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How fast can Dominator win in the Maker–Breaker
domination game?

Jovana Forcan∗† and Jiayue Qi‡§

Abstract

We study the Maker–Breaker domination games played by two players, Dominator
and Staller. We give a structural characterization for graphs with Maker-Breaker
domination number equal to the domination number. Specifically, we show how fast
Dominator can win in the game on P2�Pn, for n ≥ 1.
Keywords: domination number, Maker–Braker domination number, positional game,
grid, winning strategy.

1 Introduction

In this paper we study the Maker-Breaker domination games, first introduced in literature
by Duchêne, Gledel, Parreau and Renault in [5]. The games combine two following research
directions. In the original domination game, introduced by Brešar, Klavžar, and Rall in
[2], two players, Dominator and Staller, alternately take a turn in claiming vertices from
the finite graph G, which were not yet chosen in the course of the game. Dominator has a
goal to dominate the graph in as few moves as possible while Staller tries to prolong the
game as much as possible.

The Maker-Breaker games, introduced by Erdős and Selfridge in [6], are played on a
finite hypergraph (X,F) with the vertex set X and a set F ⊆ 2X of hyperedges. The set
X is called the board of the game, and F the family of winning sets. Two players, Maker
and Breaker take turns in claiming previously unclaimed elements of X. Maker wins the
game if, by the end of the game, claims all elements of some F ∈ F . Otherwise, Breaker
wins. For a deeper and more comprehensive analysis of Maker-Breaker games see the
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book of Beck [1], and the recent monograph of Hefetz, Krivelevich, Stojaković and Szabó [9].

The Maker–Breaker domination game (MBD for short) is played on graph G = (V,E)
by two players Dominator and Staller. The board of the game is the set V , and family
of winning sets consist of all dominating sets of G. The aim of Dominator is to build
a dominating set of the graph, that is a set T such that every vertex not in T has a
neighbour in T . The aim of Staller is to claim a vertex from the graph G and all its
neighbours.

When it is not hard to determine the identity of the winner in some Maker–Breaker
game, then the more interesting question to ask is how fast player with the winning
strategy can win. Fast winning strategies for Maker in the Maker–Breaker games have
received a lot of attention in recent years (see e.g. [3, 4, 8]).
Specifically, for the Maker–Breaker domination game the smallest number of moves for
Dominator is studied in [7], where Gledel, Iršič, and Klavžar introduced the Maker–
Breaker domination number γMB(G) of a graph G, as the minimum number of moves
of Dominator to win in the game on G where he is the first player. If Dominator is the
second player, then the corresponding invariant authors denoted by γ′MB(G).

In [7], the authors proved that γMB(G) = γ(G) = 2 if and only if G has a vertex that
lies in at least two γ-sets of G, where γ(G) is the domination number of G, that is the
order of a smallest dominating set of G and γ-set is a dominating set of size γ(G).
In this paper, we want to find a structural characterization of the graphs G with domination
number γ(G) = k, where k ≥ 2 is a fixed integer, for which γMB(G) = γ(G) = k holds,
answering a related question from [7]. So, in Section 2, we provide a graph G with the
corresponding structural characterization and prove the following theorem.

Theorem 1.1. Let G be a graph with γ(G) = k, k ≥ 2. Then γMB(G) = γ(G) = k for all
k ≥ 2 if and only if G ⊇ G.

In the same paper [7], the authors proposed finding the minimum number of moves for
Dominator in the MBD game on the Cartesian product of two graphs. Motivated by a
given problem, we focus on estimating invariants γMB(G) and γ′MB(G) for the Cartesian
product of two graphs and prove the following theorems in Section 3.

Theorem 1.2. Let G and H be two arbitrary graphs on n and m vertices, respectively.
Suppose that Maker has a winning strategy in MBD game on at least one of these two
graphs as the first and as the second player. Then

γMB(G�H) ≤ min{γMB(G) + (m− 1)γ′MB(G), γMB(H) + (n− 1)γ′MB(H)}

and
γ′MB(G�H) ≤ min{m · γMB(G), n · γ′MB(H)}.
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Theorem 1.3. Let G be a graph on n vertices. Then Dominator can win the game on
G�K2 in at most n moves. If Dominator has a wining strategy as the first and as the
second player in the game on G, then γMB(G�K2) ≤ min{γMB(G) + γ′MB(G), n} and
γ′MB(G�K2) ≤ min{2γ′MB(G), n}.

Especially, we focus on determining how long does it take Dominator to win on P2�Pn,
for n ≥ 1. So, in Section 3, we also prove the following two theorems.

Theorem 1.4. γ′MB(P2�Pn) = n for n ≥ 1.

Theorem 1.5. γMB(P2�Pn) = n− 2, for n ≥ 13.

1.1 Preliminaries

For given graph G by V (G) and E(G) we denote its vertex set and edge set, respectively.
The order of graph G is denoted by v(G) = |V (G)|, and the size of the graph by e(G) =
|E(G)|.
Assume that the MBD game is in progress. We denote by d1, d2, ... the sequence of vertices
chosen by Dominator and by s1, s2, ... the sequence chosen by Staller. At any given moment
during this game, we denote the set of vertices claimed by Dominator by D and the set
of vertices claimed by Staller by S. As in [7], we say that the game is the D-game if
Dominator is the first to play, i.e. one round consists of a move by Dominator followed
by a move of Staller. In the S-game, one round consists of a move by Staller followed
by a move of Dominator. We say that the vertex v is isolated by Staller if v and all its
neighbours are claimed by Staller.

2 Relation between γ and γMB

Let G be a graph with γ(G) = k, where k ≥ 2 is an integer. Let U = {a, b2, c2, ..., bk, ck} ⊆
V (G) be a set of all vertices, which appear in γ-sets. Divide the set U into following subsets:
{a} and {bi, ci}, for all i ∈ {2, ..., k}. Suppose that

• all vertices from V (G) \ U can be divided into k pairwise disjoint sets
A1, A2, ...Ak−1, Ak such that all vertices from some Ai are adjacent to {bi, ci}, for
i = 2..., k and NU(Ai) ∩NU(Aj) = ∅, for all i 6= j.

• vertices from A1 are the leaves of the star with the center in the vertex a ∈ U and
these vertices do not have other neighbours in U .

At least one of the next four cases must hold

1. bici ∈ E(G),

2. bia ∈ E(G) and cia ∈ E(G)
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3. bia ∈ E(G) and there exist j 6= i such that cibj, cicj, or cia ∈ E(G) and there exist
j 6= i such that bibj, bicj ∈ E(G),

4. there exist j, k 6= i such that bibj, bicj, cibk, cick ∈ E(G) (note that k and j could be
equal).

One example of the graph G is illustrated on Figure 1.

Figure 1: An example of graph G.

Lemma 2.1. The number of γ-sets in graph G is 2k−1. In particular, the vertex a lies in
every γ-set, the vertex bi lies in exactly 2k−2 γ-sets which do not contain vertex ci and the
vertex ci lies in other 2k−2 γ-sets which do not contain vertex bi.

Proof. Denote by F a family of all γ-sets of graph G and let N = |F|. In every γ-set from
the family F for each vertex define positions in the corresponding γ-set. Since every γ-set is
of order k, denote positions in sets by 1, 2..., k and place vertices a, b2, b3, ..., bk, c2, c3, ..., ck
on the corresponding positions in γ-sets in the following way.
Since vertices from A1 have only one neighbour from U , a vertex a, it follows that each set
from F must contain this vertex a. Its position in each γ-set we denote by 1.
Also, since vertices from some set Ai, i = 2, ..., k have two common neighbours from U ,
bi and ci, then bi or ci will be placed at the position i, i = 2, 3, ..., k. More precisely, the
vertex bi will appear in N/2 γ-sets and ci will appear in other N/2 γ-sets which do not
contain vertex bi.
It follows that for each position i in some γ-set there are two possibilities, bi or ci, i =
2, 3, ..., k. So, we obtain that the total number of γ-sets is N = 2k−1.

Proof of Theorem 1.1. First, suppose that G ⊆ G and prove that γMB(G) = k. It is
enough to prove that γMB(G) = k.
In his first move Dominator plays d1 = a. In every other round 2 ≤ r ≤ k, Dominator
plays in the following way. If Staller in her (r − 1)st move plays sr−1 = bi (or sr−1 = ci)
then Dominator responses with dr = ci (or dr = bi), for each i = 2, 3, ..., k. So, γMB(G) = k.
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Suppose, now, that γMB(G) = k and prove that G ⊇ G.
After Dominator’s first move d1, it is Staller’s turn to make a move. If she claims s1 such
that d1 and s1 are part of some γ-set, then there exists at least one more vertex, say
d2, such that d1 and d2 are part of some other γ-set. Otherwise, this is a contradiction
with the statement that Dominator wins the game. So, this gives at least two γ-sets:
{d1, d2, ...} and {d1, s1, ...}.
Since Staller plays according to her optimal strategy, the vertex she claims in each round
is the best choice for her. So, for her first move she had at least two best choices, s1 and
d2. We consider separately the cases when Staller claims s1 and when she claims d2 in the
first round.

Case 1. Suppose that Staller claimed s1 in her first move and Dominator claimed d2 in
his second move. Then Staller in her second move can claim s2 such that d1, d2 and s2 are
part of some γ-set. Then there exists at least one more vertex, say d3, such that d1, d2 are
d3 are part of some other γ-set.

Case 2. Suppose that Staller claimed d2 in her first move and Dominator claimed s1 in
his second move. Then, Staller in her second move can claim some s2 such that d1, s1 are
s2 are part of some γ-set. Then, there exists at least one more vertex, say d3, such that
d1, s1 are d3 are part of some other γ-set. Dominator claims d3.

After Dominator’s third move, above analyses gives at least 4 = 22 γ-sets: {d1, d2, d3...},
{d1, d2, s2...}, {d1, s1, d3...} and {d1, s1, s2...}.

Suppose that after Dominator’s ith move we obtain that there are 2i−1 γ-sets. As-
sume that after Dominator’s move in round i, he owns vertices: d1, d2, d3, ..., di.
If in round i Staller claims some si such that d1, d2, ..., di are si are part of some γ-set,
then according to the statement of theorem that Dominator wins in the game, there exists
a vertex di+1, such that d1, d2, ..., di and di+1 are part of some other γ-set. So, si or di+1

is the vertex on the (i + 1)st position of previously found 2i−1 sets. So, this gives at least
2i−1 new sets which is, in total, at least 2 · 2i−1 = 2i γ-sets.
Since Dominator in each round i, i = 2, 3, .., k can find the corresponding vertex, as the
response to Staller’s (i−1)st move, it follows that for each position in every γ-set there are
at least two possible choices. This gives at least 2k−1 γ-sets. The vertex di (or si−1), for
every i = 2, 3, ..., k, appears in at least 2k−2 γ-sets which do not contain si−1 (or di). The
vertex d1 must appear in all γ-sets. Otherwise, after some number of rounds Dominator
will lose the game which would be a contradiction. Also, at least one of the next four
cases must hold for each i ∈ {1, ..., k − 1}.

1. sidi+1 ∈ E(G),

2. d1di+1, d1si ∈ E(G),
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3. d1di+1 ∈ E(G) and there exist j 6= i such that sisj, sidj+1 ∈ E(G), or d1si ∈ E(G)
and there exist j 6= i such that di+1sj, di+1dj+1 ∈ E(G),

4. there exist j, k 6= i such that sisj, sidj+1, di+1sk, di+1dk+1 ∈ E(G) (where k and j
could be equal).

So, G ⊇ G.

3 MBD game on G�H

First, we consider the MBD game on G�K2 and prove Theorem 1.3.

Proof of Theorem 1.3. Let V (G) = {v1, v2, ..., vn}. Let H be a copy of the graph
G and let V (H) = {v′1, v′2, ..., v′n}, where v′i = vi for each i ∈ {1, 2, ..., n}.
Then V (G�K2) = V (G) ∪ V (H) = {v1, v2, ..., vn, v′1, v′2, ..., v′n} and E(G�K2) =
E(G) ∪ E(H) ∪ {v1v′1, v2v′2, ..., vnv′n}.
In order to win, Dominator can always use the pairing strategy. That is, when Staller
claims vi (or v′i), for some i ∈ {1, 2, ..., n}, Dominator responses by claiming vertex v′i (or
vi). So, Dominator wins in at most n moves. To see that bound is tight consider G as the
disjoint union of K1s.
Next, suppose that Dominator can win in the game on the graph G as the first and as the
second player. Assume that Dominator starts the game. Note that γMB(G) = γMB(H)
and γ′MB(G) = γ′MB(H).
By SD and S′D denote Dominator’s winning strategy on G (and also on H) in the D-game
and the S-game, respectively.
If γMB(G) + γ′MB(G) ≥ n, Dominator will use the pairing strategy. So, suppose that
γMB(G) + γ′MB(G) < n.
For his first move Dominator chooses a vertex from V (G) according to his winning
strategy SD. In this way he starts the D-game on G.
In every other round r ≥ 2, Dominator looks on the (r − 1)st move of Staller. If Staller
claims a vertex from V (G), Dominator responses by claiming a vertex from V (G) and if
Staller claims a vertex from V (H), Dominator also claims a vertex from V (H).
If Staller was first to claim a vertex from V (H), then the S-game was played on H.
So, in the game on G�K2, Dominator can win in at most γMB(G) + γ′MB(G) moves.

Next, assume that Staller starts the game on G�K2. If 2γ′MB(G) ≥ n, Dominator
will use the pairing strategy. So, let 2γ′MB(G) < n. Since in this case, Staller can make
the first move on G and after, also, on H, Dominator will need to play according to the
strategy S′D on both graphs G and H. So, to win in the game on G�K2, he needs to play
at most 2γ′MB(G) moves.

Remark 3.1. The domination number of the r × l rook’s graph Kr�Kl is γ = min(r, l).
It is not hard to see that Dominator can win in γ moves. Note that the graph G, described
in Section 2, is the subgraph of Kr�Kl.
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Proof of Theorem 1.2. The proof for the first part of theorem is similar to the proof of
Theorem 1.3. Consider, first, the D-game on G�H. Suppose that Dominator has a
winning strategy as the second player on G. Let γMB(G) + (m− 1)γ′MB(G) ≤ γMB(H) +
(n− 1)γ′MB(H).
By G(1), G(2), ..., G(m) denote copies of the graph G. By SD and S′D denote Dominator’s
winning strategy on G in the D-game and the S-game, respectively.
His first move Dominator will play on one copy of G according to his winning strategy SD.
In every other round i ≥ 2, he looks on the (i−1)st move of Staller. If Staller in his (i−1)st

move claimed vertex from some V (Gj), Dominator responds by claiming a vertex from the
same set V (Gj) according to the corresponding winning strategy SD or S′D. Since Staller
can be the first player on at most m− 1 copies of the graph G, the statement holds.
If γMB(G) + (m − 1)γ′MB(G) > γMB(H) + (n − 1)γ′MB(H), then we consider n copies of
graph H and the proof is the same.

3.1 MBD game on P2�Pn

Definition 3.2. For 1 ≤ m ≤ n, let V = {u1, ..., um, v1, ..., vm} and E = {uiui+1 : i =
1, 2, ...,m − 1} ∪ {vivi+1 : i = 1, 2, ...,m − 1} ∪ {uivi : i = 1, 2, ...,m}. Suppose that
Maker–Breaker domination game on P2�Pn is in progress, where n ≥ 5.

1. By Xm (1 ≤ m ≤ n) denote a subgraph of P2�Pn, where V (Xm) = V and E(Xm) =
E, such that u1 is a free vertex which is dominated by Dominator with its neighbour
u0 ∈ V (P2�Pn) \ V (Xm) (Figure 2(a)).

2. By Ym (3 ≤ m ≤ n) denote a subgraph of P2�Pn, where V (Ym) = V and E(Ym) = E,
such that v2 is claimed by Staller and u1, um and vm are free vertices which are
dominated by Dominator with their corresponding neighbours from the set V (P2�Pn)\
V (Ym) (Figure 2(b)).
When consider the D-game on Ym, we set s0 = v2.

3. By Zm (1 ≤ m ≤ n) denote a subgraph of P2�Pn, where V (Zm) = V and E(Zm) = E,
such that u1 and v1 are free vertices which are dominated by Dominator with their
corresponding neighbours from the set V (P2�Pn) \ V (Zm) (Figure 2(c)).

4. By Wm (1 ≤ m ≤ n) denote a subgraph of P2�Pn, where V (Wm) = V ∪ {v0} and
E(Wm) = E ∪ {v0v1}, such that u1 and v0 are free vertices which are dominated
by Dominator with their corresponding neighbour u0 ∈ V (P2�Pn) \ V (Wm) (Figure
2(d)).

5. By ρm (2 ≤ m ≤ n) denote a subgraph of P2�Pn, where V (ρm) = V and E(ρm) = E,
such that v2 is claimed by Staller and u1 is a free vertex which is dominated by
Dominator with its neighbour u0 ∈ V (P2�Pn) \ V (ρm) (Figure 2(e)).
When consider the D-game on ρm, we set s0 = v2.

We define two types of traps Staller can create in the MBD game on P2�Pn for n ≥ 3.
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(a) (b)

(c) (d)

(e)

Figure 2: Subgraph (a) Xm (b) Ym (c) Zm (d) Wm (e) ρm
Vertices claimed by Dominator are denoted by cycles and vertices claimed by Staller by crosses.
Triangle vertices are free vertices dominated by Dominator.

Trap 1 - triangle trap. We say that Staller created a triangle trap if after her move
Dominator is forced to claim a vertex vi in order to dominate vi, where 2 ≤ i ≤ n − 1,
because all its neighbours vi−1, vi+1 and ui are claimed by Staller and Staller can isolate vi
by claiming it in her next move. Similarly, Staller created the triangle trap if Dominator is
forced to claim ui in order to dominate ui, where 2 ≤ i ≤ n− 1, because all its neighbours
ui−1, ui+1 and vi are claimed by Staller.
We say that Staller creates a sequence of triangle traps vi − vj (or vi − uj), where 2 ≤
i ≤ n − 2 and i + 1 ≤ j ≤ n − 1, if Dominator is consecutively forced to claimed vertices
vi, ui+1, vi+2, ui+3, ..., vj (or vi, ui+1, vi+2, ui+3, ..., uj). In this sequence of triangle traps the
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(a) (b)

Figure 3: The example of the sequence of (a) triangle traps (b) line traps
Vertices claimed by Dominator are denoted by cycles and vertices claimed by Staller by crosses.

triple of vertices claimed by Staller which form the first trap is vi−1, ui, vi+1, and the triple
of vertices which form the last trap in this sequence is vj−1, uj, vj+1 (or uj−1, vj, uj+1), and
vj+1 (or uj+1) is the vertex which is claimed last by Staller in the sequence of traps. The
sequence of triangle traps v3 − u8 is illustrated on Figure 3(a).
Similarly, we say that Staller creates a sequence of triangle traps ui−vj (or ui−uj), where
2 ≤ i ≤ n−2 and i+1 ≤ j ≤ n−1, if Dominator is consecutively forced to claimed vertices
ui, vi+1, ui+2, vi+3, ..., vj (or ui, vi+1, ui+2, vi+3, ..., uj). In this sequence of triangle traps the
triple of vertices claimed by Staller which form the first trap is ui−1, vi, ui+1, and the triple
of vertices which form the last trap in this sequence is vj−1, uj, vj+1 (or uj−1, vj, uj+1), and
vj+1 (or uj+1) is the vertex which claimed last by Staller in the sequence of triangle traps.

Trap 2 - line trap. We say that Staller created a line trap if after her move Dominator
is forced to claim a vertex vi, 2 ≤ i ≤ n − 1, in order to dominate ui because vertices
ui−1, ui and ui+1 are claimed by Staller and Staller can isolate ui by claiming vi in her next
move. Similarly, Staller created a line trap if Dominator is forced to claim ui in order to
dominate vi, 2 ≤ i ≤ n− 1, because vertices vi−1, vi and vi+1 are claimed by Staller.
We say that Staller creates a sequence of line traps vi − vj (or ui − uj), where 2 ≤ i ≤
n − 2 and i + 1 ≤ j ≤ n − 1, if Dominator is consecutively forced to claimed vertices
vi, vi+1, vi+2, vi+3, ..., vj (or ui, ui+1, ui+2, ui+3, ..., uj) and where the last vertex claimed by
Staller in this sequence is uj+1 (or vj+1). The sequence of line traps u3 − u8 is illustrated
on Figure 3(b).

Lemma 3.3. Let m ≥ 2. Then γMB(ρm) = m. Also, if Dominator skips his move in any
round, he can not win.

Proof. Let s0 = v2. To prove the upper and the lower bound we use induction on k, where
2 ≤ k ≤ m. For k = 2, ρ2 is a cycle C4. To dominate v1 and u2, Dominator needs to play
two moves. So, γMB(ρ2) = 2. If Dominator skips his first move on ρ2, which we denote by
d1 = ∅, then s1 = v1 and in her next round Staller can isolate either v1 or v2.
To prove that γMB(ρ3) = 3, we analyse the following cases. It is not hard to see that if
Dominator skips any move on ρ3, Staller can isolate some vertex.
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1. d1 = u3 (or d1 = v1)
Then s1 must be equal to v1 (or s1 = u3), as otherwise Dominator will need exactly
one more move to win. To dominate v1 and v2 (or u2, u3 and v3), Dominator needs
two more moves.

2. d1 = v3 (or d1 = u1).
This case is symmetric to the previous case.

3. d1 = u2.
Dominator needs two more moves to dominate v1 and v3.

So, γMB(ρ3) = 3.
For k ∈ {2, 3}, statement holds. Suppose that γMB(ρk−1) ≤ k − 1, for 4 ≤ k ≤ m and
m ≥ 4. Consider the D-game on ρk. Dominator’s strategy is to split ρk into two parts, a
graph ρk−1 and an edge ukvk. By induction hypothesis, γMB(ρk−1) ≤ k − 1. Also, when
Staller claims uk (or vk), Dominator claims vk (or uk). So, it follows that γMB(ρk) ≤ k.

Next, we prove that Staller has a strategy to postpone Dominator’s winning by at
least k moves and which ensures that Dominator can not skip any move on ρk.
Assume that γMB(ρk−1) ≥ k − 1 and Dominator can not skip any move in the game
on ρk−1, for 4 ≤ k ≤ m. Consider the D-game on ρk and prove that γMB(ρk) ≥ k and
Dominator is not able to skip any move on ρk.
If d1 = ∅, we propose the following strategy for Staller: s1 = v1 which forces d2 = u1, as
otherwise Staller can isolate v1 in her next move. By playing s2 = v3 Staller starts the
sequence of line traps u2 − uk−1. In her last move Staller claims uk and isolates vk. Next,
we consider all possibilities for d1 and propose Staller’s strategy.

Case 1. d1 = ui, (i 6= 1).
Then s1 = v1 which forces d2 = u1, as otherwise Staller can isolate v1 by claiming u1
in her third move.
If i = 2, that is, if d1 = u2, then s2 = v4. Consider the D-game on subgraph ρk−2 on
V (ρk−2) = {u3, ..., uk, v3, .., vk}, where v4 ∈ S and u3 is a free vertex dominated by
Dominator with u2.
By induction hypothesis γMB(ρk−2) ≥ k − 2 and Dominator can not skip any move.
So, Dominator needs at least k moves to win on ρk without skipping any move.

If i > 2, then s2 = v3 and Staller starts the sequence of line traps u2 − ui−1.
In round i Staller claims si = vi+2. Consider the D-game on subgraph ρk−i with
the vertex set V (ρk−i) = {ui+1, ..., uk, vi+1, .., vk}, where vi+2 ∈ S and ui+1 is a free
vertex dominated by Dominator with ui. By induction hypothesis, γMB(ρk−i) ≥ k− i
and Dominator can not skip any move. So, Dominator needs at least k moves to
win on ρk without skipping any move.
If i = k, that is, if d1 = uk, then Dominator already played k moves since he was
forced to claim all from {u1, ..., uk}.
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If i = k − 1, that is, if d1 = uk−1, then si = sk−1 ∈ {uk, vk}. So, Dominator needs to
play one more move to dominate vk. So, in total, he plays k moves.

Case 2. d1 = vi, i ≥ 3.

Claim 3.4. If d1 /∈ {v3, v4}, then Dominator can not win.

Proof of Claim 3.4. Suppose that d1 /∈ {v3, v4}.
Then s1 = u2.
If d2 = u3, Staller claims s2 = v1 and forces d3 = u1 or d3 = v3 . Since Dominator
can not dominate vertices v1, u1 and v2 at the same time, in her next move Staller
will isolate v1 and u1 by claiming u1, or v2 by claiming v3.
If d2 = v3, Staller claims s2 = u1. Since Dominator can not dominate u1, v1 and u2
at the same time, he will lose the game after Staller next move.
If d2 = u1, then s2 = v3 which forces d3 = v1. Next, s3 = u3. Dominator can not
dominate both u3 and v3 in his next move. In her next move Staller isolates u3 or v3.
If d2 = v1, then s2 = u3 which forces d3 = u1. Next, s3 = v3. Dominator can not
dominate both u3 and v3. So, he will lose the game after Staller’s next move.
Finally, if d2 /∈ {u1, v1, u3, v3}, then Staller claims s2 = u1. Since Dominator can not
dominate u1, v1, u2 and v2 at the same time, he will lose the game after Staller’s next
move.

So, d1 ∈ {v3, v4}.

Case 2.1 d1 = v3.
Then, s1 = u1 which forces d2 = v1, and s2 = u3 which forces d3 = u2 (a
triangle trap). Next, s3 = u5. Consider the D-game on the subgraph ρk−3 with
the vertex set V (ρk−3) = {u4, ..., uk, v4, ..., vk}. By induction hypothesis, it holds
that γMB(ρk−3) ≥ k− 3 and he can not skip any move. So, Dominator needs at
least k on ρk moves without skipping any move.

Case 2.2 d1 = v4.
Then s1 = u2.

Claim 3.5. If d2 /∈ {u1, v1}, then Dominator can not win.

Proof of Claim 3.5. The proof of this claim is very similar to the proof of Claim
3.4.

Case 2.2.1 d2 = u1.
Then, s2 = v3 which forces d3 = v1 and s3 = u4 which forces u3 (a triangle
trap). Next, if k ≥ 6, then s4 = u6. Consider the D-game on subgraph
ρk−4 with the vertex set V (ρk−4) = {u5, ..., uk, v5, ..., vk} where v5 is already
dominated by Dominator with v4, and the vertex u6 is claimed by Staller.
By induction hypothesis, it holds γMB(ρk−4) ≥ k − 4 and he can not skip
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any move. So, Dominator needs at least k moves without skipping any
move.
If k = 5, then no matter what Staller claims in her fourth move, Dominator
will need one more move to dominate u5.

Case 2.2.2 d2 = v1.
Then, s2 = u3 which forces d3 = u1 and s3 = u4 which forces v3 (a line
trap). Next, s4 = u6 and the rest of the proof is the same as in Case 2.2.1.

Case 3. d1 = u1.
Then s1 = v3.

Case 3.1. d2 = ui, i > 2.
Then, s2 = u2 which forces d3 = v1.
Next, s3 = v4 and Staller starts the sequence of line traps u3−ui−1. In round i,
Staller claims vi+2. Consider the D-game on ρk−i with the vertex set V (ρk−i) =
{ui+1, ..., uk, vi+1, ..., vk} where ui+1 is already dominated by Dominator with ui
and vi+2 is claimed by Staller. The rest of the proof is the same as in Case 1.
So, Dominator needs at least k moves on ρk without skipping any move.

Case 3.2. d2 = vi, where i > 3.
Then, s2 = u2 which forces d3 = v1.
If i > 4, that is, if d2 = vi 6= v4, then s3 = u3. Dominator can not dominate
both u3 and v3 at the same time. In her next move, Staller isolates u3 or v3 and
Dominator loses the game.
If i = 4, then s3 = u4 which forces d4 = u3. Next, if k ≥ 6, then s4 = u6 and
the rest of the proof is the same as in Case 2.2.1.

Case 3.3. d2 ∈ {v1, u2}.
Then, in round 2 ≤ r ≤ k− 2, Staller claims sr = vr+2 and forces Dominator to
claim dr+1 = ur+1, as otherwise Staller can isolate vr+1 by claiming ur+1 in the
next round, that is Staller creates the sequence of line traps u3 − uk−1. In the
last round k − 1, Staller claims uk and in this way she isolates vk.

Case 4. d1 = v1.
Then, Staller claims s1 = u3.

Claim 3.6. If d2 /∈ {v3, u4, v4}, then Dominator can not win.

Proof of Claim 3.6. Assume that d2 /∈ {v3, u4, v4}.
Let d2 = u1 or d2 = u2.
Then, in round 2, by playing s2 = v4, Staller starts the sequence of triangle traps
v3 − vk−1 (for even k) or v3 − uk−1 (for odd k). In the last move, if k is even, Staller
claims uk and isolates it. If k is odd, she claims vk and isolates it.

Let d2 /∈ {u1, u2, v3, u4, v4}.
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Then, we have the following sequences of the moves: s2 = u2 ⇒ d3 = u1 and s3 = v3.
Dominator can not dominate both u3 and v3 at the same time.

From Claim 3.6, it follows that d2 ∈ {v3, u4, v4}. We have s0 = v2, d1 = v1 and
s1 = u3. Next, we consider the following cases.

Case 4.1. d2 = v3.
Then, Staller claims s2 = u1 which forces Dominator to claim d3 = u2. In the
next round Staller claims u5. The rest of the proof is the same as in Case 2.1.
So, Dominator needs at least k moves on ρk without skipping any move.

Case 4.2. d2 = u4.
Then, Staller claims s2 = u1 which forces Dominator to claim d3 = u2. In
the next round Staller claims s3 = v4 and forces Dominator to play d4 = v3. If
k ≥ 6, then s4 = v6. Consider the D-game on ρk−4 with the vertex set V (ρk−4) =
{u5, u6, ..., uk, v5, v6, ..., vk} where u5 is already dominated by Dominator with
u4 and v6 is claimed by Staller. The rest of the proof is the same as in Case
2.2.1.

Case 4.3. d2 = v4.
Then, Staller claims s2 = u2 which forces Dominator to claim d3 = u1. In the
next round Staller claims s3 = u4 and forces Dominator to play d4 = v3. Next,
s4 = u6 and the rest of the proof is similar to the proof from Case 4.2. So,
Dominator needs to play at least k moves on ρk without skipping any move.

This concludes the proof of the lemma.

Remark 3.7. Note that the D-game on graph ρm can be considered as the S-game on Xm

where s1 = v2. This means that v2 is one of the optimal choices for the first move for
Staller in the S-game on Xm since by playing v2 in her first move and then following her
strategy for ρm Staller can force Dominator to play the maximum number of moves, which
is m.

Lemma 3.8. Let m ≥ 3. Then γMB(Ym) = m− 1.

Proof. Let s0 = v2.
The proof is very similar to the proof of Lemma 3.3. To prove the upper and the lower
bound, we use induction on k where 2 ≤ k ≤ m. In the proof for the lower bound we
follow the same case analysis from Lemma 3.3.

Lemma 3.9. Let m ≥ 1. Then γ′MB(Zm) = m− 1.

Proof. To prove the upper bound we use induction on k, where 1 ≤ k ≤ m. For
k ∈ {1, 2, 3} it is not hard to see that statement holds, that is, Dominator needs to play
k − 1 moves in the S-game on Zk. Suppose that γ′MB(Zk−1) ≤ k − 2 for 4 ≤ k ≤ m and
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prove that γ′MB(Zk) ≤ k− 1. Dominator splits the graph into two parts, a graph Zk−1 and
an edge ukvk. By induction hypothesis, γ′MB(Zk−1) ≤ k − 2. Also, when Staller claims uk
(or vk), Dominator claims vk (or uk). So, γ′MB(Zk) ≤ k − 1.

To prove the lower bound we propose the following strategy for Staller:
s1 = um, which forces d1 ∈ {um−1, vm−1, vm}. Otherwise, in her second move Staller can
choose vm and in the third move she can isolate either um or vm by claiming um−1 or vm−1,
since Dominator will not be able to dominate both um and vm in his second move.
If d1 = um−1, Staller plays s2 = vm−1 which forces d2 = vm. Then, s3 = vm−3. In this way
Staller creates Ym−2 with the vertex set V (Ym−2) = {u1, u2, ..., um−2, v1, v2, ..., vm−2}. From
Lemma 3.8 we know that γMB(Ym−2) = m − 3, so Dominator needs to play m − 1 moves
on Zm.
If d1 = vm−1, Staller plays s2 = um−1 which forces d2 = vm. Then, s3 = um−3. In this way
Staller creates Ym−2. According to Lemma 3.8, γMB(Ym−2) = m− 3, so Dominator needs
to play m− 1 moves on Zm.
Finally, if d1 = vm Staller plays s2 = um−2 and creates Ym−1. According to Lemma 3.8,
γMB(Ym−1) = m− 2, so Dominator needs to play m− 1 moves on Zm.
It follows that, γ′MB(Zm) = m− 1 for m ≥ 4.

Lemma 3.10. Let m ≥ 4. Then γ′MB(Wm) = m−1. In particularly, if m ∈ {1, 2, 3}, then
γ′MB(Wm) = m .

Proof. For m ∈ {1, 2, 3} it is not hard to see that Dominator needs m moves to win in the
S-game on Wm.
Let m ≥ 4. Since Wm has one more undominated vertex than Zm, Dominator needs to play
at least as many moves as he needs to play on Zm. So, it follows that γ′MB(Wm) ≥ γ′MB(Zm)
and the lower bound holds.
The proof for the upper bound follows by induction on k where 4 ≤ k ≤ m. For k = 4, we
consider the following cases and propose Dominator’s strategy.

Case 1. s1 = v2.
Then, d1 = u3.
If s2 = v1, then d2 = v3. To dominate v1 Dominator will claim a vertex from {v0, u1}.
One of these two vertices must be free after Staller’s third move. Otherwise, if s2 6= v1,
then d2 = v1. To dominate v4 Dominator will claim a vertex from {v3, v4, u4}. One
of these three vertices must be free after Staller’s third move.

Case 2. s1 6= v2.

Case 2.1 s1 = u4 (or s1 = v4).
Then, d1 = u3. If s2 = v3, then d2 = v4 (or d2 = u4) and d3 ∈ {v1, v2}. If
s2 = v4 (or s2 = u4), then d2 = v3 and d3 ∈ {v1, v2}.

Case 2.2 s1 /∈ {u4, v4}.
Then, d1 = v2. Dominator needs at most two more moves to dominate the
remaining vertices.

14



Suppose that γ′MB(Wk−1) ≤ k − 2, for 5 ≤ k ≤ m − 1. Consider the S-game on Wk.
Dominator divides Wk into two parts, Wk−1 and an edge ukvk. Since γ′MB(Wk−1) ≤ k − 2
and since he needs at most one more move to dominate uk and vk, it follows that γ′MB(Wk) ≤
k − 1.

Lemma 3.11. Let m ≥ 6. Then γMB(Xm) = m−2. In particularly, if m = 1 then X1 = 1
and if m ∈ {2, 3, 4, 5}, then Xm = m− 1.

Proof. For m ∈ {1, 2, 3} it is not hard to see that the statement holds. For m = 4 and
m = 5 simple case analysis gives the result.
Let m ≥ 6. The proof for the upper bound goes by induction on k, where 6 ≤ k ≤ m.
First, we consider the D-game on X6. In his first move Dominator plays d1 = v2 and he
creates a subgraph W4 with the vertex set V (W4) = {u2, u3, u4, u5, u6, v3, v4, v5, v6}. By
Lemma 3.10, we have γ′MB(W4) = 3. So, γMB(X6) = 4.
Suppose that γMB(Xk−1) ≤ k − 3 for 7 ≤ k ≤ m and m ≥ 7, and prove that
γMB(Xk) ≤ k − 2. Dominator divides Xk on two parts, the graph Xk−1 and an edge ukvk.
Since γMB(Xk−1) ≤ k − 3 and since he needs at most one more move to dominate uk and
vk, it follows that γMB(Xk) ≤ k − 2.

To prove the lower bound, we also use induction on k and we do the case analysis.
Suppose that γMB(Xk−1) ≥ k − 3, for 7 ≤ k ≤ m and m ≥ 7, and prove that
γMB(Xk) ≥ k − 2.
We analyse the following cases and propose the following strategy for Staller.

Case I d1 ∈ {u1, v1, u2, v2}.
If d1 = u1 (or d1 = v1), then consider the S-game on Wk−1 with the vertex set
V (Wk−1) = {v1, v2, ..., vk, u2, ..., uk} (or V (Wk−1) = {v2, ..., vk, u1, u2, ..., uk}). By Lemma
3.10, γ′MB(Wk−1) = k − 2. So, Dominator needs to play k − 1 moves on Xk.
If d2 = u2 (or d2 = v2), then consider the S-game on Wk−2 with the vertex set
V (Wk−2) = {v2, v3, ..., vk, u3, ..., uk} (or V (Wk−2) = {v3, ..., vk, u2, u3, ..., uk}). By Lemma
3.10, γ′MB(Wk−2) = k − 3. Also, if d1 = u2 Dominator needs to play one more move to
dominate v1. So, Dominator needs to play at least k − 2 moves on Xk.

Case II d1 = ui, i ≥ 3.
Then, s1 = v2.
The rest of Staller’s strategy depends on Dominator’s second move:

Case 1. d2 = u1.
If i = 3, that is d1 = u3, then consider the S-game on Wk−3 with the vertex set
V (Wk−3) = {u4..., uk, v3, v4, ..., vk}. By Lemma 3.10, γ′MB(Wk−3) = k − 4. So,
Dominator needs at least k − 2 moves.

Let i ≥ 4, then s2 = v3. Depending of Dominator’s third move, we consider
the following subcases.
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Case 1.1. d3 = u2 or d3 = v1.
Then, by playing s3 = v4 Staller starts the sequence of line traps u3 − ui−1 where
si−1 = vi and di = ui−1. Then, if k − i ≥ 2 Staller plays si = vi+2. Consider the
D-game on the subgraph ρk−i with the vertex set V (ρk−i) = {ui+1, ..., uk, vi+1, ..., vk}.
According to Lemma 3.3, γMB(ρk−i) = k− i, so Dominator needs to play k moves on
Xk. If k − i = 1, then si ∈ {uk, vk} and Dominator needs to play one more move to
dominate vk. If k − i = 0, then Dominator already played k moves.

Case 1.2. d3 = uj, j ≥ 3 or d3 = vj, j ≥ 4.

Claim 3.12. If min{i, j} /∈ {3, 4}, then Dominator can not win.

Proof of Claim 3.12. Assume min{i, j} /∈ {3, 4}. Then s3 = u2 which forces d4 = v1.
Next, s4 = u3. Dominator can not dominate both u3 and v3 at the same time.

Case 1.2.1. d3 = uj, where j ≥ 3 and j < i. According to Claim 3.12, j ∈ {3, 4}.

1.2.1.a. j = 3, that is d3 = u3. Then, s3 = u2 which forces d4 = v1. Consider
the subgraph Xk−3 with the vertex set V (Xk−3) = {u4, ..., uk, v4, ..., vk} where
u4 is already dominated with u3 by Dominator. Also, d1 = ui ∈ Xk−3 and
now it is Staller’s turn to make her move on Xk−3. By induction hypothesis, if
k − 3 ≥ 6, then γMB(Xk−3) ≥ k − 5, so Dominator needs at least k − 2 moves.
If 4 ≤ k− 3 ≤ 5, then, since γMB(Xk−3) = k− 4, Dominator needs k− 1 moves.

1.2.1.b. j = 4, that is, d3 = u4. Then, s3 = u2 which forces d4 = v1 and s4 =
v4 which forces d5 = u3 (a line trap). Consider the subgraph Xk−4 on V (Xk−4) =
{u5, ..., uk, v5, ..., vk} where u5 is already dominated with u4 by Dominator. Also,
d1 = ui ∈ Xk−4 and now it is Staller’s turn to make her move on Xk−4. By
induction hypothesis, if k − 4 ≥ 6, then γMB(Xk−4) ≥ k − 6, so Dominator
needs at least k − 2 moves. If 3 ≤ k − 4 ≤ 5, then, since γMB(Xk−4) = k − 5,
Dominator needs to play k − 1 moves on Xk.

Case 1.2.2. d3 = uj, where j ≥ 3 and j > i. According to Claim 3.12, i ∈ {3, 4}, that is,
d1 = u3 or d1 = u4. Staller’s strategy is the same as in Case 1.2.1.

Case 1.2.3. d3 = vj, j < i. According to Claim 3.12 and since s2 = v3, it follows that j = 4,
that is, d3 = v4.
Then, s3 = u2 which forces d4 = v1 and s4 = u4 which forces d5 = u3 (a triangle
trap). Consider the subgraph Xk−4. Note that d1 = ui ∈ Xk−4. The rest of the
proof is the same as in Case 1.2.1.b.

Case 1.2.4. d3 = vj, j = i. According to Claim 3.12, d1 = u4 and d3 = v4.
Then, s3 = u2 which forces d4 = v1. Consider the S-game on Zk−4 with the
vertex set V (Zk−4) = {u5, ..., uk, v5, ..., vk} where u5 and v5 are dominated with
u4 and v4. According to Lemma 3.9, γ′MB(Zk−4) = k − 5, so Dominator needs
k − 1 moves.

16



Case 1.2.5. d3 = vj, j > i. According to Claim 3.12, i ∈ {3, 4}, that is, d1 ∈ {u3, u4}. The
proof of this case is similar to the proof of Case 1.2.1.

Case 2. d2 = v1.
If i = 3, that is, d1 = u3, then consider the S-game on the subgraph Wk−3 with the
vertex set V (Wk−3) = {u4, ..., uk, v3, v4, ..., vk} where v3 and u4 are dominated with
u3. According to Lemma 3.10, γ′MB(Wk−3) = k−4, so Dominator needs k−2 moves.

Let i ≥ 4. Then, s2 = u3.
Depending of Dominator’s third move, we consider the following cases.

Case 2.1. d3 = u1 or d3 = u2.
Let i be an even number. Then, s4 = v4 and Staller starts the sequence of triangle
traps v3 − vi−1, where si−1 = vi and di = vi−1. Next, if k − i ≥ 2, then si = vi+2 and
we have the subgraph ρk−i with the vertex set V (ρk−i) = {ui+1, ..., uk, vi+1, ..., vk}
where ui+1 is dominated with ui. Consider the D-game on ρk−i. According to
Lemma 3.3, γMB(ρk−i) = k − i, so Dominator needs k moves. If k − i = 1, then
si = vk which forces di+1 = uk, so Dominator needs k moves. If k − i = 0, then
Dominator already played k moves.

Let i be an odd number. Then, s4 = v4 and Staller starts the sequence of
triangle traps v3 − vi−2, where si−2 = vi−1 and di−1 = vi−2. Consider the subgraph
Wk−i with the vertex set V (Wk−i) = {ui+1, ..., uk, vi, vi+1, ..., vk} where vi and
ui+1 are dominated with ui. Consider the S-game on Wk−i. This means that
si−1 ∈ V (Wk−i). According to Lemma 3.10, if k− i ≥ 4, then γ′MB(Wk−i) = k− i−1,
so Dominator needs k − 2 moves. If 1 ≤ k − i ≤ 3, then γ′MB(Wk−i) = k − i, so
Dominator needs k− 1 moves. If d1 = ui = uk, then Dominator already played k− 1
moves.

Case 2.2. d3 = uj, j ≥ 4 or d3 = vj, j ≥ 3.
It is not hard to check that Claim 3.12 can be also applied on this case. So, min{i, j} ∈
{3, 4}.

Case 2.2.1. d3 = uj, j < i. According to Claim 3.12 and since s2 = u3, it follows that j = 4, that
is, d3 = u4. Then, s3 = u1 which forces d4 = u2 and s4 = v4 which forces d5 = v3 (a
triangle trap). Consider Xk−4 with the vertex set V (Xk−4) = {u5, ..., uk, v5, ..., vk},
where d1 = ui ∈ Xk−4 and now it is Staller’s turn to make her move on Xk−4.
Dominator needs at least k − 2 moves.

Case 2.2.2. d3 = uj, j > i. According to Claim 3.12, i = 4, that is, d1 = u4.
The proof is the same as the proof for Case 2.2.1.

Case 2.2.3. d3 = vj, j > i. According to Claim 3.12, i = 4, that is, d1 = u4.
The proof is the same as the proof for Case 2.2.1.

17



Case 2.2.4. d3 = vj, j = i. According to Claim 3.12, i = j = 4, that is, d1 = u4 and d3 = v4.
Then, s3 = u1 which forces d4 = u2 (a triangle trap). We get the subgraph Zk−4 and
the rest of the prof is the same as in Case 1.2.4. Dominator needs k − 1 moves.

Case 2.2.5. d3 = vj, j < i. According to Claim 3.12, j ∈ {3, 4}.
Let j = 3, that is, d3 = v3.
Then, s3 = u1 which forces d4 = u2. Consider Xk−3 and the rest of the proof is the
same as for Case 1.2.1.a. So, Dominator needs at least k − 2 moves.
Let j = 4, that is, d3 = v4.
Then, s3 = u2, which forces d4 = u1 and s4 = u4 which forces d5 = v3 (a line trap).
We get the subgraph Xk−4 and the rest of the prof is the same as in Case 1.2.1.b.

Case 3. d2 = uj, j ≥ 3.
Then, s2 = v1. In his third move Dominator is forced to claims u1, as otherwise
Staller can isolate v1 by claiming u1 in her next move. So, d3 = u1.
Let l = min{i, j} and let h = max{i, j}. Then, s3 = v3 and in this way Staller
starts the sequence of line traps u2 − ul−1, where sl = vl and dl+1 = ul−1. Consider
the subgraph Xk−l on V (Xk−l) = {ul+1, ..., uk, vl+1, ..., vk} where ul+1 is a free vertex
already dominated by Dominator with ul. Also, uh ∈ Xk−l and it is already claimed
by Dominator (in his first or the second move), and now it is Staller’s turn to make
a move on Xk−l. By induction hypothesis, if k − l ≥ 6, then γMB(Xk−l) ≥ k − l− 2,
so Dominator needs at least k − 2 on Xk.
If 2 ≤ k − l ≤ 5, then, since γMB(Xk−l) ≥ k − l− 1, it follows that Dominator needs
k − 1 moves. Finally, if k − j = 1, then Dominator needs k moves.

Case 4. d2 = vj, i < j.
Then, s2 = v1. In his third move Dominator is forced to claim u1, so d3 = u1. Then,
s3 = v3 and Staller starts the sequence of line traps u2 − ui−1, where the si = vi and
di+1 = ui−1. Consider Xk−i with the vertex set V (Xk−i) = {ui+1, ..., uk, vi+1, ..., vk},
where d2 = vj ∈ Xk−i. Dominator needs at least k − 2 moves.

Case 5. d2 = vj, i = j, where j ≥ 3.
Staller plays s2 = v1 and Dominator is forced to play d3 = u1. Then, s3 = v3
and Staller starts the sequence of line traps u2 − ui−2, where the si−1 = vi−1 and
di = ui−2. Since ui, vi ∈ D, we have the subgraph Zk−i with the vertex set V (Zk−i) =
{ui+1, ..., uk, vi+1, ..., vk}. Next, si ∈ V (Zk−i), so we consider the S-game on Zk−i. By
Lemma 3.9, γ′MB(Zk−i) = k − i − 1. This means that Dominator needs to play at
least k − 1 moves on Xk.

Case 6. d2 = vj, i > j ≥ 2 and j is even.
Then, s2 = u2.
We claim the following.

Claim 3.13. If d3 /∈ {u1, v1}, Dominator can not win.
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Proof of Claim 3.13. Let d3 /∈ {u1, v1}. After Dominator’s third move at least one
of the vertices u3, v3 needs to be free.
Suppose that v3 is a free vertex. Then, s3 = v1, so Dominator is not able to dominate
u1, v1 and v2 at the same time. In her next move Staller can isolate either u1 and v1,
or v2 by claiming either u1 or v3.
If u3 is a free vertex, then s3 = u1 and Dominator is not able to dominate u1, v1 and
u2 at the same time. In her next move Staller can isolate either u1 and v1, or u2 by
claiming either v1 or u3.

Case 6.1. d3 = u1.
Then, s3 = v3 which forces d4 = v1. By playing s4 = u4 Staller starts the
sequence of triangle traps u3 − uj−1, where sj = uj. After Dominator’s move
in round j + 1, dj+1 = uj−1, we have the subgraph Xk−j with the vertex set
V (Xk−j) = {uj+1, ..., uk, vj+1, ..., vk}, where vj+1 is dominated by Dominator
with vj. Also, d1 = ui ∈ Xk−j and now it is Staller’s turn to make her move on
Xk−j. By induction hypothesis, if k − j ≥ 6, then γMB(Xk−j) ≥ k − j − 2, so
Dominator needs at least k − 2 moves.
If 2 ≤ k − j ≤ 5, then, since γMB(Xk−j) ≥ k − j − 1, it follows that Dominator
needs at least k − 1 moves. Also, if k − j = 1, Dominator needs k moves.

Case 6.2. d3 = v1.
Then, s3 = u3 which forces d4 = u1. By playing s4 = u4 Staller starts the
sequence of line traps v3 − vj−1, where sj = uj. After Dominator’s move in
round j + 1, where dj+1 = vj−1, we have the subgraph Xk−j. The rest of the
proof is the same as in Case 6.1. So, Dominator needs at least k − 2 moves.
Also, if k − j = 1, Dominator needs k moves.

Case 7. d2 = vj, i > j ≥ 2 and j is odd.
Staller’s second move s2 = u1 forces d3 = v1. By claiming u3 Staller starts the
sequence of triangle traps u2 − uj−1 where sj = uj. After Dominator’s move in
round j + 1, that is, dj+1 = uj−1, we have the subgraph Xk−j with the vertex set
V (Xj) = {uj+1, ..., uk, vj+1, ..., vk}. The vertex ui ∈ Xk−j is already claimed by
Dominator in his first move and now it is Staller’s turn to make her move. After
using induction hypothesis, we obtain that Dominator needs to play at least k − 2
moves on Xk.

Case III. d1 = vi, i ≥ 3.
Then, s1 = v2. The rest of Staller’s strategy depends on Dominator’s second move:

Case i. d2 = u1.
If i = 3, that is, d1 = v3, then consider the S-game on the subgraph Wk−3 with the
vertex set V (Wk−3) = {u3, u4, ..., uk, v4, ..., vk}, where u3 and v4 are dominated with
v3. Since γ′MB(Wk−3) = k − 4, Dominator needs to play at least k − 2 moves on Xk.
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Let i ≥ 4. Then, s2 = v3.
Depending on Dominator’s third move we consider the following cases.

Case i.1. d3 = v1.
If d1 = v4, consider Wk−4 with the vertex set V (Wk−4) = {u4, u5, ..., uk, v5, ..., vk}.
According to Lemma 3.10, γ′MB(Wk−4) = k − 5, so Dominator needs k − 2
moves. Otherwise, if d1 = vi, i > 4, then s3 = v4 and Staller starts the se-
quence of line traps u3 − ui−2. Consider the subgraph Wk−i with the vertex set
V (Wk−i) = {ui, ui+1, ..., uk, vi+1, ..., vk}, where ui and vi+1 is dominated with vi. Next,
si−1 ∈ V (Wk−i). According to Lemma 3.10, if k − i ≥ 4, γ′MB(Wk−i) = k − i − 1,
so Dominator needs k − 2 moves. If 1 ≤ k − i ≤ 3, then γ′MB(Wk−i) = k − i, so
Dominator needs k − 1 moves. If d1 = vk, then Dominator already played k − 1
moves.

Case i.2. d3 = vj, j ≥ 4, or d3 = uj, j ≥ 3.
It is not hard to see that Claim 3.12 also holds in this case.

Case i.2.1. d3 = vj, j ≥ 4. Let l = min{i, j}.
According to Claim 3.12, l = 4.
Then, s3 = u2 which forces d4 = v1 and s4 = u4 which forces d5 = u3 (a triangle
trap). Consider the subgraph Xk−4. It follows that Dominator needs at least
k − 2 moves.

Case i.2.2. d3 = uj, j > i.
According to Claim 3.12, i = 4, that is, d1 = v4.
Then, Staller’s strategy is the same as in Case i.2.1.

Case i.2.3. d3 = uj, i = j.
According to Claim 3.12, i = j = 4.
Consider the subgraph Zk−4. It follows that Dominator needs at least k − 2
moves.

Case i.2.4. d3 = uj, j < i.
According to Claim 3.12, j ∈ {3, 4}.

i.2.4.a. Let j = 3, that is, d3 = u3. Then, s3 = v1 which forces d4 = u2 (a
line trap). Consider Xk−3. It is Staller’s turn to maker her move on Xk−3. It
follows that Dominator needs at least k − 2 moves.

i.2.4.b. Let j = 4, that is, d3 = u4.
Then, s3 = u2 which forces d4 = v1 and s4 = v4 which forces d5 = u3 (a line
trap). Consider the subgraph Xk−4. It follows that Dominator needs at least
k − 2 moves.

Case ii. d2 = v1.
Then, s2 = u3. Depending of Dominator’s third move we consider the following cases.
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Case ii.1. d3 = u1 or d3 = u2.

ii.1.a. i is even.
Then, s3 = v4 and Staller starts the sequence of triangle traps v3 − ui−2, where
si−2 = ui−1 and di−1 = ui−2. Consider the S-game on the subgraph Wk−i with the
vertex set V (Wk−i) = {ui, ..., uk, vi+1, ..., vk}, where ui and vi+1 are dominated with
vi. According to Lemma 3.10, if k− i ≥, γ′MB(Wk−i) = k− i−1, so Dominator needs
k − 2 moves.
If 1 ≤ k − i ≤ 5, then since γ′MB(Wk−i) = k − i, Dominator needs k − 1 moves.

ii.1.b. i is odd.
Then, s3 = v4 and Staller starts the sequence of triangle traps v3 − ui−1, where
si−1 = ui and di = ui−1. Next, if k − i ≥ 2, si = ui+2. Consider the subgraph ρk−i
with the vertex set V (ρk−i) = {ui+1, ..., uk, vi+1, ..., vk}, where vi+1 is dominated with
vi. According to Lemma 3.3, γMB(ρk−i) = k − i, so Dominator needs k moves.
If k− i = 1, then si = uk which forces di+1 = vk, so Dominator again needs k moves.
If k − i = 0, then Dominator already played k moves.

Case ii.2. d3 = uj, j ≥ 4, or d3 = vj, j ≥ 3.
It is not hard to check that Claim 3.12 also holds in this case.

Case ii.2.1. d3 = uj, j < i. According to Claim 3.12, j = 4, that is, d3 = u4.
Staller’s strategy is the same as in Case 2.2.1.

Case ii.2.2. d3 = uj, j = i. According to Claim 3.12, i = j = 4, that is, d1 = v4 and d3 = u4.
Then, s3 = u2 which forces d4 = u1. Consider the subgraph Zk−4 and the rest
of the proof is the same as for Case 1.2.4.

Case ii.2.3. d3 = uj, j > i. According to Claim 3.12, i ∈ {3, 4}.

ii.2.3.a. Let i = 3, that is, d1 = v3. Then, s3 = u2 which forces d4 = u1.
We get the subgraph Xk−3 with the vertex set V (Xk−3) = {u4, ..., uk, v4, ..., vk}
where v4 is dominated with v3. The rest of the proof is the same as in Case
1.2.1.a.

ii.2.3.b. Let i = 4, that is, d1 = v4. Then, s3 = u2 which forces d4 = u1 and
s4 = u4 which forces d5 = v3. We get the subgraph Xk−4 with the vertex set
V (Xk−4) = {u5, ..., uk, v5, ..., vk}, where v5 is dominated with v4. The rest of the
proof is the same as in Case 1.2.3.

Case ii.2.4. d3 = vj, j < i. According to Claim 3.12, j = 4, that is, d3 = v4.
Staller’s strategy is the same as in Case ii.2.3.b.

Case ii.2.5. d3 = vj, j > i. According to Claim 3.12, i ∈ {3, 4}.
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ii.2.5.a. Let i = 3, that is, d1 = v3. The proof is the same as in Case ii.2.3.a.

ii.2.5.b. Let i = 4, that is, d1 = v4. The proof is the same as in Case ii.2.3.b.

Case iii. d2 = uj, i < j and i is even.
Then, s2 = u2. Staller’s strategy from round 3 is the same as in Case 6.

Case iv. d2 = uj, i < j and i is odd.
Then, s2 = u1. Staller’s strategy from round 3 is the same as in Case 7.

Case v. d2 = uj, i = j.
Then, s2 = v1. Staller’s strategy from round 3 is the same as in Case 5.

Case vi. d2 = uj, i > j.
Then, s2 = v1. Staller’s strategy from round 3 is the same as in Case 4.

Case vii. d2 = vj, min{i, j} is odd.
Then, s2 = u1.
Staller’s strategy from round 3 is the same as in Case 7.

Case viii. d2 = vj, min{i, j} is even.
Then, s2 = u2. Staller’s strategy from round 3 is the same as in Case 6.

From this case analysis it follows that γMB(Xk) ≥ k − 2, for 14 ≤ k ≤ m.

Proof of Theorem 1.4. Let V (P2�Pn) = {u1, u2, ..., un, v1, v2, ..., vn} and let
E(P2�Pn) = {uiui+1 : i = 1, 2, ..., n−1}∪{vivi+1 : i = 1, 2, ..., n−1}∪{uivi : i = 1, 2, ..., n}.

To prove that γ′MB(P2�Pn) ≤ n we use the pairing strategy for Dominator. That
is, when Staller claims ui (or vi) for some i ∈ {1, 2, ..., n}, Dominator responses by
claiming vi (or ui). In this way Dominator can win in n moves in the S-game.
Next, we prove that Staller has a strategy to postpone Dominator’s winning for at least n
moves.
For her first move, Staller claims vertex v2, that is, s1 = v2. Since it is harder to dominate
the graph P2�Pn in the S-game, where s1 = v2 than the graph ρn in the D-game, and
since γMB(ρn) = n, according to Lemma 3.3, it follows that γ′MB(P2�Pn) ≥ n.

To prove Theorem 1.5, we need the following lemma.

Lemma 3.14. γMB(P2�P13) = 11.

Proof. Let V (P2�P13) = {u1, u2, ..., u13, v1, v2, ..., v13} and let E(P2�P13) = {uiui+1 : i =
1, 2, ..., 12} ∪ {vivi+1 : i = 1, 2, ..., 12} ∪ {uivi : i = 1, 2, ..., 13}.
It is not hard to see that γMB(P2�P13) ≥ 11. Indeed, since P2�P13 has one more
undominated vertex than X13, it follow that γMB(P2�P13) ≥ γMB(X13). So, by Lemma
3.11, γMB(P2�P13) ≥ 11.

Next, we prove the upper bound. First, we give two claims.
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Claim 3.15. Consider the S-game on W4, where V (W4) = {v0, v1, ..., v4, u1, ..., u4} and
E(W4) = {uiui+1 : i = 1, 2, 3} ∪ {vivi+1 : i = 1, 2, 3} ∪ {uivi : i = 1, 2, 3} ∪ {v0v1}, and
suppose that Dominator skips the first move. If s1 /∈ {u3, v3, u4, v4}, then Dominator can
win in at most 4 moves.

Claim 3.16. Consider the S-game on W6, where V (W6) = {v0, v1, ..., v6, u1, ..., u6} and
E(W6) = {uiui+1 : i = 1, 2, ..., 6} ∪ {vivi+1 : i = 1, 2, ..., 6} ∪ {uivi : i = 1, 2, ..., 6} ∪ {v0v1},
and suppose that Dominator skips the first move. Let s1 = v2. Then Dominator can win
in at most 6 moves.

The proofs for these two claims can be obtained by simple case analysis, so we skip it.

Suppose that the game on P2�P13 is in progress. If in some point of the game we
obtain a subgraph W4 with the situation described in Claim 3.15, we denote this subgraph
by W ′

4. If we get a subgraph W6 with the situation described in Claim 3.16, we denote
this subgraph by W ′

6.
Let L be a subgraph of P2�P13 induced by the set {u1, ..., u6, v1, ..., v6} and let R be a
subgraph of P2�P13 induced by the set {u8, ..., u13, v8, ..., v13}.
We propose the following strategy for Dominator.

Strategy SD. For his first move Dominator claims v7. The rest of the Dominator’s
strategy depends on Staller’s first move. It is enough to consider the case when s1 ∈
L∪{u7}. The case when Staller for her first move claims a vertex from the R is symmetric
to the case when Staller claims a vertex from the set L. We analyse the following cases.

Case 1. s1 = u7.
In his second move, Dominator plays d2 = u9. Consider the subgraph W4 ⊂ R, where
V (W4) = {v9, v10, ..., v13, u10, ..., u13}. When Staller plays on W4 (or L), Dominator
responds on W4 (or L). According to Lemma 3.10, γ′MB(W4) = 3. On L he uses
the pairing strategy where the pairing sets are {ui, vi}, for each i ∈ {1, ..., 6}. So,
Dominator needs at most 11 moves.

Case 2. s1 = u5.
In his second move Dominator plays d2 = u9.
Consider W4 ⊂ R, where V (W4) = {v9, v10, ..., v13, u10, ..., u13} and consider W ′

6,
where V (W ′

6) = {u7, u6, ..., u1, v6, ..., v1} (note u5 ∈ S and Dominator skipped to
play his first move on W ′

6).
When Staller plays on W4 (or W ′

6), Dominator responds on W4 (or W ′
6). According

to Lemma 3.10, γ′MB(W4) = 3. By Claim 3.16, Dominator needs at most 6 moves to
play on W ′

6. So, Dominator needs at most 11 moves.

Case 3. s1 ∈ {u3, v3, u4, v4, v5, u6, v6}.
In his second move Dominator plays d2 = u5.
If s1 ∈ {u6, v6}, then we have W4 ⊂ L on V (W4) = {v5, v4, ..., v1, u4, ..., u1} and
according to Lemma 3.10, γ′MB(W4) = 3. Otherwise, if s1 /∈ {u6, v6}, we have W ′

4 ⊂ L
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on V (W ′
4) = {v5, v4, ..., v1, u4, ..., u1} and according to Claim 3.15, γ′MB(W ′

4) ≤ 4.
Also, consider the S-game on W6 where V (W6) = {u7, ..., u13, v8, ..., v13}. By Lemma
3.10, γ′MB(W6) = 5. When Staller plays on W4 or W ′

4, Dominator responds on W4

or W ′
4, and when Staller plays on W6, Dominator responds on W6. So, Dominator

needs at most 11 moves.

Case 4. s1 ∈ {u2, v2}.
In his second move Dominator plays d2 = u3.
Consider the S-game on W6, where V (W6) = {u7, ..., u13, v8, ..., v13}. When
Staller plays on W6 (or L), Dominator responds on W6 (or L). By Lemma 3.10,
γ′MB(W6) = 5.
On the L Dominator will use the pairing strategy where the pairing sets are
{u1, v1}, {v4, v5}, {u5, u6}. Also, to dominate v2 Dominator will need at most 1 more
move. He will claim a free vertex from the set {u2, v2, v3}. So, Dominator needs at
most 11 moves.

Case 5. s1 ∈ {u1, v1}.
Then, Dominator claims d2 = v2. Consider the subgraph W6 with the vertex set
V (W6) = {u7, ..., u13, v8, ..., v13}. When Staller plays on W6 (or L), Dominator re-
sponds on W6 (or L). By Lemma 3.10, γ′MB(W6) = 5.
On the L Dominator will use the pairing strategy where the pairing sets are
{u3, u4}, {v4, v5}, {u5, u6}. Also, to dominate u1 Dominator will need at most 1 more
move. He will claim a free vertex from the set {u1, v1, u2}. So, Dominator needs at
most 11 moves.

According to the considered cases, it follows that γMB(P2�P13) ≤ 11.

Proof of Theorem 1.5. Let V (P2�Pn) = {u1, u2, ..., un, v1, v2, ..., vn} and let E(P2�Pn) =
{uiui+1 : i = 1, 2, ..., n− 1} ∪ {vivi+1 : i = 1, 2, ..., n− 1} ∪ {uivi : i = 1, 2, ..., n}.
First, prove that γMB(P2�Pn) ≤ n − 2. For n = 13 the statement holds, according
to Lemma 3.14. Let n ≥ 14. Dominator’s strategy is to divide a graph P2�Pn into two
graphs, P2�P13 and P2�Pn−13. In his first move Dominator claims v7 ∈ V (P2�P13). When
Staller plays on P2�P13, Dominator also plays on P2�P13 by using his winning strategy
SD from Lemma 3.14. On graph P2�Pn−13, Dominator uses the pairing strategy, that is,
when Staller claim ui (or vi) from P2�Pn−13, Dominator claims vi (or ui) from P2�Pn−13.
So, γMB(P2�Pn) ≤ 11 + (n− 13) = n− 2.
To prove the lower bound we use Lemma 3.11. Since P2�Pn has one more undominated
vertex than Xn, it follow that γMB(P2�Pn) ≥ γMB(Xn). So, γMB(P2�Pn) ≥ n− 2.

Corollary 3.17. Let 3 ≤ m ≤ n. Then

(i) If m is even, γMB(Pm�Pn) ≤ γMB(P2�Pn) +
(
m
2
− 1

)
γ′MB(P2�Pn).

(ii) If m and n are odd, γMB(Pm�Pn) ≤ γMB(Pn) +
⌊
m
2

⌋
γ′MB(P2�Pn).
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(iii) If m is odd and n is even, γMB(Pm�Pn) ≤ γMB(P2�Pm) +
(
n
2
− 1

)
γ′MB(P2�Pm).

Sketch of the proof. Consider the D-game on the grid Pm�Pn.

(i) Divide the graph Pm�Pn on m
2

grids P2�Pn. On one grid P2�Pn Dominator is the
first player. On the other m

2
−1 grids P2�Pn, Staller can be the first player. Applying

the Theorem 1.5 and 1.4, we obtain the upper bound for γMB(Pm�Pn).

(ii) Divide the graph Pm�Pn on bm
2
c grids P2�Pn and one path Pn. Dominator will start

the game on the path.

The proof for case (iii) is similar to the proof of case (i). �

4 Concluding remarks

In this paper we gave the structural characterization for the graphs G with γ(G) = k ≥ 2
for which γMB(G) = γ(G) holds. We proved that Dominator needs exactly n moves to
win in the S MBD game on P2�Pn for every n ≥ 1, while in the D-game he needs exactly
n− 2 moves, for n ≥ 13. Determining the exact values of the invariants γMB(Pm�Pn) and
γ′MB(Pm�Pn), where m,n > 3 it does not seem as an easy task. So, it would be interesting
first to investigate γMB(P3�Pn) and γ′MB(P3�Pn), for n ≥ 3, and to see how this improves
the upper bounds given in Corollary 3.17.
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2020-06 A. Bostan, F. Chyzak, A. Jiménez-Pastor, P. Lairez: The Sage Package comb walks for
Walks in the Quarter Plane June 2020. Eds.: M. Kauers, V. Pillwein

2020-07 A. Meddah: A stochastic multiscale mathematical model for low grade Glioma spread June

2020. Eds.: E. Buckwar, V. Pillwein

2020-08 M. Ouafoudi: A Mathematical Description for Taste Perception Using Stochastic Leaky
Integrate-and-Fire Model June 2020. Eds.: E. Buckwar, V. Pillwein
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