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Abstract
We study recurrence relations satisfied by the moments νn (z) of

a linear functional L. We consider the class of functionals whose first
moment satisfies a differential equation (in z) with polynomial coeffi-
cients.

We give examples for all cases where the order of the ODE is less
or equal than 3.

1 Introduction

Let K be a commutative ring (for our purposes we mostly think of K as the
set of complex numbers C) and N0 be the set of nonnegative integers

N0 = N ∪ {0} = {0, 1, 2, . . .} .
*e-mail: diego.dominici@dk-compmath.jku.at
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We will denote by δk,n the Kronecker delta, defined by

δk,n =

{
1, k = n
0, k 6= n

, k, n ∈ N0.

Suppose that L : K[x]→ K is a linear functional (acting on the variable
x), {Λn (x)}n≥0 is a basis of K[x] with deg (Λn) = n, and we choose a nonzero
sequence of norms {hn}n≥0 ⊂ K\ {0}. If the system of linear equations

n∑
i=0

L [ΛkΛi] ξn,i = hnδk,n, 0 ≤ k ≤ n, (1)

has a unique solution {ξn,i}0≤i≤n , we can define a polynomial Pn (x) by

Pn (x) =
n∑
i=0

ξn,iΛi (x) .

We say that {Pn (x)}n≥0 is an orthogonal polynomial sequence with respect
to the functional L.

The system (1) can be written as

L [ΛkPn] = hnδk,n, 0 ≤ k ≤ n,

and using linearity we see that the sequence {Pn (x)}n≥0 satisfies the orthog-
onality conditions

L [PkPn] = hnδk,n, 0 ≤ k ≤ n. (2)

If we define the (symmetric) Gram matrix G by

Gi,k = L [ΛiΛk] , i, k ∈ N0, (3)

one can show [24] that the condition

det
0≤i,k≤n

(Gi,k) 6= 0, n ≥ 0,

is equivalent to the existence of a unique family of orthogonal polynomial
satisfying (2) and deg (Pn) = n.

The theory of orthogonal polynomials is vast and rich, extending all the
way back to the groundbreaking work of Legendre [69], where he introduced
the family of polynomials that now bears his name. We direct the interested
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reader to (some of!) the fundamental treatises on the field [9], [12], [50], [54],
[57], [65], [103].

A particular fruitful approach that has received a lot of attention in recent
years, is to work with the (infinite) matrix (3) acting on the (infinite) vector
−→
P = (P0, P1, . . .) . One can then view orthogonal polynomials as elements of
an infinite dimensional vector space [28], [37], [52], [70], [112], [113], [114],
[115].

Of course, in its full generality, it’s difficult to get results that apply to
any family of orthogonal polynomials. Thus, one chooses, for example:

i.) an operator (difference, differential, functional, integral) that annihi-
lates Pn (x) .

ii.) a degree-reducing operator relating Pn (x) and Pn−1 (x) (Sheffer clas-
sification, umbral calculus, generating functions).

iii.) a particular form of the linear functional L (continuous, discrete,
matrix valued, q-series).

iv.) a particular domain of L (C, N0, R, linear and quadratic lattices,
unit circle).

Another possibility, is to ask L to satisfy a relation of the form

L [σp] = L [τU [p]] , p ∈ K[x],

where σ (x) , τ (x) are fixed polynomials, and U : K[x] → K[x] is a given
operator. In this case, we say that L is a semiclassical functional with respect
to U . The class of the functional L is defined by

s = max {deg (σ)− 2, deg (τ)− 1} ,

and semiclassical functional of class s = 0 are called classical.
This type of functionals was introduced by Shohat [100], and studied

in detail by P. Maroni and collaborators [80], [82], [83], particularly when
U [p] = p′(x) is the derivative operator [72], [78], [79], and also for the oper-
ator

Uω [p] =
p(x+ ω)− p(x)

ω
,

which contains the finite difference operators ∆,∇ as special cases (ω = ±1) ,
and the derivative operator as a limiting case [1]. Other examples include
the q−semiclassical polynomials [63], [85], associated with the operator

Uq [p] =
p (qx)− p(x)

(q − 1)x
, q 6= 1.
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In this paper, we will focus on the so-called discrete semiclassical orthog-
onal polynomials [8], [42], [76], [87], [117], where U is the shift operator
U [p] = p(x+ 1). In this case, the linear functional L is of the form

L [p] =
∞∑
x=0

p (x) ρ (x) , p ∈ K[x],

where ρ (x) is a given weight function. The traditional starting point is the
Pearson equation satisfied by ρ (x)

U [σρ] = τ (x) ρ (x) , (4)

but after trying this approach in [39], we found it very dissatisfying, especially
when one considers spectral transformations of L.

For example, applying an Uvarov transformation to L at a point ω (see
Section 3.3) will lead to the Pearson equation

ρ̃ (x+ 1)

ρ̃ (x)
=

(x− ω) (x+ 1− ω) τ (x)

(x− ω) (x+ 1− ω)σ (x+ 1)
,

and this begs the question of when one is allowed (or not) to simplify the
above expression. A possibility to avoid this problem is to study the difference
equation satisfied by the Stieltjes transform of L

S (t) = L

[
1

t− x

]
, t /∈ N0,

and we did this in [40], where we classified the discrete semiclassical orthog-
onal polynomials of class s ≤ 2.

Now suppose that the weight function ρ (x) also contains an independent
variable z, ρ = ρ̃ (x; z) . Although this may seem like an extra assumption, we
note that one could always introduce such a variable as a Toda deformation
[10], [92], [105],

ρ̃ (x; z) = ρ (x) exf(z), f (z0) = 0,

and recover the original functional L by setting z = z0. We studied this type
of weight functions in [38], and observed that the operator ϑ defined by

ϑ [u] = z
du

dz

4



is naturally associated to the shift operator.
As we will see in Section 2, this allow us to replace the Pearson equation

(4) with the ODE satisfied by the first moment λ0 (z) = L [1] ,

σ (ϑ) [λ0] = zτ (ϑ) [λ0] . (5)

We note in passing that the ODE (5) is the true starting point of the theory,
and by considering alternative equations satisfied by λ0 (z) , one could study
semiclassical orthogonal polynomials associated with different operators U.

The structure of the paper is as follows: in Section 2, we introduce the
operator ϑ and the ODE satisfied by the moments of a discrete linear func-
tional

σ (ϑ) Λn (ϑ) [λ0] = zτ (ϑ) Λn (ϑ+ 1) [λ0] , n ∈ N0. (6)

This will naturally lead to the class of functionals whose first moment λ0 (z)
can be represented as a (generalized) hypergeometric function.

Since the ODE (6) contains a shift, we need to choose a convenient basis
{Λn (x)}n≥0 . In Section 2.1, we study the monomial basis and derive a linear
recurrence of order n+ s+ 1 for the (standard) moments µn (z). We also
find a representation for µn (z) as a linear combination involving a family of
polynomials that satisfies a differential-difference equation.

In Section 2.2, we consider the basis of falling factorial polynomials de-
fined by φ0 (x) = 1,

φn+1 (x) = xφn (x− 1) , n ∈ N,

which allow us to easily work on the lattice Z. We use Newton’s interpola-
tion formula and obtain a linear recurrence of order s+ 1 for the (modified)
moments νn (z). The linear functionals of class s = 1 are particularly in-
teresting, since in this case the moments νn (z) are themselves a family of
orthogonal polynomials. This is an area that has been studied in detail by
M. Ismail and D. Stanton, see [58], [59], and [60].

Both the monomials and the falling factorial polynomials are examples of
Newton basis polynomials defined by n0 (x) = 1 and

nk (x) =
k−1∏
j=0

(x− κj) ,

where {κj}j≥0 is a fixed sequence. This type of polynomials satisfy 2−term
recurrence relations, which we study in Section 2.3. Among other results,
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we look at the connection between the monomial and falling factorial bases
(through Stirling numbers), and find the (formal) representation for the
Stieltjes transform

S (ω; z) =
∞∑
k=0

λk (z)

Λk+1 (ω)
. (7)

In [41], we used (7) to derive recurrence relations for the modified moments
νn (z).

In Section 3, we consider transformations Ωα
β between different families

of discrete semiclassical orthogonal polynomials. We introduce a uniform
notation to label objects belonging to different families, and show how the
recurrence relations for the moments change as we apply a transformation.

In Sections 3.1, 3.2, 3.3, and (3.4) we consider the special cases α = β+ 1
(Christoffel transformation) [18], [45], [97], α = β − 1 (Geronimus transfor-
mation) [30], [31], [67], [81], their composition (Uvarov transformation) [5],
[7], [25], [64], [75], and α = β = −N, N ∈ N (truncation transformation).
These rational spectral transformations have been studied by many authors,
[4], [91], [119]. The relation between these transformations and the so-called
Darboux transformation, has also been considered [19], [74], [118].

Finally, Section 4 applies the results obtained in the paper to all the
families of class s ≤ 2. We see how many special subcases can be obtained as
single and multiple spectral transformations of polynomials in a lower class.

2 Differential operators and moment function-

als

Let F denote the ring of formal power series in the variable z

F = K [[z]] =

{
∞∑
n=0

cnz
n : cn ∈ K

}
,

and ϑ : F→ F be the differential operator defined by [89, 16.8.2]

ϑ = z∂z,

where ∂z is the derivative operator

∂z =
∂

∂z
.
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The action of ϑ on the monomials is given by

ϑk [zx] = xkzx,

where we always assume that x and z are independent variables. Using
linearity, it follows that

u (ϑ) [zx] = u (x) zx, u ∈ K [x] . (8)

Note that ϑ is multiplicative

ϑn+m [zx] = xn+mzx = xnxmzx = xnϑm [zx] = ϑm [xnzx] = [ϑmϑn] [zx] ,

and therefore
(uv) (ϑ) = u (ϑ) v (ϑ) , u, v ∈ K [x] .

On the other hand, if one of the terms is multiplied by a power of z, we have

u (ϑ)
[
zkv (ϑ) [zx]

]
= u (ϑ)

[
zkv (x) zx

]
= u (ϑ)

[
v (x) zx+k

]
= v (x)u (ϑ)

[
zx+k

]
= v (x)u (x+ k) zx+k

= zkv (x)u (x+ k) zx = zk [v (ϑ)u (ϑ+ k)] [zx] , u, v ∈ K [x] ,

and therefore
u (ϑ)

[
zkv (ϑ)

]
= zkSk

ϑ [u] v (ϑ) , k ≥ 0, (9)

where Sx denotes the shift operator in the variable x

Sx [u] = u (x+ 1) . (10)

Suppose that L : K[x]→ F is the linear functional (acting on the variable
x) defined by

L [u] =
∞∑
x=0

u (x) ρ (x) zx, u ∈ K[x],

where ρ : N0 → K is a given function. Note that if f ∈ K [[x]] , we can extend
(8) to

f (ϑ) [zx] =
∞∑
n=0

cnϑ
n [zx] = zx

∞∑
n=0

cnx
n = f (x) zx,

and therefore we can consider L as a functional on K [[x]] , satisfying

f (ϑ) [L [u]] =
∞∑
x=0

u (x) ρ (x) f (x) zx = L [fu] , f ∈ K [[x]] , u ∈ K[x]. (11)
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Let {Λn}n≥0 be a monic polynomial basis, i.e., Λn (x) is a monic polyno-
mial with deg (Λn) = n. If we define a sequence of moments [2], [3], [101]
by

λn (z) = L [Λn] ∈ F,

then from (11) we obtain

f (ϑ) [λ0] = f (ϑ) [L [1]] = L [f ] , f ∈ K [[x]] , (12)

and in particular
λn (z) = L [Λn] = Λn (ϑ) [λ0] . (13)

Note that if E (t, x) is the exponential generating function [116] of the poly-
nomials Λn (x)

E (t;x) =
∞∑
n=0

Λn (x)
tn

n!
,

we can use (13) and get

∞∑
n=0

λn (z)
tn

n!
=
∞∑
n=0

Λn (ϑ) [λ0]
tn

n!
= E (t;ϑ) [λ0] .

Using (11), we obtain the exponential generating function of the moments

∞∑
n=0

λn (z)
tn

n!
= L [E (t;x)] ,

and in the special case of a power function E (t;x) = [f (t)]x, we have

L [E (t;x)] = L [fx] =
∞∑
x=0

ρ (x)
[zf (t)]x

x!
= λ0 [zf (t)] . (14)

If the first moment λ0 (z) satisfies a differential equation with polynomial
coefficients

[σ (ϑ)− zτ (ϑ)] [λ0] = 0, σ, τ ∈ K [x] , (15)

then we see from (9) that

u (ϑ)σ (ϑ) [λ0] = u (ϑ) [zτ (ϑ) [λ0]] = zτ (ϑ)u (ϑ+ 1) [λ0] , u ∈ K [x] . (16)
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Using (12), we conclude that L is a semiclassical functional with respect to
the shift operator Sx

L [σu] = L [zτSx [u]] , u ∈ K [x] . (17)

Suppose that σ (0) = 0. Using (17), we have

∞∑
x=1

σ (x)u (x) ρ (x) zx = L [σu] = L [zτu (x+ 1)]

=
∞∑
x=0

τ (x)u (x+ 1) ρ (x) zx+1 =
∞∑
x=1

τ (x− 1)u (x) ρ (x− 1) zx,

and we conclude that ρ (x) satisfies the Pearson equation [90]

ρ (x+ 1)

ρ (x)
=

τ (x)

σ (x+ 1)
, x ∈ N0. (18)

Solving (18), we get

ρ (n) =
n−1∏
k=0

τ (k)

σ (k + 1)
, n ∈ N, (19)

where we set ρ (0) = 1.
We define the Pochhammer symbol (c)x by [93]

(c)x = lim
k→∞

kx
k∏
j=0

c+ j

c+ x+ j
, − (c+ x) /∈ N0,

and note that if x = n ∈ N0, the Pochhammer symbol becomes a polynomial
in z of degree n

(c)n =
n−1∏
j=0

(c+ j) , n ∈ N, (c)0 = 1. (20)

We will use the notation [89, 16.1]

(c)n = (c1)n · · · (cm)n , c ∈ Km,
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and also
(x+ c) = (x+ c1) · · · (x+ cm) , c ∈ Km.

In the special case m = 0, we understand that

c ∈ K0 = ∅, (∅)n = 1.

Writing

σ (x) = x (x+ b) , τ (x) = (x+ a) , a ∈ Kp, b ∈ Kq, (21)

and using (20), we can rewrite (19) as

ρ (x) =
(a)x

(b + 1)x

1

x!
, a ∈ Kp, b ∈ Kq.

The ODE

[ϑ (ϑ+ b)− z (ϑ+ a)] [λ0] = 0, a ∈ Kp, b ∈ Kq,

is the (generalized) hypergeometric differential equation [89, 16.8.3] of order

o = max {p, q + 1} ,

and the first moment λ0 (z) can be represented as

λ0 (z) = pFq

(
a

b + 1
; z

)
,

where the (generalized) hypergeometric function pFq is defined by [89, 16.2.1]

pFq

(
a
b

; z

)
=
∞∑
x=0

(a)x
(b)x

zx

x!
, a ∈ Kp, b ∈ Kq.

We define the class s of the semiclassical functional L by

s = o− 1 = max {p− 1, q} ,

and the functionals of class s = 0 are called classical.
Combining (16) and (21), we conclude that

ϑ (ϑ+ b) Λn (ϑ) [λ0] = z (ϑ+ a) Λn (ϑ+ 1) [λ0] , n ∈ N0, (22)
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and expanding the polynomials coefficients on the basis {Λn}n≥0 ,

ϑ (ϑ+ b) Λn (ϑ) =

n+q+1∑
k=0

cn,kΛk (ϑ) ,

(ϑ+ a) Λn (ϑ+ 1) =

n+p∑
k=0

c̃n,kΛk (ϑ) ,

we get a recurrence relation of order n+ s+ 1 for the moments

q+1∑
k=−n

cn,n+kλn+k − z
p∑

k=−n

c̃n,n+kλn+k = 0. (23)

The question is: can we do better than this? In other words, can one
choose a convenient basis Λn so that the recurrence (23) will have minimal
order s+1? The answer is yes, as we will see in Section 2.2. In the meantime,
we will study the simplest basis: the monomials.

2.1 Standard moments

If µn (z) ∈ F denote the standard moments of L on the monomial basis
Λn (x) = xn

µn (z) = L [xn] , n ∈ N0,

it follows from (22) that

ϑn+1 (ϑ+ b) [µ0] = z (ϑ+ 1)n (ϑ+ a) [µ0] . (24)

If we use the umbral notation [95]

fk ↔ fk,

then we see from (13) and (24) that the standard moments µn (z) satisfy the
recurrence

(µ+ b)µn+1 − z (µ+ a) (µ+ 1)n = 0. (25)

The coefficients of the polynomials (x+ c) can be written in terms of the
elementary symmetric polynomials en (c), defined by the generating function
[71]

∞∑
n=0

en (c) tn =
m∏
i=1

(1 + tci) , c ∈ Km. (26)
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It follows from (26) that

(x+ c) =
m∑
k=0

em−k (c)xk, c ∈ Km,

and using this formula in (25), we obtain the explicit recurrence

q∑
k=0

eq−k (b)µn+k+1 − z
n∑
k=0

(
n

k

) p∑
j=0

ep−j (a)µk+j = 0. (27)

In particular, for n = 0

q∑
k=0

eq−k (b)µk+1 − z
p∑
j=0

ep−j (a)µj = 0. (28)

It is clear from (27) that elements of the set

{µk : k > s} , s = max {p− 1, q} ,

are linear combinations of the first s + 1 standard moments. Thus, we have
a representation of the form

µn (z) =
s∑

k=0

gn,k (z)µk (z) , n ∈ N0, (29)

where the coefficients must satisfy

gn,k (z) = δn,k, 0 ≤ n, k ≤ s. (30)

If we introduce the vectors −→µ ,−→g n ∈ Fs+1 defined by

(−→µ )k = µk, (−→g n)k = gn,k, 0 ≤ k ≤ s,

we can write (29) as an inner product

µn = −→g n · −→µ . (31)

To satisfy the initial conditions (30), we need

−→g n = −→ε n, 0 ≤ n ≤ s,
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where the standard unit vectors −→ε n ∈ Ks+1 are defined by

(−→ε n)k = δn,k, 0 ≤ k ≤ s, n ∈ N0.

From (31). we get

µn+1 = ϑ [µn] = ϑ [−→g n · −→µ ] = ϑ [−→g n] · −→µ +−→g n · ϑ [−→µ ]

and since

ϑ [−→µ ] =


µ1

µ2
...

µs+1

 =


−→g 1−→g 2

...
−→g s+1




µ0

µ1
...
µs

 ,

we have ϑ [−→µ ] = MT−→µ , with

MT =


−→g 1−→g 2

...
−→g s+1

 ∈ F(s+1)×(s+1),

where vectors form the rows of the matrix MT . Thus,

−→g n+1 · −→µ = µn+1 = ϑ [−→g n] · −→µ +−→g n ·
(
MT−→µ

)
= (ϑ [−→g n] +M−→g n) · −→µ

from which we conclude that the vector −→g n (z) satisfies the differential-
difference equation

−→g n+1 = (ϑ+M)−→g n, n ≥ 0, −→g 0 = −→ε 0, (32)

with
M = (−→ε 1,

−→ε 2, · · · ,−→ε s,−→g s+1) ∈ F(s+1)×(s+1),

where now vectors form the columns of the matrix M .
It follows from (27) that we have three cases to consider:
1) If p > q + 1, then the standard moments will satisfy a recurrence of

the form

zµn+p =

n+p−1∑
k=0

cn,k (z)µk,
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and setting
−→g n (z) = z−n

−→
Qn (z) , n ≥ 0,

the vector polynomials
−→
Qn ∈ (K [z])s+1 will satisfy the differential-difference

equation

−→
Qn+1 = z (ϑ+M − nI)

−→
Qn, n ≥ 0,

−→
Q 0 = −→ε 0, (33)

where I is the (s+ 1× s+ 1) identity matrix.
2) If p = q + 1, then the standard moments will satisfy a recurrence of

the form

(1− z)µn+p =

n+p−1∑
k=0

cn,k (z)µk,

and if we set
−→g n (z) = (1− z)−n

−→
Qn (z) , n ≥ 0,

the vector polynomials
−→
Qn ∈ (K [z])s+1 will satisfy the differential-difference

equation

−→
Qn+1 = [(1− z) (ϑ+M) + nzI]

−→
Qn, n ≥ 0,

−→
Q 0 = −→ε 0. (34)

3) If p < q + 1, then the standard moments will satisfy a recurrence of
the form

µn+q+1 = z

n+q∑
k=0

cn,kµk,

and the functions −→g n (z) already are polynomials in z.

Remark 1 In [35], we derived (32) using a different method.

The exponential generating function of the monic basis is the exponential
function

∞∑
n=0

xn
tn

n!
= ext,

and using (14) we obtain

∞∑
n=0

µn (z)
tn

n!
= L

[
ext
]

= µ0

(
zet
)
. (35)
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Since
∂t
[
y
(
zet
)]

= zety′
(
zet
)

= z∂z
[
y
(
zet
)]

= ϑ
[
y
(
zet
)]
,

it follows from (15) that µ0 (zet) is a solution of the linear ODE (in the t
variable) [

σ (∂t)− zetτ (∂t)
]

[y] = 0. (36)

If we define

Gk (t, z) =
∞∑
n=0

gn,k (z)
tn

n!
, 0 ≤ k ≤ s,

it follows from (29) that

µ0

(
zet
)

=
s∑

k=0

Gk (t, z)µk (z) ,

and therefore the functions Gk (t, z) , 0 ≤ k ≤ s form a basis of solutions of
the ODE (36) with initial conditions

[∂nt Gk]t=0 = δn,k, 0 ≤ n, k ≤ s,

since from (35) we see that[
∂nt µ0

(
zet
)]
t=0

= µn (z) .

2.2 Modified moments

Let φn (x) denote the falling factorial polynomials defined by φ0 (x) = 1 and

φn (x) =
n−1∏
k=0

(x− k) , n ∈ N. (37)

Sometimes, the polynomials φn (x) are called “binomial polynomials”, since

φn (x)

n!
=

(
x

n

)
, n ∈ N0. (38)

From the definition (37), we see that

φn+1 (x) = (x− n)φn (x) = xφn (x− 1) , n ≥ 0, (39)
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and from (20) it follows that the falling factorial polynomials and the Pochham-
mer polynomials are related by

φn (x) = (−1)n (−x)n = (x+ 1− n)n .

The falling factorial polynomials are eigenfuncions of the differential op-
erator zn∂nz since

zn∂nz [zx] = znφn (x) zx−n = φn (x) zx. (40)

Remark 2 Caution must be exercised when using the operators zn∂nz and ϑn

since
ϑn = (z∂z)

n 6= zn (∂z)
n , n > 1.

Using (40) and the formula [89, 16.3.1]

∂nz

[
pFq

(
a

b + 1
; z

)]
=

(a)n
(b + 1)n

pFq

(
a + n

b + n+ 1
; z

)
,

we conclude that the modified moments

νn (z) = L [φn] , n ∈ N0,

admit the hypergeometric representation

νn (z) = zn
(a)n

(b + 1)n
pFq

(
a + n

b + n+ 1
; z

)
.

Using (22) with Λn (ϑ) = φn (ϑ− 1) , we get

ϑ (ϑ+ b)φn (ϑ− 1)σ (ϑ) [ν0] = z (ϑ+ a)φn (ϑ) τ (ϑ) [ν0] ,

and from (39) we conclude that

[(ϑ+ b)φn+1 (ϑ)− z (ϑ+ a)φn (ϑ)] [ν0] = 0. (41)

Unlike the monomial case, there is no immediate formula that would express
products of the form (ϑ+ c)φn (ϑ) in terms of the polynomials φn (ϑ) . Thus,
we will find one next.
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Any polynomial u (x) can be represented in the basis of falling factorials
using Newton’s interpolation formula [29]

u (x) =

deg(u)∑
k=0

∆k [u] (c)

k!
φk (x− c) , (42)

where the forward difference operator ∆n (acting on x) is defined by

∆n [f ] (x) =
n∑
k=0

(
n

k

)
(−1)n−k f (x+ k) . (43)

We start with a result that may be already known, but we have not been
able to find in the literature.

Lemma 3 For any function f (x) , we have

∆j [fφn] (0) = 0, 0 ≤ j < n, (44)

and
∆n+j [fφn] (0)

(n+ j)!
=

∆j [f ] (n)

j!
, n, j ≥ 0. (45)

Proof. Using the definition (43),

∆j [fφn] (0) =

j∑
i=0

(
j

i

)
(−1)j−i f (i)φn (i) ,

and since φn (i) = 0, for i < n, we see that

∆j [fφn] (0) = 0, 0 ≤ j < n,

If j ≥ 0, then

∆n+j [fφn] (0) =

n+j∑
i=n

(
n+ j

i

)
(−1)n+j−i f (i)φn (i)

=

j∑
i=0

(
n+ j

n+ i

)
(−1)j−i f (n+ i)φn (n+ i) .
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Using (38), we have (
n+ j

n+ i

)
φn (n+ i) =

(n+ j)!

j!

(
j

i

)
,

and therefore

∆n+j [fφn] (0) =
(n+ j)!

j!

j∑
i=0

(
j

i

)
(−1)j−i f (n+ i)

=
(n+ j)!

j!
∆j [f ] (n) .

Using (45), we obtain the following Corollary.

Corollary 4 If u (x) is a polynomial of degree k, then

u (x)φn (x) =
k∑
j=0

∆j [u] (n)

j!
φn+j (x) .

Proof. Using (42) and (44), we have

u (x)φn (x) =
n+k∑
j=0

∆j [uφn] (0)

j!
φj (x) =

n+k∑
j=n

∆j [uφn] (0)

j!
φj (x)

=
k∑
j=0

∆n+j [uφn] (0)

(n+ j)!
φn+j (x) ,

and the results follows from (45).
From the previous Corollary, we finally obtain the representation we were

looking for.

Corollary 5 We have

(x+ c)φn (x) =
m∑
j=0

∆j [(x+ c)] (n)

j!
φn+j (x) , c ∈ Km.
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Let the recurrence operators Υn (c) be defined by

Υn (c) [f ] =
m∑
j=0

∆j [(x+ c)] (n)

j!
fn+j, c ∈ Km, (46)

We have Υn (∅) [f ] = fn, and from (46), we get

Υn (c) [f ] = fn+1 + (n+ c) fn.

In general, we have the following result.

Lemma 6 The recurrence operators Υn satisfy the basic recurrence

Υn (c, γ) = Υn+1 (c) + (n+ γ) Υn (c) . (47)

Proof. From the definition of Υn, we have

Υn (c, γ) [f ] =
m+1∑
j=0

∆j [(x+ c) (x+ γ)] (n)

j!
fn+j.

If we use Leibniz rule [61]

∆j [uv] (n) =

j∑
i=0

(
j

i

)
∆j−i [u] (n+ i) ∆i [v] (n) ,

we get

∆j [(x+ c) (x+ γ)] (n) = (n+ γ) ∆j [(x+ c)] (n) + j∆j−1 [(x+ c)] (n+ 1) .

Since

m+1∑
j=0

j∆j−1 [(x+ c)] (n+ 1)

j!
fn+j

=
m+1∑
j=1

∆j−1 [(x+ c)] (n+ 1)

(j − 1)!
fn+j =

m∑
j=0

∆j [(x+ c)] (n+ 1)

j!
fn+j+1,
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we conclude that

m+1∑
j=0

∆j [(x+ c) (x+ γ)] (n)

j!
fn+j

= (n+ γ)
m∑
j=0

∆j [(x+ c)] (n)

j!
fn+j +

m∑
j=0

∆j [(x+ c)] (n+ 1)

j!
fn+1+j

and the result follows.
If m = 2, (47) gives

Υn (c1, c2) [f ] = Υn+1 (c1) [f ] + (n+ c2) Υn (c1) [f ]

= fn+2 + (n+ 1 + c1) fn+1 + (n+ c2) [fn+1 + (n+ c1) fn] ,

and hence

Υn (c1, c2) = S2
n + (2n+ c1 + c2 + 1)Sn + (n+ c1) (n+ c2) .

Note that

Υn (c1, c2) = (Sn + n+ c1) (Sn + n+ c2) = Υn (c1) ◦Υn (c2) ,

where clearly
Υn (c1) ◦Υn (c2) = Υn (c2) ◦Υn (c1) .

Using induction, it follows that

Υn (c) = (Sn + n+ c) , c ∈ Km,

and
Υn (c) = Υn (c1) ◦Υn (c2) ◦ · · · ◦Υn (cm) , c ∈ Km. (48)

Remark 7 Note that

[a1Sn + b1n+ c1, a2Sn + b2n+ c2] = (a1b2 − a2b1)Sn,

so in general caution must be exercised when composing linear terms involving
Sn.
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Using (41) and (46), we see that the modified moments νn (z) satisfy the
recurrence

[Υn+1 (b)− zΥn (a)] [ν] = 0, (49)

and using (46) we have the explicit recurrence of order s+1 = max {p, q + 1}
q∑
j=0

∆j [(x+ b)] (n+ 1)

j!
νn+1+j − z

p∑
j=0

∆j [(x+ a)] (n)

j!
νn+j = 0. (50)

It is clear from (50) that the elements of the set {νk : k ≥ s+ 1}, are
linear combinations of the first s + 1 modified moments. Thus, we have a
representation of the form

νn (z) =
s∑

k=0

fn,k (z) νk (z) , (51)

where the coefficients must satisfy the initial conditions

fj,k (z) = δj,k, 0 ≤ j, k ≤ s.

Using (38) and the binomial theorem, we obtain the exponential gener-
ating function

∞∑
n=0

φn (x)
tn

n!
=
∞∑
n=0

(
x

n

)
tn = (1 + t)x ,

and using (14), we get

∞∑
n=0

νn (z)
tn

n!
= L [(1 + t)x] = ν0 (z + zt) . (52)

Since

(1 + t) ∂t [y ((1 + t) z)] = z (1 + t) y′ ((1 + t) z)

= z∂z [y ((1 + t) z)] = ϑ [y ((1 + t) z)] ,

it follows from (15) that ν0 (z + zt) is a solution of the linear ODE

σ ((1 + t) ∂t) [y] = zτ ((1 + t) ∂t) [y] , (53)
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Remark 8 The differential equation (53) needs to be understood in an oper-
ational sense, since the coefficients are not constant. For instance, we have

(1 + t) ∂t [(1 + t) ∂t] = (1 + t)
(
∂t + (1 + t) ∂2t

)
= (1 + t)2 ∂2t + (1 + t) ∂t,

and therefore

[(1 + t) ∂t + a1] [(1 + t) ∂t + a2] = (1 + t)2 ∂2t + (1 + a1 + a2) (1 + t) ∂t + a1a2.

If we define

Fk (t, z) =
∞∑
n=0

fn,k (z)
tn

n!
, 0 ≤ k ≤ s,

where fn,k (z) are the coefficients in (51), we see that

ν0 (z + zt) =
s∑

k=0

Fk (t, z) νk (z) ,

and therefore the functions Fk (t, z) , 0 ≤ k ≤ s form a basis of solutions of
the ODE (53) with initial conditions

[∂nt Fk]t=0 = δn,k, 0 ≤ n, k ≤ s,

since from (52) we see that

[∂nt ν0 (z + zt)]t=0 = νn (z) .

In the next section, we will look at more general polynomial bases that
contain the monomials and falling factorial as particular cases.

2.3 Two-term recurrence relations

Both the monomial polynomials and the falling factorial polynomials satisfy
a 2-term recurrence relation of the form

xΛn (x) = Λn+1 (x) + κnΛn (x) , (54)

where for the monomials κn = 0 and for the falling factorial polynomials
κn = n. From (54), we have

xΛn (x) Λn (ω) = Λn+1 (x) Λn (ω) + κnΛn (x) Λn (ω)

ωΛn (x) Λn (ω) = Λn (x) Λn+1 (ω) + κnΛn (x) Λn (ω) ,
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and therefore

(x− ω) Λn (x) Λn (ω) = Λn+1 (x) Λn (ω)− Λn (x) Λn+1 (ω) .

Dividing by Λn (ω) Λn+1 (ω) ,

(x− ω)
Λn (x)

Λn+1 (ω)
=

Λn+1 (x)

Λn+1 (ω)
− Λn (x)

Λn (ω)
,

and summing from 0 to n− 1, we obtain

(x− ω)
n−1∑
k=0

Λk (x)

Λk+1 (ω)
=

n−1∑
k=0

[
Λk+1 (x)

Λk+1 (ω)
− Λk (x)

Λk (ω)

]
=

Λn (x)

Λn (ω)
− Λ0 (x)

Λ0 (ω)
.

Hence,

1

Λn (ω)

Λn (x)

x− ω
=

1

x− ω
+

n−1∑
k=0

Λk (x)

Λk+1 (ω)
, (55)

since Λ0 (x) = 1.
Applying L to (55), we see that

1

Λn (ω)
L

[
Λn

x− ω

]
= L

[
1

x− ω

]
+

n−1∑
k=0

λk (z)

Λk+1 (ω)
,

and therefore

S (ω; z) =
1

Λn (ω)
L

[
Λn

ω − x

]
+

n−1∑
k=0

λk (z)

Λk+1 (ω)
,

where

S (ω; z) = L

[
1

ω − x

]
is the Stieltjes transform of the functional L [104].

Remark 9 Since

lim
n→∞

Λn (x)

Λn (ω)
= 1,
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we have (at least formally)

S (ω; z) =
∞∑
k=0

λk (z)

Λk+1 (ω)
.

The falling factorial case was already considered in [17].

Suppose that

xn =
n∑
i=0

ξn,iΛi (x) . (56)

Since Λn (x) is monic, we need ξn,n = 1. Using (54), we have

n+1∑
i=0

ξn+1,iΛi (x) = xn+1 =
n∑
i=0

ξn,ixΛi (x)

=
n∑
i=0

ξn,i [Λi+1 (x) + κiΛi (x)]

=
n+1∑
i=1

ξn,i−1Λi (x) +
n∑
i=0

ξn,iκiΛi (x) .

Comparing coefficients, we obtain the recurrence

ξn+1,i = ξn,i−1 + κiξn,i, ξn,n = 1,

and the boundary conditions

ξn,i = 0, i /∈ [0, n] .

In a similar way, if we define the inverse coefficients by

Λn (x) =
n∑
i=0

ξn,ix
i, (57)

then

n+1∑
i=0

ξn+1,ix
i +

n∑
i=0

κnξn,ix
i = Λn+1 (x) + κnΛn (x)

= xΛn (x) =
n∑
i=0

ξn,ix
i+1 =

n+1∑
i=1

ξn,i−1x
i,
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and therefore
ξn+1,i = ξn,i−1 − κnξn,i, ξn,n = 1,

with
ξn,i = 0, i /∈ [0, n] .

In particular, if Λn (x) = φn (x) , we get

ξn+1,i = ξn,i−1 + iξn,i, ξn,n = 1,

ξn+1,i = ξn,i−1 − nξn,i, ξn,n = 1.

In this case, the coefficients ξn,i are known as Stirling numbers of the second
kind, and the coefficients ξn,i are known as Stirling numbers of the first kind
[94].

Using Newton’s interpolation formula (42), we have

xn =
n∑
k=0

∆k [xn] (0)

k!
φk (x) ,

and therefore the Stirling numbers of the second kind have the representation
[89, 26.8.6] {

n

k

}
=

∆k [xn] (0)

k!
=

1

k!

k∑
i=0

(−1)k−i
(
k

i

)
in.

Applying L to (56) and (57), we see that

µn =
n∑
i=0

ξn,iλi, λn =
n∑
i=0

ξn,iµi,

and in particular

µn =
n∑
k=0

{
n

k

}
νk. (58)

3 Transformations of functionals

Let p, q ∈ N0, a ∈ Kp and b ∈ Kq. In the remaining of the paper, we will use
the notation

〈
p
q·
〉

to stress the ”location” of an object (ρ, L, µn, νn, etc.) with
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respect to the number of parameters in the hypergeometric representation of
the first moment 〈

p
qλ
〉
0

(z) = pFq

(
a

b + 1
; z

)
.

For example, we have

〈
p
qρ
〉

(x) =
(a)x

(b + 1)x

1

x!
,

and
〈
p
qλ
〉
n

(z) denotes the moments of the linear functional

〈
p
qL
〉

[u] =
∞∑
x=0

u(x)
〈
p
qρ
〉

(x) zx, u ∈ K[x], (59)

on the Λn(x) basis, i.e.,

〈
p
qλ
〉
n

(z) =
∞∑
x=0

Λn(x)
〈
p
qρ
〉

(x) zx.

The first moment
〈
p
qλ
〉
0

satisfies the hypergeometric ODE[〈
p
qσ
〉

(ϑ)− z
〈
p
qτ
〉

(ϑ)
] [〈

p
qλ
〉
0

]
= 0,

where 〈
p
qσ
〉

(ϑ) = ϑ (ϑ+ b) ,
〈
p
qτ
〉

(ϑ) = (ϑ+ a) .

We will also use the notation〈
p
qΦ
〉
n

[µ] = (µ+ b)µn+1 − z (µ+ a) (µ+ 1)n ,

and 〈
p
qΨ
〉
n

= Υn+1 (b)− zΥn (a) ,

which allow us to write the recurrences for the standard and modified mo-
ments as

〈
p
qΦ
〉
n

[µ] = 0 and
〈
p
qΨ
〉
n

[ν] = 0 respectively.
We define the upper moment transformation Ωα by

Ωα
[〈

p
qλ
〉
0

]
= αλ̃0,
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where αλ̃0 (z) is a solution of the hypergeometric ODE

[ϑ (ϑ+ b)− z (ϑ+ α) (ϑ+ a)] [y] = 0. (60)

From (25) and (60), we see that the transformed standard moments αµ̃n
satisfy the recurrence

(µ+ b)µn+1 − z (µ+ α) (µ+ a) (µ+ 1)n = 0,

and from (49) and (60), we see that the transformed modified moments αν̃n
satisfy the recurrence

[Υn+1 (b)− zΥn (a, α)] [ν] = 0. (61)

Using (47), we can rewrite (61) as

[Υn+1 (b)− zΥn+1 (a)− z (n+ α) Υn (a)] [ν] = 0.

In a similar way, we can define the lower moment transformation Ωβ by

Ωβ

[〈
p
qλ
〉
0

]
= βλ̃0,

where βλ̃0 (z) is a solution of the hypergeometric ODE

[(ϑ+ β − 1)ϑ (ϑ+ b)− z (ϑ+ a)] [y] = 0. (62)

From (25) and (62), we see that the transformed standard moments βµ̃n
satisfy the recurrence

(µ+ β − 1) (µ+ b)µn+1 − z (µ+ a) (µ+ 1)n = 0,

and from (49) and (62), we see that the transformed modified moments β ν̃n
satisfy the recurrence

[Υn+1 (b, β − 1)− zΥn (a)] [ν] = 0. (63)

Using (47), we can rewrite (63) as

[Υn+2 (b) + (n+ β) Υn+1 (b)− zΥn (a)] [ν] = 0.
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Of course, we can compose two (or more) of the basic transformations Ωα

and Ωβ, and in this case we will write

Ωα ◦ Ωβ = Ωβ ◦ Ωα = Ωα
β ,

and
Ωα
β

[〈
p
qλ
〉
0

]
= α

β λ̃0,

where α
β λ̃0 (z) is a solution of the hypergeometric ODE

[(ϑ+ β − 1)ϑ (ϑ+ b)− z (ϑ+ α) (ϑ+ a)] [λ] = 0, (64)

the transformed standard moments α
β µ̃n satisfy the recurrence

(µ+ β − 1) (µ+ b)µn+1 − z (µ+ α) (µ+ a) (µ+ 1)n = 0, (65)

and the transformed modified moments α
β ν̃n satisfy the recurrence

[Υn+2 (b) + (n+ β) Υn+1 (b)− zΥn+1 (a)− z (n+ α) Υn (a)] [ν] = 0. (66)

Let’s consider the composition (Sn + c)
[〈

p
qΦ
〉
n

]
. We have

(Sn + c)
[〈

p
qΦ
〉
n

]
[µ] = (Sn + c)

[
(µ+ b)µn+1 − z (µ+ a) (µ+ 1)n

]
= (µ+ b)µn+2 − z (µ+ a) (µ+ 1)n+1 + c (µ+ b)µn+1 − zc (µ+ a) (µ+ 1)n

= (µ+ c) (µ+ b)µn+1 − z (µ+ c+ 1) (µ+ a) (µ+ 1)n = Ωc+1
c+1

[〈
p
qΦ
〉
n

]
[µ] ,

and thus
(Sn + c− 1)

[〈
p
qΦ
〉
n

]
= Ωc

c

[〈
p
qΦ
〉
n

]
. (67)

If we compose two of these linear factors, we get

(Sn + c− 1) (Sn + c)
[〈

p
qΦ
〉
n

]
[µ] = Ωc,c+1

c,c+1

[〈
p
qΦ
〉
n

]
[µ]

= (µ+ c− 1) (µ+ c) (µ+ b)µn+1 − z (µ+ c) (µ+ c+ 1) (µ+ a) (µ+ 1)n

=
[
(µ+ c− 1) (µ+ b)µn+1 − z (µ+ c+ 1) (µ+ a) (µ+ 1)n

]
(µ+ c) ,

and hence,

(Sn + c− 1) (Sn + c)
[〈

p
qΦ
〉
n

]
= Ωc+1

c

[〈
p
qΦ
〉
n

]
◦ (Sn + c) . (68)
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Finally, we note that

Ωc
c+1

[〈
p
qΦ
〉
n

]
[µ] = (µ+ c) (µ+ b)µn+1 − z (µ+ c) (µ+ a) (µ+ 1)n

=
[
(µ+ b)µn+1 − z (µ+ a) (µ+ 1)n

]
(µ+ c) ,

and therefore
Ωc
c+1

[〈
p
qΦ
〉
n

]
=
[〈

p
qΦ
〉
n

]
◦ (Sn + c) . (69)

Similarly, we have

(Sn + n+ c)
[〈

p
qΨ
〉
n

]
= Υn+2 (b)− zΥn+1 (a) + (n+ c) Υn+1 (b)− z (n+ c) Υn (a)

= Υn+1 (b, c− 1)− zΥn (a, c) ,

and comparing with (66) we conclude that

(Sn + n+ c)
[〈

p
qΨ
〉
n

]
= Ωc

c

[〈
p
qΨ
〉
n

]
. (70)

Also, using (48), we obtain

(Sn + n+ c+ 1) (Sn + n+ c)
[〈

p
qΨ
〉
n

]
= Ωc,c+1

c,c+1

[〈
p
qΨ
〉
n

]
= Υn+1 (b, c− 1, c)− zΥn (a, c, c+ 1)

= [Υn+1 (b, c− 1)− zΥn (a, c+ 1)] ◦Υn (a, c) ,

and hence

(Sn + n+ c+ 1) (Sn + n+ c)
[〈

p
qΨ
〉
n

]
= Ωc+1

c

[〈
p
qΨ
〉
n

]
◦ (Sn + n+ c) .

(71)
Finally,

Ωc
c+1

[〈
p
qΨ
〉
n

]
= Υn+1 (b, c)− zΥn (a, c) = [Υn+1 (b)− zΥn (a)] ◦Υn (c) ,

and therefore
Ωc
c+1

[〈
p
qΨ
〉
n

]
=
〈
p
qΨ
〉
n
◦ (Sn + n+ c) . (72)

It follows that the special cases α = β and α = β ± 1 lead to some
interesting transformations. We will study them in detail in the next sections.
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3.1 The Christoffel transformation

The Christoffel transformation is defined by〈
p
qλ

C
〉
0

= Ω−ω+1
−ω

[〈
p
qλ
〉
0

]
.

From (64), we see that
〈
p
qλ

C
〉
0

is a solution of the ODE

[(ϑ− ω − 1)ϑ (ϑ+ b)− z (ϑ− ω + 1) (ϑ+ a)] [λ] = 0, (73)

and admits the hypergeometric representation

〈
p
qλ

C
〉
0

(z) = −ω p+1Fq+1

(
a,−ω + 1
b + 1,−ω ; z

)
. (74)

The reason for choosing this particular solution is the identity

−ω (−ω + 1)x
(−ω)x

= x− ω (75)

which shows that〈
p
qL

C
〉

[u] =
〈
p
qL
〉

[(x− ω)u (x)] , u ∈ K [x] . (76)

This transformation was introduced by Elwin Bruno Christoffel (1829–1900)
in his pioneering work [26].

Clearly we must have〈
p
qλ

C
〉
0

=
〈
p
qL
〉

[x− ω] = (ϑ− ω)
[〈

p
qλ
〉
0

]
6= 0,

and since the operator ϑ− ω annihilates any multiple of zω, we need〈
p
qλ
〉
0

(z) 6= ηzω, η ∈ K.

From (54) and (76), we get〈
p
qλn
〉

=
〈
p
qL

C
〉

[Λn] =
〈
p
qL
〉

[(x− ω) Λn] =
〈
p
qλ
〉
n+1

+ (κn − ω)
〈
p
qλn
〉
,

and in particular 〈
p
qµ

C
〉
n

=
〈
p
qµ
〉
n+1
− ω

〈
p
qµ
〉
n
, (77)
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and 〈
p
qν

C
〉
n

=
〈
p
qν
〉
n+1

+ (n− ω)
〈
p
qν
〉
n
. (78)

Note that, 〈
p
qλ

C
〉
0

=
〈
p
qµ
〉
1
− ω

〈
p
qµ
〉
0

=
〈
p
qν
〉
1
− ω

〈
p
qν
〉
0
. (79)

From (65), we see that the standard moments
〈
p
qµ

C
〉
n

satisfy the recur-

rence
〈
p
qΦ

C
〉
n

[〈
p
qµ

C
〉]

= 0, where〈
p
qΦ

C
〉
n

[µ] = (µ− ω − 1) (µ+ b)µn+1 − z (µ− ω + 1) (µ+ a) (µ+ 1)n ,

and from (66), we see that the modified moments
〈
p
qν

C
〉
n

satisfy the recur-

rence
〈
p
qΨ

C
〉
n

[〈
p
qν

C
〉]

= 0, where〈
p
qΨ

C
〉
n

= Υn+2 (b) + (n− ω) Υn+1 (b)− zΥn+1 (a)− z (n− ω + 1) Υn (a) .
(80)

Remark 10 Using (68), we obtain

(Sn − ω − 1) (Sn − ω)
[〈

p
qΦ
〉
n

]
=
〈
p
qΦ

C
〉
n
◦ (Sn − ω) ,

and therefore〈
p
qΦ

C
〉
n

[〈
p
qµ
〉
n+1
− ω

〈
p
qµ
〉
n

]
=
〈
p
qΦ

C
〉
n

[
(Sn − ω)

[〈
p
qµ
〉]]

= (Sn − ω − 1) (Sn − ω)
[〈

p
qΦ
〉
n

] [〈
p
qµ
〉]

= 0 =
〈
p
qΦ

C
〉
n

[〈
p
qµ

C
〉
n

]
,

in agreement with (77).
Similarly, using (71), we see that

(Sn + n− ω + 1) (Sn + n− ω)
[〈

p
qΨ
〉
n

]
=
〈
p
qΨ

C
〉
n
◦ (Sn + n− ω) ,

and hence〈
p
qΨ

C
〉
n

[〈
p
qν
〉
n+1

+ (n− ω)
〈
p
qν
〉
n

]
=
〈
p
qΨ

C
〉
n

[
(Sn + n− ω)

[〈
p
qν
〉]]

= (Sn + n− ω + 1) (Sn + n− ω)
[〈

p
qΨ
〉
n

] [〈
p
qν
〉]

= 0 =
〈
p
qΨ

C
〉
n

[〈
p
qν

C
〉
n

]
,

in agreement with (80).
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Using (35) and (77), we obtain the exponential generating function of the
transformed standard moments

∞∑
n=0

〈
p
qµ

C
〉
n

(z)
tn

n!
=
〈
p
qλ

C
〉
0

(
zet
)

=
〈
p
qµ
〉
1

(
zet
)
− ω

〈
p
qµ
〉
0

(
zet
)
,

while from (52) and (78) we get the exponential generating function of the
transformed modified moments

∞∑
n=0

〈
p
qν

C
〉
n

(z)
tn

n!
=
〈
p
qλ

C
〉
0

(z + zt) =
〈
p
qν
〉
1

(z + zt)− ω
〈
p
qν
〉
0

(z + zt) .

3.2 The Geronimus transformation

The Geronimus transformation is defined by〈
p
qλ

G
〉
0

= Ω−ω−ω+1

[〈
p
qλ
〉
0

]
, ω /∈ N0.

From (64), we see that
〈
p
qλ

G
〉
0

(z) is a solution of the ODE

ϑ (ϑ+ b) (ϑ− ω)
[〈

p
qλ

G
〉
0

]
= z (ϑ+ a) (ϑ− ω)

[〈
p
qλ

G
〉
0

]
, (81)

and admits the hypergeometric representation

〈
p
qλ

G
〉
0

(z) = −ω−1 p+1Fq+1

(
a,−ω

b + 1,−ω + 1
; z

)
.

Remark 11 The function zω is also a solution of (81), and therefore we
could define (as some authors do)

〈
p
qλ

G
〉
0

(z) = −ω−1 p+1Fq+1

(
a,−ω

b + 1,−ω + 1
; z

)
+ ηzω

where η is an arbitrary constant.

The identity (75) shows that

〈
p
qL

G
〉

[u] =
〈
p
qL
〉 [ u (x)

x− ω

]
, u ∈ K [x] , (82)
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and 〈
p
qλ

G
〉
0

(z) =
〈
p
qL
〉 [ 1

x− ω

]
(z) = −

〈
p
qS
〉

(ω; z) , (83)

where
〈
p
qS
〉

(ω; z) is the Stieltjes transform of the functional
〈
p
qL
〉
. Since

(ϑ− ω)
[〈

p
qλ

G
〉
0

]
=
〈
p
qL
〉 [

(x− ω)
1

x− ω

]
=
〈
p
qL
〉

[1] =
〈
p
qλ
〉
0
,

we need 〈
p
qS
〉

(ω; z) 6= ηzω, η ∈ K.

This transformation was introduced by Yakov Lazarevich Geronimus (1898–
1984) in his groundbreaking article [55].

Remark 12 If we use the integral representation [89, 16.5.2]

p+1Fq+1

(
a, α
b, β

; z

)

=
Γ (β)

Γ (α) Γ (β − α)

1∫
0

tα−1 (1− t)β−α−1 pFq

(
a
b

; zt

)
dt,

we obtain 〈
p
qλ

G
〉
0

(z) =

1∫
0

t−ω−1
〈
p
qλ
〉
0

(zt) dt. (84)

If we use (84) and formally integrate term by term, we get

〈
p
qλ

G
〉
0

(z) =
∞∑
x=0

(a)x
(b + 1)x

zx

x!

1∫
0

tx−ω−1dt =
∞∑
x=0

1

x− ω
(a)x

(b + 1)x

zx

x!
,

in agreement with (82). Extending (84), we conclude that

〈
p
qλ

G
〉
n

(z) =

1∫
0

t−ω−1
〈
p
qλ
〉
n

(zt) dt, n ∈ N0. (85)
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From (54) and (82), we see that〈
p
qλ

G
〉
n+1

+ (κn − ω)
〈
p
qλ

G
〉
n

=
〈
p
qL

G
〉

[(x− ω) Λn (x)] =
〈
p
qL
〉

[Λn (x)] =
〈
p
qλ
〉
n
,

and in particular 〈
p
qµ

G
〉
n+1
− ω

〈
p
qµ

G
〉
n

=
〈
p
qµ
〉
n
, (86)

and 〈
p
qν

G
〉
n+1

+ (n− ω)
〈
p
qν

G
〉
n

=
〈
p
qν
〉
n
. (87)

Using (55), we get〈
p
qλ

G
〉
n

= Λn (ω)

(〈
p
qλ
〉
0

+
n−1∑
k=0

〈
p
qλ
〉
k

Λk+1 (ω)

)
,

where care needs to be exercised if Λk (ω) = 0 for some k.
From (69), we have〈

p
qΦ

G
〉
n

[µ] =
〈
p
qΦ
〉
n
◦ (Sn − ω) [µ] , (88)

in agreement with (86), since〈
p
qΦ
〉
n

[〈
p
qµ

G
〉
n+1
− ω

〈
p
qµ

G
〉
n

]
=
〈
p
qΦ
〉
n
◦ (Sn − ω)

[〈
p
qµ

G
〉]

=
〈
p
qΦ

G
〉
n

[〈
p
qµ

G
〉]

= 0 =
〈
p
qΦ
〉
n

[〈
p
qµ
〉]
.

From (72), we get
〈
p
qΨ

G
〉
n

[〈
p
qν

G
〉]

= 0, where〈
p
qΨ

G
〉
n

=
〈
p
qΨ
〉
n
◦ (Sn + n− ω) , (89)

in agreement with (87), since〈
p
qΨ
〉
n

[〈
p
qν

G
〉
n+1

+ (n− ω)
〈
p
qν

G
〉
n

]
=
〈
p
qΨ
〉
n
◦ (Sn + n− ω)

[〈
p
qν

G
〉
n

]
=
〈
p
qΨ

G
〉
n

[〈
p
qν

G
〉
n

]
= 0 =

〈
p
qΨ
〉
n

[〈
p
qν
〉
n

]
.

Using (35) and (83), we obtain the exponential generating function of〈
p
qµ

G
〉
n

∞∑
n=0

〈
p
qµ

G
〉
n

(z)
tn

n!
=
〈
p
qλ

G
〉
0

(
zet
)

= −
〈
p
qS
〉 (
ω; zet

)
,

and for the transformed modified moments
〈
p
qν

G
〉
n

we get

∞∑
n=0

〈
p
qν

G
〉
n

tn

n!
=
〈
p
qλ

G
〉
0

(z + zt) = −
〈
p
qS
〉

(ω; z + zt) .
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3.3 The Uvarov transformation

Let’s consider the composite transformations (Christoffel-Geronimus)(
Ω−ω1−ω ◦ Ω1−ω

−ω
) [〈

p
qλ
〉
0

]
,

and (Geronimus-Christoffel)(
Ω1−ω
−ω ◦ Ω−ω1−ω

) [〈
p
qλ
〉
0

]
.

We see that in either case, the transformed first moment
〈
p
qλ

U
ω

〉
0

is a solution
of the ODE

(ϑ− ω) (ϑ− ω − 1)ϑ (ϑ+ b)
[〈

p
qλ

U
ω

〉
0

]
= z (ϑ− ω) (ϑ− ω + 1) (ϑ+ a)

[〈
p
qλ

U
ω

〉
0

] , (90)

which can be written as

(ϑ− ω) (ϑ− ω − 1)
[〈
p
qσ
〉

(ϑ)− z
〈
p
qτ
〉

(ϑ)
] [〈

p
qλ

U
ω

〉
0

]
= 0. (91)

Clearly,
〈
p
qλ
〉
0

is a solution of (91). If we set
〈
p
qλ

U
ω

〉
0

(z) = zω, we have[〈
p
qσ
〉

(ϑ)− z
〈
p
qτ
〉

(ϑ)
]

[zω] =
〈
p
qσ
〉

(ω) zω −
〈
p
qτ
〉

(ω) zω+1, (92)

and therefore

(ϑ− ω) (ϑ− ω − 1)
[〈
p
qσ
〉

(ϑ)− z
〈
p
qτ
〉

(ϑ)
] [〈

p
qλ

U
ω

〉
0

]
= (ϑ− ω) (ϑ− ω − 1)

[〈
p
qσ
〉

(ω) zω −
〈
p
qτ
〉

(ω) zω+1
]

= 0.

Thus, the linear combination〈
p
qλ

U
ω

〉
0

(z) =
〈
p
qλ
〉
0

(z) + ηzω, η ∈ K, (93)

is a solution of (91).
We define the Uvarov transformation by〈

p
qL

U
ω

〉
[u] =

〈
p
qL
〉

[u] + ηu (ω) zω, u ∈ K [x] ,

which is well defined as long as〈
p
qλ
〉
0

(z) 6= −ηzω.
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This transformation was introduced by Vasilĭı Borisovich Uvarov (1929–1997)
in his monumental paper [110].

From (67), we see that the standard moments
〈
p
qµ

U
ω

〉
n

satisfy〈
p
qΦ

U
ω

〉
n

= (Sn − ω − 1) (Sn − ω)
[〈

p
qΦ
〉
n

]
, (94)

and from (70), we have〈
p
qΨ

U
ω

〉
n

= (Sn + n− ω + 1) (Sn + n− ω)
[〈

p
qΨ
〉
n

]
. (95)

If
〈
p
qσ
〉

(ω) = 0, then we see from (92) that[〈
p
qσ
〉

(ϑ)− z
〈
p
qτ
〉

(ϑ)
]

[zω] = −
〈
p
qτ
〉

(ω) zω+1

and therefore the transformed moment
〈
p
qλ

U
ω

〉
0

satisfies the reduced ODE

(ϑ− ω − 1)
[〈
p
qσ
〉

(ϑ)− z
〈
p
qτ
〉

(ϑ)
] [〈

p
qλ

U
ω

〉
0

]
= 0. (96)

Similarly, If
〈
p
qτ
〉

(ω) = 0, then we see from (92) that[〈
p
qσ
〉

(ϑ)− z
〈
p
qτ
〉

(ϑ)
]

[zω] =
〈
p
qσ
〉

(ω) zω

and therefore the transformed moment
〈
p
qλ

U
ω

〉
0

satisfies the reduced ODE

(ϑ− ω)
[〈
p
qσ
〉

(ϑ)− z
〈
p
qτ
〉

(ϑ)
] [〈

p
qλ

U
ω

〉
0

]
= 0. (97)

Comparing with (64), we can interpret
〈
p
qλ

U
ω

〉
0

as〈
p
qλ

U
ω

〉
0

= Ω−ω−ω

[〈
p
qλ
〉
0

]
,
〈
p
qσ
〉

(ω) = 0, (98)

and 〈
p
qλ

U
ω

〉
0

= Ω1−ω
1−ω

[〈
p
qλ
〉
0

]
,
〈
p
qτ
〉

(ω) = 0. (99)

From (65) and (98), we get〈
p
qΦ

U
ω

〉
n

= (Sn − ω − 1)
[〈

p
qΦ
〉
n

]
,
〈
p
qσ
〉

(ω) = 0, (100)
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while (66) gives〈
p
qΨ

U
ω

〉
n

= (Sn + n− ω)
[〈

p
qΨ
〉
n

]
,
〈
p
qσ
〉

(ω) = 0. (101)

From (65) and (99), we have〈
p
qΦ

U
ω

〉
n

= (Sn − ω)
[〈

p
qΦ
〉
n

]
,
〈
p
qτ
〉

(ω) = 0, (102)

while (66) gives〈
p
qΨ

U
ω

〉
n

= (Sn + n− ω + 1)
[〈

p
qΨ
〉
n

]
,
〈
p
qτ
〉

(ω) = 0. (103)

Finally, we have〈
p
qλ

U
ω

〉
n

=
〈
p
qL

U
ω

〉
[Λn] =

〈
p
qλn
〉

+ ηΛn (ω) zω, (104)

from which we obtain the exponential generating functions of
〈
p
qµ

U
ω

〉
n

(z)

∞∑
n=0

〈
p
qµ

U
ω

〉
n

(z)
tn

n!
=
〈
p
qµ
〉
0

(
zet
)

+ η
(
zet
)ω
,

and
〈
p
qν

U
ω

〉
n

(z)

∞∑
n=0

〈
p
qν

U
ω

〉
n

(z)
tn

n!
=
〈
p
qν
〉
0

(z + zt) + η (z + zt)ω .

3.4 Truncated linear functionals

Let N ∈ N0 and the truncated functional
〈
p
qL

T
〉

be defined by

〈
p
qL

T
〉

[u] =
N∑
x=0

u (x)
〈
p
qρ
〉

(x) zx, u ∈ K [x] , (105)

as long as 〈
p
qλ

T
〉
0

(z) =
N∑
x=0

〈
p
qρ
〉

(x) zx 6= 0.
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Remark 13 If
〈
p
qτ
〉

(N) = 0, then the functional (59) is already a truncated
functional, since

(−N)x = 0, x > N.

Therefore, we assume that
〈
p
qτ
〉

(N) 6= 0.

Using the Pearson equation (18), we have[〈
p
qσ
〉

(ϑ)− z
〈
p
qτ
〉

(ϑ)
] [〈

p
qλ

T
〉
0

]
=

N∑
x=0

[〈
p
qσ
〉

(x)
〈
p
qρ
〉

(x) zx −
〈
p
qτ
〉

(x)
〈
p
qρ
〉

(x) zx+1
]

=
N∑
x=0

〈
p
qσ
〉

(x)
〈
p
qρ
〉

(x) zx −
N+1∑
x=1

〈
p
qτ
〉

(x− 1)
〈
p
qρ
〉

(x− 1) zx

= −
〈
p
qτ
〉

(N)
〈
p
qρ
〉

(N)
zN+1

N !
,

and we conclude that λT0 (z) satisfies the ODE

(ϑ−N − 1)
[〈
p
qσ
〉

(ϑ)− z
〈
p
qτ
〉

(ϑ)
] [〈

p
qλ

T
〉
0

]
= 0. (106)

Using (9) in (106), we obtain

(ϑ−N − 1)
〈
p
qσ
〉

(ϑ)
[〈

p
qλ

T
〉
0

]
= z (ϑ−N)

〈
p
qτ
〉

(ϑ)
[〈

p
qλ

T
〉
0

]
,

and therefore we have〈
p
qλ

T
〉
0

= Ω−N−N

[〈
p
qλ
〉
0

]
, N ∈ N0. (107)

Remark 14 If we use the formula [89, 16.2.4]

N∑
k=0

(a)k
(b)k

zk

k!
=
zN

N !

(a)N
(b)N

q+2Fp

(
−N, 1− b−N, 1

1− a−N ;
(−1)q+p+1

z

)
, (108)

we obtain the hypergeometric representation

〈
p
qλ

T
〉
0

=
zN

N !

(a)N
(b + 1)N

q+2Fp

(
−N,−b−N, 1

1− a−N ;
(−1)q+p+1

z

)
. (109)
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Using the integral representation [89, 16.5.3]

p+1Fq

(
a, α
b

;
x

z

)
=

zα

Γ (α)

∞∫
0

tα−1 pFq

(
a
b

;xt

)
e−ztdt (110)

with α = 1, we see that
〈
p
qλ

T
〉
0

can be represented as a Laplace transform

〈
p
qλ

T
〉
0

(z) =
zN+1

N !

(a)N
(b + 1)N

∞∫
0

q+1Fp

(
−N,−b−N

1− a−N ; (−1)q+p+1 t

)
e−ztdt.

(111)

From (67) and (107), we get〈
p
qΦ

T
〉
n

= (Sn −N − 1)
[〈

p
qΦ
〉
n

]
, (112)

while (70) gives 〈
p
qΨ

T
〉
n

= (Sn + n−N)
[〈

p
qΨ
〉
n

]
. (113)

Remark 15 Note that since
N∑
x=0

φn (x)
(a)x

(b + 1)x

zx

x!
=

N∑
x=n

(a)x
(b + 1)x

zx

(x− n)!
=

N−n∑
x=0

(a)x+n
(b + 1)x+n

zx+n

x!
,

we have 〈
p
qν

T
〉
n

(z) = zn
(a)n

(b + 1)n

N−n∑
x=0

(a + n)x
(b + 1 + n)x

zx

x!
. (114)

Thus, we can use (108) and obtain〈
p
qν

T
〉
n

(z) =
(a)N

(b + 1)N

zN

(N − n)!
q+2Fp

(
n−N,−b−N, 1

1− a−N ;
(−1)q+p+1

z

)
.

(115)
In particular,〈

p
qν

T
〉
N

(z) =
(a)N

(b + 1)N
zN ,

〈
p
qν

T
〉
n

(z) = 0, n > N.

Using (110) and (115), we get the integral representation

〈
p
qν

T
〉
n

(z) =
(a)N

(b + 1)N

zN+1

(N − n)!

∞∫
0

q+1Fp

(
n−N,−b−N

1− a−N ; (−1)q+p+1 t

)
e−ztdt.

(116)
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4 Examples

In this section, we will illustrate the application of the formulas that we
have derived. We will consider all the polynomials of class s ≤ 2 and also
look at the subclasses obtained by applying one or more of the moment
transformations from the previous section.

4.1 Polynomials of class 0 (discrete classical polynomi-
als)

The discrete classical orthogonal polynomials (Charlier, Meixner, Krawtchouk)
first appeared in the literature in the years 1905–1934, and were considered at
the time as a generalization of the continuous classical polynomials (Hermite,
Laguerre, Jacobi).

The last member of this class (Hahn polynomials) were introduced by
Chebyshev (1875) and Hahn (1949), but we don’t consider them by them-
selves since they are a special case (z = 1) of the Generalized Hahn polyno-
mials (see Section 4.2.4).

We will use the notation (p, q;N) to indicate that one of the upper param-
eters in the hypergeometric representation of the first moment is a negative
integer −N, N ∈ N.

For additional references, see [11], [22], [33], [34], [51], [88], [96].

4.1.1 Polynomials of type (0, 0) (Charlier polynomials)

Linear functional 〈
0
0L
〉

[u] =
∞∑
x=0

u (x)
zx

x!
.

First moment 〈
0
0λ
〉
0

(z) = 0F0

(
−
− ; z

)
= ez.

ODE satisfied by the first moment

(ϑ− z)
[〈

0
0λ
〉
0

]
= 0. (117)

Standard moments recurrence operator〈
0
0Φ
〉
n

[µ] = µn+1 − z (µ+ 1)n . (118)
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Recurrence of the standard moments

〈
0
0µ
〉
n+1

= z

n∑
k=0

(
n

k

)〈
0
0µ
〉
k
.

Representation of the standard moments in terms of the polynomials
Qn (z) 〈

0
0µ
〉
n

=
〈
0
0µ
〉
0

〈
0
0Q
〉
n
, n ≥ 0,

with 〈
0
0Q
〉
n+1

= (ϑ+ z)
〈
0
0Q
〉
n
,
〈
0
0Q
〉
0

= 1.

Hypergeometric representation of the modified moments

〈
0
0ν
〉
n

(z) = zn 0F0

(
−
− ; z

)
= znez. (119)

Remark 16 Using (58) and (119), we have

〈
0
0µ
〉
n

(z) = ez
n∑
k=0

{
n

k

}
zk,

and therefore 〈
0
0Q
〉
n

(z) =
n∑
k=0

{
n

k

}
zk.

The polynomials 〈00Q〉n are known as the Touchard (or exponential, or Bell)
polynomials [106].

Modified moments recurrence operator〈
0
0Ψ
〉
n

= Υn+1 (∅)− zΥn (∅) = Sn − z.

Remark 17 The Charlier polynomials have the hypergeometric representa-
tion [89, 18.20.8]

〈
0
0P
〉
n

(x; z) = 2F0

(
−n,−x
− ;−z−1

)
. (120)

The Charlier polynomials were introduced by Carl Vilhelm Ludwig Char-
lier (1862–1934) in his paper [23].
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4.1.2 Polynomials of type (1, 0) (Meixner polynomials)

Linear functional 〈
1
0L
〉

[u] =
∞∑
x=0

u (x) (a)x
zx

x!
.

First moment 〈
1
0λ
〉
0

(z) = 1F0

(
a
− ; z

)
= (1− z)−a .

The Meixner polynomials can be obtained from the Charlier polynomials
by means of the transformation〈

1
0λ
〉
0

= Ωa
[〈

0
0λ
〉
0

]
.

Using (60) and (117), we obtain the ODE satisfied by the first moment

[ϑ− z (ϑ+ a)]
[〈

1
0λ
〉
0

]
= 0. (121)

Standard moments recurrence operator〈
1
0Φ
〉
n

[µ] = µn+1 − z (µ+ a) (µ+ 1)n .

Standard moments recurrence

〈
1
0µ
〉
n+1

=
z

1− z

[
a
〈
1
0µ
〉
n

+
n−1∑
k=0

(
n

k

)(〈
1
0µ
〉
k+1

+ a
〈
1
0µ
〉
k

)]
.

Representation of the standard moments in terms of the polynomials
Qn (z) 〈

1
0µ
〉
n

= (1− z)−a−n
〈
1
0Q
〉
n

(z) , n ≥ 0,

with 〈
1
0Q
〉
n+1

= [(1− z)ϑ+ (n+ a) z]
〈
1
0Q
〉
n
,
〈
1
0Q
〉
0

= 1.

Hypergeometric representation of the modified moments〈
1
0ν
〉
n

(z) = zn (a)n 1F0

[
a+ n
− ; z

]
,

and therefore 〈
1
0ν
〉
n

(z) = zn (a)n (1− z)−a−n . (122)

42



Remark 18 Using (58) and (122), we have

〈
1
0µ
〉
n

(z) = (1− z)−a
n∑
k=0

{
n

k

}
(a)k

(
z

1− z

)k
,

and therefore 〈
1
0Q
〉
n

(z) =
n∑
k=0

{
n

k

}
(a)k zk (1− z)n−k .

Using (35), we get
∞∑
n=0

〈
1
0µ
〉
n

tn

n!
=
(
1− zet

)−a
,

and hence
∞∑
n=0

〈10Q〉n
n!

(
t

1− z

)n
=

(
1− z

1− zet

)a
.

or
∞∑
n=0

〈
1
0Q
〉
n

tn

n!
=

(
1− z

1− ze(1−z)t

)a
.

This shows that the polynomials 〈10Q〉n (z) are related to the Eulerian poly-
nomials, defined by the exponential generating function [21]

∞∑
n=0

An
tn

n!
=

1− z
et − z

.

Modified moments recurrence operator〈
1
0Ψ
〉
n

= Υn+1 (∅)− zΥn (a) = (1− z)Sn − z (n+ a) .

Remark 19 The Meixner polynomials have the hypergeometric representa-
tion [89, 18.20.7]

〈
1
0P
〉
n

(x; z) = 2F1

(
−n,−x

a
; 1− z−1

)
.

The Meixner polynomials were introduced by Josef Meixner (1908 – 1994)
in his paper [86], although Ladislav Truksa (1891–?) already considered them
in his 1931 papers [107], [108], [109] (see [20]).
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4.1.3 Polynomials of type (1, 0;N) (Krawtchouk polynomials)

These polynomials are a particular case of the Meixner polynomials, with
−a = N ∈ N.

Linear functional 〈
1;N
0 L

〉
[u] =

N∑
x=0

u (x) (−N)x
zx

x!
.

First moment 〈
1;N
0 λ

〉
0

(z) = (1− z)N .

ODE satisfied by the first moment

[ϑ− z (ϑ−N)]
[〈

1;N
0 λ

〉
0

]
= 0.

Standard moments recurrence operator〈
1;N
0 Φ

〉
n

=
〈
1;N
0 µ

〉n+1

− z
(〈

1;N
0 µ

〉
−N

)(〈
1;N
0 µ

〉
+ 1
)n
.

Representation of the standard moments in terms of the polynomials
Qn (z) 〈

1;N
0 µ

〉
n

= (1− z)N−n
〈
1
0Q
〉
n

(z) , n ≥ 0,

with 〈
1
0Q
〉
n+1

= [(1− z)ϑ+ (n−N) z]
〈
1
0Q
〉
n
,
〈
1
0Q
〉
0

= 1.

Modified moments〈
1;N
0 ν

〉
n

(z) = zn (−N)n (1− z)N−n .

Modified moments recurrence operator〈
1;N
0 Ψ

〉
n

= Υn+1 (∅)− zΥn (−N) = (1− z)Sn − z (n−N) .

The Krawtchouk polynomials were introduced by Mykhailo Pylypovych
Kravchuk (1892 –1942) in his paper [66].
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4.2 Polynomials of class 1

In [39], we classified the discrete semiclassical orthogonal polynomials of class
s = 1. There are 4 main families and 8 subfamilies, obtained by applying
rational spectral transformations to the Charlier and Meixner polynomials.

To help the reader with some of the results, we note the formula

Υn (c) = S2
n + [1 + e1 (c + n)]Sn + e2 (c + n) , c = (c1, c2) ,

where the elementary symmetric polynomials were defined in (26).
For additional references, see [99], [98], [84], [15], [49].

4.2.1 Polynomials of type (0, 1) (Generalized Charlier polynomi-
als)

Linear functional

〈
0
1L
〉

[u] =
∞∑
x=0

u (x)
1

(b+ 1)x

zx

x!
.

First moment〈
0
1λ
〉
0

(z) = 0F1

[
−

b+ 1
; z

]
= Γ (b+ 1) z−

b
2 Ib

(
2
√
z
)
,

where Iν (z) is the modified Bessel function of the first kind [89, 10.25.2].
The Generalized Charlier polynomials can be obtained from the Charlier

polynomials by means of the transformation〈
0
1λ
〉
0

= Ωb+1

[〈
0
0λ
〉
0

]
.

Using (62) and (117), we obtain the ODE satisfied by the first moment

[ϑ (ϑ+ b)− z]
[〈

0
1λ
〉
0

]
= 0. (123)

Standard moments recurrence operator〈
0
1Φ
〉
n

[µ] = (µ+ b)µn+1 − z (µ+ 1)n .

Standard moments recurrence〈
0
1µ
〉
n+2

= −b
〈
0
1µ
〉
n+1

+ z
n∑
k=0

(
n

k

)〈
0
1µ
〉
k
.
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In particular, 〈
0
1µ
〉
2

= z
〈
0
1µ
〉
0
− b
〈
0
1µ
〉
1
.

Representation of the standard moments in terms of the vector polyno-

mials
−→
Qn (z) 〈

0
1µ
〉
n

=
〈
0
1

−→
Q
〉
n
·
〈
0
1
−→µ
〉
n
,

with 〈
0
1

−→
Q
〉
n+1

=
(
ϑ+

〈
0
1M
〉) 〈

0
1

−→
Q
〉
n
,
〈
0
1

−→
Q
〉
0

= −→ε0 ,

and 〈
0
1M
〉

=

[
0 z
1 −b

]
.

Hypergeometric representation of the modified moments〈
0
1ν
〉
n

(z) =
zn

(b+ 1)n
0F1

[
−

b+ 1 + n
; z

]
.

Modified moments recurrence operator〈
0
1Ψ
〉
n

= Υn+1 (b)− zΥn (∅) = S2
n + (n+ 1 + b)Sn − z.

or, 〈
0
1Ψ
〉
n

= S2
n + (n+ 1 + b)Sn − z.

Remark 20 If we write 〈
0
1ν
〉
n

= Anhn,

then the recurrence 〈01Ψ〉n [〈01ν〉] = 0 becomes

hn+1 +
(n+ b)

A
hn −

z

A2
hn−1 = 0.

Choosing
1

A
= −2x, − z

A2
= 1,

we get
hn+1 − 2 (n+ b)xhn + hn−1 = 0. (124)

The orthogonal polynomials satisfying the 3-term recurrence relation (124)
with initial conditions

h0 = 1, h1 = 2bx
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are the modified Lommel polynomials having the hypergeometric representa-
tion

hn (x) = (b)n (2x)n 2F3

(
−n

2
,−n−1

2

b,−n, 1− b− n ;−x−2
)
.

See [32], [46], [68], [73] .

Remark 21 Another possibility is to define〈
0
1ν
〉
n

= (−1)n rn,

where the monic polynomials rn (b) satisfy the 3-term recurrence relation

brn = rn+1 − nrn + zrn−1, r−1 = 0, r0 = 1.

For additional references, see [27], [56], [102], [111].

4.2.2 Polynomials of type (1, 1) (Generalized Meixner polynomi-
als)

Linear functional 〈
1
1L
〉

[u] =
∞∑
x=0

u (x)
(a)x

(b+ 1)x

zx

x!
.

First moment 〈
1
1µ
〉
0

(z) = 1F1

[
a

b+ 1
; z

]
.

The Generalized Meixner polynomials can be obtained from the Meixner
polynomials by means of the transformation〈

1
1λ
〉
0

= Ωb+1

[〈
1
0λ
〉
0

]
.

Using (62) and (121), we obtain the ODE satisfied by the first moment

[ϑ (ϑ+ b)− z (ϑ+ a)]
[〈

1
1λ
〉
0

]
= 0. (125)

Standard moments recurrence operator〈
1
1Φ
〉
n

[µ] = (µ+ b)µn+1 − z (µ+ a) (µ+ 1)n .

Standard moments recurrence〈
1
1µ
〉
n+2

= −b
〈
1
1µ
〉
n+1

+ z

n∑
k=0

(
n

k

)(〈
1
1µ
〉
k+1

+ a
〈
1
1µ
〉
k

)
.
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In particular, 〈
1
1µ
〉
2

= az
〈
1
1µ
〉
0

+ (z − b)
〈
1
1µ
〉
1
.

Representation of the standard moments in terms of the vector polyno-

mials
−→
Qn (z) 〈

1
1µ
〉
n

=
〈
1
1

−→
Q
〉
n
·
〈
1
1
−→µ
〉
n
,

with 〈
1
1

−→
Q
〉
n+1

=
(
ϑ+

〈
1
1M
〉) 〈

1
1

−→
Q
〉
n
,
〈
1
1

−→
Q
〉
0

= −→ε0 ,

and 〈
1
1M
〉

=

[
0 az
1 z − b

]
.

Hypergeometric representation of the modified moments〈
1
1ν
〉
n

(z) = zn
(a)n

(b+ 1)n
1F1

[
a+ n

b+ 1 + n
; z

]
.

Modified moments recurrence operator〈
1
1Ψ
〉
n

= Υn+1 (b)− zΥn (a)

= S2
n + (n+ 1 + b− z)Sn − z (n+ a) .

Remark 22 If we define 〈
1
1ν
〉
n

= (−1)n rn,

then the monic polynomials rn (b) satisfy the 3-term recurrence relation

brn = rn+1 − (n− z) rn + z (n+ a− 1) rn−1.

For additional references, see [16], [27], [47].

Christoffel-Charlier polynomials The Christoffel-Charlier polynomials
[45] can be obtained from the Charlier polynomials by means of the trans-
formation 〈

0
0λ

C
〉
0

= Ω−ω+1
−ω

[〈
0
0λ
〉
0

]
.

Using (79) and (119), we have〈
0
0λ

C
〉
0

(z) = (z − ω) ez.

48



Linear functional

〈
0
0L

C
〉

[u] =
∞∑
x=0

(x− ω)u (x)
zx

x!
.

Using (73), we obtain

[ϑ (ϑ− ω − 1)− z (ϑ− ω + 1)]
[〈

0
0λ

C
〉
0

]
= 0,

which is a special case of (125) with

a = −ω + 1, b = −ω − 1.

Standard moments recurrence operator〈
0
0Φ

C
〉
n

[µ] = (µ− ω − 1)µn+1 − z (µ− ω + 1) (µ+ 1)n .

From (78) and (119), we have〈
0
0ν

C
〉
n

=
〈
0
0ν
〉
n+1

+ (n− ω)
〈
0
0ν
〉
n

= (z + n− ω) znez. (126)

Modified moments recurrence operator〈
0
0Ψ

C
〉
n

= Υn+1 (−ω − 1)− zΥn (−ω + 1)

= S2
n + (n− ω − z)Sn − z (n− ω + 1) .

Remark 23 Using (126), we see that the modified moments satisfy the first
order recurrence

〈
0
0ψ

C
〉
n

[〈
0
0ν

C
〉]

= 0, where〈
0
0ψ

C
〉
n

= (n− ω + z)Sn − z (n− ω + 1 + z) .

This agrees with the recurrence
〈
0
0Ψ

C
〉
n

[〈
0
0ν

C
〉]

= 0, since

(Sn + n+ 1− ω)
〈
0
0ψ

C
〉
n

= (n− ω + 1 + z)
〈
0
0Ψ

C
〉
n
.

Geronimus-Charlier polynomials The Geronimus-Charlier polynomi-
als can be obtained from the Charlier polynomials by means of the transfor-
mation 〈

0
0λ

G
〉
0

= Ω−ω1−ω
[〈

0
0λ
〉
0

]
, ω /∈ N0.
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Linear functional 〈
0
0L

G
〉

[u] =
∞∑
x=0

u (x)

x− ω
zx

x!
.

First moment 〈
0
0λ

G
〉
0

(z) = − 1

ω
1F1

(
−ω
−ω + 1

; z

)
.

Using (81), we obtain

[ϑ (ϑ− ω)− z (ϑ− ω)]
[〈

0
0λ

G
〉
0

]
= 0,

which is a special case of (125) with

a = −ω, b = −ω.

Standard moments recurrence operator〈
0
0Φ

G
〉
n

[µ] = (µ− ω)
〈
0
0Φ
〉
n

[µ] .

Modified moments recurrence operator〈
0
0Ψ

G
〉
n

= Υn+1 (−ω)− zΥn (−ω) =
〈
0
0Ψ
〉
n
◦Υn (−ω)

= S2
n + (n+ 1− ω − z)Sn − z (n− ω) .

Using (85) and (119), we have

〈
0
0ν

G
〉
n

(z) =

1∫
0

t−ω−1
〈
0
0ν
〉
n

(zt) dt

= zn
1∫

0

tn−ω−1eztdt = (−1)n (−z)ω γ (n− ω,−z) ,

where γ (a, z) is the incomplete gamma function defined by [89, 8.2.1]

γ (a, z) = za
1∫

0

ta−1e−ztdt.
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Reduced Uvarov Charlier polynomials Since for the Charlier polyno-
mials 〈00σ〉 (ϑ) = ϑ, we will have a reduced case for their Uvarov transfor-
mation if ω = 0. The Reduced-Uvarov-Charlier polynomials can be obtained
from the Charlier polynomials by means of the transformation〈

0
0λ

U
0

〉
0

=
〈
0
0λ
〉
0

+ η = ez + η, η ∈ K.

Linear functional

〈
0
0L

U
0

〉
[u] =

∞∑
x=0

u (x)
zx

x!
+ ηu (0) .

Using (96), we obtain

[ϑ (ϑ− 1)− zϑ]
[〈

0
0λ

U
0

〉
0

]
= 0,

which is a special case of (125) with

a = 0, b = −1.

Standard moments〈
0
0µ

U
0

〉
n

=
〈
0
0µ
〉
n

+ η × 0n =
〈
0
0µ
〉
n

+ ηδn,0.

Standard moments recurrence operator〈
ΦU

0

〉
n

= (Sn − 1) [〈Φ0〉n] .

Modified moments〈
0
0ν

U
0

〉
n

=
〈
0
0ν
〉
n

+ ηφn (0) = znez + ηδn,0.

Modified moments recurrence operator〈
0
0Ψ

U
0

〉
n

= Υn+1 (−1)− zΥn (0) = Υn (0) ◦
〈
0
0Ψ
〉
n

= S2
n + (n− z)Sn − nz.

For additional references, see [13], [44].
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Truncated Charlier polynomials The truncated Charlier polynomials
can be obtained from the Charlier polynomials by means of the transforma-
tion 〈

0
0λ

T
〉
0

= Ω−N−N
[〈

0
0λ
〉
0

]
, N ∈ N.

Linear functional 〈
0
0L

T
〉

[u] =
N∑
x=0

u (x)
zx

x!
.

First moment 〈
0
0λ

T
〉
0

(z) =
N∑
x=0

zx

x!
.

From (106), we have

[ϑ (ϑ−N − 1)− z (ϑ−N)]
[〈

0
0λ

T
〉
0

]
= 0, (127)

which is a special case of (125) with

a = −N, b = −N − 1.

Standard moments recurrence operator〈
0
0Φ

T
〉
n

= (Sn −N − 1)
[〈

0
0Φ
〉
n

]
.

Modified moments recurrence operator〈
0
0Ψ

T
〉
n

= Υn+1 (−N − 1)− zΥn (−N) = Υn (−N) ◦
〈
0
0Ψ
〉
n

= S2
n + (n−N − z)Sn − (n−N) z.

Using (116), we obtain

〈
0
0ν

T
〉
n

(z) =
zN+1

(N − n)!

∞∫
0

1F0

(
n−N
− ;−t

)
e−ztdt

=
zN+1

(N − n)!

∞∫
0

(1 + t)N−n e−ztdt = zn
Γ (N − n+ 1, z)

(N − n)!
ez,

where Γ (a, z) is the incomplete gamma function defined by [89, 8.6.5]

Γ (a, z) = zae−z
∞∫
0

(1 + t)a−1 e−ztdt.
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Comparing with (119), we conclude that〈
0
0ν

T
〉
n

(z) =
Γ (N − n+ 1, z)

(N − n)!

〈
0
0ν
〉
n

(z) , 0 ≤ n ≤ N.

For additional references, see [53].

4.2.3 Polynomials of type (2, 0;N) (Generalized Krawtchouk poly-
nomials)

Linear functional〈
2;N
0 L

〉
[u] =

N∑
x=0

u (x) (a)x (−N)x
zx

x!
, N ∈ N.

First moment 〈
2;N
0 λ

〉
0

(z) = 2F0

[
−N, a
− ; z

]
.

Remark 24 If we use the hypergeometric representation (120), we can write
the first moment in terms of the Charlier polynomials〈

2;N
0 λ

〉
0

(z) =
〈
0
0P
〉
N

(
−a;−z−1

)
.

The Generalized Krawtchouk polynomials can be obtained from the Krawtchouk
polynomials by means of the transformation〈

2;N
0 λ

〉
0

= Ωa
[〈

1;N
0 λ

〉
0

]
.

Using (60), we obtain the ODE satisfied by the first moment

[ϑ− z (ϑ+ a) (ϑ−N)]
〈
2;N
0 λ

〉
0

= 0. (128)

Standard moments recurrence operator〈
2;N
0 Φ

〉
n

[µ] = µn+1 − z (µ+ a) (µ−N) (µ+ 1)n .

Standard moments recurrence

µn+2 =
(
N − a+ z−1

)
µn+1 + aNµn

−
n−1∑
k=0

(
n

k

)
[µk+2 + (a−N)µk+1 − aNµk] .
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In particular,〈
2;N
0 µ

〉
2

= aN
〈
2;N
0 µ

〉
0

+
(
N − a+ z−1

) 〈
2;N
0 µ

〉
1
.

Representation of the standard moments in terms of the vector polyno-

mials
−→
Qn (z) 〈

2;N
0 µ

〉
n

= z−n
〈
2;N
0

−→
Q
〉
n
·
〈
2;N
0
−→µ
〉
, n ≥ 0.

From (33), we have〈
2;N
0

−→
Q
〉
n+1

= z
(
ϑ+

〈
2;N
0 M

〉
− nI

)〈
2;N
0

−→
Q
〉
n
,
〈
2;N
0

−→
Q
〉
0

= −→ε 0,

with 〈
2;N
0 M

〉
=

[
0 aN
1 N − a+ z−1

]
.

Hypergeometric representation of the modified moments〈
2;N
0 ν

〉
n

(z) = zn (a)n (−N)n 2F0

[
a+ n, n−N

− ; z

]
.

Modified moments recurrence operator〈
2;N
0 Ψ

〉
n

= Υn+1 (∅)− zΥn (a,−N) ,

or,

−z−1
〈
2;N
0 Ψ

〉
n

= S2
n +

(
1 + a−N + 2n− z−1

)
Sn + (n+ a) (n−N) .

Remark 25 If we set z−1 = x, we see that the modified moments are a fam-
ily of monic orthogonal polynomials rn (x) , satisfying the 3-term recurrence
relation

xrn = rn+1 + (a−N + 2n− 1) rn + (n+ a− 1) (n−N − 1) rn−1.
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4.2.4 Polynomials of type (2, 1) (Generalized Hahn polynomials of
type I)

Linear functional

〈
2
1L
〉

[u] =
∞∑
x=0

u (x)
(a1)x (a2)x
(b+ 1)x

zx

x!
.

First moment 〈
2
1λ
〉
0

(z) = 2F1

[
a1, a2
b+ 1

; z

]
.

The generalized Hahn polynomials of type I can be obtained from the
Meixner polynomials by means of the double transformation〈

2
1λ
〉
0

= Ωa
b+1

[〈
1
0λ
〉
0

]
.

Using (64), we obtain the ODE satisfied by the first moment

[ϑ (ϑ+ b)− z (ϑ+ a1) (ϑ+ a2)]
[〈

2
1λ
〉
0

]
= 0. (129)

Standard moments recurrence operator〈
2
1Φ
〉
n

[µ] = (µ+ b)µn+1 − z (µ+ a1) (µ+ a2) (µ+ 1)n .

Standard moments recurrence

(1− z) z−1µn+2 =
(
a1 + a2 − bz−1

)
µn+1 + a1a2µn

+
n−1∑
k=0

(
n

k

)
[µk+2 + (a1 + a2)µk+1 + a1a2µk] .

In particular,〈
2
1µ
〉
2

=
z

1− z
[
a1a2

〈
2
1µ
〉
0

+
(
a1 + a2 − bz−1

) 〈
2
1µ
〉
1

]
.

Representation of the standard moments in terms of the vector polyno-

mials
−→
Qn (z) 〈

2
1µ
〉
n

= (1− z)−n
〈
2
1

−→
Q
〉
n
·
〈
2
1
−→µ
〉
, n ≥ 0.
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From (34), we have〈
2
1

−→
Q
〉
n+1

=
[
(1− z)

(
ϑ+

〈
2
1M
〉)

+ nzI
] 〈

2
1

−→
Q
〉
n
,
〈
2
1

−→
Q
〉
0

= −→ε 0,

with

(1− z)
〈
2
1M
〉

=

[
0 a1a2z

1− z (a1 + a2) z − b

]
.

Hypergeometric representation of the modified moments〈
2
1ν
〉
n

(z) = zn
(a1)n (a2)n

(b+ 1)n
2F1

[
a1 + n, a2 + n
b+ 1 + n

; z

]
. (130)

Modified moments recurrence operator〈
2
1Ψ
〉
n

= Υn+1 (b)− zΥn (a1, a2)

= (1− z)S2
n + [n+ 1 + b− z (1 + 2n+ a1 + a2)]Sn − z (n+ a1) (n+ a2) .

Remark 26 If we set b = −x, we see that the modified moments are a family
of orthogonal polynomials rn (x) , satisfying the 3-term recurrence relation

xrn = (1− z) rn+1 + [n− z (2n− 1 + a1 + a2)] rn

+ z (n− 1 + a1) (n− 1 + a2) rn−1.

Remark 27 The special case z = 1, corresponds to the Hahn polynomials
[62]. Note that in this case (130) can be reduced using the identity [89,
15.4.20]

2F1

[
a1, a2
b

; 1

]
=

(b− a2)−a1
(b)−a1

, Re (b− a2) > Re (a1) .

Choosing a1 = −N, N ∈ N, a2 = a, we get〈
2
1ν
〉
n

(1) =
(−N)n (a)n

(b+ 1)n

(b+ 1− a)N−n
(b+ 1 + n)N−n

,

and since

(b+ 1)n (b+ 1 + n)N−n = (b+ 1)N ,

(b+ 1− a)N−n = (−1)N−n (a− b+ n−N)N−n = (−1)n
(b+ 1− a)N
(a− b−N)n

,
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we obtain 〈
2
1ν
〉
n

(1) =
(b+ 1− a)N

(b+ 1)N
(−1)n

(−N)n (a)n
(a− b−N)n

.

This agrees with the recurrence

[Υn+1 (b)−Υn (−N, a)]
[〈

2
1ν
〉
n

(1)
]

= 0,

which becomes
〈21ν〉n+1 (1)

〈21ν〉n (1)
= −(n−N) (n+ a)

n+ a− b−N
.

For additional references, see [36], [48].

Christoffel-Meixner polynomials The Christoffel-Meixner polynomials
[45] can be obtained from the Meixner polynomials by means of the trans-
formation 〈

1
0λ

C
〉
0

= Ω−ω+1
−ω

[〈
1
0λ
〉
0

]
.

Linear functional

〈
1
0L

C
〉

[u] =
∞∑
x=0

(x− ω)u (x) (a)x
zx

x!
.

Using (79), we have〈
1
0λ

C
〉
0

(z) = (zω + az − ω) (1− z)−a−1 ,

and therefore we need
z (ω + a)− ω 6= 0.

From (73), we obtain

[ϑ (ϑ− ω − 1)− z (ϑ− ω + 1) (ϑ+ a)]
[〈

1
0λ

C
〉
0

]
= 0,

which is a special case of (129) with

a1 = a, a2 = −ω + 1, b = −ω − 1.

Standard moments recurrence operator〈
1
0Φ

C
〉
n

[µ] = (µ− ω − 1)µn+1 − z (µ− ω + 1) (µ+ a) (µ+ 1)n .
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From (78) and (122), we get〈
1
0ν

C
〉
n

= (zω + az + n− ω) zn (1− z)−a−n−1 (a)n . (131)

Modified moments recurrence operator〈
1
0Ψ

C
〉
n

= Υn+1 (−ω − 1)− zΥn (a,−ω + 1)

= (1− z)S2
n + [n− ω − z (2 + a− ω + 2n)]Sn − z (n− ω + 1) (n+ a) .

Remark 28 Using (131), we see that the modified moments satisfy the first
order recurrence

〈
1
0ψ

C
〉
n

[
1
0ν

C
]

= 0, with〈
1
0ψ

C
〉
n

= (1− z) (n− ω + zω + az)Sn − z (n+ a) (n+ 1− ω + zω + az) .

This agrees with the second order recurrence
〈
1
0Ψ

C
〉
n

[
1
0ν

C
]

= 0, since

(Sn + n+ 1− ω)
[〈

1
0ψ

C
〉
n

]
= (n+ 1− ω + zω + az)

〈
1
0Ψ

C
〉
n
.

Geronimus Meixner polynomials These polynomials can be obtained
from the Meixner polynomials by means of the transformation〈

1
0λ

G
〉
0

= Ω−ω1−ω
[〈

1
0λ
〉
0

]
, ω /∈ N0.

Linear functional

〈
1
0L

G
〉

[u] =
∞∑
x=0

u (x)

x− ω
(a)x

zx

x!
.

First moment 〈
1
0λ

G
〉
0

(z) = − 1

ω
2F1

(
a,−ω
−ω + 1

; z

)
.

Using (81), we obtain

[ϑ (ϑ− ω)− z (ϑ− ω) (ϑ+ a)]
[〈

1
0λ

G
〉
0

]
= 0,

which is a special case of (129) with

a1 = a, a2 = −ω, b = −ω.
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Standard moments recurrence operator〈
1
0Φ

G
〉
n

[µ] = (µ− ω)
〈
1
0Φ
〉
n

[µ] .

Modified moments recurrence operator〈
1
0Ψ

G
〉
n

= Υn+1 (−ω)− zΥn (a,−ω) =
〈
1
0Ψ
〉
n
◦Υn (−ω)

= (1− z)S2
n + [n− ω + 1− z (1 + a− ω + 2n)]Sn − z (n− ω) (n+ a) .

Using (85) and (122), we have

〈
1
0ν

G
〉
n

(z) =

1∫
0

t−ω−1
〈
1
0ν
〉
n

(zt) dt = (a)n zn
1∫

0

tn−ω−1 (1− zt)−a−n dt

= (a)n zωBz (n− ω, 1− a− n) ,

where Bz (a, b) is the incomplete beta function defined by [89, 8.17.1]

Bz (a, b) = za
1∫

0

ta−1 (1− zt)b−1 dt.

Reduced-Uvarov Meixner polynomials Since for the Meixner polyno-
mials we have 〈

1
0σ
〉

= ϑ,
〈
1
0τ
〉

= ϑ+ a,

we will have reduced cases for their Uvarov transformation if ω = 0 or ω =
−a.

i) ω = 0 In this case, we have〈
1
0λ

U
0

〉
0

=
〈
1
0λ
〉
0

+ η = (1− z)−a + η.

Linear functional〈
1
0L

U
0

〉
[u] =

∞∑
x=0

u (x) (a)x
zx

x!
+ ηu (0) .

Using (96), we obtain

[ϑ (ϑ− 1)− zϑ (ϑ+ a)]
[〈

1
0λ

U
0

〉
0

]
= 0, (132)
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which is a special case of (129) with

a1 = a, a2 = 0, b = −1.

Standard moments〈
1
0µ

U
0

〉
n

=
〈
1
0µ
〉
n

+ η × 0n =
〈
1
0µ
〉
n

+ ηδn,0.

Standard moments recurrence operator〈
1
0Φ

U
0

〉
n

= (Sn − 1)
〈
1
0Φ
〉
n
.

Modified moments〈
1
0ν

U
0

〉
n

=
〈
1
0ν
〉
n

+ ηφn (0) = zn (a)n (1− z)−a−n + ηδn,0.

Modified moments recurrence operator〈
1
0Ψ

U
0

〉
n

= Υn+1 (−1)− zΥn (a, 0) = Υn (0) ◦
〈
1
0Ψ
〉
n

= (1− z)S2
n + [n− z (1 + a+ 2n)]Sn − zn (n+ a) .

For additional references, see [6], [14], [43].

ii) ω = −a In this case, we have〈
1
0λ

U
−a
〉
0

=
〈
1
0λ
〉
0

+ ηz−a = (1− z)−a + ηz−a.

Linear functional〈
1
0L

U
−a
〉

[u] =
∞∑
x=0

u (x) (a)x
zx

x!
+ ηu (−a) z−a.

Using (97), we obtain

[ϑ (ϑ+ a)− z (ϑ+ a) (ϑ+ a+ 1)]
[〈

1
0λ

U
−a
〉
0

]
= 0, (133)

which is a special case of (129) with

a1 = a, a2 = a+ 1, b = a.

Standard moments〈
1
0µ

U
−a
〉
n

=
〈
1
0µ
〉
n

+ η (−a)n z−a.
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Standard moments recurrence operator〈
1
0Φ

U
−a
〉
n

= (Sn + a)
[〈

1
0Φ
〉
n

]
.

Modified moments〈
1
0ν

U
−a
〉
n

=
〈
1
0ν
〉
n

+ ηφn (−a) z−a = zn (a)n (1− z)−a−n + ηφn (−a) z−a.

Modified moments recurrence operator〈
1
0Ψ

U
−a
〉
n

= Υn+1 (a)− zΥn (a, a+ 1) = Υn (a+ 1) ◦
〈
1
0Ψ
〉
n

= (1− z)S2
n + (1− 2z) (n+ a+ 1)Sn − z (n+ a) (n+ a+ 1) .

Truncated Meixner polynomials These polynomials can be obtained
from the Meixner polynomials by means of the transformation〈

1
0λ

T
〉
0

= Ω−N−N
[〈

1
0λ
〉
0

]
, N ∈ N.

Linear functional 〈
1
0L

T
〉

[u] =
N∑
x=0

u (x) (a)x
zx

x!
.

First moment 〈
1
0λ

T
〉
0

(z) =
N∑
x=0

(a)x
zx

x!
.

From (106), we have

[ϑ (ϑ−N − 1)− z (ϑ+ a) (ϑ−N)]
[〈

1
0λ

T
〉
0

]
= 0, (134)

which is a special case of (129) with

a1 = a, a2 = −N, b = −N − 1.

Standard moments recurrence operator〈
1
0Φ

T
〉
n

= (Sn −N − 1)
[〈

1
0Φ
〉
n

]
.

Modified moments recurrence operator〈
1
0Ψ

T
〉
n

= Υn+1 (−N − 1)− zΥn (a,−N) = Υn (−N) ◦
〈
1
0Ψ
〉
n

= (1− z)S2
n + [n−N − z (2n+ a−N + 1)]Sn − z (n−N) (n+ a) .
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From (115), we have

〈
1
0ν

T
〉
n

(z) =
(a)N zN

(N − n)!
2F1

(
n−N, 1

1− a−N ; z−1
)
.

Using the transformation 15.8.7

2F1

(
−N, a
b

; z

)
=

(b− a)N
(b)N

zN 2F1

(
−N, 1− b−N
a− b−N + 1

; 1− z−1
)
,

we obtain〈
1
0ν

T
〉
n

(z) =
(a)N+1

a+ n

zn

(N − n)!
2F1

(
n−N, a+ n
a+ n+ 1

; 1− z
)
.

Since the incomplete beta function has the hypergeometric representation
[89, 8.17.7]

Bz (a, b) =
za

a
2F1

(
1− b, a
a+ 1

; z

)
,

we conclude that〈
1
0ν

T
〉
n

=
(a)N+1

(N − n)!
zn (1− z)−a−nB1−z (a+ n,N − n+ 1) ,

and comparing with (122), we see that〈
1
0ν

T
〉
n

=
(a+ n)N−n+1

(N − n)!
B1−z (a+ n,N − n+ 1)

〈
1
0ν
〉
n
.

4.3 Polynomials of class 2

In [40], we classified the discrete semiclassical orthogonal polynomials of class
s = 2. There are 6 main families and 13 subfamilies, obtained by applying
rational spectral transformations to the polynomials of class s = 1.

To help the reader with some of the results, we note the formula

Υn (c) = S3
n + e1 (c + n+ 1)S2

n

+ [1 + e1 (c + n) + e2 (c + n)]Sn + e3 (c + n) ,

c = (c1, c2, c3), where the elementary symmetric polynomials were defined in
(26).

For additional references, see [77].
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4.3.1 Polynomials of type (0,2)

Linear functional

〈
0
2L
〉

[u] =
∞∑
x=0

u (x)
1

(b1 + 1)x (b2 + 1)x

zx

x!
.

First moment 〈
0
2λ
〉
0

(z) = 0F2

[
−

b1 + 1, b2 + 1
; z

]
These polynomials can be obtained from the generalized Charlier poly-

nomials by means of the transformation〈
0
2λ
〉
0

= Ωb+1

[〈
0
1λ
〉
0

]
.

Using (62), we obtain the ODE satisfied by the first moment

[ϑ (ϑ+ b1) (ϑ+ b2)− z]
[〈

0
2λ
〉
0

]
= 0.

Standard moments recurrence operator〈
0
2Φ
〉
n

[µ] = (µ+ b1) (µ+ b2)µ
n+1 − z (µ+ 1)n .

Using (28), we get〈
0
2µ
〉
3

= z
〈
0
2µ
〉
0
− b1b2

〈
0
2µ
〉
1
− (b1 + b2)

〈
0
2µ
〉
2
.

Representation of the standard moments in terms of the vector polyno-

mials
−→
Qn (z) 〈

0
2µ
〉
n

=
〈
0
2

−→
Q
〉
n
·
〈
0
2
−→µ
〉
, n ≥ 0,〈

0
2

−→
Q
〉
n+1

=
(
ϑ+

〈
0
2M
〉) 〈

0
2

−→
Q
〉
n
,
〈
0
2

−→
Q
〉
0

= −→ε 0,

with 〈
0
2M
〉

=

0 0 z
1 0 −b1b2
0 1 − (b1 + b2)

 .
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Hypergeometric representation of the modified moments〈
0
2ν
〉
n

(z) =
zn

(b1 + 1)n (b2 + 1)n
0F2

[
−

b1 + 1 + n, b2 + 1 + n
; z

]
.

Modified moments recurrence operator〈
0
2Ψ
〉
n

= Υn+1 (b1, b2)− zΥn (∅)
= S3

n + [1 + e1 (b + n+ 1)]S2
n + e2 (b + n+ 1)Sn − z.

4.3.2 Polynomials of type (1,2)

Linear functional〈
1
2L
〉

[u] =
∞∑
x=0

u (x)
(a)x

(b1 + 1)x (b2 + 1)x

zx

x!
.

First moment 〈
1
2λ
〉
0

(z) = 1F2

[
a

b1 + 1, b2 + 1
; z

]
.

These polynomials can be obtained from the generalized Meixner poly-
nomials by means of the transformation〈

1
2λ
〉
0

= Ωb+1

[〈
1
1λ
〉
0

]
.

Using (62), we obtain the ODE satisfied by the first moment

[ϑ (ϑ+ b1) (ϑ+ b2)− z (ϑ+ a)]
[〈

1
2λ
〉
0

]
= 0. (135)

Standard moments recurrence operator〈
1
2Φ
〉
n

[µ] = (µ+ b1) (µ+ b2)µ
n+1 − z (µ+ a) (µ+ 1)n .

Using (28), we get〈
1
2µ
〉
3

= az
〈
1
2µ
〉
0

+ (z − b1b2)
〈
1
2µ
〉
1
− (b1 + b2)

〈
1
2µ
〉
2
.

Representation of the standard moments in terms of the vector polyno-

mials
−→
Qn (z) 〈

1
2µ
〉
n

=
〈
1
2

−→
Q
〉
n
·
〈
1
2
−→µ
〉
, n ≥ 0,〈

1
2

−→
Q
〉
n+1

=
(
ϑ+

〈
1
2M
〉) 〈

1
2

−→
Q
〉
n
,
〈
1
2

−→
Q
〉
0

= −→ε 0,
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with 〈
1
2M
〉

=

0 0 az
1 0 z − b1b2
0 1 − (b1 + b2)

 .
Hypergeometric representation of the modified moments〈

1
2ν
〉
n

(z) =
zn (a)n

(b1 + 1)n (b2 + 1)n
1F2

[
a+ n

b1 + 1 + n, b2 + 1 + n
; z

]
.

Modified moments recurrence operator〈
1
2Ψ
〉
n

= Υn+1 (b1, b2)− zΥn (a)

= S3
n + [1 + e1 (b + n+ 1)]S2

n + [e2 (b + n+ 1)− z]Sn − z (n+ a) .

Christoffel Generalized Charlier polynomials These polynomials can
be obtained from the Generalized Charlier polynomials by means of the trans-
formation 〈

0
1λ

C
〉
0

= Ω−ω+1
−ω

[〈
0
1λ
〉
0

]
.

Linear functional〈
0
1L

C
〉

[u] =
∞∑
x=0

(x− ω)u (x)
1

(b+ 1)x

zx

x!
.

Using (74), we have〈
0
1λ

C
〉
0

(z) = −ω 1F2

[
−ω + 1
b+ 1,−ω ; z

]
.

Using (73), we obtain

[ϑ (ϑ+ b) (ϑ− ω − 1)− z (ϑ− ω + 1)]
[〈

0
1λ

C
〉
0

]
= 0,

which is a special case of (135) with

a = −ω + 1, b1 = b, b2 = −ω − 1.

Standard moments recurrence operator〈
0
1Φ

C
〉
n

[µ] = (µ+ b) (µ− ω − 1)µn+1 − z (µ− ω + 1) (µ+ 1)n .

Modified moments recurrence operator〈
0
1Ψ

C
〉
n

= S3
n + (b− ω + 2n+ 2)S2

n

+ [(n+ b+ 1) (n− ω)− z]Sn − z (n− ω + 1) .
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Geronimus Generalized Charlier polynomials These polynomials can
be obtained from the Generalized Charlier polynomials by means of the trans-
formation 〈

0
1λ

G
〉
0

= Ω−ω1−ω
[〈

0
1λ
〉
0

]
, ω /∈ N0.

Linear functional

〈
0
1L

G
〉

[u] =
∞∑
x=0

u (x)

x− ω
1

(b+ 1)x

zx

x!
.

First moment〈
0
1λ

G
〉
0

(z) = − 1

ω
1F2

(
−ω

b+ 1,−ω + 1
; z

)
.

Using (81), we obtain

[ϑ (ϑ+ b) (ϑ− ω)− z (ϑ− ω)]
[〈

0
1λ

G
〉
0

]
= 0,

which is a special case of (135) with

a = −ω, b1 = b, b2 = −ω.

Standard moments recurrence operator〈
0
1Φ

G
〉
n

[µ] = (µ− ω)
〈
0
1Φ
〉
n

[µ] .

Modified moments recurrence operator〈
0
1Ψ

G
〉
n

= Υn+1 (b,−ω)− zΥn (−ω) =
〈
0
1Ψ
〉
n
◦Υn (−ω) .

Reduced Uvarov Generalized Charlier polynomials Since for the
Generalized Charlier polynomials we have〈

0
1σ
〉

= ϑ (ϑ+ b) ,
〈
0
1τ
〉

= ϑ,

we will have reduced cases for their Uvarov transformation if ω = 0,−b.
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i) ω = 0 In this case, we have〈
0
1λ

U
0

〉
0

=
〈
0
1λ
〉
0

+ η.

Linear functional

〈
0
1L

U
0

〉
[u] =

∞∑
x=0

u (x)
1

(b+ 1)x

zx

x!
+ ηu (0) .

Using (96) and (123), we obtain

[ϑ (ϑ+ b) (ϑ− 1)− zϑ]
[〈

0
1λ

U
0

〉
0

]
= 0,

which is a special case of (135) with

a = 0, b1 = b, b2 = −1.

Standard moments recurrence operator〈
0
1Φ

U
0

〉
n

= (Sn − 1)
〈
0
1Φ
〉
n
.

Standard moments recurrence

µ [(µ+ b) (µ− 1)µn − z (µ+ 1)n] = 0.

Modified moments recurrence operator〈
0
1Ψ

U
−b
〉
n

= Υn+1 (b,−1)− zΥn (0) = Υn (0) ◦
〈
0
1Ψ
〉
n
.

ii) ω = −b In this case, we have〈
0
1λ

U
−b
〉
0

=
〈
0
1λ
〉
0

+ ηz−b.

Linear functional

〈
0
1L

U
−b
〉

[u] =
∞∑
x=0

u (x)
1

(b+ 1)x

zx

x!
+ ηu (−b) .

Using (96) and (123), we obtain

[ϑ (ϑ+ b) (ϑ+ b− 1)− z (ϑ+ b)]
[〈

0
1λ

U
−b
〉
0

]
= 0,
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which is a special case of (135) with

a = b, b1 = b, b2 = b− 1.

Standard moments recurrence operator〈
0
1Φ

U
−b
〉
n

= (Sn + b− 1)
[〈

0
1Φ
〉
n

]
.

Standard moments recurrence

(µ+ b)
[
(µ+ b− 1)µn+1 − z (µ+ 1)n

]
= 0.

Modified moments recurrence operator〈
0
1Ψ

U
−b
〉
n

= Υn+1 (b, b− 1)− zΥn (b) = Υn (b) ◦
〈
0
1Ψ
〉
n
.

Truncated Generalized Charlier polynomials These polynomials can
be obtained from the Generalized Charlier polynomials by means of the trans-
formation 〈

0
1λ

T
〉
0

= Ω−N−N
[〈

0
1λ
〉
0

]
, N ∈ N.

Linear functional

〈
0
1L

T
〉

[u] =
N∑
x=0

u (x)
1

(b+ 1)x

zx

x!
.

First moment 〈
0
1λ

T
〉
0

(z) =
N∑
x=0

1

(b+ 1)x

zx

x!
,

and using (108), we get

〈
0
1λ

T
〉
0

=
1

(b+ 1)N

zN

N !
3F0

(
−N, 1− b−N, 1

− ; z−1
)
.

From (106), we have

[ϑ (ϑ+ b) (ϑ−N − 1)− z (ϑ−N)]
[〈

0
1λ

T
〉
0

]
= 0,

which is a special case of (135) with

a = −N, b1 = b, b2 = −N − 1.
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Standard moments recurrence operator〈
0
1Φ

T
〉
n

= (Sn −N − 1)
[〈

0
1Φ
〉
n

]
.

Standard moments recurrence

(µ−N − 1) (µ+ b)µn+1 − z (µ−N) (µ+ 1)n = 0.

Modified moments recurrence operator〈
0
1Ψ

T
〉
n

= Υn+1 (b,−N − 1)− zΥn (−N) = Υn (−N) ◦
〈
0
1Ψ
〉
n
.

From (115), we see that

〈
0
1ν

T
〉
n

(z) =
1

(b+ 1)N

zN

(N − n)!
3F0

(
n−N,−b−N, 1

− ; z−1
)
.

4.3.3 Polynomials of type (2,2)

Linear functional

〈
2
2L
〉

[u] =
∞∑
x=0

u (x)
(a1)x (a2)x

(b1 + 1)x (b2 + 1)x

zx

x!
.

First moment 〈
2
2λ
〉
0

(z) = 2F2

[
a1, a2

b1 + 1, b2 + 1
; z

]
.

These polynomials can be obtained from the generalized Hahn polynomi-
als by means of the transformation〈

2
2λ
〉
0

= Ωb+1

[〈
2
1λ
〉
0

]
.

Using (62), we obtain the ODE satisfied by the first moment

[ϑ (ϑ+ b1) (ϑ+ b2)− z (ϑ+ a1) (ϑ+ a2)]
[〈

2
2λ
〉
0

]
= 0. (136)

From (136), we obtain a recurrence for the standard moments(〈
2
2µ
〉

+ b1
) (〈

2
2µ
〉

+ b2
) 〈

2
2µ
〉n+1

= z
(〈

2
2µ
〉

+ a1
) (〈

2
2µ
〉

+ a2
) (〈

2
2µ
〉

+ 1
)n
.
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From (28), we have

2∑
k=0

e2−k (b)
〈
2
2µ
〉
k+1

= z
2∑
j=0

e2−j (a)
〈
2
2µ
〉
j
,

and therefore〈
2
2µ
〉
3

= a1a2z
〈
2
2µ
〉
0

+ (z − b1 − b2)
〈
2
2µ
〉
1

+ [(a1 + a2) z − b1b2]
〈
2
2µ
〉
2
.

Representation of the standard moments in terms of the vector polyno-

mials
−→
Qn (z) 〈

2
2µ
〉
n

=
〈
2
2

−→
Q
〉
n
·
〈
2
2
−→µ
〉
, n ≥ 0,〈

2
2

−→
Q
〉
n+1

=
(
ϑ+

〈
2
2M
〉) 〈

2
2

−→
Q
〉
n
,
〈
2
2

−→
Q
〉
0

= −→ε 0,

with 〈
2
2M
〉

=

0 0 a1a2z
1 0 z − b1 − b2
0 1 (a1 + a2) z − b1b2

 .
Hypergeometric representation of the modified moments〈

2
2ν
〉
n

(z) =
zn (a1)n (a2)n

(b1 + 1)n (b2 + 1)n
2F2

[
a1 + n, a2 + n

b1 + 1 + n, b2 + 1 + n
; z

]
.

Modified moments recurrence operator〈
2
2Ψ
〉
n

= Υn+1 (b1, b2)− zΥn (a1, a2)

= S3
n + [1 + e1 (b + n+ 1)− z]S2

n

+ [e2 (b + n+ 1)− z − ze1 (a + n)]Sn − ze2 (a + n) .

Uvarov Charlier polynomials Suppose that ω 6= 0. The Uvarov Charlier
polynomials can be obtained from the Charlier polynomials by means of the
transformation 〈

0
0λ

U
ω

〉
0

=
〈
0
0λ
〉
0

+ ηzω = ez + ηzω.

Linear functional〈
0
0L

U
ω

〉
[u] =

∞∑
x=0

u (x)
zx

x!
+ ηu (ω) zω.
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Using (91), we obtain

[ϑ (ϑ− ω) (ϑ− ω − 1)− z (ϑ− ω + 1) (ϑ− ω)]
[〈

0
0λ

U
ω

〉
0

]
= 0,

which is a special case of (136) with

a1 = −ω, a2 = −ω + 1, b1 = −ω − 1, b2 = −ω.

Standard moments recurrence operator〈
0
0Φ

U
ω

〉
n

= (Sn − ω) (Sn − ω − 1)
[〈

0
0Φ
〉
n

]
.

Standard moments recurrence

(µ− ω)
[
(µ− ω − 1)µn+1 − z (µ− ω + 1) (µ+ 1)n

]
= 0

Modified moments recurrence operator〈
0
0Ψ

U
ω

〉
n

= Υn+1 (−ω − 1,−ω)− zΥn (−ω,−ω + 1)

= Υn (−ω,−ω + 1) ◦
〈
0
0Ψ
〉
n
.

Double Uvarov Charlier polynomials Since for the Reduced Uvarov
Charlier polynomials we have〈

0
0σ

U
0

〉
(ϑ) = ϑ (ϑ− 1) ,

we will have a reduced case for their Uvarov transformation if we add an
extra mass point at ω = 1. The Double Uvarov Charlier polynomials can be
obtained from the Charlier polynomials by means of the double transforma-
tion 〈

0
0λ

U
0,1

〉
0

=
〈
0
0λ
〉
0

+ η1 + η2z = ez + η1 + η2z.

Linear functional

〈
0
0L

U
0,1

〉
[u] =

∞∑
x=0

u (x)
zx

x!
+ η1u (0) + η2u (1) z.

Using (96), we obtain

[ϑ (ϑ− 1) (ϑ− 2)− zϑ (ϑ− 1)]
[〈

0
0λ

U
0,1

〉
0

]
= 0,
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which is a special case of (136) with

a1 = 0, a2 = −1, b1 = −1, b2 = −2.

Standard moments recurrence operator〈
0
0Φ

U
0,1

〉
n

= (Sn − 1) (Sn − 2)
[〈

0
0Φ
〉
n

]
.

Standard moments recurrence

µ (µ− 1) [(µ− 2)µn − z (µ+ 1)n] = 0.

Modified moments recurrence operator〈
0
0Ψ

U
0,1

〉
n

= Υn+1 (−1,−2)− zΥn (0,−1) = Υn (0,−1) ◦
〈
0
0Ψ
〉
n
.

Reduced Uvarov Truncated Charlier polynomials Since for the Trun-
cated Charlier polynomials we have〈

0
0σ

T
〉

(ϑ) = ϑ (ϑ−N − 1) ,
〈
0
0τ

T
〉

(ϑ) = ϑ−N,

we will have reduced cases for their Uvarov transformation if ω = 0, N,N+1.
i) ω = 0
In this case, the polynomials can be obtained from the Truncated Charlier

polynomials by means of the transformation〈
0
0λ

T,U
0

〉
0

=
〈
0
0λ

T
〉
0

+ η.

Linear functional〈
0
0L

T,U
0

〉
[u] =

N∑
x=0

u (x)
zx

x!
+ ηu (0) .

Using (96) and (127), we obtain

[ϑ (ϑ− 1) (ϑ−N − 1)− zϑ (ϑ−N)]
[〈

0
0λ

T,U
0

〉
0

]
= 0, (137)

which is a special case of (136) with

a1 = 0, a2 = −N, b1 = −1, b2 = −N − 1.
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Standard moments recurrence operator〈
0
0Φ

T,U
0

〉
n

[µ] = µ [(µ− 1) (µ−N − 1)µn − z (µ−N) (µ+ 1)n]

= (Sn − 1) (Sn −N − 1)
[〈

0
0Φ
〉
n

]
[µ] .

Modified moments recurrence operator〈
0
0Ψ

T,U
0

〉
n

= Υn+1 (−1,−N − 1)− zΥn (0,−N) = Υn (0,−N)
[〈

0
0Ψ
〉
n

]
.

Remark 29 We could have also go the other way: start with the Reduced
Uvarov Charlier polynomials and apply a truncation transformation〈

0
0λ

T,U
0

〉
0

= Ω−N−N
[〈

0
0λ

U
0

〉
0

]
, N ∈ N.

In either case, we obtain the same ODE (137).

ii) ω = N
In this case, the polynomials can be obtained from the Truncated Charlier

polynomials by means of the transformation〈
0
0λ

T,U
N

〉
0

=
〈
0
0λ

T
〉
0

+ ηzN .

Linear functional〈
0
0L

T,U
N

〉
[u] =

N∑
x=0

u (x)
zx

x!
+ ηu (N) .

Using (97) and (127), we obtain

[ϑ (ϑ−N) (ϑ−N − 1)− z (ϑ−N + 1) (ϑ−N)]
[〈

0
0λ

T,U
N

〉
0

]
= 0,

which is a special case of (136) with

a1 = −N, a2 = −N + 1, b1 = −N − 1, b2 = −N.

Standard moments recurrence operator〈
0
0Φ

T,U
N

〉
n

[µ] = (µ−N)
[
(µ−N − 1)µn+1 − z (µ−N + 1) (µ+ 1)n

]
= (Sn −N) (Sn −N − 1)

[〈
0
0Φ
〉
n

]
[µ] .
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Modified moments recurrence operator〈
0
0Ψ

T,U
N

〉
n

= Υn+1 (−N − 1,−N)− zΥn (−N,−N + 1)

= Υn (−N,−N + 1) ◦
〈
0
0Ψ
〉
n
.

ii) ω = N + 1
In this case, the polynomials can be obtained from the Truncated Charlier

polynomials by means of the transformation〈
0
0λ

T,U
N+1

〉
0

=
〈
0
0λ

T
〉
0

+ ηzN+1.

Linear functional〈
0
0L

T,U
N+1

〉
[u] =

N∑
x=0

u (x)
zx

x!
+ ηu (N + 1) .

Using (96) and (127), we obtain

[ϑ (ϑ−N − 1) (ϑ−N − 2)− z (ϑ−N) (ϑ−N − 1)]
[〈

0
0λ

T,U
N+1

〉
0

]
= 0,

which is a special case of (136) with

a1 = −N, a2 = −N − 1, b1 = −N − 1, b2 = −N − 2.

Standard moments recurrence operator〈
0
0Φ

T,U
N

〉
n

[µ] = (µ−N − 1)
[
(µ−N − 2)µn+1 − z (µ−N) (µ+ 1)n

]
= (Sn −N − 1) (Sn −N − 2)

[〈
0
0Φ
〉
n

]
[µ] .

Modified moments recurrence operator〈
0
0Ψ

T,U
N

〉
n

= Υn+1 (−N − 1,−N − 2)− zΥn (−N,−N − 1)

= Υn (−N,−N − 1) ◦
〈
0
0Ψ
〉
n
.
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Reduced Uvarov Generalized Meixner Polynomials Since for the
Generalized Meixner Polynomials we have〈

1
1σ
〉

(ϑ) = ϑ (ϑ+ b) ,
〈
1
1τ
〉

(ϑ) = ϑ+ a,

we will have reduced cases for their Uvarov transformation if ω = 0,−a,−b.
i) ω = 0
In this case, the polynomials can be obtained from the Generalized Meixner

Polynomials by means of the transformation〈
1
1λ

U
0

〉
0

=
〈
1
1λ
〉
0

+ η.

Linear functional

〈
1
1L

U
0

〉
[u] =

∞∑
x=0

u (x)
(a)x

(b+ 1)x

zx

x!
+ ηu (0) .

Using (96) and (125), we obtain

[ϑ (ϑ− 1) (ϑ+ b)− zϑ (ϑ+ a)]
[〈

1
1λ

U
0

〉
0

]
= 0,

which is a special case of (136) with

a1 = a, a2 = 0, b1 = b, b2 = −1.

Standard moments recurrence operator〈
1
1Φ

U
0

〉
n

[µ] = µ [(µ− 1) (µ+ b)µn − z (µ+ a) (µ+ 1)n]

= (Sn − 1)
[〈

1
1Φ
〉
n

]
[µ] .

Modified moments recurrence operator〈
1
1Ψ

U
0

〉
n

= Υn+1 (b,−1)− zΥn (a, 0) = Υn (0) ◦
〈
1
1Ψ
〉
n
.

ii) ω = −a
In this case, the polynomials can be obtained from the Generalized Meixner

Polynomials by means of the transformation〈
1
1λ

U
−a
〉
0

=
〈
1
1λ
〉
0

+ ηz−a.

75



Linear functional〈
1
1L

U
−a
〉

[u] =
∞∑
x=0

u (x)
(a)x

(b+ 1)x

zx

x!
+ ηu (−a) z−a.

Using (97) and (125), we obtain

[ϑ (ϑ+ a) (ϑ+ b)− z (ϑ+ a) (ϑ+ a+ 1)]
[〈

1
1λ

U
−a
〉
0

]
= 0,

which is a special case of (136) with

a1 = a, a2 = a+ 1, b1 = b, b2 = a.

Standard moments recurrence operator〈
1
1Φ

U
−a
〉
n

= (Sn + a)
[〈

1
1Φ
〉
n

]
.

Standard moments recurrence

(µ+ a)
[
(µ+ b)µn+1 − z (µ+ a+ 1) (µ+ 1)n

]
= 0.

Modified moments recurrence operator〈
1
1Ψ

U
−a
〉
n

= Υn+1 (b, a)− zΥn (a, a+ 1) = Υn (a+ 1) ◦
〈
1
1Ψ
〉
n
.

iii) ω = −b
In this case, the polynomials can be obtained from the Generalized Meixner

Polynomials by means of the transformation〈
1
1λ

U
−b
〉
0

=
〈
1
1λ
〉
0

+ ηz−b.

Linear functional〈
1
1L

U
−b
〉

[u] =
∞∑
x=0

u (x)
(a)x

(b+ 1)x

zx

x!
+ ηu (−b) z−b.

Using (96) and (125), we obtain

[ϑ (ϑ+ b) (ϑ+ b− 1)− z (ϑ+ a) (ϑ+ b)]
[〈

1
1λ

U
−b
〉
0

]
= 0,

which is a special case of (136) with

a1 = a, a2 = b, b1 = b, b2 = b− 1.
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Standard moments recurrence operator〈
1
1Φ

U
−b
〉
n

[µ] = (Sn + b− 1)
[〈

1
1Φ
〉
n

]
[µ] .

Standard moments recurrence

(µ+ b)
[
(µ+ b− 1)µn+1 − z (µ+ a) (µ+ 1)n

]
= 0.

Modified moments recurrence operator〈
1
1Ψ

U
−b
〉
n

= Υn+1 (b, b− 1)− zΥn (a, b) = Υn (b) ◦
〈
1
1Ψ
〉
n
.

Truncated Generalized Meixner Polynomials These polynomials can
be obtained from the Generalized Meixner polynomials by means of the trans-
formation 〈

1
1λ

T
〉
0

= Ω−N−N
[〈

1
1λ
〉
0

]
, N ∈ N.

Linear functional

〈
1
1L

T
〉

[u] =
N∑
x=0

u (x)
(a)x

(b+ 1)x

zx

x!
.

First moment 〈
1
1λ

T
〉
0

(z) =
N∑
x=0

(a)x
(b+ 1)x

zx

x!
.

From (108), we get

〈
1
1λ

T
〉
0

=
(a)N

(b+ 1)N

zN

N !
3F1

(
−N,−b−N, 1

1− a−N ;−z−1
)
.

From (106), we have

[ϑ (ϑ+ b) (ϑ−N − 1)− z (ϑ+ a) (ϑ−N)]
[〈

1
1λ

T
〉
0

]
= 0,

which is a special case of (136) with

a1 = a, a2 = −N, b1 = b, b2 = −N − 1.

Standard moments recurrence operator〈
1
1Φ

T
〉
n

= (Sn −N − 1)
[〈

1
1Φ
〉
n

]
.
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Standard moments recurrence

(µ−N − 1) (µ+ b)µn+1 − z (µ−N) (µ+ a) (µ+ 1)n = 0.

Modified moments recurrence operator〈
1
1Ψ

T
〉
n

= Υn+1 (b,−N − 1)− zΥn (a,−N) = Υn (−N) ◦
〈
1
1Ψ
〉
n
.

From (115), we see that

〈
1
1ν

T
〉
n

(z) =
(a)N

(b+ 1)N

zN

(N − n)!
3F1

(
n−N,−b−N, 1

1− a−N ;−z−1
)
.

4.3.4 Polynomials of type (3,0;N)

Linear functional〈
3;N
0 L

〉
[u] =

N∑
x=0

u (x) (−N)x (a1)x (a2)x
zx

x!
, N ∈ N.

First moment 〈
3;N
0 λ

〉
0

(z) = 3F0

[
−N, a1, a2
− ; z

]
.

These polynomials can be obtained from the generalized Krawtchouk
polynomials by means of the transformation〈

3;N
0 λ

〉
0

= Ωa
[〈

2;N
0 λ

〉
0

]
.

Using (60), we obtain the ODE satisfied by the first moment

[ϑ− z (ϑ+ a3,N)]
[〈

3;N
0 λ

〉
0

]
= 0,

with
a3,N = (−N, a1, a2) . (138)

Standard moments recurrence operator〈
3;N
0 Φ

〉
n

[µ] = µn+1 − z (µ+ a3,N) (µ+ 1)n .
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From (28), we have〈
3;N
0 µ

〉
3

= −e3 (a3,N)
〈
3;N
0 µ

〉
0
+
[
z−1 − e2 (a3,N)

] 〈
3;N
0 µ

〉
1
−e1 (a3,N)

〈
3;N
0 µ

〉
2
.

Representation of the standard moments in terms of the polynomials−→
Qn (z) 〈

3;N
0 µ

〉
n

= z−n
〈
3;N
0

−→
Q
〉
n
·
〈
3;N
0
−→µ
〉
, n ≥ 0.

From (33), we have〈
3;N
0

−→
Q
〉
n+1

= z
(
ϑ+

〈
3;N
0 M

〉
− nI

)〈
3;N
0

−→
Q
〉
n
,
〈
3;N
0

−→
Q
〉
0

= −→ε 0,

with 〈
3;N
0 M

〉
=

0 0 −e3 (a3,N)
1 0 z−1 − e2 (a3,N)
0 1 −e1 (a3,N)

 .
Hypergeometric representation of the modified moments〈

3;N
0 ν

〉
n

(z) = zn (−N)n (a1)n (a2)n 3F0

[
n−N, a1 + n, a2 + n

− ; z

]
.

Modified moments recurrence operator〈
3;N
0 Ψ

〉
n

= Υn+1 (∅)− zΥn (−N, a1, a2) ,

and therefore,

− z−1
〈
3;N
0 Ψ

〉
n

= S3
n + e1 (a3,N + n+ 1)S2

n

+
[
1 + e1 (a3,N + n) + e2 (a3,N + n)− z−1

]
Sn + e3 (a3,N + n) .

4.3.5 Polynomials of type (3,1;N)

Linear functional〈
3;N
1 L

〉
[u] =

N∑
x=0

u (x)
(−N)x (a1)x (a2)x

(b+ 1)x

zx

x!
, N ∈ N.

First moment 〈
3;N
1 λ

〉
0

(z) = 3F1

[
−N, a1, a2
b+ 1

; z

]
.
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These polynomials can be obtained from the generalized Hahn polynomi-
als by means of the transformation〈

3;N
1 λ

〉
0

= Ω−N
[〈

2
1λ
〉
0

]
.

Using (60), we obtain the ODE satisfied by the first moment

[ϑ (ϑ+ b)− z (ϑ+ a3,N)]
[〈

3;N
1 λ

〉
0

]
= 0, (139)

where a3,N was defined in (138).
Standard moments recurrence operator〈

3;N
0 Φ

〉
n

[µ] = (µ+ b)µn+1 − z (µ+ a3,N) (µ+ 1)n .

From (28), we have〈
3;N
1 µ

〉
3

= −e3 (a3,N)
〈
3;N
1 µ

〉
0

+
[
bz−1 − e2 (a3,N)

] 〈
3;N
1 µ

〉
1

+
[
z−1 − e1 (a3,N)

] 〈
3;N
1 µ

〉
2
.

Representation of the standard moments in terms of the vector polyno-

mials
−→
Qn (z) 〈

3;N
1 µ

〉
n

= z−n
〈
3;N
1

−→
Q
〉
n
·
〈
3;N
1
−→µ
〉
, n ≥ 0.

From (33), we have〈
3;N
1

−→
Q
〉
n+1

= z
(
ϑ+

〈
3;N
1 M

〉
− nI

)〈
3;N
1

−→
Q
〉
n
,
〈
3;N
1

−→
Q
〉
0

= −→ε 0,

with 〈
3;N
1 M

〉
=

0 0 −e3 (a3,N)
1 0 bz−1 − e2 (a3,N)
0 1 z−1 − e1 (a3,N)

 .
Hypergeometric representation of the modified moments〈

3;N
1 ν

〉
n

(z) = zn
(−N)n (a1)n (a2)n

(b+ 1)n
3F1

[
n−N, a1 + n, a2 + n

b+ 1 + n
; z

]
.
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Modified moments recurrence operator〈
3;N
1 Ψ

〉
n

= Υn+1 (b)− zΥn (−N, a1, a2) ,

and therefore,

− z−1
〈
3;N
1 Ψ

〉
n

= S3
n +

[
e1 (a3,N + n+ 1)− z−1

]
S2
n

+
[
1 + e1 (a3,N + n) + e2 (a3,N + n)− (b+ n+ 1) z−1

]
Sn + e3 (a3,N + n) .

Reduced Uvarov Generalized Krawtchouk Polynomials Since for
the Generalized Krawtchouk Polynomials we have〈

2,N
0 σ

〉
(ϑ) = ϑ,

〈
2,N
0 τ

〉
(ϑ) = (ϑ+ a) (ϑ−N) ,

we will have reduced cases for their Uvarov transformation if ω = 0,−a,N.
i) ω = 0
In this case, the polynomials can be obtained from the Generalized Krawtchouk

Polynomials by means of the transformation〈
2,N
0 λU0

〉
0

=
〈
2,N
0 λ

〉
0

+ η.

Linear functional〈
2,N
0 LU0

〉
[u] =

N∑
x=0

u (x) (−N)x (a)x
zx

x!
+ ηu (0) .

Using (96) and (128), we obtain

[ϑ (ϑ− 1)− zϑ (ϑ+ a) (ϑ−N)]
[〈

2,N
0 λU0

〉
0

]
= 0,

which is a special case of (139) with

a1 = a, a2 = 0, a3 = −N, b = −1.

Standard moments recurrence operator〈
2,N
0 ΦU

0

〉
n

= (Sn − 1)
[〈

2,N
0 Φ

〉
n

]
.
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Standard moments recurrence

µ [(µ− 1)µn − z (µ+ a) (µ−N) (µ+ 1)n] = 0.

Modified moments recurrence operator〈
2,N
0 ΨU

0

〉
n

= Υn+1 (−1)− zΥn (a,−N, 0) = Υn (0) ◦
〈
2,N
0 Ψ

〉
n
.

ii) ω = −a
In this case, the polynomials can be obtained from the Generalized Krawtchouk

Polynomials by means of the transformation〈
2,N
0 λU−a

〉
0

=
〈
2,N
0 λ

〉
0

+ ηz−a.

Linear functional〈
2,N
0 LU−a

〉
[u] =

N∑
x=0

u (x) (−N)x (a)x
zx

x!
+ ηu (−a) z−a.

Using (97) and (128), we obtain

[ϑ (ϑ+ a)− z (ϑ+ a) (ϑ+ a+ 1) (ϑ−N)]
[〈

2,N
0 λU−a

〉
0

]
= 0,

which is a special case of (139) with

a1 = a, a2 = a+ 1, a3 = −N, b = a.

Standard moments recurrence operator〈
2,N
0 ΦU

−a

〉
n

= (Sn − 1)
[〈

2,N
0 Φ

〉
n

]
.

Standard moments recurrence

µ [(µ− 1)µn − z (µ−N) (µ+ a) (µ+ 1)n] = 0.

Modified moments recurrence operator〈
2,N
0 ΨU

−a

〉
n

= Υn+1 (a)− zΥn (a,−N, a+ 1) = Υn (a+ 1) ◦
〈
2,N
0 Ψ

〉
n
.

iii) ω = N
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In this case, the polynomials can be obtained from the Generalized Krawtchouk
Polynomials by means of the transformation〈

2,N
0 λUN

〉
0

=
〈
2,N
0 λ

〉
0

+ ηzN .

Linear functional〈
2,N
0 LUN

〉
[u] =

N∑
x=0

u (x) (−N)x (a)x
zx

x!
+ ηu (N) zN .

Using (97) and (128), we obtain

[ϑ (ϑ−N)− z (ϑ+ a) (ϑ−N + 1) (ϑ−N)]
[〈

2,N
0 λUN

〉
0

]
= 0,

which is a special case of (139) with

a1 = a, a2 = −N + 1, a3 = −N, b = −N.

Standard moments recurrence operator〈
2,N
0 ΦU

N

〉
n

= (Sn −N)
[〈

2,N
0 Φ

〉
n

]
.

Standard moments recurrence

(µ−N)
[
µn+1 − z (µ+ a) (µ−N + 1) (µ+ 1)n

]
= 0.

Modified moments recurrence operator〈
2,N
0 ΨU

N

〉
n

= Υn+1 (−N)− zΥn (a,−N,−N + 1) = Υn (−N + 1) ◦
〈
2,N
0 Ψ

〉
n
.

4.3.6 Polynomials of type (3,2)

Linear functional 〈
3
2L
〉

[u] =
∞∑
x=0

u (x)
(a1)x (a2)x (a3)x

(b1 + 1)x (b2 + 1)x

zx

x!
.

First moment 〈
3
2λ
〉
0

(z) = 3F2

[
a1, a2, a3

b1 + 1, b2 + 1
; z

]
.
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These polynomials can be obtained from the polynomials of type (2, 2)
by means of the transformation〈

3
2λ
〉
0

= Ωa
[〈

2
2λ
〉
0

]
.

Using (60), we obtain the ODE satisfied by the first moment

[ϑ (ϑ+ b1) (ϑ+ b2)− z (ϑ+ a1) (ϑ+ a2) (ϑ+ a3)]
[〈

3
2λ
〉
0

]
= 0. (140)

From (140), we see that the standard moments 〈32µ〉n satisfy the recurrence

(µ+ b1) (µ+ b2)µ
n+1 − z (µ+ a1) (µ+ a2) (µ+ a3) (µ+ 1)n = 0.

From (28), we have

2∑
k=0

e2−k (b)
〈
3
2µ
〉
k+1

= z
3∑
j=0

e3−j (a)
〈
3
2µ
〉
j
,

and therefore

(1− z)
〈
3
2µ
〉
3

= ze3 (a)
〈
3
2µ
〉
0
+[ze2 (a)− e2 (b)]

〈
3
2µ
〉
1
+[ze1 (a)− e1 (b)]

〈
3
2µ
〉
2
.

Representation of the standard moments in terms of the vector polyno-

mials
−→
Qn (z) 〈

3
2µ
〉
n

= (1− z)−n
〈
3
2

−→
Q
〉
n
·
〈
3
2
−→µ
〉
,
−→
Q0 = −→ε0 .

From (34), we have〈
3
2

−→
Q
〉
n+1

=
[
(1− z)

(
ϑ+

〈
3
2M
〉)

+ nzI
] 〈

3
2

−→
Q
〉
n
,
〈
3
2

−→
Q
〉
0

= −→ε 0,

with

(1− z)
〈
3
2M
〉

=

 0 0 ze3 (a)
1− z 0 ze2 (a)− e2 (b)

0 1− z ze1 (a)− e1 (b)

 .
Hypergeometric representation of the modified moments〈

3
2ν
〉
n

(z) = zn
(a1)n (a2)n (a3)n

(b+ 1)n
3F2

[
a1 + n, a2 + n, a3 + n
b1 + 1 + n, b2 + 1 + n

; z

]
.

Modified moments recurrence operator〈
3
2Ψ
〉
n

= Υn+1 (b1, b2)− zΥn (a1, a2, a3)

= (1− z)S3
n + [1 + e1 (b + n+ 1)− ze1 (a + n+ 1)]S2

n

+ {e2 (b + n+ 1)− z [1 + e1 (a + n) + e2 (a + n)]}Sn − ze3 (a + n) .
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Uvarov Meixner polynomials Suppose that ω 6= 0,−a. The Uvarov
Meixner polynomials can be obtained from the Meixner polynomials by
means of the transformation〈

1
0λ

U
ω

〉
0

=
〈
1
0λ
〉
0

+ ηzω = (1− z)−a + ηzω.

Linear functional

〈
1
0L

U
ω

〉
[u] =

∞∑
x=0

u (x) (a)x
zx

x!
+ ηu (ω) zω.

Using (91) and (121), we obtain

[ϑ (ϑ− ω) (ϑ− ω − 1)− z (ϑ+ a) (ϑ− ω + 1) (ϑ− ω)]
[〈

1
0λ

U
ω

〉
0

]
= 0,

which is a special case of (140) with

a1 = a, a2 = −ω, a3 = −ω + 1, b1 = −ω − 1, b2 = −ω.

Standard moments recurrence operator〈
1
0Φ

U
ω

〉
n

= (Sn − ω) (Sn − ω − 1)
[〈

1
0Φ
〉
n

]
.

Standard moments recurrence

(µ− ω)
[
(µ− ω − 1)µn+1 − z (µ− ω + 1) (µ+ a) (µ+ 1)n

]
= 0.

Modified moments recurrence operator〈
1
0Ψ

U
ω

〉
n

= Υn+1 (−ω − 1,−ω)−zΥn (a,−ω,−ω + 1) = Υn (−ω,−ω + 1)◦
〈
1
0Ψ
〉
n
.

Double Uvarov Meixner polynomials Since for the Reduced Uvarov
Meixner polynomials we have〈

1
0σ

U
0

〉
= ϑ (ϑ− 1) ,

〈
1
0τ

U
0

〉
= ϑ (ϑ+ a)〈

1
0σ

U
−a
〉

= ϑ (ϑ+ a) ,
〈
1
0τ

U
−a
〉

= (ϑ+ a) (ϑ+ a+ 1)

we will have a reduced case for their Uvarov transformations if we add an
extra mass point at ω = 1,−a, or ω = 0,−a− 1.

Case 1: ω1 = 0, ω2 = 1
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First moment〈
1
0λ

U
0,1

〉
0

=
〈
1
0λ
〉
0

+ η1 + η2z = (1− z)−a + η1 + η2z.

Linear functional〈
1
0L

U
0,1

〉
[u] =

∞∑
x=0

u (x) (a)x
zx

x!
+ η1u (0) + η2u (1) z.

Using (96) and (132), we obtain

[ϑ (ϑ− 1) (ϑ− 2)− z (ϑ+ a)ϑ (ϑ− 1)]
[〈

1
0λ

U
0,1

〉
0

]
= 0,

which is a special case of (140) with

a1 = a, a2 = 0, a3 = −1, b1 = −1, b2 = −2.

Standard moments recurrence operator〈
1
0Φ

U
0,1

〉
n

= Sn (Sn − 1)
[〈

1
0Φ
〉
n

]
.

Standard moments recurrence

µ (µ− 1) [(µ− 2)µn − z (µ+ a) (µ+ 1)n] = 0.

Modified moments recurrence operator〈
1
0Ψ

U
0,1

〉
n

= Υn+1 (−1,−2)− zΥn (a, 0,−1) = Υn (0,−1) ◦
〈
1
0Ψ
〉
n
.

Case 2: ω1 = 0, ω2 = −a
First moment〈

1
0λ

U
0,−a
〉
0

=
〈
1
0λ
〉
0

+ η1 + η2z
−a = (1− z)−a + η1 + η2z

−a.

Linear functional〈
1
0L

U
0,−a
〉

[u] =
∞∑
x=0

u (x) (a)x
zx

x!
+ η1u (0) + η2u (−a) z−a.

Using (97) and (132), we obtain

[ϑ (ϑ− 1) (ϑ+ a)− z (ϑ+ a) (ϑ+ a+ 1)ϑ]
[〈

1
0λ

U
0,−a
〉
0

]
= 0,
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which is a special case of (140) with

a1 = a, a2 = a+ 1, a3 = 0, b1 = a, b2 = −1.

Standard moments recurrence operator〈
1
0Φ

U
0,−a
〉
n

= (Sn + a) (Sn − 1)
[〈

1
0Φ
〉
n

]
.

Standard moments recurrence

µ (µ+ a) [(µ− 1)µn − z (µ+ a+ 1) (µ+ 1)n] = 0.

Modified moments recurrence operator〈
1
0Ψ

U
0,−a
〉
n

= Υn+1 (a,−1)− zΥn (a, a+ 1, 0) = Υn (a+ 1, 0) ◦
〈
1
0Ψ
〉
n
.

Remark 30 We omit the case ω1 = −a, ω2 = 0, since it’s identical to case
2.

Case 3: ω1 = −a, ω2 = −a− 1
First moment〈
1
0λ

U
−a,−a−1

〉
0

=
〈
1
0λ
〉
0

+ η1z
−a + η2z

−a−1 = (1− z)−a + η1z
−a + η2z

−a−1.

Linear functional〈
1
0L

U
−a,−a−1

〉
[u] =

∞∑
x=0

u (x) (a)x
zx

x!
+ η1u (−a) z−a + η2u (−a− 1) z−a−1.

Using (97) and (133), we obtain

[ϑ (ϑ+ a) (ϑ+ a+ 1)− z (ϑ+ a) (ϑ+ a+ 1) (ϑ+ a+ 2)]
[〈

1
0λ

U
−a,−a−1

〉
0

]
= 0,

which is a special case of (140) with

a1 = a, a2 = a+ 1, a3 = a+ 2, b1 = a, b2 = a+ 1.

Standard moments recurrence operator〈
1
0Φ

U
−a,−a−1

〉
n

= (Sn + a) (Sn + a+ 1)
[〈

1
0Φ
〉
n

]
.

Standard moments recurrence

(µ+ a) (µ+ a+ 1)
[
µn+1 − z (µ+ a+ 2) (µ+ 1)n

]
= 0.

Modified moments recurrence operator〈
1
0Ψ

U
−a,−a−1

〉
n

= Υn+1 (a, a+ 1)−zΥn (a, a+ 1, a+ 2) = Υn (a+ 1, a+ 2)◦
〈
1
0Ψ
〉
n
.
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Reduced Uvarov Truncated Meixner polynomials Since for the Trun-
cated Meixner polynomials we have〈

1
0σ

T
〉

= ϑ (ϑ−N − 1) ,
〈
1
0τ

T
〉

= (ϑ+ a) (ϑ−N) ,

we will have reduced cases for their Uvarov transformation if

ω = 0, N + 1,−a,N.

i) ω = 0
First moment 〈

1
0λ

T,U
0

〉
0

=
〈
1
0λ

T
〉
0

+ η.

Linear functional〈
1
0L

T,U
0

〉
[u] =

N∑
x=0

u (x) (a)x
zx

x!
+ ηu (0) .

Using (96) and (134), we obtain

[ϑ (ϑ− 1) (ϑ−N − 1)− z (ϑ+ a)ϑ (ϑ−N)]
[〈

1
0λ

T,U
0

〉
0

]
= 0,

which is a special case of (140) with

a1 = a, a2 = 0, a3 = −N, b1 = −1, b2 = −N − 1.

Standard moments recurrence operator〈
1
0Φ

T,U
0

〉
n

= (Sn −N − 1) (Sn − 1)
[〈

1
0Φ
〉
n

]
.

Standard moments recurrence

µ [(µ− 1) (µ−N − 1)µn − z (µ−N) (µ+ a) (µ+ 1)n] = 0.

Modified moments recurrence operator〈
1
0Ψ

T,U
0

〉
n

= Υn+1 (−1,−N − 1)− zΥn (a, 0,−N) = Υn (0,−N) ◦
〈
1
0Ψ
〉
n
.

ii) ω = N + 1
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First moment 〈
1
0λ

T,U
N+1

〉
0

=
〈
1
0λ

T
〉
0

+ ηzN+1.

Linear functional〈
1
0L

T,U
N+1

〉
[u] =

N∑
x=0

u (x) (a)x
zx

x!
+ ηu (N + 1) zN+1.

Using (96) and (134), we obtain

[ϑ (ϑ−N − 1) (ϑ−N − 2)− z (ϑ+ a) (ϑ−N) (ϑ−N − 1)]
[〈

1
0λ

T,U
N+1

〉
0

]
= 0,

which is a special case of (140) with

a1 = a, a2 = −N, a3 = −N − 1, b1 = −N − 1, b2 = −N − 2.

Standard moments recurrence operator〈
1
0Φ

T,U
N+1

〉
n

= (Sn −N − 1) (Sn −N − 2)
[〈

1
0Φ
〉
n

]
.

Standard moments recurrence

(µ−N − 1)
[
(µ−N − 2)µn+1 − z (µ−N) (µ+ a) (µ+ 1)n

]
= 0

Modified moments recurrence operator〈
1
0Ψ

T,U
N+1

〉
n

= Υn+1 (−N − 1,−N − 2)− zΥn (a,−N,−N − 1)

= Υn (−N,−N − 1) ◦
〈
1
0Ψ
〉
n
.

iii) ω = −a
First moment 〈

1
0λ

T,U
−a

〉
0

=
〈
1
0λ

T
〉
0

+ ηz−a.

Linear functional〈
1
0L

T,U
−a

〉
[u] =

N∑
x=0

u (x) (a)x
zx

x!
+ ηu (−a) z−a.

Using (97) and (134), we obtain

[ϑ (ϑ+ a) (ϑ−N − 1)− z (ϑ+ a) (ϑ+ a+ 1) (ϑ−N)]
[〈

1
0λ

T,U
−a

〉
0

]
= 0,
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which is a special case of (140) with

a1 = a, a2 = a+ 1, a3 = −N, b1 = a, b2 = −N − 1.

Standard moments recurrence operator〈
1
0Φ

T,U
−a

〉
n

= (Sn + a) (Sn −N − 1)
[〈

1
0Φ
〉
n

]
.

Standard moments recurrence

(µ+ a)
[
(µ−N − 1)µn+1 − z (µ−N) (µ+ a+ 1) (µ+ 1)n

]
= 0.

Modified moments recurrence operator〈
1
0Ψ

T,U
−a

〉
n

= Υn+1 (a,−N − 1)− zΥn (a, a+ 1,−N)

= Υn (a+ 1,−N) ◦
〈
1
0Ψ
〉
n
.

iv) ω = N
First moment 〈

1
0λ

T,U
N

〉
0

=
〈
1
0λ

T
〉
0

+ ηzN .

Linear functional〈
1
0L

T,U
N

〉
[u] =

N∑
x=0

u (x) (a)x
zx

x!
+ ηu (N) zN .

Using (97) and (134), we obtain

[ϑ (ϑ−N) (ϑ−N − 1)− z (ϑ+ a) (ϑ−N + 1) (ϑ−N)]
[〈

1
0λ

T,U
N

〉
0

]
= 0,

which is a special case of (140) with

a1 = a, a2 = −N + 1, a3 = −N, b1 = −N, b2 = −N − 1.

Standard moments recurrence operator〈
1
0Φ

T,U
N

〉
n

= (Sn −N) (Sn −N − 1)
[〈

1
0Φ
〉
n

]
.

Standard moments recurrence

(µ−N)
[
(µ−N − 1)µn+1 − z (µ−N + 1) (µ+ a) (µ+ 1)n

]
= 0.

Modified moments recurrence operator〈
1
0Ψ

T,U
N

〉
n

= Υn+1 (−N,−N − 1)− zΥn (a,−N + 1,−N)

= Υn (−N + 1,−N) ◦
〈
1
0Ψ
〉
n
.
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5 Conclusion

We have studied the families of orthogonal polynomials characterized by the
hypergeometric differential equation satisfied by the first moment λ0 (z)

[ϑq (ϑ)− zp (ϑ)] [λ0] = 0, p, q ∈ K [x] .

We obtained recurrence relations for the moments on the monomial and
falling factorial polynomial bases, and gave examples for all polynomials of
class s ≤ 2, where s = max {deg (q) , deg (p)− 1} .

We note that one could use the generating function (35) and the ODE it
satisfies (36), as a different way of analyzing the standard moments µn (z) .
Similarly, one could study the modified moments νn (z) using (52) and (53).

We are currently working on further applications of our results to study
some properties of the orthogonal polynomials themselves (representations,
recurrence-relation coefficients, generating functions, etc).
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aus dem Gebiete der Exakten Wissenschaften, Mathematische Reihe,
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[51] A. G. Garćıa, F. Marcellán, and L. Salto. A distributional
study of discrete classical orthogonal polynomials. In “Proceedings
of the Fourth International Symposium on Orthogonal Polynomials
and their Applications (Evian-Les-Bains, 1992)”, vol. 57, pp. 147–162
(1995).

[52] L. G. Garza, L. E. Garza, F. Marcellán, and N. C. Pinzón-
Cortés. A matrix characterization for the Dν-semiclassical and Dν-
coherent orthogonal polynomials. Linear Algebra Appl. 487, 242–259
(2015).

[53] W. Gautschi. On generating orthogonal polynomials. SIAM J. Sci.
Statist. Comput. 3(3), 289–317 (1982).

[54] W. Gautschi. “Orthogonal polynomials: computation and approxi-
mation”. Numerical Mathematics and Scientific Computation. Oxford
University Press, New York (2004).

[55] J. Geronimus. On polynomials orthogonal with regard to a given
sequence of numbers. Comm. Inst. Sci. Math. Méc. Univ. Kharkoff
[Zapiski Inst. Mat. Mech.] (4) 17, 3–18 (1940).

[56] M. N. Hounkonnou, C. Hounga, and A. Ronveaux. Discrete
semi-classical orthogonal polynomials: generalized Charlier. J. Com-
put. Appl. Math. 114(2), 361–366 (2000).

[57] M. E. H. Ismail. “Classical and quantum orthogonal polynomials in
one variable”, vol. 98 of “Encyclopedia of Mathematics and its Appli-
cations”. Cambridge University Press, Cambridge (2005).

96



[58] M. E. H. Ismail and D. Stanton. Classical orthogonal polynomials
as moments. Canad. J. Math. 49(3), 520–542 (1997).

[59] M. E. H. Ismail and D. Stanton. More orthogonal polynomials
as moments. In “Mathematical essays in honor of Gian-Carlo Rota
(Cambridge, MA, 1996)”, vol. 161 of “Progr. Math.”, pp. 377–396.
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u = δc + λ(x− c)−1L. Period. Math. Hungar. 21(3), 223–248 (1990).
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2021-03 A. Jiménez Pastor: Simple differentially definable functions Feb 2021. Eds.: M. Kauers,

V. Pillwein

2021-04 U. Langer, A. Schafelner: Simultaneous space-time finite element methods for parabolic opti-

mal control problems March 2021. Eds.: V. Pillwein, R. Ramlau

2021-05 U. Langer, A. Schafelner: Space-time hexahedral finite element methods for parabolic evolution

problems March 2021. Eds.: B. Jüttler, V. Pillwein
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