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Abstract

A phylogenetic tree is a tree with a fixed set of leaves N that has
no vertices of degree two. In this paper, we axiomatically define four
other discrete structures on N ; each of the structures is an equivalent
representation of a phylogenetic tree.

Introduction

Trees with labeled leaves and without vertices of degree two are used in phyloge-
netics to describe evolutionary relations between species. These trees are called
phylogenetic trees (see [1]). They arise in two kinds, rooted and unrooted. In
this paper, we study unrooted phylogenetic trees from a combinatorial point
of view. In mathematics, various ways of representing and analyzing phyloge-
netic trees have been given. In [2], M. A. Ragan represented phylogenetic trees
by matrices. In [3], L. J. Billera et al. defined a continuous space that has a
decomposition into disjoint subsets, each corresponding to a phylogenetic tree.
The compatibility of unrooted phylogenetic trees – whether or not each tree in a
given set can be constructed by deleting leaves and contracting edges of a single
larger tree – has been studied in [4, 6].

A different context where phylogenetic trees arise is the moduli space of
n-pointed stable curves of genus zero [5]. Similar as in [3], this moduli space
has a natural decomposition into disjoint subsets. The points in each subset
correspond to stable curves that have the same number of irreducible compo-
nents, the same intersection numbers of irreducible components, and the same
incidence relations of marked points and irreducible components. Since the
intersection number of two irreducible curves can only be zero or one, the in-
tersection numbers are determined by the “dual graph”, which is defined as
follows: each vertex corresponds to an irreducible component; two vertices are
joined by an edge if and only if the corresponding components intersect. For
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each component C and for each marked point contained in C, we attach a new
edge with a leaf (a new vertex of degree one) to the vertex corresponding to C.
In this way, we also get a phylogenetic tree.

In a joint research together with H. Hauser, we are currently studying the
combinatorics of this moduli space. As a byproduct which is interesting on its
own, we observed that there are several other discrete structures which can be
viewed as equivalent descriptions of an unrooted phylogenetic tree: a collection
of partitions, a set of cuts (where a cut is a partition which contains two parts),
an equivalence relation on the three-element-subsets, and a quaternary relation
which we call “crossing relation” because of its connection with the cross product
of four points on the projective line. For all these structures, there are specific
axioms which specify which collections of partitions/sets of cuts/equivalence
relations/quaternary relations are indeed equivalent to unrooted phylogenetic
trees. In this paper, we present these four axiom systems and we prove that
each of the four discrete structures is an equivalent description of an unrooted
phylogenetic tree. As a potential application, we note that the question of
compatibility could equivalently posed with any of the four other structures;
this could lead to a new approach to decide compatibility.

Here is an informal taxonomy of the four equivalent representations of phy-
logenetic trees. The collections of partitions and the sets of cuts are macroscopic
pictures, in the sense that they are composed of elements of bigger scales. In
contrast, the equivalence relations on three-element-subsets and the crossing re-
lations are composed of smaller-scale elements; they are microscopic pictures:
the crossing relations are just quaternary relations on the set of leaves, and
the equivalence relations on three-element subsets can be considered as 6-ary
relations on the set of leaves. The partitions and the cuts focus on the vertices
of the phylogenetic tree, in particular the non-leaves, while the cuts and the
crossing relations focus on its edges.

1 Structures and Axioms

In this section, we axiomatically define five discrete structures on a fixed finite
set N of cardinality at least 3: phylogenetic trees, collections of partitions, sets
of cuts, crossing relations, and equivalence relations of triples. We will also
introduce some functions converting one of these structures to another, and use
them to construct examples. Other (more involved) conversion functions will
be introduced in Section 2.

1.1 Trees

Recall that an unrooted tree is an undirected graph that is connected and has
no cycles.

Definition 1.1. A phylogenetic tree with leaf set N is an unrooted tree (V,E)
without vertex of degree 2 such that N ⊂ V is the set of leaves. We say that
two phylogenetic trees (V1, E1) and (V2, E2) with leaf set V are isomorphic if
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Figure 1: This is a phylogenetic tree with leaf set N = {1, . . . , 9}. The set of
internal nodes is V \N = {a, b, c, d, e}.

and only if there is a graph isomorphism that restricts to the identity on the
subset of leaves.

The set TN is defined as the set of all isomorphism classes of phylogenetic
trees with leaf set N .

An example of a phylogenetic tree with leaf set N = {1, . . . , 9} can be seen
in Figure 1.

1.2 Sets of Partitions

Recall that a partition of N is a set of disjoint and non-empty subset of N such
that their union is N .

Definition 1.2. A collection/set of partitions of N is phylogenetic if it fulfills
the following axioms:

(P1) Every partition has at least 3 subsets; we also call these subsets the parts.

(P2) Every one-element subset of N is a part of some partition.

(P3) Every subset of N is a part of at most one partition.

(P4) For every part A ⊂ N of cardinality bigger than one, the complement
N \A is also a part (necessarily of a different partition, by Axiom (P1)).

We denote as PN the set of all phylogenetic collections of partitions of N . The
set PN is the set of all sets of collections of partitions of N .

Example 1.3. For N = {1, . . . , 9}, let P = {pa, pb, pc, pd, pe} be the collection
of the partitions

pa = {{1}, {2}, {3}, {4, 5, 6, 7, 8, 9}},

pb = {{1, 2, 3}, {4}, {5}, {6, 7, 8, 9}},

pc = {{1, 2, 3, 4, 5}, {6, 7}, {8, 9}},

pd = {{1, 2, 3, 4, 5, 8, 9}, {6}, {7}},
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pe = {{1, 2, 3, 4, 5, 6, 7}, {8}, {9}}.

It can be checked that the axioms (P1),(P2),(P3),(P4) are fulfilled. Therefore
the collection P is phylogenetic.

The above example can be constructed from the tree in Figure 1 in a sys-
tematic way, which is described in the following definition.

Definition 1.4. For every phylogenetic tree T = (V,E) with leaf set N , we
define a collection of partitions which is in bijection with the set V \ N of
non-leaves, as follows.

For each non-leaf vertex v, and for each edge e incident to v, we have a subset
of leaves containing the leaves i such that the unique path from v to i begins
with e. For each non-leaf vertex v, these subsets are the parts of a partition of
N . The collection of partitions of N is denoted by PT . The function TN → PN

mapping the class of T to PT is denoted by tTP and we call it the transformation
from trees to partition collections.

Proposition 1.5. For every phylogenetic tree T = (V,E) with leaf set N , the
collection PT is phylogenetic.

Proof. Every non-leaf has at least 3 edges, hence (P1) holds. Every leaf has
a unique neighbor which must be a non-leaf, otherwise the tree would only
have two vertices (which violates our assumption on the cardinality of N); this
implies (P2). Uniqueness of the neighbor also implies (P3) for the special case
of cardinality-one parts.

Let A be a part of PT such that 2 ≤ |A| ≤ |N |−2. Then there are non-leaves
a, b and an edge e = {a, b} ∈ E such that A is equal to the set of leaves i such
that the unique path from a to i contains e. And then N \A is the set of leaves
j such that the unique path from b to j contains e, hence N \ A is part of the
partition corresponding to the non-leaf b. This shows (P4).

It remains to prove Axiom (P3). Suppose that A belongs to two distinct
partitions of PT , corresponding to non-leafs a and a′ respectively. Let e =
{a, b} and e′ = {a′, b′} be the two edges corresponding to A in the partitions
corresponding to a and a′ respectively. There is a unique path pa,a′ between a
and a′. In the sequel, we do case distinctions on whether e and e′ belongs to
path pa,a′ or not.

1. Neither e nor e′ belongs to pa,a′ . In this case, we remove the edge e,
and we obtain two components Tb and Ta, where Tb contains the elements
of A and Ta contains the elements of N \ A. Now we remove e′ in Ta,
and we further obtain two components Tb′ and Ta′ , where Tb′ contains
the elements from A. However, Tb′ and Tb are distinct components, they
cannot both contain the elements from A. This is a contradiction.

2. Both e and e′ belong to pa,a′ . In this case, we can argue analogously, by
interchanging the roles of a with b, and the roles of a′ with b′. We remove
edge e, obtaining components Ta which contains elements in N \A, and Tb
which contains elements in A. Similarly, there must be a unique path from
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b to b′ connecting edge e and e′. Hence, e′ is in Tb. Now, in component
Tb, we remove the edge e′, obtaining components Ta′ and Tb′ , where Tb′

is the component containing elements in N \ A. However, Tb′ and Ta are
distinct components, hence cannot both contain elements in N \ A. This
is a contradiction.

3. Only one of e and e′ belongs to pa,a′ . Without loss of generality, assume
that e′ belongs to path pa,a′ and e does not. We remove edge e from the
tree T , obtaining Tb and Ta, where the set of leaves in Tb intersected with
N is A. We remove edge e′ from the tree T , obtaining Tb′ and Ta′ , where
the set of leaves in Tb′ intersected with N is A. Because T is phylogenetic,
there is an edge e′′ not contained in the path pa,a′ , but incident with some
vertex on this path. Following this edge, we eventually arrive at some
leaf l. Then we have that l is in Tb′ ∩ N but not in Tb ∩ N . This is a
contradiction.

Hence, Axiom (P3) holds.

1.3 Sets of Cuts

In this structure, we are particularly interested in partitions that violate (P1).

Definition 1.6. A cut of N is a partition of N into two subsets A,B of cardi-
nality larger than one. The subsets A, B are called clusters. We denote such
a cut as (A | B) = (B | A), and omit the curly brackets when A and B are
given by the enumeration of elements. Axiom for a set C of cuts of N to be
phylogenetic is as follows. And we denote as cl(C) the set of all clusters of C.

(C) For any two cuts (A1 | B1), (A2 | B2) in C, at least one of the following
four sets is empty: A1 ∩A2, A1 ∩B2, B1 ∩A2, B1 ∩B2.

Denote as CN the set of all phylogenetic sets of cuts of N . The set CN is the set
of all sets of cuts of N .

Remark 1.7. One can check that actually we can omit “at least” in the above
statement, since when it holds, it cannot happen that two of those four sets are
both empty.

Example 1.8. For N = {1, . . . , 9}, let C = {cx, cy, cz, cw} be the set of cuts

cx = (1, 2, 3 | 4, 5, 6, 7, 8, 9),

cy = (1, 2, 3, 4, 5 | 6, 7, 8, 9),

cz = (1, 2, 3, 4, 5, 8, 9 | 6, 7),

cw = (1, 2, 3, 4, 5, 6, 7 | 8, 9).

It can be checked that axiom (C) is fulfilled, hence C is phylogenetic.
Note that the clusters in these cuts are exactly the parts that appear in

some partition in Example 1.3 that have cardinality bigger than one. Every cut
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corresponds to an internal edge of the phylogenetic tree, i.e., an edge connecting
two non-leafs. The clusters are just the set of leaves of the two connected
components which arise when the corresponding edge is removed.

Definition 1.9. Let T be a phylogenetic tree with leaf set N . Then CT is the
set of cuts of N that corresponds to internal edges of T , with clusters being
the two sets of leaves of the two components that arise when the corresponding
edge is removed. The function TN → CN , [T ] 7→ CT is denoted by tTC and we
call it the transformation from trees to sets of cuts.

Let P be a phylogenetic collection of partitions. The set of cuts whose
clusters are exactly the parts of cardinality at least 2 is denoted by CP . The
function PN → CN , P 7→ CP is denoted by tPC and we call it the transformation
from partition collections to sets of cuts.

Proposition 1.10. For every tree T , we have CPT
= CT ; in other words, we

have tPC ◦ tTP = tTC .

Proof. Straightforward.

1.4 Crossing Relations

Definition 1.11. A crossing relation is a set X of a pair of cardinality-two
subsets of N . We write its element as (i, j | k, l) - such that if (i, j | k, l) ∈ X,
then the information that i, j, k, l are pairwise distinct is contained. And we
call it a cross (of X), since we can interchange i, j or k, l, or two sets {i, j} with
{k, l} without changing the element.

Axioms for a crossing relation X to be phylogenetic are as follows.

(X1) If (i, j | k, l), then not (i, k | j, l), i.e., (i, k | j, l) /∈ X.

(X2) If (i, j | k, l) and (i, j | k,m) and l 6= m, then (i, j | l,m).

(X3) If (i, j | k, l) and m is distinct from i, j, k, l, then (i, j | k,m) or (i,m | k, l).
Note that this “or” here means at least one should hold and it may happen
that both hold.

Denote as XN the set of all phylogenetic crossing relations on N . Denote as XN

the set of all crossing relations of N .

Example 1.12. Let N := {1, . . . , 9}. We define a crossing relation as follows.
For any i, j, k, l that are pairwise distinct, the relation (i, j | k, l) holds if and
only if one of the following statements is true:

. i, j ∈ {1, 2, 3} and k, l ∈ {4, 5, 6, 7, 8, 9} (45 crosses);

. i, j ∈ {1, 2, 3, 4, 5} and k, l ∈ {6, 7, 8, 9} (60 crosses);

. i, j ∈ {1, 2, 3, 4, 5, 8, 9} and {k, l} = {6, 7} (21 crosses);

. i, j ∈ {1, 2, 3, 4, 5, 6, 7} and {k, l} = {8, 9} (21 crosses).
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(Its relation with Example 1.8 is apparent.) In total, this crossing relation con-
sists of 108 crosses. We will see later that this crossing relation is phylogenetic.

The following definition is a generalization of the construction in Example
1.12.

Definition 1.13. For every set C of cuts, we define a crossing relation XC as
follows: (i, j, k, l) is in XC if and only if C contains a cut (A | B) such that
i, j ∈ A and k, l ∈ B. The function CN → XN , C 7→ XC is denoted by tCX , we
call it the transformation from sets of cuts to crossing relations.

Remark 1.14. The moduli space of n-pointed stable curves of genus zero has
a natural decomposition into strata that correspond to phylogenetic trees with
leaf set of cardinality n.

For any such stratum T , the crossing relation is then exactly the set of
(i, j | k, l) such that the cross ratio of the four marked points pi, pj , pk, pl has
value 1. As we will see, it is possible to transform a phylogenetic crossing
relation to a phylogenetic tree. In the context of moduli spaces, this is equivalent
to saying that we can recover the dual graph of the n-pointed graph from the
values of its cross ratios.

1.5 Equivalences of Triples

A triple in N is a 3-element subset of N . We denote the set of triples in N by(
N
3

)
. A set S ⊂

(
N
3

)
of triples is called diverse if it is non-empty and it fulfills

the following two axioms:

(D1) If {i, j, k} ∈ S, and l ∈ N , then S also contains one of the triples {i, j, l},
{i, k, l}, or {j, k, l}.

(D2) Let a, b, c, x, y, z ∈ N . If S contains the triples {a, x, y}, {b, y, z}, and
{c, x, z}, then it also contains {x, y, z}.

We say that an equivalence relation on
(
N
3

)
is phylogenetic if and only if the

following axiom is fulfilled:

(E0) Each class of the equivalence relation is diverse.

Denote as EN the set of all phylogenetic equivalence relations on the triples of
N . Denote as EN the set of all equivalence relations on the triples of N .

Example 1.15. Let N = {1, 2, 3, 4, 5}. We define an equivalence relation with
three classes as follows:

{1, 2, 3} ∼ {1, 2, 4} ∼ {1, 2, 5},

{1, 4, 5} ∼ {2, 4, 5} ∼ {3, 4, 5},
{1, 3, 4} ∼ {1, 3, 5} ∼ {2, 3, 4} ∼ {2, 3, 5}.

It can be checked that the axioms (D1) and (D2) are fulfilled in each class, hence
the equivalence is phylogenetic.
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In order to construct interesting equivalence relations of triples, we need a
lemma on trees.

Lemma 1.16. Let T = (V,E) be a tree, and let i, j, k ∈ N be pairwise distinct
leaves. Then there is a unique vertex v ∈ V \N such that the three paths from
v to i, j, and k are edge-disjoint.

Proof. Let πij be the unique path connecting i and j, and let πik be the unique
path connecting i and k. The common edges of πij and πik also form a path,
which connects i to some non-leaf, and this is the vertex v we are looking for.
Indeed, the edges that are in πij but not in πik connect j with v, and the edges
that are in πik but not in πij connect v with k. The property of v which is
claimed in the lemma implies that the common edges of πij and πik form a path
from i to v, and this implies uniqueness.

Definition 1.17. Let T = (V,E) ∈ TN be a phylogenetic tree. We define an
equivalence relation ∼T on

(
N
3

)
as follows: {i, j, k} ∼T {l,m, n} holds if and

only if the unique non-leaf v such that the three paths from v to i, j, and k are
edge-disjoint is equal to the unique non-leaf w such that the three paths from
w to l, m, and n are edge-disjoint. The function TN → EN , [T ] 7→∼T is denoted
by tTE , we call it the transformation from trees to equivalence relations.

Example 1.18. Let N = {1, . . . , 9}, and let T = (V,E) be the phylogenetic
tree in Figure 1. Then the equivalence relation ∼T in

(
N
3

)
has five equivalence

classes Ea, . . . , Eb, corresponding to the five non-leaves in V \N :

. The class Ea consists of all triples {i, j, k} such that (i, j ∈ {1, 2, 3} and
k ∈ {4, 5, 6, 7, 8, 9}) or (i = 1, j = 2, and k = 3). These are 18+1=19
triples.

. The class Eb consists of all triples {i, j, k} such that (i, j ∈ {1, 2, 3} and j ∈
{4, 5} and k ∈ {6, 7, 8, 9}), or (i = 4 and j = 5 and k ∈ {1, 2, 3, 6, 7, 8, 9}).
These are 24 + 7 = 31 triples.

. The class Ec consists of all triples {i, j, k} such that i ∈ {1, 2, 3, 4, 5},
j ∈ {6, 7} and k ∈ {8, 9}. These are 20 triples.

. The class Ed consists of all triples {i, 6, 7} such that i ∈ {1, 2, 3, 4, 5, 8, 9}.
These are 7 triples.

. The class Ee consists of all triples {i, 8, 9} such that i ∈ {1, 2, 3, 4, 5, 6, 7}.
These are 7 triples.

Note that 19 + 31 + 20 + 7 + 7 = 84 =
(
9
3

)
, which indicates that we did not make

a mistake – every triple occurs in exactly one class.

In the next section, we will introduce the transformation between equiva-
lences of triples and crossing relations.

8



TN

vv ((

��

EN PN

~~
XN CNoo

Figure 2: This diagram shows the conversion maps between different types of
structures that have been defined in Section 1. We also have seen that the
triangle on the right part is commutative.

2 Conversions

In this section, we prove that the five structures introduced in Section 1 are
equivalent. In Section 1, we already introduced the maps shown in Figure 2,
and we have seen that the triangle contained in this diagram is commutative. We
still have to show that the images of tTC , tCX , tTE are phylogenetic, we have to
construct more conversion maps so that the diagram has directed paths between
any two vertices, and we have to show that the enlarged diagram commutes.

2.1 Trees and Partitions

Definition 2.1. For every set P = {p1, . . . , pm} of partitions of N , we define
the graph GP as follows. The vertex set is N ∪ P . Two vertices in p, q ∈ P are
connected by an edge if and only if there is a cut (A | B) such that A ∈ p and
B ∈ q. A vertex p ∈ P and a vertex i ∈ N are connected if {i} ∈ p. There is no
edge connecting two vertices in N .

In the following, we will show that GP is a phylogenetic tree whenever P is
phylogenetic, and that the construction P → GP is the inverse of tTP .

Theorem 2.2. Assume that P is a phylogenetic set of partitions of N . Then
GP is a phylogenetic tree.

Proof (H. Hauser). Let i ∈ N and p ∈ P . We claim that there is a path
connecting i and p. Let A be the part in the partition p that contains i. If
A = {i}, then there is an edge connecting i and p.

If A has cardinality bigger than 1, then there is a unique partition q contain-
ing N \ A. It also has a unique part B that contains i, which must be a strict
subset of A. By induction on the cardinality of A, there is a path connecting i
and q. This shows the existence of a path connecting i and p.

It follows that the graph GP is connected. In order to show that GP is a
tree, it suffices to show that it has no cycle. The vertices of such a cycle would
have to be in P , because the vertices in N have degree 1.

9



Let (p1, . . . , pk, pk+1 = p1) be a cycle. For r = 1, . . . , k, there is a unique part
Ar ∈ pr that contains i. For the edge e = p1p2, one part of its corresponding
cut, say (I, J) must contain i, and it must be either A1 or A2. If it is A1, then
we have Ar+1 ( Ar for r = 1, · · · , k because of Axiom (P3). If it is A2, then
we have that Ar ( Ar+1 for r = 1, · · · , k. Both cases lead to A1 ( A1, which is
a contradiction.

The degree of any vertex in P is equal to the number of its parts, which is
at least three. Therefore, the tree GP is phylogenetic.

If T is a phylogenetic tree, then it is straightforward to check that GPT
is

isomorphic to T . Also, if P is a phylogenetic set of partitions, then PGP
= P .

Hence the construction P → GP provides the inverse to tTP : TN → PN .

2.2 Trees and Cuts

Proposition 2.3. For every phylogenetic tree T = (V,E) with leaf set N ⊂ V ,
the set CT of cuts is phylogenetic.

Proof. Let (A1 | B1) and (A2 | B2) be two arbitrary cuts in CT , and let e1
and e2 be their corresponding edges. If we remove both edges from the graph,
then we get at most three components. correspondingly, we obtain three leaf
sets. Each of the four sets A1 ∩ A2, A1 ∩ B2, A2 ∩ B1, A2 ∩ B2 equals to one
of these leaf sets, if not empty. Also, note that these four sets are pairwise
disjoint. Therefore, at least one of these four sets must be empty. Since the
two cuts were chosen arbitrarily, it follows that Axiom (C) is fulfilled, and CT

is phylogenetic.

For the construction of transformation tCT from cuts to trees, recall the
following concept: if (P,≤) is a finite partially ordered set, then the Hasse
diagram of (P,≤) is the directed graph with vertex set P . And there is an edge
from vertex a to vertex b if and only if (a ≤ b and for all c such that a ≤ c ≤ b,
we have a = c or b = c).

We call a set/subset with exactly one element a singleton.

Definition 2.4. Let C be a phylogenetic set of cuts. Let c = (A | B) be a
cut in C. Let VA be the set of all clusters or singletons that are subsets of A
(including A itself). Let GA = (VA, EA) be the Hasse diagram of VA ordered
by inclusion. Let VB be the set of all clusters or singletons that are subsets of
B (including B itself). Let GB = (VB , EB) be the Hasse diagram of VB ordered
by inclusion.

Let GC,c = (VC,c, EC,c) be the undirected graph with VC,c := VA ∪ VB , and
EC,c is equal to the union of EA and EB – forgetting the direction – plus one
extra edge connecting A and B. We call GC,c the cut graph of c.

Example 2.5. Let N = {1, . . . , 9}. Let C be the set of cuts in Example (1.8).
Recall that cy = (A | B) where A = {1, 2, 3, 4, 5} and B = {6, 7, 8, 9}. Figure 3
shows the Hasse diagrams GA and GB and the graph GC,cy .
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Figure 3: For the set of cuts in Example 1.8, this figure shows the two Hasse
diagrams of the partial orders of clusters that are subsets of A = {1, 2, 3, 4, 5}
(on the left) and B = {6, 7, 8, 9} (on the right), respectively; and the graph GCcy

which is defined as the union of these two Hasse diagrams plus one extra edge.
We omit the directions of the edges in the Hasse diagram here; the convention
is that they are always upward.

Lemma 2.6. Let C be a phylogenetic set of cuts of N , and let c = (A | B) ∈ C.
Then GC,c is a phylogenetic tree with leaf set {{i} | i ∈ N}.

Proof. Since the partially ordered sets VA and VB have a largest element, the
two Hasse diagrams are connected. The extra edge connects the two Hasse
diagrams, therefore GC,c is connected.

Let v, w ∈ VA. By Axiom (C), the set of clusters u such that v ≤ u ≤ w
is totally ordered by inclusion. Therefore, the Hasse diagram GA has no cycle.
The same holds for the Hasse diagram GB . Hence both Hasse diagrams are
trees. GC,c is obtained by connecting two trees with one extra edge, and so
GC,c is also a tree. Its leaves are the minimal elements of the two partial orders,
which are exactly the singletons of N .

Assume, for the sake of contradiction, that GC,c has a vertex of degree two.
Then there is a cluster D of C such that the partially ordered set VD has a
“second largest element” D′, i.e. an element which is largest in the subset of
elements not equal to D. Then D \D′ is not empty, hence there is a singleton
{a} such that {a} ⊆ D but {a} 6⊆ D′, which is a contradiction.

Proposition 2.7. Let T = (V,E) be a phylogenetic tree with leaf set N ⊂ V .
Let e = {u, v} ∈ E be an internal edge and c = (A | B) ∈ CT be its corresponding
cut. Then the phylogenetic tree GCT ,c = (VG, EG) is isomorphic to T .

Proof. We obtain two components Tu and Tv after removing e from T . The set
of leaves of Tu is A ∪ {u}, and the set of leaves of Tv is B ∪ {v}. We define a
map f : V → VG. Let w ∈ V .

1. If w is a leaf of T , then f(w) := {w}.

2. If w is an internal vertex of T contained in Tu, then let e′ denote the
first edge on the unique path in T from w to v. Let (A′ | B′) be the

11



corresponding cut, and assume without loss of generality that A′ ⊂ A.
We set f(w) := A′.

3. Analogously, if w is an internal vertex T contained in Tv, then let e′ denote
the first edge on the unique path in T from w to u. Let (A′ | B′) be the
corresponding cut, and assume without loss of generality that B′ ⊂ B.
We set f(w) := B′.

Injectivity of f is a consequence of the fact that PT satisfies the axiom (P3). We
claim that f is also surjective. Let x be a vertex of VG. If x = {i} is a singleton,
then f(i) = x. If x = A1 is a cluster contained in A, then let e1 be the edge
corresponding to the cut (A1 | N \A1). Then f maps one of the two vertices of
e1 to x. Similarly, we can find a preimage if x = A1 is a cluster contained in B.
Therefore, f provides a bijection between V and VG.

We claim that f is a graph isomorphism. Let v1, v2 ∈ V . If v1, v2 are both
leaves, then {v1, v2} is not an edge of T and {f(v1), f(v2)} is not an edge of EG.

Assume v1 ∈ N and v2 6∈ N . Then {v1, v2} is an edge of T if and only if v2
is the unique vertex adjacent to v1, and this is true if and only if f(v2) is the
unique minimal cluster contained in A and containing v1, and this is true if and
only if {f(v1), f(v2)} is an edge in EG. The case v1 ∈ B is treated analogously.

If v1 and v2 are non-leaves of T contained in Tu. Assume that e′ = {v1, v2} is
an edge of T . Let (A′ | B′) be the corresponding cut; without loss of generality,
assume A′ ⊂ A and A′ ∪ {v1} is the set of leaves of one of the two components
that we get when we remove e′ from T . Let {v2, v3} be the first edge on the path
from v2 to u and let (A′′ | B′′) be its corresponding cut such that A′′ ⊂ A. Then
we see that f(v1) = A′ and f(v2) = A′′. Also we know that A′ ⊂ A′′ ⊂ A and
there is no other cluster of CT in between A′′ and A′ with respect to inclusion.
This implies that {f(v1), f(v2)} is an edge in EG. Conversely, if {f(v1), f(v2)}
is an edge in EG, then two edges corresponding to the cuts (f(v1) | N \ f(v1))
and (f(v2) | N \ f(v2)) have to equal, and the corresponding edge is the edge
{v1, v2} in T . – The case where both v1 and v2 are non-leaves of T contained
in Tv is similar.

If v1 ∈ Tu and v2 ∈ Tv, then {v1, v2} is an edge of T if and only if v1 = u
and v2 = v, and this is true if and only if {f(v1), f(v2)} is an edge in EG.

Corollary 2.8. Let T be a phylogenetic tree. For any two cuts c1, c2 ∈ CT , the
cut graphs GCT ,c1 and GCT ,c2 and T are all isomorphic.

Proof. Immediate consequence of Proposition 2.7.

Lemma 2.9. Let C be a phylogenetic set of cuts of N . Let c = (A | B) ∈ C be
a cut. Then C is equal to CGC,c

.

Proof. Denote the last added edge in the construction of GC,c as e = {v, u} and
assume without loss of generality that A is the leaf set of component Tv when
we remove edge e from GC,c. Let c′ = (A′ | B′) be an arbitrary cut in C. If
c′ = c, then it is equal to the cut in CGC,c

corresponding to the edge e, hence
c′ ∈ CGC,c

.
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Assume c′ 6= c. Because C is phylogenetic, we know that exactly one of the
following four statements A′ ⊂ A, A′ ⊂ B, B′ ⊂ A, B′ ⊂ B is true. Without
loss of generality, assume that A′ ⊂ A. Then A′ ∈ V (A). Let w be the first
vertex on the unique path from A′ to u. Then we see that the corresponding cut
for edge {A′, w} is (A′ | B′). Hence (A′ | B′) ∈ CGC,c

. Because c′ was chosen
arbitrarily, we conclude that C ⊂ CGC,c

.
Now, take any cut c′ = (A′ | B′) ∈ CGC,c

. If c′ is the cut corresponding to
the edge e, then c = {A | B}, which implies c ∈ C. Assume c′ corresponds to
some edge e′ = {v′, u′} in Tv. Without loss of generality, we may suppose that
u′ is on the unique path from v′ to u. Then c′ = (v′ | N \v′). Since v′ is a cluster
of C, we obtain that c′ ∈ C. If c′ corresponds to some edge in Tu, we proceed
analogously. Therefore we get CGC,c

⊂ C and consequently C = CGC,c
.

For any phylogenetic set of cuts C, we can choose a cut c ∈ C. The class of
GC,c does not depend on the choice of c, so this construction provides an inverse
to tTC : TN → CN .

2.3 Cuts and Crossings

Proposition 2.10. For every phylogenetic set C of cuts, the crossing relation
XC is phylogenetic.

Proof. Assume that i, j, k, l,m are pairwise distinct (but otherwise arbitrary)
elements of N . Assume, for the sake of contradiction, that (i, j | k, l) and
(i, k | j, l) are both in XC . Then there is a cut (A1 | B1) such that i, j ∈ A1

and k, l ∈ B1, and another cut (A2 | B2) such that i, k ∈ A2 and j, l ∈ B2.
Then all four sets A1 ∩A2, A1 ∩B2, B1 ∩A2, and B2 ∩B2 are not empty. This
contradicts Axiom (C). Hence the assumption must have been wrong, which
proves that Axiom (X1) is fulfilled.

Now assume that (i, j | k, l) and (i, j | l,m) are both in XC . By Axiom (C),
the set of all clusters that contain both i and j and that do not contain l is
totally ordered by inclusion. Let A be the smallest such cluster. Then A does
not contain k and does not contain m. Then (A | N \A) is a cut with i, j on the
left side and k,m in the right side. Hence (i, j | k,m) is in XC , and it follows
that Axiom (X2) is fulfilled.

Now assume that (i, j | k, l) is in XC . Then there is a cut (A | B) such that
i, j ∈ A and k, l ∈ B. If m ∈ A, then (i,m | k, l) is in XC , and if m ∈ B, then
(i, j | l,m) is in XC . It follows that Axiom (X3) is fulfilled, and that XC is
phylogenetic.

The following definition is only needed for the proof of Lemma 2.13.

Definition 2.11. A partial cut of N is a cut of some subset of N . Fix a
phylogenetic crossing relation X. We say that a cut or a partial cut (A | B) is
compatible with X if and only if for any distinct i, j ∈ A and distinct k, l ∈ B,
there is a crossing relation (i, j | k, l) ∈ X.
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Example 2.12. If (i, j | k, l) ∈ X, then the cross itself, considered as a partial
cut, is compatible with X.

Lemma 2.13. Let X be a phylogenetic crossing relation on N . Then, for any
(i, j | k, l) ∈ X. Then there exists a cut (A | B) compatible with X such that
i, j ∈ A and k, l ∈ B.

Proof. We prove that for any n such that 4 ≤ n ≤ |N |, there is a partial cut
(A | B) compatible with X such that i, j ∈ A and k, l ∈ B, and |A| + |B| = n.
We proceed by induction on n. For n = 4, the statement is trivially true.

Assume 5 ≤ n ≤ |N |. By induction hypothesis, there exists a compatible
partial cut (C | D) such that i, j ∈ C, k, l ∈ D, and |C| + |D| = n − 1. Let
m ∈ N \ (C ∪ D). We claim that either (C ∪ {m} | D) or (C | D ∪ {m}) is
compatible with X. Assume, for the sake of contradiction, that this claim is
wrong. Then there exist a, b, p ∈ C and c, r, s ∈ D such that a 6= b, r 6= s, and
the relations (a, b | c,m) and (p,m | r, s) do not hold. We may also assume
a 6= p and r 6= c.

Since (C | D) is compatible, it follows that (a, p | r, s) holds. By Axiom (X3),
it follows that (a, p | r,m) or (p,m | r, s) holds – but we have that (p,m | r, s)
does not hold, hence we have (a, p | r,m). If b = p, then (a, b | r,m) holds.
If b 6= p, then we use (b, p | r, s) and Axiom (X3) and get (b, p | r,m), since
(p,m | r, s) does not hold. Then, from (a, p | r,m) and (b, p | r,m), we obtain
(a, b | r,m) by Axiom (X2). By the compatibility of (C | D), we get (a, b | r, c).
By Axiom (X2), from (a, b | r, c) and (a, b | r,m), we get (a, b | c,m). This
contradicts the assumption.

We can now the define a transformation tXC from sets of cuts to crossing
relations.

Definition 2.14. For any phylogenetic crossing relation X on N , we define
tXC(X) as the set of all cuts that are compatible with X and denote it as CX .

Proposition 2.15. For any phylogenetic crossing relation X, the set CX of
compatible cuts is phylogenetic.

Proof. Assume, for the sake of contradiction, that CX does not fulfill Axiom (C).
Then there exists cuts (A1 | B1), (A2 | B2) in CX and four elements i ∈ A1∩A2,
j ∈ A1 ∩B2, k ∈ B1 ∩A2, and l ∈ B1 ∩B2. Because (A1 | B1) is compatible, we
have (i, j | k, l) ∈ X. Because (A2 | B2) is compatible, we have (i, k | j, l) ∈ X.
This contradicts Axiom (X1).

Theorem 2.16. The two sets XN and CN are in bijection: function tXC :
XN → CN is the inverse of function tCX : CN → XN .

Proof. Let X ∈ XN and i, j, k, l ∈ N pairwise distinct. If (i, j | k, l) is in X,
then Lemma 2.13 implies that there is a cut (A | B) in CX such that i, j ∈ A
and k, l ∈ B. Therefore (i, j, k, l) is also in XCX

. Conversely, if (i, j | k, l) is in
XCX

, then there is a cut (A | B) in CX such that i, j ∈ A and k, l ∈ B. Since
(A | B) is compatible with X, it follows that (i, j | k, l) is in X.
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Let C ∈ CN be a phylogenetic set of cuts. Let (A | B) be a cut. If (A | B)
is in C, then all quadruples (i, j | k, l) with i, j ∈ A and k, l ∈ B are in XC .
Hence (A | B) is also in CXC

. Conversely, assume that (A | B) is in CXC
. We

pick elements a ∈ A and b ∈ B. Let α be the set of clusters of C that contain
a but not b, and let β be the set of clusters of C that contain b but not a. By
Axiom (C), both sets α and β are totally ordered by set inclusion. For any
i ∈ A \ {a} and j ∈ B \ {b}, the quadruple (a, i | b, j) is in XC because (A | B)
is compatible with XC . Then, there must exist a cut (A′ | B′) ∈ C such that
a, i ∈ A′ and b, j ∈ B′. Consequently, we have a cluster A′ ∈ α for every element
i ∈ A \ {a}, and therefore the largest cluster of α is a superset of A. Similarly,
we can show that the largest cluster of β is a superset of B.

Let A′′ be the smallest cluster of α that is still a superset of A. We claim
that A′′ = A; if this claim is true, then (A | B) would be in C, which would
finish the proof of the converse and of the whole theorem.

To prove the claim, we assume, for the sake of contradiction, that there is
an element c ∈ A′′ \A = A′′ ∩B. Let α′ be the set of clusters of C that contain
a but neither b nor c. This set is also totally ordered by set inclusion. For any
choice of elements k ∈ A \ {a} and l ∈ B \ {b}, the quadruple (a, k | b, l) is
in XC . Hence there exists a cut in (A′′′ | B′′′) of C such that a, k ∈ A′′′ and
b, l ∈ B′′′. In particular, A′′′ is in α′. Since we can vary k, it follows that the
largest cluster of α′ is a superset of A. Hence there is a superset of A in α that
does not contain c, which is a contradiction to the fact that the smallest cluster
of α that contains A, namely A′′, does contain c.

2.4 Partitions and Equivalences

In order to prepare for the conversion between partitions and equivalences, we
prove a result which could be considered as a kind of converse of Lemma . Let
us say that a partition separates a triple {a, b, c} ∈

(
N
3

)
if and only if a, b, and

c are in three pairwise distinct parts of the partition.

Theorem 2.17. Let P be a collection of partitions of N satisfying (P1) such
that for every triple in

(
N
3

)
, there is a unique partition separating it. Then P is

phylogenetic.

Remark 2.18. The converse is also true: if a collection of partition is phylo-
genetic, then it is equal to PT for some phylogenetic tree, by Theorem 2.2. By
Lemma 1.16, it follows that every triple is separated by a unique partition in
PT .

In order to prove Theorem 2.17, we need the following proposition.

Lemma 2.19. Let P be a collection of partitions of N satisfying Axiom (P1)
such that for every triple in

(
N
3

)
, there is a unique partition separating it. Let

p1, p2 be two distinct partitions. Then there is a unique pair of parts A1 ∈ p1
and A2 ∈ p2 such that A1 ∪A2 = N .

Moreover, if B1 ∈ p1 is any part of p1 distinct from A1, and B2 ∈ p2 is any
part of p2 distinct from A2, then B1 ⊂ A2, B2 ⊂ A1, and B1 ∩B2 = ∅.
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Proof. For i = 1, 2, let ai, bi, ci ∈ N be elements from three different parts of pi.
The partition separating {ai, bi, ci} is unique, therefore at least two of a1, b1, c1
must be in the same part of p2; without loss of generality, we may assume that
a1 and b1 are in the same part. We choose A2 to be this part. Similarly, we
may assume that a2 and b2 are in the same part of p1, and we choose A1 to be
this part.

Suppose that A1 ∪ A2 ( N . Take any x ∈ N \ (A1 ∪ A2). Assume, without
loss of generality, that x is not in the same part with a1 in p1 – otherwise, we
exchange a1 and b1. Analogously we may assume that x is not in the same
part with a2 in p2. Then we see that the triple {x, a1, a2} is separated by both
partitions p1 and p2. We have our contradiction. It follows that A1 ∪A2 = N .

The second statement is a consequence of A1 ∪ A2 = N and the fact that
the any part of pi different from Ai is a subset of N \Ai, for i = 1, 2.

Remark 2.20. As a consequence of Lemma 2.19, the set of parts of any set
of P fulfills an axiom that is similar to the cluster axiom (C): any two parts,
whether they are in the same partition or not, are either contained one in the
other, or disjoint, or their union is N .

Proof of Theorem 2.17. We already know that P satisfies Axiom (P1), by as-
sumption.

Axiom (P2): let a ∈ N be arbitrary. Let b ∈ B such that b 6= a. By
Remark 2.20, the set of all parts of any partition that contain a but not b is
totally ordered by inclusion. Let A be the smallest such part. We claim that
A = {a}. Assume, for the sake of contradiction, that A contains a second
element c 6= a. Then the triple {a, b, c} cannot be separated by any partition,
contradicting the assumption.

Axiom (P3): for the sake of contradiction, assume that A is a part with
|A| ≥ 2 that shows up in two distinct partitions p1, p2 ∈ P . By Lemma 2.19,
there exists B ∈ p2 such that A ∪ B = N . This implies that |p2| = 2, which
violates Axiom (P1).

Axiom (P4): Suppose, for the sake of contradiction, that (P4) is not fulfilled.
Let A be a part of some partition of p of P , with cardinality at least 2, such
that N \A is not a part of any partition. Let a and b be two distinct elements of
A . Let X be the set of all parts that are supersets of N \A and do not contain
b.

To show that X is not empty, we pick an element e ∈ N \A. There must be a
partition q separating the triple {a, b, e}. By Lemma 2.19, there are parts F ∈ p
and E ∈ q such that E ∪ F = N . The part A ∈ p has non-empty intersection
with at least two parts of q, namely with the part containing a and with the
part containing b. Neither part can be a superset of A. Then, by Remark 2.20,
both are subsets of A. This implies F = A and therefore E ∪A = N . Then we
get e ∈ E and b 6∈ E. So, E ∈ X .

By Remark 2.20, X is totally ordered by inclusion. Let C be the smallest
element of X . Since N \A is not a part, there exists an element d in C\(N \A) =
A∩C. Now we repeat the argument that we used above with the triple {d, b, e}.
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Figure 4: These are the graph GS defined by the three equivalence classes in
Example 1.15. Each of the graphs is a disconnected union of complete graphs,
in accordance to Lemma 2.25.

Note that d and b are two distinct elements in A, since d is in some part of X
while b is not. Hence there must be a partition q′ separating the triple {d, b, e}.
By Lemma 2.19, there are parts F ′ ∈ p and E′ ∈ q′ such that F ′ ∪ E′ = N .
Then, with the analogous reasoning, we obtain that the parts containing d and
the part containing b in q′ are both subsets of A. Hence we have that F ′ = A
and E′ ∪A = N . Also we observe that b /∈ E′. Therefore, E′ ∈ X and d /∈ E′.

Since X is totally ordered by inclusion and C is the smallest element of X ,
we have that C ⊂ E′. This implies d ∈ E′, which is a contradiction.

Remark 2.21. It is a fun question to ask what happens to if we replace “triples”
by “quadruples”, “quintuples” etc. The second author conjectures that there
are almost no collections of partitions such that each partition has four parts,
and every quadruple is separated by a unique partition. More precisely, any
such collection has only a single partition, where every part is a singleton.

In order to convert triples to partitions, we also need one more definition.

Definition 2.22. For any partition p of N , let Sp be the set of all triples that
are separated by p.

For any set S of triples, let GS be the graph with vertex set N , and an edge
between i, j ∈ N if and only if no triples of S contain both i and j. Let pS be
the partition of N defined by the connected components of GS .

Example 2.23. In Figure 4 we see the graphs GS when S is one of the three
equivalence classes of triples in Example 1.15.

Example 2.24. Let p = pa be as in Example 1.3. Then Spa is exactly the
equivalence class of triples Ea in Example 1.18. Moreover, pEa

is the partition
pa.

Lemma 2.25. Let S be a diverse set of triples. Then GS is a disconnected
union of complete graphs.

Proof. Let i, j, k ∈ N be three distinct vertices of GS . Suppose that {i, j}, {j, k}
are edges of GS , but {i, k} is not an edge. Then there exists l ∈ N \{i, j, k} such
that {i, k, l} ∈ S. By Axiom (D1), one of the triples {i, j, l}, {j, k, l}, or {i, j, k}
is in S. This violates the fact that {i, j} and {j, k} are edges. This shows that
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any two vertices in the same connected component of GU are connected by an
edge; the graph is a disconnected union of complete graphs.

Lemma 2.26. For any partition p with at least three parts, we have that Sp is
diverse and pSp

= p.
For any diverse set S of triples, the partition pS has at least three parts, and

we have SpS
= S.

Proof. Let p be a partition with at least three parts. Then we know that Sp is
non-empty. Assume that the triple {i, j, k} is in Sp, which means that i, j, and
k are in three distinct parts. A fourth element l ∈ N can at most be in one of
this three parts, hence p separates l and two other elements out of i, j, and k.
Therefore Sp satisfies (D1).

Let a, b, c, x, y, z ∈ N . Assume that p separates the triples {a, x, y}, {b, y, z},
and {c, x, z}. Then x, y, and z are in pairwise distinct parts, so p also separates
{x, y, z}. Therefore Sp satisfies (D2), hence Sp is diverse. Moreover, i, j are in
the same part of p if and only if no triples in Sp contain both i and j if and
only if i and j are in the same component of GSp

if and only if i and j are in
the same part of pSp . Hence pSp = p.

Let S be any diverse set of triples. If a triple {i, j, k} is in S, then none
of {i, j}, {i, k} or {j, k} is an edge of GS . By Lemma 2.25, we obtain that
i, j, k are in pairwise distinct components in GS . Hence, i, j, k are in pairwise
distinct parts of pS . Therefore, {i, j, k} ∈ SpS

. For the other direction, let
{i, j, k} be any triple in SpS

. This indicates that i, j, k are in three pairwise
distinct parts in pS , i.e., i, j, k are in three pairwise distinct components of the
graph GS . Therefore, none of {i, j}, {i, k}, {j, k} is an edge of GS . Hence, S
contains triples {i, j, a}, {i, k, b} and {j, k, c} for some a, b, c ∈ N . By Axiom
(D2), {i, j, k} ∈ S. Hence SpS

= S.

Now we define the conversion from equivalences on triples to collections of
partitions. For any phylogenetic equivalence relation E of triples in N , we define
PE as the collection of all partitions pU for any equivalence class U of E. The
function from EN to PN that maps E to PE is denoted by tEP .

Lemma 2.27. Let E be a phylogenetic equivalence relation of triples in N .
Then PE is a phylogenetic set of partitions.

Proof. Every equivalence class U contains at least one triple. This triple is
separated by pU , and it follows that pU must have at least three parts. Therefore
PE satisfies Axiom (P1).

Every triple τ = {i, j, k} ∈
(
N
3

)
is in a unique equivalence class U , and pU

separates τ by Lemma 2.26. Moreover, if V is any equivalence class such that
pV separates τ , then τ ∈ SpV

= V , and therefore U = V . This implies that
every triple is separated by a unique partition in PE . By Theorem 2.17, PE is
phylogenetic.
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Figure 5: This diagram shows all conversion maps between different types of
structures that have been defined in this paper. We also have seen that the
triangles are commutative.

For any phylogenetic collection P of partitions, each triple τ ∈
(
N
3

)
is sep-

arated by a unique partition in P , by Remark 2.18. We define EP as follows:
Two triples τ1 and τ2 are equivalent if and only if the unique partition separat-
ing τ1 is the same as the unique partition separating τ2. The function from PN

to EN that maps P to EP is denoted by tPE . It is straightforward to see that
tTE = tPE ◦ tTP .

Lemma 2.28. Let P be a phylogenetic set of partitions of N . Then EP is a
phylogenetic equivalence relation of triples in

(
N
3

)
.

Proof. For any partition p in P , the set of triples Sp is diverse by Lemma 2.26;
hence Axiom (E0) is fulfilled.

Theorem 2.29. The two sets PN and EN are in bijection: function tEP :
EN → PN , E 7→ PE is the inverse of function tPE : PN → EN , P 7→ EP .

Proof. For any E ∈ EN , any class U of E is diverse. Then, by Lemma 2.26 we
have that SpU

= U . We see that {SpU
}U∈E is exactly EPE

– where the foot
index U ∈ E means that U is a class of E. Hence, we have EPE

= E.
For any P ∈ PN , each partition p ∈ P has at least three parts. By

Lemma 2.26, we know that pSp = p. Since {pSp}p∈P is exactly the partition
collection PEP

, we obtain that PEP
= P .

In Figure 5, we display the diagram consisting of all conversion algorithms
in this paper.
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