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Abstract

We present in this extended abstract a new software designed to work with generating functions that
count walks in the quarter plane. With this software we offer a cohesive package that brings together
all the required procedures for manipulating these generating functions, as well as a unified interface to
deal with them. We also display results that this package offers on a public webpage.

1 Introduction

During the last years, there have been several studies concerning the nature of generating functions that
count lattice walks in the quarter plane Z2

≥0 [5, 3, 14]. The classification was completed for unweighted
models with small steps in 2018 [7], when all generating functions were fully classified.

The methods deployed to perform this classification involve various tools, ranging from algebra to complex
analysis, computer algebra, probability theory, number theory and (difference) Galois theory. Most of these
methods were intended to work not only for unweighted models, but also for other models with probabilistic
interpretation [10]. Results concerning these weighted models have appeared in recent publications [12, 9,
8, 6].

With the package comb walks (Combinatorial Walks) that we are presenting in the present paper, we
offer a new interface in Sage [16] to perform these operations automatically, hence making it possible for users
to recover information available for unweighted models and to explore weighted models as well. Indeed, our
package allows the user to create custom weighted (or unweighted) models and to perform computations in
order to get the various functions, morphisms, local expansions, and functional equations of interest, whose
definitions will be given in Section 2: the kernel K(x, y, t), the specializations b1 and b2, the curve Et, its
automorphisms ι1, ι2, τ , the analysis of poles over the curve Et, and the telescoping equations in C(Et)
w.r.t. the automorphism τ .

In Section 2 we describe the theoretical environment, going from the combinatorial description of walk
models to the geometric objects involved. In Section 3 we detail the features of our package comb walks.
Section 4 provides examples of use of the package, including the description of a website that compiles
parameters of interest for several dozens of models of combinatorial walks.

The Sage library presented here was developed by AJP as a spin-off from an ongoing work [2], in which
the four authors strive to extend the theory of [7] in order to obtain algorithmically explicit differential
algebraic equations for walk models, when they exist. As an intermediate step, the four authors decided to
gather concrete results on the website that is presented in Section 4.

2 Walks and their elliptic curves

In this work, we only consider models of quarter-plane walks with small steps, i.e., with steps taken from
U := {−1, 0, 1}2 \ {(0, 0)}. More specifically, a walk model is defined by a fixed subset S of U , which
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contains the allowed steps of the model. A walk is then just a finite sequence w = (w1, . . . , wk) with steps wi

taken from S. The enumeration we are interested in is by the length k, which we refine by counting the
number of walks starting at (0, 0) and ending at some (i, j) after k steps, according to the decomposition
(i, j) = w1 + · · ·+ wk. However, we more generally count walks in a weighted manner: given a fixed family
of weights, D = (ds)s∈S , the weight of a walk w = (w1, . . . , wk) is defined as the product of the weights of
its steps, dw1 · · · dwk

.
For a walk model D, we then denote as qi,j,k the sum of the weights of walks starting at (0, 0) and ending

at (i, j) after k steps while remaining in the quarter plane Z2
≥0. This last constraint corresponds to all partial

sums w1 + · · ·+w` having nonnegative coordinates for 1 ≤ ` ≤ k. In case ds = 1 for each s ∈ S, all relevant
walks have weight 1, so qi,j,k just counts the number of walks with prescribed length and endpoints. We
collect all those weighted values qi,j,k in a three-variable generating function:

Q(x, y, t) :=
∑

i,j,k∈Z≥0

qi,j,kx
iyjtk ∈ Q[x, y][[t]].

The classification completed in the last years [1, 7] sorts the models according to the nature of their
generating function:

• Rational: there are A(x, y, t), B(x, y, t) ∈ Q[x, y, t] such that Q(x, y, t) = A(x, y, t)/B(x, y, t).

• Algebraic: P (Q) = 0 for some P (Z) ∈ Q[x, y, t][Z] \ {0}.

• D-finite: for all v ∈ {x, y, t} there are pv0, . . . , p
v
rv ∈ Q[x, y, t], not all zero, such that

pvrv∂
rv
v Q+ . . .+ pv0Q = 0.

• D-algebraic w.r.t. some V ⊆ {x, y, t}: Q satisfies a non-trivial, possibly nonlinear, differential equation
w.r.t. variables in V , and coefficients in Q.

• D-transcendental w.r.t. V : Q(x, y, t) is not D-algebraic w.r.t. V .

The starting point of all methods is that the generating function Q satisfies the following functional
equation:

Q(x, y, t)K(x, y, t) = xy −Q(0, 0, t)K(0, 0, t)

+Q(x, 0, t)K(x, 0, t) +Q(0, y, t)K(0, y, t),

where K(x, y, t) is called the kernel polynomial and only depends on the allowed steps and weights of the
model:

K(x, y, t) := xy

(
1− t

∑
(i,j)∈S

di,jx
iyj
)
∈ Q[x, y, t].

Previous works [10, 1, 4, 8, 7, 5, 13] have focused on the study of the kernel polynomial. This polynomial
defines a curve Et in P(C)× P(C) which is either rational (genus 0) or elliptic (genus 1). In what follows we
focus on the elliptic case, where Et has a natural structure of abelian group. Given a step model, there is
a distinguished subgroup Gt of the group of automorphisms of Et, generated by two involutions ι1 and ι2.
The composition of both involutions leads to another automorphism on the curve τ := ι2 ◦ ι1, which is the
addition by a point of the elliptic curve Et.

It has been proven [13, Theorem 4] that:

(τ − 1)(Q(x, 0, t)K(x, 0, t)) = τ(y) · (τ(x)− x) =: b1,

(τ − 1)(Q(0, y, t)K(0, y, t)) = x · (τ(y)− y) =: b2.

Moreover, there is a derivation δ associated to a holomorphic 1-form defined over C(Et) that commutes
with τ . We say that a rational function f ∈ C(Et) telescopes if there is a linear differential operator L ∈ C[δ]
(telescoper) and a rational function g ∈ C(Et) (certificate) such that L(f) = τ(g)− g.

Then, putting together results in [1, 8, 7] for unweighted models, the nature of Q(x, y, t) depends only
on the order of τ and on a telescoping property of the functions b1 and b2:
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• Q is D-finite ⇐⇒ ord(τ) <∞.

• Q is algebraic ⇐⇒ ord(τ) <∞ and bi telescopes in C(Et) for i = 1, 2.

• Q is D-algebraic w.r.t. x ⇐⇒ Q is D-algebraic w.r.t. y ⇐⇒ ord(τ) =∞ and bi telescopes in C(Et) for
i = 1, 2.

For weighted models, (more or less) complete answers exist, both in the genus-0 case [8] and in the
genus-1 case [9, 6]. For the five models with genus zero, Q is D-transcendental w.r.t. x and y [8], and even
w.r.t. {x, y} [6]. For 42 models out of the 51 models with genus one, Q is D-transcendental w.r.t. x and
y [9], at least for generic weights di,j .

3 Description of the package

In this section we describe the package comb walks: its installation and features. Some of the methods are
based on algorithms whose precise description and correctness will appear elsewhere [2].

3.1 Installation and documentation

Readers willing to try the package are invited to install the current (development) version from the Git
repository in their Sage installation using pip:

sage -pip install [--user] git+https://gitlab.inria.fr/discretewalks/comb walks.git

The package can then be loaded by the Sage command
sage: from comb walks import *

Our package is built over third party software that must be available to the user to have a proper execution
of the code:

• Sage [16]: the main software in use is Sage 9.0. The code will be updated to work properly in next
versions of Sage.

• Maple [15]: for computing the Weierstrass form of the elliptic curve Et. Precisely, we use the package
algcurves.

An extended documentation of the package is available online at https://discretewalks.gitlabpages.
inria.fr/comb_walks/docs/.

3.2 End-user data structure: WalkModel

The user inputs a model to be used with our package by using the class WalkModel. An instance of this
structure is created from a list of tuples of the format (i, j, di,j), where:

• i and j have to be integers, representing an allowed step (i, j) for the walks.

• di,j has to be a number that represents the weight of the step (i, j) in the model. This value can be
omitted, having a default value of 1. The current implementation only accepts rational weights.

The following considerations during the creation of a WalkModel object are taken:

• If a tuple is badly formatted (i.e., has too few elements or if the types do not match), an error is raised.

• If a tuple indicates a new weight for a step (i, j) that is already included, this tuple is ignored.

• An extra argument name can be included as a string representing the model.

3

https://discretewalks.gitlabpages.inria.fr/comb_walks/docs/
https://discretewalks.gitlabpages.inria.fr/comb_walks/docs/


For example, if the user wants to create the instance for the Kreweras model [4] where the weight for the
northeast step is 2, the user can type:

sage: WalkModel((-1,0), (0,-1), (1,1,2), name=’my Kre’)

Walk Model (my Kre)

This structure has several methods to visualize and generate walks fitting the model:

• weight: receives a tuple (i, j) and returns the weight of such step. It returns 0 if the step is not
included.

• is weighted: checks whether all allowed steps have or not the same weight.

• random walk: creates an valid random walk for the model. The probability distribution of the steps
is proportional to the weight (i.e., two steps with the same weight have the same probability of being
picked).

• plot: shows a picture with the allowed steps of the model. No weights are represented.

• plot walk: displays a valid random walk for the model.

3.3 Geometric objects from a model

The structure WalkModel offers several methods to access the algebraic and geometric information of the
model (as described in Section 2). Since the curve Et can be viewed in different ambient spaces, namely P2(C)
or P(C)×P(C), all these methods have an argument model that allows the user to choose the representation:

• The representation affine (or A) uses the coordinates x and y that appear in the generating function.
This adds a projectivization variable z to put the object in P2(C).

• The representation projective (or P) uses the coordinates x and y and projectivizing both indepen-
dently, getting four variables x = (x0 : x1) and y = (y0 : y1) putting the objects in P(C)× P(C).

• The representation Weierstrass (or W), only valid when the kernel polynomial represents an elliptic
curve, uses a set of coordinates (u : v : w) where the kernel is written in Weierstrass form v2w− 4u3−
g2uw

2 − g3w3.

The methods available for a WalkModel are:

• kernel: given the representation (A, P or W), returns the kernel polynomial K that defines the curve Et.

• curve: given the representation, returns the curve defined by the kernel, represented as a Sage algebraic
scheme.

• iota: given the representation and an index j, returns ιj .

• tau: given the representation, returns the map τ .

• order tau: method that computes the order of the map τ . This methods receives an argument bound
and checks if the order of τ is smaller than or equal to this bound, returning ∞ if it is bigger. The
default value for bound is 10.

• b: method that receives an index j and computes the rational function bj described in Section 2.

• map: given two possible representations of two elliptic curves, returns a birational map between the
curves in their different representations.

• is elliptic: returns if the curve Et is elliptic or not.

• neutral point: if the curve is elliptic, returns the neutral point of the curve.

• g2 and g3: if the curve is elliptic, returns the invariants g2 and g3 of the curve Et.
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3.4 Geometric methods for WalkModel

As we saw in Section 2, the classification of models requires the analysis of some rational functions over the
curve Et. This is allowed in the package using the following methods:

• poles: receives a rational function f over Et and returns the list of poles of f over Et. This method
relies on Sage’s ability to factor univariate polynomials.

• higher polar part: receives a function f and a point P ∈ Et and returns a rational function g which
has only a pole at P and such that f − g has at most a simple pole at P .

• orbits: receives a list of points P1, . . . , Pn and a bound m and computes the τ -orbits for those
points, approximated by splitting orbits at “gaps” longer than m. This method returns lists of points
Li = (Qi1, . . . , Qiki

) such that:

– For all i and all j ∈ {1, . . . , ik − 1}, there is 1 ≤ nij ≤ m such that τnij (Qij) = Qi,j+1.

– For all points R1, R2 in different lists and all 1 ≤ n ≤ m, τn(R1) 6= R2.

• telescoping: receives a rational function f over Et and computes (when they exist) a differential
operator L and a rational function g such that L(f) = τ(g)− g.

3.5 Further algebraic geometry methods

Some of the operations already described require some computations based on algebraic geometry. The
current implementation of Sage, although generic, did not fit our requirements, for example, applying a map
between algebraic varieties may fail even when the map is defined for such point.

That is the reason we implemented several methods only based in algebraic geometry (i.e., without the
assumptions of working over the kernel curve Et) in the subpackage alggeo:

• pullback: given a rational map between varieties, returns its corresponding pullback.

• order morphism: given a rational map f and a bound m, checks if fn = id for 1 ≤ n ≤ m.

• zeros bihom: given a bivariate homogeneous polynomial, computes the points in P(C) where the
polynomial vanishes.

• asymptotics: given a curve E, a rational function f over E and a point P ∈ E, this method computes
the order of f at P , a local parameter s of E at P and the first non-zero coefficient of the expansion
of f at P w.r.t. s.

• expand at point: given a curve E, a rational function f over E, a point P ∈ E, and an integer m ≥ 0,
computes a local parameter s of E at P and the first m coefficients of the expansion of f at P w.r.t. s.

3.6 Default variables

When the user loads the package, several variables are available as default models and values. We describe
them now:

• Small steps: there are simple variables like N or SW that represent small steps with weight 1. This
means that the user can type

sage: WalkModel(NE, S, W)

to create the unweighted Kreweras model.

• Unweighted models: we offer several variables that include all the unweighted models treated in the
literature [1, 7, 3] that are relevant:

– AllModels: a list with all the models.
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– FiniteGroup: all models where the order of τ is finite. These models are numbered according to
the numbering they received in [1].

– EllipticC: all models where the curve is elliptic and the order of τ infinite. These models are
named following the convention described in [7].

– NonEllipticC: models whose curve is not elliptic.

– ModelDict: a dictionary that, given the name, provides the corresponding model.

4 Examples of use

With the functionality described in Section 3, we offer a wide set of possibilities to use it: the user can use it
as a white box, and use all the properties and objects offered to perform new and step-by-step computations
over different models, or can use it as a black box to check bigger results like whether a rational function on
the curve Et telescopes or not.

As a first example of use as a black box, we include here a simple and intuitive code that implements the
classification criteria for unweighted models described in Section 2:

sage: def type of model(m):

....: if is weighted(m):

....: return "Weighted model"

....: order = m.order tau()

....: try:

....: m.telescoping(m.b(2)(x = x0/x1, y = y0/y1))

....: telescopes = True

....: except:

....: telescopes = False

....: if order < Infinity and telescopes:

....: return "Algebraic"

....: elif order < Infinity:

....: return "D-finite"

....: elif telescopes:

....: return "D-algebraic w.r.t. ’x’ and ’y’"

....: return "D-transcendental w.r.t. ’x’ and ’y’"

This code is proven to be correct, because it is known [1] that, in the cases of τ having finite order, this
can only be 2, 3 or 4. Hence, the return of order tau is in this case always correct.

Now, we can use this function to quickly check the type of the model for several instances:

sage: type of model(WalkModel(NE, W, S))

Algebraic

sage: type of model(WalkModel(N, S, W, E))

D-finite

sage: type of model(WalkModel(N, E, S, SW))

D-algebraic w.r.t. ’x’ and ’y’

sage: type of model(WalkModel(N, S, W, E))

D-transcendental w.r.t. ’x’ and ’y’

Another black-box use is how we have applied our code to all the models described in the literature and
compiled the result in a public web page that can be accessed together with the documentation of the package
at the url https://discretewalks.gitlabpages.inria.fr/comb_walks/. (The list of models displays is
that in the variable AllModels; see Section 3.)

On this webpage, we offer a list of parameter of interest for all models that can be filtered to avoid too
many information on the screen. Moreover, the user can search models by name and type, making it easier
to browse through the results of several models.
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5 Conclusions

In this document we have presented a new Sage software dedicated to walks in the quarter plane. Although its
functionality could be found separately in other softwares (mentioned in Section 3), the package comb walks

offers a unified interface where the main object is the model of walks.
Our implementation of the procedures that were discussed in the literature to classify the generating

functions that count walks can be applied not only to these unweighted models, but also to other models
where the steps have an associated weight. This allows users to do new computations or to check step-by-step
procedures and computations.

In the future, we plan to extend the current implementation so as to obtain, beside the (differentially)
algebraic nature of a model, corresponding algebraic or differential equations automatically, provided they
exist. This could shed more light on whether these D-algebraic functions of combinatorial origin belong to
more structured subclasses: are they quotients of D-finite functions? are they more complicated DD-finite
functions [11]? We also intend to complete and enhance the tests and the documentation of the package.
We also plan to increase the scope of the implementation, e.g., by allowing algebraic weights to the steps of
a model.

We also aim at extending the website by offering extra features, like better filtering, a direct comparison
between particular models or even a dynamic webpage where the user could include a new model interactively,
so as to compare the results with other models.
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