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Bert Jüttler
Ulrich Langer
Manuel Kauers
Peter Paule
Veronika Pillwein
Silviu Radu
Ronny Ramlau
Josef Schicho

Managing Editor: Diego Dominici

Communicated by: Manuel Kauers
Peter Paule

DK sponsors:

• Johannes Kepler University Linz (JKU)

• Austrian Science Fund (FWF)

• Upper Austria



Comparative asymptotics for discrete
semiclassical orthogonal polynomials

Diego Dominici *

Johannes Kepler University Linz
Doktoratskolleg “Computational Mathematics”

Altenberger Straße 69
4040 Linz
Austria

Permanent address: Department of Mathematics
State University of New York at New Paltz

1 Hawk Dr.
New Paltz, NY 12561-2443

USA

Abstract
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1 Introduction

Let K be a commutative ring (for our purposes, we mostly think of K as the
set of complex numbers C) and N0 be the set of nonnegative integers

N0 = N ∪ {0} = {0, 1, 2, . . .} .

We will denote by δk,n the Kronecker delta, defined by

δk,n =

{
1, k = n
0, k 6= n

, k, n ∈ N0,

and let F be the ring of formal power series in the variable z

F = K [[z]] =

{
∞∑
n=0

cnz
n : cn ∈ K

}
.

We consider the differential operator ϑ : F→ F defined by [37, 16.8.2]

ϑ = z∂z, (1)

where ∂z is the derivative operator

∂z =
∂

∂z
.

The action of ϑ on the monomials is given by

ϑk [zx] = xkzx, (2)

where we always assume that x and z are independent variables.
Suppose that L : F[x] → F is a linear functional (acting on the vari-

able x), and {Λn (x)}n≥0 ⊂ K[x] is a sequence of monic polynomials with
deg (Λn) = n. If the system of linear equations

L [ΛkΛn] +
n−1∑
i=0

L [ΛkΛi] ξn,i = 0, 0 ≤ k ≤ n− 1, (3)

has a unique solution {ξn,i (z)}0≤i≤n−1 ⊂ F, we can define monic polyno-
mials Pn (x; z) by P0 (x; z) = 1 and
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Pn (x; z) = Λn (x) +
n−1∑
i=0

ξn,i (z) Λi (x) , n ≥ 1. (4)

We say that {Pn (x; z)}n≥0 is a sequence of (monic) orthogonal polynomials
with respect to the functional L, [2], [4], [21], [22], [27], [28], [46].

In this paper, we focus on linear functionals of the form

L [u] =
∞∑
x=0

u (x)
(a)x

(b + 1)x

zx

x!
, u ∈ F [x] , (5)

and we use the notation

(a)n =

p∏
i=1

(ai)n , (b)n =

q∏
i=1

(bi)n , n ∈ N0,

c + r = (c1 + r, c2 + r, . . . , cm + r) ∈ Km, r ∈ K, c ∈ Km,

where

a = (a1, . . . , ap) ∈ Kp, b = (b1, . . . , bq) ∈ Kq, p, q ∈ N0, (6)

and the Pochhammer polynomial (x)n is defined by (x)0 = 1 and [37, 18:12]

(x)n =
n−1∏
j=0

(x+ j) , n ∈ N. (7)

If µn (z) ∈ F denote the standard moments of L on the monomial basis

µn (z) = L [xn] , n ∈ N0, (8)

it follows from (2) and (5) that

µn+1 = ϑ [µn] = ϑn [µ0] , n ∈ N0. (9)

Moreover, using (5) we can see that [15]

L [σ (x)u (x)] = L [zτ (x)u (x+ 1)] , u ∈ K [x] , (10)

where
σ (x) = x (x+ b)1 , τ (x) = (x+ a)1 .
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Because of (9), we say that the functional L is of Toda-type [3], [14], [38],
[47], and because of (10) we also call L discrete semiclassical [1], [16], [18],
[33], [36], [49]. The class of the functional L is defined by

s = max {deg (σ)− 1, deg (τ)− 1} = max {p− 1, q} ,

and semiclassical functional of class s = 0 are called classical.
Our objective is to obtain comparative asymptotics (also called relative

asymptotics) [5], [23], [24], [25], [29], [30], [31], [32], [34], [39], [40], [41], [42],
[43], [44], for the polynomials Pn (x; z) with respect to the basis of falling
factorial polynomials defined by φ0 (x) = 1 and

φn (x) =
n−1∏
k=0

(x− k) , n ∈ N. (11)

In other words, we want to study the limit

lim
n→∞

Pn (x; z)

φn (x)
, x = O (1) , x /∈ N0,

where z is a fixed number, and x belongs to a compact subset of the com-
plex plane containing the origin. We already considered this type of limits
in [10], [12] (Charlier and Meixner polynomials), and in [13] (Krawtchouk
polynomials).

The organization of the paper is as follows: in Section 2 we review some
of our results from [14]. The polynomials Pn (x; z) have different asymptotic
approximations depending on the relation between the parameters p and q
defined in (6). Thus, we will consider the cases p = q (Section 4.1), p = q−1
(Section 4.2), p < q − 1 (Section 4.3), and p = q + 1 (Section 4.4). Finally,
in the conclusions’ section we will summarize the results and discuss future
directions.

2 Previous results

In [14], we studied families of polynomials (that we said to be of Toda type),
orthogonal with respect to a linear functional L : F[x]→ F satisfying

DzL [u] = L [xu] , u ∈ F [x] ,
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where Dz : F→ F is a fixed derivation (on the variable z) associated to L.
In this section, we review some of the results that we obtained, and apply

them to the particular cases:
(i) Dz = ϑ, where the operator ϑ was defined in (1).
(ii) The variable transformation

Dw = w (1− w) ∂w, w =
z

z − 1
.

2.1 Toda-type orthogonal polynomials

The linear system (3) can be written as

L [ΛkPn] = hnδk,n, 0 ≤ k ≤ n,

and we see that the sequence {Pn (x; z)}n≥0 satisfies the orthogonality condi-
tions

L [PkPn] = hnδk,n, 0 ≤ k ≤ n, (12)

where hn (z) ∈ F\ {0} is the norm of Pn (x; z) .
From (12), we see that

L [xPkPn] = 0, k 6= n, n± 1,

and therefore the polynomials Pn (x; z) satisfy the three term recurrence re-
lation

xPn (x; z) = Pn+1 (x; z) + βn (z)Pn (x; z) + γn (z)Pn−1 (x; z) (13)

with P−1 = 0, P0 = 1. The coefficients βn (z) , γn (z) ∈ F are given by [8]

β0 =
L [x]

L [1]
, γ0 = 0, (14)

and

βn =
L [xP 2

n ]

hn
, γn =

L [xPnPn−1]

hn−1

, n ∈ N. (15)

If we define σn (z) ∈ F by

Pn (x; z) = xn − σn (z)xn−1 + un (x; z) , deg (un) ≤ n− 2, (16)
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we have σ0 = 0, and using (13) we get

xn+1−σnxn+xun = xn+1−σn+1x
n+un+1 +βn

(
xn − σnxn−1 + un

)
+γnPn−1.

Comparing coefficients of xn, we obtain −σn = −σn+1 + βn, or

βn = σn+1 − σn. (17)

Our next result relates σn, hn, βn and γn.

Proposition 1 Let ϑ be defined by (1), hn be defined by (12), βn, γn be
defined by (15), and σn be defined by (16). Then, we have

ϑ [σn] = γn (18)

and
ϑ [lnhn] = βn. (19)

Proof. See [14].
As a direct consequence, we see that (βn, γn) are solutions of the Toda

equations [47].

Corollary 2 The coefficients of the 3-term recurrence relation (13) are so-
lutions of the differential-difference equations

ϑ [βn] = ∆γn, ϑ [ln γn] = ∇βn, (20)

with initial conditions (14), where

∆f (n) = f (n+ 1)− f (n) , ∇f (n) = f (n)− f (n− 1) . (21)

Essential for our work in this paper is the following theorem.

Theorem 3 The polynomials Pn (x; z) defined by (12) satisfy the recurrence

ϑ [Pn] = −γnPn−1, (22)

and the ODE [
ϑ2 + (x− βn)ϑ+ γn

]
[Pn] = 0. (23)
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Proof. See [14].
Since ϑ = z∂z, we have

z∂zPn = −γnPn−1,

and
z
(
z∂2

zPn + ∂zPn
)

+ (x− βn) z∂zPn + γnPn = 0. (24)

If we define gn (z) ∈ F by

γn (z) = zgn (z) , (25)

then
P ′n = −gnPn−1, (26)

and (24) becomes

zP ′′n + (x+ 1− βn)P ′n + gnPn = 0, (27)

where we will always use the notation

P ′n = ∂zPn.

2.2 The function σn (z)

A fundamental quantity in our studies is σn (z) defined in (16).

Theorem 4 The coefficients in the power series expansion

σn (z) =
∞∑
k=0

sk (n) zk, (28)

are given by

s0 (n) =
n (n− 1)

2
, s1 (n) = n

(n− 1 + a)1

(n+ b)1

, (29)

and

sk (n) =
1

k (k − 1)

k−1∑
j=1

(k − j) sk−j (n) ∆∇ [sj (n)] , k ≥ 2, (30)

∆,∇ are the finite difference operators (acting on n) defined in (21).
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Proof. See [14].
Using (17) and (18), we obtain the following result.

Corollary 5 The coefficients of the 3-term recurrence relation (13) admit
the formal power series

βn (z) =
∞∑
k=0

∆sk (n) zk, γn (z) =
∞∑
k=1

ksk (n) zk, (31)

where the coefficients sk (n) are defined by (28). In particular,

βn (0) = n, γn (0) = 0. (32)

Remark 6 From (25) and (31), we have

gn (z) =
∞∑
k=0

(k + 1) sk+1 (n) zk. (33)

From (29), we see that

s1 (n) = nθ
(1− n−1 + n−1a)1

(1 + n−1b)1

,

where
θ = p+ 1− q. (34)

If we write

s1 (n) = nθ
∞∑
k=0

rkn
−k, (35)

we get
k∑
j=0

ek−j (b) rj = ek (a− 1) ,

where the elementary symmetric polynomials en (c) are defined by the gen-
erating function [37, 19.19.4]

∞∑
n=0

en (c) tn =
m∏
i=1

(1 + tci) , c ∈ Km. (36)
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Since e0 = 1, we obtain the recurrence

rk = ek (a− 1)−
k−1∑
j=0

ek−j (b) rj, r0 = 1. (37)

The first two coefficients rk are

r1 = e1 (a− 1)− e1 (b) ,

r2 = e2 (a− 1)− e2 (b)− e1 (a− 1) e1 (b) + e2
1 (b) .

Theorem 7 Let
Θk = (θ − 2) k + η (θ) ,

with

η (θ) =


0, θ = 1
1, θ = 0

2, θ 6= 0, 1
.

We have:
(i) If θ < 0, then

sk (n) ∼ Ak (θ)nΘk , n→∞, (38)

where A1 = 1 and for k ≥ 2

Ak =
1

k (k − 1)

k−1∑
j=1

(k − j) Θj (Θj − 1)AjAk−j. (39)

(ii) If θ = 0, then as n→∞,

s1 (n) ∼ 1, sk (n) ∼ r1C (k − 1) n−2k+1, k ≥ 2,

where C (k) is the kth Catalan number [37, 26.5(i)]

C (k) =
1

k + 1

(
2k

k

)
.

(iii) If θ = 1, then as n→∞,

s1 (n) ∼ n, sk (n) ∼ r2 n
−k, k ≥ 2.
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Proof. See [14].

Remark 8 Using induction, we can see that the solution of (39) is given by

Ak (θ) = −θ (1− θ)k

(k − 1)!
(1 + k − θk)k−3 .

As a direct application of (30), we can illustrate the results of Theorem
7 for some particular cases.

Example 9 Let θ = 1. As n→∞, we have

s2 = r2n
−2 + (r1r2 + 3r3)n−3 +O

(
n−4
)
,

s3 = r2n
−3 + 3(r1r2 + 2r3)n−4 +O

(
n−5
)
,

and we see that sk (n) ∼ r2 n
−k, n ≥ 2, as expected. Also,

σn (z) =
n2

2
+

(
z − 1

2

)
n+ r1z + r2zn

−1 + (r3 + r2z) zn−2

+
[
r4 + (r1r2 + 3r3)z + r2z

2
]
zn−3 +O

(
n−4
)
,

βn (z) = n+ z − r2zn
−2 + [(1− 2z) r2 − 2r3] zn−3 +O

(
n−4
)
, (40)

and
gn (z) = n+ r1 + r2n

−1 + (2zr2 + r3)n−2 +O
(
n−3
)
. (41)

Example 10 Let θ = 0. As n→∞, we have

s2 = r1n
−3 + (r2

1 + 3r2)n−4 +O
(
n−5
)
,

s3 = 2r1n
−5 + 2(3r2

1 + 5r2)n−6 +O
(
n−7
)
,

and we see that sk (n) ∼ C (k − 1) r1n
−2k+1, n ≥ 2, as expected. Also,

σn (z) =
n2

2
− 1

2
n+ z + r1zn

−1 + r2zn
−2 + (r1z + r3)zn−3 +O

(
n−4
)
,

βn (z) = n− r1zn
−2 + (r1 − 2r2) zn−3

− [r1 (3z + 1)− 3 (r2 − r3)] zn−4 +O (n−5) ,
(42)

and
gn (z) = 1 + r1n

−1 + r2n
−2 + (2zr1 + r3)n−3 +O

(
n−4
)
. (43)
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Example 11 Let θ = −1. As n→∞, we have

s2 = n−4 + 4r1n
−5 +

(
1 + 3r2

1 + 7r2

)
n−6 +O

(
n−7
)
,

s3 = 4n−7 + 28r1n
−8 +

(
20 + 51r2

1 + 61r2

)
n−9 +O

(
n−10

)
,

and we see that sk (n) ∼ A (k) r1n
−3k+2, n ≥ 2, as expected. Also,

σn (z) =
n2

2
− 1

2
n+ zn−1 + r1zn

−2 + r2zn
−3 + (z + r3)zn−4 +O

(
n−5
)
,

βn (z) = n− zn−2 + (1− 2r1) zn−3 − [1 + 3 (r2 − r1)] zn−4 +O
(
n−5
)
, (44)

and
gn (z) = n−1 + r1n

−2 + r2n
−3 + (2z + r3)n−4 +O

(
n−5
)
. (45)

2.3 The function Φn (z;x)

Sometimes, the falling factorial polynomials φn (x) defined in (11), are called
binomial polynomials, since we have

φn (x)

n!
=

(
x

n

)
, n ∈ N0. (46)

From the definition (11), we see that

φn+1 (x) = (x− n)φn (x) = xφn (x− 1) , n ≥ 0, (47)

and from (7) it follows that the falling factorial polynomials and the Pochham-
mer polynomials are related by

φn (x) = (−1)n (−x)n = (x+ 1− n)n .

Using (32) in (13), we obtain

Pn+1 (x; 0) = (x− n)Pn (x; 0) , P0 (x; 0) = 1,

and comparing with the recurrence satisfied by the falling factorial polyno-
mials (47), we conclude that

Pn (x; 0) = φn (x) . (48)
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Note that from (26) and (48), we see that

P ′n (x; 0) = −gn (0)φn−1 (x) . (49)

If we define Φn (z;x) by

Pn (x; z) = φn (x) Φn (z;x) , (50)

then (47) and (49) give the recurrence

Φ′n (z;x) = − gn (z)

x+ 1− n
Φn−1 (z;x) . (51)

It also follows from (27) and (48) that Φn (z;x) is the solution of the ODE

zΦ′′n + (x+ 1− βn) Φ′n + gnΦn = 0, (52)

with initial condition
Φn (0;x) = 1. (53)

Note that setting z = 0 in (52) and using (32) gives

Φ′n (0;x) = − gn (0)

x+ 1− n

in agreement with (51).

Proposition 12 Suppose that

Φn (z;x) =
∞∑
k=0

αk (n)

(x+ 1− n)k

zk

k!
, α0 (n) = 1. (54)

Then, the coefficients αk (n) satisfy the recurrence

αk+1 (n) = −
k∑
j=0

sj+1 (n)αk−j (n− 1) (x+ 2− n+ k − j)j . (55)

In particular,
α1 (n) = −s1 (n) . (56)
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Proof. Taking a derivative in (54), we have

Φ′n (z;x) =
∞∑
k=0

kαk (n)

(x+ 1− n)k

zk−1

k!
=

1

x+ 1− n

∞∑
k=0

αk+1 (n)

(x+ 2− n)k

zk

k!
,

since from (7) we see that

(x)k+1 = x (x+ 1)k .

From (51), we conclude that

∞∑
k=0

αk+1 (n)

(x+ 2− n)k

zk

k!
= −gn (z)

∞∑
k=0

αk (n− 1)

(x+ 2− n)k

zk

k!
,

and using (33), we get

αk+1 (n)

(x+ 2− n)k
= −

k∑
j=0

sj+1 (n)
αk−j (n− 1)

(x+ 2− n)k−j
. (57)

The result follows after using the identity

(x)n
(x)m

= (x+m)n−m , m ≤ n.

Remark 13 Suppose that θ < 2. It follows from (57) that to find the leading
term in the asymptotic expansion of αk (n) as n→∞, one needs to consider
only the term with j = 0. Thus,

αk+1 (n) ∼ −s1 (n)αk (n− 1) , n→∞

and we conclude that

αk (n) ∼ (−1)k
k−1∏
j=0

s1 (n− j) , n→∞.

Using (35), we get

αk (n) = (−1)k nkθ
[
1 + k

(
r1 −

k − 1

2
θ

)
n−1 +O

(
n−2
)]
, n→∞.
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Example 14 Let θ = 1. As n→∞, we have

αk (n)

(x+ 1− n)k
= 1 +

x+ 1 + r1

n
k +O

(
n−2
)
,

and therefore

Φn (z;x) = ez
[
1 +

x+ 1 + r1

n
z +O

(
n−2
)]
, n→∞. (58)

2.4 The variable w

If we use (30) with θ = 2, we get

s1 = n2 + r1n+ r2 + r3n
−1 +O

(
n−2
)
,

s2 = n2 + r1n+ r2 + 2r3n
−1 +O

(
n−2
)
,

s3 = n2 + r1n+ r2 + 3r3n
−1 +O

(
n−2
)
,

and this is clearly not an asymptotic sequence. As we showed in [14], what
we need is to change variables from z to

w =
z

z − 1
. (59)

Theorem 15 Let σn (z) defined by (16). If we write

σn (w) =
∞∑
k=0

ξk (n)wk,

we have

ξ0 (n) =
n (n− 1)

2
, ξ1 (n) = −n(n− 1 + a)1

(n+ b)1

, (60)

and

ξk = ξk−1 +
1

k (k − 1)

k−1∑
j=1

(k − j) ξk−j∇∆ξj, k ≥ 2. (61)

Proof. See [14].
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Remark 16 If we use (35) in (60), we get

ξ1 (n) = −n2

∞∑
k=0

rkn
−k, (62)

where the coefficients rk can be computed using (37).

The asymptotic behavior of the coefficients ξk (n) is given in the following
result.

Theorem 17 For all k ≥ 2, we have

ξk (n) = O
(
n−k+1

)
, n→∞. (63)

Proof. See [14].

Remark 18 For the first few ξk (n) , we can use (61) and (62), and obtain

ξ2 (n) =
r3

n
+
r1r3 + 3r4

n2
+O

(
n−3
)
,

ξ3 (n) = −r1r3 + 2r4

n2
+O

(
n−3
)
, (64)

ξ4 (n) =
(1 + r2

1 + r2) r3 + 5(r1r4 + r5)

n3
+O

(
n−4
)
,

as n→∞, in agreement with (63).

Note that we have

γn = zσ′n (z) = w (1− w) σ̇n (w) ,

where we will always use the notation

Φ̇n = ∂wΦn.

Therefore, in this case we define

γn (w) = w (1− w) gn (w) , (65)

with

gn (w) =
∞∑
k=0

(k + 1) ξn,k+1w
k.
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Example 19 Using (62) and (64), we can compute the first terms in the
asymptotic expansions of σn (w) , βn (w) , and gn (w) :

σn (w) =

(
1

2
− w

)
n2 −

(
1

2
+ r1w

)
n− r2w + r3 (w − 1)wn−1 +O

(
n−2
)
,

βn (w) = (1− 2w)n− (1 + r1)w − r3 (w − 1)wn−2 +O
(
n−3
)
, (66)

and
gn (w) = −n2 − r1n− r2 + r3 (2w − 1)n−1 +O

(
n−2
)
, (67)

as n→∞.

3 Numerical results

Since we can write the falling factorial polynomials in terms of factorials (46),
we can use the reflection formula for the Gamma function [37, 5.5.3 ]

Γ (z) Γ (1− z) =
π

sin (πz)
,

and obtain

φn (x) =
x!

Γ (x+ 1− n)
=
x! sin [π (n− x)]

π
Γ (n− x) .

But
sin (π (n− x)) = − cos (πn) sin (πx) = (−1)n+1 sin (πx) ,

and therefore

φn (x) = (−1)n+1 x!
sin (πx)

π
Γ (n− x) .

Thus, in order to plot the different asymptotic approximations for Pn (x; z) ,
we will consider two cases:

i) On the negative real axis, we shall graph

Pn (x; z)

Γ (n− x)
and (−1)n+1 x!

sin (πx)

π
Φn (z;x) , (68)

since both functions are analytic, nonzero, and bounded in this region.
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ii) On the positive real axis (with x < n), we shall graph

Pn (x; z)

x!Γ (n− x)
and (−1)n+1 sin (πx)

π
Φn (z;x) , (69)

since both functions are analytic and bounded in this region.
To compute the polynomials Pn (x; z) , we first compute the moments of

L on the monomial basis (8) to a very high order of accuracy (with error
less than ε = 10−100), solve the system of equations (3)

µn+k +
n−1∑
i=0

µk+iξn,i = 0, 0 ≤ k ≤ n− 1,

and construct the polynomials using (4),

Pn (x; z) = xn +
n−1∑
i=0

ξn,i (z)xi.

After that, we double-check that∣∣L [xkPn]∣∣ < ε, 0 ≤ k ≤ n− 1, |L [xnPn]| > ε.

We have tried other methods (using Hankel determinants, recurrences,
or the Toda equations and the 3-term recurrence relation), but found them
unsatisfactory from a numerical point of view.

4 Asymptotic analysis

In this section, we will obtain asymptotic approximations for Pn (x; z) as
n → ∞, with x = O (1) and all other parameters fixed. Because of the
moments’ recurrence (9), the analyticity of all the moments µn (z) (and in
consequence the polynomials Pn themselves) as functions of z will agree with
that of the first moment µ0 (z) .

But since µ0 (z) is a hypergeometric function,

µ0 (z) = pFq

(
a
b

; z

)
=
∞∑
x=0

(a)x
(b + 1)x

zx

x!
, a ∈ Kp,b ∈ Kq,

17



its domain of analyticity depends on the parameters p, q. We have three cases
to consider:

(i) If p < q + 1, then µ0 (z) is an entire function of z. From (34), we see
that this corresponds to the case θ < 2.

(ii) If p = q + 1 (θ = 2), then µ0 (z) is analytic inside the unit circle,
|z| < 1, and can be extended by analytic continuation to the cut plane
C \ [1,∞).

(iii) If p > q + 1 (θ > 2) , then µ0 (z) diverges for all z 6= 0, except when
one of the numerator parameters is a negative integer, and µ0 (z) becomes a
polynomial (in z) of degree N. We will not study this situation in this paper,
since in this case we need to scale n in terms of N and consider the limit as
N →∞ (see [13] for the Krawtchouk polynomials).

We will divide the first case (i) in 3 subcases:
(a) When p = q (θ = 1) , µ0 (z) is entire (but barely!) and the asymptotic

expansion of Pn (x; z) will contain an exponential multiple ez.
(b) When p = q − 1 (θ = 0) , Pn (x; z) will have a regular asymptotic

expansion.
(c) When p < q − 1 (θ < 0) , some of the first terms in the asymptotic

expansion of Pn (x; z) will be missing.
If p = q + 1 (θ = 2), then µ0 (z) will have a logarithmic singularity at

z = 1. Thus, we expect that the asymptotic expansion of Pn (x; z) will have
a factor of the form (1− z)ς , where the power could depend on n (and x).
In this case, it is better to perform a change of variables and work with w
defined in (59).

Notation 20 We say that a family of polynomials is of type (p, q) , if it’s
orthogonal with respect to the functional (5) with a ∈ Kp and b ∈ Kq.

4.1 Case p = q (θ = 1)

From (58), we see that in this case we should ”peel off” an exponential term
from Φn (z;x) . Thus, if

Φn (z;x) = ezΛn (z;x) , (70)

we have
Φ′n = ez (Λn + Λ′n) , Φ′′n = ez (Λn + 2Λ′n + Λ′′n) ,
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and (52) becomes

zΛ′′n + (2z + x+ 1− βn) Λ′n + (z + x+ 1− βn + gn) Λn = 0. (71)

From (40) and (41), we see that

βn = n+ β̃n, gn = n+ g̃n, β̃n = O (1) , g̃n = O (1) , n→∞,

and hence

zΛ′′n +
(

2z + x+ 1− n− β̃n
)

Λ′n +
(
z + x+ 1 + g̃n − β̃n

)
Λn = 0. (72)

Thus, we shall have Λn = O (1) , n→∞. Replacing

β̃n (z) =
∞∑
k=0

vk (z)n−k, g̃n (z) =
∞∑
k=0

uk (z)n−k,

and

Λn (z;x) =
∞∑
k=0

λk (z;x)n−k,

in (72) and comparing coefficients of n−k, we obtain the recurrence

λ′k+1 = zλ′′k+(2z + x+ 1)λ′k+(z + x+ 1)λk+
k∑
j=0

[
(uk−j − vk−j)λj − vk−jλ′j

]
.

(73)
From (53) and (70) we have Λn (0;x) = Φn (0;x) = 1, and therefore

λk (0;x) = δ0,k, k ≥ 0. (74)

Note that from (40) and (41) we see that

u0 = r1, u1 = r2, u2 = 2zr2 + r3,

v0 = z, v1 = 0, v2 = −r2z.

When k = −1, (73) and (74) give

λ′0 = 0, λ0 (0;x) = 1,
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and thus
λ0 (z;x) = 1. (75)

Using (75) in (73), we get

λ′1 = z + x+ 1 + u0 − v0 = x+ 1 + r1,

and since λ1 (0;x) = 0, we obtain

λ1 (z;x) = (x+ 1 + r1) z. (76)

Similarly, using (75) and (76) in (73), we get after some simplification

λ′2 = λ′1 (x+ 1 + z) + λ1λ
′
1 + r2,

and since λ2 (0;x) = 0, we conclude that

λ2 = λ′1

(
x+

z

2
+ 1
)
z +

1

2
(λ1)2 + r2z,

or

λ2 (z;x) = [(x+ 1) (x+ 1 + r1) + r2] z + (x+ 1 + r1) (x+ 2 + r1)
z2

2
. (77)

4.1.1 Polynomials of type (0, 0) (Charlier polynomials).

The Charlier polynomials were introduced by Carl Vilhelm Ludwig Charlier
(1862–1934) in his paper [7] and have the hypergeometric representation

Pn (x; z) = (−z)n 2F0

[
−n,−x
− ;−1

z

]
.

For this family, we have rk = 0, k ≥ 1, and therefore

βn = n+ z, gn = n.

Replacing in (71), we get

zΛ′′n + (z + x+ 1− n) Λ′n + (x+ 1) Λn = 0. (78)

Therefore, the recurrence (73) becomes

λ′k+1 = zλ′′k + (z + x+ 1)λ′k + (x+ 1)λk,
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or

λk+1 (z) = z (λ′k + λk) + x [λk (z)− λk (0)] + x

z∫
0

λk (t) dt.

Starting with λ0 (z) = 1, we obtain

λ1 (z) = (x+ 1) z, λ2 (z) = (x+ 1)2 z + (x+ 1)2
z2

2
,

λ3 (z) = (x+ 1)3 z + (x+ 1)2 (2x+ 3) z2

2
+ (x+ 1)3

z3

6
.

(79)

However, in this case the ODE satisfied by Λn (z;x) (78) has the exact
solution [12]

Λn (z;x) = 1F1

(
x+ 1

x+ 1− n ;−z
)
,

where we have used the initial value Λn (0;x) = 1. Therefore,

Λn (z;x) =
∞∑
k=0

(x+ 1)k
(x+ 1− n)k

(−z)k

k!
(80)

and using the first few terms we obtain

3∑
k=0

(x+ 1)k
(x+ 1− n)k

(−z)k

k!
= 1 +

(x+ 1) z

n
+

[
(x+ 1)2 z + (x+ 1)2

z2

2

]
n−2

+

[
(x+ 1)3 z + (x+ 1)2 (2x+ 3)

z2

2
+ (x+ 1)3

z3

6

]
n−3 +O

(
n−4
)

as n→∞, in agreement with (79).

4.1.2 Polynomials of type (1, 1) (generalized Meixner)

For this family, we have

s1 (n)

n
=
n+ a− 1

n+ b
= 1 +

a− b− 1

n+ b
= 1 + (a− b− 1)

∞∑
k=1

(−b)k−1

nk
,

and therefore
rk = (a− b− 1) (−b)k−1 , k ≥ 1. (81)

Using (81) in (75)–(77), we get λ0 (z;x) = 1,

λ1 (z;x) = (x+ a− b) z,
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Figure 1: A plot of the scaled generalized Meixner polynomial P10 (x; z) and
its approximation.

and

λ2 (z;x) =
[
(x+ a) (x+ 1− b) + b2

]
z + (x+ a− b+ 1)(x+ a− b)z

2

2
.

In Figures 1 and 2, we plot the functions (68)–(69) with

Φn (z;x) = ez
[
1 +

λ1 (z;x)

n
+
λ2 (z;x)

n2

]
,

n = 10, a = 0.2479357, b = 0.7146983, and z = 0.3974126.
For additional information on these polynomials, see [6], [9], [15], [16],

[17], [19].
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Figure 2: A plot of the scaled generalized Meixner polynomial P10 (x; z) and
its approximation.
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4.1.3 Polynomials of type (2, 2)

For this family, we have

s1 (n)

n
=

(n+ a1 − 1) (n+ a2 − 1)

(n+ b1) (n+ b2)
=

1 +
(a1 − b2 − 1) (a2 − b2 − 1)

(b1 − b2) (n+ b2)
− (a1 − b1 − 1) (a2 − b1 − 1)

(b1 − b2) (n+ b1)

and therefore

rk =
τ

(1)
k (b2)− τ (1)

k (b1)

b1 − b2

, k ≥ 1, (82)

with
τ

(1)
k (b) = (b− a1 + 1) (b− a2 + 1) (−b)k−1 .

In particular,

r1 = a1 + a2 − b1 − b2 − 2,

r2 = 1− a1 − a2 − (a1 + a2 − 2) (b1 + b2) + b2
1 + b2

2 + b1b2 + a1a2.

Using (82) in (75)–(77), we get λ0 (z;x) = 1,

λ1 (z;x) = (x+ a1 + a2 − b1 − b2 − 1) z,

and

λ2 (z;x) = [(x+ 1) (x+ a1 + a2 − b1 − b2 − 1) + r2] z

+ (x+ a1 + a2 − b1 − b2 − 1) (x+ a1 + a2 − b1 − b2)
z2

2
.

In Figures 3 and 4, we plot the functions (68)–(69) with

Φn (z;x) = ez
[
1 +

λ1 (z;x)

n
+
λ2 (z;x)

n2

]
,

n = 10, a1 = 0.2479357, a2 = 0.1963478, b1 = 0.7146983, b2 = 0.5712349,
and z = 0.3974126.

For additional information on these polynomials, see [15] and [17].
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Figure 3: A plot of the scaled polynomial of type (2,2) P10 (x; z) and its
approximation.
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Figure 4: A plot of the scaled polynomial of type (2,2) P10 (x; z) and its
approximation.
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4.2 Case p = q − 1 (θ = 0)

From (42) and (43), we see that

βn = n+ n−2β̃n, β̃n = O (1) , gn = O (1) , n→∞,

and replacing in (52), we get

zΦ′′n +
(
x+ 1− n− n−2β̃n

)
Φ′n + gnΦn = 0. (83)

Thus, we shall have Φn = O (1) , n→∞ with Φn (0;x) = 1. Replacing

β̃n (z) =
∞∑
k=0

vk (z)n−k, gn (z) =
∞∑
k=0

uk (z)n−k,

and

Φn (z;x) =
∞∑
k=0

ϕk (z;x)n−k, ϕk (0;x) = δ0,k, k ≥ 0,

in (83) and comparing coefficients of n−k, we obtain the recurrence

ϕ′k+1 = zϕ′′k + (x+ 1)ϕ′k +
k∑
j=0

ϕjuk−j −
k−2∑
j=0

ϕ′jvk−2−j. (84)

Replacing ϕ0 = 1 in (84) with k = 0, we have

ϕ′1 = u0 = 1,

and therefore
ϕ1 (z;x) = z. (85)

Using ϕ0 = 1, ϕ1 = z in (84) with k = 1, we get

ϕ′2 = x+ 1 + u1 + zu0 = x+ 1 + r1 + z,

and hence

ϕ2 (z;x) = (x+ 1 + r1) z +
z2

2
. (86)

Similarly, we have

ϕ′3 = z + (x+ 1)ϕ′2 + ϕ0u2 + ϕ1u1 + ϕ2u0 − ϕ′0v0

= z + (x+ 1)ϕ′2 + r2 + r1z + ϕ2,

and we conclude that

ϕ3 (z;x) = [(x+ 1) (x+ 1 + r1) + r2] z + [2 (x+ 1 + r1) + 1]
z2

2
+
z3

6
. (87)

27



4.2.1 Polynomials of type (0, 1) (generalized Charlier)

For this family, we have

s1 (n) =
n

n+ b
=
∞∑
k=0

(−b)k

nk
,

and therefore
rk = (−b)k , k ≥ 0. (88)

Using (88) in (85)–(87), we get

Φn (z;x) ∼ 1 +
z

n
+

(x+ 1− b) z + z2

2

n2

+
[(x+ 1) (x+ 1− b) + b2] z + [2 (x+ 1− b) + 1] z

2

2
+ z3

6

n3

as n→∞.
In Figures 5 and 6, we plot the functions (68)–(69) with

Φn (z;x) = 1 +
ϕ1 (z;x)

n
+
ϕ2 (z;x)

n2
,

n = 10, b = 0.7146983, and z = 0.3974126.
For additional information on these polynomials, see [9], [15], [16], [17],

[26], [45], [48].

4.2.2 Polynomials of type (1, 2)

For this family, we have

s1 (n) =
n (n+ a− 1)

(n+ b1) (n+ b2)
= 1 +

(a− 1− b1) b1

(b1 − b2) (n+ b1)
− (a− 1− b2) b2

(b1 − b2) (n+ b2)
,

and therefore

rk =
(b1 + 1− a) (−b1)k + (a− 1− b2) (−b2)k

b1 − b2

, k ≥ 0.

In particular,
r0 = 1, r1 = a− b1 − b2 − 1,
r2 = (1− a) (b1 + b2) + b2

1 + b2
2 + b1b2.

(89)
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Figure 5: A plot of the scaled generalized Charlier polynomial P10 (x; z) and
its approximation.
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Figure 6: A plot of the scaled generalized Charlier polynomial P10 (x; z) and
its approximation.
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Using (89) in (85)–(87), we get

Φn (z;x) = 1 + zn−1 +

[
(x+ a− b1 − b2) z +

z2

2

]
n−2

+ [(x+ 1) (x+ a− b1 − b2) + r2] zn−3

+

[(
x+ a− b1 − b2 +

1

2

)
z2 +

z3

6

]
n−3 +O

(
n−4
)

as n→∞.
In Figures 7 and 8, we plot the functions (68)–(69) with

Φn (z;x) = 1 +
ϕ1 (z;x)

n
+
ϕ2 (z;x)

n2
,

n = 10, a = 0.2479357, b1 = 0.7146983, b2 = 0.5712349, and z = 0.3974126.
For additional information on these polynomials, see [15] and [17].

4.3 Case p < q − 1 (θ < 0)

Looking at (44) and (45), suggests that as n→∞,

βn = n+ nθ−1β̃n, β̃n = O (1) , gn = nθg̃n, g̃n = O (1) ,

and replacing in (52), we get

zΦ′′n +
(
x+ 1− n− nθ−1β̃n

)
Φ′n + nθg̃nΦn = 0. (90)

Thus, we expect that

Φn (z;x) = 1 + nθ−1Φ̃n (z;x) , Φ̃n = O(1), n→∞

with Φ̃n (0;x) = 0, and therefore the ODE (90) becomes

znθ−1Φ̃′′n +
(
x+ 1− n− nθ−1β̃n

)
nθ−1Φ̃′n + nθg̃n + n2θ−1g̃nΦ̃n = 0,

or
zΦ̃′′n +

(
x+ 1− n− nθ−1β̃n

)
Φ̃′n + ng̃n + nθg̃nΦ̃n = 0. (91)

Replacing

β̃n (z) =
∞∑
k=0

vk (z)n−k, gn (z) =
∞∑
k=0

uk (z)n−k,
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Figure 7: A plot of the scaled polynomial of type (1,2) P10 (x; z) and its
approximation.
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Figure 8: A plot of the scaled polynomial of type (1,2) P10 (x; z) and its
approximation.
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and

Φ̃n (z;x) =
∞∑
k=0

ϕk (z;x)n−k, ϕk (0;x) = 0, k ≥ 0

in (91) and comparing coefficients of n−k, we obtain the recurrence

ϕ′k = uk + zϕ′′k−1 + (x+ 1)ϕ′k−1 +
k−1+θ∑
j=0

ϕjuk−1+θ−j −
k+θ−2∑
j=0

ϕ′jvk+θ−2−j. (92)

Setting k = 0 in (92), we get

ϕ′0 = u0 = 1,

and therefore
ϕ0 (z;x) = z. (93)

For k = 1, we have

ϕ′1 = u1 + zϕ′′0 + (x+ 1)ϕ′0 +
θ∑
j=0

ϕjuθ−j −
θ−1∑
j=0

ϕ′jvθ−1−j,

but since θ < 0 and ϕ0 = z,

ϕ′1 = u1 + x+ 1

and hence
ϕ1 (z;x) = (x+ 1 + r1) z. (94)

Continuing this way, we see that

ϕ′k = uk + zϕ′′k−1 + (x+ 1)ϕ′k−1, 1 ≤ k < 1− θ,

and for k = 1− θ

ϕ′1−θ = u1−θ + zϕ′′−θ + (x+ 1)ϕ′−θ + ϕ0u0.

Thus,

ϕk (z;x) =

z∫
0

uk (t) dt+ zϕ′k−1 (z;x) + xϕk−1 (z;x) , 1 ≤ k < 1− θ, (95)

and

ϕ1−θ (z;x) =

z∫
0

u1−θ (t) dt+ zϕ′−θ (z;x) + xϕ−θ (z;x) +
z2

2
. (96)
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4.3.1 Polynomials of type (0, 2)

For this family, we have

s1 (n)

n−1
=

n2

(n+ b1) (n+ b2)
= 1 +

b2
2

(b1 − b2) (n+ b2)
− b2

1

(b1 − b2) (n+ b1)
,

and therefore

rk =
(−b2)k+1 − (−b1)k+1

b1 − b2

, k ≥ 0.

In particular,

r0 = 1, r1 = − (b1 + b2) , r2 = b1b2 + b2
1 + b2

2. (97)

Using (97) in (94) and (96), we get

ϕ1 (z;x) = (x+ 1− b1 − b2) z,

ϕ2 =

z∫
0

u2 (t) dt+ zϕ′1 +xϕ1 +
z2

2
=

z∫
0

r2dt+ (x+ 1) (x+ 1− b1 − b2) z+
z2

2
,

and hence

ϕ2 (z;x) =
(
b1b2 + b2

1 + b2
2

)
z + (x+ 1) (x+ 1− b1 − b2) z +

z2

2
.

Combining the results above and recalling that ϕ0 = z, we obtain

Φn (z;x) = 1 +
z

n2
+ (x+ 1− b1 − b2) zn−3

+

[(
b1b2 + b2

1 + b2
2

)
z + (x+ 1) (x+ 1− b1 − b2) z +

z2

2

]
n−4 +O

(
n−5
)
.

In Figures 9 and 10, we plot the functions (68)–(69) with

Φn (z;x) = 1 + n−2

[
ϕ0 (z;x) +

ϕ1 (z;x)

n

]
,

n = 10, b1 = 0.7146983, b2 = 0.5712349, and z = 0.3974126.
For additional information on these polynomials, see [15] and [17].
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Figure 9: A plot of the scaled polynomial of type (0,2) P10 (x; z) and its
approximation.
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Figure 10: A plot of the scaled polynomial of type (0,2) P10 (x; z) and its
approximation.
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4.4 Case p = q + 1 (θ = 2)

Let w be defined by (59). Using

∂z = − (w − 1)2 ∂w, ∂2
z = (w − 1)4 ∂2

w + 2 (w − 1)3 ∂w,

in (24), we get

w2 (1− w)2 ∂2
wΦn + (x+ 1− βn − 2w)w (1− w) ∂wΦn + γnΦn = 0,

and from (65) we have

w (1− w) Φ̈n + (x+ 1− βn − 2w) Φ̇n + gnΦn = 0. (98)

Based on the case θ = 1 (Section 4.1), we expect that Φn (w;x) will
contain an exponential term. Replacing

Φn (w;x) = exp [Υn (w;x)] , Υn (0;x) = 0,

in (98), we obtain

w (1− w)

[
Ϋn +

(
Υ̇n

)2
]

+ (x+ 1− βn − 2w) Υ̇n + gn = 0. (99)

From (66)–(67), we have

βn = (1− 2w)n− (1 + r1)w + β̃n, β̃n = O (n−2) , n→∞,
gn = −n2 − r1n+ g̃n, g̃n = O (1) , n→∞, (100)

and replacing in (99) gives, to leading order,

w (1− w)
(

Υ̇n

)2

∼ (1− 2w)nΥ̇n + n2, n→∞

and therefore
Υ̇n ∼

n

w
, or Υ̇n ∼

n

w − 1
, n→∞.

Since we want Υn (w;x) to be analytic in a neighborhood of w = 0, we choose

Υn (w;x) ∼ ln (1− w)n, n→∞,

and set

Υn (w;x) = ln (1− w)n+
∞∑
k=0

εk (w;x)n−k, εk (0;x) = 0, k ≥ 0, (101)
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β̃n (w) =
∞∑
k=2

vk (w;x)n−k, g̃n (w) =
∞∑
k=0

uk (w;x)n−k, (102)

where from (66)–(67) we see that

v2 = r3 (1− w)w, u0 = −r2, u1 = r3 (2w − 1) . (103)

Using (101)–(102) in (99) and comparing powers of n, we get

ε̇0 =
x+ 1 + r1

w − 1
.

Thus, since ε0 (0;x) = 0,

ε0 (w;x) = (x+ 1 + r1) ln (1− w) .

We could proceed in this manner, but instead we consider Ψn (w;x) de-
fined by

Φn (w;x) = (1− w)n+x+1+r1 Ψn (w;x) , (104)

so that

Ψn (w;x) = exp

[
∞∑
k=1

εk (w;x)n−k

]
= O (1) , n→∞.

Using (100) and (104) in (98), we get

w (1− w)2 Ψ̈n + (1− w)
[
x+ 1− w(r1 + 2x+ 3)− β̃n − n

]
Ψ̇n

+
[
(n+ x+ 1 + r1)β̃n + (1− w)(g̃n − (x+ 1)(x+ 1 + r1))

]
Ψn = 0.

(105)
Replacing (102) and

Ψn (w;x) =
∞∑
k=0

ψk (w;x)n−k, ψk (0;x) = δ0,k, k ≥ 0

in (105), we obtain the recurrence

(1− w) ψ̇k+1 = w (1− w)2 ψ̈k + (1− w) [x+ 1− (r1 + 2x+ 3)w] ψ̇k

+ (x+ 1) (x+ 1 + r1) (w − 1)ψk + (1− w)
k∑
j=0

ψjuk−j (106)

+
k−1∑
j=0

ψjvk+1−j +
k−2∑
j=0

[
(x+ 1 + r1)ψj − ψ̇j

]
vk−j = 0.
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Setting k = 0 and ψ0 = 1 in (106), we obtain

ψ̇1 = − (x+ 1) (x+ 1 + r1) + u0,

and since u0 = −r2 and ψ1 (0;x) = 0, we conclude that

ψ1 (w;x) = − [(x+ 1) (x+ 1 + r1) + r2]w. (107)

Replacing k = 1 and ψ0 = 1 in (106), we have

(1− w) ψ̇2 = (1− w) [x+ 1− (r1 + 2x+ 3)w] ψ̇1

+ (x+ 1) (x+ 1 + r1) (w − 1)ψ1 + (1− w) (u1 + ψ1u0) + v2,

and using (103) and ψ1 = wψ̇1, we get

(1− w) ψ̇2 = (1− w) (x+ 1− (r1 + 2x+ 3)w) ψ̇1

+ (x+ 1) (x+ 1 + r1) (w − 1)wψ̇1

+ (1− w)
(
r3 (2w − 1)− r2wψ̇1

)
+ r3 (1− w)w,

or
ψ̇2 = [x+ 1− ((x+ 2) (x+ 2 + r1) + r2)w] ψ̇1 + r3 (3w − 1) .

Since ψ2 (0;x) = 0, we conclude that

ψ2 (w;x) =

[
(x+ 1)w − ((x+ 2) (x+ 2 + r1) + r2)

w2

2

]
ψ̇1 +

r3

2
w (3w − 2) ,

and noting from (107) that

− [(x+ 2) (x+ 2 + r1) + r2]w = ψ1 (w;x+ 1) ,

we can write

ψ2 (w;x) =

[
x+ 1 +

1

2
ψ1 (w;x+ 1)

]
ψ1 (w;x) +

r3

2
w (3w − 2) . (108)

4.4.1 Polynomials of type (1, 0) (Meixner polynomials)

The Meixner polynomials were introduced by Josef Meixner (1908 – 1994)
in his paper [35] and have the representation

Pn (x; z) = (a)n

(
1− 1

z

)−n
2F1

[
−n,−x

a
; 1− 1

z

]
, z ∈ C \ [1,∞).
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For this family, we have

−ξ1 (n)

n2
=
n+ a− 1

n
,

and therefore
r0 = 1, r1 = a− 1, rk = 0, k ≥ 2, (109)

and
βn (w) = (1− 2w)n− aw, gn (w) = −n2 − (a− 1)n. (110)

Thus, in this case β̃n = g̃n = 0, and using (109) in (105), we obtain

w (1− w) Ψ̈n + [x+ 1− (2x+ 2 + a)w − n] Ψ̇n

− (x+ 1) (x+ a) Ψn = 0,
(111)

while the recurrence (106) becomes

ψ̇k+1 = w (1− w) ψ̈k + [x+ 1− (2x+ 2 + a)w] ψ̇k − (x+ 1) (x+ a)ψk.

It follows that, as n→∞,

Ψn (w;x) ∼ 1− (x+ 1) (x+ a)wn−1

−
[
x+ 1− 1

2
(x+ 2) (x+ 1 + a)w

]
(x+ 1) (x+ a)wn−2.

(112)

However, the ODE (111) can be solved exactly, and we have [12]

Ψn (w;x) = 2F1

(
x+ 1, x+ a
x+ 1− n ;w

)
,

and using the first couple of terms, we get

Ψn (w;x) ∼
2∑

k=0

(x+ 1)k (x+ a)k
(x+ 1− n)k

wk

k!
∼ − (x+ 1) (x+ a)wn−1

− (x+ 1) (x+ a)w

[
x+ 1− 1

2
(x+ 2) (x+ 1 + a)w

]
n−2, n→∞,

in agreement with (112).

41



4.4.2 Polynomials of type (2, 1) (generalized Hahn polynomials of
type I)

For this family, we have

−ξ1 (n)

n2
=

(n+ a1 − 1) (n+ a2 − 1)

n (n+ b)

= 1 +
(a1 − 1) (a2 − 1)

bn
− (b+ 1− a1) (b+ 1− a2)

b (n+ b)
,

and therefore

r0 = 1, r1 = a1 + a2 − 2− b,
rk = (b+ 1− a1) (b+ 1− a2) (−b)k−2 , k ≥ 2.

(113)

Using (113) in (107)–(108), we get

ψ1 (w;x) = − [(x+ 1) (x+ a1 + a2 − 1− b) + (b− a1 + 1) (b− a2 + 1)]w

and

ψ2 (w;x) =

[
x+ 1 +

1

2
ψ1 (w;x+ 1)

]
ψ1 (w;x)

− 1

2
(b− a1 + 1) (b− a2 + 1) bw (3w − 2) .

In Figures 11 and 12, we plot the functions (68)–(69) with

Φn (w;x) = (1− w)n+x+1+r1

[
1 +

ψ1 (w;x)

n
+
ψ2 (w;x)

n2

]
,

n = 10, a1 = 0.2479357, a2 = 0.1963478, b = 0.7146983, z = −0.01574126,
and w = 0.0154973.

For additional information on these polynomials, see [11], [15], [16], [17],
[20].
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Figure 11: A plot of the scaled generalized Hahn polynomial P10 (x; z) and
its approximation.
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Figure 12: A plot of the scaled generalized Hahn polynomial P10 (x; z) and
its approximation.
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4.4.3 Polynomials of type (3, 2)

For this family, we have

−ξ1 (n)

n2
=

(n+ a1 − 1) (n+ a2 − 1) (n+ a3 − 1)

n (n+ b1) (n+ b2)

= 1 +
(a1 − 1) (a2 − 1) (a3 − 1)

b1b2n
+

(a1 − b1 − 1) (a2 − b1 − 1) (a3 − b1 − 1)

(b1 − b2) b1 (n+ b1)

−(a1 − b2 − 1) (a2 − b2 − 1) (a3 − b2 − 1)

(b1 − b2) b2 (n+ b2)
,

and therefore

r0 = 1, r1 = a1 + a2 + a3 − 3− b1 − b2,

rk =
τ
(2)
k (b1)−τ (2)k (b2)

b1−b2 , k ≥ 2,
(114)

where
τ

(2)
k (b) = (b− a1 + 1) (b− a2 + 1) (b− a3 + 1) (−b)k−2 .

At this point, we truly reach the limit of being able to type expressions
in a compact way. For the first terms in the asymptotic expansion of these
polynomials, we refer to the general formulas (107)–(108) with r1, r2 given
by (114).

In Figures 13 and 14, we plot the functions (68)–(69) with

Φn (w;x) = (1− w)n+x+1+r1

[
1 +

ψ1 (w;x)

n
+
ψ2 (w;x)

n2

]
,

n = 10, a1 = 0.2479357, a2 = 0.1963478, a3 = 0.3614782, b1 = 0.7146983,
b2 = 0.5712349, z = −0.01574126, and w = 0.0154973.

For additional information on these polynomials, see [15] and [17].

5 Conclusions

We have given asymptotic expansions for the ratio

Pn (x; z)

φn (x)
, x = O (1) , x /∈ N0,
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Figure 13: A plot of the scaled polynomial of type (3,2) P10 (x; z) and its
approximation.
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Figure 14: A plot of the scaled polynomial of type (3,2) P10 (x; z) and its
approximation.
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as n → ∞, where z (and any other parameters) is fixed. The polynomials
Pn (x; z) are orthogonal with respect to the linear functional

L [u] =
∞∑
x=0

u (x)
(a)x

(b + 1)x

zx

x!
, a ∈ Kp,b ∈ Kq,

and depending on the value of the parameter θ = p + 1 − q, we have the
following cases:

(i) If θ < 1, then

Pn (x; z)

φn (x)
= 1 + znθ−1

[
1 +

x+ 1 + r1

n
+O

(
n−2
)]
, n→∞,

where
(1− n−1 + an−1)1

(1 + bn−1)1

=
∞∑
k=0

rkn
−k.

(ii) If θ = 1, then as n→∞

Pn (x; z)

φn (x)
= ez

[
1 +

x+ 1 + r1

n
z +O

(
n−2
)]
.

This result extends our previous work on the Charlier polynomials, [10], [12].
(iii) If θ = 2, then as n→∞

Pn (x;w)

φn (x)
= (1− w)n+x+1+r1

[
1− (x+ 1) (x+ 1 + r1) + r2

n
w +O

(
n−2
)]
,

where w = z
z−1

. This result extends our previous work on the Meixner poly-
nomials, [10], [12].

(iv) If θ > 2, then the polynomials Pn (x;w) depend on a parameter N,
with −N ∈ N. We have not analyzed this case, since it will require scaling
N in terms of n. For some related work on the Krawtchouk polynomials, see
[13]. We plan to study this case in a forthcoming paper.
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2021-03 A. Jiménez Pastor: Simple differentially definable functions Feb 2021. Eds.: M. Kauers,

V. Pillwein

2021-04 U. Langer, A. Schafelner: Simultaneous space-time finite element methods for parabolic opti-

mal control problems March 2021. Eds.: V. Pillwein, R. Ramlau

2021-05 U. Langer, A. Schafelner: Space-time hexahedral finite element methods for parabolic evolution

problems March 2021. Eds.: B. Jüttler, V. Pillwein
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