
Simple differentially definable functions

Antonio Jiménez-Pastor
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Antonio Jiménez-Pastor
Johannes Kepler University Linz,

Research Institute for Symbolic Computation.
ajpastor@risc.uni-linz.ac.at

February 9, 2021

Holonomic functions satisfy linear differential equations with polynomial
coefficients. The solutions to this type of equations may have singularities
determined by the zeros of their leading coefficient. There are algorithms to
desingularize the equations, i.e., remove singularities from the equation that
do not appear in its solutions. However, classical computations of closure
properties (such as addition, multiplication, etc.) with holonomic functions
return equations with extra zeros in the leading coefficient. In this paper we
present theory and algorithms based on linear algebra to control the leading
coefficients when computing these closure properties and we also extend this
theory to the more general class of differentially definable functions.

1 Introduction

D-finite functions, i.e., formal power series that satisfy a linear differential equation
with polynomial coefficients, have been widely studied in the last decades. Using these
differential equations and some initial conditions we can get a finite representation for
these objects. Many algorithms have been developed to work with this representation
of D-finite functions [13, 5, 16], and can be used to prove identities for special functions
or sequences in enumerative combinatorics [12, 15].

There are also results that characterize the singularities that a solution to a linear
differential equation can have. These points are called singularities of the differential
operators. It is known that the singularities of a differential operator are the singularities
of its coefficients and the zeros of its leading coefficient. For D-finite operators, since
all coefficients are polynomials, the singularities are just the (finitely many) zeros of the
leading coefficients.

∗This research was partially funded by the strategic program “Innovatives OO–2010 plus” and the
Austrian Science Fund (FWF) under the grants SFB F50-07.
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Sometimes a differential operator has some singularities that none of its solutions has
as a singularity. These singularities are called apparent. The problem of finding an
equivalent operator (i.e., an operator that contains all the solutions from the original
operator) with no apparent singularities is called desingularization [1, 4].

There are algorithms for computing the desingularization of Ore operators [6] (a gen-
eralization of differential operators) and differential systems [5]. However, the computa-
tions of closure properties over operators without apparent singularities do not preserve
this property, meaning that we need to apply again the desingularization process in order
to keep the resulting differential operator without apparent singularities.

In this paper we present the concept of S-simple D-finite functions. These are func-
tions that satisfy a linear differential equation with a leading coefficient from a fixed set
S. We prove that this subclass of D-finite functions is a differential ring in a constructive
way, leading to algorithms that compute operations (such as addition, multiplication,
etc.) preserving the leading coefficient in the same set. Thus, we can control the zero
set of the leading coefficient when computing closure properties of D-finite functions and
compute directly operators without new apparent singularities.

We also extend this theory to the general case of differentially definable functions [9].
In particular, we extend the result for Dn-finite functions. These functions are defined re-
cursively as formal power series that satisfy linear differential equations with Dn−1-finite
coefficients. Using the results of this paper, we can build functions whose singulari-
ties are known and then, compute several operations preserving the singularities on the
differential operator.

The algorithms described in this paper are implemented in the open source computer
algebra system SageMath [17] and are included within the package dd functions [8].
This package is a tool for computing with D-finite, DD-finite and more general classes
of differentially definable functions.

In Section 2 we present the main theoretical results of the paper. Then in Section 3 we
describe several cases of D-finite functions with special leading coefficients. In Section 4
we show how to actually compute the closure properties described in the previous section
in the particular case of D-finite functions and in Section 5 we present the extension of
these results to the general case of Dn-finite functions.

2 Theoretical results

In this section we prove that we can control the nature of the leading coefficient of the
differential equations with which we are computing. In order to present this theory, we
first recall some classical definitions:

Definition 1 ([2, Chapter 6]). Let R be a ring and M an R-module. We say that R is
Noetherian if all ideals of R are finitely generated. We say that M is Noetherian if all
R-submodules are finitely generated.

In this sense, R is Noetherian as a ring if it is Noetherian as an R-module.
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Noetherian rings and modules have been widely studied and we know plenty of opera-
tions that preserve this property. For example, if M and N are Noetherian, then M ⊕N
and M ⊗N are also Noetherian modules. We will use extensively these properties and
all can be found in [2, Chapter 6].

Definition 2 ([3, Chapter 3]). Let R be a ring. We say that an additive map ∂ : R→ R
is a derivation if it satisfies the Leibniz rule, i.e., for all r, s ∈ R, ∂(rs) = ∂(r)s+ r∂(s).
We say that (R, ∂) is a differential ring.

If E ⊃ R is a ring extension and ∂̃ : E → E is a derivation such that ∂̃|R ≡ ∂, we say
that (E, ∂̃) is a differential extension of (R, ∂).

We simply denote the extended derivation by ∂ again, i.e., (E, ∂) is a differential
extension of (R, ∂). We also denote the set of linear differential operators over R by
R[∂]. Its elements C = r0 + . . .+ rd∂

d act over any differential extension E by

C · e = r0e+ . . .+ rd∂
d(e).

Definition 3 ([2, Chapter 3]). Let R be a ring and S ⊂ R. We say that S is multiplica-
tively closed if 1 ∈ S and for all s1, s2 ∈ S we have that (s1s2) ∈ S.

Given a multiplicatively closed set S, we define the localization of R w.r.t. S as the
set R × S with the equivalence relation (r, s) ∼ (r′, s′) if and only if there is t ∈ S such
that t(rs′ − r′s) = 0. We denote the equivalence class of (r, s) with r/s. We denote this
ring by RS .

The localization ring is usually studied when we consider prime or maximal ideals of
a ring and also when we build the field of fractions of an integral domain. Moreover, if
R is Noetherian, then RS is also Noetherian and if R is an integral domain, then RS is
a differential extension of R.

In [9], the concept of differentially definable elements was given. Namely, if (R, ∂)
is a differential integral domain and E a differential extension, we say that f ∈ E is
differentially definable over R if there is A ∈ R[∂] such that A · f = 0. We denote the
set of these elements by DE(R).

This definition leads to the set of D-finite (or holonomic) functions when taking R =
K[x] and E = K[[x]]. Here, we proposed a slightly different variation of it, where we put
some emphasis on the leading coefficient of the differential equation:

Definition 4. Let (R, ∂) be a differential integral domain, E ⊃ R a differential extension
and S ⊂ R a multiplicatively closed set. We say that f ∈ E is S-simple differentially
definable over R if there is A ∈ R[∂] with lc(A) ∈ S such that A · f = 0.

We denote the set of all these elements by DE(R,S).

When we consider S = R \ {0} this definition yields the usual differentially definable
elements over R. It is known that differentially definable elements can be characterized
with finite dimensional vector spaces [11]. A similar characterization can be proven for
the S-simple differentially definable elements by using finitely generated RS-modules
instead.
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Theorem 5. Let (R, ∂) be a differential integral domain, E ⊃ R a differential extension
and S ⊂ R a multiplicatively closed set. For f ∈ E, the following are equivalent:

1. f ∈ DE(R,S).

2. ∃g ∈ DE(R,S) and A ∈ R[∂] with lc(A) ∈ S : A · f = g.

3. The RS-module 〈∂n(f) : n ∈ N〉RS
is finitely generated.

Proof. (1)⇒ (2): taking g = 0 ∈ DE(R,S) proves it.
(2) ⇒ (1): let B ∈ R[∂] with lc(B) ∈ S such that B · g = 0. Then we have that

(BA) · f = 0 and lc(BA) = lc(B) lc(A) ∈ S.
(1) ⇒ (3): let A ∈ R[∂] with lc(A) ∈ S be such that A · f = 0. Assume that

d = deg∂(A). Then it is clear that, for all k ∈ N we have that Ak = (∂kA) has
the same leading coefficient (in S) and order d + k. We can show by induction that
∂d+k(f) ∈ 〈f, . . . , ∂d−1(f)〉RS

, so the RS-module generated by f and its derivatives is
finitely generated.

(3) ⇒ (1): let the module 〈f, ∂(f), . . .〉RS
to be finitely generated. There is N ∈ N

such that ∂n(f) ∈ 〈f, . . . , ∂N (f)〉 for all n ∈ N, namely, we take N as the maximal
derivative appearing in a set of generators. In particular, we have that, for n = N + 1:

∂n(f) =
r0
s0
f + . . .+

rN
sN

∂N (f), (6)

so taking s = s0 · · · sN and r̃i = ris/si we have that

A = s∂n − r̃N∂N − . . .− r̃0,

satisfies A ∈ R[∂], lc(A) = s ∈ S and A · f = 0, i.e., f ∈ DE(R,S).

This characterization relates a differential property with linear algebra, more precisely,
with module theory. Moreover, if we add the Noetherianity condition to R, we can prove
the closure properties of addition, multiplication and derivation. Hence, we obtain that
DE(R,S) is a differential extension of R contained in E.

We denote by MRS
(f) the RS-module generated by f and all its derivatives, omitting

RS when the ring R and the set S can be understood from the context.

Theorem 7. Let (R, ∂) be a Noetherian differential integral domain, E ⊃ R a differen-
tial extension and S ⊂ R a multiplicatively closed set. Let f, g ∈ DE(R,S). Then:

• f + g ∈ DE(R,S).

• fg ∈ DE(R,S).

• ∂(f) ∈ DE(R,S).

•
∫
f ∈ DE(R,S).

In particular, DE(R,S) is a differential extension of R contained in E.
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Proof. Using the basic properties of the derivation, we can easily prove the following
inclusions of modules:

M(f + g) ⊂M(f) +M(g), M(fg) ⊂M(f)M(g),

M(∂(f)) ⊂M(f),

where M(f)M(g) is the module generated by the product of elements of M(f) and
M(g).

Since R is Noetherian, RS is also Noetherian and then M(f) and M(g) are Noetherian
modules. This implies that M(f)+M(g) and M(f)M(g) are also Noetherian [2, Chapter
6]. Since M(f + g), M(fg) and M(∂(f)) are submodules of Noetherian modules, then
they are finitely generated, showing that

f + g, fg, ∂(f) ∈ DE(R,S).

For the antiderivative
∫
f , we have a direct formula for the resulting differential equa-

tion since for any operator A ∈ R[∂] such that A · f = 0 we obtain (A∂) ·
(∫
f
)

= 0.

This proof is very similar to the proof of closure properties of differentially defin-
able functions [11, Theorem 4]. However, the Noetherianity condition is necessary to
guarantee that the modules M(f + g),M(fg) and M(∂(f)) are finitely generated.

An important difference to the case of differentially definable functions is that here we
do not have an explicit bound for the order of the resulting differential equation. The
methods that we proposed here are based on an exhaustive search of annihilating oper-
ators increasing one by one the order of search, meaning they will terminate eventually
without any a priori bound.

3 Simple D-finite functions

In this section, we take R = K[x] and E = K[[x]]. For any multiplicatively closed set
S ⊂ K[x], the ring DK[[x]](K[x], S) will be a differential subring of the D-finite functions
and we call them S-simple D-finite functions.

The set S controls the possible singularities of the S-simple D-finite functions:

Lemma 8. Let S ⊂ K[x] be a multiplicatively closed set and f(x) be an S-simple D-finite
function. If α ∈ C is a singularity of f(x), then there is s(x) ∈ S such that s(α) = 0.

Proof. Since f(x) is S-simple, there is a differential operator A ∈ K[x][∂] such that
A · f(x) = 0 and lc(A) ∈ S. If α ∈ C is a singularity of f(x), then lc(A)(α) = 0.

The following sets for S are worth of consideration:

• S = K \ {0}: these functions have no singularities.

• S =
{

(x− α1)
i1 · · · (x− αn)in : ij ∈ N

}
: these functions can only have singulari-

ties on α1, . . . , αn.
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• S = K[x] \ p where p is a prime ideal: these functions avoids singularities on the
zero set of the ideal.

In particular, if f(x), g(x) are two D-finite functions that satisfy linear differential
equations with leading coefficients pf (x), pg(x) ∈ K[x], then we can consider S =
{pf (x)ipg(x)j : i, j ∈ N} and show that any algebraic combination of f(x) and g(x) is
annihilated by an S-simple differential operator.

Example 9 (Adding analytic functions). Let f(x) and g(x) be two D-finite functions
annihilated by the differential operators

A = ∂2x + 1, B = ∂2x − x.

Consider the function h(x) = f(x)+g(x). With classical computations, we get that h(x)
is annihilated by the differential operator

F = (x+ 1)2∂4x − 2(x+ 1)∂3x − (x3 + x2 − x− 3)∂2x−
2(x+ 1)∂x − (x3 + 2x2 + x− 2).

(10)

However, this operator has a non-constant leading coefficient. Applying Theorem 7
with R = K[x] and S = K∗, we know there is an operator with constant leading coefficient
that annihilates h(x).

If we search for it with an ansatz, we need to compute a K[x]-linear combination that
yields h(n)(x) for some n ∈ N. We can express these derivatives in term of the derivatives
of f(x) and g(x) in the following way:

• h(x) = f(x) + g(x).

• h′(x) = f ′(x) + g′(x).

• h′′(x) = −f(x) + xg(x).

• h′′′(x) = −f ′(x) + g(x) + xg′(x).

• h(4)(x) = f(x) + x2g(x) + 2g′(x).

• h(5)(x) = f ′(x) + 4xg(x) + x2g′(x).

For the case n = 4 (which was the original bound for the D-finite computation), the
ansatz is as follows:

h(4)(x)− α3h
′′′(x)− α2h

′′(x)− α1h
′(x)− α0h(x) = 0,

and after substituting the previous equalities, we obtain the following linear system for
(α0, . . . , α3) that has to be solved in K[x]:

1 0 −1 0
0 1 0 −1
1 0 x 1
0 1 0 x



α0

α1

α2

α3

 =


1
0
x2

2

 .
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This equation has a unique solution in K(x) which leads to the equation (10), so there
is no solution where all the αi are polynomials. If we increase the order of the ansatz by
one:

h(5)(x)− α4h
(4)(x)− α3h

′′′(x)− α2h
′′(x)− α1h

′(x)− α0h(x) = 0,

now we obtain the following linear system for α0, . . . , α4:
1 0 −1 0 1
0 1 0 −1 0
1 0 x 1 x2

0 1 0 x 2



α0

α1

α2

α3

α4

 =


0
1

4x
x2

 .

This system has a solution in K[x]:

• α0 = −1
4

(
x6 + x5 − 2x4 − 10x3 − 5x2 + x− 2

)
,

• α1 = −1
2

(
x4 − 2x2 − 8x− 1

)
,

• α2 = −1
4

(
x6 − 3x4 − 8x3 + 3x2 + 8x− 1

)
,

• α3 = −1
2

(
x4 − 2x2 − 8x+ 1

)
,

• α4 = 1
4

(
x5 + x4 − 2x3 − 8x2 − 7x− 1

)
,

which means that h(x) is annihilated by the K-simple differential operator:

4∂5x − (x5 + x4 − 2x3 − 8x2 − 7x− 1)∂4x+
(2x4 − 4x2 − 16x+ 2)∂3x+

(x6 − 3x4 − 8x3 + 3x2 + 8x− 1)∂2x+
(2x4 − 4x2 − 16x− 2)∂x+

(x6 + x5 − 2x4 − 10x3 − 5x2 + x− 2).

Example 11 (Preserving singularities on the equation). Now consider f(x) and g(x)
the D-finite functions annihilated by the differential operators

C = (x+ 1)∂2x + ∂x, D = ∂x − 1,

and h(x) = f(x) + g(x). Using classical computations as D-finite functions, we get that
h(x) is annihilated, respectively, by the differential operators

(x+ 1)(x+ 2)∂3x − (x2 + 2x− 1)∂2x − (x+ 3)∂x.

The leading coefficient vanishes at x = −1 and x = −2, adding one apparent singularity
to the resulting differential operator. Applying Theorem 7, we know there is a differential
operator whose leading coefficient only vanishes at x = −1. In fact, using the ansatz
method above and solving the corresponding system in the polynomial ring K[x] localized
in the set {(x+ 1)n : n ∈ N}, we obtain that

4(x+ 1)∂4x + (x5 + 4x4 + 6x3 + 4x2 − 9x+ 2)∂3x
−(x53x4 + 2x3 − 7x+ 13)∂2x − (x4 + 4x3 + 4x2 + 2x− 7)∂x

annihilates h(x) and, as desired, its leading coefficient only vanishes at x = −1.
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4 Implementation

In this Section we detail how the computations described in Examples 9 and 11 can
be generalized to compute the closure properties of Theorem 7 for any simple D-finite
function. Since some methods depend on the closure property we compute, we indicate
this by an asterisk to be replaced by ”addition”, ”multiplication” or ”derivation” re-
spectively, and by adjusting the input, i.e., providing two differential operators for the
addition and multiplication and just one operator for the derivation.

The idea of the implementation is to use an ansatz method [12] adapted accordingly
to the simple case, namely, solving the systems in the localized ring K[x]S .

We consider h(x) ∈ D(K[x], S) that is either the sum or product of two other functions
f(x), g(x) ∈ D(K[x], S) or the derivative of a function f(x) ∈ D(K[x], S) from which we
know an S-simple annihilating operator. Theorem 7 shows that the module

M(h) = 〈h(m)(x) : n ∈ N〉K[x]S

is included in a finitely generated K[x]S-module M . Let φ1, . . . , φk denote the generators
of M . Hence, we can express all the derivatives of h(x) as a linear combination of these
generators:

h(m)(x) = vm,1φ1 + . . .+ vm,kφk,

where vm,l ∈ K[x]S . The fact that M(h) is finitely generated implies that there is n ∈ N
such that h(n)(x) is a K[x]S-linear combination of the first derivatives of h(x). We can
translate this into a problem in the module M .

Let vT
m = (vm,1, . . . , vm,k) ∈ K[x]kS . We can consider the following inhomogeneous

ansatz system:
(v0| . . . |vn−1)α = vn.

Computing a solution on K[x]S yields an S-simple equation for h(x) since:

h(n)(x)− αn−1h
(n−1)(x)− . . .− α0h(x) = 0,

and we can then clear denominators as we did in (6), obtaining a leading coefficient in
S.

This system may have no solution in K[x]S , as we saw in Example 9 for n = 4. In this
case, we increase the value of n and repeat the process. This method always terminates,
since Theorem 7 guarantees that the module M(h) is finitely generated.

Hence, in order to implement this ansatz method we need:

1. For each operation, an algorithm to compute the vectors vm.

2. A complete solver of linear systems Aα = b in localized rings K[x]S .

Algorithm 1 implements the complete process of getting the differential equation for
h(x).
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Algorithm 1: get equation for *

Input : Equations for the operands (A,B for addition and product and A for
derivation)

Output: Differential equation for the result h(x)
result←No solution;
i← 1;
while result is No solution do

A,b← get system for *(∗, i);
result ← solve system(A,b);
i← i+ 1;

(α0, . . . , αm), S ← result;
s = lcm(denominator(αi), i = 0, . . . ,m);
for i = 0, . . . ,m do

si ← s/denominator(αi);
ri ← −si ∗ numerator(αi);

return r0 + r1∂ + . . .+ rm∂
m + s∂m+1;

4.1 Computing the ansatz system

Computing the ansatz system requires to compute the representation of h(x) and its
derivatives in a K[x]S-module M generated by the elements φ0, . . . , φk. In [10], the same
problem was solved for vector spaces. In fact, the theory showed for vector spaces can
be easily adapted to differential modules.

Then, the main goal is to compute a derivation matrix C of M w.r.t the generators
φ1, . . . , φk, meaning that, if p(x) = p1φ1 + . . .+ pkφk and p′(x) = p̂1φ1 + . . . p̂kφk, thenp̂1...

p̂k

 = C

p1...
pk

+

∂(p1)
...

∂(pk)

 .

These derivation matrices can be easily computed if we know the derivatives of the
generators φ1, . . . , φk. Namely, the ith column of the derivation matrix is the list of
coordinates of ∂(φi) w.r.t. the same set of generators φ1, . . . , φk.

Example 12. Let f(x) be an S-simple D-finite function annihilated by the differential
operator A = p0(x) + . . . + pd−1(x)∂d−1x + s∂d. We know that the K[x]S-module M(f)
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is generated by {f(x), . . . , f (d−1)(x)}, and a derivation matrix of M(f) is

C =


0 0 . . . 0 −p0(x)

s

1 0 . . . 0 −p1(x)
s

0 1 . . . 0 −p2(x)
s

...
...

. . .
...

...

0 0 . . . 1
−pd−1(x)

s

 .

This matrix is also known as the companion matrix of the operator A and all its coeffi-
cients are in K[x]S .

If we know the vector v0 that represents the actual function w.r.t. the generators
φ1, . . . , φk, we can easily build the ansatz systems by recursively computing the vectors
vn with the formula:

vn+1 = Cvn + κ∂x(vn),

where κ∂ is the termwise derivation of the vector vn.

Algorithm 2: get system for *

Input : Equations for the operands (A,B for addition and product and A for
derivation) and size n of the system

Output: Ansatz system with n columns and the inhomogeneous term
C ← derivation matrix for *(∗);
m← ncols(C);
v0 ← initial vector for *(∗);
for i = 1, . . . , n do

vi = Cvi−1 + κ∂x(vn);

return (v0| . . . |vn−1) ,vn;

For each operation, the derivation matrices can be computed from the companion
matrices of the operands [10]. Assume that f(x) and g(x) are S-simple D-functions of
order d1 and d2 respectively. Then:

• A derivation matrix of M(f), as in Example 12, is Cf .

• A derivation matrix of M(f) +M(g) is the direct sum of the companion matrices
Cf ⊕ Cg.

• A derivation matrix of M(f)M(g) is the Kroenecker sum of the companion matri-
ces, denoted by Cf � Cg, and mimics the Leibniz rule of derivation with matrices:

Cf ⊗ Id2 + Id1 ⊗ Cg,

where Im is the identity matrix of size m.
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On the other hand, the computation for the vector v0 can be done for each operation
as follows:

• For the derivation, h(x) = f ′(x), we get

vT
0 = ed1,2 = (0, 1, 0, . . . , 0).

• For the addition, h(x) = f(x) + g(x), we get

vT
0 = ed1,1 ⊕ ed2,1 = (1, 0, . . . , 0, 1, 0, . . . , 0)

• For the product, h(x) = f(x)g(x), we get

vT
0 = ed1,1 ⊗ ed2,1 = (1, 0, . . . , 0)

4.2 Linear systems on localized rings

In order to guarantee the termination of our implementation of the ansatz method, we
need a complete solver for linear systems over localized rings, in particular, for localized
rings over the polynomial ring K[x]. Here, a complete solver means that we can compute
all the solutions to the system.

First, let us consider one linear equation with coefficients in K[x]S :

v0α0 + . . .+ vn−1αn−1 = vn, (13)

where αi are the unknowns. Since K[x] is an Euclidean domain, so is K[x]S . Thus, this
equation has a solution with all αi ∈ K[x]S if and only if vn in the ideal (v0, . . . , vn−1)K[x]S

or, equivalently,
gcd(v0, . . . , vn−1) | vn.

In fact, using the extended Euclidean algorithm, we can obtain a particular solution to
the equation or a message guaranteeing there is no solution.

In order to compute all the solutions to the equation, consider two particular solutions
α and β. It is clear that:

v0(α0 − β0) + . . .+ vn−1(αn−1 − βn−1) = 0.

The set of solutions to the homogeneous equation is known as the syzygy module of
the generators (v0, . . . , vn−1). This syzygy module can be described with a matrix
T ∈ Mn×p(K[x]S) (where p is the dimension of the syzygy module). Then, for any
(β1, . . . , βp) ∈ K[x]pS , the vector

γ = α + Tβ ∈ K[x]nS

is a solution to the linear equation (13) and, more importantly, all solutions to equa-
tion (13) are of this form.
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These two computations can be performed simultaneously when computing a Hermite
Normal Form. Let g be the greatest common divisor of v0, . . . , vn−1. Then there is a
unimodular matrix U ∈Mn×n(K[x]S) such that

U


v0
v1
...

vn−1

 =


g
0
...
0

 .

Here, the first row of U times vn/g is the particular solution α and the other rows
transposed are exactly the syzygy matrix T .

This approach can always be performed when we work within an Euclidean domain.
This is implemented in Algorithm 3.

Algorithm 3: solve equation

Input : Coefficients (v0, . . . , vn−1) ∈ K[x]S and a inhomogeneous term vn
Output: Solution space for vα = vn
U,H ← hermite form((v0, . . . , vn−1)

T );
if not h0,0 divides vn then

return No solution

α0 ← vn
h0,0

(u0,0, . . . , u0,n−1)
T ;

T ← transpose((ui,j)
j=0,...,n−1
i=1,...,n−1 );

return (α0, T );

Now, consider a linear system Aα = b. If we look to the last equation, we can solve it
using the procedure described above, giving that the solution vector α has a particular
shape α0 + Tβ. If we plug this into the original system, we obtain:

Aα0 +ATβ = b,

and moving the particular solution to the right-hand side of the equation we obtain a
new system:

ATβ = b−Aα0.

By definition of A, T and α0, the matrix AT has the last row equal to zero and b−Aα0

has its last coordinate equal to zero too. Hence, we have a smaller system where we can
iterate the process.

We iterate solving one equation each time and returning No solution if such equation
has no solution and the whole solution set otherwise. At the end, either the system has
no solution or we have solved all the equations, obtaining that all the solutions are of
the form:

α0 + T0 (α1 + T1 (. . . (αq + Tqβ))) ,
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for any β with coefficients in K[x]S .
We can then obtain a particular solution with the formula

α + T0α1 + T0T1α2 + . . .+ T0 · · ·Tq−1αq,

and we can adapt the solution by adding any vector obtained by multiplying the matrix
T = T0T1 · · ·Tq with any vector β.

This method is implemented in Algorithm 4.

Algorithm 4: solve system

Input : Matrix A for the system and the inhomogeneous term b
Output: Solution space for Aα = b
solution ← (0, 0, . . . , 0);
T ← I;
for i = nrows(A), . . . , 0 do

if not row(A, i) = (0, . . . , 0) then
aux ← solve equation(row(A, i), bi);
if aux is No solution then

return No solution;

α, T̃ ← aux;
// Updating the whole solution

solution ← solution + Tα;

T ← T T̃ ;
// Updating the system

b← b−Aα;

A← AT̃ ;

return (solution,T );

5 Simple Dn-finite functions

Up to this point, we can compute several operations such as addition and multiplication
preserving the zeros of the leading coefficients of the resulting operators. In particular,
if we start with operators without apparent singularities, we always obtain operators
without apparent singularities.

However, all these methods and results are based on Theorem 7, which requires that
the ring of coefficients is Noetherian. In the case of D-finite functions, we know that K[x]
is Noetherian (in particular, it is an Euclidean domain). In order to extend these results
to DD-finite functions or, even further, to Dn-finite functions, we would need to prove
that the ring of D-finite functions (or, in general DE(R)) is a Noetherian ring. This is,
currently, not known (although we expect D-finite functions are not a Noetherian ring).
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Consider S to be a multiplicatively closed subset of Dn−1(K[x]). We are going to
avoid the proof of Noetherianity for Dn(K[x]), but still extend the result of Theorem 7
to these functions for any n ∈ N and multiplicatively closed set S.

Note that, when we compute with these functions, we do not need to use the whole
ring of Dn−1-finite functions, but just a smaller ring generated mainly by the coefficients
of the differential equations.

Lemma 14. Let (R, ∂) be a Noetherian differential integral domain, E ⊃ R a differential
extension and F = Fr(E) the field of fractions of E. Let f1, . . . , fm ∈ Dn

E(R) for
some n ≥ 1. Then there is a Noetherian differential extension R ⊂ T ⊂ F , such that
f1, . . . , fm ∈ T .

Proof. We proceed by induction on n. We start with the base case n = 1. Let Ai =
ri,0 + . . . + ri,di∂

di be such that Ai · fi = 0 for all i = 1, . . . ,m. Consider the following
set

D =

{
m∏
i=1

rpii,di : p1, . . . , pm ∈ N

}
.

It is clear that D ⊂ R is a multiplicatively closed set. Consider the ring where we localize
R with respect to D and add all the elements fi and enough or their derivatives in order
to get a differential ring. Namely,

T = RD[f1, . . . , ∂
d1−1(f1), . . . , fm, . . . , ∂

dm−1(fm)] ⊂ F

This ring is Noetherian (since it is a polynomial ring over a Noetherian ring) and we can
easily check that ∂j(fi) ∈ T for all i = 1, . . . ,m and j ∈ N. Hence, T is a differential
extension of R such that f1, . . . , fm ∈ T , finishing the proof of this case.

For the case n > 1, we consider Ai = gi,0 + . . .+ gi,di∂
di be such that Ai · fi = 0 for all

i = 1, . . . ,m. By the induction hypothesis, there is a Noetherian differential extension
T̃ ⊂ F that contains all the coefficients gi,j for i = 1, . . . ,m and j = 0, . . . , di. By
definition of DF (T̃ ), it is clear that f1, . . . , fm ∈ DF (T̃ ). We can apply now the case
n = 1, obtaining a Noetherian differential extension T̃ ⊂ T ⊂ F that contains all the
elements f1, . . . , fm.

This lemma guarantees that we can build an appropriate Noetherian ring given any set
of Dn-finite functions. However, we did some localizations over some elements that are
the leading coefficients of the differential operators involved. In order to get simple Dn-
finite functions we need to take care of those elements and keep track of them, knowing
that at the end, we can clear denominators.

Definition 15. Let S ⊂ K[[x]] be multiplicatively closed. We define the set of S-simple
Dn-finite functions recursively, and denote them by Dn(K[x], S), as follows:

• D1(K[x], S) = D(K[x], S ∩K[x]).

• Dn(K[x], S) = D(Dn−1(K[x], S), S ∩Dn−1(K[x])).
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Observe that for n = 1 we obtain the S-simple D-finite functions defined in Section 3.
Also, in this definition the set S ⊂ K[[x]]. In order to fit into Definition 4, we intersect
in each layer with Dn(K[x]).

Theorem 16. Let S ⊂ K[[x]] be a multiplicatively closed set and consider the functions
f(x) and g(x) in Dn(K[x], S). Then

• f(x) + g(x) ∈ Dn(K[x], S).

• f(x)g(x) ∈ Dn(K[x], S).

• f ′(x) ∈ Dn(K[x], S).

In particular, the set Dn(K[x], S) is a differential subring of K[[x]].

Proof. We proceed by induction on n. The case n = 1 is exactly Theorem 7 with
R = K[x] and S = K[x] ∩ S.

Now, let n > 1. Assume that f(x) and g(x) are annihilated respectively by the
operators in Dn−1(K[x], S)[∂x]:

A = sf∂
d1
x + αd1−1∂

d1−1
x + . . .+ α0,

B = sg∂
d2
x + βd2−1∂

d2−1
x + . . .+ β0,

where sf , sg ∈ S.
Using Lemma 14, there is a Noetherian differential ring T that contains all the elements

αi, βj , sf and sg. Moreover, following the proof of that Lemma, we know that this ring
T is of the form

T = K[x, γ1, . . . , γk]D,

where D = {ηk11 · · · ηkmm : kl ∈ N} and the elements ηl are leading coefficients of some
linear differential operators (i.e., ηi ∈ S) and γi ∈ Dn−1(K[x], S).

Consider the set
S̃ =

{
sifs

j
g : i, j ∈ N

}
.

This set is multiplicatively closed. It is clear now that f(x), g(x) ∈ D(T, S̃). Hence,
applying now Theorem 7, we have that f(x)+g(x), f(x)g(x) and f ′(x) are also elements
in D(T, S̃). They satisfy, then, a differential equation of the shape

sh(p)(x) + ap−1h
(p−1)(x) + . . .+ a0h(x) = 0,

where s ∈ S̃ and ak ∈ T . We can clear the denominators (which are elements of D)
and obtain a linear differential equation whose leading coefficient is in S and the other
coefficients are polynomial expressions of elements in Dn−1(K[x], S). By induction, these
elements are again in Dn−1(K[x], S), finishing the proof.
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Example 17 (K[x]-simple DD-finite functions). The set DD-finite functions satisfying
linear differential equations with polynomial leading coefficients is a differential subring
of K[[x]]. For proving that, we apply Theorem 16 with S = K[x] \ {0} and n = 2.

In this ring we can find some special functions such as ee
x−1 and the Mathieu func-

tions [7, Chapter 28]. We can always compute the singularities of the functions included
here since we can compute the singularities of the D-finite coefficients and the zeros of
the leading coefficient (a polynomial in this case).

Example 18 (cos(x)-simple DD-finite functions). Consider now the set of DD-finite
functions that satisfy a linear differential equation with a power of cos(x) as leading
coefficient. By Theorem 16, this set is a differential subring taking S = {cos(x)n : n ∈
N}.

In order to be in this ring, a function must be annihilated by a differential operator
where the leading coefficient is a power of cos(x) and the other coefficients are K-simple
D-finite functions. In this ring we can find special functions as the tangent (tan(x)) or
compositions such as sin(sin(x)).

If f(x) is a function in this ring, the singularities of f(x) are strictly contained in the
set {(2k + 1)π/2 : k ∈ Z}, which is the zero set of cos(x).

Example 19. In Example 18, the coefficients allowed in the operators were not all
D-finite functions but only the K-simple functions. If we want to extend the possible
coefficients to all the D-finite functions, we need to allow polynomials in the leading
coefficient too.

This new set is also a differential ring taking

S = {p(x)n cos(x)m : p(x) ∈ K[x], n,m ∈ N}.

This ring is an extension of D-finite functions that includes some special functions and
compositions such as Ai(sin(x)).

The singularities in this ring can also be computed: they are included in the zeros of the
cosine, the zeros of the polynomial factor of the leading coefficient and the singularities
of the D-finite coefficients.

6 Conclusions

In this paper we have shown how we can algebraically control the singularities that
are present in differential operators after performing several operations that, classically,
do not guarantee that the singularity set of the resulting equation is fixed. This can
be applied to the manipulation of differential operators without apparent singularities.
Using the methods described in this paper, we can compute directly new differential
operators without apparent singularities using only linear algebra. The algorithms for
the D-finite case are included in the package dd functionsfor SageMath.

Furthermore, we have extended this theory to the set of Dn-finite functions. In order to
extend the implementation to this wider class, we first need to adapt the algorithms for a
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multivariate setting, which can be done using Gröbner basis. We then need to compute
the algebraic relations between the coefficients of the differential equation. This is a
problem only solved for generating functions of C-finite sequences (generating functions
whose coefficients satisfy a linear recurrence with constant coefficients) [14].

These results can also be used to build sets of functions and equations where we can
explicitly compute their singularities (as in Examples 17, 18 and 19). This can be used
to extend the algorithms that compute certified numerical evaluations for wider classes
than D-finite functions.
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2020-09 A. Bostan, A. Jiménez-Pastor: On the exponential generating function of labelled trees July

2020. Eds.: M. Kauers, V. Pillwein

2020-10 J, Forcan, J. Qi: How fast can Dominator win in the Maker-Breaker domination game? July

2020. Eds.: V. Pillwein, J. Schicho

2020-11 J. Qi: A calculus for monomials in Chow group of zero cycles in the moduli space of stable
curves Sept 2020. Eds.: P. Paule, J. Schicho

2020-12 J. Qi, J. Schicho: Five Equivalent Ways to Describe a Phylogenetic Tree November 2020.

Eds.: M. Kauers, S. Radu

The complete list since 2009 can be found at

https://www.dk-compmath.jku.at/publications/



Doctoral Program

“Computational Mathematics”

Director:
Assoc. Prof. Dr. Veronika Pillwein
Research Institute for Symbolic Computation

Deputy Director:
Prof. Dr. Bert Jüttler
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