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Abstract

We show that the generating function of labelled trees is not D∞-finite.

1 Context and main result

A formal power series f(x) =
∑

n≥0 anx
n in C[[x]] is called differentially finite, or simply D-finite [21], if

it satisfies a linear differential equation with polynomial coefficients in C[x]. Many generating functions in
combinatorics and many special functions in mathematical physics are D-finite [2, 9].

DD-finite series and more generally Dn-finite series are larger classes of power series, recently introduced
in [12]. DD-finite power series satisfy linear differential equations, whose coefficients are themselves D-finite
power series. One of the simplest examples is tan(x), which is DD-finite (because it satisfies cos(x)f(x) −
sin(x) = 0), but is not D-finite (because it has an infinite number of complex singularities, a property which
is incompatible with D-finiteness). Another basic example is the exponential generating function of the Bell
numbers Bn, which count partitions of {1, 2, . . . , n}, namely:

B(x) :=
∑
n≥0

Bn

n!
xn. (1)

Indeed, it is classical [9, p. 109] that B(x) = ee
x−1, therefore B(x) is DD-finite, and not D-finite (because of

the too fast growth of the sequence Bn).
More generally, given a differential ring R, the set of differentially definable functions over R, denoted by

D(R), is the differential ring of formal power series satisfying linear differential equations with coefficients in
R. In particular, D(C[x]) is the ring of D-finite power series, D2(C[x]) := D(D(C[x])) is the ring of DD-finite
power series, and Dn(C[x]) := D(Dn−1(C[x])) is the ring of Dn-finite power series. We say that a power
series f(x) ∈ C[[x]] is D∞-finite if there exists an n such that f(x) is Dn-finite.

It is known [13] that Dn-finite power series form a strictly increasing set and that any D∞-finite power
series is differentially algebraic, in short D-algebraic, that is, it satisfies a non-linear differential equation
with polynomial coefficients in C[x]. This class is quite well studied [20].

Let now (tn)n≥0 = (0, 1, 2, 9, 64, 625, 7776, . . .) be the sequence whose general term tn counts labelled
rooted trees with n nodes. It is well known that tn = nn−1, for any n. This beautiful and non-trivial result
is usually attributed to Cayley [6], although an equivalent result had been proved earlier by Borchardt [4],
and even earlier by Sylvester, see [3, Chapter 4]. Due to the importance of the combinatorial class of trees,
and to the simplicity of the formula, Cayley’s result has attracted a lot of interest over the time, and it
admits several different proofs, see e.g., [15, §4] and [1, §30]. One of the more conceptual proofs goes along
the following lines (see [9, §II. 5.1] for details). Let

T (x) :=
∑
n≥0

tn
n!

xn (2)
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be the exponential generating function of the sequence (tn)n. The class T of all rooted labelled trees is
definable by a symbolic equation T = Z ? SET(T ) reflecting their recursive definition, where Z represents
the atomic class consisting of a single labelled node, and ? denotes the labelled product on combinatorial
classes. This symbolic equation provides, by syntactic translation, an implicit equation on the level of
exponential generating functions:

T (x) = x eT (x), (3)

which can be solved using Lagrange inversion

tn = n! · [xn]T (x) = n! ·
(

1

n
[zn−1](ez)n

)
= nn−1. (4)

From (3), it follows easily that T (x) is D-algebraic and satisfies the non-linear equation

x(1− T (x))T ′(x) = T (x),

and also that the sequence (tn)n≥0 satisfies the non-linear recurrence relation

tn =
n

n− 1
·
n−1∑
i=0

(
n− 1

i

)
titn−1−i, for all n ≥ 2.

This recurrence can be also proved using (4) and by taking y = n and x = w = 1 in Abel’s identity [11]

(x + y)n =

n∑
k=0

(
n

k

)
x(x + wk)k−1(y − wk)n−k.

On the other hand, it is known that the power series T (x) is not D-finite, see [10, Theorem 7], or [8,
Theorem 2]. This raises the natural question whether T (x) is DD-finite, or Dn-finite for some n ≥ 2. Our
main result is that this is not the case:

Theorem 1. The power series T (x) =
∑

n≥1
nn−1

n! xn in (2) is not D∞-finite.

To our knowledge, this is the first explicit example of a natural combinatorial generating function which
is provably D-algebraic but not D∞-finite. In particular, Theorem 1 implies that T (x) is not equal to the
quotient of two D-finite functions, and more generally, that it does not satisfy any linear differential equation
with D-finite coefficients.

2 Proof of the main result

Our proof of Theorem 1 builds upon the following recent result by Noordman, van der Put and Top.

Theorem 2 ([17]). Assume that u(x) ∈ C[[x]] \ C is a solution of u′ = u3 − u2. Then u is not D∞-finite.

The proof of Theorem 2 is based on two ingredients. The first one is a result by Rosenlicht [19] stating
that any set of non-constant solutions (in any differential field) of the differential equation u′ = u3 − u2

is algebraically independent over C (see also [17, Prop. 7.1]); the proof is elementary. The second one [17,
Prop. 7.1] is that any non-constant power series solution of an autonomous first-order differential equation
with this independence property cannot be D∞-finite; the proof is based on differential Galois theory.

Proof of Theorem 1. We will use Theorem 2 and a few facts about the (principal branch of the) Lambert
W function, satisfying W (x) · eW (x) = x for all x ∈ C.

Recall [7] that the Taylor series of W around 0 is given by

W (x) =

∞∑
n=1

(−n)n−1

n!
xn = x− x2 + 3

2x
3 − 8

3x
4 + 125

24 x5 − · · · .
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In other words, our T (x) and W (x) are simply related by W (x) = −T (−x).
The function defined by this series can be extended to a holomorphic function defined on all complex

numbers with a branch cut along the interval (−∞,− 1
e ]; this holomorphic function defines the principal

branch of the Lambert W function.
We can substitute x 7→ ex+1 in the functional equation for W (x) obtaining then

W (ex+1)eW (ex+1) = ex+1,

or, renaming Y (x) = W (ex+1), we have a new functional equation: Y (x)eY (x)−1 = ex. From this equality it
follows by logarithmic differentiation that Y ′(x) · (1 + Y (x)) = Y (x).

Take now U(x) := 1
1+Y (x) = 1

2 −
1
8x + 1

64x
2 + 1

768x
3 + · · · . We have that

U ′(x) =
−Y ′(x)

(1 + Y (x))2
=

−Y (x)

(1 + Y (x))3
= U(x)3 − U(x)2.

By Theorem 2, U(x) is not D∞-finite. By closure properties of D∞-finite functions, it follows that Y (x)
is not D∞-finite either.

To conclude, note that by definition, for real x in the neighborhood of 0, we have W (x) = Y (log(x)− 1),
and by Theorem 10 in [13], it follows that W (x) and T (x) are not D∞-finite either, proving Theorem 1.

3 Open questions

The class of D-finite power series is closed under Hadamard (term-wise) product. This is false for D∞-finite
power series; for instance, Klazar showed in [14] that the ordinary generating function

∑
n≥0 Bnx

n of the
Bell numbers is not differentially algebraic, contrary to its exponential generating function (1), which is
DD-finite.

Moreover, it was conjectured by Pak and Yeliussizov [18, Open Problem 2.4] that this is an instance of
a more general phenomenon.

Conjecture 1 ([18, Open Problem 2.4]). If for a sequence (an)n≥0 both ordinary and exponential generating
functions

∑
n≥0 anx

n and
∑

n≥0 an
xn

n! are D-algebraic, then both are D-finite. (Equivalently, (an)n≥0 satisfies
a linear recurrence with polynomial coefficients in n.)

This conjecture has been recently proven for large (infinite) classes of generating functions [5]. However,
the very natural example of the generating function for labelled trees escapes the method in [5].

We therefore leave the following as an open question.

Open question 1. Is the power series
∑

n≥1 n
n−1xn D∞-finite? Is it at least differentially algebraic?

According to Conjecture 1, the answer should be “no” for both questions in Open question 1.

Another natural question concerns the generating function for partition numbers:∑
n≥0

pnx
n :=

∏
n≥1

1

1− xn
= 1 + x + 2x2 + 3x3 + 5x4 + 7x5 + 11x6 + · · · ,

which is known to be differentially algebraic [16].

Open question 2. Is it true that
∑

n≥0 pn x
n is not D∞-finite?

One may also ask for the nature of exponential variants of the generating function for partition numbers.

Open question 3. With the same notation as above:

• Is the power series
∑

n≥0 pn n!xn D∞-finite, or at least differentially algebraic?

• Is the power series
∑

n≥0
pn

n! x
n D∞-finite, or at least differentially algebraic?
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