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HOOK TYPE TABLEAUX AND PARTITION IDENTITIES

KOUSTAV BANERJEE AND MANOSIJ GHOSH DASTIDAR

Abstract. In this paper we exhibit the box-stacking principle (BSP) in conjunction with

Young diagrams to prove generalizations of the Stanley’s and Elder’s theorem without the

use of partition statistics in general. We explain how the principle can be used to prove

another interesting theorem on partitions with parts separated by parity, a special case of

which is George Andrews’s result in [2].

Mathematics Subject Classifications. 05A19, 11P84, 11P81.

Keywords. Hook type, Partitions, Parity of parts, Young Tableaux.

1. Introduction

The field of hypergeometric series and partitions have been closely connected ever since

Euler’s primarily work on the subject. Since then it became a standard method to use re-

sults in q-series in order to aid the proofs of numerous partition identities. However, in some

cases, as for the box-stacking principle (BSP) demonstrated subsequently, we will see how

one can prove a host of partition identities in an elementary and elegant manner, find newer

identities and also prove a infinite series identity by purely discrete geometrical construction

and combinatorial arguments.

2. Preliminaries

Partitions. A partition of n ≥ 0 is a non-increasing sequence λ = (λ1, λ2, ...., λl) of

positive integers whose sum is n. We express this by writing λ ` n. Here l = l(λ) is the

number of parts in λ and n = |λ| is the sum of parts of λ.

The partition function p(n) is the number of partitions of n and P (n) is the set of all partitions

of n. For example, p(4) = 5 as we can write 4 into 5 ways explicitly into 4, 3 + 1, 2 + 2,

2 + 1 + 1, 1 + 1 + 1 + 1.

The empty partition () is the unique partition of 0; i.e., p(0) = 1.

Due to Euler, we have the following generating function for partitions of n,

∞∑
n=0

p(n)qn =
∞∏
n=1

1

1− qn
.

1
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Conjugate of a Partition. If λ = (λ1, λ2, ...., λl) ` n, we may define a new partition

λ
′

= (λ
′
1, λ

′
2, ...., λ

′
m) ` n (where m is the largest part of λ) by choosing λ

′
i as the number of

parts of λ that are ≥ i. The partition of λ
′

is called the conjugate of λ.

Notice that the graphical representation of the conjugate is obtained by reflecting the

diagram in the main diagonal.

For example, if λ = (6, 3, 3, 2, 1), then conjugate of λ is λ
′

= (5, 4, 3, 1, 1, 1).

Color Partitions. For a positive integer l ≥ 2 we define the l-color partitions of n as

follows:

P (l)(n) is the set of all partitions of n where multiples of l can occur with 2 colors and

P (l)(0) := {()}; moreover, p(l)(n) := #P (l)(n).

For example, for l = 3 and n = 4, p(3)(4) = 7 as we can express 4 into 41, 31 + 11, 32 + 11,

21 + 21, 21 + 11 + 11, 11 + 11 + 11 + 11. Note that those parts in the color partitions of 4

which are not multiples of 3 are indexed by 1 which is interpreted by having white color;

whereas parts being multiples of 3 are indexed by both 1 and 2, where 2 is interpreted by

having green color. The generating function of p(l)(n) is

∞∑
n=0

p(l)(n)qn =
∞∏
j=1

1

(1− qj)(1− qlj)
.

For l = 2, p(l)(n) is a(n), the number of cubic partitions [5], which enjoy many arithmetic

properties analogous to the classical partition function.

Young Diagrams. To each partition λ ` n we associate Yλ, the celebrated graphical

representation called the Young diagram of λ. In this context, we prefer the representation

to be ‘upside down’ (sometimes called as ‘right side up’). For λ = (8, 6, 6, 5, 1) ` 26, Yλ is

given by

Figure 1

In the same fashion, for λ = (52, 61, 102, 151) ∈ P (5)(36), the associated colored Young

diagram Yλ is;
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Figure 2

Hook Length Tableaux and Hook Type Tableaux. For each box v in Yλ, define the

hook length of v, denoted by hv(λ), to be the number of boxes u such that u = v or u lies

in the same column as v and above v or in the same row as v and to the right of v. The

hook length multiset of λ, denoted by Hλ, is the multiset of all hook lengths of λ. Each hook

length h can be split into h = a + l + 1, where a is the arm length (the no. of boxes to the

right in the same row) and l the leg length (the no. of boxes on above in the same column).

The ordered pair (a, l) is called hook type of the chosen box in the Young tableau.

The boxes will be colored in accordance with the partition given (cf. Figure 2). E.g., for

λ = (6, 3, 3, 2) ` 14, the hook length multisetHλ = {2, 1, 4, 3, 1, 5, 4, 2, 9, 8, 6, 3, 2, 1} according

to

2 1
4 3 1
5 4 2
9 8 6 3 2 1

Figure 3

For the hook type (of the boxes) of Yλ for λ = (6, 3, 3, 2) ` 14 we have,

(1, 0) (0, 0)

(2, 1) (1, 1) (0, 0)

(2, 2) (1, 2) (0, 1)

(5, 3) (4, 3) (3, 2) (2, 0) (1, 0) (0, 0)

Figure 4

In color perspective, λ = (61, 62, 71, 121) ∈ P (6)(31) possesses the following hook length

tableau,
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6 5 4 3 2 1

7 6 5 4 3 2

9 8 7 6 5 4 1

15 14 13 12 11 10 7 5 4 3 2 1

Figure 5

The hook type tableau of λ is

(5, 0) (4, 0) (3, 0) (2, 0) (1, 0) (0, 0)

(5, 1) (4, 1) (3, 1) (2, 1) (1, 1) (0, 1)

(6, 2) (5, 2) (4, 2) (3, 2) (2, 2) (1, 2) (0, 0)

(11, 3)(10, 3)(9, 3) (8, 3) (7, 3) (6, 3) (5, 1) (4, 0) (3, 0) (2, 0) (1, 0) (0, 0)

Figure 6

Notation. Basic notations used: for n, k and l ≥ 2 positive integers,

Qk(n) := Number of occurences of part k in P (n).

Vk(n) := The number of parts occurring k or more times in the partitions of n.

S(n) :=
∑

λ`n dist(λ), where dist(λ) denotes the number of distinct parts in λ.

Q
(l)
k (n) := Number of occurences of parts k1 and k2 in P (l)(n) when k is a multiple of l;

otherwise the number of occurences of the part k1 in P (l)(n).

In short we will say, Q
(l)
k (n) is the number of occurences of part k.

Theorem 1 (Bessenrodt [3], Bacher - Manivel [4]): Let 1 ≤ k ≤ n be two integers.

Then, for every positive j < k, the total number of occurrences of the part k among all

partitions of n (= Qk(n)) is equal to the number of boxes whose hook type is (j, k − j − 1).

For k = 1, j has to be 0, but for k > 1 without loss of generality, one can choose particularly

j = k − 1. This is because the total number of occurences of the part k among all partitions

of n does not depend on j according to Theorem 1, and so for any two j1, j2 > 0, and j1 6= j2,

the number of boxes whose hook type is (j1, k − j1 − 1) and (j2, k − j2 − 1), respectively,

and both of them exactly enumerate the total number of occurences of the part k among all

partitions of n.

For n = 5, k = 3, Q3(5) = 2 (3 + 2, 3 + 1 + 1) and the number of boxes with hook type (2, 0)

in the corresponding Young tableau is also 2:
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(4, 0) (3, 0) (2, 0) (1, 0) (0, 0)
,

(0, 0)

(3, 1) (2, 0) (1, 0) (0, 0)

Figure 7

3. Partition Identities and Proofs

In this section we exploit the Theorem 1 in a pointwise sense so as to provide proofs of

Stanley’s theorem and subsequently Elder’s theorem.

Stanley’s Theorem [7]. The total number of 1’s in all partitions of a positive integer n

is equal to the sum of the numbers of distinct parts of those partitions of n. In our notation,

S(n) = Q1(n).

For n = 4,

P (4)

λ ` 4 no. of 1’s in λ no. of distinct parts in λ

4 0 1

3 + 1 1 2

2 + 2 0 1

2 + 1 + 1 2 2

1 + 1 + 1 + 1 4 1

Total Q1(4) = 7 S(4) = 7

Figure 8

Proof. It is enough to show that number of distinct parts of a partition λ ` n is equal

to the number of boxes in Yλ with hook-type (0, 0). From the definition of hook-type of

a box in Young tableau Yλ, it is clear that the number of boxes with hook-type (0, 0) is

same as the number of boxes in Yλ with no boxes on the right and above of the chosen

box in the tableau. Let λ = (λ1, λ2, . . . , λr) ` n and suppose λa1 , λa2 , . . . , λak are all the

distinct parts of λ with respective occurences m1,m2, . . . ,mk where 1 ≤ ai ≤ r and ai ∈ N
for all 1 ≤ i ≤ k. Without loss of generality assume λa1 > λa2 > · · · > λak . Obviously,

n = λa1 + · · ·+ λa1 + λa2 + · · ·+ λa2 + · · ·+ λak + · · ·+ λak . Note that, the boxes with hook-

type (0, 0) appear exactly once in Yλ corresponding to the part λam subject to the condition

that the immediate next part λan with m 6= n. Explicitly, if we look at the right most box for

the part λam in Yλ, can observe that there is no box above or right to it in the representation

of Yλ. For the immediate next part of λam is λan ; i.e., the total number of boxes in the row

(correspond to λan) are at least one less than that of λam in Yλ. Therefore, it is clear that

the number of boxes with hook-type (0, 0) equals the number of distinct parts of λ. Now,

summing over all λ ` n we get the Stanley’s theorem.
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For example, for n = 4,

P (4)

λ ` 4 no. of boxes in Yλ with hook-type (0, 0) no. of distinct parts in λ

4 1 1

3 + 1 2 2

2 + 2 1 1

2 + 1 + 1 2 2

1 + 1 + 1 + 1 1 1

Total 7 S(4) = 7

Figure 9

Elder’s Theorem [7]. The total number of occurences of an integer k among all partitions

of n is equal to the number of occasions that a part occurs greater or equal k times in P (n);

i.e., Qk(n) = Vk(n).

For n = 5 and k = 2,

P (5)

λ ` 5 no. of 2’s in λ no. of parts occurring ≥ 2 times in λ

5 0 0

4 + 1 0 0

3 + 2 1 0

3 + 1 + 1 0 1

2 + 2 + 1 2 1

2 + 1 + 1 + 1 1 1

1+1+1+1+1 0 1

Total Q2(5) = 4 V2(5) = 4

Figure 10

Proof. We need only to show that the number of boxes with hook type (k − 1, 0), k > 1,

in a partition λ ` n is equal to the number of parts that occur k or more times in λ. Now,

a box with hook-type (k − 1, 0) in Yλ with λ = (λ1, λ2, . . . , λr) ` n precisely describes that

there are k−1 boxes on the right to it but having no box above. When transforming λ to it’s

conjugate λ
′

it is clear that after conjugation, the box with hook-type (k − 1, 0) transforms

into the box with hook-type (0, k − 1). This shows that there are total at least k verticals

stacks of boxes (including the box itself); i.e., there exists a part that occurs at least k times

in that conjugate partition. Therefore, corresponding to each box with hook-type (k − 1, 0)

there exists a part that occurs at least k times. Now, summing over all partitions of n we

have Elder’s statement since counting over λ is same as the counting over the conjugate λ
′
.

For n = 5 and k = 2,
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P (5)

λ ` 5 no. of boxes with hook-

type (1, 0)

λ
′ ` 5 no. of parts occurring ≥ 2

times in λ
′

5 1 1+1+1+1+1 1

4 + 1 1 2 + 1 + 1 + 1 1

3 + 2 1 2 + 2 + 1 1

3 + 1 + 1 1 3 + 1 + 1 1

2 + 2 + 1 0 3 + 2 0

2 + 1 + 1 + 1 0 4 + 1 0

1+1+1+1+1 0 5 0

Total 4 Total V2(5) = 4

Figure 11

4. Box Stacking Principle

In this subsection, we shall introduce a specific type of combinatorial construction which

we call the “Box Stacking Principle”(BSP).

The BSP consists of a set of rules to produce from all partitions of n a new set of partitions

of n+k where k is a positive integer. Given a partition λ ` n, the new partitions are produced

by adding k boxes as follows:

1. For k = 1: We add one box to all permissible places in Yλ. One can trivially add one box

in two ways: (i) Add to the bottom row of Yλ. (ii) Stack the box on the above of the top

row of Yλ. Also, one can add one box to a row in Yλ if and only if the difference between

the number of boxes in the chosen row and its immediate next is at least 1. In other words,

for λ := (λ1, . . . , λr) ` n, following rule (i) the trivial addition of one box corresponds to

µ := ((λ1 + 1), . . . , λr) ` n + 1 whereas by rule (ii) we have µ := (λ1, . . . , λr, 1) ` n + 1.

Nontrivial addition of one box can be done if and only if for any two consecutive part say, λi

and λj (λi ≥ λj), we have λi − λj ≥ 1.

For example, to all partitions of 4 and applying the stacking principle for adding one box

to the Young diagram gives:

I. λ = 4 :

+ =

=
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II. λ = 3 + 1 :

+ =

=

=

III. λ = 2 + 2 :

+ =

=

IV. λ = 2 + 1 + 1 :

+ =

=

=

V. λ = 1 + 1 + 1 + 1 :

+ =
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=

Figure 12

2. k > 1: Here we consider the addition of k boxes as a ‘packet of k boxes’, instead of

adding ‘k single boxes’. Again one can trivially add a ‘packet of k boxes’ to the bottom row

of Yλ with λ := (λ1, . . . , λr). In this context, by adding ‘packet of k boxes’, we mean that

adding k to λ1 so that the resulting partition µ := ((λ1+k), . . . , λr) ` n+k. Now a nontrivial

addition of a packet of k boxes to Yλ can be done if and only if for any two consecutive part

say, λi and λj (λi ≥ λj), we have λi − λj ≥ k. We do not consider the addition of ‘k single

boxes’ which means that we do not allow the cases µ1 := (λ1, . . . , λr, 1, . . . , 1) ` n + k and

µ2 := (λ1, . . . , (λj1 + 1), . . . , (λj2 + 1), . . . , , (λjk + 1), . . . , λr) ` n+ k.

This specific example will show what we do not allow. For stacking of k = 2 boxes with

λ = (3, 1) ` 4, the following situations will be regarded as violating our rules:

+ =

=

=

Figure 13

The correct addition of ‘packet of 2 boxes’ following BSP gives:

+ =

=

Figure 14
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4.1. Extension of Partition Identities in Recursive Format: This section prepares

for our generalization of Stanley’s and Elder’s theorem. To this end we exploit a recursive

argument due to Dastidar and Sengupta [6]. We will provide an alternative proof of their

observations using the BSP.

Theorem 2 (Dastidar, Sengupta [6]): For positive integers n and k,

S(n) = Qk(n) +Qk(n+ 1) +Qk(n+ 2) + · · ·+Qk(n+ k − 1) =
k−1∑
j=0

Qk(n+ j).

For example, for n = 5 and k = 3; we have S(5) = 12, Q3(5) = 2, Q3(6) = 4, Q3(7) = 6.

So, S(5) = Q3(5) +Q3(5 + 1) +Q3(5 + (3− 1)).

Theorem 3 (Dastidar, Sengupta [6]): For positive integers n, r and k,

Vk(n) = Qrk(n) +Qrk(n+ k) +Qrk(n+ 2k) + · · ·+Qrk(n+ (r − 1)k) =
r−1∑
l=0

Qrk(n+ lk).

For example, for n = 5, k = 2 and r = 3; we have V2(5) = 4, Q6(5) = 0, Q6(7) = 1,

Q6(9) = 3. So, V2(5) = Q6(5) +Q6(5 + 2) +Q6(5 + (3− 1)2).

Lemma 1: Stacking k boxes to the Young diagrams corresponding to all partitions of

n following the BSP generates as many new partitions as there are occurences of k in all

partitions of n+ k.

Proof: The proof is divided into two cases as follows:

I. (The Trivial Stacking): We can obviously add a packet of k boxes to the largest part of a

partition λ ` n (as discussed in the principle of construction) and immediately observe that

the total number of generated new partition is p(n).

II. (Non-trivial Stacking): We can also add a packet of k boxes to some part other than the

largest one in a partition λ ` n (cf. Figure 14) but not always. So, adding k-boxes to a

Young diagram Yλ following BSP is possible if and only if there exists a box in Yλ with

hook-type (k − 1, 0) (Because, having a box with hook-type (k − 1, 0) implies that above

this box there are k-consecutive empty places where we can place the packet of k boxes. On

the other hand, to place a packet of k boxes in the diagram without violating the BSP and

structure of Yλ there must exist a k-consecutive empty places; i.e., a box with hook-type

(k − 1, 0)). This explicitly shows the one to one correspondence between the number of

permissible ways of non-trivial addition of packet of k boxes and the number of boxes with

hook-type (k− 1, 0) in Yλ. Summing over all partitions of n gives the number of occurrences

of part k in P (n).
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Altogether I and II give that the total of new generated partition is p(n) +Qk(n) and it is

immediate that p(n) +Qk(n) = Qk(n+ k).

Proof of Theorem 2 and 3: The proofs of Theorem 2 and Theorem 3 are immediate

from Lemma 1 since it is enough to prove that p(n) +Qk(n) = Qk(n+ k).

5. Generalization of Stanley’s Theorem in Color Context

In the previous section, we presented an extension of Stanley’s theorem due to Dastidar,

Sengupta [6] in the context of the classical partition function. Now we will provide a theorem

in the context of color partitions which is analogous to the Theorem 2.

Theorem 4: For positive integers k, l ≥ 2, and n ∈ N,

Q
(l)
1 (n) =

{
(Q

(l)
k (n) +Q

(l)
k (n+ 1) + · · ·+Q

(l)
k (n+ k − 1))/2, if l |k,

Q
(l)
k (n) +Q

(l)
k (n+ 1) + · · ·+Q

(l)
k (n+ k − 1), otherwise

Remark: In order to prove the above theorem, it is enough to prove the following recur-

sions: If l ≥ 2, k, n ∈ N, then

Q
(l)
k (n+k)

2 = p(l)(n) +
Q

(l)
k (n)

2 , if l | k.

Q
(l)
k (n+ k) = p(l)(n) +Q

(l)
k (n), otherwise.

5.1. Box Stacking Principle in Color Partitions context. The BSP in color partitions

context consists of a set of rules to produce from all color partitions λ of n a new set of color

partitions of n + k. This is done by adding k boxes in a particular way. Here ‘packet of k

boxes’ has the same meaning as in the case of the BSP for the classical partition function. But

in the color context we have to take care about the color of a ‘packet of k boxes’ (because

following notations in Preliminary section, one can observe that for a λ ∈ P (l)(n) if k is

multiple of l then k appears twice k1, k2 in λ). If k is not a mutiple of l, without loss of

generality, we always add a ‘packet of k boxes’ prescribed by white color (one may also add

a ‘packet of k boxes’ prescribed by green color). The set of rules are as follows:

Whenever, we say adding a ‘packet of k boxes’ it will mean that ‘packet of k boxes’ is colored

by white color. Let λ := (λ1i1 , λ2i2 , . . . , λrir ) ∈ P (l)(n) with ik ∈ {1, 2} and 1 ≤ k ≤ r, k ∈ N.

So when we say λ1i1 is the largest part of λ, it means that λ1 ≥ · · · ≥ λr (independent of the

indices). First, we will look at the index of the largest part λ1i1 . If i1 = 1, then trivially we

add the packet of k boxes to λ1i1 ; i.e., to bottom row of Yλ so that the resulting partition

µ := ((λ1i1 + k1), . . . , λrir ) ∈ P (l)(n+ k). If i1 = 2, then two cases will arise:

A. If λ1 ≥ k, then we consider following two cases: (i) If there exist any two consecutive

parts say λsis and λtit (λs ≥ λt) with it = 1 and λs − λt ≥ k, then we add a packet of k

boxes to the row corresponding to the part λtit in Yλ. (ii) If there does not exists any two
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consecutive parts with the condition given in (i), then we simply insert the packet of k-boxes

as a new row into Yλ (cf. Figure 17).

B. If λ1 < k, then we adjoin the packet of k boxes to the below of the bottom row of Yλ

so that resulting partition is µ := (k1, λ1i1 , . . . , λrir ) ∈ P (l)(n+ k) (cf. Figure 16).

C. We have already stated all the rules of adding a packet of k boxes. Now, we state an

exclusion rule; i.e, a case in which we will not allow for addition of k boxes. Here index of

parts in the partition λ ∈ P (l)(n) is important. For any part, say λmim
with im = 2, we do

not allow the addition of a packet of k boxes to the row corresponding to the part λmim
in

Yλ. In short, if the color of the row corresponding to the part with index 2 is green, we do

not allow the addition of a packet of k boxes to it (cf. Figure 18).

An example to illustrate these rules, consider all 3 color partitions of 4; i.e,P (3)(4) and

applying the color BSP for adding a packet of 2 boxes to the Young diagram gives:

I. 41 :

+ =

=

II. 31 + 11 :

+ =

=

III. 32 + 11 :

+ =

IV. 21 + 21 :

+ =

=

V. 21 + 11 + 11 :

+ =
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VI. 11 + 11 + 11 + 11 :

+ =

Figure 15

Now if we consider the addition of a packet of 5 boxes and 3 boxes, respectively, to the

partition (32, 11), then rules B and A(ii) imply the following:

+ =

Figure 16

+ =

Figure 17

Next, we give an example for the exclusion following rule C. For instance, for n = 11,

l = 3, k = 2 and λ = (62, 32, 21) ∈ p(3)(11):

+ =

=

Figure 18

In the above figure, one can observe that we did not allow the addition of a packet of 2

white boxes to the parts which are colored by green color; i.e., by exclusion we mean that we

excluded all possible addition of a packet of 2 boxes being white colored to the parts colored

by green color following the rule C.
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5.2. Recursion and Proof of Theorem 4. It is enough to prove the recursion for the

above stated Theorem 4.

Lemma 2: Adding a packet of k boxes to the Young diagrams of λ ∈ P (l)(n) following

the color BSP generates as many new color partitions as there are occurences of a part k in

P (l)(n+ k) subject to the condition that k is not a multiple of l. But if k is a multiple of l,

then adding a packet of k boxes generates as many new color partitions which equals to half

of the total number of occurences of the part k in P (l)(n+ k).

Proof: Following the rules defined in the subsection 5.1, one can immediately observe

that the trivial addition of a packet of k boxes generates the number of color partitions which

equals to p(l)(n).

Now, if l - k, then following rule A(ii), we conclude that the number of nontrivial addition

of a packet of k boxes to Young diagrams is Q
(l)
k (n). Therefore, total number of new generated

color partitions is p(l)(n) +Q
(l)
k (n) and it is immediate that p(l)(n) +Q

(l)
k (n) = Q

(l)
k (n+ k).

On the other hand, for l | k, the part k in λ ∈ P (l)(n) appears with two colors. Now,

adding a packet of k boxes to Young Diagrams enumerate half of the total number of occur-

rences of k in P (l)(n) because we add only a white colored packet of k boxes. Whereas in

this situation, we have to count the total number of occurrences of parts k1 and k2. In short,

we have chosen only one representative of k1 and k2 in terms of adding only a white colored

packet of k boxes. Hence one can observe that the total number of generated color partition

is p(l)(n) +
Q

(l)
k (n)

2 and consequently, p(l)(n) +
Q

(l)
k (n)

2 =
Q

(l)
k (n+k)

2 .

Proof of Theorem 4: The proof of Theorem 4 is immediate from Lemma 2.

6. Application

Recently, Andrews proved a beautiful result.

Theorem 5 (Andrews [2]): Let Od(n) denote the number of partitions of n in which the

odd parts are distinct and each positive odd integer smaller than the largest odd part must

appear as a part. Then

podeu(n) = Od(n),

where podeu(n) denotes the number of partitions of n in which each even part is less than each

odd part and odd parts are distinct.

As an application of the BSP, we will prove a theorem on partitions with parts separated

by parity. Adding the restriction of distinctness, we immediately obtain George Andrews’s

theorem.

Definition 1:

P oueu (n) :=

λ ` n :
(1) all the odd parts of λ are unrestricted,

(2) each even part of λ is less than each odd part of λ

 ,
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poueu(n) := #{λ ` n : λ ∈ P oueu (n)}.
For example, poueu(9) = 12 (9, 7 + 2, 7 + 1 + 1, 5 + 4, 5 + 3 + 1, 5 + 2 + 2, 5 + 1 + 1 + 1 + 1, 3 +

3 + 3, 3 + 3 + 1 + 1 + 1, 3 + 2 + 2 + 2, 3 + 1 + 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1).

Definition 2: For λ ` n such that an odd integer must appear as a part of λ,

OMax(λ) := greatest odd part of λ,

EMax(λ) :=

{
greatest even part of λ, if even parts occur in λ,

0, otherwise

OEMaxSum(λ) := OMax(λ) + EMax(λ),

and

OEMaxDiff(λ) := |OMax(λ) - EMax(λ)|.

Ou(n) :=

λ ` n :
(1) for any odd k such that k < OMax(λ); k must appear as a part of λ,

(2) if some odd part of λ occurs repeatedly then OEMaxSum (λ) ≤ n

 ,

O∗u(n) := {λ ∈ Ou(n) : OEMaxDiff (λ) = min {OEMaxDiff (λ
′
) : λ

′ ∈ Ou(n)}},
o∗u(n) := #{λ ` n : λ ∈ O∗u(n)}.

For example, o∗u(9) = 12 (8 + 1, 6 + 2 + 1, 5 + 3 + 1, 4 + 4 + 1, 4 + 3 + 1 + 1, 4 + 2 + 2 + 1, 3 +

2 + 1 + 1 + 1 + 1, 2 + 2 + 2 + 2 + 1, 2 + 2 + 2 + 1 + 1 + 1, 2 + 2 + 1 + 1 + 1 + 1 + 1, 2 + 1 + 1 +

1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1); we see that according to our definition,

the partition λ = (6, 1, 1, 1) /∈ O∗u(9) but the partition (4, 3, 1, 1) ∈ O∗u(9)

Note: In our diagrams, odd parts and even parts are interpreted by having blue and brown

color, respectively.

Theorem 6: o∗u(n) = poueu(n)

Proof: Consider the Young diagram Yλ for the partition λ = (λ1, λ2, . . . , λl) ∈ O∗u(n).

We separate λ into λ
′

= (λo1 , λo2 , . . . , λor) where 1 ≤ oi ≤ l and λ
′′

= (λe1 , λe2 , . . . , λet)

where 1 ≤ oj ≤ l according to the odd and even parts, respectively. Let Yλ′ and Yλ′′ be

the corresponding Young diagrams of λ
′

and λ
′′
. Next, we join Yλ′ and Yλ′′ by successively

adjoining their rows with respect to the ordering of the parts in λ
′
, λ
′′
, respectively, starting

with the largest one and end with the smallest one. Call the restricting Young diagram Yλ′′′ .

Now, we consider the following three cases:

1. If the number of odd parts is equal to the number of even parts in a partition λ ∈ O∗u(n),

then Yλ′′′ is with λ
′′′ ∈ P oueu (n). Since λ

′
= (λo1 , . . . , λor) and λ

′′
= (λe1 , . . . , λer) have equal

number of parts, no part remains left neither in λ
′

nor in λ
′′

after adjoining because the

resulting partition λ
′′′

= (λo1 + λe1 , . . . , λor + λer). Correspondingly no row remains left

neither in Yλ′ nor in Yλ′′ after adjoining.

2. Suppose the number of odd parts is greater than the number of even parts in a partition

λ ∈ O∗u(n); let the difference be t. Then a similar argument shows that the t rows in Yλ′
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remain left after adjoining of rows of Yλ′ and Yλ′′ . Therefore, in the resulting Yλ′′′ with

λ
′′′ ∈ P oueu (n), t rows will be positioned in the same order as in Yλ′ .

3. Suppose the number of even parts is greater than the number of odd parts in a partition

λ ∈ O∗u(n); let the difference be u. Similar to the argument given in (1) we see that u rows in

Yλ′′ remain left after adjoining the rows of Yλ′ and Yλ′′ . Here u rows will be inserted into Yλ′ so

that the resulting Yλ′′′ with λ
′′′ ∈ P oueu (n) does not violate the structure of the Young diagram.

For example, given Yλ with the partition λ = (5, 4, 3, 2, 1, 1) ∈ O∗u(16):

Figure 19

Separating Yλ into the odd and even parts; i.e., into Yλ′ with λ
′

= (5, 3, 1, 1) and Yλ′′ with

λ
′′

= (4, 2) yields:

Figure 20

Adjoining the rows of Yλ′ and Yλ′′ gives Yλ′′′ with the partition λ
′′′

= (9, 5, 1, 1) ∈ P oueu (16):

Figure 21

Let µ = (µ1, . . . , µs) ∈ P oueu (n). Separate µ into µ
′

= (µo1 , . . . , µoi) with the odd parts,

µoi ≤ µoi−1 ≤ · · · ≤ µo1 where µoi ≥ µs, µo1 ≤ µ1 and into µ
′′

with the even parts. We keep

aside the even component Yµ′′ of Yµ. First, we assume that all odd parts of µ are distinct;

i.e., there are i distinct odd values with µoi < µoi−1 < · · · < µo1 . It is clear that there are µoi
boxes in the first row and µoi−1 boxes in the second row and continuing this, one can observe

that there are µo1 boxes in the bottom most ith row of Yµ′ . Now, for all j (1 ≤ j ≤ i),

we extract 2j − 1 boxes from the jth row of Yµ′ and attach 2j − 1 boxes to Yµ′ without
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violating the structure of the Young diagram Yµ′ . Explicitly, we break an odd part µot of

the partition µ
′

into (µot − (2v − 1), 2v − 1) where the part µot corresponds to the number

of boxes in the vth row of Yµ′ . The Young diagram Yµ′′′ obtained from Yµ′ by the above

construction and adjoining Yµ′′ with it to get the unique resulting Young diagram, say Yπ with

π ∈ O∗u(n). This is because all the odd parts are distinct and their corresponding position

in Yµ is unique, and hence the resulting partition π ∈ O∗u(n) is the unique pre-image of the

partition µ ∈ P oueu (n). Next, we consider µ
′

= (µo1 , . . . , µoi) with µoi < µoi−1 < · · · < µo1
with the assumption that µo1 , . . . , µoi occurs with multiplicity k1, k2, . . . , ki, respectively; i.e.,

a part µot (1 ≤ t ≤ i) occurs with multiplicity kt. Then we break the kt tuple (µot , . . . , µot)

into ((µot−(2v−1), 2v−1), . . . , (µot−(2v−1), 2v−1)) where the part µot corresponds to the

number of boxes in the vth row of Yµ′ . Similar argument shows that the resulting partition,

say π ∈ O∗u(n). Therefore, the BSP provides a bijection to conclude the proof of the theorem

6.

For example, Yµ with µ = (9, 7, 4, 2) ∈ P oueu (22) breaks into Yµ′ with µ
′

= (9, 7) and Yµ′′

with µ
′′

= (4, 2):

= +

Figure 22

Following the above construction, Yµ′ yields Yµ′′′ with µ
′′′

= (1, 3, 6, 6):

=

Figure 23

Then the resulting diagram Yπ with π = (6, 6, 4, 3, 2, 1) ∈ O∗u(22) is the unique pre-image

of µ:
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Figure 24

An example if an odd part repeats; e.g., the pre-image of µ = (7, 7, 5, 1, 1, 1) is π =

(5, 5, 3, 2, 2, 2, 1, 1, 1) ∈ O∗u(22):

Figure 25

Remark: From the above theorem, it is clear that if we restrict ourselves to the distinct

odd parts, then Andrews’s result [2] follows as a corollary.
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