On the exponential generating function of labelled trees

Alin Bostan Antonio Jiménez-Pastor

Supported by

Der Wissenschaftsfonds.

Editorial Board: Bruno Buchberger
Evelyn Buckwar
Bert Jüttler
Ulrich Langer
Manuel Kauers
Peter Paule
Veronika Pillwein
Silviu Radu
Ronny Ramlau
Josef Schicho
Managing Editor: Diego Dominici
Communicated by: Manuel Kauers
Veronika Pillwein

DK sponsors:

- Johannes Kepler University Linz (JKU)
- Austrian Science Fund (FWF)
- Upper Austria

On the exponential generating function of labelled trees*

Alin Bostan ${ }^{\dagger} \quad$ Antonio Jiménez-Pastor ${ }^{\ddagger}$

June 29, 2020

Abstract

We show that the generating function of labelled trees is not D^{∞}-finite.

1 Context and main result

A formal power series $f(x)=\sum_{n \geq 0} a_{n} x^{n}$ in $\mathbb{C}[[x]]$ is called differentially finite, or simply D-finite [21], if it satisfies a linear differential equation with polynomial coefficients in $\mathbb{C}[x]$. Many generating functions in combinatorics and many special functions in mathematical physics are D-finite [2, (9).

DD-finite series and more generally D^{n}-finite series are larger classes of power series, recently introduced in [12. DD-finite power series satisfy linear differential equations, whose coefficients are themselves D-finite power series. One of the simplest examples is $\tan (x)$, which is DD-finite (because it satisfies $\cos (x) f(x)-$ $\sin (x)=0$), but is not D-finite (because it has an infinite number of complex singularities, a property which is incompatible with D-finiteness). Another basic example is the exponential generating function of the Bell numbers B_{n}, which count partitions of $\{1,2, \ldots, n\}$, namely:

$$
\begin{equation*}
B(x):=\sum_{n \geq 0} \frac{B_{n}}{n!} x^{n} . \tag{1}
\end{equation*}
$$

Indeed, it is classical [9, p. 109] that $B(x)=e^{e^{x}-1}$, therefore $B(x)$ is DD-finite, and not D-finite (because of the too fast growth of the sequence B_{n}).

More generally, given a differential ring R, the set of differentially definable functions over R, denoted by $\mathrm{D}(R)$, is the differential ring of formal power series satisfying linear differential equations with coefficients in R. In particular, $\mathrm{D}(\mathbb{C}[x])$ is the ring of D-finite power series, $\mathrm{D}^{2}(\mathbb{C}[x]):=\mathrm{D}(\mathrm{D}(\mathbb{C}[x]))$ is the ring of DD-finite power series, and $\mathrm{D}^{n}(\mathbb{C}[x]):=\mathrm{D}\left(\mathrm{D}^{n-1}(\mathbb{C}[x])\right)$ is the ring of D^{n}-finite power series. We say that a power series $f(x) \in \mathbb{C}[[x]]$ is D^{∞}-finite if there exists an n such that $f(x)$ is D^{n}-finite.

It is known [13] that D^{n}-finite power series form a strictly increasing set and that any D^{∞}-finite power series is differentially algebraic, in short D-algebraic, that is, it satisfies a non-linear differential equation with polynomial coefficients in $\mathbb{C}[x]$. This class is quite well studied [20].

Let now $\left(t_{n}\right)_{n \geq 0}=(0,1,2,9,64,625,7776, \ldots)$ be the sequence whose general term t_{n} counts labelled rooted trees with n nodes. It is well known that $t_{n}=n^{n-1}$, for any n. This beautiful and non-trivial result is usually attributed to Cayley [6], although an equivalent result had been proved earlier by Borchardt [4], and even earlier by Sylvester, see [3, Chapter 4]. Due to the importance of the combinatorial class of trees, and to the simplicity of the formula, Cayley's result has attracted a lot of interest over the time, and it admits several different proofs, see e.g., [15, §4] and [1] §30]. One of the more conceptual proofs goes along the following lines (see 9, §II. 5.1] for details). Let

$$
\begin{equation*}
T(x):=\sum_{n \geq 0} \frac{t_{n}}{n!} x^{n} \tag{2}
\end{equation*}
$$

[^0]be the exponential generating function of the sequence $\left(t_{n}\right)_{n}$. The class \mathcal{T} of all rooted labelled trees is definable by a symbolic equation $\mathcal{T}=\mathcal{Z} \star \operatorname{SET}(\mathcal{T})$ reflecting their recursive definition, where \mathcal{Z} represents the atomic class consisting of a single labelled node, and \star denotes the labelled product on combinatorial classes. This symbolic equation provides, by syntactic translation, an implicit equation on the level of exponential generating functions:
\[

$$
\begin{equation*}
T(x)=x \mathrm{e}^{T(x)} \tag{3}
\end{equation*}
$$

\]

which can be solved using Lagrange inversion

$$
\begin{equation*}
t_{n}=n!\cdot\left[x^{n}\right] T(x)=n!\cdot\left(\frac{1}{n}\left[z^{n-1}\right]\left(e^{z}\right)^{n}\right)=n^{n-1} \tag{4}
\end{equation*}
$$

From (3), it follows easily that $T(x)$ is D-algebraic and satisfies the non-linear equation

$$
x(1-T(x)) T^{\prime}(x)=T(x)
$$

and also that the sequence $\left(t_{n}\right)_{n \geq 0}$ satisfies the non-linear recurrence relation

$$
t_{n}=\frac{n}{n-1} \cdot \sum_{i=0}^{n-1}\binom{n-1}{i} t_{i} t_{n-1-i}, \quad \text { for all } n \geq 2
$$

This recurrence can be also proved using (4) and by taking $y=n$ and $x=w=1$ in Abel's identity 11]

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x(x+w k)^{k-1}(y-w k)^{n-k}
$$

On the other hand, it is known that the power series $T(x)$ is not D-finite, see [10, Theorem 7], or [8, Theorem 2]. This raises the natural question whether $T(x)$ is DD-finite, or D^{n}-finite for some $n \geq 2$. Our main result is that this is not the case:
Theorem 1. The power series $T(x)=\sum_{n \geq 1} \frac{n^{n-1}}{n!} x^{n}$ in (2) is not D^{∞}-finite.
To our knowledge, this is the first explicit example of a natural combinatorial generating function which is provably D -algebraic but not D^{∞}-finite. In particular, Theorem 1 implies that $T(x)$ is not equal to the quotient of two D-finite functions, and more generally, that it does not satisfy any linear differential equation with D-finite coefficients.

2 Proof of the main result

Our proof of Theorem 1 builds upon the following recent result by Noordman, van der Put and Top.
Theorem $2([17])$. Assume that $u(x) \in \mathbb{C}[[x]] \backslash \mathbb{C}$ is a solution of $u^{\prime}=u^{3}-u^{2}$. Then u is not D^{∞}-finite.
The proof of Theorem 2 is based on two ingredients. The first one is a result by Rosenlicht [19] stating that any set of non-constant solutions (in any differential field) of the differential equation $u^{\prime}=u^{3}-u^{2}$ is algebraically independent over \mathbb{C} (see also [17, Prop. 7.1]); the proof is elementary. The second one [17, Prop. 7.1] is that any non-constant power series solution of an autonomous first-order differential equation with this independence property cannot be D^{∞}-finite; the proof is based on differential Galois theory.

Proof of Theorem 1. We will use Theorem 2 and a few facts about the (principal branch of the) Lambert W function, satisfying $W(x) \cdot e^{W(x)}=x$ for all $x \in \mathbb{C}$.

Recall [7] that the Taylor series of W around 0 is given by

$$
W(x)=\sum_{n=1}^{\infty} \frac{(-n)^{n-1}}{n!} x^{n}=x-x^{2}+\frac{3}{2} x^{3}-\frac{8}{3} x^{4}+\frac{125}{24} x^{5}-\cdots
$$

In other words, our $T(x)$ and $W(x)$ are simply related by $W(x)=-T(-x)$.
The function defined by this series can be extended to a holomorphic function defined on all complex numbers with a branch cut along the interval $\left(-\infty,-\frac{1}{e}\right]$; this holomorphic function defines the principal branch of the Lambert W function.

We can substitute $x \mapsto e^{x+1}$ in the functional equation for $W(x)$ obtaining then

$$
W\left(e^{x+1}\right) e^{W\left(e^{x+1}\right)}=e^{x+1}
$$

or, renaming $Y(x)=W\left(e^{x+1}\right)$, we have a new functional equation: $Y(x) e^{Y(x)-1}=e^{x}$. From this equality it follows by logarithmic differentiation that $Y^{\prime}(x) \cdot(1+Y(x))=Y(x)$.

Take now $U(x):=\frac{1}{1+Y(x)}=\frac{1}{2}-\frac{1}{8} x+\frac{1}{64} x^{2}+\frac{1}{768} x^{3}+\cdots$. We have that

$$
U^{\prime}(x)=\frac{-Y^{\prime}(x)}{(1+Y(x))^{2}}=\frac{-Y(x)}{(1+Y(x))^{3}}=U(x)^{3}-U(x)^{2}
$$

By Theorem 2, $U(x)$ is not D^{∞}-finite. By closure properties of D^{∞}-finite functions, it follows that $Y(x)$ is not D^{∞}-finite either.

To conclude, note that by definition, for real x in the neighborhood of 0 , we have $W(x)=Y(\log (x)-1)$, and by Theorem 10 in [13], it follows that $W(x)$ and $T(x)$ are not D^{∞}-finite either, proving Theorem 1 .

3 Open questions

The class of D-finite power series is closed under Hadamard (term-wise) product. This is false for D^{∞}-finite power series; for instance, Klazar showed in [14] that the ordinary generating function $\sum_{n \geq 0} B_{n} x^{n}$ of the Bell numbers is not differentially algebraic, contrary to its exponential generating function (11), which is DD-finite.

Moreover, it was conjectured by Pak and Yeliussizov [18, Open Problem 2.4] that this is an instance of a more general phenomenon.

Conjecture 1 ([18, Open Problem 2.4]). If for a sequence $\left(a_{n}\right)_{n \geq 0}$ both ordinary and exponential generating functions $\sum_{n \geq 0} a_{n} x^{n}$ and $\sum_{n \geq 0} a_{n} \frac{x^{n}}{n!}$ are D-algebraic, then both are D-finite. (Equivalently, $\left(a_{n}\right)_{n \geq 0}$ satisfies a linear recurrence with polynomial coefficients in n.)

This conjecture has been recently proven for large (infinite) classes of generating functions [5]. However, the very natural example of the generating function for labelled trees escapes the method in [5].

We therefore leave the following as an open question.
Open question 1. Is the power series $\sum_{n \geq 1} n^{n-1} x^{n} \mathrm{D}^{\infty}$-finite? Is it at least differentially algebraic?
According to Conjecture 1, the answer should be "no" for both questions in Open question 1.
Another natural question concerns the generating function for partition numbers:

$$
\sum_{n \geq 0} p_{n} x^{n}:=\prod_{n \geq 1} \frac{1}{1-x^{n}}=1+x+2 x^{2}+3 x^{3}+5 x^{4}+7 x^{5}+11 x^{6}+\cdots
$$

which is known to be differentially algebraic 16 .
Open question 2. Is it true that $\sum_{n \geq 0} p_{n} x^{n}$ is not $\mathrm{D}^{\infty}-$ finite?
One may also ask for the nature of exponential variants of the generating function for partition numbers.
Open question 3. With the same notation as above:

- Is the power series $\sum_{n \geq 0} p_{n} n!x^{n} \mathrm{D}^{\infty}$-finite, or at least differentially algebraic?
- Is the power series $\sum_{n \geq 0} \frac{p_{n}}{n!} x^{n} \mathrm{D}^{\infty}$-finite, or at least differentially algebraic?

References

[1] Martin Aigner and Günter M. Ziegler. Proofs from The Book. Springer-Verlag, Berlin, fourth edition, 2010.
[2] George E. Andrews, Richard Askey, and Ranjan Roy. Special functions, volume 71 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1999.
[3] Norman L. Biggs, E. Keith Lloyd, and Robin J. Wilson. Graph theory. 1736-1936. The Clarendon Press, Oxford University Press, New York, second edition, 1986.
[4] C. W. Borchardt. Ueber eine der Interpolation entsprechende Darstellung der Eliminations-Resultante. J. Reine Angew. Math., 57:111-121, 1860.
[5] A. Bostan, L. Di Vizio, and K. Raschel. Differential transcendence of Bell numbers and relatives - a Galois theoretic approach, 2020. In preparation.
[6] A. Cayley. A theorem on trees. Q. J. Math., 23:376-378, 1889.
[7] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the Lambert W function. Adv. Comput. Math., 5(4):329-359, 1996.
[8] Philippe Flajolet, Stefan Gerhold, and Bruno Salvy. On the non-holonomic character of logarithms, powers, and the nth prime function. Electron. J. Combin., 11(2):Article 2, 16, 2004/06.
[9] Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. Cambridge University Press, Cambridge, 2009.
[10] Stefan Gerhold. On some non-holonomic sequences. Electron. J. Combin., 11(1):Research Paper 87, 8, 2004.
[11] J. L. W. V. Jensen. Sur une identité d'Abel et sur d'autres formules analogues. Acta Math., 26(1):307318, 1902.
[12] Antonio Jiménez-Pastor and Veronika Pillwein. A computable extension for D-finite functions: DD-finite functions. J. Symbolic Comput., 94:90-104, 2019.
[13] Antonio Jiménez-Pastor, Veronika Pillwein, and Michael F. Singer. Some structural results on D^{n}-finite functions. Adv. in Appl. Math., 117:102027, 29, 2020.
[14] Martin Klazar. Bell numbers, their relatives, and algebraic differential equations. J. Combin. Theory Ser. A, 102(1):63-87, 2003.
[15] László Lovász. Combinatorial problems and exercises. North-Holland Publishing Co., Amsterdam, second edition, 1993.
[16] A. M. Mian and S. Chowla. The differential equations satisfied by certain functions. J. Indian Math. Soc. (N.S.), 8:27-28, 1944.
[17] M. P. Noordman, M. van der Put, and J. Top. Combinatorial autonomous first order differential equations, 2019. Preprint, https://arxiv.org/abs/1904.08152v1.
[18] Igor Pak. Complexity problems in enumerative combinatorics. In Proceedings of the International Congress of Mathematicians-Rio de Janeiro 2018. Vol. IV. Invited lectures, pages 3153-3180. World Sci. Publ., Hackensack, NJ, 2018.
[19] Maxwell Rosenlicht. The nonminimality of the differential closure. Pacific J. Math., 52:529-537, 1974.
[20] Lee A. Rubel. A survey of transcendentally transcendental functions. Amer. Math. Monthly, 96(9):777788, 1989.
[21] R. P. Stanley. Differentiably finite power series. European J. Combin., 1(2):175-188, 1980.

Technical Reports of the Doctoral Program
 "Computational Mathematics"

2020
2020-01 N. Smoot: A Single-Variable Proof of the Omega SPT Congruence Family Over Powers of 5 Feb 2020. Eds.: P. Paule, S. Radu
2020-02 A. Schafelner, P.S. Vassilevski: Numerical Results for Adaptive (Negative Norm) Constrained First Order System Least Squares Formulations March 2020. Eds.: U. Langer, V. Pillwein
2020-03 U. Langer, A. Schafelner: Adaptive space-time finite element methods for non-autonomous parabolic problems with distributional sources March 2020. Eds.: B. Jüttler, V. Pillwein
2020-04 A. Giust, B. Jüttler, A. Mantzaflaris: Local (T)HB-spline projectors via restricted hierarchical spline fitting March 2020. Eds.: U. Langer, V. Pillwein
2020-05 K. Banerjee, M. Ghosh Dastidar: Hook Type Tableaux and Partition Identities June 2020. Eds.: P. Paule, S. Radu
2020-06 A. Bostan, F. Chyzak, A. Jiménez-Pastor, P. Lairez: The Sage Package comb_walks for Walks in the Quarter Plane June 2020. Eds.: M. Kauers, V. Pillwein
2020-07 A. Meddah: A stochastic multiscale mathematical model for low grade Glioma spread June 2020. Eds.: E. Buckwar, V. Pillwein

2020-08 M. Ouafoudi: A Mathematical Description for Taste Perception Using Stochastic Leaky Integrate-and-Fire Model June 2020. Eds.: E. Buckwar, V. Pillwein
2020-09 A. Bostan, A. Jiménez-Pastor: On the exponential generating function of labelled trees July 2020. Eds.: M. Kauers, V. Pillwein

Doctoral Program "Computational Mathematics"

Director:

Dr. Veronika Pillwein
Research Institute for Symbolic Computation

Deputy Director:

Prof. Dr. Bert Jüttler
Institute of Applied Geometry

Address:

Johannes Kepler University Linz
Doctoral Program "Computational Mathematics"
Altenbergerstr. 69
A-4040 Linz
Austria
Tel.: ++43 732-2468-6840

E-Mail:

office@dk-compmath.jku.at

Homepage:

http://www.dk-compmath.jku.at

[^0]: *This research was partially funded by the Austrian Science Fund (FWF): W1214-N15, project DK15. It was also supported in part by the ANR DeRerumNatura project, grant ANR-19-CE40-0018 of the French Agence Nationale de la Recherche.
 ${ }^{\dagger}$ INRIA
 ${ }^{\ddagger}$ Johannes Kepler University Linz, Doctoral Program Computational Mathematics, DK15

