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A tree-based algorithm on monomials in the

Chow group of zero cycles in the moduli space of

stable pointed curves of genus zero

Jiayue Qi ∗†

Abstract

The Chow group of zero cycles in the moduli space of stable pointed
curves of genus zero is isomorphic to the integer additive group. With the
help of a tree representation of the monomial, we are able to provide two
different methods for computing this integer: one is algebraic, the other
pictorial — the latter can be seen as an equivalent characterization of the
former. Also, this tree representation enables us to further expedite the
algorithm, via considering an extra property of the tree. With our result,
we figure out the value of a specific type of monomials. In addition,
we prove the equivalence between a multinomial coefficient identity and
the theorem for the value of that specific type of monomials, using this
graphical algorithm.

1 Introduction

Chow ring is a vital tool in intersection theory. In the Chow ring of some
ambient variety, each subvariety is assigned to a class in this ring, which
generalizes the degree of a curve in projective space of dimension two. For
a standard reference in intersection theory, see [1]. See [2, Chapter 1] for
more detailed explanations on Chow rings.

Multiplication of elements in the Chow ring corresponds to the inter-
section of cycles — formal sums of subvarieties — in the ambient variety.
For a projective variety X of dimension k, the Chow ring A∗(X) is the
direct sum of k+1 groups, each of them is composed of cycles of a fixed di-
mension. The group consists of cycles of codimension r is usually denoted
by Ar(X), while Ar(X) is always the zero group when r is bigger than
the dimension of X. In particular, the Chow group Ak(X) is the group
of cycles of dimension zero and, it is isomorphic to the integer additive
group.

In this paper, we work in the Chow ring of a specific variety, namely
the moduli space of stable n-pointed curves of genus zero, denoted by
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Mn. It is a smooth irriducible projective compactification of stable n-
pointed genus zero curves. This moduli space was originally introduced
by Knudsen and Mumford in their series of papers [3], [4] and [5]. We
denote the Chow ring of it by A∗(n) instead of A∗(Mn), for simplicity.
The paper [6] is a very good reference on this Chow ring and can be
helpful for a better understanding of the background of the tools that we
will mainly use in our paper. We will explain soon the relation between
their work and ours. The Chow rings of moduli spaces of curves were
first defined by Mumford in [7]. In that paper, they defined the Chow
ring of moduli space of curves of a general degree. Also, they worked out
completely the case when the genus of stable curves is two. Faber Carel
worked in the Chow rings of moduli space of stable curves of genus 3 and
4 in [8] and [9], respectively. They determined completely the situation
for genus three, while results were gained partially for genus four. Izadi
Elham continued on this path the investigation in [10] for the genus five
case. In [11], the author presented the Chow ring of the moduli space of
curves of genus zero. They provide a specific basis for the Chow groups
and the intersection pairings between the basis. They consider the same
ambient ring as we do, their paper may help if one wants to know more
properties of our ambient ring, in addition to those considered by us.

From the general property of a Chow ring, we can directly get the
following properties of our ambient ring. The moduli space Mn has di-
mension n− 3. Hence we have

A∗(n) =

n−3⊕
r=0

Ar(n),

where Ar(n) is the Chow group of codimension r. When r > n − 3, we
have Ar(n) = {0}. To be more precise, we work in the Chow group of
codimension n−3 — which is the group of cycles of dimension zero — and
consider the isomorphism from this group to the integer additive group.
We denote by

∫
: An−3(n)→ Z this isomorphism. In this paper, we focus

on the following problem: Compute the corresponding integer under this
isomorphism for any monomial in this Chow group. This corresponding
integer is called the integral value or value of the given monomial.

This is a subproblem came onto the surface when we studied the
realization-counting problem for Laman graphs (minimally rigid graphs)
on a sphere, see [12]. Originally, we tried to find another algorithm, hope-
fully more efficient than the one given in their paper, for the realization-
counting of Laman graphs on a sphere. During the study, we figured out
that computing the value of any monomial in Chow group An−3(n) is a
subproblem of the target problem. Later on, we actually invented two
algorithms for this subproblem — one will be presented in this paper, and
another one, actually more efficient, can be checked in [13]. One thing
we should confess is that our new algorithms do not seem faster than
what they provided in [12]. Nevertheless, we find this subproblem and
the corresponding algorithms interesting on their own, which also may
have further applications. Hence, we consider this subproblem on its own
and try to write down what we discovered in this winding but exciting
journey.
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As is mentioned in the last paragraph, the algorithm that we will
introduce in this paper is not more efficient than the algorithm — which
is called forest algorithm — presented in [13], while both solve the same
problem. However, we value the idea of this algorithm, not only because
it is the bridge for us to reach the forest algorithm, but we see more
potential of it as well. Especially we praise the idea of vertex-splitting,
which is an essential step of the algorithm and will be explained more
into details in Section 4.2. When we tried to prove the base case of
the forest algorithm, the idea of vertex-splitting was essential. What is
worthwhile to mention is that, in the proof of that base case, an identity
about multinomial coefficient is needed — we manage to prove it as well.
Hence, the algorithm led to another work of us, namely the discovery
of this identity. We find the identity as well as its proof fascinating.
There is a connection between our algorithm and this identity on the
multinomial coefficient. Furthermore, we prove the equivalence between
this base case and the identity, which gives the identity an equivalent
characterization. Or maybe we should say that the identity hides some
structural information of our main algorithm, algebraically. For detailed
story on it, see Section 7.

In addition but not the least, the idea of viewing algebraic reduction
as tree generating process stands on its own. Starting from the equivalent
tree-representation of the given monomial, we complete the characteriza-
tion of the monomial reduction process within the tree representations and
we prove that these two reductions are theoretically equivalent. However,
the tree-version reduction is more efficient in many situations. Moreover,
it allows us to introduce a necessary condition for the monomial to have
value zero, which we call balancing condition in the paper. This condi-
tion sufficiently improve the efficiency of the algorithm. Pure algebraic
reduction is not capable of doing this. This equivalent characterization,
namely viewing the algebraic reduction as some operations on the trees,
is also the main spirit that we would like to convey.

In order to explain the basic idea of our characterization, we need to
introduce some specific properties of the ambient ring. Let n ≥ 3 be an
integer and denote by N the set {1, . . . , n}. A bipartition {I, J} of N
is called a cut if both I and J have cardinality bigger than one — then,
we say that I and J are parts of this cut. For every cut {I, J}, there
is a hypersurface DI,J in the ambient variety Mn. We denote by δI,J
the corresponding element of DI,J in the Chow ring A∗(n) — note that
δI,J = δJ,I and DI,J = DJ,I . In [6], Keel Sean introduced a linear relation
( [6, Section 4, Theorem 1.(2)]) and a quadratic relation ( [6, Section 4,
Theorem 1.(3)]) between the generators δI,J . This two relations are the
main tools used by us and are called Keel’s linear relation and Keel’s
quadratic relation in our paper, respectively.

These elements δI,J generate the Chow group of codimension one, i.e.,
A1(n). They also generate the whole ring, of course, when used as ring
generators. Since we are working in a graded ring, it is not hard to see that
the monomial

∏n−3
i=1 δIi,Ji is an element in the Chow group of codimension

n−3 and any monomial in this group should look like so — the product of
n− 3 generators. Recall that the problem we want to solve is to compute
the (integral) value of such monomials.
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We solve the problem via the following steps. First, we transfer
the monomial to its equivalent tree-representation. See [14, Section 2.2]
and [13, Theorem 0.2.] for the one-to-one correspondence between a mono-
mial in A∗(n) and its tree representation. Second, we apply a vertex-
splitting operation on this tree, collect all possible outputs. This gives us
a set of new trees, each of them corresponds to some degree-reduced-by-
one monomial. These monomials are exactly the summand monomials we
obtain on the right hand side of the equation when we do the reduction al-
gebraically. Next, we check if each of these new trees fulfills the balancing
condition, we exclude those do not — since they have value zero. For more
detailed explanation of the balancing condition, see Section 5.3. Then, we
apply the vertex splitting process recursively to these new trees. We have
a specific principle how the vertex splitting operation should be done;
when this is obeyed, it is guaranteed that after finitely many steps, all the
obtained monomials are squarefree. Another theorem (Theorem 3.4) tells
us that squarefree monomial always has value one. Thence, we are able
to directly “count” the absolute value of the given monomial accordingly.
The sign depends on the number of recursive steps: being odd leads to
the negative sign, while even gives the positive.

The structure of this paper is as follows. In Section 2, we introduce
the Keel’s quadratic relation between the generators of the ambient ring.
Also we introduce the tree representation of the monomials in the Chow
group of cycles of dimension zero. In Section 3, we illustrate the algebraic
reduction of any monomial in the ambient group with several examples.
In the next section, we focus on one step of our algorithm, namely the
vertex-splitting process. Then, in Section 5, we introduce the complete
graphical algorithm, or maybe better called tree-based algorithm, which
characterize the algebraic reduction in a graphical view. In Section 6, we
complete the missing proofs from earlier context. In the end, we introduce
an application of the main result in Section 7, which may lead to a deeper
understanding of our algorithm.

2 Loaded trees

There are linear and quadratic relations between the generators of the
ring A∗(n). We say that the two generators δI1,J1 , δI2,J2 (or the pair
(δI1,J1 , δI2,J2)) fulfill Keel’s quadratic relation if the following four condi-
tions hold:

1. I1 ∩ I2 6= ∅;
2. I1 ∩ J2 6= ∅;
3. J1 ∩ I2 6= ∅;
4. J1 ∩ J2 6= ∅.

And in this case, we have δI1,J1 · δI2,J2 = 0. For example, when n = 5,
(δ12,345, δ13,245) fulfills Keel’s quadratic relation but (δ12,345, δ123,45) does
not, also then we have δ12,345 · δ13,245 = 0. This fact comes directly
from [6, Section 4, Theorem 1.(3)], we just use a different notation. Note
that the index are abbreviated a bit: δ12,345 refers to δ{1,2},{3,4,5} for
instance. We will also use this abbreviation in the later context.
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Inspired by this property, we know that if any two factors of the mono-
mial fulfills this relation, the integral value of the given monomial will then
be zero. So, the problem is solved in this case. Now we only need to focus
on those monomials where no two factors fulfill this quadratic relation.
We call those monomials tree monomials, since there is a one-to-one corre-
spondence between these monomials and a type of tree (see Theorem 2.2),
which we call loaded tree.

Definition 2.1 ( [13], Definition 0.1.). A loaded tree with n labels and k
edges is a tree (V,E) together with a labeling function h : V → 2N and
an edge multiplicity function m : E → N+ such that the following three
conditions hold:

1. {h(v)}v∈V,h(v)6=∅ form a partition of N — elements in N are called
the labels of T ;

2.
∑

e∈E m(e) = k;

3. For every v ∈ V , deg(v) + |h(v)| ≥ 3, note that here multiple edges
are only counted once for the degree of its incident vertex.

We say that two loaded trees are of the same type if they have the same
number of labels and the same number of edges as well.

Note that when we want to verify if some given tree is a loaded tree
(of any type) or not, we only need to verify the third condition in Def-
inition 2.1, since the other two are just there to specify the type of the
tree.

We define the monomial of a given loaded tree as follows. Since it is a
tree, we will obtain two components when we remove any edge e. We col-
lect the labels in each component and form the sets I and J , respectively.
We say that {I, J} is the corresponding cut for edge e, and that δI,J is the
corresponding factor for edge e. Because of the third condition in Defini-
tion 2.1, one can check that no two edges can have the same corresponding
cut. Therefore, given a loaded tree, there is a one-to-one correspondence
between the edge set and the set of their corresponding cuts (or, the set
of their corresponding factors). Hence, we can represent an edge by its
corresponding cut. The monomial of a given loaded tree is

∏m
i=1 δIi,Ji ,

where δIi,Jis are the corresponding factors for the edges, and m refers
to the number of edges of the given tree, where edges are coounted with
multiplicities. We see that once the loaded tree is given, its monomial is
then uniquely determined. For multiple edges, its corresponding factor in
the monomial has the power same as its multiplicity. We see in Figure 1
and Figure 2 for two examples of loaded trees and their monomials.

In [14], the authors introduce the one-to-one correspondence between
the set of cuts and the phylogenetic tree. In the next theorem, we refer
to the same result, while the only difference is that we allow some cuts
to appear more than once; that is to say, we consider a multi-set of cuts.
Consequently, the corresponding phylogenetic tree differs from that in [14]
in the sence that we allow multiple edges; and the multiplicities of edges
equal to the occurrences of cuts. In addition, the tree is called differently,
in our paper loaded trees, while in [14] phylogenetic trees.
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Figure 1: This is a loaded tree with 5 labels and 2 edges. LT = (V,E, h,m),
where V = {v1, v2, v3}, E = {e1, e2}, h(v1) = {1, 2}, h(v2) = {3},
h(v3) = {4, 5}, m(e1) = m(e2) = 1. Its monomial is δ12,345 · δ123,45.

Figure 2: This is a loaded tree with 6 labels and 4 edges. LT = (V,E, h,m),
where V = {v1, v2, v3, v4}, E = {e1, e2, e3}, h(v1) = {1, 2}, h(v2) = ∅,
h(v3) = {5, 6}, h(v4) = {3, 4}, m(e1) = m(e3) = 1, m(e2) = 2. Its mono-
mial is δ12,3456 · δ34,1256 · δ256,1234.

Theorem 2.2. [14, Section 2.2] There is a one-to-one correspondence
between tree monomials M =

∏k
i=1 δIi,Ji and loaded trees with n labels

and k edges, where Ii ∪ Ji = N for all 1 ≤ i ≤ k.

Remark 2.3. Note that there is an extremal case for each n ≥ 3, namely
the tree containing only one vertex with labeling set N = {1, · · · , n}.
Such a loaded tree has no edges, is an element in the Chow group A0(n).
We call its corresponding monomial the empty monomial, denote it by ∅;
it is also a tree monomial. We see that a loaded tree with n labels and
k edges represents a tree monomial in the Chow group Ak(n). We often
denote the corresponding loaded tree of a given tree monomial M as TM ;
and the corresponding tree monomial of a given loaded tree T as MT .

We have an algorithm realizing this correspondence, namely converting
from the monomial to loaded tree, which we call tree algorithm in [13].
But we will not go into details on this algorithm here. Recall that our
goal is to calculate

∫
(M) for any tree monomial M ∈ An−3(n), where

∫
represents the isomorphism from An−3(n) to Z. We say that a monomial
is proper if it is a tree monomial in An−3(n) for some n ≥ 3. Because
of this one-to-one correspondence, we can define value of a loaded tree —
denote it as

∫
(T ) — as

∫
(MT ), where MT is the corresponding monomial

of the given loaded tree T . We say that a loaded tree is proper if its
number of edges is three less than the number of labels. In the algebraic
language, a proper loaded tree represents some tree monomial in An−3(n)
for some n ∈ N+. Given a proper loaded tree, we want to calculate its
value. This is another way of expressing our goal.

In the sequel, we introduce the weight function of a loaded tree, which
is usually denoted by w. This concept will be helpful in stating our al-
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gorithm later on. The weight function w : V ∪ E → N is defined as
w(v) := deg(v) + |h(v)| − 3 for all v ∈ V and w(e) := m(e) − 1 for all
e ∈ E. One additional remark is that: it is not hard to verify the following
identity about the weight function for a proper loaded tree — we call it
weight identity:

∑
v∈V w(v) =

∑
e∈E w(e).∑

v∈V

w(v) =
∑
v∈V

(deg(v) + |h(v)| − 3)

=
∑
v∈V

deg(v) +
∑
v∈V

|h(v)| − 3 · |V |

= 2 · |E|+ n− 3 · |V |
= 2 · |E|+ n− 3 · |E| − 3

= n− 3− |E|∑
e∈E

w(e) =
∑
e∈E

(m(e)− 1)

=
∑
e∈E

m(e)− |E|

= n− 3− |E|

Up to here one may wonder: how indeed can we calculate the value of
a proper monomial? We are still missing one important tool. Now is the
stage time for Keel’s linear relation, to help us out of the sludge.

3 Linear reduction

In this section, we describe how to figure out the value of a given proper
monomial, using Keel’s linear relation and Keel’s quadratic relation, via
algebraic reductions. Keel’s linear relation was originally proved in [6,
Theorem 1.(2)]. We state exactly the same content as follows, but in
different notations.

Fact 3.1 (Keel’s linear relation, [6] Theorem 1.(2)). Denote by εij|kl :=∑
i,j∈I,k,l∈J δI,J . Then we have the equality relations εij|kl = εil|kj =

εik|jl. We call it Keel’s linear relation.

Let us see a concrete example on it.

Example 3.2. When n = 6, we have ε12|35 = ε13|25 = ε15|23, i.e.,

δ12,3456 + δ124,356 + δ126,345 + δ1246,35

= δ13,2456 + δ134,256 + δ136,245 + δ1346,25

= δ15,2346 + δ145,236 + δ156,234 + δ1456,23

Remark 3.3. From the example above we see that we can substitute
some δI,J , say δ12,3456, by ε13|25 − (ε12|35 − δ12,3456). Basically we can
replace δI,J by a sum of (2n−3 − 1) many (±)δI′,J′s.

It is possible that the follow theorem is known, but because of the
lack of proper reference, we will prove it for the sake of completeness. We
postpone the proof to Section 6, since our proof method will need some
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more tools that will be introduced later on — and of course, those tools
are independent from this theorem. For now, we continue our story by
accepting this result.

Theorem 3.4. If all factors are distinct in the tree monomial M :=
Πn−3

i=1 δIi,Ji , where Ii ∪ Ji = N for all 1 ≤ i ≤ n− 3. Then
∫

(M) = 1 and
we call this type of tree monomial clever monomial and its corresponding
loaded tree clever tree.

Remark 3.5. Notice that clever trees are by definition proper. For clever
trees, we know that they have value one. What about non-clever trees?
We would like to use Keel’s linear relation to reduce them, hoping to get
a sum of several clever trees, then we can directly “count” the value. Let
us see a concrete example for a better understanding of this idea.

Example 3.6. Given δ212,3456 · δ1234,56, which is a tree monomial. We
want to calculate its value. Now, apply Keel’s linear relation, and replace
one occurrence of δ12,3456, by ε13|25 − (ε12|35 − δ12,3456):

δ212,3456 · δ1234,56 = δ12,3456 · δ1234,56 · (ε13|25 − δ124,356 − δ126,345 − δ1246,35).

Since any summand δI,J of ε13|25 has 1, 3 ∈ I and 2, 5 ∈ J . Therefore, it
together with δ12,3456 fulfills Keel’s quadratic relation and we obtain that
δ12,3456 · δI,J = 0. Consequently, we have δ12,3456 · ε13|25 = 0. Hence we
have:

δ212,3456 · δ1234,56 = δ12,3456 · δ1234,56 · (−δ124,356 − δ126,345 − δ1246,35).

One can check that the two pairs (δ1234,56, δ126,345) and (δ1234,56, δ1246,35)
both fulfill Keel’s quadratic relation. Hence both products are zero.
Therefore, we have

δ212,3456 · δ1234,56 = −δ12,3456 · δ1234,56 · δ124,356.

We get one clever monomial with a negative sign, so the tree value
(monomial value) is −1.

The process is to replace one factor in the given monomial via some
Keel’s linear relation and then expand it into a sum of monomials. Then
cancel all the terms that will lead to zero because of Keel’s quadratic
relation. This process is called a linear reduction. In the sequel, we see
an example where the linear reduction is needed more than once, in order
to finally get a sum of clever monomials (maybe with a negative sign).

Example 3.7. Let M := δ3123,4567 · δ12345,67 ∈ A4(7) be the given mono-
mial. We use Keel’s linear relation for n = 7, replacing δ123,4567 via
ε12|46 = ε14|26. Then, we obtain

δ3123,4567 · δ12345,67 = δ2123,4567 · δ12345,67 · (ε14|26 − (ε12|46 − δ123,4567)).

Then we see that each summand of ε14|26 fulfills Keel’s quadratic relation
together with δ123,4567, hence we have ε14|26 ·δ123,4567 = 0. Hence we have:

δ3123,4567 · δ12345,67 = δ2123,4567 · δ12345,67 · (−(ε12|46 − δ123,4567)) (1)

= δ2123,4567 · δ12345,67 · (−δ12,34567 − δ125,3467
− δ127,3456 − δ1235,467 − δ1237,456 − δ1257,346
− δ12357,46)
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Then we need to exclude those summands of ε12|46 which fulfill Keel’s
quadratic relation with any factor(s) of M – here it refers to δ12345,67 and
δ123,4567. After the exclusion, we obtain that

δ3123,4567 · δ12345,67 = δ2123,4567 · δ12345,67 · (−δ12,34567 − δ1235,467) (2)

= −δ2123,4567 · δ12345,67 · δ12,34567
− δ2123,4567 · δ12345,67 · δ1235,467

Then for the two tree monomials on right hand side, we continue with the
linear reduction. For the first monomial, we use the relation ε13|46 = ε14|36.
We obtain:

δ2123,4567 · δ12345,67 · δ12,34567 (3)

= δ123,4567 · δ12345,67 · δ12,34567 · (ε14|36 − (ε13|46 − δ123,4567))

Then, for the same reason, we can ommit ε14|36. Hence we have

δ2123,4567 · δ12345,67 · δ12,34567 (4)

= δ123,4567 · δ12345,67 · δ12,34567 · (−(ε13|46 − δ123,4567))

= δ123,4567 · δ12345,67 · δ12,34567 · (−δ13,24567 − δ135,2467 − δ137,2456
− δ1235,467 − δ1237,456 − δ1357,246 − δ12357,46)

Now we need to detect those factors in the summands of ε13|46 which
fulfills Keel’s quadratic relation together with any factor among δ123,4567,
δ12345,67 and δ12,34567. After the cancellations, only one of them is left.

δ2123,4567 · δ12345,67 · δ12,34567 (5)

= δ123,4567 · δ12345,67 · δ12,34567 · (−(ε13|46 − δ123,4567))

= δ123,4567 · δ12345,67 · δ12,34567 · (−δ13,24567 − δ135,2467 − δ137,2456
− δ1235,467 − δ1237,456 − δ1357,246 − δ12357,46)

= −δ123,4567 · δ12345,67 · δ12,34567 · δ1235,467

We can see that we obtain a clever monomial with a negative sign, the
value of which is −1. For the other monomial on right hand side of
Equation 2 — δ2123,4567 · δ12345,67 · δ1235,467 — we use ε12|45 = ε14|25 to
reduce the powered factor. Then we get

δ2123,4567 · δ12345,67 · δ1235,467 (6)

= δ123,4567 · δ12345,67 · δ1235,467 · (ε14|25 − (ε12|45 − δ123,4567))

= δ123,4567 · δ12345,67 · δ1235,467 · (−(ε12|45 − δ123,4567))

= δ123,4567 · δ12345,67 · δ1235,467 · (−δ12,34567 − δ126,3457 − δ127,3456
− δ1236,457 − δ1237,456 − δ1267,345 − δ12367,45)

= −δ123,4567 · δ12345,67 · δ1235,467 · δ12,34567

Here we obtain a clever monomial with negative sign, the value of which
is −1. Substituting these two values back to Equation 2, we obtain that
the value of the given monomial M := δ3123,4567 · δ12345,67 is 2.

9



Remark 3.8. From the above two examples, we see clearly at least one
thing: whenever we replace one occurrence of δI,J by some εik|jl−(εij|kl−
δI,J), we can directly ommit εik|jl, since any summand of it fulfills the
Keel’s quadratic relation with δI,J and there is at least one occurrence of
δI,J still left in the remaining part of the monomial. Hence from now on
we will only say that we replace δI,J by −(εij|kl − δI,J).

Also, because of the same reason, whenever we do one-time linear
reduction, we obtain a negative sign on the right hand side. Therefore,
how many times of linear reduction we use decides the sign for the value
of the given monomial — odd times gives a negative sign while even times
leads to a positive sign. In the sequel, we only need to worry about how
to obtain the absolute value of the given monomial.

4 Tree-version linear reduction

Non-squarefree tree monomials are in one-to-one correspondence with
non-clever trees. After we do linear reductions to a given tree monomial,
the obtained monomials in the expanded form on the right hand side of
the equation are all tree monomials — because all monomials containing a
pair of factors fulfilling Keel’s quadratic relation have been cancelled out
during the reduction process. Because of the one-to-one correspondence
between tree monomials and loaded trees, this process can parallelly be
viewed as a tree transforming/generating process. This is an equivalent
process of the (algebraic) linear reduction. We call it the tree-version
linear reduction.

In this section, we will describe it into details. Then, in Section 6 we
prove that this tree-based algorithm is indeed an equivalent characteriza-
tion of the algebraic linear reduction described in Section 3. We view the
algebraic reduction as some operations on the loaded tree corresponding
to the given monomial. Now we will try to explain the tree-version linear
reduction step by step — translating the algebraic language to graphical
language.

• Non-squarefree tree monomials corresponds precisely to loaded trees
with multiple edge(s).

• In the linear reduction process, first we pick some δI,J that has
power higher than one in the given monomial. In the graphical
language, this operation means that we pick a multiple edge e whose
corresponding factor is δI,J , i.e., whose corresponding cut is {I, J}.

• Then we decide on which Keel’s linear relation εij|kl = εik|jl to use,
in order to replace the factor δI,J . In graphical language, it says
that we pick i, j ∈ I and k, l ∈ J .

We need to pause here, so as to explain this quadruple choosing step.
In the algebraic reduction, it seems that we are allowed to choose whatever
quadruple for Keel’s linear relation as long as we can replace the factor
— we will see later on that it is not true. We have a specific requirement
in the pictorial algorithm — we require a specific way of choosing the
quadruple, namely a proper choice.
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4.1 Proper choice of the Keel’s linear quadruple

Actually we can pick any quadruple (i, j, k, l) such that i, j ∈ I and
k, l ∈ J for Keel’s linear relation; the correctness is guaranteed in the-
ory. We call such a quadruple Keel’s linear quadruple. However, we want
to make sure that no summand in −(εij|kl − δI,J) divides M . We call
it summand distinction property of the quadruple (i, j, k, l) or of the set
{i, j, k, l}, simply because it means any summand in −(εij|kl − δI,J) is
distinct from all factors of M . Why do we need this property?

Suppose that we want to replace one occurrence of δI1,J1 in M =
δpI1,J1

· · · δIq,Jq by −(εij|kl − δI1,J1) and (i, j, k, l) fulfills the summand

distinction property. W.l.o.g., assume that −(εij|kl − δI1,J1) =
∑t

s=1 δs.
Then we obtain the following equation:

δpI1,J1
· · · δIq,Jq = δp−1

I1,J1
· · · δIq,Jq · (−(εij|kl − δI1,J1)) (7)

= δp−1
I1,J1

· · · δIq,Jq ·
t∑

s=1

δs

= δp−1
I1,J1

· · · δIq,Jq · δ1 + · · ·+ δp−1
I1,J1

· · · δIq,Jq · δt

Now we focus on any monomial on right hand side of the equation, say
Mr := δp−1

I1,J1
· · · δIq,Jq · δr. Since δr does not divide M , δr is distinct

from all factors of M . Therefore, no factor can have a higher power after
the replacement. Then, we can really guarantee that after finitely many
times linear reduction, we can indeed obtain a (maybe negative) sum of
clever monomials, which, in value, is equal to the given monomial. The
analysis above also tells us that we should also obey this rule when doing
the algebraic reduction, otherwise we may not finish the reduction (until
a sum of only clever monomials) after finitely many steps.

How can we guarantee that the chosen quadruple satisfies summand
distinction property? By a proper choice of the Keel’s linear quadruple.
In order to explain what is this “proper choice”, we need the concept of
cluster first.

Definition 4.1. We say that cl ⊂ N is a cluster of vertex v if and only
if one of the following two conditions holds:

1. cl is a one-element-subset of h(v).

2. cl is the collection of labels in one component when we remove ver-
tex v and all its incident edges.

Note that here h denotes the labeling function of the loaded tree to which
v belongs. If a cluster has cardinality one, we say that it is a singleton;
otherwise, we say that it is a proper cluster.

Remark 4.2. We observe that collecting all parts of cuts of a loaded tree
gives us exactly the collection of proper clusters of all vertices.

Remark 4.3. It is not hard to check that the above two cases are disjoint
for any loaded tree. When a cluster of vertex v fulfills the first condition,
it contributes one to the cardinality of h(v). When a cluster of vertex v
fulfills the second condition, it contributes one to the degree of v. Recall
the expression deg(v) + |h(v)| in the third item of Definition 2.1: For a
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vertex, each adjacent edge corresponds to a cluster of it, and each of its
labels corresponds to a cluster of it as well.

For a better idea of this definition, let us see what are the clusters for
vertices of the loaded tree in Figure 2.

• Clusters for v1: {1}, {2}, {3, 4, 5, 6}.
Singletons for v1: {1}, {2}.
Proper clusters for v1: {3, 4, 5, 6}.

• Clusters for v2: {1, 2}, {3, 4}, {5, 6}.
Singletons for v2: none.

Proper clusters for v2: {1, 2}, {3, 4}, {5, 6}.
• Clusters for v3: {1, 2, 3, 4}, {5}, {6}.

Singletons for v3: {5}, {6}.
Proper clusters for v3: {1, 2, 3, 4}.

• Clusters for v4: {1, 2, 5, 6}, {3}, {4}.
Singletons for v4: {3}, {4}.
Proper clusters for v4: {1, 2, 5, 6}.

Now we are prepared for the concept of a “proper choice” of Keel’s
linear quadruple. Assume w.l.o.g. that when we remove edge e = {v1, v2},
vertex v1 is in the component where all labels collected to be I and v2 is
in the component where all labels collected to be J . We call the corre-
sponding components Component-I and Component-J , respectively. We
choose the quadruple (i, j, k, l) such that i, j ∈ I are from two distinct
clusters of v1 and k, l ∈ J are from two distinct clusters of v2. We call this
way of choosing i, j, k, l a proper choice. And we call the corresponding
quadruple (i, j, k, l) a proper quadruple of the edge e, or of the cut {I, J};
we call {i, j, k, l} a proper quadruple set of e or of {I, J}. Note that we
are always able to choose a proper quadruple for any edge of some loaded
tree, since apart from the cluster connected by edge e to v2 (or v1), v1 (or
v2) has at least two more clusters, by the third condition of Definition 2.1.

Let us continue with focusing on the loaded tree in Figure 2. For this
loaded tree, suppose that we want to replace one occurrence of edge e2
(i.e., the cut {{1, 2, 3, 4}, {5, 6}}). We should choose i, j from {1, 2, 3, 4}
and k, l from {5, 6} for Keel’s linear reduction. We see that (1, 3, 5, 6) is a
proper choice, but neither (1, 2, 5, 6) nor (3, 4, 5, 6) is a proper choice. We
claim that any proper quadruple fulfills the summand distinction property.
We leave the proof of this to Section 6. For now, we continue by accepting
this statement.

So when we have a loaded tree, we should decide on which multiple
edge to reduce, then we should decide on a proper quadruple to do the
reduction. In the sequel, we introduce the next step: how to directly tell
which loaded trees or tree monomials will be generated on the right hand
side of the equation in the algebraic linear reduction (see Section 3) but
using a graphical method. For this, we need to introduce the concept of
vertex splitting.
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Figure 3: These are the (simplified) branches of vertex v2 of the loaded tree in
Figure 2. Vertex v2 has three branches.

Figure 4: This is the loaded tree that is obtained from attaching the branch of
v2 containing labels 1 and 2 (in the loaded tree in Figure 2) to a single vertex
with labeling set {7, 8}.

4.2 Vertex-splitting

Before we can explain this concept, we need to define branches of a vertex
first. Let v be a vertex in loaded tree T . Removing vertex v but not its
adjacent edges gives us deg(v) many parts. Each part is a structure of
a tree but lacking a vertex. We make deg(v) many copies of vertex v,
and concatenate it to each of these parts at the place where a vertex is
missing. Then we obtain deg(v) many trees, we call them branches of v.
We call the copy of v the special vertex in each of these trees. We say that
a branch with the special vertex v is attached to some vertex v′ (of some
tree T ′) if we add an extra edge e′ between v and v′, and then contract it
(two vertices merged into a new vertex v1), and then set the labeling set
of v1 to be the labeling set of v′.

Note that each branch corresponds to a cluster of v. Each cluster of v
corresponds either to a branch of v or to a label of v. The above statement
is just to make things precise in a formal sense. However, in our concrete
operation, we can think of the branch simply as the structure of a tree
but lacking that special vertex. And when we attach a branch to some
vertex v′ of another tree T ′, we can just view it as to concatenate T ′ to
the branch at vertex v′, to the endmost of that branch where a vertex is
missing. From now on, for convenience, we will use this simplified concept
of branch and branch-attaching.

In order to better understand the concept, we see an example. Let us
turn our focus back to vertex v2 in loaded tree in Figure 2. See Figure 3
for its branches. See Figure 4 for an example of branch-attaching. Now
we are prepared for the vertex splitting process.

We explain this process as a series of operations on a loaded tree.
Recall that the weight function is defined as deg(v) + |h(v)| − 3 for each
vertex v.

1. Input: a loaded tree T1 = (V1, E1, h1,m1); a proper quadruple set
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Q := {i, j, k, l} of some multiple edge e = {v1, v2} with the corre-
sponding cut {I, J}.

2. Output: NULL or a loaded tree T2 = (V2, E2, h2,m2).

3. If both v1 and v2 have zero-weight, return NULL. Otherwise, pick
one of the incident vertices of e with non-zero weight — assume
w.l.o.g. that vertex v1 is chosen. Let I be so that v1 is in Component-
I of T1. Naturally, v2 is in Component-J .

4. Replace v1 by two vertices v′1 and v′′1 with a single edge e′ = {v′1, v′′1 }
connecting them.

5. Set the labeling sets of v′1 and that of v′′1 so that h2(v′1) ∪ h2(v′′1 ) =
h1(v1) and h1(v1) ∩ (Q ∩ I) ⊂ h2(v′1);

(?) However, note that if v1 has no other branches except for
the ones that contain any label in Q∩ I or edge e, then |h2(v′′1 )| ≥ 1
must hold.

6. Arrange the branches of v1 in the following way:

Among the branches of v1, those containing any label in Q ∩ I
are attached to v′1 and the one that contains labels in Q∩J is attched
to v′′1 — it is not hard to check that the two labels in Q ∩ J are in
the same branch of v1. The branch containing e should be modified
slightly: the multiplicity of edge e in this branch gets reduced by
one, then gets attached to v′′1 .

For any other branches of v1 in T1, it can be either attached to
v′1 or v′′1 .

(??) However, note that if h2(v′′1 ) = ∅, then we must attach at
least one branch to v′′1 .

Remark 4.4. The requirements (?) and (??) are there to guarantee that
vertex v′′1 gets at least one label or at least one branch (other than the
one contains edge e). In this way, we guarantee that v′′1 fulfills the third
condition in Definition 2.1. Since we require that the cluster of each of the
two labels in Q ∩ I is either attached to v′1 (as a branch), or put into the
labeling set of v′1 (as a singleton). Also we have {v′1, v′′1 } ∈ E(T2). Hence
vertex v′1 has at least three clusters, it also fulfills the third condition in
Definition 2.1. Therefore, T2 is a loaded tree.

Remark 4.5. Let w1 be the weight function for T1 and w2 be that for T2.
Then we have

w2(v′1) + w2(v′′1 ) = (deg(v′1) + |h2(v′1)| − 3) + (deg(v′′1 ) + |h2(v′′1 )| − 3)

= (deg(v′1) + deg(v′′1 )) + (|h2(v′1)|+ |h2(v′′1 )|)− 6

= (deg(v1) + 2) + |h1(v1)| − 6

= deg(v1) + |h1(v1)| − 4

= (deg(v1) + |h1(v1)| − 3)− 1

= w1(v1)− 1

We see from the above reasoning that the vertex-splitting process indeed
require the weight of vertex v1 to be non-zero; otherwise, it cannot be
splitted. Actually, if there is a multiple edge e = {v1, v2} in some proper
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loaded tree, both v1 and v2 being weight-zero leads to the value of this
tree being zero. Therefore, if none of the weights is non-zero, we can
immediately output zero as the wanted value. We will prove this conclu-
sion in Section 6. This is the reason why we assume that v1 has non-zero
weight in the input statement. If v1 has zero weight, while v2 has non-zero
weight, we can simply rename the vertices.

Remark 4.6. It is not hard to see that T1 and T2 have the same set
of labels and the same number of edges. Hence, T2 is of the same type
with T1. Thence when T1 is proper, T2 is also proper. After these analysis,
we see that the above stated process is an algorithm — it terminates, and
returns a loaded tree or NULL. We say that in this algorithm, vertex v1
is splitted into vertices v′1 and v′′1 .

Because of the summand distinction property, the weight sum of edges
of T2 is always one less than that of T1. Therefore, if we recursively apply
this process, then after finitely many steps, we will obtain only clever tree.
This observation provides us an idea on calculating the value of a given
tree monomial.

In the above algorithm, output is just one loaded tree. We observe
that we actually have some freedom at several steps:

1. If both v1 and v2 have non-zero weight, then we can split any of
them.

2. We could also have some freedom on how to set up the labeling
function for v′1 and v′′1 , respectively — as long as condition (?) holds.

3. Also, we have some freedom on the arrangements of branches of v′1
and those of v′′1 — as long as condition (??) holds.

When we consider all these freedom, and collect all the possibly generated
loaded trees, we obtain the tree-version linear reduction algorithm. This
algorithm does the same thing and should give us the same result with
the algebraic reasoning which is introduced in Section 3 — after a slight
modification. We postpone the correctness proof of it to Section 6.

5 Reduction algorithm

5.1 Tree-version linear reduction algorithm

In this subsection, we explain the tree-version linear reduction algorithm,
see Algorithm 1.

Remark 5.1. Note that we could also obtain NULL in some steps, in
that case, we simply do not add anything to ST . We modify the input
loaded tree into a proper tree monomial M , the output into the negative
formal sum of all corresponding monomials of the loaded trees in ST . And
add one step at the very beginning — using tree algorithm, transferring
M to TM , one step at the very end — transferring loaded trees in ST
into their corresponding monomials. Then the above algorithm does the
same thing and should give us the same result with the algebraic rea-
soning/algorithm which is introduced in Section 3. By Theorem 2.2, the
function of Algorithm 1 is equivalent to the modified version stated above.



Algorithm 1: tree-version linear reduction

input : a proper loaded tree TM (the corresponding loaded tree of
proper monomial M); a multiple edge e = {v1, v2} (with
corresponding cut {I, J}) of TM ; a proper quadruple set
{i, j, k, l} of e, or equivalently, of {I, J} such that i, j ∈ I and
k, l ∈ J .

output: loaded trees whose corresponding monomials are the ones that
survive after the (algebraic) linear reduction on M which uses
Keel’s linear reduction on the relation εij|kl = εik|jl.

w1 ← weight of v1;
w2 ← weight of v2;
if w1 = 0 and w2 = 0 then

return ∅
end if
ST ← the set of all loaded trees that can be obtained from TM with
edge e and the proper quadruple set {i, j, k, l}, after applied to the
vertex splitting algorithm — either by splitting vertex v1, or by
splitting vertex v2 — in the set ST ;

return ST

Remark 5.2. Note that our algorithm is applicable also to non-proper
monomials (trees). However, in our problem, the input is always a proper
monomial (tree), and we always obtain one or more proper monomials
(loaded trees) after each linear reduction.

Now we see an example for a better understanding of the above algo-
rithm, as well of the vertex splitting algorithm stated earlier.

Example 5.3. Given a proper loaded tree T1 as in Figure 5. Let us follow
the above vertex-splitting process, see what we will obtain. We pick a
multiple edge e2 and a proper quadruple set {1, 7, 5, 6}. We calculate the
weight of its incident vertices, find out that the weight of v3 is zero while
that of v2 is 2 (non-zero). Hence we can only choose v2 to split, and note
that v2 is in Component-{1, 2, 3, 4, 7, 8} of T1.

We should bipartition the labeling set of v2 such that

{7, 8} ∩ ({1, 2, 3, 4, 7, 8} ∩ {1, 7, 5, 6}) = {7} ⊂ h2(v′2)

holds. So if we follow the instructions in Algorithm 1, we have two options
in this step:

1. h2(v′2) = {7} and h2(v′′2 ) = {8};
2. h2(v′2) = {7, 8} and h2(v′′2 ) = ∅.
Then, based on the above two choices, we distribute the branches

of v2 to be the branches of v′2 or those of v′′2 . From the principle we know
that the branch containing 1 should be attached to v′2 and the branch
containing 5 or 6 should be attached to v′′2 ; edge multiplicity of e2 should
be reduced by one. The remaining branch — the branch containing labels
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Figure 5: This a proper loaded tree T1 with 8 labels and 5 edges. We want
to reduce edge e2 with the proper quadruple set {1, 7, 5, 6}, via splitting the
vertex v2.

3 and 4 can be attached to either v′2 or v′′2 in the first label-distribution
option; but it must be attached to v′′2 in the second label-distribution
option because of the (??) requirement. Hence, we obtain in total three
loaded trees, after applying Algorithm 1.

Figure 6 shows these loaded trees. It is not hard to check that each
of them is still a loaded tree, and is of the same type with T1. Note that
vertices in T1 and those in the new trees do not necessarily have the same
names/symbols. We keep most of them the same, just to make it easilier
to compare and understand the vertex-splitting process. This also applies
to some later context or examples.

Figure 6: The set of these three loaded trees is the output of Algorithm 1 -
applied to the loaded tree T1 with multiple edge e2 (in Figure 5) and the proper
quadruple set {1, 7, 5, 6}. The edge which gets reduced is marked in green.
Vertex v2 is splitted into v′2 and v′′2 . The new edge is denoted as e′. Each of
them is a loaded tree with 8 labels and 5 edges.

In the sequel, we look back on our examples in Section 3. We will
apply the tree-version linear reduction algorithm and see if we will obtain
the same result as if we apply the algebraic method.

Example 5.4. See Figure 7 for the corresponding loaded tree T of mono-
mial δ212,3456 · δ1234,56 in Example 3.6. Now we want to apply the tree-
version linear reduction algorithm to it. We pick the multiple edge e1 to
reduce. Its corresponding cut is {{3, 4, 5, 6}, {1, 2}}. The proper linear
reduction quadruple set we pick here is {3, 5, 1, 2}. By an easy calculation
we know that the weight of v1 is zero and that of v2 is 1. Therefore,
we can only split vertex v2 — no freedom of choice here. And v2 is in
Component-{3, 4, 5, 6} of T .

First we split vertex v2 into v′2 and v′′2 such that {3, 4} ∩ ({3, 4, 5, 6} ∩
{3, 5, 1, 2}) = {3} ⊂ h2(v′2). And observe that v2 has only two branches,
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Figure 7: This is the corresponding loaded tree of monomial M = δ212,3456 ·
δ1234,56. We want to reduce edge e1 with the proper quadruple set {3, 5, 1, 2}.

Figure 8: This is the only loaded tree that can be obtained after applying the
tree-version linear reduction algorithm to the loaded tree in Figure 7 with edge
e1 and the quadruple set {3, 5, 1, 2}. The new edge is denoted by e′.

one contains 5, the other contains edge e1. Therefore, by condition (?),
h2(v′′2 ) should contain at least one label. Hence we have that h2(v′′2 ) = {4}.
We see that there is also no freedom of choice in this step.

The next step is to arrange the branches of v2 to be the branches
of v′2 or those of v′′2 . The branch containing e1 should be modified —
multiplicity of edge e1 should get reduced by one — and then gets attached
to v′′2 . The branch containing label 5 should be attached to v′2. We see
that there is also no freedom of different options in this step. We obtain
only one loaded tree, which is also a clever tree.

Hence we only need one time linear reduction for calculating the value
of T , the sign for the result is then (−1)1 = −1. In Figure 8 we see the
output tree. We can easily obtain that the corresponding monomial of
this new tree is δ12,3456 · δ124,356 · δ1234,56, which coincides with the result
we obtain in Example 3.6, with the algebraic reasoning.

In the sequel, we apply the tree-version linear reduction algorithm to
the monomial in Example 3.7. Let us see if we can save some labor,
comparing to the algebraic method in Section 3.

Example 5.5. See Figure 9 for the corresponding loaded tree T of mono-
mial M := δ3123,4567 · δ12345,67 in Example 3.7. This is a proper tree.
The edge e1 = {v1, v2} to be reduced is the corresponding edge of cut
{{1, 2, 3}, {4, 5, 6, 7}}. We pick 1, 2 from two distinct clusters of v1 and
4, 6 from two distinct clusters of v2.

We see that we can either split v1 or v2 since they both have non-zero
weight. When we split vertex v1, there is only one loaded tree T1 that
can be obtained, see the loaded tree in Figure 10a. When we split vertex
v2, there is only one loaded tree T2 that can be obtained, see the loaded
tree in Figure 10b. Hence after we apply one time tree-version linear
reduction algorithm to T , we obtain in total two loaded trees: T1 and
T2. Their corresponding monomials are δ12,34567 · δ2123,4567 · δ12345,67 and
δ2123,4567 ·δ1235,467 ·δ12345,67, respectively. This coincides with the resulting
monomials in Equation 2.
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Figure 9: This is the corresponding loaded tree T of monomial δ3123,4567 ·δ12345,67.
We want to reduce edge e1 with the proper quadruple set {1, 2, 4, 6}.

(a) loaded tree T1 (b) loaded tree T2

Figure 10: The set of these two loaded trees is the output set of Algorithm 1
applied to tree T in Figure 9 with edge e1 and quadruple set {1, 2, 4, 6}. When
we choose to split vertex v1, we obtain the loaded tree in Figure 10a. When we
choose to split vertex v2, we obtain the loaded tree in Figure 10b.

We see that in the above two examples, we obtain exactly the same
result as when we did it via algebraic approach; however, much labor
saved. Note that we should choose the Keel’s quadruple set coinciding
with the one used in the algebraic reasoning, each time; then we will always
get the same reasult with the algebric algorithm. This is an equivalent
characterization of the algebraic linear reduction, in a more visualized
way. This characterization naturally also leads to a complete algorithm
that is equivalent to the whole process of the algebraic linear reduction
until only clever monomials are in the expansion on right hand side of the
equation. This is called reduction chain algorithm and will be introduced
in the upcoming section.

5.2 Reduction chain algorithm

Tree-version linear reduction algorithm tells us what monomials are on
the right hand side of the equation after one-time linear reduction, using
the Keel’s linear relation. However, as mentioned earlier, we want to know
the value of any proper tree monomial (loaded tree).

A very natural idea is that we can apply Algorithm 1 recursively on the
obtained set of loaded trees, after finitely many steps, we should obtain a
set of clever trees. The cardinality of the obtained set should give us the
absolute value of the given loaded tree. And from Remark 3.8 we know
that the sign is just −1 to the power of number of recursions. Correctness
of this algorithm is guaranteed by the correctness of tree-version linear
reduction algorithm. We call this process reduction chain algorithm. This
is an equivalent characterization of the algebraic algorithm for computing
the value of the given monomial described in Section 3, using graphical
language. We state this process as follows.

1. Input: a proper loaded tree TM (of which the corresponding mono-

19



Figure 11: This is the only loaded tree T ′
1 one can obtain after applying Al-

gorithm 1 to tree T1 in Figure 10a with edge e1 and quadruple set {4, 6, 1, 3}.
Edge e1 gets reduced, vertex v2 gets splitted into vertices v′′2 and v′2. And e′1
denotes the newly-generated edge.

mial is M).

2. Output: a set of clever trees that are the clever monomials we obtain
in the algebraic reasoning, given that in each reduction we use the
same quadruple set (for algebraic-version reduction and for tree-
version reduction).

3. Let A denote the output set of Algorithm 1 applied to TM with any
multiple edge and any corresponding proper quadruple.

4. Then, apply Algorithm 1 on each element in A. Let A1 denote the
union of the output sets of these results.

5. We recursively apply Algorithm 1 on each element in A1 and union
the resulting sets, define the union as A2.

6. From Remark 4.6 we know that this process must end at some step;
w.l.o.g., assume that all loaded trees in Ak are already clever trees.
Return Ak.

Now, let us see an example for a better idea. We continue with Ex-
ample 5.5.

Example 5.6. We want to apply the above stated algorithm to T in
Figure 9, we already obtain A1 in Example 5.5. The set A1 is the set of
T1 and T2, when we choose e1 and {3, 5, 1, 2} to do the reduction. Then
we continue with loaded tree T1 in Figure 10a, the edge to be reduced is
evidently (the corresponding edge of cut) {{1, 2, 3}, {4, 5, 6, 7}}. We pick a
proper linear reduction quadruple set {4, 6, 1, 3}. We can only split v2 from
the weight information. Then we carry out the vertex-splitting process,
there is only one loaded tree that can be obtained, see Figure 11. We see
that its monomial coincides with the right hand side of Equation 5.

Now we continue with loaded tree T2, the edge to be reduced is evi-
dently (the corresponding edge of cut) {{1, 2, 3}, {4, 5, 6, 7}}. We pick a
proper linear reduction quadruple set {1, 2, 4, 5}. We can only split v1
from the weight information. Then we carry out the vertex-splitting pro-
cess, there is only one loaded tree that can be obtained, see Figure 12. We
see that its monomial coincides with the right hand side of Equation 5.
We obtain exactly the same result as in Example 3.7!

Therefore, we only need two times recursions, in order to obtain a set
of clever loaded trees. And the output is A2 = {T ′1, T ′2}. Therefore, the
value of the given monomial M := δ3123,4567 ·δ12345,67 is (−1)2 ·2 = 2. This
coincides with the result in Example 3.7.
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Figure 12: This is the only loaded tree T ′
2 one can obtain after applying Al-

gorithm 1 to tree T2 in Figure 10b with edge e1 and quadruple set {1, 2, 4, 5}.
Edge e1 gets reduced, vertex v1 gets splitted into vertices v′1 and v′′1 . And e′1
denotes the newly-generated edge.

Figure 13: This is the only loaded tree T ′′
1 one can obtain after applying Al-

gorithm 1 to tree T ′
1 on the leftmost loaded tree of Figure 6 with edge e3 and

quadruple set {1, 7, 3, 4}. Edge e3 gets reduced and is marked in green, vertex v′2
gets splitted into vertices v′2 and v′2. And e′3 denotes the newly-generated edge.
Notice that this is a clever tree.

Next, let us continue with Example 5.3. We will apply the reduction
chain algorithm to the loaded tree T1 in Figure 5 and see how many clever
trees can we obtain.

Example 5.7. In Example 5.3, we already obtain all the loaded trees
after one time recursion. These loaded trees are shown in Figure 6. Now
we apply Algorithm 1 on each of them. However, we see that both incident
vertices of the only multiple edge are zero-weighted in the rightmost loaded
tree. From Remark 4.4, we know that this tree has value zero. Therefore,
we can omit it. We only need to consider the first and the second loaded
trees — denote them as T1 and T1, respectively.

First, consider T1. We pick e3 to reduce and the proper quadruple
set {3, 4, 1, 7}. Manifestly, we can only use vertex v′2 to split. After
Algorithm 1, we obtain only one loaded tree T ′′1 in the output set. This
loaded tree is shown in Figure 13. It is a clever tree. Then let us consider
T1. We pick edge e3 to reduce and a proper quadruple set {3, 4, 5, 8}. We
leave it to the reader to check the result — we should obtain only one
clever tree as well in the output set. Then we union these two sets and
obtain the output set for the reduction chain algorithm. Since we did two
times recursion, the sign should be positive. Therefore, the value for tree
T1 in Figure 5 is 2.

In the above example, we already see that after the linear reduction,
some loaded trees in the output set have value zero anyway. We can
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(a) (b)

Figure 14: These are the two loaded trees that are obtained after an edge-
cutting operation on loaded tree T in Figure 9. The loaded tree in Figure 14a
has 6 labels and 3 edges. The labeling sets of the two vertices are {1, 2, 3} and
{4, 5, ?}, respectively. The loaded tree in Figure 14b has 3 labels and 0 edges.
The labeling set of the only vertex is {�, 6, 7}.

directly omit those trees since they do not contribute for the value we
want to count. In this way, we can also gain some efficiency. Balancing
condition is a necessary condition for a loaded tree to have value zero.
In the next subsection, we introduce this condition. Thanks to the tree
representation of the monomials, we can well-define this concept.

5.3 Balancing condition

Although those monomials/trees obtained after tree-version linear reduc-
tion algorithm are already precisely the ones that are on right hand side
of the equation in algebraic expressions, we want to further improve the
algorithm, so that there is more efficiency. We will introduce an edge-
cutting lemma, which offers one more filter to judge whether a monomial
has value zero — in addition to Keel’s quadratic relation. And it is the
first filter for the zeroness property of a loaded tree — though only a nec-
essary one. Before this, we need to introduce the concept of edge-cutting.

Let T be a proper loaded tree with some weight-zero/single edge e =
{v1, v2}. Then we can construct two new loaded trees T1, T2 by cutting
off this weight-zero edge and adding one more label to the two incident
vertices of this edge, respectively. We call this operation edge-cutting
operation on edge e. Let us see an example on it.

Example 5.8. Consider the loaded tree T in Figure 9, we see that e2 is
a single edge. We can cut it off, add one extra label, say ?, to vertex v2,
and one extra label, say �, to vertex v3. Then we obtain two new loaded
trees, see Figure 14.

In the above example, we see that after applying edge-cutting opera-
tion on a given proper loaded tree, we obtain two new loaded trees. And
they are even proper. Naturally one may wonder, if this is always the
case. So, yes, this operation keeps the property of being a loaded tree;
but it does not keep the property of being proper.

Lemma 5.9. Let T be a loaded tree and T1 and T2 are the two trees
obtained from an edge-cutting operation executed on the edge e (whose
corresponding cut is {I, J}) of T . Then, both T1 and T2 are loaded trees.

Proof. T1 is a loaded tree with labeling set I ∪ {?}, T2 is a loaded tree
with labeling set J ∪ {�}. The only thing that we need to verify is the
third condition of Definition 2.1 for the two incident vertices of e in T1 and
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T2, respectively. Actually, since we add one more label to v1 (v2) after
removing edge e, the sum of degree and labeling set cardinality stays
unchanged for v1 (v2).

As for the properness, we can see a counter-example. Consider the
rightmost tree in Figure 6. It is a loaded tree with 8 labels and 5 edges;
evidently proper. We can cut the edge e′. Then it is not hard to check
that we obtain a loaded tree with 5 labels and 1 edge; and another loaded
tree with 5 labels and 3 edges. Both of them are not proper. Later on,
with the help of this being “improper” property, we can derive the filter
that is claimed at the beginning of this section.

Next, we introduce the main statement of the section. We call it “edge-
cutting lemma”, although it is stated as a proposition — since the author
views it interesting on its own.

Proposition 5.10 (edge-cutting lemma). Let T be a loaded tree and T1

and T2 are the two trees obtained from an edge-cutting operation executed
on edge e = {v1, v2} of T . Then, we have that |

∫
(T )| = |

∫
(T1)| · |

∫
(T2)|.

Proof. Let {I, J} be the corresponding cut of e and w.l.o.g. assume that
v1 is in Component-I of T and v2 is in Component-J . Also, assume that
the extra label added to v1 is ? and the one added to v2 is �.

Let M = M1 · δI,J ·M2 be the corresponding monomial of T , where
M1 contains all corresponding factors of edges in Component-I; M2 con-
tains all corresponding factors of edges in Component-J and δI,J is the
corresponding factor for edge e. From the reduction chain algorithm, we
know that after finitely many times (algebraic) linear reduction (applied
to M), M1 can be represented as a sum of, say m1 many, clever mono-
mials — maybe with a negative sign; so does M2, say it is a sum of m2

many clever monomials — maybe with a negative sign. Then, after an
elementary expansion of the polynomial, M can be represented as a sum
of m1 ·m2 many clever monomials (maybe with a negative sign). Formally,
and algebraically, we will have

M = (M1 +M2 + · · ·+Mm1) · δI,J · (M ′1 +M ′2 + · · ·+M ′m2
)

=
∑

1≤i≤m1,1≤j≤m2

Mi · δI,J ·M ′j ,

after these finitely many reductions. From the reduction chain algorithm,
we know that each summand in this equation is a clever monomial. And
the absolute value of M (or T ) should be m1 ·m2, i.e., |

∫
(T )| = m1 ·m2.

Then, it is sufficient to show that |
∫

(T1)| = m1 and |
∫

(T2)| = m2.
Let M = M1 · δI,J ·M2 be the monomial representation of any loaded

tree T that is generated at some recursion round. Let δI1,J1 be any factor
of M1 — let e1 = {v1, v2} be its corresponding edge. W.l.o.g., assume
that v2 is in Component-J1 of T and the unique path from v1 to edge e
(corresponding edge of cut {I, J}, or factor δI,J) is incident with v2. Then,
from Keel’s quadratic relation, we obtain that J ( J1. Hence, all labels in
J always appear together (as a subset of one part of the corresponding cut)
in any factor in M1-part. Consequently, in each intermediate tree, for any
vertex v in Component-I, all labels in J belong to the same cluster of v.
Therefore, whenever we split some vertex in Component-I, there exists at
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most one label from J in any proper quadruple. And this property remains
true no matter which recursion step we are at during the reduction chain
algorithm.

We replace each occurrence of J (as a subset of some cut, say J1 of
factor δI1,J1) in M1 by ?, and denote the new monomial by M?

1 . One
can see that M?

1 is actually the monomial of T1. Whenever a quadru-
ple containing any label in J is chosen for the linear reduction, we only
need to replace that label by ?; if the chosen quadruple does not contain
any label in J , then we leave it unchanged. By this replacement, we see
that the whole excution process of reduction chain algorithm induces an
excution of the reduction chain algorithm on T1. Parallelly, in algebraic
view (language), it is the following process: We do this replacement for
all factors through all those linear reductions, until the representation of
M1 is a sum of clever monomials (maybe with a negative sign). Then,
we actually obtain a linear reduction series for M?

1 . And we simulta-
neously obtain the representation of M ′1 by a sum of clever monomials
(maybe with a negative sign)! Therefore, we have that |

∫
(T1)| = m1 and

|
∫

(T2)| = m2.

Corollary 5.11. Let T be a proper tree with a single edge e and T1, T2 be
two loaded trees obtained from T via an edge-cutting operation on edge e.
If T1 is not proper, then

∫
(T ) = 0.

Proof. Assume that T has n labels and n − 3 edges, T1 has n1 labels
and k1 edges, T2 has n2 labels and k2 edges. It is not hard to obtain
that n1 + n2 = n + 2 and k1 + k2 = n − 4. Therefore, we obtain that
n1 + n2 = k1 + k2 − 6. Hence T1 is proper if and only if T2 is proper.
Suppose w.l.o.g. that k1 > n1 − 3. Then we know that T1 corresponds to
a monomial in the Chow group Ak1(n1). From the fact stated in Section 1
we have that Ak1(n1) = {0} and hence

∫
(T1) = 0. By Proposition 5.10,

we obtain that

|
∫

(T )| = |
∫

(T1)| · |
∫

(T2)| = 0 · |
∫

(T2)| = 0.

If both T1 and T2 in above stated process are proper, we say that T is
balanced or fulfills the balancing condition with respect to edge e. A loaded
tree is balanced if and only if it is balanced with respect to any single edge.

Actually, the edge-cutting operation is defined locally. If we do this
operation on each single edge of loaded tree T , then no matter in which
sequence we choose to cut those edges, we always obtain a same set of
loaded trees. With the similar reasoning, edge-cutting lemma has a gener-
alized version; so does Corollary 5.11. We conclude them in the following
lemma, and we omit the proof.

Lemma 5.12. Let T be a loaded tree and T1, · · · , Tn are the trees obtained
from edge-cutting operations on all single edges of T . Then, we have that
|
∫

(T )| = |
∫

(T1)| · |
∫

(T2)| · · · |
∫

(Tn)|. And if Ti is not proper for any
1 ≤ i ≤ n, |

∫
(T )| = 0.

The next result holds consequenctly.
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Theorem 5.13. Unbalanced loaded trees have value zero.

Proof. By Lemma 5.12, straightforward.

Now let us look back on the vertex-splitting process. Whenever we
split a vertex, one single edge e′ is generated. Therefore, in the tree-
version linear reduction algorithm, we can further filter the loaded trees
in the output set — those that are not balanced w.r.t. edge e′ can be
directly removed from the set, since zero does not contribute anything
to the value calculation. In this sence, we can always check the local
balanceness (w.r.t. edge e′) of the generated loaded tree. Furthermore,
we can check the (overall) balanceness of the generated trees and omit
the unbalanced ones. In this way, more efficiency is brought into the
algorithm. See Algorithm 2 for an optimized version of Algorithm 1.

Algorithm 2: optimized tree-version linear reduction

input : a proper loaded tree TM (corresponding loaded tree of the
proper monomial M); a multiple edge e = {v1, v2} (with
corresponding cut {I, J}) of TM ; a proper quadruple set
{i, j, k, l} of e, or equivalently, of {I, J}.

output: balanced loaded trees whose corresponding monomials are the
ones that survive after the linear reduction on M which uses
Keel’s linear reduction on the relation εij|kl = εik|jl

w1 ← weight of v1;
w2 ← weight of v2;
if w1 = 0 and w2 = 0 then

return ∅
end if
ST ← the set of all balanced loaded trees that can be obtained from TM
with edge e and the proper quadruple set {i, j, k, l}, after applying the
vertex splitting algorithm — either by splitting vertex v1, or by
splitting vertex v2 — in the set ST ;

return ST

As an example, we consider the loaded tree T1 in Figure 5. After
the first recursion round of Algorithm 1, we obtain three loaded trees as
shown in Figure 6. However, if we check the balanceness of them, we see
that the rightmost tree is not balanced with respect to edge e′. Hence
it is not balanced, has value zero. The output of optimized tree-version
linear reduction algorithm will just contain the two loaded trees on the
right for this round.

In some other cases, this condition can help filter out a lot of loaded
trees. One may realize already that this condition can be much more
complicated if we consider it for the monomials. But of course, the cor-
responding monomial of an unbalanced tree also has value zero. Hence
this also shows the strength of the tree representation. Only when we
consider the monomial reductions in the view point of loaded trees, can
we make use of the balancing condition, and gain much more efficiency
for the computing.



To integrate the balancing checking to reduction chain algorithm, we
only need to substitute the occurrences of tree-version linear reduction
algorithm by the optimized tree-version linear reduction algorithm. With
this, we conclude this section. In the next section, all the undone proofs
will be settled.

6 The missing proofs

In this section, we will settle down all the missing proofs that are post-
poned in the earlier sections. After going through the previous context,
we collect in total four missing proofs:

1. Theorem 3.4.

2. Any proper quadruple fulfills the summand distinction property.

3. If a proper loaded tree has a multiple edge e = {v1, v2} where the
weights of v1, v2 are both zero, then the tree has value zero.

4. Correctness of the tree-version linear reduction algorithm.

We will first prove Theorem 3.4. The theorem can be restated as
follows:

Theorem 6.1. A clever tree has value one.

Proof. First, we consider the situation in the Chow ring A∗(3). This ring
is exactly the Chow group A0(3), which is isomorphic to the integer ad-
ditive group. There is only loaded tree T in this ring, which consists of a
single vertex with three labels 1, 2 and 3. Hence the group A0(3) is gen-
erated by this single clever tree (or by the empty monomial). Combining
with the fact that A0(3) is isomorphic to Z, we obtain that the value of
T is either 1 or −1. We choose it to be one. And note that T is the only
clever tree that has no edges.

Let T1 be any other clever tree — then it has at least one edge. Any
edge of T1 is a single edge. By the edge-cutting lemma, we can apply the
edge-cutting operation on each of its edge, at the end obtaining |V (T )|
many clever trees with three labels, where V (T ) denotes the vertex set of
T . Since renaming or permuting the labels does not influence the integral
value of a loaded tree, we know that the value of T1 is the product of
|V (T )| many 1, hence it has value one.

Remark 6.2. Note that we can also choose −1 as the value of T . Then
the value monomial in An−3(n) is just the product of −1 and the value
of it when we choose 1 for the value of T — since there are in total two
automorphisms on the integer additive group.

Then let us focus on the algebraic reduction, try to prove the second
item above. We will need some help from the tree representation of the
(tree) monomial for the proof.

Theorem 6.3. Let M be a proper non-clever tree monomial and δI,J
the (power-higher-than-one) factor to be reduced, let Q = {i, j, k, l} be a
proper quadruple set such that i, j ∈ I, k, l ∈ J hold. Then, no summand
in −(εij|kl − δI,J) divides M .
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Proof. Assume that after the linear reduction, we obtain the representa-
tion of M as the negative sum (see Remark 3.8) of several tree monomials:
M = −

∑k
i=1Mr, where any Mr (1 ≤ r ≤ k) is a monomial. Let Mr be

any summand on the right hand side. Let e = {v1, v2} be the corre-
sponding multiple edge of cut {I, J} — w.l.o.g. assume that v1 is in
Component-I — and TM = (V,E, h,m) the corresponding proper loaded
tree for M .

It is obvious from the algebraic point of view that after the linear
reduction, all the other factors except for δI,J stay unchanged, we only
need to argue that the new factor δI′,J′ (corresponding to edge e′) in
Mr is distinct from all the factors in M . Since δI′,J′ is a summand in
−(εij|kl − δI,J), we see that it is also distinct from δI,J , by Fact 3.1. In
the graphical language: we only need to argue that it cannot be the same
edge with any other edges in tree TM . Note that δI′,J′ is a summand in
−(εij|kl − δI,J), hence we have w.l.o.g. i, j ∈ I ′ and k, l ∈ J ′.

When we do a proper choice of the quadruple set {i, j, k, l}, there are
in total six different cases. Denote by h(v) := h(v1) ∪ h(v2).

1. i, j /∈ h(v), k, l /∈ h(v).

Since i, j are from two distinct clusters, say I1 and I2, of v1, we see
that δI′,J′ cannot coincide with any edge in Component-I. Because
of the symmetry of i, j and k, l in this case, δI′,J′ also cannot coincide
with any edge in Component-J . Also, we see that I1, I2 ⊂ I ′ and
I1, I2 ⊂ I.

Suppose that e′ is not incident with e (in TMr ), then there exists an-
other edge e′′ (with corresponding cut is {I ′′, J ′′}) on the path from
e′ to e. Note that e′′ should also be an edge in TM . Then we see that
I ′ ( I ′′ ( I. Since there is no proper cluster containing both I1, I2
which is a proper subset of I in TM , we obtained a contradiction.
Therefore, e′ is incident with e.

2. i, j /∈ h(v), k /∈ h(v).

The same reasoning as in item 1. tells us that e′ cannot coincide
with any edge in Component-I. Denote by J1 the cluster of k in TM .
We know that J1 ⊂ J ′ since k, l ∈ J ′. Hence e′ cannot be coincident
with any edge in Component-J . A similar reasoning with item 1.
proves that e′ is incident with e.

3. i, j /∈ h(v), k, l ∈ h(v). Since k, l ∈ J ′ but not in any other cluster
of v2 (except for J), e′ is distinct from all edges in TM . A similar
reasoning with item 1. proves that e′ is incident with e.

4. i, k /∈ h(v), j, l ∈ h(v).

5. i /∈ h(v), j, k, l ∈ h(v).

6. i, j, k, l ∈ h(v).

Proof for case 4., 5., 6. can be obtained analogously via the analysis of
the first three items. We conclude that Q fulfills the summand distinction
property.

From the above proof, we actually gained more than needed. We can
see that the set of labels (can be seen from the index of factors in M ,
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or Mr) stay unchanged. Also the number of factors in M is the same as
that in Mr: only one occurrence of δI,J is replaced by δI′,J′ . Hence TM

and TMr are loaded trees of the same type. The proper loaded tree TMr

differs from TM only in the following aspects:

1. Multiplicity of edge e is reduced by one.

2. A new edge e′ (incident to e) with multiplicity one is generated.

3. All other edges stay unchanged: both the corresponding cut and the
multiplicity stay unchanged.

In the sequel, we prove the correctness of tree-version linear reduction
algorithm. We will keep using the notations from the above analysis.

Theorem 6.4. Tree-version linear reduction algorithm is correct.

Proof. First, we will show that any loaded tree TMr of some summand Mr

(with respect to the Keel’s linear relation εij|kl = εil|kj = εik|jl) can be
obtained by a vertex splitting process on TM with respect to the proper
quadruple set {i, j, k, l}.

In order to keep all the other edges (except for e) unchanged, it is
necessary to have step 6. in vertex splitting process; otherwise, once the
structure of any branch (of v1) is changed, some edge (and corresponding
cut) in this branch will change accordingly. In order to generate the new
edge e′ incident with e, it is necessary to have step 4. And in order to make
sure that we obtain a loaded tree as well, it is necessary to have step 5.
Since i, j ∈ I ∩ I ′ and k, l ∈ J ∩ J ′, the specific requirements in Step 5.
and Step 6. are also necessary. From Remark 4.5 we already see that
Step 3. is necessary. Hence, the vertex splitting process is necessary for
obtaining a monomial on right hand side after one time linear reduction.

In the sequel, we prove that any loaded tree T2 obtained by a vertex
splitting process on T1 with respect to the proper quadruple set {i, j, k, l}
corresponds to some monomial Mr in M = −

∑k
i=1Mr after an algebraic

linear reduction using the Keel’s linear relation εij|kl = εil|kj = εik|jl,
where M = MT1 is the corresponding monomial of input (proper) loaded
tree T1.

First, we see that all edges of T2 — compare to T1, the input of vertex
splitting process — stay unchanged except for e; but a new edge e′ inci-
dent to e is generated. In algebraic language: all factors stay unchanged
(compare MT1 with MT2) except for one occurrence of δI,J , which is re-
placed by δI′,J′ 6= δI,J ; we know that i, j ∈ I ∩ I ′ and k, l ∈ J ∩J ′. Hence
we see that δI′,J′ is a summand in −(εij|kl − δI,J). Therefore, MT2 = Mr

for some 1 ≤ r ≤ k.

From the correctness of tree-version linear reduction algorithm, we
naturally obtain the following proposition.

Proposition 6.5. If a proper loaded tree has a multiple edge e = {v1, v2}
where the weights of v1, v2 are both zero, then the tree has value zero.

Proof. In this case, when we want to replace one occurence of the cor-
responding factor of e to do the linear reduction, we see that it is not
possible to split any adjacent vertices of e via the vertex splitting process.
Hence we obtain NULL via the vertex splitting process. By Theorem 6.4,
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Figure 15: This is the weighted tree of the above described sun-like proper
loaded tree, where the weights for vertices and edges are marked in red. Note
that mi > 0 for all 1 ≤ i ≤ r and that k =

∑r
i=1mi.

we know no momomial can survive the Keel’s quadratic relation, i.e., all of
them contain some pair of generators fulfilling Keel’s quadratic relation.
Hence all the monomials we obtain on right hand side after linear reduc-
tion have integral value zero. Therefore, the value of the given loaded tree
is zero.

7 An application: sun-like trees

In this section, we introduce a specific type of proper trees, and compute
their values. This computation can also serve as the base case for the
proof of forest algorithm correctness ( [13, Theorem 0.5.]).

7.1 Problem

We say a proper loaded tree is sun-like if it has domination number equal
to one — there exists a vertex v such that all other vertices are neighbors
of it — and all adjacent vertices of v have weights zero, all edges have
positive weights. We call this vertex v the middle vertex. Let k be the
weight for the middle vertex and m1, · · · ,mr the weights for its incident
edges, respectively. By the weight identity for proper loaded trees, we
know that k =

∑r
i=1mi. See Figure 15 for a visualization.

The specific problem that we want to handle in this section is: prove
that the absolute value of a sun-like proper loaded tree — using the above
notations — is

(
k

m1,··· ,mr

)
. It can be formulated as follows:

Theorem 7.1. Let T = (V,E, h,m) be a sun-like proper loaded tree with
v its middle vertex. Let e1, · · · , er be the edges of T , where ei = {v, vi} for
1 ≤ i ≤ r. Denote by w the weight function for T , assume that w(v) = k
and w(ei) = mi ≥ 1 for 1 ≤ i ≤ r. Then we have |

∫
(T )| =

(
k

m1,··· ,mr

)
.

Before the proof, we need to introduce an identity on multinomial
coefficient, which will help us in the proof later on.

7.2 An identity on multinomial coeffient

For any r-many positive-integer parameters m1,m2, · · · ,mr, define s :=∑r
i=1mi. Denote a set of r-many indeterminates as

X := {x1, x2, · · · , xr}.
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Define T := {B | B ⊂ X,x1 ∈ B} and

B := {(B1, B2) | B1 ∈ T,B2 = X \B1}.

Define g : X → {m1 − 1,m2, · · · ,mr} by g(xi) := m1 − 1 if i = 1 and
g(xi) := mi otherwise. Here note that the set {m1 − 1,m2, · · · ,mr} may
be a multiset in form but we just consider it as a normal set, in practice.
For convenience in the later writing, we introduce the following notation.
Define for B ⊂ X,

S(B) :=
∑
x∈B

g(x),

(
S(B)

B

)
:=

S(B)!∏
x∈B (g(x)!)

.

Based on the above preparation, the identity we want to introduce can be
formulated as follows.

Theorem 7.2.(
s

m1,m2, · · · ,mr

)
=

∑
(B1,B2)∈B

(
s− r + 1

S(B2)− |B2|

)
·

(
S(B1)

B1

)
·

(
S(B2)

B2

)
,

where |B2| refers to the cardinality of B2.

The proof for this identity is postponed to Section 7.5, in order not
to distract our main rhythm. In the next section, we provide the proof of
Theorem 7.1 using the above identity.

7.3 Proof for the value of sun-like tree

• Base case: We prove by induction on k. When k = 0, since it is
proper and all weights of the edges are positive, we know that in
this case the tree has no edge. By Theorem 6.1, we know that it has
value 1, which coincides with the wanted formula since 0! = 1.

• Proof idea for the general case — apply Algorithm 2: When
k ≥ 1, by Remark 3.8 and Algorithm 2, we know that the absolute
vaue of T equals to the sum of the values of balanced loaded trees
obtained in the output of Algorithm 2, when applied to T with a mul-
tiple edge and a proper quadruple. This indicates our proof idea: we
choose a multiple edge and a proper quadruple, then consider what
balanced loaded trees can be generated after the vertex-splitting pro-
cess. Since in this process, one new weight-zero edge is generated
and an old edge’s weight is reduced by one, hence the edge weight
sum, or equivalently the vertex weight sum, is reduced by one. For
any tree in the output, we can cut-off the zero-weighted edge gen-
erated in the vertex-splitting process. Then for the obtained two
loaded trees, we can apply the induction hypothesis.

• Get prepared for the input data: We choose edge e1 to reduce.
In order to choose a proper quadruple, we should first figure out how
many labels does the middle vertex v have. By Definition 2.1 third
condition, we have k = deg(v) + |h(v)| − 3. Clearly deg(v) = r and
we also have k =

∑r
i=1mi ≥ r. Hence

|h(v)| = k − deg(v) + 3 = k − r + 3 ≥ 3.
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Hence v has at least three labels, denote by i, j two of them. Since
vertex v1 has degree one and weight zero, it is not hard to reason
that it has two labels, denote them by k, l. We see that {i, j, k, l} is
a proper quadruple set for the multiple edge e1. And obviously we
can only split vertex v, since v1 has value zero. We will use as input
these data for Algorithm 2.

• Arranging the labels — part one: Suppose that the statement
is true for all cases when the middle vertex has weight less or equal
to k− 1, where k ≥ 1, now let us consider the case when the middle
vertex has weight k. Let T1 = (V1, E1, h1,m1) be any loaded tree in
the output. We split vertex v into v′ and v′′, denote by e′1 the edge
{v′, v′′}. By Step 5. of vertex-splitting, we know that i, j ∈ h1(v′).
Hence, we have the freedom on the arrangements of all other labels
of v to be the labels of either v′ or v′′. How many choices do we
have? The answer will be revealed a bit later.

• Arranging the branches: Also, we have the freedom for arranging
the branches. Denote byB1 the set of branches for v′′ andB2 for that
of v′. Denote by x1, · · · , xr the branches corresponding to e1, · · · , er,
respectively. Let B := {x1, · · · , xr}, we see that B = B1 ∪ B2. By
Step 6. of vertex-splitting, we know that x1 ∈ B1, since this branch
contains labels k and l. For each bipartition of B into B1 and B2

such that x1 ∈ B1, we need to consider the distribution of labels so
that the obtained tree is balanced. For this, we need to introduce
several notations, so as to express the arrangements of branches.

• A formal model for the arrangements of branches: Define a
function g : B → {m1 − 1,m2, · · · ,mr} by x1 7→ m1 − 1, xi 7→ mi

for 2 ≤ i ≤ r. Define S(A) :=
∑

x∈A g(x) and(
S(A)

A

)
:=

S(A)!∏
x∈A (g(x)!)

.

Let B1 be any arrangement of branches for vertex v′′. Then B2 =
B \B1.

• Balancing condition considered: Since we require loaded tree T1

to be balanced, it is also balanced with respect to edge e′1. After we
cut-off the edge e′1, the tree containing v′ should be proper, donote
it by T ′1; so does the tree containing v′′, denote it by T ′′1 — the
weight identity should hold for both trees. From this, we obtain
that the weight of v′ in T ′1 is S(B2) and that the weight of v′′ in
T ′′1 is S(B1). Since the edge-cutting operation does not change the
weight of vertex, we know that w1(v′) = S(B2) and w1(v′′) = S(B1).
And obviously, degree of v′ is |B2|+ 1, while that of v′′ is |B1|+ 1,
since we need to count edge e′1 once also for their degree, respectively.

• Arranging the labels — part two:

Now we can figure our how many labels should we distribute to v′.
In T1:

w1(v′) = deg(v′) + |h1(v′)| − 3.
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Therefore, we have:

|h1(v′)| = w1(v′)− deg(v′) + 3

= S(B2)− (|B2|+ 1) + 3

= S(B2)− |B2|+ 2

However, we already know that i, j ∈ h1(v′). Therefore, we should
distribute S(B2)− |B2| many labels of v to vertex v′, in the vertex-
splitting process. Then naturally the remaining labels went to the
labeling set of vertex v′′.

• The induction step: Then we cut off the single edge e′1 in T1,
obtaining two smaller proper trees T ′1 and T ′′1 , since T1 is balanced.
By Remark 4.5, we have w1(v′) + w1(v′′) = w(v) − 1. Hence 0 ≤
w1(v′) < w(v) = k and 0 ≤ w1(v′′) < w(v) = k. Therefore, we can
use the induction hypothesis on T ′1 and T ′′1 if m1 − 1 6= 0.

• Special case for the induction step: When m1 − 1 = 0, we can
cut off edge e1 in T ′′1 , then apply the induction hypothesis for the
same weight for vertex v′′ — since edge-cutting does not influence
the weights of the two adjacent vertices of the cut-off edge. After
this edge-cutting, we obtain a single vertex with three labels (the
two of which are k and l) — this loaded tree has value one. Then
by the edge-cutting lemma (Proposition 5.10), we see that the value
of T ′′1 equals to the value of the tree containing v′′ after cutting off
e1. Then we can use the induction hypothesis on this smaller tree.
However, since (

S

s1, · · · , sp

)
=

(
S

0, s1, · · · , sp

)

for S =
∑p

i=1 si and si ∈ N+, we see that our induction hypothesis
can also apply in this case — the value of T ′′1 is not influenced by
whether m1 − 1 is zero or not.

• Express the value of each loaded tree in the output: For
each given B1, among all the k− r+ 3 labels of v, i, j are doomed to
belong to v′. We should choose S(B2)−|B2| many labels for v′, from
k − r + 1 many labels of v′. Then by the edge-cutting lemma, we
know that for this arrangement, the value of the obtained balanced
proper loaded tree is the product of the values of two smaller trees,
after cutting off the edge e′1 — which is exactly

(
S(B2)
B2

)
·
(
S(B1)
B1

)
.

• Summing over these values: That is to say, whenever the ar-
rangement of the branches is fixed, because of the balancing con-
dition requirement, the label distribution is also fixed. There are(

k−r+1
S(B2)−|B2|

)
many distributions of labels, up to the permutations of

labels. Since permutation or renaming the labels does not influence
the value of the loaded tree, we know that for any two such permu-
tations, the two trees have the same value:

(
S(B2)
B2

)
·
(
S(B1)
B1

)
— the

product of the values of the two smaller trees. Summing over the
different arrangements of the branches, we obtain that the sum of
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the values of all the trees in the output is precisely:

∑
(B1,B2)∈B

(
k − r + 1

S(B2)− |B2|

)
·

(
S(B1)

B1

)
·

(
S(B2)

B2

)
.

• Show-time for the identity: Hence the only thing that is needed
for our proof is the following identity:

∑
(B1,B2)∈B

(
k − r + 1

S(B2)− |B2|

)
·

(
S(B1)

B1

)
·

(
S(B2)

B2

)
=

(
k

m1, · · · ,mr

)
.

With Theorem 7.2, we conclude the proof.

7.4 Equivalent characterization

In the last section, we see that we can prove Theorem 7.1 using Theo-
rem 7.2. In this section, we show that we can also prove the identity
given that Theorem 7.1 holds.

Let us reconsider the proof steps in Section 7.3. All the steps until
the last do not depend on the identity, therefore we can still use those
analysis for the proof in this section. We keep using the notation from last
section, suppose that Theorem 7.1 holds. Then we know that if we apply
Algorithm 2 to T with multiple edge e1 and corresponding quadruple set
{i, j, k, l} same as in the last section, the sum of the values of output
loaded trees can be expressed as:

∑
(B1,B2)∈B

(
k − r + 1

S(B2)− |B2|

)
·

(
S(B1)

B1

)
·

(
S(B2)

B2

)
.

Correctness of Algorithm 2 tells us that the above sum equals to(
k

m1,··· ,mr

)
. That is to say, we have(
k

m1,m2, · · · ,mr

)
=

∑
(B1,B2)∈B

(
k − r + 1

S(B2)− |B2|

)
·

(
S(B1)

B1

)
·

(
S(B2)

B2

)
.

Hence, Theorem 7.1 is an equivalent characterization of the identity.
However, in order to show their equivalence, Algorithm 2, or the vertex-
splitting process plays the essential role. We believe that the identity
indicates some complicated structural information of the vertex-splitting
process, in an algebraic way. In the next section, we prove this identity.

7.5 Proof of the identity

Continuing with the notations in Section 7.2, we give a combinatorics
proof for Theorem 7.2 in the sequel — which then also leads to the cor-
rectness of both Theorem 7.2 and Theorem 7.1.

Let us first recall the notations, note that we slightly modify the no-
tations, so that they serve well for our proof — namely we add an index
r for many of them, indicating that we are considering r many sums for
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the multinomial coefficient. We will see later on that this index is helpful.
We will also add some comments on why these notations were used in the
identity, to show some original idea behind.

• m1,m2, · · · ,mr: r-many positive-integer parameters.

• sr :=
∑r

i=1mi.

• Xr := {x1, x2, · · · , xr}: a set of r-many indeterminates. This set is
introduced so that we can consider all the bipartitions of the values
{m1−1,m2, · · · ,mr}. In this way, we are able to formally go through
all combinations.

• Tr := {B | B ⊂ Xr, x1 ∈ B}. The elements in Tr indicates one
part of the bipartition and we always put x1 in it, so as to avoid
repetition.

• Br := {(B1, B2) | B1 ∈ Tr, B2 = Xr \ B1}. This set is exactly the
collection of all the bipartition of Xr.

• gr : Xr → {m1 − 1,m2, · · · ,mr}, x1 7→ m1 − 1, xi 7→ mi for i 6= 1.
This function is introduced for the sake of the next two notations,
mainly because the value for m1 is reduced by one.

• S(B) :=
∑

x∈B gr(x), for B ⊂ Xr. This is just the normal sum of mi

for 1 ≤ i ≤ r, except that m1 is replaced by m1 − 1 as a summand
— this is also why we need the function gr.

• (
S(B)

B

)
:=

S(B)!∏
x∈B (gr(x)!)

,

for B ⊂ Xr. Note that this notation is just a generalized definition
of multinomial coefficient.

Besides these notations from earlier, we still need several more, so as to
present our proof properly.

• Define

Sr := {(P1, P2, · · · , Pr) | ∪r
i=1Pi = {1, 2, · · · , sr}, |Pi| = mi}.

With this set, we collect all partitions of the set {1, 2, · · · , sr} into
r parts such that the i-th part has cardinality mi.

• Let Lr := {2, 3, · · · , r}. These elements are special elements in
{1, 2, · · · , sr}. Later on we will see why or how they are special,
in the definition of function ϕr. The next two notations are also
there to serve the definition of function ϕr.

• For A ⊂ {1, 2, · · · , r}, define PA := ∪i∈APi. PA is the union of the
part which has index in A.

• For A ⊂ {1, 2, · · · , r}, define XA := {xi | i ∈ A}. XA collect the
indeterminate that has index in A.

Let us see an example, so that we do not get lost among the ocean of
notations.

Example 7.3. Given r = 3, the following facts are already clear:
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• X3 = {x1, x2, x3}.
• T3 = {{x1}, {x1, x2}, {x1, x3}, {x1, x2, x3}}. This is the collection of

one part of the bipartition of X3 that contains x1.

• B3 = {({x1}, {x2, x3}), ({x1, x2}, {x3}), ({x1, x3}, {x2}), ({x1, x2,
x3}, ∅)}. This is the collection of all bipartitions of X3.

• L3 = {2, 3}. The elements 2 and 3 are special.

• Take A = {1, 2} ⊂ {1, 2, 3} for instance, then XA = {x1, x2} — the
collection of indeterminate with index in A.

However, in order to figure out those remaining notations, we should know
the values of mi for 1 ≤ i ≤ r. Let m1 = 2, m2 = 2 and m3 = 1 for
instance, then we also obtain the following facts:

• s3 =
∑3

i=1mi = 2+2+1 = 5. Now we know that 2, 3 are considered
special among 1, 2, 3, 4, 5.

• g3 : X3 → {1, 2} is defined as g3(x1) = m1 − 1 = 2 − 1 = 1,
g3(x2) = m2 = 2 and g3(x3) = m3 = 1.

• Take B = {x2, x3} ⊂ X3 for instance, then

S(B) = g3(x2) + g3(x3) = m2 +m3 = 2 + 1 = 3.

Note that in this case S(B) is just the sum of m2 and m3, since
x1 /∈ B.

• Take B = {x2, x3} ⊂ X3 for instance, then(
S(B)

B

)
=

S(B)!∏
x∈B (g3(x)!)

=
3!

g3(x2) · g3(x3)
=

6

m2 ·m3
=

6

2 · 1 = 3.

Note that in this case,
(
S(B)
B

)
is just the normal multinomial co-

effienct
(
m2+m3
m2,m3

)
, since x1 /∈ B.

• S3 is the set of all partitions (P1, P2, P3) of the set {1, 2, 3, 4, 5} into
three parts P1, P2, P3 such that |P1| = m1 = 2, |P2| = m2 = 2 and
|P3| = m3 = 1.

• Take A = {1, 2} ⊂ {1, 2, 3} for instance, then PA = P1∪P2 for some
(P1, P2, P3) ∈ S3.

We leave it to the readers to check that the identity holds in this example,
which may help to have a taste of the identity.

Now we define a function ϕr : Sr → Tr, (P1, · · · , Pr) 7→ B by Algo-
rithm 3. We will proof that it is indeed an algorithm later on.

For a better understanding, let us see how is this function defined in
our running example.

Example 7.4. ϕ3 : S3 → T3, (P1, P2, P3) 7→ B ∈ T3. Let us go through
Algorithm 3 with the input (P1, P2, P3) = ({1, 3}, {4, 5}, {2}).

1. Input: (P1, P2, P3) = ({1, 3}, {4, 5}, {2}).
2. Initial values: B = {x1}, A0 = {1}, i = 1.
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Algorithm 3: function ϕr

input : (P1, · · · , Pr) ∈ Sr.
output: B ∈ Tr.
B ← {x1};
A0 ← {1};
i← 1;
for i = 1 do

Ai := Lr ∩ PAi−1
;

if Ai = ∅ then
return B

end if
else

B = B ∪XAi
;

i = i+ 1
end if

end for

3. Recall that L3 = {2, 3}. First loop:

A1 = L3 ∩ PA0 = L3 ∩ P1 = {2, 3} ∩ {1, 3} = {3} 6= ∅.

Hence
B = {x1} ∪XA1 = {x1} ∪ {x3} = {x1, x3},

i = 1 + 1 = 2.

4. Second loop:

A2 = L3 ∩ PA1 = {2, 3} ∩ P3 = {2, 3} ∩ {2} = {2} 6= ∅.

Hence
B = {x1, x3} ∪ {x2} = {x1, x2, x3},

i = 2 + 1 = 3.

5. Third loop:

A3 = {2, 3} ∩ PA2 = {2, 3} ∩ P2 = {2, 3} ∩ {4, 5} = ∅.

Return B = {x1, x2, x3}.
6. Output: B = {x1, x2, x3}.

Proposition 7.5. In the above defined process (Algorithm 3), Ai∩Aj = ∅
for all i 6= j.

Proof. When i = 0, j 6= 0, we have A0 ∩Aj = ∅ since Aj ⊂ Lr, A0 = {1}
and 1 /∈ Lr. Suppose Ai ∩ Aj 6= ∅ when i, j > 0. W.l.o.g., assume i < j,
since Ai := Lr ∩ PAi−1 , we obtain that Lr ∩ PAi−1 ∩ PAj−1 6= ∅, hence
Ai−1∩Aj−1 6= ∅. Repeating the similar process, after finite steps we reach
a situation where A0 ∩ Aj−i 6= ∅. This is a contradiction and we see this
from the beginning part of this proof.
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Remark 7.6. Since |Lr| <∞, Ai ⊂ Lr for all 1 ≤ i ≤ r, and Ai∩Aj = ∅
for all i 6= j, there must exist i ∈ N+ such that Ai = ∅. Therefore,
this process terminates. And it is well-defined — once the input is given,
the output is uniquely determined via the process and clearly B ∈ Tr —
thence it is indeed an algorithm.

Proposition 7.7. Function ϕr : Sr → Tr is a surjection.

Proof. For any B ∈ Tr, define (P1, · · · , Pr) as follows:

• Define Q := {i | i ∈ Lr, xi ∈ B}. Since |Q| < ∞, we can list its
elements as: q1, · · · , qt, assuming that |Q| = t.

• Let P1 := {q1}, Pqj = {qj+1} for 1 ≤ j ≤ t− 1.

• Now, we already defined all Pi when i ∈ Lr and xi ∈ B except for
Pt, and we have defined P1 as well.

• Let Pi = {i} if i ∈ Lr but xi /∈ B. Let Pt := {1, · · · , sr} \ (∪i 6=tPi).

It is clear that 1 ∈ Pt, hence all parts defined above are non-empty. Also,
it is not hard to see that they are indeed a partition of {1, · · · , sr} into r
parts. Hence the input is well-defined. Furthermore, one can check that
ϕr(P1, · · · , Pr) = B.

We see that ϕr is a well-defined surjective function. Then, using a
basic property of any mapping, we obtain

∪B∈Trϕ
−1
r (B) = Sr

and
|Sr| =

∑
B∈Tr

|ϕ−1
r (B)| =

∑
(B,X\B)∈Br

|ϕ−1
r (B)|.

In order to prove the identity, we only need to show one thing and it is
formulated as the following lemma.

Lemma 7.8. For any B1 ∈ Tr, define B2 := Xr \B1, then

|{x ∈ Sr | ϕr(x) = B1}| =

(
sr − r + 1

S(B2)− |B2|

)(
S(B1)

B1

)(
S(B2)

B2

)
.

In order to prove the above lemma, we need to introduce the following
proposition.

Proposition 7.9. If ϕr(P1, · · · , Pr) = B1 for some (P1, · · · , Pr) ∈ Sr

and B1 ∈ Tr; denote B2 := Xr \ B1. Then PFB1
∩ Lr = FB1 \ {1},

where FB := {i | xi ∈ B}. Consequently, we have PFB2
∩ Lr = FB2 and

|PFB2
∩ Lr| = |B2|.

Proof. From Remark 7.6 we know that there exists k ∈ N+ such that
Ak = ∅. Let t := k − 1, we claim that ∪t

i=0Ai = FB1 . It is clear
from Algorithm 3 that B1 = ∪t

i=0XAi , which is equivalent to FB1 =
∪t

i=0Ai. Hence we know that FB1 \ {1} = ∪t
i=1Ai. We only need to show

PFB1
∩ Lr = ∪t

i=1Ai.

For any m ∈ ∪t
i=1Ai, there exists 1 ≤ j ≤ t such that m ∈ Aj . From

Algorithm 3 we know that Aj := Lr ∩ PAj−1 . Hence m ∈ Lr. And
XAj−1 ⊂ B1 is equivalent to Aj−1 ⊂ FB1 , which implies PAj−1 ⊂ PFB1

.
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Hence m ∈ PAj−1 ⊂ PFB1
. We obtain that m ∈ PFB1

∩ Lr. For any

m ∈ PFB1
∩ Lr, equivalently we have m ∈ ∪t

i=0Ai ∩ Lr = ∪t
i=1Ai ∩ Lr.

Since Ai ⊂ Lr for any i 6= 1. We obtain that m ∈ ∪t
i=1Ai.

Since PFB1
∪ PFB2

= {1, · · · , sr} and Lr ⊂ {1, · · · , sr}, we know that
(PFB1

∩ Lr) ∪ (PFB1
∩ Lr) = Lr. Therefore

PFB2
∩ Lr = Lr \ (PFB1

∩ Lr) = Lr \ (FB1 \ {1}) = FB2 .

Then, |PFB2
∩ Lr| = |B2| follows naturally, since |FB2 | = |B2|.

Given B1 ∈ Tr, by Proposition 7.9, we know that PFB1
∩ Lr =

FB1 \ {1}, hence the special elements in PFB1
are fixed — so do the

special elements in PFB2
since PFB2

∩ Lr = FB2 , where B2 := Xr \ B1.
Let Kr := {1, · · · , sr}. Also, it is evident that PFB1

∪ PFB2
= Kr. In-

spired by Proposition 7.9, in order to figure out what configurations in Sr

have value B1 under ϕr for some given B1 ∈ Tr, we view the problem in
the following way.

Given B1 ∈ Tr, we know that the special elements in PFB1
are fixed.

We only need to choose a proper amount of elements in Kr \ Lr and put
them into PFB1

. We call the elements in Kr \Lr non-special. We need to
choose |PFB1

| − (|B1| − 1) = S(B1)− |B1|+ 1 many elements from

|Kr \ Lr| = sr − |Lr| = sr − r + 1

many elements, and put them in the group of PFB1
. There are(

sr − r + 1

S(B1)− |B1|+ 1

)

many ways to do so. Since (S(B1)−|B1|+1)+(S(B2)−|B2|) = (S(B1)+
S(B2))− (|B1|+ |B2|) + 1 = sr − r + 1, we can also say that there are(

sr − r + 1

S(B2)− |B2|

)
many ways to arrange the non-special elements. Considering the defini-
tion of ϕr, we see that no matter how we arrange the elements in PFB2

,

the value of ϕr is not influenced. Therefore, there are
(
S(B2)
B2

)
many con-

figurations for the elements in PFB2
. As for the arrangements in PFB1

,
they need to obey certain rules in order to guarantee that the value of ϕr

is B1.
From the analysis above, the first and third coefficients in the equation

in Lemma 7.8 are both explained well in a combinatorics way. In order to
prove this lemma, we only need to prove that given B1 ∈ Tr, the number
of configurations for the elements in PFB1

is exactly
(
S(B1)
B1

)
. Recalling

the definition of
(
S(B1)
B1

)
, one can see that it is equivalent to proving the

following proposition.

Proposition 7.10. fk(m1,m2, · · · ,mk) =
(

sk−1
m1−1,m2,··· ,mk

)
, k ∈ N+,

mi ∈ N+, where fk : (N+)k → N,

(m1,m2, · · · ,mk) 7→ |{(P1, P2, · · · , Pk) ∈ Sk | ϕk(P1, P2, · · · , Pk) = Xk}|.
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Before we approach the proof, we need to introduce a known identity
on multinomial coefficients and we will need it in later.

Lemma 7.11. For all n,m, k1, · · · , km ∈ N with k1 + · · ·+km = n, n ≥ 1
and m ≥ 2, we have(

n

k1, · · · , km

)
=

m∑
i=1

(
n− 1

k1, · · · , ki − 1, · · · , km

)
.

Proof of Proposition 7.10. Prove by induction. When k = 1, L1 = ∅, for
any m1 ∈ N+, we have

|{(P1) ∈ S1 | ϕ1((P1)) = {x1}}| = 1 =

(
s1 − 1

m1 − 1

)

since s1 = m1 in this case. Assume that the proposition holds whenever
the number of parameters is less or equal to k − 1, where k ≥ 2.

When the number of parameters is k, we start the inner induction
on sk. Obviously sk ≥ k. When sk = k, we know that

m1 = m2 = · · · = mk = 1.

In the configurations that is mapped to Xk under ϕk, we can choose any
element in Lk for P1, say i1; there are |Lk| = k − 1 many possibilities.
Then we can choose an element in Lk \ {i1} for Pi1 , and so on. Until we
choose the element ik−1 ∈ Lk for Pik−2 . Then we already arranged k − 2
many parts, then the only remaining part Pik−1 can only be {1}. In total
there are (k − 1)! many configurations. Hence we have

fk(m1,m2, · · · ,mk) = (k − 1)! =

(
k

1, · · · , 1

)
=

(
1

0, 1, · · · , 1

)
,

which equals to (
sk

m1 − 1,m2, · · · ,mk

)
.

Assume that the proposition holds whenever the sum of these param-
eters is less or equal to sk − 1, where we can assume sk − 1 ≥ k, i.e.,
sk ≥ k+1. When the sum of these parameters equals sk, left hand side of
the proposition is fk(m1,m2, · · · ,mk), by definition we want to count the
number of configuration that is mapped to Xk under ϕk. We focus on the
distribution of the element 1 ∈ Kk. Since 1 /∈ Lk, it does not influence
the value of ϕk on any configuration. So in the case when mi ≥ 2 for all
1 ≤ i ≤ k, there are k-many cases for the distribution of 1, i.e., it can
belong to any part Pi for 1 ≤ i ≤ k. Hence in this case we obtain the
following identity:

fk(m1,m2, · · · ,mk) = fk(m1 − 1,m2, · · · ,mk) + fk(m1,m2 − 1, · · · ,mk)

+ · · ·+ fk(m1,m2, · · · ,mk − 1).
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Now we can apply the induction hypothesis on the sum of the parameters.
Then we obtain the following equation:

fk(m1,m2, · · · ,mk) =

(
sk − 2

m1 − 2,m2, · · · ,mk

)

+

(
sk − 2

m1 − 1,m2 − 1, · · · ,mk

)
+ · · ·+

(
sk − 2

m1 − 1,m2, · · · ,mk − 1

)
.

Then by Lemma 7.11, we obtain

fk(m1,m2, · · · ,mk) =

(
sk − 1

m1 − 1,m2, · · · ,mk

)
.

If mi = 1 for some i 6= 1. When we put 1 into Pi, the problem can be
reduced to counting the number of corresponding configurations of Pj for
j 6= i, since 1 /∈ Lk. Therefore, in this case, considering the distribution
of the element 1 gives us the following identity:

fk(m1, · · · ,mk) = fk(m1 − 1, · · · ,mk)+

· · ·+ fk(m1, · · · ,mi−1 − 1,mi, · · · ,mk)

+ fk−1(m1, · · · ,mi−1,mi+1, · · · ,mk)

+ fk(m1, · · · ,mi,mi+1 − 1, · · · ,mk)+

· · ·+ fk(m1, · · · ,mi−1,mi,mi+1, · · · ,mk − 1).

By induction hypothesis on k we obtain

fk−1(m1, · · · ,mi−1,mi+1, · · · ,mk)

=

(
(sk −mi)− 1

m1 − 1, · · · ,mi−1,mi+1, · · · ,mk

)

=

(
(sk − 1)− 1

m1 − 1, · · · ,mi−1,mi+1, · · · ,mk

)

=

(
sk − 2

m1 − 1, · · · ,mi−1, 0,mi+1, · · · ,mk

)

=

(
sk − 2

m1 − 1, · · · ,mi−1,mi − 1,mi+1, · · · ,mk

)
.

Substituting back this term, we get the same recurrence for fk(m1, · · · ,mk)
as in the case where mi ≥ 2 for 1 ≤ i ≤ k. By Lemma 7.11 we as well
obtain

fk(m1,m2, · · · ,mk) =

(
sk − 1

m1 − 1,m2, · · · ,mk

)
.

With the same idea, it is not hard to prove that the statement holds
however many parameters except for m1 equals one.

If m1 = 1, from the definition of function fk and ϕk, we know that
1 /∈ P1. Hence considering the distribution of the element 1, the recurrence
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formula becomes

fr(m1,m2, · · · ,mr) =fr(m1,m2 − 1, · · · ,mr)+

· · ·+ fr(m1,m2, · · · ,mr − 1).

Then by induction hypothesis on the sum of the parameters, we obtain

fk(m1,m2, · · · ,mk)

=

(
sk − 2

m1 − 1,m2 − 1, · · · ,mk

)
+ · · ·+

(
sk − 2

m1 − 1,m2, · · · ,mk − 1

)

=

(
sk − 2

0,m2 − 1, · · · ,mk

)
+ · · ·+

(
sk − 2

0,m2, · · · ,mk − 1

)

=

(
sk − 2

m2 − 1, · · · ,mk

)
+ · · ·+

(
sk − 2

m2, · · · ,mk − 1

)
.

Now we can apply Lemma 7.11 and then obtain

fk(m1,m2, · · · ,mk) =

(
sk − 1

m2, · · · ,mk

)

=

(
sk − 1

0,m2, · · · ,mk

)

=

(
sk − 1

m1 − 1,m2, · · · ,mk

)
.

By induction, the proposition holds.

With this, we finished proving Theorem 7.2.

8 Conclusion

In this paper, we introduce an equivalent characterization of the algebraic
reduction algorithm for computing the integral value of monomials in
the Chow group of zero cycles in the moduli space of stable curves, in a
graphical view. This characterization naturally can serve as an algorithm,
which is also more efficient in many cases, compare to the algebraic one.
Furthermore, making use of this tree-representation, we introduce the
balancing condition, which brings much more efficiency to the algorithm
and leads to an optimized version of the calculus.

Then, we introduce the application of our algorithm on a specific type
of monomials. With the help of our main result, the equivalence between
an identity on multinomial coefficient and the value of that specific type
of monomials is shown, which further reveals the potential strength of
our result. Also, the identity indicates some structrual information of the
tree-based algorithm, in an algebraic way. In the end, we give the proof
of that identity, which completes the story.
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