Doctoral Program Computational Mathematics

How fast can Dominator win in the Maker-Breaker domination game?

Jovana Forcan
Jiayue Qi

Supported by

Editorial Board: Bruno Buchberger
Evelyn Buckwar
Bert Jüttler
Ulrich Langer
Manuel Kauers
Peter Paule
Veronika Pillwein
Silviu Radu
Ronny Ramlau
Josef Schicho
Managing Editor: Diego Dominici
Communicated by: Veronika Pillwein
Josef Schicho

DK sponsors:

- Johannes Kepler University Linz (JKU)
- Austrian Science Fund (FWF)
- Upper Austria

How fast can Dominator win in the Maker-Breaker domination game?

Jovana Forcan ${ }^{* \dagger}$ and Jiayue Qi $^{\ddagger}{ }^{\ddagger}$

Abstract

We study the Maker-Breaker domination games played by two players, Dominator and Staller. We give a structural characterization for graphs with Maker-Breaker domination number equal to the domination number. Specifically, we show how fast Dominator can win in the game on $P_{2} \square P_{n}$, for $n \geq 1$. Keywords: domination number, Maker-Braker domination number, positional game, grid, winning strategy.

1 Introduction

In this paper we study the Maker-Breaker domination games, first introduced in literature by Duchêne, Gledel, Parreau and Renault in [5]. The games combine two following research directions. In the original domination game, introduced by Brešar, Klavžar, and Rall in [2], two players, Dominator and Staller, alternately take a turn in claiming vertices from the finite graph G, which were not yet chosen in the course of the game. Dominator has a goal to dominate the graph in as few moves as possible while Staller tries to prolong the game as much as possible.

The Maker-Breaker games, introduced by Erdős and Selfridge in [6], are played on a finite hypergraph (X, \mathcal{F}) with the vertex set X and a set $\mathcal{F} \subseteq 2^{X}$ of hyperedges. The set X is called the board of the game, and \mathcal{F} the family of winning sets. Two players, Maker and Breaker take turns in claiming previously unclaimed elements of X. Maker wins the game if, by the end of the game, claims all elements of some $F \in \mathcal{F}$. Otherwise, Breaker wins. For a deeper and more comprehensive analysis of Maker-Breaker games see the

[^0]book of Beck [1], and the recent monograph of Hefetz, Krivelevich, Stojaković and Szabó [9].
The Maker-Breaker domination game (MBD for short) is played on graph $G=(V, E)$ by two players Dominator and Staller. The board of the game is the set V, and family of winning sets consist of all dominating sets of G. The aim of Dominator is to build a dominating set of the graph, that is a set T such that every vertex not in T has a neighbour in T. The aim of Staller is to claim a vertex from the graph G and all its neighbours.

When it is not hard to determine the identity of the winner in some Maker-Breaker game, then the more interesting question to ask is how fast player with the winning strategy can win. Fast winning strategies for Maker in the Maker-Breaker games have received a lot of attention in recent years (see e.g. [3, 4, 8]).
Specifically, for the Maker-Breaker domination game the smallest number of moves for Dominator is studied in [7], where Gledel, Iršič, and Klavžar introduced the MakerBreaker domination number $\gamma_{M B}(G)$ of a graph G, as the minimum number of moves of Dominator to win in the game on G where he is the first player. If Dominator is the second player, then the corresponding invariant authors denoted by $\gamma_{M B}^{\prime}(G)$.

In [7], the authors proved that $\gamma_{M B}(G)=\gamma(G)=2$ if and only if G has a vertex that lies in at least two γ-sets of G, where $\gamma(G)$ is the domination number of G, that is the order of a smallest dominating set of G and γ-set is a dominating set of size $\gamma(G)$.
In this paper, we want to find a structural characterization of the graphs G with domination number $\gamma(G)=k$, where $k \geq 2$ is a fixed integer, for which $\gamma_{M B}(G)=\gamma(G)=k$ holds, answering a related question from [7]. So, in Section 2, we provide a graph \mathcal{G} with the corresponding structural characterization and prove the following theorem.

Theorem 1.1. Let G be a graph with $\gamma(G)=k, k \geq 2$. Then $\gamma_{M B}(G)=\gamma(G)=k$ for all $k \geq 2$ if and only if $G \supseteq \mathcal{G}$.

In the same paper [7], the authors proposed finding the minimum number of moves for Dominator in the MBD game on the Cartesian product of two graphs. Motivated by a given problem, we focus on estimating invariants $\gamma_{M B}(G)$ and $\gamma_{M B}^{\prime}(G)$ for the Cartesian product of two graphs and prove the following theorems in Section 3.

Theorem 1.2. Let G and H be two arbitrary graphs on n and m vertices, respectively. Suppose that Maker has a winning strategy in MBD game on at least one of these two graphs as the first and as the second player. Then

$$
\gamma_{M B}(G \square H) \leq \min \left\{\gamma_{M B}(G)+(m-1) \gamma_{M B}^{\prime}(G), \gamma_{M B}(H)+(n-1) \gamma_{M B}^{\prime}(H)\right\}
$$

and

$$
\gamma_{M B}^{\prime}(G \square H) \leq \min \left\{m \cdot \gamma_{M B}(G), n \cdot \gamma_{M B}^{\prime}(H)\right\} .
$$

Theorem 1.3. Let G be a graph on n vertices. Then Dominator can win the game on $G \square K_{2}$ in at most n moves. If Dominator has a wining strategy as the first and as the second player in the game on G, then $\gamma_{M B}\left(G \square K_{2}\right) \leq \min \left\{\gamma_{M B}(G)+\gamma_{M B}^{\prime}(G), n\right\}$ and $\gamma_{M B}^{\prime}\left(G \square K_{2}\right) \leq \min \left\{2 \gamma_{M B}^{\prime}(G), n\right\}$.

Especially, we focus on determining how long does it take Dominator to win on $P_{2} \square P_{n}$, for $n \geq 1$. So, in Section 3, we also prove the following two theorems.

Theorem 1.4. $\gamma_{M B}^{\prime}\left(P_{2} \square P_{n}\right)=n$ for $n \geq 1$.
Theorem 1.5. $\gamma_{M B}\left(P_{2} \square P_{n}\right)=n-2$, for $n \geq 13$.

1.1 Preliminaries

For given graph G by $V(G)$ and $E(G)$ we denote its vertex set and edge set, respectively. The order of graph G is denoted by $v(G)=|V(G)|$, and the size of the graph by $e(G)=$ $|E(G)|$.
Assume that the MBD game is in progress. We denote by d_{1}, d_{2}, \ldots the sequence of vertices chosen by Dominator and by s_{1}, s_{2}, \ldots the sequence chosen by Staller. At any given moment during this game, we denote the set of vertices claimed by Dominator by \mathfrak{D} and the set of vertices claimed by Staller by \mathfrak{S}. As in [7], we say that the game is the D-game if Dominator is the first to play, i.e. one round consists of a move by Dominator followed by a move of Staller. In the S-game, one round consists of a move by Staller followed by a move of Dominator. We say that the vertex v is isolated by Staller if v and all its neighbours are claimed by Staller.

2 Relation between γ and $\gamma_{M B}$

Let \mathcal{G} be a graph with $\gamma(\mathcal{G})=k$, where $k \geq 2$ is an integer. Let $U=\left\{a, b_{2}, c_{2}, \ldots, b_{k}, c_{k}\right\} \subseteq$ $V(\mathcal{G})$ be a set of all vertices, which appear in γ-sets. Divide the set U into following subsets: $\{a\}$ and $\left\{b_{i}, c_{i}\right\}$, for all $i \in\{2, \ldots, k\}$. Suppose that

- all vertices from $V(\mathcal{G}) \backslash U$ can be divided into k pairwise disjoint sets $A_{1}, A_{2}, \ldots A_{k-1}, A_{k}$ such that all vertices from some A_{i} are adjacent to $\left\{b_{i}, c_{i}\right\}$, for $i=2 \ldots, k$ and $N_{U}\left(A_{i}\right) \cap N_{U}\left(A_{j}\right)=\emptyset$, for all $i \neq j$.
- vertices from A_{1} are the leaves of the star with the center in the vertex $a \in U$ and these vertices do not have other neighbours in U.

At least one of the next four cases must hold

1. $b_{i} c_{i} \in E(\mathcal{G})$,
2. $b_{i} a \in E(\mathcal{G})$ and $c_{i} a \in E(\mathcal{G})$
3. $b_{i} a \in E(\mathcal{G})$ and there exist $j \neq i$ such that $c_{i} b_{j}, c_{i} c_{j}$, or $c_{i} a \in E(\mathcal{G})$ and there exist $j \neq i$ such that $b_{i} b_{j}, b_{i} c_{j} \in E(\mathcal{G})$,
4. there exist $j, k \neq i$ such that $b_{i} b_{j}, b_{i} c_{j}, c_{i} b_{k}, c_{i} c_{k} \in E(\mathcal{G})$ (note that k and j could be equal).

One example of the graph \mathcal{G} is illustrated on Figure 1.

Figure 1: An example of graph \mathcal{G}.

Lemma 2.1. The number of γ-sets in graph \mathcal{G} is 2^{k-1}. In particular, the vertex a lies in every γ-set, the vertex b_{i} lies in exactly $2^{k-2} \gamma$-sets which do not contain vertex c_{i} and the vertex c_{i} lies in other $2^{k-2} \gamma$-sets which do not contain vertex b_{i}.

Proof. Denote by \mathcal{F} a family of all γ-sets of graph G and let $N=|\mathcal{F}|$. In every γ-set from the family \mathcal{F} for each vertex define positions in the corresponding γ-set. Since every γ-set is of order k, denote positions in sets by $1,2 \ldots, k$ and place vertices $a, b_{2}, b_{3}, \ldots, b_{k}, c_{2}, c_{3}, \ldots, c_{k}$ on the corresponding positions in γ-sets in the following way.
Since vertices from A_{1} have only one neighbour from U, a vertex a, it follows that each set from \mathcal{F} must contain this vertex a. Its position in each γ-set we denote by 1 .
Also, since vertices from some set $A_{i}, i=2, \ldots, k$ have two common neighbours from U, b_{i} and c_{i}, then b_{i} or c_{i} will be placed at the position $i, i=2,3, \ldots, k$. More precisely, the vertex b_{i} will appear in $N / 2 \gamma$-sets and c_{i} will appear in other $N / 2 \gamma$-sets which do not contain vertex b_{i}.
It follows that for each position i in some γ-set there are two possibilities, b_{i} or $c_{i}, i=$ $2,3, \ldots, k$. So, we obtain that the total number of γ-sets is $N=2^{k-1}$.

Proof of Theorem 1.1. First, suppose that $\mathcal{G} \subseteq G$ and prove that $\gamma_{M B}(G)=k$. It is enough to prove that $\gamma_{M B}(\mathcal{G})=k$.
In his first move Dominator plays $d_{1}=a$. In every other round $2 \leq r \leq k$, Dominator plays in the following way. If Staller in her $(r-1)^{\text {st }}$ move plays $s_{r-1}=b_{i}$ (or $s_{r-1}=c_{i}$) then Dominator responses with $d_{r}=c_{i}$ (or $d_{r}=b_{i}$), for each $i=2,3, \ldots, k$. So, $\gamma_{M B}(\mathcal{G})=k$.

Suppose, now, that $\gamma_{M B}(G)=k$ and prove that $G \supseteq \mathcal{G}$.
After Dominator's first move d_{1}, it is Staller's turn to make a move. If she claims s_{1} such that d_{1} and s_{1} are part of some γ-set, then there exists at least one more vertex, say d_{2}, such that d_{1} and d_{2} are part of some other γ-set. Otherwise, this is a contradiction with the statement that Dominator wins the game. So, this gives at least two γ-sets: $\left\{d_{1}, d_{2}, \ldots\right\}$ and $\left\{d_{1}, s_{1}, \ldots\right\}$.
Since Staller plays according to her optimal strategy, the vertex she claims in each round is the best choice for her. So, for her first move she had at least two best choices, s_{1} and d_{2}. We consider separately the cases when Staller claims s_{1} and when she claims d_{2} in the first round.

Case 1. Suppose that Staller claimed s_{1} in her first move and Dominator claimed d_{2} in his second move. Then Staller in her second move can claim s_{2} such that d_{1}, d_{2} and s_{2} are part of some γ-set. Then there exists at least one more vertex, say d_{3}, such that d_{1}, d_{2} are d_{3} are part of some other γ-set.

Case 2. Suppose that Staller claimed d_{2} in her first move and Dominator claimed s_{1} in his second move. Then, Staller in her second move can claim some s_{2} such that d_{1}, s_{1} are s_{2} are part of some γ-set. Then, there exists at least one more vertex, say d_{3}, such that d_{1}, s_{1} are d_{3} are part of some other γ-set. Dominator claims d_{3}.

After Dominator's third move, above analyses gives at least $4=2^{2} \gamma$-sets: $\left\{d_{1}, d_{2}, d_{3} \ldots\right\}$, $\left\{d_{1}, d_{2}, s_{2} \ldots\right\},\left\{d_{1}, s_{1}, d_{3} \ldots\right\}$ and $\left\{d_{1}, s_{1}, s_{2} \ldots\right\}$.

Suppose that after Dominator's $i^{\text {th }}$ move we obtain that there are $2^{i-1} \gamma$-sets. Assume that after Dominator's move in round i, he owns vertices: $d_{1}, d_{2}, d_{3}, \ldots, d_{i}$.
If in round i Staller claims some s_{i} such that $d_{1}, d_{2}, \ldots, d_{i}$ are s_{i} are part of some γ-set, then according to the statement of theorem that Dominator wins in the game, there exists a vertex d_{i+1}, such that $d_{1}, d_{2}, \ldots, d_{i}$ and d_{i+1} are part of some other γ-set. So, s_{i} or d_{i+1} is the vertex on the $(i+1)^{\text {st }}$ position of previously found 2^{i-1} sets. So, this gives at least 2^{i-1} new sets which is, in total, at least $2 \cdot 2^{i-1}=2^{i} \gamma$-sets.
Since Dominator in each round $i, i=2,3, . ., k$ can find the corresponding vertex, as the response to Staller's $(i-1)^{\text {st }}$ move, it follows that for each position in every γ-set there are at least two possible choices. This gives at least $2^{k-1} \gamma$-sets. The vertex d_{i} (or s_{i-1}), for every $i=2,3, \ldots, k$, appears in at least $2^{k-2} \gamma$-sets which do not contain $s_{i-1}\left(\right.$ or $\left.d_{i}\right)$. The vertex d_{1} must appear in all γ-sets. Otherwise, after some number of rounds Dominator will lose the game which would be a contradiction. Also, at least one of the next four cases must hold for each $i \in\{1, \ldots, k-1\}$.

1. $s_{i} d_{i+1} \in E(G)$,
2. $d_{1} d_{i+1}, d_{1} s_{i} \in E(G)$,
3. $d_{1} d_{i+1} \in E(G)$ and there exist $j \neq i$ such that $s_{i} s_{j}, s_{i} d_{j+1} \in E(G)$, or $d_{1} s_{i} \in E(G)$ and there exist $j \neq i$ such that $d_{i+1} s_{j}, d_{i+1} d_{j+1} \in E(G)$,
4. there exist $j, k \neq i$ such that $s_{i} s_{j}, s_{i} d_{j+1}, d_{i+1} s_{k}, d_{i+1} d_{k+1} \in E(G)$ (where k and j could be equal).

So, $G \supseteq \mathcal{G}$.

3 MBD game on $G \square H$

First, we consider the MBD game on $G \square K_{2}$ and prove Theorem 1.3.
Proof of Theorem 1.3. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let H be a copy of the graph G and let $V(H)=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$, where $v_{i}^{\prime}=v_{i}$ for each $i \in\{1,2, \ldots, n\}$. Then $V\left(G \square K_{2}\right)=V(G) \cup V(H)=\left\{v_{1}, v_{2}, \ldots, v_{n}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ and $E\left(G \square K_{2}\right)=$ $E(G) \cup E(H) \cup\left\{v_{1} v_{1}^{\prime}, v_{2} v_{2}^{\prime}, \ldots, v_{n} v_{n}^{\prime}\right\}$.
In order to win, Dominator can always use the pairing strategy. That is, when Staller claims v_{i} (or v_{i}^{\prime}), for some $i \in\{1,2, \ldots, n\}$, Dominator responses by claiming vertex v_{i}^{\prime} (or v_{i}). So, Dominator wins in at most n moves. To see that bound is tight consider G as the disjoint union of $K_{1} \mathrm{~s}$.
Next, suppose that Dominator can win in the game on the graph G as the first and as the second player. Assume that Dominator starts the game. Note that $\gamma_{M B}(G)=\gamma_{M B}(H)$ and $\gamma_{M B}^{\prime}(G)=\gamma_{M B}^{\prime}(H)$.
By S_{D} and S_{D}^{\prime} denote Dominator's winning strategy on G (and also on H) in the D-game and the S-game, respectively.
If $\gamma_{M B}(G)+\gamma_{M B}^{\prime}(G) \geq n$, Dominator will use the pairing strategy. So, suppose that $\gamma_{M B}(G)+\gamma_{M B}^{\prime}(G)<n$.
For his first move Dominator chooses a vertex from $V(G)$ according to his winning strategy S_{D}. In this way he starts the D-game on G.
In every other round $r \geq 2$, Dominator looks on the $(r-1)^{\text {st }}$ move of Staller. If Staller claims a vertex from $V(G)$, Dominator responses by claiming a vertex from $V(G)$ and if Staller claims a vertex from $V(H)$, Dominator also claims a vertex from $V(H)$.
If Staller was first to claim a vertex from $V(H)$, then the S-game was played on H. So, in the game on $G \square K_{2}$, Dominator can win in at most $\gamma_{M B}(G)+\gamma_{M B}^{\prime}(G)$ moves.

Next, assume that Staller starts the game on $G \square K_{2}$. If $2 \gamma_{M B}^{\prime}(G) \geq n$, Dominator will use the pairing strategy. So, let $2 \gamma_{M B}^{\prime}(G)<n$. Since in this case, Staller can make the first move on G and after, also, on H, Dominator will need to play according to the strategy S_{D}^{\prime} on both graphs G and H. So, to win in the game on $G \square K_{2}$, he needs to play at most $2 \gamma_{M B}^{\prime}(G)$ moves.

Remark 3.1. The domination number of the $r \times l$ rook's graph $K_{r} \square K_{l}$ is $\gamma=\min (r, l)$. It is not hard to see that Dominator can win in γ moves. Note that the graph \mathcal{G}, described in Section 2, is the subgraph of $K_{r} \square K_{l}$.

Proof of Theorem 1.2. The proof for the first part of theorem is similar to the proof of Theorem 1.3. Consider, first, the D-game on $G \square H$. Suppose that Dominator has a winning strategy as the second player on G. Let $\gamma_{M B}(G)+(m-1) \gamma_{M B}^{\prime}(G) \leq \gamma_{M B}(H)+$ $(n-1) \gamma_{M B}^{\prime}(H)$.
By $G^{(1)}, G^{(2)}, \ldots, G^{(m)}$ denote copies of the graph G. By S_{D} and S_{D}^{\prime} denote Dominator's winning strategy on G in the D-game and the S-game, respectively.
His first move Dominator will play on one copy of G according to his winning strategy S_{D}. In every other round $i \geq 2$, he looks on the $(i-1)^{\text {st }}$ move of Staller. If Staller in his $(i-1)^{\text {st }}$ move claimed vertex from some $V\left(G^{j}\right)$, Dominator responds by claiming a vertex from the same set $V\left(G^{j}\right)$ according to the corresponding winning strategy S_{D} or S_{D}^{\prime}. Since Staller can be the first player on at most $m-1$ copies of the graph G, the statement holds.
If $\gamma_{M B}(G)+(m-1) \gamma_{M B}^{\prime}(G)>\gamma_{M B}(H)+(n-1) \gamma_{M B}^{\prime}(H)$, then we consider n copies of graph H and the proof is the same.

3.1 MBD game on $P_{2} \square P_{n}$

Definition 3.2. For $1 \leq m \leq n$, let $V=\left\{u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{m}\right\}$ and $E=\left\{u_{i} u_{i+1}: i=\right.$ $1,2, \ldots, m-1\} \cup\left\{v_{i} v_{i+1}: i=1,2, \ldots, m-1\right\} \cup\left\{u_{i} v_{i}: i=1,2, \ldots, m\right\}$. Suppose that Maker-Breaker domination game on $P_{2} \square P_{n}$ is in progress, where $n \geq 5$.

1. By $X_{m}(1 \leq m \leq n)$ denote a subgraph of $P_{2} \square P_{n}$, where $V\left(X_{m}\right)=V$ and $E\left(X_{m}\right)=$ E, such that u_{1} is a free vertex which is dominated by Dominator with its neighbour $u_{0} \in V\left(P_{2} \square P_{n}\right) \backslash V\left(X_{m}\right)$ (Figure 2(a)).
2. $B y Y_{m}(3 \leq m \leq n)$ denote a subgraph of $P_{2} \square P_{n}$, where $V\left(Y_{m}\right)=V$ and $E\left(Y_{m}\right)=E$, such that v_{2} is claimed by Staller and u_{1}, u_{m} and v_{m} are free vertices which are dominated by Dominator with their corresponding neighbours from the set $V\left(P_{2} \square P_{n}\right) \backslash$ $V\left(Y_{m}\right)$ (Figure 2(b)).
When consider the D-game on Y_{m}, we set $s_{0}=v_{2}$.
3. By $Z_{m}(1 \leq m \leq n)$ denote a subgraph of $P_{2} \square P_{n}$, where $V\left(Z_{m}\right)=V$ and $E\left(Z_{m}\right)=E$, such that u_{1} and v_{1} are free vertices which are dominated by Dominator with their corresponding neighbours from the set $V\left(P_{2} \square P_{n}\right) \backslash V\left(Z_{m}\right)$ (Figure 2(c)).
4. By $W_{m}(1 \leq m \leq n)$ denote a subgraph of $P_{2} \square P_{n}$, where $V\left(W_{m}\right)=V \cup\left\{v_{0}\right\}$ and $E\left(W_{m}\right)=E \cup\left\{v_{0} v_{1}\right\}$, such that u_{1} and v_{0} are free vertices which are dominated by Dominator with their corresponding neighbour $u_{0} \in V\left(P_{2} \square P_{n}\right) \backslash V\left(W_{m}\right)$ (Figure 2(d)).
5. By $\rho_{m}(2 \leq m \leq n)$ denote a subgraph of $P_{2} \square P_{n}$, where $V\left(\rho_{m}\right)=V$ and $E\left(\rho_{m}\right)=E$, such that v_{2} is claimed by Staller and u_{1} is a free vertex which is dominated by Dominator with its neighbour $u_{0} \in V\left(P_{2} \square P_{n}\right) \backslash V\left(\rho_{m}\right)$ (Figure 2(e)).
When consider the D-game on ρ_{m}, we set $s_{0}=v_{2}$.
We define two types of traps Staller can create in the MBD game on $P_{2} \square P_{n}$ for $n \geq 3$.

Figure 2: Subgraph (a) X_{m} (b) Y_{m} (c) Z_{m} (d) W_{m} (e) ρ_{m}
Vertices claimed by Dominator are denoted by cycles and vertices claimed by Staller by crosses. Triangle vertices are free vertices dominated by Dominator.

Trap 1 - triangle trap. We say that Staller created a triangle trap if after her move Dominator is forced to claim a vertex v_{i} in order to dominate v_{i}, where $2 \leq i \leq n-1$, because all its neighbours v_{i-1}, v_{i+1} and u_{i} are claimed by Staller and Staller can isolate v_{i} by claiming it in her next move. Similarly, Staller created the triangle trap if Dominator is forced to claim u_{i} in order to dominate u_{i}, where $2 \leq i \leq n-1$, because all its neighbours u_{i-1}, u_{i+1} and v_{i} are claimed by Staller.
We say that Staller creates a sequence of triangle traps $v_{i}-v_{j}$ (or $v_{i}-u_{j}$), where $2 \leq$ $i \leq n-2$ and $i+1 \leq j \leq n-1$, if Dominator is consecutively forced to claimed vertices $v_{i}, u_{i+1}, v_{i+2}, u_{i+3}, \ldots, v_{j}$ (or $v_{i}, u_{i+1}, v_{i+2}, u_{i+3}, \ldots, u_{j}$). In this sequence of triangle traps the

Figure 3: The example of the sequence of (a) triangle traps (b) line traps Vertices claimed by Dominator are denoted by cycles and vertices claimed by Staller by crosses.
triple of vertices claimed by Staller which form the first trap is v_{i-1}, u_{i}, v_{i+1}, and the triple of vertices which form the last trap in this sequence is v_{j-1}, u_{j}, v_{j+1} (or u_{j-1}, v_{j}, u_{j+1}), and $v_{j+1}\left(\right.$ or $\left.u_{j+1}\right)$ is the vertex which is claimed last by Staller in the sequence of traps. The sequence of triangle traps $v_{3}-u_{8}$ is illustrated on Figure 3(a).
Similarly, we say that Staller creates a sequence of triangle traps $u_{i}-v_{j}$ (or $u_{i}-u_{j}$), where $2 \leq i \leq n-2$ and $i+1 \leq j \leq n-1$, if Dominator is consecutively forced to claimed vertices $u_{i}, v_{i+1}, u_{i+2}, v_{i+3}, \ldots, v_{j}\left(\right.$ or $\left.u_{i}, v_{i+1}, u_{i+2}, v_{i+3}, \ldots, u_{j}\right)$. In this sequence of triangle traps the triple of vertices claimed by Staller which form the first trap is u_{i-1}, v_{i}, u_{i+1}, and the triple of vertices which form the last trap in this sequence is v_{j-1}, u_{j}, v_{j+1} (or u_{j-1}, v_{j}, u_{j+1}), and $v_{j+1}\left(\right.$ or $\left.u_{j+1}\right)$ is the vertex which claimed last by Staller in the sequence of triangle traps.

Trap 2 - line trap. We say that Staller created a line trap if after her move Dominator is forced to claim a vertex $v_{i}, 2 \leq i \leq n-1$, in order to dominate u_{i} because vertices u_{i-1}, u_{i} and u_{i+1} are claimed by Staller and Staller can isolate u_{i} by claiming v_{i} in her next move. Similarly, Staller created a line trap if Dominator is forced to claim u_{i} in order to dominate $v_{i}, 2 \leq i \leq n-1$, because vertices v_{i-1}, v_{i} and v_{i+1} are claimed by Staller.
We say that Staller creates a sequence of line traps $v_{i}-v_{j}$ (or $u_{i}-u_{j}$), where $2 \leq i \leq$ $n-2$ and $i+1 \leq j \leq n-1$, if Dominator is consecutively forced to claimed vertices $v_{i}, v_{i+1}, v_{i+2}, v_{i+3}, \ldots, v_{j}$ (or $u_{i}, u_{i+1}, u_{i+2}, u_{i+3}, \ldots, u_{j}$) and where the last vertex claimed by Staller in this sequence is u_{j+1} (or v_{j+1}). The sequence of line traps $u_{3}-u_{8}$ is illustrated on Figure 3(b).

Lemma 3.3. Let $m \geq 2$. Then $\gamma_{M B}\left(\rho_{m}\right)=m$. Also, if Dominator skips his move in any round, he can not win.

Proof. Let $s_{0}=v_{2}$. To prove the upper and the lower bound we use induction on k, where $2 \leq k \leq m$. For $k=2, \rho_{2}$ is a cycle C_{4}. To dominate v_{1} and u_{2}, Dominator needs to play two moves. So, $\gamma_{M B}\left(\rho_{2}\right)=2$. If Dominator skips his first move on ρ_{2}, which we denote by $d_{1}=\emptyset$, then $s_{1}=v_{1}$ and in her next round Staller can isolate either v_{1} or v_{2}.
To prove that $\gamma_{M B}\left(\rho_{3}\right)=3$, we analyse the following cases. It is not hard to see that if Dominator skips any move on ρ_{3}, Staller can isolate some vertex.

1. $d_{1}=u_{3}\left(\right.$ or $\left.d_{1}=v_{1}\right)$

Then s_{1} must be equal to v_{1} (or $s_{1}=u_{3}$), as otherwise Dominator will need exactly one more move to win. To dominate v_{1} and v_{2} (or u_{2}, u_{3} and v_{3}), Dominator needs two more moves.
2. $d_{1}=v_{3}\left(\right.$ or $\left.d_{1}=u_{1}\right)$.

This case is symmetric to the previous case.
3. $d_{1}=u_{2}$.

Dominator needs two more moves to dominate v_{1} and v_{3}.
So, $\gamma_{M B}\left(\rho_{3}\right)=3$.
For $k \in\{2,3\}$, statement holds. Suppose that $\gamma_{M B}\left(\rho_{k-1}\right) \leq k-1$, for $4 \leq k \leq m$ and $m \geq 4$. Consider the D-game on ρ_{k}. Dominator's strategy is to split ρ_{k} into two parts, a graph ρ_{k-1} and an edge $u_{k} v_{k}$. By induction hypothesis, $\gamma_{M B}\left(\rho_{k-1}\right) \leq k-1$. Also, when Staller claims u_{k} (or v_{k}), Dominator claims v_{k} (or u_{k}). So, it follows that $\gamma_{M B}\left(\rho_{k}\right) \leq k$.

Next, we prove that Staller has a strategy to postpone Dominator's winning by at least k moves and which ensures that Dominator can not skip any move on ρ_{k}.
Assume that $\gamma_{M B}\left(\rho_{k-1}\right) \geq k-1$ and Dominator can not skip any move in the game on ρ_{k-1}, for $4 \leq k \leq m$. Consider the D-game on ρ_{k} and prove that $\gamma_{M B}\left(\rho_{k}\right) \geq k$ and Dominator is not able to skip any move on ρ_{k}.
If $d_{1}=\emptyset$, we propose the following strategy for Staller: $s_{1}=v_{1}$ which forces $d_{2}=u_{1}$, as otherwise Staller can isolate v_{1} in her next move. By playing $s_{2}=v_{3}$ Staller starts the sequence of line traps $u_{2}-u_{k-1}$. In her last move Staller claims u_{k} and isolates v_{k}. Next, we consider all possibilities for d_{1} and propose Staller's strategy.

Case 1. $d_{1}=u_{i},(i \neq 1)$.
Then $s_{1}=v_{1}$ which forces $d_{2}=u_{1}$, as otherwise Staller can isolate v_{1} by claiming u_{1} in her third move.
If $i=2$, that is, if $d_{1}=u_{2}$, then $s_{2}=v_{4}$. Consider the D-game on subgraph ρ_{k-2} on $V\left(\rho_{k-2}\right)=\left\{u_{3}, \ldots, u_{k}, v_{3}, . ., v_{k}\right\}$, where $v_{4} \in \mathfrak{S}$ and u_{3} is a free vertex dominated by Dominator with u_{2}.
By induction hypothesis $\gamma_{M B}\left(\rho_{k-2}\right) \geq k-2$ and Dominator can not skip any move. So, Dominator needs at least k moves to win on ρ_{k} without skipping any move.

If $i>2$, then $s_{2}=v_{3}$ and Staller starts the sequence of line traps $u_{2}-u_{i-1}$.
In round i Staller claims $s_{i}=v_{i+2}$. Consider the D-game on subgraph ρ_{k-i} with the vertex set $V\left(\rho_{k-i}\right)=\left\{u_{i+1}, \ldots, u_{k}, v_{i+1}, . ., v_{k}\right\}$, where $v_{i+2} \in \mathfrak{S}$ and u_{i+1} is a free vertex dominated by Dominator with u_{i}. By induction hypothesis, $\gamma_{M B}\left(\rho_{k-i}\right) \geq k-i$ and Dominator can not skip any move. So, Dominator needs at least k moves to win on ρ_{k} without skipping any move.
If $i=k$, that is, if $d_{1}=u_{k}$, then Dominator already played k moves since he was forced to claim all from $\left\{u_{1}, \ldots, u_{k}\right\}$.

If $i=k-1$, that is, if $d_{1}=u_{k-1}$, then $s_{i}=s_{k-1} \in\left\{u_{k}, v_{k}\right\}$. So, Dominator needs to play one more move to dominate v_{k}. So, in total, he plays k moves.

Case 2. $d_{1}=v_{i}, i \geq 3$.
Claim 3.4. If $d_{1} \notin\left\{v_{3}, v_{4}\right\}$, then Dominator can not win.
Proof of Claim 3.4. Suppose that $d_{1} \notin\left\{v_{3}, v_{4}\right\}$.
Then $s_{1}=u_{2}$.
If $d_{2}=u_{3}$, Staller claims $s_{2}=v_{1}$ and forces $d_{3}=u_{1}$ or $d_{3}=v_{3}$. Since Dominator can not dominate vertices v_{1}, u_{1} and v_{2} at the same time, in her next move Staller will isolate v_{1} and u_{1} by claiming u_{1}, or v_{2} by claiming v_{3}.
If $d_{2}=v_{3}$, Staller claims $s_{2}=u_{1}$. Since Dominator can not dominate u_{1}, v_{1} and u_{2} at the same time, he will lose the game after Staller next move.
If $d_{2}=u_{1}$, then $s_{2}=v_{3}$ which forces $d_{3}=v_{1}$. Next, $s_{3}=u_{3}$. Dominator can not dominate both u_{3} and v_{3} in his next move. In her next move Staller isolates u_{3} or v_{3}. If $d_{2}=v_{1}$, then $s_{2}=u_{3}$ which forces $d_{3}=u_{1}$. Next, $s_{3}=v_{3}$. Dominator can not dominate both u_{3} and v_{3}. So, he will lose the game after Staller's next move.
Finally, if $d_{2} \notin\left\{u_{1}, v_{1}, u_{3}, v_{3}\right\}$, then Staller claims $s_{2}=u_{1}$. Since Dominator can not dominate u_{1}, v_{1}, u_{2} and v_{2} at the same time, he will lose the game after Staller's next move.

So, $d_{1} \in\left\{v_{3}, v_{4}\right\}$.

Case $2.1 d_{1}=v_{3}$.
Then, $s_{1}=u_{1}$ which forces $d_{2}=v_{1}$, and $s_{2}=u_{3}$ which forces $d_{3}=u_{2}(\mathrm{a}$ triangle trap). Next, $s_{3}=u_{5}$. Consider the D-game on the subgraph ρ_{k-3} with the vertex set $V\left(\rho_{k-3}\right)=\left\{u_{4}, \ldots, u_{k}, v_{4}, \ldots, v_{k}\right\}$. By induction hypothesis, it holds that $\gamma_{M B}\left(\rho_{k-3}\right) \geq k-3$ and he can not skip any move. So, Dominator needs at least k on ρ_{k} moves without skipping any move.
Case $2.2 d_{1}=v_{4}$.
Then $s_{1}=u_{2}$.
Claim 3.5. If $d_{2} \notin\left\{u_{1}, v_{1}\right\}$, then Dominator can not win.
Proof of Claim 3.5. The proof of this claim is very similar to the proof of Claim 3.4.

Case 2.2.1 $d_{2}=u_{1}$.
Then, $s_{2}=v_{3}$ which forces $d_{3}=v_{1}$ and $s_{3}=u_{4}$ which forces u_{3} (a triangle trap). Next, if $k \geq 6$, then $s_{4}=u_{6}$. Consider the D-game on subgraph ρ_{k-4} with the vertex set $V\left(\rho_{k-4}\right)=\left\{u_{5}, \ldots, u_{k}, v_{5}, \ldots, v_{k}\right\}$ where v_{5} is already dominated by Dominator with v_{4}, and the vertex u_{6} is claimed by Staller. By induction hypothesis, it holds $\gamma_{M B}\left(\rho_{k-4}\right) \geq k-4$ and he can not skip
any move. So, Dominator needs at least k moves without skipping any move.
If $k=5$, then no matter what Staller claims in her fourth move, Dominator will need one more move to dominate u_{5}.
Case 2.2.2 $d_{2}=v_{1}$.
Then, $s_{2}=u_{3}$ which forces $d_{3}=u_{1}$ and $s_{3}=u_{4}$ which forces v_{3} (a line trap). Next, $s_{4}=u_{6}$ and the rest of the proof is the same as in Case 2.2.1.

Case 3. $d_{1}=u_{1}$.
Then $s_{1}=v_{3}$.
Case 3.1. $d_{2}=u_{i}, i>2$.
Then, $s_{2}=u_{2}$ which forces $d_{3}=v_{1}$.
Next, $s_{3}=v_{4}$ and Staller starts the sequence of line traps $u_{3}-u_{i-1}$. In round i, Staller claims v_{i+2}. Consider the D-game on ρ_{k-i} with the vertex set $V\left(\rho_{k-i}\right)=$ $\left\{u_{i+1}, \ldots, u_{k}, v_{i+1}, \ldots, v_{k}\right\}$ where u_{i+1} is already dominated by Dominator with u_{i} and v_{i+2} is claimed by Staller. The rest of the proof is the same as in Case 1. So, Dominator needs at least k moves on ρ_{k} without skipping any move.
Case 3.2. $d_{2}=v_{i}$, where $i>3$.
Then, $s_{2}=u_{2}$ which forces $d_{3}=v_{1}$.
If $i>4$, that is, if $d_{2}=v_{i} \neq v_{4}$, then $s_{3}=u_{3}$. Dominator can not dominate both u_{3} and v_{3} at the same time. In her next move, Staller isolates u_{3} or v_{3} and Dominator loses the game.
If $i=4$, then $s_{3}=u_{4}$ which forces $d_{4}=u_{3}$. Next, if $k \geq 6$, then $s_{4}=u_{6}$ and the rest of the proof is the same as in Case 2.2.1.
Case 3.3. $d_{2} \in\left\{v_{1}, u_{2}\right\}$.
Then, in round $2 \leq r \leq k-2$, Staller claims $s_{r}=v_{r+2}$ and forces Dominator to claim $d_{r+1}=u_{r+1}$, as otherwise Staller can isolate v_{r+1} by claiming u_{r+1} in the next round, that is Staller creates the sequence of line traps $u_{3}-u_{k-1}$. In the last round $k-1$, Staller claims u_{k} and in this way she isolates v_{k}.
Case 4. $d_{1}=v_{1}$.
Then, Staller claims $s_{1}=u_{3}$.
Claim 3.6. If $d_{2} \notin\left\{v_{3}, u_{4}, v_{4}\right\}$, then Dominator can not win.
Proof of Claim 3.6. Assume that $d_{2} \notin\left\{v_{3}, u_{4}, v_{4}\right\}$.
Let $d_{2}=u_{1}$ or $d_{2}=u_{2}$.
Then, in round 2 , by playing $s_{2}=v_{4}$, Staller starts the sequence of triangle traps $v_{3}-v_{k-1}($ for even $k)$ or $v_{3}-u_{k-1}($ for odd $k)$. In the last move, if k is even, Staller claims u_{k} and isolates it. If k is odd, she claims v_{k} and isolates it.

Let $d_{2} \notin\left\{u_{1}, u_{2}, v_{3}, u_{4}, v_{4}\right\}$.

Then, we have the following sequences of the moves: $s_{2}=u_{2} \Rightarrow d_{3}=u_{1}$ and $s_{3}=v_{3}$. Dominator can not dominate both u_{3} and v_{3} at the same time.

From Claim 3.6, it follows that $d_{2} \in\left\{v_{3}, u_{4}, v_{4}\right\}$. We have $s_{0}=v_{2}, d_{1}=v_{1}$ and $s_{1}=u_{3}$. Next, we consider the following cases.

Case 4.1. $d_{2}=v_{3}$.
Then, Staller claims $s_{2}=u_{1}$ which forces Dominator to claim $d_{3}=u_{2}$. In the next round Staller claims u_{5}. The rest of the proof is the same as in Case 2.1. So, Dominator needs at least k moves on ρ_{k} without skipping any move.
Case 4.2. $d_{2}=u_{4}$.
Then, Staller claims $s_{2}=u_{1}$ which forces Dominator to claim $d_{3}=u_{2}$. In the next round Staller claims $s_{3}=v_{4}$ and forces Dominator to play $d_{4}=v_{3}$. If $k \geq 6$, then $s_{4}=v_{6}$. Consider the D-game on ρ_{k-4} with the vertex set $V\left(\rho_{k-4}\right)=$ $\left\{u_{5}, u_{6}, \ldots, u_{k}, v_{5}, v_{6}, \ldots, v_{k}\right\}$ where u_{5} is already dominated by Dominator with u_{4} and v_{6} is claimed by Staller. The rest of the proof is the same as in Case 2.2.1.

Case 4.3. $d_{2}=v_{4}$.
Then, Staller claims $s_{2}=u_{2}$ which forces Dominator to claim $d_{3}=u_{1}$. In the next round Staller claims $s_{3}=u_{4}$ and forces Dominator to play $d_{4}=v_{3}$. Next, $s_{4}=u_{6}$ and the rest of the proof is similar to the proof from Case 4.2. So, Dominator needs to play at least k moves on ρ_{k} without skipping any move.

This concludes the proof of the lemma.

Remark 3.7. Note that the D-game on graph ρ_{m} can be considered as the S-game on X_{m} where $s_{1}=v_{2}$. This means that v_{2} is one of the optimal choices for the first move for Staller in the S-game on X_{m} since by playing v_{2} in her first move and then following her strategy for ρ_{m} Staller can force Dominator to play the maximum number of moves, which is m.

Lemma 3.8. Let $m \geq 3$. Then $\gamma_{M B}\left(Y_{m}\right)=m-1$.
Proof. Let $s_{0}=v_{2}$.
The proof is very similar to the proof of Lemma 3.3. To prove the upper and the lower bound, we use induction on k where $2 \leq k \leq m$. In the proof for the lower bound we follow the same case analysis from Lemma 3.3.

Lemma 3.9. Let $m \geq 1$. Then $\gamma_{M B}^{\prime}\left(Z_{m}\right)=m-1$.
Proof. To prove the upper bound we use induction on k, where $1 \leq k \leq m$. For $k \in\{1,2,3\}$ it is not hard to see that statement holds, that is, Dominator needs to play $k-1$ moves in the S-game on Z_{k}. Suppose that $\gamma_{M B}^{\prime}\left(Z_{k-1}\right) \leq k-2$ for $4 \leq k \leq m$ and
prove that $\gamma_{M B}^{\prime}\left(Z_{k}\right) \leq k-1$. Dominator splits the graph into two parts, a graph Z_{k-1} and an edge $u_{k} v_{k}$. By induction hypothesis, $\gamma_{M B}^{\prime}\left(Z_{k-1}\right) \leq k-2$. Also, when Staller claims u_{k} (or v_{k}), Dominator claims v_{k} (or u_{k}). So, $\gamma_{M B}^{\prime}\left(Z_{k}\right) \leq k-1$.

To prove the lower bound we propose the following strategy for Staller:
$s_{1}=u_{m}$, which forces $d_{1} \in\left\{u_{m-1}, v_{m-1}, v_{m}\right\}$. Otherwise, in her second move Staller can choose v_{m} and in the third move she can isolate either u_{m} or v_{m} by claiming u_{m-1} or v_{m-1}, since Dominator will not be able to dominate both u_{m} and v_{m} in his second move.
If $d_{1}=u_{m-1}$, Staller plays $s_{2}=v_{m-1}$ which forces $d_{2}=v_{m}$. Then, $s_{3}=v_{m-3}$. In this way Staller creates Y_{m-2} with the vertex set $V\left(Y_{m-2}\right)=\left\{u_{1}, u_{2}, \ldots, u_{m-2}, v_{1}, v_{2}, \ldots, v_{m-2}\right\}$. From Lemma 3.8 we know that $\gamma_{M B}\left(Y_{m-2}\right)=m-3$, so Dominator needs to play $m-1$ moves on Z_{m}.
If $d_{1}=v_{m-1}$, Staller plays $s_{2}=u_{m-1}$ which forces $d_{2}=v_{m}$. Then, $s_{3}=u_{m-3}$. In this way Staller creates Y_{m-2}. According to Lemma 3.8, $\gamma_{M B}\left(Y_{m-2}\right)=m-3$, so Dominator needs to play $m-1$ moves on Z_{m}.
Finally, if $d_{1}=v_{m}$ Staller plays $s_{2}=u_{m-2}$ and creates Y_{m-1}. According to Lemma 3.8, $\gamma_{M B}\left(Y_{m-1}\right)=m-2$, so Dominator needs to play $m-1$ moves on Z_{m}.
It follows that, $\gamma_{M B}^{\prime}\left(Z_{m}\right)=m-1$ for $m \geq 4$.
Lemma 3.10. Let $m \geq 4$. Then $\gamma_{M B}^{\prime}\left(W_{m}\right)=m-1$. In particularly, if $m \in\{1,2,3\}$, then $\gamma_{M B}^{\prime}\left(W_{m}\right)=m$.
Proof. For $m \in\{1,2,3\}$ it is not hard to see that Dominator needs m moves to win in the S-game on W_{m}.
Let $m \geq 4$. Since W_{m} has one more undominated vertex than Z_{m}, Dominator needs to play at least as many moves as he needs to play on Z_{m}. So, it follows that $\gamma_{M B}^{\prime}\left(W_{m}\right) \geq \gamma_{M B}^{\prime}\left(Z_{m}\right)$ and the lower bound holds.
The proof for the upper bound follows by induction on k where $4 \leq k \leq m$. For $k=4$, we consider the following cases and propose Dominator's strategy.

Case 1. $s_{1}=v_{2}$.
Then, $d_{1}=u_{3}$.
If $s_{2}=v_{1}$, then $d_{2}=v_{3}$. To dominate v_{1} Dominator will claim a vertex from $\left\{v_{0}, u_{1}\right\}$. One of these two vertices must be free after Staller's third move. Otherwise, if $s_{2} \neq v_{1}$, then $d_{2}=v_{1}$. To dominate v_{4} Dominator will claim a vertex from $\left\{v_{3}, v_{4}, u_{4}\right\}$. One of these three vertices must be free after Staller's third move.

Case 2. $s_{1} \neq v_{2}$.
Case $2.1 s_{1}=u_{4}\left(\right.$ or $\left.s_{1}=v_{4}\right)$.
Then, $d_{1}=u_{3}$. If $s_{2}=v_{3}$, then $d_{2}=v_{4}\left(\right.$ or $\left.d_{2}=u_{4}\right)$ and $d_{3} \in\left\{v_{1}, v_{2}\right\}$. If $s_{2}=v_{4}$ (or $s_{2}=u_{4}$), then $d_{2}=v_{3}$ and $d_{3} \in\left\{v_{1}, v_{2}\right\}$.
Case $2.2 s_{1} \notin\left\{u_{4}, v_{4}\right\}$.
Then, $d_{1}=v_{2}$. Dominator needs at most two more moves to dominate the remaining vertices.

Suppose that $\gamma_{M B}^{\prime}\left(W_{k-1}\right) \leq k-2$, for $5 \leq k \leq m-1$. Consider the S-game on W_{k}. Dominator divides W_{k} into two parts, W_{k-1} and an edge $u_{k} v_{k}$. Since $\gamma_{M B}^{\prime}\left(W_{k-1}\right) \leq k-2$ and since he needs at most one more move to dominate u_{k} and v_{k}, it follows that $\gamma_{M B}^{\prime}\left(W_{k}\right) \leq$ $k-1$.

Lemma 3.11. Let $m \geq 6$. Then $\gamma_{M B}\left(X_{m}\right)=m-2$. In particularly, if $m=1$ then $X_{1}=1$ and if $m \in\{2,3,4,5\}$, then $X_{m}=m-1$.

Proof. For $m \in\{1,2,3\}$ it is not hard to see that the statement holds. For $m=4$ and $m=5$ simple case analysis gives the result.
Let $m \geq 6$. The proof for the upper bound goes by induction on k, where $6 \leq k \leq m$. First, we consider the D-game on X_{6}. In his first move Dominator plays $d_{1}=v_{2}$ and he creates a subgraph W_{4} with the vertex set $V\left(W_{4}\right)=\left\{u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$. By Lemma 3.10, we have $\gamma_{M B}^{\prime}\left(W_{4}\right)=3$. So, $\gamma_{M B}\left(X_{6}\right)=4$.
Suppose that $\gamma_{M B}\left(X_{k-1}\right) \leq k-3$ for $7 \leq k \leq m$ and $m \geq 7$, and prove that $\gamma_{M B}\left(X_{k}\right) \leq k-2$. Dominator divides X_{k} on two parts, the graph X_{k-1} and an edge $u_{k} v_{k}$. Since $\gamma_{M B}\left(X_{k-1}\right) \leq k-3$ and since he needs at most one more move to dominate u_{k} and v_{k}, it follows that $\gamma_{M B}\left(X_{k}\right) \leq k-2$.

To prove the lower bound, we also use induction on k and we do the case analysis. Suppose that $\gamma_{M B}\left(X_{k-1}\right) \geq k-3$, for $7 \leq k \leq m$ and $m \geq 7$, and prove that $\gamma_{M B}\left(X_{k}\right) \geq k-2$.
We analyse the following cases and propose the following strategy for Staller.
Case I $d_{1} \in\left\{u_{1}, v_{1}, u_{2}, v_{2}\right\}$.
If $d_{1}=u_{1}$ (or $d_{1}=v_{1}$), then consider the S-game on W_{k-1} with the vertex set $V\left(W_{k-1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{k}, u_{2}, \ldots, u_{k}\right\}$ (or $\left.V\left(W_{k-1}\right)=\left\{v_{2}, \ldots, v_{k}, u_{1}, u_{2}, \ldots, u_{k}\right\}\right)$. By Lemma 3.10, $\gamma_{M B}^{\prime}\left(W_{k-1}\right)=k-2$. So, Dominator needs to play $k-1$ moves on X_{k}.

If $d_{2}=u_{2}$ (or $d_{2}=v_{2}$), then consider the S-game on W_{k-2} with the vertex set $V\left(W_{k-2}\right)=\left\{v_{2}, v_{3}, \ldots, v_{k}, u_{3}, \ldots, u_{k}\right\}$ (or $\left.V\left(W_{k-2}\right)=\left\{v_{3}, \ldots, v_{k}, u_{2}, u_{3}, \ldots, u_{k}\right\}\right)$. By Lemma 3.10, $\gamma_{M B}^{\prime}\left(W_{k-2}\right)=k-3$. Also, if $d_{1}=u_{2}$ Dominator needs to play one more move to dominate v_{1}. So, Dominator needs to play at least $k-2$ moves on X_{k}.

Case II $\quad d_{1}=u_{i}, i \geq 3$.
Then, $s_{1}=v_{2}$.
The rest of Staller's strategy depends on Dominator's second move:
Case 1. $d_{2}=u_{1}$.
If $i=3$, that is $d_{1}=u_{3}$, then consider the S-game on W_{k-3} with the vertex set $V\left(W_{k-3}\right)=\left\{u_{4} \ldots, u_{k}, v_{3}, v_{4}, \ldots, v_{k}\right\}$. By Lemma 3.10, $\gamma_{M B}^{\prime}\left(W_{k-3}\right)=k-4$. So, Dominator needs at least $k-2$ moves.

Let $i \geq 4$, then $s_{2}=v_{3}$. Depending of Dominator's third move, we consider the following subcases.

Case 1.1. $d_{3}=u_{2}$ or $d_{3}=v_{1}$.
Then, by playing $s_{3}=v_{4}$ Staller starts the sequence of line traps $u_{3}-u_{i-1}$ where $s_{i-1}=v_{i}$ and $d_{i}=u_{i-1}$. Then, if $k-i \geq 2$ Staller plays $s_{i}=v_{i+2}$. Consider the D-game on the subgraph ρ_{k-i} with the vertex set $V\left(\rho_{k-i}\right)=\left\{u_{i+1}, \ldots, u_{k}, v_{i+1}, \ldots, v_{k}\right\}$. According to Lemma 3.3, $\gamma_{M B}\left(\rho_{k-i}\right)=k-i$, so Dominator needs to play k moves on X_{k}. If $k-i=1$, then $s_{i} \in\left\{u_{k}, v_{k}\right\}$ and Dominator needs to play one more move to dominate v_{k}. If $k-i=0$, then Dominator already played k moves.

Case 1.2. $d_{3}=u_{j}, j \geq 3$ or $d_{3}=v_{j}, j \geq 4$.
Claim 3.12. If $\min \{i, j\} \notin\{3,4\}$, then Dominator can not win.
Proof of Claim 3.12. Assume $\min \{i, j\} \notin\{3,4\}$. Then $s_{3}=u_{2}$ which forces $d_{4}=v_{1}$. Next, $s_{4}=u_{3}$. Dominator can not dominate both u_{3} and v_{3} at the same time.

Case 1.2.1. $d_{3}=u_{j}$, where $j \geq 3$ and $j<i$. According to Claim 3.12, $j \in\{3,4\}$.
1.2.1.a. $j=3$, that is $d_{3}=u_{3}$. Then, $s_{3}=u_{2}$ which forces $d_{4}=v_{1}$. Consider the subgraph X_{k-3} with the vertex set $V\left(X_{k-3}\right)=\left\{u_{4}, \ldots, u_{k}, v_{4}, \ldots, v_{k}\right\}$ where u_{4} is already dominated with u_{3} by Dominator. Also, $d_{1}=u_{i} \in X_{k-3}$ and now it is Staller's turn to make her move on X_{k-3}. By induction hypothesis, if $k-3 \geq 6$, then $\gamma_{M B}\left(X_{k-3}\right) \geq k-5$, so Dominator needs at least $k-2$ moves. If $4 \leq k-3 \leq 5$, then, since $\gamma_{M B}\left(X_{k-3}\right)=k-4$, Dominator needs $k-1$ moves.
1.2.1.b. $j=4$, that is, $d_{3}=u_{4}$. Then, $s_{3}=u_{2}$ which forces $d_{4}=v_{1}$ and $s_{4}=$ v_{4} which forces $d_{5}=u_{3}$ (a line trap). Consider the subgraph X_{k-4} on $V\left(X_{k-4}\right)=$ $\left\{u_{5}, \ldots, u_{k}, v_{5}, \ldots, v_{k}\right\}$ where u_{5} is already dominated with u_{4} by Dominator. Also, $d_{1}=u_{i} \in X_{k-4}$ and now it is Staller's turn to make her move on X_{k-4}. By induction hypothesis, if $k-4 \geq 6$, then $\gamma_{M B}\left(X_{k-4}\right) \geq k-6$, so Dominator needs at least $k-2$ moves. If $3 \leq k-4 \leq 5$, then, since $\gamma_{M B}\left(X_{k-4}\right)=k-5$, Dominator needs to play $k-1$ moves on X_{k}.
Case 1.2.2. $d_{3}=u_{j}$, where $j \geq 3$ and $j>i$. According to Claim 3.12, $i \in\{3,4\}$, that is, $d_{1}=u_{3}$ or $d_{1}=u_{4}$. Staller's strategy is the same as in Case 1.2.1.

Case 1.2.3. $d_{3}=v_{j}, j<i$. According to Claim 3.12 and since $s_{2}=v_{3}$, it follows that $j=4$, that is, $d_{3}=v_{4}$.
Then, $s_{3}=u_{2}$ which forces $d_{4}=v_{1}$ and $s_{4}=u_{4}$ which forces $d_{5}=u_{3}$ (a triangle trap). Consider the subgraph X_{k-4}. Note that $d_{1}=u_{i} \in X_{k-4}$. The rest of the proof is the same as in Case 1.2.1.b.
Case 1.2.4. $d_{3}=v_{j}, j=i$. According to Claim 3.12, $d_{1}=u_{4}$ and $d_{3}=v_{4}$.
Then, $s_{3}=u_{2}$ which forces $d_{4}=v_{1}$. Consider the S-game on Z_{k-4} with the vertex set $V\left(Z_{k-4}\right)=\left\{u_{5}, \ldots, u_{k}, v_{5}, \ldots, v_{k}\right\}$ where u_{5} and v_{5} are dominated with u_{4} and v_{4}. According to Lemma 3.9, $\gamma_{M B}^{\prime}\left(Z_{k-4}\right)=k-5$, so Dominator needs $k-1$ moves.

Case 1.2.5. $d_{3}=v_{j}, j>i$. According to Claim 3.12, $i \in\{3,4\}$, that is, $d_{1} \in\left\{u_{3}, u_{4}\right\}$. The proof of this case is similar to the proof of Case 1.2.1.

Case 2. $d_{2}=v_{1}$.
If $i=3$, that is, $d_{1}=u_{3}$, then consider the S-game on the subgraph W_{k-3} with the vertex set $V\left(W_{k-3}\right)=\left\{u_{4}, \ldots, u_{k}, v_{3}, v_{4}, \ldots, v_{k}\right\}$ where v_{3} and u_{4} are dominated with u_{3}. According to Lemma 3.10, $\gamma_{M B}^{\prime}\left(W_{k-3}\right)=k-4$, so Dominator needs $k-2$ moves.

Let $i \geq 4$. Then, $s_{2}=u_{3}$.
Depending of Dominator's third move, we consider the following cases.
Case 2.1. $d_{3}=u_{1}$ or $d_{3}=u_{2}$.
Let i be an even number. Then, $s_{4}=v_{4}$ and Staller starts the sequence of triangle traps $v_{3}-v_{i-1}$, where $s_{i-1}=v_{i}$ and $d_{i}=v_{i-1}$. Next, if $k-i \geq 2$, then $s_{i}=v_{i+2}$ and we have the subgraph ρ_{k-i} with the vertex set $V\left(\rho_{k-i}\right)=\left\{u_{i+1}, \ldots, u_{k}, v_{i+1}, \ldots, v_{k}\right\}$ where u_{i+1} is dominated with u_{i}. Consider the D-game on ρ_{k-i}. According to Lemma 3.3, $\gamma_{M B}\left(\rho_{k-i}\right)=k-i$, so Dominator needs k moves. If $k-i=1$, then $s_{i}=v_{k}$ which forces $d_{i+1}=u_{k}$, so Dominator needs k moves. If $k-i=0$, then Dominator already played k moves.

Let i be an odd number. Then, $s_{4}=v_{4}$ and Staller starts the sequence of triangle traps $v_{3}-v_{i-2}$, where $s_{i-2}=v_{i-1}$ and $d_{i-1}=v_{i-2}$. Consider the subgraph W_{k-i} with the vertex set $V\left(W_{k-i}\right)=\left\{u_{i+1}, \ldots, u_{k}, v_{i}, v_{i+1}, \ldots, v_{k}\right\}$ where v_{i} and u_{i+1} are dominated with u_{i}. Consider the S-game on W_{k-i}. This means that $s_{i-1} \in V\left(W_{k-i}\right)$. According to Lemma 3.10, if $k-i \geq 4$, then $\gamma_{M B}^{\prime}\left(W_{k-i}\right)=k-i-1$, so Dominator needs $k-2$ moves. If $1 \leq k-i \leq 3$, then $\gamma_{M B}^{\prime}\left(W_{k-i}\right)=k-i$, so Dominator needs $k-1$ moves. If $d_{1}=u_{i}=u_{k}$, then Dominator already played $k-1$ moves.

Case 2.2. $d_{3}=u_{j}, j \geq 4$ or $d_{3}=v_{j}, j \geq 3$.
It is not hard to check that Claim 3.12 can be also applied on this case. So, $\min \{i, j\} \in$ $\{3,4\}$.

Case 2.2.1. $d_{3}=u_{j}, j<i$. According to Claim 3.12 and since $s_{2}=u_{3}$, it follows that $j=4$, that is, $d_{3}=u_{4}$. Then, $s_{3}=u_{1}$ which forces $d_{4}=u_{2}$ and $s_{4}=v_{4}$ which forces $d_{5}=v_{3}$ (a triangle trap). Consider X_{k-4} with the vertex set $V\left(X_{k-4}\right)=\left\{u_{5}, \ldots, u_{k}, v_{5}, \ldots, v_{k}\right\}$, where $d_{1}=u_{i} \in X_{k-4}$ and now it is Staller's turn to make her move on X_{k-4}. Dominator needs at least $k-2$ moves.

Case 2.2.2. $d_{3}=u_{j}, j>i$. According to Claim 3.12, $i=4$, that is, $d_{1}=u_{4}$.
The proof is the same as the proof for Case 2.2.1.
Case 2.2.3. $d_{3}=v_{j}, j>i$. According to Claim 3.12, $i=4$, that is, $d_{1}=u_{4}$. The proof is the same as the proof for Case 2.2.1.

Case 2.2.4. $d_{3}=v_{j}, j=i$. According to Claim 3.12, $i=j=4$, that is, $d_{1}=u_{4}$ and $d_{3}=v_{4}$. Then, $s_{3}=u_{1}$ which forces $d_{4}=u_{2}$ (a triangle trap). We get the subgraph Z_{k-4} and the rest of the prof is the same as in Case 1.2.4. Dominator needs $k-1$ moves.

Case 2.2.5. $d_{3}=v_{j}, j<i$. According to Claim 3.12, $j \in\{3,4\}$.
Let $j=3$, that is, $d_{3}=v_{3}$.
Then, $s_{3}=u_{1}$ which forces $d_{4}=u_{2}$. Consider X_{k-3} and the rest of the proof is the same as for Case 1.2.1.a. So, Dominator needs at least $k-2$ moves.
Let $j=4$, that is, $d_{3}=v_{4}$.
Then, $s_{3}=u_{2}$, which forces $d_{4}=u_{1}$ and $s_{4}=u_{4}$ which forces $d_{5}=v_{3}$ (a line trap).
We get the subgraph X_{k-4} and the rest of the prof is the same as in Case 1.2.1.b.
Case 3. $d_{2}=u_{j}, j \geq 3$.
Then, $s_{2}=v_{1}$. In his third move Dominator is forced to claims u_{1}, as otherwise Staller can isolate v_{1} by claiming u_{1} in her next move. So, $d_{3}=u_{1}$.
Let $l=\min \{i, j\}$ and let $h=\max \{i, j\}$. Then, $s_{3}=v_{3}$ and in this way Staller starts the sequence of line traps $u_{2}-u_{l-1}$, where $s_{l}=v_{l}$ and $d_{l+1}=u_{l-1}$. Consider the subgraph X_{k-l} on $V\left(X_{k-l}\right)=\left\{u_{l+1}, \ldots, u_{k}, v_{l+1}, \ldots, v_{k}\right\}$ where u_{l+1} is a free vertex already dominated by Dominator with u_{l}. Also, $u_{h} \in X_{k-l}$ and it is already claimed by Dominator (in his first or the second move), and now it is Staller's turn to make a move on X_{k-l}. By induction hypothesis, if $k-l \geq 6$, then $\gamma_{M B}\left(X_{k-l}\right) \geq k-l-2$, so Dominator needs at least $k-2$ on X_{k}.
If $2 \leq k-l \leq 5$, then, since $\gamma_{M B}\left(X_{k-l}\right) \geq k-l-1$, it follows that Dominator needs $k-1$ moves. Finally, if $k-j=1$, then Dominator needs k moves.

Case 4. $d_{2}=v_{j}, i<j$.
Then, $s_{2}=v_{1}$. In his third move Dominator is forced to claim u_{1}, so $d_{3}=u_{1}$. Then, $s_{3}=v_{3}$ and Staller starts the sequence of line traps $u_{2}-u_{i-1}$, where the $s_{i}=v_{i}$ and $d_{i+1}=u_{i-1}$. Consider X_{k-i} with the vertex set $V\left(X_{k-i}\right)=\left\{u_{i+1}, \ldots, u_{k}, v_{i+1}, \ldots, v_{k}\right\}$, where $d_{2}=v_{j} \in X_{k-i}$. Dominator needs at least $k-2$ moves.

Case 5. $d_{2}=v_{j}, i=j$, where $j \geq 3$.
Staller plays $s_{2}=v_{1}$ and Dominator is forced to play $d_{3}=u_{1}$. Then, $s_{3}=v_{3}$ and Staller starts the sequence of line traps $u_{2}-u_{i-2}$, where the $s_{i-1}=v_{i-1}$ and $d_{i}=u_{i-2}$. Since $u_{i}, v_{i} \in \mathfrak{D}$, we have the subgraph Z_{k-i} with the vertex set $V\left(Z_{k-i}\right)=$ $\left\{u_{i+1}, \ldots, u_{k}, v_{i+1}, \ldots, v_{k}\right\}$. Next, $s_{i} \in V\left(Z_{k-i}\right)$, so we consider the S-game on Z_{k-i}. By Lemma 3.9, $\gamma_{M B}^{\prime}\left(Z_{k-i}\right)=k-i-1$. This means that Dominator needs to play at least $k-1$ moves on X_{k}.

Case 6. $d_{2}=v_{j}, i>j \geq 2$ and j is even.
Then, $s_{2}=u_{2}$.
We claim the following.
Claim 3.13. If $d_{3} \notin\left\{u_{1}, v_{1}\right\}$, Dominator can not win.

Proof of Claim 3.13. Let $d_{3} \notin\left\{u_{1}, v_{1}\right\}$. After Dominator's third move at least one of the vertices u_{3}, v_{3} needs to be free.
Suppose that v_{3} is a free vertex. Then, $s_{3}=v_{1}$, so Dominator is not able to dominate u_{1}, v_{1} and v_{2} at the same time. In her next move Staller can isolate either u_{1} and v_{1}, or v_{2} by claiming either u_{1} or v_{3}.
If u_{3} is a free vertex, then $s_{3}=u_{1}$ and Dominator is not able to dominate u_{1}, v_{1} and u_{2} at the same time. In her next move Staller can isolate either u_{1} and v_{1}, or u_{2} by claiming either v_{1} or u_{3}.

Case 6.1. $d_{3}=u_{1}$.
Then, $s_{3}=v_{3}$ which forces $d_{4}=v_{1}$. By playing $s_{4}=u_{4}$ Staller starts the sequence of triangle traps $u_{3}-u_{j-1}$, where $s_{j}=u_{j}$. After Dominator's move in round $j+1, d_{j+1}=u_{j-1}$, we have the subgraph X_{k-j} with the vertex set $V\left(X_{k-j}\right)=\left\{u_{j+1}, \ldots, u_{k}, v_{j+1}, \ldots, v_{k}\right\}$, where v_{j+1} is dominated by Dominator with v_{j}. Also, $d_{1}=u_{i} \in X_{k-j}$ and now it is Staller's turn to make her move on X_{k-j}. By induction hypothesis, if $k-j \geq 6$, then $\gamma_{M B}\left(X_{k-j}\right) \geq k-j-2$, so Dominator needs at least $k-2$ moves.
If $2 \leq k-j \leq 5$, then, since $\gamma_{M B}\left(X_{k-j}\right) \geq k-j-1$, it follows that Dominator needs at least $k-1$ moves. Also, if $k-j=1$, Dominator needs k moves.
Case 6.2. $d_{3}=v_{1}$.
Then, $s_{3}=u_{3}$ which forces $d_{4}=u_{1}$. By playing $s_{4}=u_{4}$ Staller starts the sequence of line traps $v_{3}-v_{j-1}$, where $s_{j}=u_{j}$. After Dominator's move in round $j+1$, where $d_{j+1}=v_{j-1}$, we have the subgraph X_{k-j}. The rest of the proof is the same as in Case 6.1. So, Dominator needs at least $k-2$ moves. Also, if $k-j=1$, Dominator needs k moves.

Case 7. $d_{2}=v_{j}, i>j \geq 2$ and j is odd.
Staller's second move $s_{2}=u_{1}$ forces $d_{3}=v_{1}$. By claiming u_{3} Staller starts the sequence of triangle traps $u_{2}-u_{j-1}$ where $s_{j}=u_{j}$. After Dominator's move in round $j+1$, that is, $d_{j+1}=u_{j-1}$, we have the subgraph X_{k-j} with the vertex set $V\left(X_{j}\right)=\left\{u_{j+1}, \ldots, u_{k}, v_{j+1}, \ldots, v_{k}\right\}$. The vertex $u_{i} \in X_{k-j}$ is already claimed by Dominator in his first move and now it is Staller's turn to make her move. After using induction hypothesis, we obtain that Dominator needs to play at least $k-2$ moves on X_{k}.

Case III. $\quad d_{1}=v_{i}, i \geq 3$.
Then, $s_{1}=v_{2}$. The rest of Staller's strategy depends on Dominator's second move:
Case i. $d_{2}=u_{1}$.
If $i=3$, that is, $d_{1}=v_{3}$, then consider the S-game on the subgraph W_{k-3} with the vertex set $V\left(W_{k-3}\right)=\left\{u_{3}, u_{4}, \ldots, u_{k}, v_{4}, \ldots, v_{k}\right\}$, where u_{3} and v_{4} are dominated with v_{3}. Since $\gamma_{M B}^{\prime}\left(W_{k-3}\right)=k-4$, Dominator needs to play at least $k-2$ moves on X_{k}.

Let $i \geq 4$. Then, $s_{2}=v_{3}$.
Depending on Dominator's third move we consider the following cases.
Case i.1. $d_{3}=v_{1}$.
If $d_{1}=v_{4}$, consider W_{k-4} with the vertex set $V\left(W_{k-4}\right)=\left\{u_{4}, u_{5}, \ldots, u_{k}, v_{5}, \ldots, v_{k}\right\}$. According to Lemma 3.10, $\gamma_{M B}^{\prime}\left(W_{k-4}\right)=k-5$, so Dominator needs $k-2$ moves. Otherwise, if $d_{1}=v_{i}, i>4$, then $s_{3}=v_{4}$ and Staller starts the sequence of line traps $u_{3}-u_{i-2}$. Consider the subgraph W_{k-i} with the vertex set $V\left(W_{k-i}\right)=\left\{u_{i}, u_{i+1}, \ldots, u_{k}, v_{i+1}, \ldots, v_{k}\right\}$, where u_{i} and v_{i+1} is dominated with v_{i}. Next, $s_{i-1} \in V\left(W_{k-i}\right)$. According to Lemma 3.10, if $k-i \geq 4, \gamma_{M B}^{\prime}\left(W_{k-i}\right)=k-i-1$, so Dominator needs $k-2$ moves. If $1 \leq k-i \leq 3$, then $\gamma_{M B}^{\prime}\left(W_{k-i}\right)=k-i$, so Dominator needs $k-1$ moves. If $d_{1}=v_{k}$, then Dominator already played $k-1$ moves.

Case i.2. $d_{3}=v_{j}, j \geq 4$, or $d_{3}=u_{j}, j \geq 3$.
It is not hard to see that Claim 3.12 also holds in this case.
Case i.2.1. $d_{3}=v_{j}, j \geq 4$. Let $l=\min \{i, j\}$.
According to Claim 3.12, $l=4$.
Then, $s_{3}=u_{2}$ which forces $d_{4}=v_{1}$ and $s_{4}=u_{4}$ which forces $d_{5}=u_{3}$ (a triangle trap). Consider the subgraph X_{k-4}. It follows that Dominator needs at least $k-2$ moves.

Case i.2.2. $d_{3}=u_{j}, j>i$.
According to Claim 3.12, $i=4$, that is, $d_{1}=v_{4}$.
Then, Staller's strategy is the same as in Case i.2.1.
Case i.2.3. $d_{3}=u_{j}, i=j$.
According to Claim 3.12, $i=j=4$.
Consider the subgraph Z_{k-4}. It follows that Dominator needs at least $k-2$ moves.

Case i.2.4. $d_{3}=u_{j}, j<i$.
According to Claim 3.12, $j \in\{3,4\}$.
i.2.4.a. Let $j=3$, that is, $d_{3}=u_{3}$. Then, $s_{3}=v_{1}$ which forces $d_{4}=u_{2}$ (a line trap). Consider X_{k-3}. It is Staller's turn to maker her move on X_{k-3}. It follows that Dominator needs at least $k-2$ moves.
i.2.4.b. Let $j=4$, that is, $d_{3}=u_{4}$.

Then, $s_{3}=u_{2}$ which forces $d_{4}=v_{1}$ and $s_{4}=v_{4}$ which forces $d_{5}=u_{3}$ (a line trap). Consider the subgraph X_{k-4}. It follows that Dominator needs at least $k-2$ moves.

Case ii. $d_{2}=v_{1}$.
Then, $s_{2}=u_{3}$. Depending of Dominator's third move we consider the following cases.

Case ii.1. $d_{3}=u_{1}$ or $d_{3}=u_{2}$.
ii.1.a. i is even.

Then, $s_{3}=v_{4}$ and Staller starts the sequence of triangle traps $v_{3}-u_{i-2}$, where $s_{i-2}=u_{i-1}$ and $d_{i-1}=u_{i-2}$. Consider the S-game on the subgraph W_{k-i} with the vertex set $V\left(W_{k-i}\right)=\left\{u_{i}, \ldots, u_{k}, v_{i+1}, \ldots, v_{k}\right\}$, where u_{i} and v_{i+1} are dominated with v_{i}. According to Lemma 3.10, if $k-i \geq, \gamma_{M B}^{\prime}\left(W_{k-i}\right)=k-i-1$, so Dominator needs $k-2$ moves.
If $1 \leq k-i \leq 5$, then since $\gamma_{M B}^{\prime}\left(W_{k-i}\right)=k-i$, Dominator needs $k-1$ moves.
ii.1.b. i is odd.

Then, $s_{3}=v_{4}$ and Staller starts the sequence of triangle traps $v_{3}-u_{i-1}$, where $s_{i-1}=u_{i}$ and $d_{i}=u_{i-1}$. Next, if $k-i \geq 2, s_{i}=u_{i+2}$. Consider the subgraph ρ_{k-i} with the vertex set $V\left(\rho_{k-i}\right)=\left\{u_{i+1}, \ldots, u_{k}, v_{i+1}, \ldots, v_{k}\right\}$, where v_{i+1} is dominated with v_{i}. According to Lemma 3.3, $\gamma_{M B}\left(\rho_{k-i}\right)=k-i$, so Dominator needs k moves.
If $k-i=1$, then $s_{i}=u_{k}$ which forces $d_{i+1}=v_{k}$, so Dominator again needs k moves. If $k-i=0$, then Dominator already played k moves.

Case ii.2. $d_{3}=u_{j}, j \geq 4$, or $d_{3}=v_{j}, j \geq 3$.
It is not hard to check that Claim 3.12 also holds in this case.
Case ii.2.1. $d_{3}=u_{j}, j<i$. According to Claim 3.12, $j=4$, that is, $d_{3}=u_{4}$.
Staller's strategy is the same as in Case 2.2.1.
Case ii.2.2. $d_{3}=u_{j}, j=i$. According to Claim 3.12, $i=j=4$, that is, $d_{1}=v_{4}$ and $d_{3}=u_{4}$. Then, $s_{3}=u_{2}$ which forces $d_{4}=u_{1}$. Consider the subgraph Z_{k-4} and the rest of the proof is the same as for Case 1.2.4.
Case ii.2.3. $d_{3}=u_{j}, j>i$. According to Claim 3.12, $i \in\{3,4\}$.
ii.2.3.a. Let $i=3$, that is, $d_{1}=v_{3}$. Then, $s_{3}=u_{2}$ which forces $d_{4}=u_{1}$. We get the subgraph X_{k-3} with the vertex set $V\left(X_{k-3}\right)=\left\{u_{4}, \ldots, u_{k}, v_{4}, \ldots, v_{k}\right\}$ where v_{4} is dominated with v_{3}. The rest of the proof is the same as in Case 1.2.1.a.
ii.2.3.b. Let $i=4$, that is, $d_{1}=v_{4}$. Then, $s_{3}=u_{2}$ which forces $d_{4}=u_{1}$ and $s_{4}=u_{4}$ which forces $d_{5}=v_{3}$. We get the subgraph X_{k-4} with the vertex set $V\left(X_{k-4}\right)=\left\{u_{5}, \ldots, u_{k}, v_{5}, \ldots, v_{k}\right\}$, where v_{5} is dominated with v_{4}. The rest of the proof is the same as in Case 1.2.3.
Case ii.2.4. $d_{3}=v_{j}, j<i$. According to Claim 3.12, $j=4$, that is, $d_{3}=v_{4}$. Staller's strategy is the same as in Case ii.2.3.b.
Case ii.2.5. $d_{3}=v_{j}, j>i$. According to Claim 3.12, $i \in\{3,4\}$.
ii.2.5.a. Let $i=3$, that is, $d_{1}=v_{3}$. The proof is the same as in Case ii.2.3.a.
ii.2.5.b. Let $i=4$, that is, $d_{1}=v_{4}$. The proof is the same as in Case ii.2.3.b.

Case iii. $d_{2}=u_{j}, i<j$ and i is even.
Then, $s_{2}=u_{2}$. Staller's strategy from round 3 is the same as in Case 6 .
Case iv. $d_{2}=u_{j}, i<j$ and i is odd.
Then, $s_{2}=u_{1}$. Staller's strategy from round 3 is the same as in Case 7 .
Case v. $d_{2}=u_{j}, i=j$.
Then, $s_{2}=v_{1}$. Staller's strategy from round 3 is the same as in Case 5 .
Case vi. $d_{2}=u_{j}, i>j$.
Then, $s_{2}=v_{1}$. Staller's strategy from round 3 is the same as in Case 4 .
Case vii. $d_{2}=v_{j}, \min \{i, j\}$ is odd.
Then, $s_{2}=u_{1}$.
Staller's strategy from round 3 is the same as in Case 7.
Case viii. $d_{2}=v_{j}, \min \{i, j\}$ is even.
Then, $s_{2}=u_{2}$. Staller's strategy from round 3 is the same as in Case 6 .
From this case analysis it follows that $\gamma_{M B}\left(X_{k}\right) \geq k-2$, for $14 \leq k \leq m$.
Proof of Theorem 1.4. Let $V\left(P_{2} \square P_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let $E\left(P_{2} \square P_{n}\right)=\left\{u_{i} u_{i+1}: i=1,2, \ldots, n-1\right\} \cup\left\{v_{i} v_{i+1}: i=1,2, \ldots, n-1\right\} \cup\left\{u_{i} v_{i}: i=1,2, \ldots, n\right\}$.

To prove that $\gamma_{M B}^{\prime}\left(P_{2} \square P_{n}\right) \leq n$ we use the pairing strategy for Dominator. That is, when Staller claims u_{i} (or v_{i}) for some $i \in\{1,2, \ldots, n\}$, Dominator responses by claiming v_{i} (or u_{i}). In this way Dominator can win in n moves in the S-game.
Next, we prove that Staller has a strategy to postpone Dominator's winning for at least n moves.
For her first move, Staller claims vertex v_{2}, that is, $s_{1}=v_{2}$. Since it is harder to dominate the graph $P_{2} \square P_{n}$ in the S-game, where $s_{1}=v_{2}$ than the graph ρ_{n} in the D-game, and since $\gamma_{M B}\left(\rho_{n}\right)=n$, according to Lemma 3.3, it follows that $\gamma_{M B}^{\prime}\left(P_{2} \square P_{n}\right) \geq n$.

To prove Theorem 1.5, we need the following lemma.
Lemma 3.14. $\gamma_{M B}\left(P_{2} \square P_{13}\right)=11$.
Proof. Let $V\left(P_{2} \square P_{13}\right)=\left\{u_{1}, u_{2}, \ldots, u_{13}, v_{1}, v_{2}, \ldots, v_{13}\right\}$ and let $E\left(P_{2} \square P_{13}\right)=\left\{u_{i} u_{i+1}: i=\right.$ $1,2, \ldots, 12\} \cup\left\{v_{i} v_{i+1}: i=1,2, \ldots, 12\right\} \cup\left\{u_{i} v_{i}: i=1,2, \ldots, 13\right\}$.
It is not hard to see that $\gamma_{M B}\left(P_{2} \square P_{13}\right) \geq 11$. Indeed, since $P_{2} \square P_{13}$ has one more undominated vertex than X_{13}, it follow that $\gamma_{M B}\left(P_{2} \square P_{13}\right) \geq \gamma_{M B}\left(X_{13}\right)$. So, by Lemma 3.11, $\gamma_{M B}\left(P_{2} \square P_{13}\right) \geq 11$.

Next, we prove the upper bound. First, we give two claims.

Claim 3.15. Consider the S-game on W_{4}, where $V\left(W_{4}\right)=\left\{v_{0}, v_{1}, \ldots, v_{4}, u_{1}, \ldots, u_{4}\right\}$ and $E\left(W_{4}\right)=\left\{u_{i} u_{i+1}: i=1,2,3\right\} \cup\left\{v_{i} v_{i+1}: i=1,2,3\right\} \cup\left\{u_{i} v_{i}: i=1,2,3\right\} \cup\left\{v_{0} v_{1}\right\}$, and suppose that Dominator skips the first move. If $s_{1} \notin\left\{u_{3}, v_{3}, u_{4}, v_{4}\right\}$, then Dominator can win in at most 4 moves.
Claim 3.16. Consider the S-game on W_{6}, where $V\left(W_{6}\right)=\left\{v_{0}, v_{1}, \ldots, v_{6}, u_{1}, \ldots, u_{6}\right\}$ and $E\left(W_{6}\right)=\left\{u_{i} u_{i+1}: i=1,2, \ldots, 6\right\} \cup\left\{v_{i} v_{i+1}: i=1,2, \ldots, 6\right\} \cup\left\{u_{i} v_{i}: i=1,2, \ldots, 6\right\} \cup\left\{v_{0} v_{1}\right\}$, and suppose that Dominator skips the first move. Let $s_{1}=v_{2}$. Then Dominator can win in at most 6 moves.
The proofs for these two claims can be obtained by simple case analysis, so we skip it.
Suppose that the game on $P_{2} \square P_{13}$ is in progress. If in some point of the game we obtain a subgraph W_{4} with the situation described in Claim 3.15, we denote this subgraph by W_{4}^{\prime}. If we get a subgraph W_{6} with the situation described in Claim 3.16, we denote this subgraph by W_{6}^{\prime}.
Let L be a subgraph of $P_{2} \square P_{13}$ induced by the set $\left\{u_{1}, \ldots, u_{6}, v_{1}, \ldots, v_{6}\right\}$ and let R be a subgraph of $P_{2} \square P_{13}$ induced by the set $\left\{u_{8}, \ldots, u_{13}, v_{8}, \ldots, v_{13}\right\}$.
We propose the following strategy for Dominator.
Strategy \mathcal{S}_{D}. For his first move Dominator claims v_{7}. The rest of the Dominator's strategy depends on Staller's first move. It is enough to consider the case when $s_{1} \in$ $L \cup\left\{u_{7}\right\}$. The case when Staller for her first move claims a vertex from the R is symmetric to the case when Staller claims a vertex from the set L. We analyse the following cases.

Case 1. $s_{1}=u_{7}$.
In his second move, Dominator plays $d_{2}=u_{9}$. Consider the subgraph $W_{4} \subset R$, where $V\left(W_{4}\right)=\left\{v_{9}, v_{10}, \ldots, v_{13}, u_{10}, \ldots, u_{13}\right\}$. When Staller plays on W_{4} (or L), Dominator responds on W_{4} (or L). According to Lemma 3.10, $\gamma_{M B}^{\prime}\left(W_{4}\right)=3$. On L he uses the pairing strategy where the pairing sets are $\left\{u_{i}, v_{i}\right\}$, for each $i \in\{1, \ldots, 6\}$. So, Dominator needs at most 11 moves.

Case 2. $s_{1}=u_{5}$.
In his second move Dominator plays $d_{2}=u_{9}$.
Consider $W_{4} \subset R$, where $V\left(W_{4}\right)=\left\{v_{9}, v_{10}, \ldots, v_{13}, u_{10}, \ldots, u_{13}\right\}$ and consider W_{6}^{\prime}, where $V\left(W_{6}^{\prime}\right)=\left\{u_{7}, u_{6}, \ldots, u_{1}, v_{6}, \ldots, v_{1}\right\}$ (note $u_{5} \in \mathfrak{S}$ and Dominator skipped to play his first move on W_{6}^{\prime}).
When Staller plays on W_{4} (or W_{6}^{\prime}), Dominator responds on W_{4} (or W_{6}^{\prime}). According to Lemma 3.10, $\gamma_{M B}^{\prime}\left(W_{4}\right)=3$. By Claim 3.16, Dominator needs at most 6 moves to play on W_{6}^{\prime}. So, Dominator needs at most 11 moves.

Case 3. $s_{1} \in\left\{u_{3}, v_{3}, u_{4}, v_{4}, v_{5}, u_{6}, v_{6}\right\}$.
In his second move Dominator plays $d_{2}=u_{5}$.
If $s_{1} \in\left\{u_{6}, v_{6}\right\}$, then we have $W_{4} \subset L$ on $V\left(W_{4}\right)=\left\{v_{5}, v_{4}, \ldots, v_{1}, u_{4}, \ldots, u_{1}\right\}$ and according to Lemma 3.10, $\gamma_{M B}^{\prime}\left(W_{4}\right)=3$. Otherwise, if $s_{1} \notin\left\{u_{6}, v_{6}\right\}$, we have $W_{4}^{\prime} \subset L$
on $V\left(W_{4}^{\prime}\right)=\left\{v_{5}, v_{4}, \ldots, v_{1}, u_{4}, \ldots, u_{1}\right\}$ and according to Claim 3.15, $\gamma_{M B}^{\prime}\left(W_{4}^{\prime}\right) \leq 4$.
Also, consider the S-game on W_{6} where $V\left(W_{6}\right)=\left\{u_{7}, \ldots, u_{13}, v_{8}, \ldots, v_{13}\right\}$. By Lemma 3.10, $\gamma_{M B}^{\prime}\left(W_{6}\right)=5$. When Staller plays on W_{4} or W_{4}^{\prime}, Dominator responds on W_{4} or W_{4}^{\prime}, and when Staller plays on W_{6}, Dominator responds on W_{6}. So, Dominator needs at most 11 moves.

Case 4. $s_{1} \in\left\{u_{2}, v_{2}\right\}$.
In his second move Dominator plays $d_{2}=u_{3}$.
Consider the S-game on W_{6}, where $V\left(W_{6}\right)=\left\{u_{7}, \ldots, u_{13}, v_{8}, \ldots, v_{13}\right\}$. When Staller plays on W_{6} (or L), Dominator responds on W_{6} (or L). By Lemma 3.10, $\gamma_{M B}^{\prime}\left(W_{6}\right)=5$.
On the L Dominator will use the pairing strategy where the pairing sets are $\left\{u_{1}, v_{1}\right\},\left\{v_{4}, v_{5}\right\},\left\{u_{5}, u_{6}\right\}$. Also, to dominate v_{2} Dominator will need at most 1 more move. He will claim a free vertex from the set $\left\{u_{2}, v_{2}, v_{3}\right\}$. So, Dominator needs at most 11 moves.

Case 5. $s_{1} \in\left\{u_{1}, v_{1}\right\}$.
Then, Dominator claims $d_{2}=v_{2}$. Consider the subgraph W_{6} with the vertex set $V\left(W_{6}\right)=\left\{u_{7}, \ldots, u_{13}, v_{8}, \ldots, v_{13}\right\}$. When Staller plays on W_{6} (or L), Dominator responds on W_{6} (or L). By Lemma 3.10, $\gamma_{M B}^{\prime}\left(W_{6}\right)=5$.
On the L Dominator will use the pairing strategy where the pairing sets are $\left\{u_{3}, u_{4}\right\},\left\{v_{4}, v_{5}\right\},\left\{u_{5}, u_{6}\right\}$. Also, to dominate u_{1} Dominator will need at most 1 more move. He will claim a free vertex from the set $\left\{u_{1}, v_{1}, u_{2}\right\}$. So, Dominator needs at most 11 moves.

According to the considered cases, it follows that $\gamma_{M B}\left(P_{2} \square P_{13}\right) \leq 11$.
Proof of Theorem 1.5. Let $V\left(P_{2} \square P_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and let $E\left(P_{2} \square P_{n}\right)=$ $\left\{u_{i} u_{i+1}: i=1,2, \ldots, n-1\right\} \cup\left\{v_{i} v_{i+1}: i=1,2, \ldots, n-1\right\} \cup\left\{u_{i} v_{i}: i=1,2, \ldots, n\right\}$.
First, prove that $\gamma_{M B}\left(P_{2} \square P_{n}\right) \leq n-2$. For $n=13$ the statement holds, according to Lemma 3.14. Let $n \geq 14$. Dominator's strategy is to divide a graph $P_{2} \square P_{n}$ into two graphs, $P_{2} \square P_{13}$ and $P_{2} \square P_{n-13}$. In his first move Dominator claims $v_{7} \in V\left(P_{2} \square P_{13}\right)$. When Staller plays on $P_{2} \square P_{13}$, Dominator also plays on $P_{2} \square P_{13}$ by using his winning strategy \mathcal{S}_{D} from Lemma 3.14. On graph $P_{2} \square P_{n-13}$, Dominator uses the pairing strategy, that is, when Staller claim u_{i} (or v_{i}) from $P_{2} \square P_{n-13}$, Dominator claims v_{i} (or u_{i}) from $P_{2} \square P_{n-13}$. So, $\gamma_{M B}\left(P_{2} \square P_{n}\right) \leq 11+(n-13)=n-2$.
To prove the lower bound we use Lemma 3.11. Since $P_{2} \square P_{n}$ has one more undominated vertex than X_{n}, it follow that $\gamma_{M B}\left(P_{2} \square P_{n}\right) \geq \gamma_{M B}\left(X_{n}\right)$. So, $\gamma_{M B}\left(P_{2} \square P_{n}\right) \geq n-2$.

Corollary 3.17. Let $3 \leq m \leq n$. Then
(i) If m is even, $\gamma_{M B}\left(P_{m} \square P_{n}\right) \leq \gamma_{M B}\left(P_{2} \square P_{n}\right)+\left(\frac{m}{2}-1\right) \gamma_{M B}^{\prime}\left(P_{2} \square P_{n}\right)$.
(ii) If m and n are odd, $\gamma_{M B}\left(P_{m} \square P_{n}\right) \leq \gamma_{M B}\left(P_{n}\right)+\left\lfloor\frac{m}{2}\right\rfloor \gamma_{M B}^{\prime}\left(P_{2} \square P_{n}\right)$.
(iii) If m is odd and n is even, $\gamma_{M B}\left(P_{m} \square P_{n}\right) \leq \gamma_{M B}\left(P_{2} \square P_{m}\right)+\left(\frac{n}{2}-1\right) \gamma_{M B}^{\prime}\left(P_{2} \square P_{m}\right)$.

Sketch of the proof. Consider the D-game on the grid $P_{m} \square P_{n}$.
(i) Divide the graph $P_{m} \square P_{n}$ on $\frac{m}{2}$ grids $P_{2} \square P_{n}$. On one grid $P_{2} \square P_{n}$ Dominator is the first player. On the other $\frac{m}{2}-1$ grids $P_{2} \square P_{n}$, Staller can be the first player. Applying the Theorem 1.5 and 1.4, we obtain the upper bound for $\gamma_{M B}\left(P_{m} \square P_{n}\right)$.
(ii) Divide the graph $P_{m} \square P_{n}$ on $\left\lfloor\frac{m}{2}\right\rfloor$ grids $P_{2} \square P_{n}$ and one path P_{n}. Dominator will start the game on the path.

The proof for case (iii) is similar to the proof of case (i).

4 Concluding remarks

In this paper we gave the structural characterization for the graphs G with $\gamma(G)=k \geq 2$ for which $\gamma_{M B}(G)=\gamma(G)$ holds. We proved that Dominator needs exactly n moves to win in the $S \mathrm{MBD}$ game on $P_{2} \square P_{n}$ for every $n \geq 1$, while in the D-game he needs exactly $n-2$ moves, for $n \geq 13$. Determining the exact values of the invariants $\gamma_{M B}\left(P_{m} \square P_{n}\right)$ and $\gamma_{M B}^{\prime}\left(P_{m} \square P_{n}\right)$, where $m, n>3$ it does not seem as an easy task. So, it would be interesting first to investigate $\gamma_{M B}\left(P_{3} \square P_{n}\right)$ and $\gamma_{M B}^{\prime}\left(P_{3} \square P_{n}\right)$, for $n \geq 3$, and to see how this improves the upper bounds given in Corollary 3.17.

5 Acknowledgments

The authors would like to thank Professor Mirjana Mikalački for the helpful comments that contributed to the improvement of the paper. Jiayue Qi thanks Professor Josef Schicho for general scientific research guidance during this work. Jiayue Qi thanks Dongsheng Wu (Brigham Young University) for many times inspiring discussions, especially on the Maker-Braker game on graph $P_{2} \square P_{13}$.

References

[1] J. Beck, Combinatorial Games: Tic-Tac-Toe Theory, Encyclopedia of Mathematics and Its Applications 114, Cambridge University Press, (2008).
[2] B. Brešar, S. Klavžar and D. F. Rall, Domination game and an imagination strategy, SIAM J. Discrete Math., 24 (2010), pp. 979-991.
[3] D. Clemens, A. Ferber, M. Krivelevich, A. Liebenau, Fast strategies in MakerBreaker games played on random boards, Combin. Probab. Comput. 21 (2012) 897-915.
[4] D. Clemens, A. Ferber, R. Glebov, D. Hefetz and A. Liebenau, Building spanning trees quickly in Maker-Breaker games, SIAM Journal on Discrete Mathematics, 29(3) (2015), pp. 1683-1705.
[5] E. Duchêne, V. Gledel, A. Parreau and G. Renault, Maker-Breaker domination game, arXiv:1807.09479 [cs.DM] (25 Jul 2018).
[6] P. Erdős and J. L. Selfridge, On a combinatorial game, J. Combinatorial Theory Ser. A 14 (1973) pp. 298-301.
[7] V. Gledel, V. Iršič and S. Klavžar, Maker-Breaker domination number, Bulletin of the Malaysian Mathematical Sciences Society, 42(4) (2019), pp. 1773-1789.
[8] D. Hefetz, M. Krivelevich, M. Stojaković and T. Szabó, Fast winning strategies in Maker-Breaker games, Journal of Combinatorial Theory Series B 19 (2009), 39-47.
[9] D. Hefetz, M. Krivelevich, M. Stojaković and T. Szabó, Positional Games, Oberwolfach Seminars 44, Birkhäuser/Springer Basel, 2014.

Technical Reports of the Doctoral Program
 "Computational Mathematics"

2020
2020-01 N. Smoot: A Single-Variable Proof of the Omega SPT Congruence Family Over Powers of 5 Feb 2020. Eds.: P. Paule, S. Radu
2020-02 A. Schafelner, P.S. Vassilevski: Numerical Results for Adaptive (Negative Norm) Constrained First Order System Least Squares Formulations March 2020. Eds.: U. Langer, V. Pillwein
2020-03 U. Langer, A. Schafelner: Adaptive space-time finite element methods for non-autonomous parabolic problems with distributional sources March 2020. Eds.: B. Jüttler, V. Pillwein
2020-04 A. Giust, B. Jüttler, A. Mantzaflaris: Local (T)HB-spline projectors via restricted hierarchical spline fitting March 2020. Eds.: U. Langer, V. Pillwein
2020-05 K. Banerjee, M. Ghosh Dastidar: Hook Type Tableaux and Partition Identities June 2020. Eds.: P. Paule, S. Radu
2020-06 A. Bostan, F. Chyzak, A. Jiménez-Pastor, P. Lairez: The Sage Package comb_walks for Walks in the Quarter Plane June 2020. Eds.: M. Kauers, V. Pillwein
2020-07 A. Meddah: A stochastic multiscale mathematical model for low grade Glioma spread June 2020. Eds.: E. Buckwar, V. Pillwein

2020-08 M. Ouafoudi: A Mathematical Description for Taste Perception Using Stochastic Leaky Integrate-and-Fire Model June 2020. Eds.: E. Buckwar, V. Pillwein
2020-09 A. Bostan, A. Jiménez-Pastor: On the exponential generating function of labelled trees July 2020. Eds.: M. Kauers, V. Pillwein

2020-10 J, Forcan, J. Qi: How fast can Dominator win in the Maker-Breaker domination game? July 2020. Eds.: V. Pillwein, J. Schicho

The complete list since 2009 can be found at https://www.dk-compmath.jku.at/publications/

Doctoral Program

"Computational Mathematics"

Director:

Assoc. Prof. Dr. Veronika Pillwein
Research Institute for Symbolic Computation

Deputy Director:

Prof. Dr. Bert Jüttler
Institute of Applied Geometry

Address:

Johannes Kepler University Linz
Doctoral Program "Computational Mathematics"
Altenbergerstr. 69
A-4040 Linz
Austria
Tel.: ++43 732-2468-6840

E-Mail:

office@dk-compmath.jku.at

Homepage:

http://www.dk-compmath.jku.at

[^0]: *Department of Mathematics and Informatics, Faculty of Sciences, Univeristy of Novi Sad, Serbia. Email: dmi.jovana.jankovic@student.pmf.uns.ac.rs
 ${ }^{\dagger}$ Department of Mathematics, Informatics and Physics, Faculty of Philosophy, University of East Sarajevo, Bosnia and Herzegovina
 ${ }^{\ddagger}$ Doctoral Program "Computational Mathematics" W1214, Johannes Kepler University, Linz, Austria. The research was funded by the Austrian Science Fund (FWF): W1214-N15, project DK9. Email: jiayue.qi@dk-compmath.jku.at
 ${ }^{\S}$ Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria.

