in almost all computational experiments that we per-
formed.

While it was possible to maintain overall the computational complexity, these advantages come
at the price of higher computational costs, i.e., of a larger constant in the complexity estimate.
Additionally, more computer memory is needed to store the look-up table that is used to generate
the spline coefficients.

Future work will be devoted to the extension of the proposed approximation scheme to scattered
data sets, both concerning the theory and the algorithmic aspects. In fact, local approximation
strategies facilitate the use of parallel computing approaches. This might be further addressed to
increase the efficiency of the current implementation. Future work may also include the extension
to non-uniform meshes, where the use of pre-computed look-up tables is not possible. Finally,
the application of the proposed scheme to IgA related problems, such as matrix assembly for
hierarchical splines will be addressed, extending the results of Pan et al. (2019).
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Figure 11: Dependencies between the assumptions and
results in this paper

Figure 12: Left: Full set of candidate sample points.
Right: grid of sample points on a restricted domain ∆
(grey) for p = 1.
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Appendix A. Smart sampling

Any restricted domain ∆ contains active cells of at most two levels, and it can be covered by
(active and in-active) cells of the finer one among these two levels. We construct the grid on ∆ by
splitting each of these covering cells into 2d cells via dyadic subdivision and placing the grid points
at the cells’ vertices. Consequently, all the grid points are vertices of the mesh that is created
by subdividing each active cell into 4d cells via 4-adic subdivision. These vertices form the set of
candidate sample points, see Fig. 12.

Proposition 8. For the restricted domains ∆ considered in Section 4.2 and 4.3, the grid contains
O(pd) nodes and is unisolvent for the restricted hierarchical spline space Ĥ.
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Proof. Any restricted domain ∆ consist of O(pd) cells of the finer level and we sample at most 3d

nodes per cell. The unisolvency is guaranteed since these grids are unisolvent for the full space
of tensor-product splines defined on the finer grid, and the restricted hierarchical spline space is a
subspace thereof. The unisolvency for tensor-product splines follows from the Schoenberg-Whitney
conditions and the fact that the ∆ consists of at least (p+ 1)d cells of the finer level.

Proposition 9. The total number of grid points (and hence the number of required function
evaluations) does not exceed 10d|H|.

Proof. First we note that the total number of grid points is bounded by 5dnac, where nac denotes
the number of active cells. Second, we consider all pairs of (T)HB-splines and active cells, where the
cells are contained in the support of the (T)HB-spline. The number of such pairs is bounded from
below by (p + 1)dnac, since the (T)HB-splines span the full space of tensor-product polynomials
on each active cell. It is also bounded from above by 2d(p + 1)d|H|, according to Assumption I.
Consequently, nac ≤ 2d|H| and the result follows.

Finally we note that this counting – which is based on set of candidate sample points – leads
to an over-estimation of the required number of evaluations. Indeed, it suffices to perform 4-adic
subdivision only for active cells that are “close” to the cells of next finer level. More precisely, in
order to generate the sample points for THB-splines,

• the active cells within the offset region5 of the subdomain Ω`+1 formed by p layers of cells
of level ` need to be subdivided into 4d cells via 4-adic subdivision,

• it suffices to subdivide all other cells into 2d cells only, via binary subdivision.

The vertices of the refined mesh form the set of sample points. A similar observation applies to
HB-splines.
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