
An extension of holonomic sequences:

C
2-finite sequences
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Antonio Jiménez-Pastor1, Philipp Nuspl2, and Veronika Pillwein3

jimenezpastor@lix.polytechnique.fr, philipp.nuspl@jku.at, veronika.pillwein@risc.jku.at

1LIX, CNRS, Ecole Polytechnique, Institute Polytechnique de Paris
2Johannes Kepler University Linz, Doctoral Program Computational Mathematics
3Johannes Kepler University Linz, Research Institute for Symbolic Computation

Abstract

Holonomic sequences are widely studied as many objects interesting to mathematicians
and computer scientists are in this class. In the univariate case, these are the sequences
satisfying linear recurrences with polynomial coefficients and also referred to as D-finite
sequences. A subclass are C-finite sequences satisfying a linear recurrence with constant
coefficients.

We investigate the set of sequences which satisfy linear recurrence equations with coeffi-
cients that are C-finite sequences. These sequences are a natural generalization of holonomic
sequences. In this paper, we show that C2-finite sequences form a difference ring and provide
methods to compute in this ring.

Furthermore, we provide an analogous construction for D2-finite sequences, i.e., se-
quences satisfying a linear recurrence with holonomic coefficients. We show that these
constructions can be iterated and obtain an increasing chain of difference rings.

1 Introduction

Sequences that satisfy a linear recurrence with polynomial coefficients are known under the
names holonomic, D-finite or P -recursive. If the recurrence coefficients are just constants, these
sequences are also called C-finite or C-recursive. Many interesting combinatorial objects or
coefficient sequences of special functions are of this type [4, 16]. In this paper, we define C2-
finite sequences as sequences satisfying a linear recurrence relation with C-finite coefficients.
Holonomic and q-holonomic sequences are strictly contained in this set.

For holonomic functions or sequences, closure properties are a basic tool to systematically
construct new holonomic objects from given ones and, more importantly, to automatically prove
identities on holonomic objects. We set up C2-finite sequences in a way that allows to derive and
implement closure properties. The goal is to develop a toolkit for automated theorem proving as
is already available for holonomic sequences and functions [13]. The main computational issue
when working with this more general class compared to holonomic sequences is the presence of
zero divisors.

To our knowledge, C2-finite sequences have first been introduced formally in [18] in the
context of graph polynomials. [24] gives an overview on different properties of polynomial, C-
finite and holonomic sequences and consider the extension under the name X-recursive sequences.

∗The research was partially funded by the Austrian Science Fund (FWF) under the grant W1214-N15, project
DK15 and by the Paris Ile-de-France region.
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The setting in these articles is slightly different which leads to complications if one aims at
developing an algorithmic approach.

In this paper, we show that C2-finite sequences form a difference ring with respect to termwise
addition and termwise multiplication and present a first step towards setting up the theory of
C2-finite sequences algorithmically. An implementation in SageMath [25] is under development
for proof-of-concept and later release. In Section 3, we provide the algebraic characterization of
C2-finite sequences that serves as the theoretical backbone, but cannot be used straightforward
in a constructive way. Next, in Section 4, we consider in full detail the computation of the ring
operations. Finally, in Section 5, we state some of the classical closure properties such as partial
sum or interlacing that can be derived similar to the case of holonomic sequences. In Section 6
we extend our results and show that similar ideas can be used to define D2-finite sequences.
Furthermore, we show that the construction of such sequences can be iterated which yields an
increasing chain of difference rings.

This article is an extended version of a conference paper presented at ISSAC 2021 [10]. We
expanded Section 4 and provide the algorithms to perform the ring operations in the ring of
C2-finite sequences. Furthermore, we discuss issues related to time complexity and the runtime
of our (proof-of-concept) implementation in several examples. In Section 4.1 we give a detailed
description of how a recurrence for the subsequence of a C2-finite sequence can be computed. In
Section 6 we extend our results to Ck-finite and also Dk-finite sequences.

2 Preliminaries

In this section, we introduce some notation that is used throughout the paper. By N =
{0, 1, 2, . . . , } we denote the set of natural numbers. Let K be a computable field of charac-
teristic zero and we denote by KN the set of sequences over K. These sequences form a ring with
termwise addition and multiplication (i.e., the Hadamard product). The shift operator

σ : KN → KN, σ((a(n))n∈N) = (a(n+ 1))n∈N

is an endomorphism on KN. A difference subring is a subring R of KN which is closed under
shifts, i.e., σ is an endomorphism on R. The noncommutative ring of shift-operators over R is
denoted by R[σ] and elements C = c0 + c1σ+ · · ·+ crσ

r ∈ R[σ] act in the natural way on a ∈ KN

as
Ca = (c0(n)a(n) + c1(n)a(n+ 1) + · · ·+ cr(n)a(n+ r))n∈N.

For a difference subring R ⊆ KN, we denote by R× ⊆ R the set of sequences which are units
in KN. These are the sequences which are nonzero everywhere. This is a multiplicatively closed
subset of R. Furthermore, Q(R) denotes the localization of R with respect to R×. We can
consider Q(R) as a subring of KN by ((a/b)(n))n∈N = (a(n)/b(n))n∈N ∈ KN for a/b ∈ Q(R). The
ring of C-finite sequences is a difference ring and we denote it by RC .

Definition 2.1. A sequence a ∈ KN is called C2-finite over K if there are C-finite sequences
c0, . . . , cr ∈ RC with coefficients in K and cr ∈ R×C such that

c0(n)a(n) + c1(n)a(n+ 1) + · · ·+ cr(n)a(n+ r) = 0,

for all n ∈ N. We call the minimal such r the order of a and denote it by ord(a).

Note that the set of C2-finite sequences contains holonomic sequences (and as such C-finite
sequences), since polynomial sequences are C-finite. A sequence a ∈ LN is called q-holonomic
over L := K(q) (with q transcendental) if a satisfies a linear recurrence relation

p0(qn)a(n) + · · ·+ pr(qn)a(n+ r) = 0, for all n ∈ N,
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with coefficients pi ∈ L[x] not all zero [15]. As all coefficients pi(q
n) are C-finite over L, such a

q-holonomic sequence a is also C2-finite over L.
A C2-finite sequence is described completely by a finite amount of data: the recurrence

coefficients c0, . . . , cr ∈ RC and initial values a(0), . . . , a(r − 1). The recurrence coefficients in
turn have a finite description of the same form. This way, C2-finite sequences can be represented
exactly on a computer.

In operator notation, a sequence a ∈ KN is C2-finite if there is an operator A ∈ RC [σ] with
lc(A) ∈ R×C and Aa = 0. We call A an annihilating operator of a. Let c ∈ RC . It is an open
problem (the so called Skolem-Problem [20]) whether it can be decided algorithmically if c ∈ R×C .
However, even if in practice it may not always be possible to verify formally, usually it is easy
to verify empirically.

Instead of working in the ring KN, we could also work in the ring SK := KN/J for J :=⋃
i∈N ker(σi). Two sequences in SK are equal if they are equal from some term on [22]. This

setting is also used in [18]. Let us write π : KN → SK for the natural projection. We say
that a + J ∈ SK is C2-finite if there is an operator A ∈ π(RC)[σ] with lc(A) ∈ π(RC)× and
A(a + J) = 0 + J . Equivalently, the sequence a ∈ KN satisfies a C2-finite recurrence from
some term n0 ∈ N on. By shifting the recurrence by n0, we would get a recurrence which holds
for every n ∈ N. It can be decided whether lc(A) ∈ π(RC)× [3, 5]. Hence, the advantage of
working over SK is that one can decide if an operator A is of the desired shape. For practical
computations, one is still limited by the Skolem-Problem. Thus, and since in our setting we
avoid certain technicalities, we stick to working over the ring KN as stated above.

In the setting of [24], a sequence is X-recursive if it satisfies a linear recurrence with arbitrary
C-finite coefficients. This includes the cases when the leading coefficient has infinitely many zeros.
As a consequence, a sequence may not be uniquely determined by finite data (finitely many initial
values) and one can construct examples of X-recursive sequences that grow arbitrarily fast.

We conclude this section by giving three concrete examples of C2-finite sequences. More
examples can be found in [18] and [24].

Example 2.1. Let (a(n))n∈N count the number of graphs on n labeled nodes (sequence A006125
in the OEIS [9]). Then, a(n) = 2n(n−1)/2 and a is C2-finite as

2na(n)− a(n+ 1) = 0, for all n ∈ N.

Similarly, all sequences (αn2

)n∈N for α ∈ K are C2-finite. These grow faster than holonomic
sequences [6, Proposition 1.2.1]. Hence, the set of C2-finite sequences is a strict generalization
of holonomic sequences.

Example 2.2. Let (f(n))n∈N denote the Fibonacci numbers (with f(0) = 0, f(1) = 1). It was
observed in [18] that

f(2n+ 3)(f(2n+ 1)f(2n+ 3)− f(2n+ 2)2)f(n2)

+f(2n+ 2)(f(2n+ 3) + f(2n+ 1))f((n+ 1)2)

−f(2n+ 1)f((n+ 2)2) = 0

holds for all n ∈ N. Hence, (f(n2))n∈N is C2-finite (A054783 in the OEIS). In fact, the C-finite
coefficients can be simplified and we obtain the simple recurrence:

f(2n+ 3)f(n2) + f(4n+ 4)f((n+ 1)2)− f(2n+ 1)f((n+ 2)2) = 0.

Example 2.3. Let f be as above, l denote the Lucas numbers satisfying the same recurrence as
f with initial values l(0) = 2, l(1) = 1. Let Fib(n, k) :=

∏k
i=1 f(n− i+ 1)/f(i) be the fibonomial
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coefficient. It has been shown [17, Theorem 1] that

a(n) :=

n∑
k=0

Fib(2n+ 1, k) =

n∏
k=1

l(2k), for all n ∈ N.

Hence, the sequence a (A294349 in the OEIS) is C2-finite and satisfies the recurrence

l(2n+ 2)a(n)− a(n+ 1) = 0, for all n ∈ N.

3 Algebraic characterization

For a sequence a ∈ KN and a subring S ⊆ RC , we consider the module of shifts over the
ring Q(S),

〈σia | i ∈ N〉Q(S)

where the scalar multiplication is given by the Hadamard product of sequences in KN. In Theo-
rem 3.3 below, we prove that this module (with S = RC) is finitely generated, if and only if the
sequence is C2-finite. For this purpose, we first show two auxiliary lemmas.

Lemma 3.1. Let a be C2-finite with annihilating operator A = c0 + · · ·+ crσ
r and let R be the

difference ring generated by c0, . . . , cr. If R ⊆ S, then 〈σia | i ∈ N〉Q(S) is finitely generated.

Proof. By assumption we have lc(A) = cr ∈ R×C and Aa = 0. Let i ∈ N. Then,

σiA = σi(c0)σi + · · ·+ σi(cr)σi+r

and lc(σiA) = σi(cr) ∈ R×C . Since (σiA)a = σi(Aa) = 0, we can write

σi+r(a) = −σ
i(c0)

σi(cr)
σi(a)− · · · − σi(cr−1)

σi(cr)
σi+r−1(a).

Hence, for all i ∈ N, the sequence σi+ra is a Q(R)-linear combination of the sequences
σia, . . . , σi+r−1a. By induction, σi+ra is a Q(R)- and therefore a Q(S)-linear combination of
a, σa, . . . , σr−1a. Thus, the module 〈σia | i ∈ N〉Q(S) is generated by a, σa, . . . , σr−1a.

Lemma 3.2. Let a ∈ KN and S ⊆ RC . If 〈σia | i ∈ N〉Q(S) is finitely generated, then a is
C2-finite.

Proof. As the module is finitely generated, we can write

〈σia | i ∈ N〉Q(S) = 〈b0, . . . , bm〉Q(S)

for some m and some sequences b0, . . . , bm. There exists an r ∈ N such that the elements bj can

be written as bj =
∑r−1

i=0 ci,jσ
ia for some ci,j ∈ Q(S). Then, σra is a Q(S)-linear combination of

b0, . . . , bm, so in particular a linear combination of the sequences a, σa, . . . , σr−1a. Hence, there
exist sequences c0, . . . , cr−1 ∈ S and d0, . . . , dr−1 ∈ S× with

σra =
c0
d0
a+

c1
d1
σa+ · · ·+ cr−1

dr−1
σr−1a.

Clearing denominators shows that a is C2-finite of order at most r.
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Theorem 3.3. The following are equivalent:

1. The sequence a is C2-finite.

2. There exists A ∈ RC [σ] with lc(A) ∈ R×C and a C2-finite sequence b with Aa = b.

3. The module 〈σia | i ∈ N〉Q(RC) over the ring Q(RC) is finitely generated.

Proof. (1) ⇒ (2): We can choose the C2-finite sequence b = 0.
(2) ⇒ (1): Since b is C2-finite, there exists an operator B ∈ RC [σ] with lc(B) ∈ R×C and

Bb = 0. Then, (BA)a = B(Aa) = Bb = 0. Furthermore, lc(BA) ∈ R×C .
(1) ⇒ (3): Follows from Lemma 3.1 with S = RC .
(3) ⇒ (1): Follows from Lemma 3.2 with S = RC .

Analogous results like Theorem 3.3 for C-finite and holonomic sequences are often used to
show that these sets form rings [16]. In these cases, the base ring is a field and the key step makes
use of the fact that submodules of finitely generated modules over fields (i.e., finite dimensional
vector spaces) are again finitely generated. This holds more generally for Noetherian rings.
However, the rings RC and Q(RC) are not Noetherian as the next example shows.

Example 3.1. Let ck ∈ RC with ck(n) − ck(n + k) = 0 for every n ∈ N, and ck(0) = · · · =
ck(k−2) = 1, ck(k−1) = 0 (i.e., ck has a 0 at every k-th term and 1 else). Let Lm := 〈c2, . . . , c2m〉
be ideals in RC for m ∈ N. Then,

L1 ( L2 ( L3 ( · · ·

is an infinitely properly ascending chain of ideals in RC . Therefore, RC is not a Noetherian ring.

Hence, to use a similar argument for C2-finite sequences, we construct a Noetherian subring
S ⊆ RC in the next theorem.

Theorem 3.4. The set of C2-finite sequences is a difference ring under termwise addition and
termwise multiplication.

Proof. Let a, b be C2-finite sequences andA = c0+c1σ+· · ·+cr1σr1 and B = d0+d1σ+· · ·+dr2σr2

the corresponding annihilating operators with c0, . . . , cr1 , d0, . . . , dr2 ∈ RC .
Let c ∈ RC be a C-finite sequence. Then, the K-vector space 〈σic | i ∈ N〉K is finitely

generated. Hence, also the K-algebra

Rc := K[c, σc, σ2c, . . . ]

is finitely generated as an algebra and, in particular, Rc is a Noetherian ring [1, Corollary 7.7].
Now, let S ( RC be the smallest ring containing the Noetherian rings Rc0 , . . . , Rcr1

,
Rd0 , . . . , Rdr2

. This ring S is finitely generated as a ring and therefore, S and Q(S) are Noethe-

rian rings [1, Corollary 7.7 and Proposition 7.3]. By Lemma 3.1, the modules 〈σia | i ∈ N〉Q(S)

and 〈σib | i ∈ N〉Q(S) are both finitely generated Q(S)-modules. Hence, also the modules

〈σi(a+ b) | i ∈ N〉Q(S) ⊆ 〈σia | i ∈ N〉Q(S) + 〈σib | i ∈ N〉Q(S)

and

〈σi(ab) | i ∈ N〉Q(S) ⊆ 〈σi(a)σj(b) | i, j ∈ N〉Q(S)
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are finitely generated as they are submodules of finitely generated modules over a Noetherian
ring. By Lemma 3.2, the sequences a + b and ab are C2-finite. Therefore, the set of C2-finite
sequences is a ring.

The operator
Ã := σ(c0) + σ(c1)σ + · · ·+ σ(cr1)σr1 ∈ RC [σ]

annihilates σa as
Ã(σa) = (Ãσ)a = (σA)a = σ(Aa) = 0.

Furthermore, we have lc(Ã) = σ(cr1) ∈ R×C . Hence, the ring of C2-finite sequences is also closed
under shifts.

In [18, Theorem 1] it was shown that certain sparse subsequences of C-finite sequences are
C2-finite. Example 2.2 given earlier is just a special case of this. We provide an easier proof for
a similar result which uses the closed-form representation of C-finite sequences.

Corollary 3.5. Let c be a C-finite sequence over the field K and k, l,m ∈ N. Then, (c(kn2 +
ln+m))n∈N is C2-finite over the splitting field L of the characteristic polynomial of c.

Proof. By the closed-form representation of C-finite sequences ([16, Theorem 4.1]) c is an L-
linear combination of sequences d with d(n) = niαn for i ∈ N and α ∈ L from some term n0 ∈ N
on. It is sufficient to show that (c(kn2+ln+m))n∈N satisfies a C2-finite recurrence for all n ≥ n0.
This recurrence can be shifted n→ n+ n0 to get a C2-finite recurrence for the entire sequence.
We have

d(kn2 + ln+m) = (kn2 + ln+m)i(αk)n
2

(αl)nαm.

Therefore, with Theorem 3.4, the sequence (d(kn2 + ln+m))n∈N is C2-finite as it is the product

of C-finite sequences and the C2-finite sequence ((αk)n
2

)n∈N over L. Since C2-finite sequences
are also closed under L-linear combinations, (c(kn2 + ln+m))n∈N is C2-finite.

In Section 5.2 we will show that (c(kn2 + ln + m))n∈N is even C2-finite over K and give an
algorithm how such a C2-finite recurrence can be computed.

4 Ring computations

Classically, closure properties for holonomic functions or sequences are computed using an ansatz
method [13]. We describe such an approach for the addition and multiplication of two C2-finite
sequences.

Let a, b be C2-finite. Then, we have recurrences

c̃0(n)a(n) + · · ·+ c̃r1−1(n)a(n+ r1 − 1) + c̃r1(n)a(n+ r1) = 0,

d̃0(n)b(n) + · · ·+ d̃r2−1(n)b(n+ r2 − 1) + d̃r2(n)b(n+ r2) = 0,

for all n ∈ N, for c̃0, . . . , c̃r1−1, d̃0, . . . , d̃r2−1 ∈ RC with leading coefficients c̃r1 , d̃r2 ∈ R×C .
Therefore,

c0(n)a(n) + · · ·+ cr1−1(n)a(n+ r1 − 1) + a(n+ r1) = 0,

d0(n)b(n) + · · ·+ dr2−1(n)b(n+ r2 − 1) + b(n+ r2) = 0,

for all n ∈ N, with c0, . . . , cr1−1, d0, . . . , dr2−1 ∈ Q(RC).
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To get a recurrence for a + b we make an ansatz of some order s with unknown coefficients
x0, . . . , xs−1 ∈ Q(RC):

x0(n)(a(n) + b(n)) + · · ·+ xs−1(n)(a(n+ s− 1) + b(n+ s− 1))

+ (a(n+ s) + b(n+ s)) = 0.

Opposed to the classical approach for C-finite and holonomic sequences, the order of the ansatz s
is unknown. Furthermore, the coefficients x0, . . . , xs−1 are in a localized ring and the leading
coefficient in the ansatz is 1. We start with an initial value for the order s. If a solution for
the coefficients can be found, we can clear the denominators and get a C2-finite recurrence.
Otherwise, if no solution for the coefficients can be found, we increase the order s of the ansatz
and repeat this process.

Iterated application of the recurrences shows that each a(n+ j) and b(n+ j) can be written
as Q(RC)-linear combination of a(n+ i1) for i1 = 0, . . . , r1−1 and b(n+ i2) for i2 = 0, . . . , r2−1,

respectively. Let a(n + j) =
∑r1−1

i1=0 uj,i1(n)a(n + i1) for j = 0, . . . , s for some uj,i1 ∈ Q(RC).

Analogously, let b(n+j) =
∑r2−1

i2=0 vj,i2(n)b(n+i2) for j = 0, . . . , s for some vj,i2 ∈ Q(RC). Then,

r1−1∑
i1=0

us,i1(n) +

s−1∑
j=0

uj,i1(n)xj(n)

 a(n+ i1)+

r2−1∑
i2=0

vs,i2(n) +

s−1∑
j=0

vj,i2(n)xj(n)

 b(n+ i2) = 0.

Equating the coefficients of a(n+ i1) and b(n+ i2) to zero yields a linear inhomogeneous system.
To write it concisely, let us denote

u>j = (uj,0, . . . , uj,r1−1), v>j = (vj,0, . . . , vj,r2−1),

and

wj =

(
uj
vj

)
∈ Q(RC)r1+r2

for j = 0, . . . , s, and x> = (x0, . . . , xs−1) ∈ Q(RC)s. Now, the system that we obtain from
equating the coefficient sequences to zero reads as(

w0, w1, . . . , ws−1
)
x = −ws.

We call
(
w0, w1, . . . , ws−1

)
∈ Q(RC)(r1+r2)×s the ansatz matrix of size s for the addition.

To get a recurrence for ab, again we make an ansatz of some order s with unknown coefficients
x0, . . . , xs−1 ∈ Q(RC):

x0(n)(a(n)b(n)) + · · ·+ xs−1(n)(a(n+ s− 1)b(n+ s− 1))

+ (a(n+ s)b(n+ s)) = 0.

Using the recurrences for a and b, this equation can be rewritten as

r1−1∑
i1=0

r2−1∑
i2=0

us,i1(n)vs,i2(n) +

s−1∑
j=0

uj,i1(n)vj,i2(n)xj(n)

 a(n+ i1)b(n+ i2) = 0.
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Equating the coefficients of a(n+ i1)b(n+ i2) to zero yields the linear inhomogeneous system(
w̃0, w̃1, . . . , w̃s−1

)
x = −w̃s.

where each column w̃j is given by the Kronecker product of the vectors uj , vj , i.e., w̃j = uj ⊗ vj .
We call

(
w̃0, w̃1, . . . , w̃s−1

)
∈ Q(RC)(r1+r2)×s the ansatz matrix of size s for the multiplication.

In the next section, we show how the vectors wj , w̃j can be computed. Then, in Section 4.2,
we see that the order of the ansatz s can be chosen big enough such that the inhomogeneous
system has a solution in Ks at every term. Finally, from Lemma 4.4 it follows that there is a
solution x ∈ Q(RC)s of the inhomogeneous system.

If one of the C2-finite sequences has order 1, the inhomogeneous system has a special structure.
We use this to derive a bound for the order of the addition of two sequences in Section 4.4.

4.1 Computing the ansatz

Let a be C2-finite of order r with recurrence

c0(n)a(n) + · · ·+ cr−1(n)a(n+ r − 1) + a(n+ r) = 0,

for all n ∈ N, and for c0, . . . , cr−1 ∈ Q(RC). We write the components of a vector uj ∈ Q(RC)r

as uj,i for i = 0, . . . , r−1. For unit vectors we use the notation ej ∈ Q(RC)r for j = 0, . . . , r−1.
Note that, e.g., e0(n)> = (1, 0, . . . , 0), for all n ∈ N.

The following lemma shows a straightforward recurrence which can be used to compute the
vectors uj in the ansatz matrix.

Lemma 4.1. Initialize uj := ej ∈ Q(RC)r with the unit vectors for j = 0, . . . , r − 1 and define

uj(n) := −
r−1∑
k=0

ck(n+ j − r)uj+k−r(n), for all n ∈ N, (1)

inductively for j ≥ r. These uj(n) satisfy

a(n+ j) =

r−1∑
i=0

uj,i(n)a(n+ i), for all n ∈ N, (2)

for all j ∈ N.

Proof. Shifting the defining recurrence of a(n) yields

a(n+ j) = −
r−1∑
k=0

ck(n+ j − r)a(n+ j + k − r), for all n ∈ N,

for j ≥ r. We show equation (2) by induction on j. It clearly holds for j = 0, . . . , r − 1 by the
definition of the uj . Let n ∈ N and let us assume that equation (2) holds for a(n), . . . , a(n+j−1).
Then,

r−1∑
i=0

uj,i(n)a(n+ i) = −
r−1∑
i=0

r−1∑
k=0

ck(n+ j − r)uj+k−r,i(n)a(n+ i)

= −
r−1∑
k=0

ck(n+ j − r)a(n+ j + k − r) = a(n+ j).

8



A different way to compute the vectors uj is to use the companion matrix of a sequence. The
companion matrix Ma of the sequence a is defined as

Ma :=


0 0 . . . 0 −c0
1 0 . . . 0 −c1
0 1 . . . 0 −c2
...

...
. . .

...
...

0 0 . . . 1 −cr−1

 ∈ Q(RC)r×r.

Lemma 4.2. Let Ma be the companion matrix of a. Let

u0 := e0 = (1, 0, . . . , 0)>

and define
uj(n) := Ma(n)uj−1(n+ 1), for all n ∈ N,

inductively for j ≥ 1.

1. These uj are identical to the vectors from Lemma 4.1.

2. The uj satisfy equation (2).

Proof. (1): Clearly uj = ej for j = 0, . . . , r − 1 by the definition of the companion matrix. For
j ≥ r we show that equation (1) from Lemma 4.1 is satisfied using induction on j. For j = r we
have

ur(n)> = (−c0(n), . . . ,−cr−1(n)), for all n ∈ N,

by the definition of the companion matrix. Therefore,

−
r−1∑
k=0

ck(n)uk(n) = −
r−1∑
k=0

ck(n)ek(n) = ur(n), for all n ∈ N.

Now, we assume that equation (1) from Lemma 4.1 holds for j − 1, i.e.,

uj−1(n) = −
r−1∑
k=0

ck(n+ j − 1− r)uj−1+k−r(n), (3)

for all n ∈ N. Using equation (3) with n shifted by one and the definition of the uj we have for
all n ∈ N,

uj(n) = Ma(n)uj−1(n+ 1) = −Ma(n)

r−1∑
k=0

ck(n+ j − r)uj−1+k−r(n+ 1)

= −
r−1∑
k=0

ck(n+ j − r)uj+k−r(n).

(2): Follows directly from part (1) and Lemma 4.1.

Consider two C2-finite sequences a, b. To compute the vectors wj in the ansatz matrix for a+b
we can concatenate the vectors we get from Lemma 4.1. Alternatively, following the approach
from [11], we can use Lemma 4.2 and compute wj(n) = M(n)wj−1(n+ 1), for n ∈ N, where

M = Ma ⊕Mb =

(
Ma 0
0 Mb

)

9



is the direct sum of the companion matrices of a and b. If we write σ(w) = (w(n+ 1))n∈N, this
can also be written as wj = Mσ(wj−1).

For the product ab, we have

(Ma ⊗Mb)w̃j = (Ma ⊗Mb)(uj ⊗ vj) = (Mauj)⊗ (Mbvj)

= uj+1 ⊗ vj+1 = w̃j+1.

Hence, we can compute the columns of the ansatz matrix using the Kronecker product M =
Ma ⊗Mb of the matrices Ma and Mb.

4.2 Solving the ansatz

In Section 4.1 we have seen constructive ways to compute the ansatz matrix of a specific size s.
Lemma 4.3 below yields that this size s can be chosen large enough such that the corresponding
inhomogeneous system has a solution at every term. Lemma 4.4 then states that such termwise
solvable systems are even solvable in the C-finite sequence ring. For both results we adapt some
techniques which were used in [18]. As a consequence, we obtain a (semi-) constructive way to
compute the addition and multiplication in the C2-finite sequence ring.

Lemma 4.3. Let a, b be C2-finite sequences. Then, the order s of the ansatz for the sum a+ b
and the product ab can be chosen in such a way that the corresponding inhomogeneous system
has a solution at every term.

Proof. Let w0, w1, . . . ∈ Q(RC)r (with r = r1 +r2 if we consider the sum a+b and r = r1r2 if we
consider the product ab) be the columns of the ansatz matrix. Let S ( RC be the smallest ring
containing all K-algebras K[c, σc, σ2c, . . . ] where c is a coefficient in the annihilating operator of
a or b. In the proof of Theorem 3.4 we have seen that Q(S) is a Noetherian ring. Now, define

Aj := (w0, . . . , wj) ∈ Q(S)r×(j+1). Furthermore, let I
(t)
j E Q(S) be the ideals generated by the

minors of order t of Aj . For fixed t ∈ {0, . . . , r}, these I
(t)
j form an increasing chain of ideals.

Let s ∈ N be such that I
(t)
s−1 = I

(t)
s for all t ∈ {0, . . . , r}. Then, As−1(n)x(n) = −ws(n) has a

solution for every n: Suppose

t := rank(As(n)) > rank(As−1(n)).

Then, there exists a nonzero minor φ(n) of order t of As(n). On the other hand, all minors
φ0(n) = · · · = φm(n) of order t of As−1(n) are zero. By the choice of s, the nonzero minor φ(n)
is a Q(S)-linear combination of the minors φ0(n), . . . , φm(n), a contradiction. Hence, As−1(n)
and As(n) have equal rank and, by the Rouché–Capelli theorem, the linear equation has a
solution.

The proof of Lemma 4.3 is not constructive as the Noetherian ring only gives us the existence
of the number s. To make this argument constructive we would need to be able to solve instances
of the ideal membership problem over Q(RC).

The order of the addition and multiplication of C-finite sequences is bounded by the sum
and product of the orders of the sequences respectively. Lemma 4.3 shows that these bounds
typically, but not necessarily, hold for C2-finite sequences as well (e.g., if Ar−1(n) in the notation
of the proof above has full rank for every n). The next example shows that these classical bounds
do not work in some cases.

Example 4.1. Consider

(−1)na(n) + a(n+ 1) = 0, b(n) + b(n+ 1) = 0, for all n ∈ N.

10



Actually, a is also C-finite of order 2. Making an ansatz of order 2 for the sequence g = a + b
with coefficients x0, x1 ∈ Q(RC) yields the linear system(

1 −(−1)n

1 −1

)(
x0(n)
x1(n)

)
=

(
1
−1

)
.

This system is not solvable for even n ∈ N. Hence, our technique cannot yield a recurrence for
g of order 2. However, with an ansatz of order 3 we get the recurrence(

1
2 (−1)n+1 + 1

2

)
g(n) +

(
1
2 (−1)n + 1

2

)
g(n+ 2) + g(n+ 3) = 0,

for every n ∈ N. Setting up a classical homogeneous ansatz as in [24] yields the recurrence

((−1)n + 1) g(n) + 2g(n+ 1) + (1− (−1)n)g(n+ 2) = 0

with a leading coefficient which has infinitely many zeros. Such a recurrence fits in the framework
of X-recursive sequences from [24], but it is not a C2-finite recurrence in our sense.

In order to show how to solve systems over the ring Q(RC), we use the Skolem-Mahler-Lech
Theorem [5]. It states that the zeros of a sequence c ∈ RC (and therefore also c ∈ Q(RC))
are exactly at finitely many arithmetic progressions from some term on. Hence, for a sequence
c ∈ RC there exist n0, p ∈ N such that

(c(n0 + pk), . . . , c(n0 + pk + p− 1))

has the same zero-pattern for every k ∈ N. This number p is called the zero-cycle period of the
sequence c.

The main idea for solving linear systems over Q(RC) is that the solvability of the system is
completely determined by the zeros of the minors of the matrix. By the Skolem-Mahler-Lech
Theorem these zeros are exactly at arithmetic progressions. Hence, it is sufficient to solve the
system explicitly at those progressions and then interlace these solutions.

Lemma 4.4. Let A ∈ Q(RC)r×s and w ∈ Q(RC)r. Suppose the system A(n)x(n) = w(n) has
a solution for every n ∈ N. Then, there is a solution x ∈ Q(RC)s such that Ax = w in Q(RC).

Proof. All minors of A are sequences in Q(RC). Consider the set of all these. By the Skolem-
Mahler-Lech Theorem, the zeros of these minors are cyclic. Let p ∈ N be the common zero-cycle
period of all minors from some term n0 ∈ N on.

We write A = (w0, . . . , ws−1) for w0, . . . , ws−1 ∈ Q(RC)r. Now, for every m ∈ {n0, . . . , n0 +
p− 1} we can choose a subset jm ⊆ {0, . . . , s− 1} such that the vectors {wj(m) | j ∈ jm} ⊆ Kr

are maximally linearly independent, i.e., they are linearly independent and generate the same
subspace as {w0(m), . . . , ws−1(m)}. By the choice of n0 and p this is also true for all n = m+pk
for k ∈ N, i.e., the vectors {wj(m + pk) | j ∈ jm} ⊆ Kr are maximally linearly independent
for every k ∈ N. Let us denote by Am ∈ Q(RC)r×|jm| the submatrix of A where we keep the
columns wj with j ∈ jm.

For every m, we can solve the system

Am(m+ pk)xm(k) = w(m+ pk), for all k ∈ N, (4)

using the Moore-Penrose-Inverse: By the choice of m, p, n0, the matrix Am(m + pk) has lin-
ear independent columns for every k ∈ N. Therefore, the Gramian matrix G(k) = Am(m +
pk)>Am(m+ pk) is regular for every k and (det(G(k)))k∈N ∈ R×C . Now, let

xm(k) =
1

det(G(k))
cof (G(k))Am(m+ pk)>w(m+ pk)

11



where cof(·) denotes the transposed cofactor matrix. Then, since equation (4) has a termwise
solution, (xm(k))k∈N ∈ Q(RC)|jm| satisfies equation (4) by the theory of Moore-Penrose-Inverses.
Let x′m ∈ Q(RC)s be the vector where we add 0 ∈ Q(RC) at the indices j ∈ {0, . . . , s−1}\{jm}.

Now, the solution x for the entire system can be computed as the interlacing of
x′n0

, . . . , x′n0+p−1 from n0 on and the first n0 values can be computed explicitly. Then,
x ∈ Q(RC)s as Q(RC) is closed under interlacing and specifying finitely many initial values.

The arithmetic progressions from the Skolem-Mahler-Lech Theorem can be found effectively.
Hence, the zero-cycle period of a C-finite sequence can be computed. It is, however, not known
whether the index n0 ∈ N such that the zeros beyond this index are cyclic can be found algorith-
mically (cf. Skolem-Problem [20]). Hence, the proof of Lemma 4.4 is not constructive in general.
However, in many cases, this index n0 can be computed:

• For sequences of order at most 4 the problem is known to be decidable [20, 21].

• If the dominant roots (the roots of the characteristic polynomial with maximal absolute
value) of a C-finite sequence satisfy certain conditions, the Skolem-Problem is also known
to be decidable. This is for instance the case, if the sequence has a unique dominant root
[19, 26, 8].

• Furthermore, automatic proving procedures using cylindrical algebraic decomposition can
be used to decide the Skolem-Problem for certain sequences [7, 23].

If these rigorous methods fail, one can use a heuristic approach and check a certain number of
initial values to determine any zeros.

Algorithm 1 summarizes the arguments from Section 4.1 and this section. The algorithm
computes a recurrence for the addition or multiplication of two C2-finite sequences a, b of orders
r1, r2 provided that we can solve linear systems of equations over Q(RC). We denote the unit
vectors of the respective size by e0 ∈ Q(RC)r1+r2 and ẽ0 ∈ Q(RC)r1r2 , respectively.

Input : C2-finite sequences a, b
output: C2-finite recurrence satisfied by a+ b (or ab, respectively)
M ←Ma ⊕Mb (or Ma ⊗Mb for the multiplication)
A← empty matrix
w ← e0 ⊕ ẽ0 (or e0 ⊗ ẽ0 for the multiplication)
for s = 0, 1, 2, . . . do

if solution x ∈ Q(RC)s of Ax = −w exists then

return
∑s−1

i=0 xiσ
i + σs

else
A← (A | w)
w ←Mσ(w)

end

end

Algorithm 1: Computing C2-finite ring operations

Whenever the zeros of the minors of the matrix A can be computed, the proof of Lemma 4.4
gives a procedure to compute a solution. We give this procedure in Algorithm 2. For a sequence
c ∈ Q(RC) we will denote by period start(c) and period length(c) the start and the length
of the zero-cycle of the sequence c.

Lemma 4.4 also shows a possible algorithm to solve the ideal membership problem in Q(RC)
from Lemma 4.3: The problem whether c ∈ 〈d1, . . . , ds〉 for c, d1, . . . , ds ∈ Q(RC) is equivalent to

12



Input : A ∈ Q(RC)r×s, w ∈ Q(RC)r

output: x ∈ Q(RC)s with Ax = w if it exists and false otherwise
Φ← minors of A
p← lcm(period length(φ) | φ ∈ Φ)
n0 ← max(period start(φ) | φ ∈ Φ)
if A(m)x(m) = w(m) is not solvable for an m ∈ {0, . . . , n0 − 1} then

return false

end
for m = n0, . . . , n0 + p− 1 do

jm ← indices of columns of A(m) which are maximally linearly independent
Am ← matrix built by columns jm of A
A′m ← (Am(m+ pk))k∈N
w′ ← (w(m+ pk))k∈N
G← (A′m)>A′m
xm ← 1

det(G) cof(G)(A′m)>w′ ∈ Q(RC)|jm|

x′m ← insert 0 in xm at indices j ∈ {0, . . . , s− 1} \ {jm}
end
x← interlacing of sequences x′n0

, . . . , x′n0+p−1 with prepended terms x(0), . . . , x(n0 − 1)

if Ax = w then
return x

else
return false

end
Algorithm 2: Solving linear systems over Q(RC)

solving the inhomogeneous equation dx = c with d = (d1, . . . , ds) for unknown x ∈ Q(RC)s. With
Lemma 4.4 we can compute a possible solution x. Then, we can check with closure properties
whether dx = c indeed holds in Q(RC). If it does, we have shown that c is in the ideal. If dx 6= c,
then c is not in the ideal, because otherwise we would have a termwise solution and therefore,
with Lemma 4.4, a solution in Q(RC).

[18, Lemma 14] states that the components wj ∈ KN of a vector w> = (w0, . . . , wr−1) are C2-
finite if the vector satisfies a recurrence of the form w(n+ 1) = M(n)w(n), for every n ∈ N, with
M ∈ Rr×r

C . Since the existence of the sequence sn in the proof of Lemma 14 is not guaranteed,
their approach seems to not work for certain examples. Our approach, however, is very similar.
We use the same idea from Lemma 14 to set up an inhomogeneous linear system over RC . The
proof of Lemma 4.4 is also based on the proof of Lemma 14. The difference in our approach is that
we do not assume that the inhomogeneous system has a certain fixed size (which is determined
by ord(a), ord(b)). In our case, the size of this system also depends on the C-finite coefficients
in the recurrences. Example 4.1 shows that this flexible approach is sometimes really needed.

4.3 Some remarks on complexity

As a proof-of-concept, we implemented the closure properties of C2-finite sequences in the open
source computer algebra system SageMath [25]. For computations in the base ring of C-finite
sequences we use the ore algebra package which provides an efficient implementation of closure
properties in this ring [14]. A preliminary version of the package can be obtained from the
authors.

In our implementation, we do not use Algorithm 1 verbatim. Instead, we increase the ansatz
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until the corresponding linear system has a termwise solution for a fixed number of initial terms.
We check this using the Rouché–Capelli theorem. This is usually quite fast, since the computation
of terms of a C-finite sequence and computations over the field K are cheap in comparison with
the operations in Q(RC). Therefore, we solve the system over Q(RC) only if these initial terms
indicate that the system is in fact solvable.

For solving the linear system we use Algorithm 2 where we guess the zeros of the minors
using again some fixed number of initial terms. The most costly step is certainly computing the
inverse explicitly. Computing the solutions explicitly can also artificially increase them. It can
happen that we get a sequence xi = yi/di ∈ Q(RC) with di /∈ K in the solution although we
have xi ∈ RC . We try to detect this by computing some initial terms of xi and guessing (and
proving) a C-finite recurrence from these. Furthermore, after solving the linear system we need
to clear the denominators d0, . . . , ds−1 of the solution x. Often, the least common multiple d of
d0, . . . , ds−1 can be found by guessing using the termwise least common multiple of d0, . . . , ds−1.
If this is not the case, we just use d = d0 · · · ds−1. Computing such a common multiple d, clearing
the denominators and checking whether all these operations using guessing were in fact exact,
can also take a significant amount of time.

The following examples were all run on a standard notebook. The computations took from
a few seconds to about 30 seconds. The main bottleneck is often the computation of the linear
system. As discussed, using Algorithm 2 might also create artificially large solutions which
shows in long computations when clearing the denominators. Hence, a more efficient algorithm
for solving linear systems over this ring seems vital if we want to compute closure properties for
larger sequences.

Example 4.2. In Example 4.1 two linear systems have to be solved. About 70% of the compu-
tation time is spent for solving the linear systems. The other 30% are mostly used to compute
an ansatz which is big enough and to verify this using the Rouché–Capelli theorem.

Example 4.3. Consider the C2-finite sequences a, b satisfying the recurrences

(−1)
n
a(n) + 2na(n+ 1)− a(n+ 2) = 0,

b(n) + 2nb(n+ 1) + (−1)
n
b(n+ 2) = 0.

We compute a C2-finite recurrence for g = a+ b of order 4 and with C-finite coefficients having
maximal order 4:

(−4 · 4n − 4 (−4)
n − 1)g(n)

+
(
−4 · 8n + 3

2 · 2
n + 3

2 (−2)
n − 4 (−8)

n)
g(n+ 1)

+
(
−4 · 8n − 3

2 · 2
n + 3

2 (−2)
n

+ 4 (−8)
n)
g(n+ 3)

+ (4n − (−4)
n

+ 1)g(n+ 4) = 0.

About 70% of the time is used to solve two 4 × 4 inhomogeneous linear systems. Computing a
big enough system takes about 25%.

Example 4.4. Consider the sequences a, b from Example 4.3. We compute a C2-finite recurrence
for h = ab of order 3 and with coefficients of maximal order 2:

2h(n) + (−2 (−4)
n

+ 1)h(n+ 1) + (−4 (−4)
n

+ 2)h(n+ 2) + h(n+ 3) = 0.

Solving the 4× 3 inhomogeneous system takes about 80% of the overall time. About 13% of the
time is used to compute the linear system.
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4.4 Bounds for addition

The order of adding and multiplying C-finite sequences is bounded by the sum and product of
the orders of the sequences respectively. Example 4.1 shows that this cannot be achieved in
general in our setting for C2-finite sequences. Furthermore, the proof of Lemma 4.3 does not
indicate how large the order for the ansatz of the addition and multiplication should be chosen.
However, we can provide explicit a priori bounds in the special case where we add two C2-finite
sequences a, b one of which has order 1. In this case, Lemma 4.6 shows exactly how the order of
a+ b depends on the coefficients of the recurrences defining a and b.

In this section we assume that a is C2-finite of order r and b is C2-finite of order 1 satisfying
the recurrences

c0(n)a(n) + · · ·+ cr−1(n)a(n+ r − 1) + a(n+ r) = 0,

d(n)b(n) + b(n+ 1) = 0,

for all n ∈ N, with c0, . . . , cr−1, d ∈ Q(RC).
Let uj , vj be the coefficients for the iterated recurrence of a and b as defined in Lemma 4.1,

respectively. Note that v0 = 1 and

vj(n) = vj,0(n) = −d(n+ j − 1)vj−1(n), for all n ∈ N,

for j ≥ 1. Therefore,

vj(n) = (−1)jd(n)d(n+ 1) · · · d(n+ j − 1) (5)

for all j, n ∈ N.
Let

φj := det(w0, . . . , wr−1, wj) ∈ Q(RC)

for j ≥ 0 with w>j = (u>j , vj). Let v = (v0, . . . , vr−1) ∈ Q(RC)r and let I ∈ Kr×r be the identity
matrix. Then,

φj(n) =

∣∣∣∣ I uj(n)
v(n) vj(n)

∣∣∣∣ = vj(n)−
r−1∑
i=0

uj,i(n)vi(n), (6)

for all n ∈ N.
For j < r, we have φj = 0, as the matrix has linear dependent columns. For j = r, we have

u>r = −(c0, . . . , cr−1) and therefore,

φr(n) = vr(n) +

r−1∑
i=0

ci(n)vi(n), (7)

for every n ∈ N.

Lemma 4.5. Let j ≥ r. Then,

φj(n) = −
r−1∑
k=0

ck(n+ j − r)φj+k−r(n) + vj−r(n)φr(n+ j − r),

for every n ∈ N.
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Proof. With equation (6) and equation (1) we have

φj(n) = vj(n)−
r−1∑
i=0

uj,i(n)vi(n)

= vj(n)−
r−1∑
i=0

(
−

r−1∑
k=0

ck(n+ j − r)uj+k−r,i(n)

)
vi(n)

= vj(n) +

r−1∑
k=0

ck(n+ j − r)
r−1∑
i=0

uj+k−r,i(n)vi(n)

= −
r−1∑
k=0

ck(n+ j − r)φj+k−r(n) + vj(n) +

r−1∑
k=0

vj+k−r(n).

Because of equation (5) we have vj+k−r(n) = vk(n+j−r)vj−r(n) and vj(n) = vr(n+j−r)vj−r(n).
Then, equation (7) yields

φj(n) = −
r−1∑
k=0

ck(n+ j − r)φj+k−r(n) + vj−r(n)φr(n+ j − r).

We define the order of a sequence c ∈ Q(RC) as the order of the minimal numerator, i.e.,
ord(c) := min{ord(d) | c = d

e ∈ Q(RC)}.

Lemma 4.6. Let a, b be C2-finite of orders r and 1, respectively. Then, a+ b has order at most
n0 + r if there exists an n0 ∈ N with φr(n) = 0 for n ≥ n0. Otherwise, a+ b has order at most
ord(φr) + r.

Proof. Let

c0(n)a(n) + · · ·+ cr−1(n)a(n+ r − 1) + a(n+ r) = 0,

d(n)b(n) + b(n+ 1) = 0,

for all n ∈ N, with c0, . . . , cr−1, d ∈ Q(RC).
If φr(n) = 0 for all n ≥ n0 for some n0 ∈ N, we can shift the sequences by n0, choose r for

the order of the ansatz of a + b and the corresponding system has a solution for every n ∈ N.
Now, shifting the recurrence by n0 we can specify the initial values (a+ b)(n) for n < n0.

Otherwise, we choose the order of the ansatz as s := ord(φr) + r. We show that the cor-
responding linear system has a solution for every n ∈ N: If one of the φr(n), . . . , φs−1(n) is
nonzero, the system has a solution as we have r + 1 linearly independent vectors in Kr+1. Now,
assume that φr(n) = · · · = φs−1(n) = 0. By the choice of s, the set {φr(n), . . . , φr(n+s−r−1)}
contains a nonzero element φr(n + sn − r) 6= 0 for some sn ∈ {r, . . . , s − 1}. Then, φsn(n) = 0
and by Lemma 4.5

φsn(n) = −
r−1∑
k=0

ck(n+ sn − r)φsn+k−r(n) + vsn−r(n)φr(n+ sn − r)

= −
r−1∑
k=0

ck(n+ sn − r)0 + vsn−r(n)φr(n+ sn − r) = 0.
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Therefore, vsn−r(n) = 0 and with equation (5) we have vs−r(n) = vsn−r(n)vs−sn(n+sn−r) = 0.
Hence, again with Lemma 4.5, we have

φs(n) = −
r−1∑
k=0

ck(n+ s− r)φs+k−r(n) + vs−r(n)φr(n+ s− r)

= 0 + 0φr(n+ s− r) = 0.

In this case, the system corresponding to the ansatz of order s has a solution as well. Because
of Lemma 4.4, we have a recurrence for a+ b of order ord(φr) + r.

Note that the proof of Lemma 4.6 is similar to the proof of Lemma 4.4. In the case where one
of the sequences has order 1, Lemma 4.5 gives an explicit relation between the minors. In the
proof of Lemma 4.6 we only get the existence of a bound for the order of two C2-finite sequences
with a noetherianity condition. Here, using these relations from Lemma 4.5, we can actually
compute a bound.

Example 4.5. In Example 4.1 we have r = 1 and

φ1(n) =

∣∣∣∣ 1 −(−1)n

1 −1

∣∣∣∣ = −1 + (−1)n,

for all n ∈ N. The sequence φ1 has order 2. Hence, a + b has order at most 1 + ord(φ1) = 3.
Indeed, we have seen a recurrence of order 3 in Example 4.1.

Example 4.6. The order bound in Lemma 4.6 is exact in general. Let c ∈ RC be the cyclic
sequence of order m defined by

c(n)− c(n+m) = 0, c(0) = −1, c(1) = · · · = c(m− 1) = 1

and let a, b be C2-finite sequence defined by

c(n)a(n)− a(n+ 1) = 0, a(0) = 1, b(n)− b(n+ 1) = 0, b(0) = 1.

Then, we have φ1 = 1 − c and ord(φ1) = m. Suppose we make an ansatz of order s < m + 1.
With the definition of c, the corresponding linear system at n = m− s+ 1 is of the form

(
1 1 · · · 1
1 1 · · · 1

) x0(n)
...

xs−1(n)

 =

(
1
−1

)
.

Hence, the linear system has no solution. For s = m+ 1 we indeed get a solution for every n as
Lemma 4.6 suggests.

5 Further closure properties

For C-finite and holonomic sequences many more closure properties are known. They are often
used to construct more complicated sequences from simpler ones. Most of these properties carry
over to C2-finite sequences and can be proven in a very similar way.
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Theorem 5.1. Let a, a0, . . . , am−1 be C2-finite sequences. Then,

1. (shifts) σk(a) is C2-finite for every k ∈ N,

2. (difference) ∆(a) := σ(a)− a is C2-finite,

3. (partial sums) b = (
∑n

k=0 a(k))n∈N is C2-finite.

4. (subsequence) b = (a(dn))n∈N is C2-finite for every d ∈ N,

5. b = (a(bn/dc))n∈N is C2-finite for every d ∈ N,

6. (interlacing) if b = (b(n))n∈N with b(n) = as(q) such that n = qm+ s and 0 ≤ s < m, then
b is C2-finite.

Proof. (1), (2): Clear as the set of C2-finite sequences is a difference ring by Theorem 3.4.
(3): We have σ(b)− b = σ(a). Therefore, by Theorem 3.3, the sequence b is C2-finite.
(4): Let c0 + c1σ + · · · + crσ

r ∈ RC [σ] be the annihilating operator of a. We have σib =
(a(dn+ di))n∈N, for all i ∈ N. For c ∈ RC of order s we have

(c(dn+ j))n∈N ∈ 〈(c(dn− s+ j)n∈N, . . . , (c(dn− 1 + j)n∈N)〉K,

for every j ≥ s. Hence, by induction

(c(dn+ j))n∈N ∈ 〈(c(dn)n∈N, . . . , (c(dn+ s− 1)n∈N)〉K,

for every j ∈ N. In particular, the algebra

K[(c(dn))n∈N, (c(dn+ 1))n∈N, . . . ]

is a Noetherian ring. Let S ( RC be the ring containing the sequences (ci(dn + j))n∈N, for all
i = 0, . . . , r and j ∈ N. As the smallest ring containing finitely many Noetherian rings, this ring
S is Noetherian. Let i ∈ N. Using the recurrence for a and induction we have

σib ∈ 〈(a(dn))n∈N, . . . , (a(dn+ r − 1))n∈N〉Q(S).

Therefore, 〈σib | i ∈ N〉Q(S) is finitely generated. Hence, by Lemma 3.2, the sequence b is
C2-finite.

(5): Suppose a satisfies
∑r

i=0 ci(n)a(n+ i) = 0, for all n ∈ N. Then, we also have

r∑
i=0

ci(bn/dc)a(b(n+ id)/dc) =

r∑
i=0

ci(bn/dc)b(n+ id) = 0,

for all n ∈ N. Since (ci(bn/dc))n∈N ∈ RC for all i = 0, . . . , r and (cr(bn/dc))n∈N ∈ R×C , the
sequence b is C2-finite.

(6): For all s = 0, . . . ,m− 1, the sequences (as(bn/mc))n∈N are C2-finite by part (5). Let

is(n) :=

{
1 if n ≡ s mod m,

0 if n 6≡ s mod m.

Then, is ∈ RC for all s = 0, . . . ,m− 1. Furthermore,

b(n) =

m−1∑
s=0

is(n)as(bn/mc), for all n ∈ N.

Since the set of C2-finite sequences is a ring containing RC , the sequence b is C2-finite.

18



Computing the recurrence for shifts and partial sums is fully constructive. For computing the
recurrence of the difference and interlacing we need to be able to add and multiply certain C2-
finite sequences. The ansatz method described in Section 4 can be used to compute a recurrence
for the subsequence of a C2-finite sequence. We describe this approach in more detail in the
following section.

5.1 Computing a recurrence for the subsequence

Let a be C2-finite of order r with recurrence

c0(n)a(n) + · · ·+ cr−1(n)a(n+ r − 1) + a(n+ r) = 0,

for all n ∈ N, and for c0, . . . , cr−1 ∈ Q(RC). Theorem 5.1.4 suggests the following algorithm to
compute a C2-finite recurrence for the sequence b = (a(dn))n∈N: We make an ansatz

x0(n)b(n) + · · ·+ xs−1(n)b(n+ s− 1) + b(n+ s) = 0

with unknown coefficients x0, . . . , xs−1 ∈ Q(RC). Using the recurrence of a, we can express all
b(n+ j) as

b(n+ j) =

r−1∑
i=0

uj,i(n)a(dn+ i) (8)

for some uj,i ∈ Q(RC) and all j = 0, . . . , s. Then, the ansatz can be rewritten as

r−1∑
i=0

us,i(n) +

s−1∑
j=0

uj,i(n)xj(n)

 a(dn+ i) = 0.

Equating the coefficients of a(dn+ i) to zero yields a linear inhomogeneous system. The proof of
Lemma 4.3 shows that this linear system is solvable at every term and with Lemma 4.4 we can
compute these solutions x0, . . . , xs−1 ∈ Q(RC) if we know the zeros of the minors of this system.

We write

u>j := (uj,0, . . . , uj,r−1).

The next lemma shows how these uj can be computed.

Lemma 5.2. Let
u0 := e0 = (1, 0, . . . , 0)>

and define
uj(n) := Ma(dn) · · ·Ma(dn+ d− 1)uj−1(n+ 1), for all n ∈ N,

inductively for j ≥ 1. These uj satisfy equation (8).

Proof. For convenience we write

A(n) := (a(n), . . . , a(n+ r − 1)).

Then, (8) reads as b(n+j) = A(dn)uj(n). By definition, u0 satisfies this equation. Now, suppose
uj−1 satisfies equation (8), i.e., b(n+ j−1) = A(dn)uj−1(n). By the definition of the companion
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matrix Ma and the defining recurrence of a, we have A(dn + i)Ma(dn + i) = A(dn + i + 1).
Therefore,

A(dn)uj(n) = A(dn)Ma(dn) · · ·Ma(dn+ d− 1)uj−1(n+ 1)

= A(dn+ d)uj−1(n+ 1) = b(n+ j)

where we use the induction hypothesis shifted n→ n+ 1 in the last step.

Hence, choosing M = Ma(dn) · · ·Ma(dn+ d− 1) and w = e0 ∈ Q(RC)r in Algorithm 1 gives
an explicit algorithm for computing a recurrence for the subsequence of a C2-finite sequence.

5.2 Computing a recurrence for the sparse subsequence

Let c be C-finite of order r. In Corollary 3.5 we have shown that sequences a(n) = c(kn2+ln+m)
for k, l,m ∈ N are C2-finite. Using techniques from Theorem 1 of [18] we show how an ansatz
method, analogous to the closure properties we already considered, can be used to compute a
recurrence for a(n).

Lemma 5.3 below shows that for every j ∈ N there exist uj,0, . . . , uj,r−1 ∈ RC such that

a(n+ j) =

r−1∑
i=0

uj,i(n)c(kn2 + i). (9)

Hence, an ansatz of the form

x0(n)a(n) + · · ·+ xs−1(n)a(n+ s− 1) + a(n+ s) = 0

with unknown coefficients x0, . . . , xs−1 ∈ Q(RC) can be equivalently written as

r−1∑
i=0

us,i(n) +

s−1∑
j=0

uj,i(n)xj(n)

 c(kn2 + i) = 0.

Equating the coefficients of c(kn2 + i) to zero yields a linear inhomogeneous system for the xj
which has a solution with Lemma 4.3 and Lemma 4.4 if the order of the ansatz s is big enough.

Let Mc be the companion matrix of c. Then, Lemma 11 in [18] shows that
(
M

p(n)
c

)
n∈N

for

linear p ∈ N[n] can also be viewed as a matrix of C-finite sequences. These C-finite sequences
can be computed using the Cayley-Hamilton theorem or using guessing. The next lemma shows
how this can be used to compute the uj,i.

Lemma 5.3. Let er−1 := (0, . . . , 0, 1) ∈ Q(RC)r and let

uj(n) = (uj,0(n), . . . , uj,r−1(n)) = M2knj+kj2+ln+lj+m−r+1
c er−1.

These uj,i satisfy equation (9).

Proof. Let C(n) := (c(n), . . . , c(n+ r − 1)). By the definition of the companion matrix we have

C(n+ 1) = C(n)Mc (10)

for all n ∈ N. Using n → kn2 we have C(kn2 + 1) = C(kn2)Mc. Repeated application of
equation (10) yields

C(k(n+ j)2 + l(n+ j) +m− r + 1) = C(kn2)M2knj+kj2+ln+lj+m−r+1
c .

Multiplying by er−1 and using the definition of the C(n) yields identity (9).
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By Lemma 5.3 we have
u0(n) = M ln+m−r+1

c er−1

and
uj(n) = Mk(2n+1)

c uj−1(n+ 1).

Hence, choosing M = M
k(2n+1)
c and w = u0 in Algorithm 1 yields an algorithm to compute a

C2-finite recurrence for a(n).

Example 5.1. Let f denote the Fibonacci sequence. With Corollary 3.5 and Theorem 5.1, the
sequence bn/3c∑

k=0

f((2k + 1)2)


n∈N

is C2-finite. The recurrence computed by the suggested algorithms from Theorem 5.1 is of order 9
with coefficients having order at most 12.

6 Extension to Ck- and Dk-finite sequences

For D-finite functions, i.e., formal power series satisfying a linear differential equation with
polynomial coefficients, an analogous construction has been carried out [12]: D2-finite functions
satisfying a linear differential equation with D-finite function coefficients. An advantage of this
setting is that D-finite functions form an integral domain and one does not have to deal with
zero divisors. D2-finite functions satisfy most closure properties known for D-finite functions
(except for the Hadamard product). From this it can be derived that the construction can be
iterated to build Dk-finite functions. In this section we proceed similarly and extend our results
to the D-finite sequence case and show that the construction of these rings can be iterated as
well.

A sequence is called C0-finite if and only if it is constant and called D0-finite if and only if
it is polynomial.

Definition 6.1. Let k ≥ 1. A sequence a ∈ KN is called Ck-finite (or Dk-finite) over K if there
are Ck−1-finite (or Dk−1-finite) sequences c0, . . . , cr over K with cr(n) 6= 0 for all n ∈ N such
that

c0(n)a(n) + c1(n)a(n+ 1) + · · ·+ cr(n)a(n+ r) = 0

for all n ∈ N.

Example 6.1. Let a = (a(n))n∈N with a(n) =
∏n

k=1 k!. The sequence a is D2-finite satisfying
the recurrence

(n+ 1)! a(n)− a(n+ 1) = 0, for all n ∈ N.

The sequence is called the superfactorial (A000178 in the OEIS).

Example 6.2. Let α ∈ K. Every sequence a with a(n) = αn3

is C3-finite satisfying the
recurrence

c(n)a(n)− a(n+ 1) = 0, for all n ∈ N,

where c(n) = α3n2+3n+1 is C2-finite.
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Example 6.3. Using the same argument as in [18] one can derive a C3-finite recurrence for
(f(n3))n∈N where f denotes the Fibonacci numbers:

c0(n)f(n3) + c1(n)f((n+ 1)3) + c2(n)f((n+ 2)3) = 0, for all n ∈ N,

with

c0(n) = f(3n2 + 9n+ 7)f(3n2 + 3n+ 3)f(3n2 + 3n+ 1)− f(3n2 + 9n+ 7)f(3n2 + 3n+ 2)2,

c1(n) = f(3n2 + 9n+ 7)f(3n2 + 3n+ 2) + f(3n2 + 9n+ 6)f(3n2 + 3n+ 1),

c2(n) = −f(3n2 + 3n+ 1).

These coefficients c0, c1, c2 are C2-finite with Theorem 3.5 and clearly c2(n) 6= 0 for all n.

Adapting Section 3 to this more general setting, we will show that the sets of Ck-finite and
Dk-finite sequences form difference rings. We denote the set of Ck-finite sequences by RCk , the
set of D-finite sequences by RD and the set of Dk-finite sequences by RDk .

Now, Lemma 3.1, Lemma 3.2 and Theorem 3.3 can be formulated completely analogously for
Ck-finite and Dk-finite sequences:

Lemma 6.1. Let a be Ck-finite (or Dk-finite) with annihilating operator A = c0+ · · ·+crσr and
let R be the difference ring generated by c0, . . . , cr. If R ⊆ S, then 〈σia | i ∈ N〉Q(S) is finitely
generated.

Lemma 6.2. Let a ∈ KN and S a subset of the set of Ck-finite (or Dk-finite) sequences. If
〈σia | i ∈ N〉Q(S) is finitely generated, then a is Ck-finite (or Dk-finite).

The proofs of Lemma 6.1 and Lemma 6.2 are analogous to the proofs of the corresponding
Lemmas in Section 3. Using Lemma 6.1 and Lemma 6.2 one can again prove a characterization
for Ck-finite and Dk-finite sequences.

Theorem 6.3. Let a ∈ KN.

1. The sequence a is Ck-finite if and only if 〈σia | i ∈ N〉Q(R
Ck−1 ) is finitely generated.

2. The sequence a is Dk-finite if and only if 〈σia | i ∈ N〉Q(R
Dk−1 ) is finitely generated.

Similar to the C2-finite setting, we will use Theorem 6.3 to show that Ck-finite and Dk-finite
sequences are a difference ring. Example 3.1 shows that these rings are not Noetherian. Hence,
the idea is, again, to restrict the underlying ring to a Noetherian subring.

Lemma 6.4. 1. Let A =
∑r

i=0 ciσ
i ∈ RCk [σ]. Then, the K-difference-algebra

K[c0, . . . , cr, σc0, . . . , σcr, . . . ]

is contained in a Noetherian ring S.

2. Let A =
∑r

i=0 ciσ
i ∈ RDk [σ]. Then, the K(n)-difference-algebra

K(n)[c0, . . . , cr, σc0, . . . , σcr, . . . ]

is contained in a Noetherian ring S.
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Proof. We use induction on k. For k = 0 we have RC0 = K and RD0 = K[n] which are both
Noetherian.

Now, let c be a coefficient of A and let C be its annihilator. By induction, the difference-
algebra generated by the coefficients of C is contained in a Noetherian ring Sc. Then, also
the localization Q(Sc) is Noetherian. By Lemma 6.1, the module 〈σic | i ∈ N〉Q(Sc) is finitely
generated. Then, also the difference-algebra Ac := Q(Sc)[c, σc, . . . ] is finitely generated and
in particular a Noetherian ring containing K[c, σc, . . . ] (or K(n)[c, σc, . . . ] in the D-finite case).
Then, S can be chosen as the smallest ring containing the Noetherian rings Ac0 , . . . , Acr . This
ring S is again Noetherian.

Theorem 6.5. The set of Ck-finite and Dk-finite sequences are difference rings under termwise
addition and termwise multiplication.

Proof. Let a, b be Ck-finite (or Dk-finite) sequences and A = c0 + c1σ + · · · + cr1σ
r1 and B =

d0 + d1σ + · · ·+ dr2σ
r2 the corresponding annihilating operators.

With Lemma 6.4, there is a Noetherian ring S which contains all difference rings generated
by c0, . . . , cr1 , d0, . . . , dr2 . Hence, with Lemma 6.1, the modules

〈σi(a+ b) | i ∈ N〉Q(S) ⊆ 〈σia | i ∈ N〉Q(S) + 〈σib | i ∈ N〉Q(S)

and

〈σi(ab) | i ∈ N〉Q(S) ⊆ 〈σi(a)σj(b) | i, j ∈ N〉Q(S)

are finitely generated as they are submodules of finitely generated modules over a Noetherian
ring. By Lemma 6.2, the sequences a+ b and ab are Ck-finite (or Dk-finite).

The operator
Ã := σ(c0) + σ(c1)σ + · · ·+ σ(cr1)σr1

annihilates σa. Hence, the ring is also closed under shifts.

Using the ansatz method described in Section 4 one can reduce the computation of ring
operations to linear systems. For instance, for D2-finite sequences, we need to solve linear
systems over the D-finite sequence ring. Since it is not known whether the Skolem-Mahler-Lech
Theorem holds for D-finite sequences [2], Lemma 4.4 can, however, not be translated to this
case. In practice, the idea of Lemma 4.4 can still be used to solve such linear systems. However,
computationally this is very expensive and only works for small examples.

Example 6.4. We define the D-finite sequences

(n2 + 1)c0(n) + c0(n+ 1) = 0, c0(0) = 2,

(n+ 7)c1(n) + (−n− 1)c1(n+ 1) = 0, c1(0) = 2,

(n+ 1)d0(n)− d0(n+ 1) = 0, d0(0) = 1,

(n+ 2)d1(n) + (−n2 − 3)d1(n+ 1) = 0, d1(0) = 4.

and the D2-finite sequences

c0(n)a(n) + c1(n)a(n+ 1) = 0, a(0) = 3,

d0(n)b(n) + d1(n)b(n+ 1) = 0, b(0) = 5.

By Theorem 6.5, the sequence h = ab is D2-finite. With the methods introduced in Section 4 we
can compute the recurrence

e(n)h(n) + h(n+ 1) = 0, h(0) = 15
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with

(n6 + 2n5 + 5n4 + 8n3 + 7n2 + 6n+ 3)e(n) + (n2 + 9n+ 14)e(n+ 1) = 0, e(0) = − 1
4 .

By induction, every Ck-finite sequence is Dk-finite and every Dk-finite sequence is Ck+1-
finite. Therefore, we get the following chain of rings

RC ⊆ RD ⊆ RC2 ⊆ RD2 ⊆ RC3 ⊆ · · ·

Example 6.3 is true more generally. Using Theorem 6.5 we can prove the generalization of
Corollary 3.5:

Corollary 6.6. Let c be a C-finite sequence over the field K and p ∈ N[n]. Denote k := deg p.
Then, (c(p(n)))n∈N is Ck-finite over the splitting field L of the characteristic polynomial of c.

7 Conclusion and outlook

Summarizing, we showed that C2-finite sequences form a ring with respect to termwise addition
and termwise multiplication. We derived several closure properties and methods to compute with
C2-finite sequences. Furthermore, we extended our results to Ck-finite and Dk-finite sequences
and showed that these sets form difference rings.

Guess-and-prove is a common strategy to verify that a sequence is D-finite or to derive a
shorter recurrence. It would be desirable to have a guessing routine for C2-finite sequences. As
a naive approach leads to a nonlinear system (see also [24]), it needs to be investigated how this
can be solved efficiently.

A useful feature of D-finite sequences is that their generating functions are D-finite as well
and that the defining difference and differential equations can be computed from one another.
This is often exploited in proofs or simplification of identities. Also, most of the results of
Theorem 5.1 would typically be proven by switching between those two representations.

Since D2-finite functions are not closed under the Hadamard product, there cannot be a
one-to-one correspondence to D2-finite sequences. Still, it seems worthwhile to investigate the
relationship between these sets. First ideas on the nature of generating functions of C2-finite
sequences have been presented in [24]. It would be interesting to explore this further and to
derive computational properties.
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[21] Joël Ouaknine and James Worrell. Positivity problems for low-order linear recurrence se-
quences. In SODA ’14: Proceedings of the twenty-fifth annual ACM-SIAM symposium on
Discrete algorithms, pages 366–379, 2014.
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