Comparative asymptotics for discrete semiclassical orthogonal polynomials

Diego Dominici
Editorial Board: Bruno Buchberger
Evelyn Buckwar
Bert Jüttler
Ulrich Langer
Manuel Kauers
Peter Paule
Veronika Pillwein
Silviu Radu
Ronny Ramlau
Josef Schicho

Managing Editor: Diego Dominici

Communicated by: Manuel Kauers
Peter Paule

DK sponsors:
- **Johannes Kepler University Linz (JKU)**
- **Austrian Science Fund (FWF)**
- **Upper Austria**
Comparative asymptotics for discrete semiclassical orthogonal polynomials

Diego Dominici *
Johannes Kepler University Linz
Doktoratskolleg “Computational Mathematics”
Altenberger Straße 69
4040 Linz
Austria
Permanent address: Department of Mathematics
State University of New York at New Paltz
1 Hawk Dr.
New Paltz, NY 12561-2443
USA

Abstract

We study the ratio \(\frac{P_n(x; z)}{\phi_n(x)} \) asymptotically as \(n \to \infty \), where the polynomials \(P_n(x; z) \) are orthogonal with respect to a discrete linear functional and \(\phi_n(x) \) denote the falling factorial polynomials.

We give recurrences that allow the computation of high order asymptotic expansions of \(P_n(x; z) \) and give examples for most discrete semiclassical polynomials of class \(s \leq 2 \).

We show several plots illustrating the accuracy of our results.

Keywords: Semiclassical orthogonal polynomials, asymptotic expansions, ordinary differential equations.

Subject Classification Codes: 41A60 (primary), 33C47, 34E05 (secondary).

* e-mail: diego.dominici@dk-compmath.jku.at

1
1 Introduction

Let \(\mathbb{K} \) be a commutative ring (for our purposes, we mostly think of \(\mathbb{K} \) as the set of complex numbers \(\mathbb{C} \)) and \(\mathbb{N}_0 \) be the set of nonnegative integers

\[
\mathbb{N}_0 = \mathbb{N} \cup \{0\} = \{0, 1, 2, \ldots\}.
\]

We will denote by \(\delta_{k,n} \) the Kronecker delta, defined by

\[
\delta_{k,n} = \begin{cases}
1, & k = n \\
0, & k \neq n
\end{cases}, \quad k, n \in \mathbb{N}_0,
\]

and let \(\mathbb{F} \) be the ring of \textit{formal power series} in the variable \(z \)

\[
\mathbb{F} = \mathbb{K}[[z]] = \left\{ \sum_{n=0}^{\infty} c_n z^n : c_n \in \mathbb{K} \right\}.
\]

We consider the differential operator \(\vartheta : \mathbb{F} \to \mathbb{F} \) defined by [37, 16.8.2]

\[
\vartheta = z \partial_z,
\]

where \(\partial_z \) is the \textit{derivative operator}

\[
\partial_z = \frac{\partial}{\partial z}.
\]

The action of \(\vartheta \) on the monomials is given by

\[
\vartheta^k [z^x] = x^k z^x,
\]

where we always assume that \(x \) and \(z \) are \textit{independent variables}.

Suppose that \(L : \mathbb{F}[x] \to \mathbb{F} \) is a \textit{linear functional} (acting on the variable \(x \)), and \(\{\Lambda_n(x)\}_{n \geq 0} \subset \mathbb{K}[x] \) is a sequence of \textit{monic polynomials} with \(\deg(\Lambda_n) = n \). If the system of linear equations

\[
L[\Lambda_k \Lambda_n] + \sum_{i=0}^{n-1} L[\Lambda_k \Lambda_i] \xi_{n,i} = 0, \quad 0 \leq k \leq n - 1,
\]

has a \textit{unique solution} \(\{\xi_{n,i}(z)\}_{0 \leq i \leq n-1} \subset \mathbb{F} \), we can define \textit{monic polynomials} \(P_n(x;z) \) by \(P_0(x;z) = 1 \) and
\[P_n (x; z) = \Lambda_n (x) + \sum_{i=0}^{n-1} \xi_{n,i} (z) \Lambda_i (x), \quad n \geq 1. \]

(4)

We say that \(\{ P_n (x; z) \}_{n \geq 0} \) is a sequence of (monic) orthogonal polynomials with respect to the functional \(L \), \([2],[4],[21],[22],[27],[28],[46]\).

In this paper, we focus on linear functionals of the form

\[L[u] = \sum_{x=0}^{\infty} u(x) \frac{(a)_x}{(b+1)_x} \frac{z^x}{x!}, \quad u \in \mathbb{F}[x], \]

(5)

and we use the notation

\[(a)_n = \prod_{i=1}^{p} (a_i)_n, \quad (b)_n = \prod_{i=1}^{q} (b_i)_n, \quad n \in \mathbb{N}_0, \]

\[c + r = (c_1 + r, c_2 + r, \ldots, c_m + r) \in \mathbb{K}^m, \quad r \in \mathbb{K}, \quad c \in \mathbb{K}^m, \]

where

\[a = (a_1, \ldots, a_p) \in \mathbb{K}^p, \quad b = (b_1, \ldots, b_q) \in \mathbb{K}^q, \quad p, q \in \mathbb{N}_0, \]

(6)

and the Pochhammer polynomial \((x)_n\) is defined by \((x)_0 = 1\) and \([37],[18:12]\)

\[(x)_n = \prod_{j=0}^{n-1} (x+j), \quad n \in \mathbb{N}. \]

(7)

If \(\mu_n (z) \in \mathbb{F} \) denote the standard moments of \(L \) on the monomial basis

\[\mu_n (z) = L [x^n], \quad n \in \mathbb{N}_0, \]

(8)

it follows from (2) and (5) that

\[\mu_{n+1} = \vartheta [\mu_n] = \vartheta^n [\mu_0], \quad n \in \mathbb{N}_0. \]

(9)

Moreover, using (5) we can see that \([15]\)

\[L [\sigma (x) u (x)] = L [z \tau (x) u (x + 1)], \quad u \in \mathbb{K}[x], \]

(10)

where

\[\sigma (x) = x (x + b)_1, \quad \tau (x) = (x + a)_1. \]
Because of (9), we say that the functional L is of \textit{Toda-type} \cite{3, 14, 38}, \cite{47}, and because of (10) we also call L \textit{discrete semiclassical} \cite{1, 16, 18}, \cite{33, 36, 49}. The class of the functional L is defined by

$$s = \max \{ \deg (\sigma) - 1, \deg (\tau) - 1 \} = \max \{ p - 1, q \},$$

and semiclassical functional of class $s = 0$ are called \textit{classical}.

Our objective is to obtain \textit{comparative asymptotics} (also called \textit{relative asymptotics}) \cite{5, 23, 24, 25, 29, 30, 31, 32, 34, 39, 40, 41, 42, 43, 44}, for the polynomials $P_n (x; z)$ with respect to the basis of \textit{falling factorial polynomials} defined by $\phi_0 (x) = 1$ and

$$\phi_n (x) = \prod_{k=0}^{n-1} (x - k), \quad n \in \mathbb{N}. \quad (11)$$

In other words, we want to study the limit

$$\lim_{n \to \infty} \frac{P_n (x; z)}{\phi_n (x)}, \quad x = O(1), \quad x \notin \mathbb{N}_0,$$

where z is a fixed number, and x belongs to a compact subset of the complex plane containing the origin. We already considered this type of limits in \cite{10}, \cite{12} (Charlier and Meixner polynomials), and in \cite{13} (Krawtchouk polynomials).

The organization of the paper is as follows: in Section 2 we review some of our results from \cite{14}. The polynomials $P_n (x; z)$ have different asymptotic approximations depending on the relation between the parameters p and q defined in (6). Thus, we will consider the cases $p = q$ (Section 4.1), $p = q - 1$ (Section 4.2), $p < q - 1$ (Section 4.3), and $p = q + 1$ (Section 4.4). Finally, in the conclusions’ section we will summarize the results and discuss future directions.

\section{Previous results}

In \cite{14}, we studied families of polynomials (that we said to be of \textit{Toda type}), orthogonal with respect to a linear functional $L : F[x] \to F$ satisfying

$$D_x L [u] = L [xu], \quad u \in F [x],$$

\section{Previous results}

In \cite{14}, we studied families of polynomials (that we said to be of \textit{Toda type}), orthogonal with respect to a linear functional $L : F[x] \to F$ satisfying

$$D_x L [u] = L [xu], \quad u \in F [x],$$

\section{Previous results}

In \cite{14}, we studied families of polynomials (that we said to be of \textit{Toda type}), orthogonal with respect to a linear functional $L : F[x] \to F$ satisfying

$$D_x L [u] = L [xu], \quad u \in F [x],$$
where \(D_z : \mathbb{F} \rightarrow \mathbb{F} \) is a fixed derivation (on the variable \(z \)) associated to \(L \).

In this section, we review some of the results that we obtained, and apply them to the particular cases:

(i) \(D_z = \vartheta \), where the operator \(\vartheta \) was defined in (1).

(ii) The variable transformation

\[
D_w = w (1 - w) \partial_w, \quad w = \frac{z}{z - 1}.
\]

2.1 Toda-type orthogonal polynomials

The linear system (3) can be written as

\[
L [\Lambda_k P_n] = h_n \delta_{k,n}, \quad 0 \leq k \leq n,
\]

and we see that the sequence \(\{P_n(x; z)\}_{n \geq 0} \) satisfies the orthogonality conditions

\[
L [P_k P_n] = h_n \delta_{k,n}, \quad 0 \leq k \leq n, \tag{12}
\]

where \(h_n(z) \in \mathbb{F} \setminus \{0\} \) is the norm of \(P_n(x; z) \).

From (12), we see that

\[
L [x P_k P_n] = 0, \quad k \neq n, n \pm 1,
\]

and therefore the polynomials \(P_n(x; z) \) satisfy the three term recurrence relation

\[
x P_n(x; z) = P_{n+1}(x; z) + \beta_n(z) P_n(x; z) + \gamma_n(z) P_{n-1}(x; z) \tag{13}
\]

with \(P_{-1} = 0, \ P_0 = 1 \). The coefficients \(\beta_n(z), \gamma_n(z) \in \mathbb{F} \) are given by [8]

\[
\beta_0 = \frac{L[x]}{L[1]}, \quad \gamma_0 = 0, \tag{14}
\]

and

\[
\beta_n = \frac{L[x P_n^2]}{h_n}, \quad \gamma_n = \frac{L[x P_n P_{n-1}]}{h_{n-1}}, \quad n \in \mathbb{N}. \tag{15}
\]

If we define \(\sigma_n(z) \in \mathbb{F} \) by

\[
P_n(x; z) = x^n - \sigma_n(z) x^{n-1} + u_n(x; z), \quad \deg(u_n) \leq n - 2, \tag{16}
\]
we have $\sigma_0 = 0$, and using (13) we get
\[x^{n+1} - \sigma_n x^n + xu_n = x^{n+1} - \sigma_{n+1} x^{n+1} + \beta_n \left(x^n - \sigma_n x^{n-1} + u_n \right) + \gamma_n P_{n-1}. \]
Comparing coefficients of x^n, we obtain $-\sigma_n = -\sigma_{n+1} + \beta_n$, or
\[\beta_n = \sigma_{n+1} - \sigma_n. \tag{17} \]
Our next result relates σ_n, h_n, β_n and γ_n.

Proposition 1 Let ϑ be defined by (1), h_n be defined by (12), β_n, γ_n be defined by (15), and σ_n be defined by (16). Then, we have
\[\vartheta [\sigma_n] = \gamma_n \] (18)
and
\[\vartheta [\ln h_n] = \beta_n. \tag{19} \]

Proof. See [14]. ■

As a direct consequence, we see that (β_n, γ_n) are solutions of the *Toda equations* [47].

Corollary 2 The coefficients of the 3-term recurrence relation (13) are solutions of the differential-difference equations
\[\vartheta [\beta_n] = \Delta \gamma_n, \quad \vartheta [\ln \gamma_n] = \nabla \beta_n, \tag{20} \]
with initial conditions (14), where
\[\Delta f (n) = f (n + 1) - f (n), \quad \nabla f (n) = f (n) - f (n - 1). \tag{21} \]

Essential for our work in this paper is the following theorem.

Theorem 3 The polynomials $P_n (x; z)$ defined by (12) satisfy the recurrence
\[\vartheta [P_n] = -\gamma_n P_{n-1}, \tag{22} \]
and the ODE
\[[\vartheta^2 + (x - \beta_n) \vartheta + \gamma_n] [P_n] = 0. \tag{23} \]
Proof. See [14]. ■

Since $\vartheta = z\partial_z$, we have

$$z\partial_z P_n = -\gamma_n P_{n-1},$$

and

$$z \left(z\partial_z^2 P_n + \partial_z P_n \right) + (x - \beta_n) z\partial_z P_n + \gamma_n P_n = 0. \quad (24)$$

If we define $g_n (z) \in \mathbb{F}$ by

$$\gamma_n (z) = zg_n (z), \quad (25)$$

then

$$P'_n = -g_n P_{n-1}, \quad (26)$$

and (24) becomes

$$zP''_n + (x + 1 - \beta_n) P'_n + g_n P_n = 0, \quad (27)$$

where we will always use the notation

$$P'_n = \partial_z P_n.$$

2.2 The function $\sigma_n (z)$

A fundamental quantity in our studies is $\sigma_n (z)$ defined in (16).

Theorem 4 The coefficients in the power series expansion

$$\sigma_n (z) = \sum_{k=0}^{\infty} s_k (n) z^k, \quad (28)$$

are given by

$$s_0 (n) = \frac{n(n - 1)}{2}, \quad s_1 (n) = n \frac{(n - 1 + a)}{(n + b)}, \quad (29)$$

and

$$s_k (n) = \frac{1}{k(k - 1)} \sum_{j=1}^{k-1} (k - j) s_{k-j} (n) \Delta \nabla [s_j (n)], \quad k \geq 2, \quad (30)$$

Δ, ∇ are the finite difference operators (acting on n) defined in (21).
Proof. See [14]. ■

Using (17) and (18), we obtain the following result.

Corollary 5 The coefficients of the 3-term recurrence relation (13) admit the formal power series

$$
\beta_n(z) = \sum_{k=0}^{\infty} \Delta s_k(n) z^k, \quad \gamma_n(z) = \sum_{k=1}^{\infty} k s_k(n) z^k, \quad (31)
$$

where the coefficients $s_k(n)$ are defined by (28). In particular,

$$
\beta_n(0) = n, \quad \gamma_n(0) = 0. \quad (32)
$$

Remark 6 From (25) and (31), we have

$$
g_n(z) = \sum_{k=0}^{\infty} (k + 1) s_{k+1}(n) z^k. \quad (33)
$$

From (29), we see that

$$
s_1(n) = n^\theta \frac{(1 - n^{-1} + n^{-1} a)_1}{(1 + n^{-1} b)_1},
$$

where

$$
\theta = p + 1 - q. \quad (34)
$$

If we write

$$
s_1(n) = n^\theta \sum_{k=0}^{\infty} r_k n^{-k}, \quad (35)
$$

we get

$$
\sum_{j=0}^{k} e_{k-j}(b) r_j = e_k(a-1),
$$

where the elementary symmetric polynomials $e_n(c)$ are defined by the generating function [37, 19.19.4]

$$
\sum_{n=0}^{\infty} e_n(c) t^n = \prod_{i=1}^{m} \frac{1}{(1 + tc_i)}, \quad c \in \mathbb{K}^m. \quad (36)
$$
Since $e_0 = 1$, we obtain the recurrence
\[r_k = e_k (a - 1) - \sum_{j=0}^{k-1} e_{k-j} (b) r_j, \quad r_0 = 1. \quad (37) \]

The first two coefficients r_k are
\[r_1 = e_1 (a - 1) - e_1 (b), \]
\[r_2 = e_2 (a - 1) - e_2 (b) - e_1 (a - 1) e_1 (b) + e_1^2 (b). \]

Theorem 7 Let
\[\Theta_k = (\theta - 2) k + \eta (\theta), \]
with
\[\eta (\theta) = \begin{cases}
0, & \theta = 1 \\
1, & \theta = 0 \\
2, & \theta \neq 0,1
\end{cases} \]

We have:
(i) If $\theta < 0$, then
\[s_k (n) \sim A_k (\theta) n^{\Theta_k}, \quad n \to \infty, \quad (38) \]
where $A_1 = 1$ and for $k \geq 2$
\[A_k = \frac{1}{k(k - 1)} \sum_{j=1}^{k-1} (k - j) \Theta_j (\Theta_j - 1) A_j A_{k-j}. \quad (39) \]

(ii) If $\theta = 0$, then as $n \to \infty$,
\[s_1 (n) \sim 1, \quad s_k (n) \sim r_1 C (k - 1) n^{-2k+1}, \quad k \geq 2, \]
where $C (k)$ is the k^{th} Catalan number [37, 26.5(i)]
\[C (k) = \frac{1}{k + 1} \binom{2k}{k}. \]

(iii) If $\theta = 1$, then as $n \to \infty$,
\[s_1 (n) \sim n, \quad s_k (n) \sim r_2 n^{-k}, \quad k \geq 2. \]
Proof. See [14].

Remark 8 Using induction, we can see that the solution of (39) is given by

\[A_k(\theta) = -\theta \frac{(1-\theta)^k}{(k-1)!} (1 + k - \theta k)_{k-3}. \]

As a direct application of (30), we can illustrate the results of Theorem 7 for some particular cases.

Example 9 Let \(\theta = 1 \). As \(n \to \infty \), we have

\[
\begin{align*}
 s_2 &= r_2 n^{-2} + (r_1 r_2 + 3r_3)n^{-3} + O\left(n^{-4}\right), \\
 s_3 &= r_2 n^{-3} + 3(r_1 r_2 + 2r_3)n^{-4} + O\left(n^{-5}\right),
\end{align*}
\]

and we see that \(s_k(n) \sim r_2 n^{-k}, n \geq 2 \), as expected. Also,

\[
\begin{align*}
 \sigma_n(z) &= \frac{n^2}{2} + \left(z - \frac{1}{2} \right) n + r_1 z + r_2 z n^{-1} + (r_3 + r_2 z) z n^{-2} \\
 &\quad + \left[r_4 + (r_1 r_2 + 3r_3) z + r_2 z^2 \right] z n^{-3} + O\left(n^{-4}\right), \\
 \beta_n(z) &= n + z - r_2 z n^{-2} + \left[(1 - 2z) r_2 - 2r_3 \right] z n^{-3} + O\left(n^{-4}\right), \quad (40)
\end{align*}
\]

and

\[
\begin{align*}
 g_n(z) &= n + r_1 + r_2 n^{-1} + (2 z r_2 + r_3) n^{-2} + O\left(n^{-3}\right). \quad (41)
\end{align*}
\]

Example 10 Let \(\theta = 0 \). As \(n \to \infty \), we have

\[
\begin{align*}
 s_2 &= r_1 n^{-3} + (r_1^2 + 3r_2)n^{-4} + O\left(n^{-5}\right), \\
 s_3 &= 2r_1 n^{-5} + 2(3r_1^2 + 5r_2)n^{-6} + O\left(n^{-7}\right),
\end{align*}
\]

and we see that \(s_k(n) \sim C (k - 1) r_1 n^{-2k+1}, n \geq 2 \), as expected. Also,

\[
\begin{align*}
 \sigma_n(z) &= \frac{n^2}{2} - \frac{1}{2} n + z + r_1 z n^{-1} + r_2 z n^{-2} + (r_1 z + r_3) z n^{-3} + O\left(n^{-4}\right), \\
 \beta_n(z) &= n - r_1 z n^{-2} + (r_1 - 2r_2) z n^{-3} \\
 &\quad - [r_1 (3z + 1) - 3 (r_2 - r_3)] z n^{-4} + O\left(n^{-5}\right), \quad (42)
\end{align*}
\]

and

\[
\begin{align*}
 g_n(z) &= 1 + r_1 n^{-1} + r_2 n^{-2} + (2 z r_1 + r_3) n^{-3} + O\left(n^{-4}\right). \quad (43)
\end{align*}
\]
Example 11 Let $\theta = -1$. As $n \to \infty$, we have

\[
\begin{align*}
s_2 &= n^{-4} + 4r_1n^{-5} + (1 + 3r_1^2 + 7r_2) n^{-6} + O \left(n^{-7} \right), \\
s_3 &= 4n^{-7} + 28r_1n^{-8} + (20 + 51r_1^2 + 61r_2) n^{-9} + O \left(n^{-10} \right),
\end{align*}
\]

and we see that $s_k (n) \sim A (k) \ r_1 n^{-3k+2}$, $n \geq 2$, as expected. Also,

\[
\begin{align*}
\sigma_n (z) &= \frac{n^2}{2} - \frac{1}{2} n + zn^{-1} + r_1 zn^{-2} + r_2 zn^{-3} + (z + r_3) zn^{-4} + O \left(n^{-5} \right), \\
\beta_n (z) &= n - zn^{-2} + (1 - 2r_1) zn^{-3} - [1 + 3 (r_2 - r_1)] zn^{-4} + O \left(n^{-5} \right), \quad (44) \\
and \\
g_n (z) &= n^{-1} + r_1 n^{-2} + r_2 n^{-3} + (2 + r_3) n^{-4} + O \left(n^{-5} \right). \quad (45)
\end{align*}
\]

2.3 The function $\Phi_n (z; x)$

Sometimes, the falling factorial polynomials $\phi_n (x)$ defined in (11), are called binomial polynomials, since we have

\[
\frac{\phi_n (x)}{n!} = \binom{x}{n}, \quad n \in \mathbb{N}_0. \quad (46)
\]

From the definition (11), we see that

\[
\phi_{n+1} (x) = (x - n) \phi_n (x) = x \phi_n (x - 1), \quad n \geq 0, \quad (47)
\]

and from (7) it follows that the falling factorial polynomials and the Pochhammer polynomials are related by

\[
\phi_n (x) = (-1)^n (-x)_n = (x + 1 - n)_n.
\]

Using (32) in (13), we obtain

\[
P_{n+1} (x; 0) = (x - n) P_n (x; 0), \quad P_0 (x; 0) = 1,
\]

and comparing with the recurrence satisfied by the falling factorial polynomials (47), we conclude that

\[
P_n (x; 0) = \phi_n (x). \quad (48)
\]
Note that from (26) and (48), we see that
\[P'_n(x; 0) = -g_n(0) \phi_{n-1}(x). \]
(49)

If we define \(\Phi_n(z; x) \) by
\[P_n(x; z) = \phi_n(x) \Phi_n(z; x), \]
(50)
then (47) and (49) give the recurrence
\[\Phi'_n(z; x) = -\frac{g_n(z)}{x + 1 - n} \Phi_{n-1}(z; x). \]
(51)

It also follows from (27) and (48) that \(\Phi_n(z; x) \) is the solution of the ODE
\[z \Phi''_n + (x + 1 - \beta_n) \Phi'_n + g_n \Phi_n = 0, \]
(52)
with initial condition
\[\Phi_n(0; x) = 1. \]
(53)
Note that setting \(z = 0 \) in (52) and using (32) gives
\[\Phi'_n(0; x) = -\frac{g_n(0)}{x + 1 - n} \]
in agreement with (51).

Proposition 12 Suppose that
\[\Phi_n(z; x) = \sum_{k=0}^{\infty} \frac{\alpha_k(n)}{(x + 1 - n)_k} \frac{z^k}{k!}, \quad \alpha_0(n) = 1. \]
(54)

Then, the coefficients \(\alpha_k(n) \) satisfy the recurrence
\[\alpha_{k+1}(n) = -\sum_{j=0}^{k} s_{j+1}(n) \alpha_{k-j}(n-1)(x + 2 - n + k - j) \]
(55)
In particular,
\[\alpha_1(n) = -s_1(n). \]
(56)
Proof. Taking a derivative in (54), we have

\[\Phi_n'(z; x) = \sum_{k=0}^{\infty} \frac{k\alpha_k(n)}{(x+1-n)_k} \frac{z^{k-1}}{k!} = \frac{1}{x + 1 - n} \sum_{k=0}^{\infty} \frac{\alpha_{k+1}(n)}{(x+2-n)_k} \frac{z^k}{k!}, \]

since from (7) we see that

\[(x)_{k+1} = x (x+1)_k. \]

From (51), we conclude that

\[\sum_{k=0}^{\infty} \frac{\alpha_{k+1}(n)}{(x+2-n)_k} \frac{z^k}{k!} = -g_n(z) \sum_{k=0}^{\infty} \frac{\alpha_k(n-1)}{(x+2-n)_k} \frac{z^k}{k!}, \]

and using (33), we get

\[\frac{\alpha_{k+1}(n)}{(x+2-n)_k} = -\sum_{j=0}^{k} s_{j+1}(n) \frac{\alpha_{k-j}(n-1)}{(x+2-n)_{k-j}}. \tag{57} \]

The result follows after using the identity

\[\frac{(x)_n}{(x)_m} = (x+m)_{n-m}, \quad m \leq n. \]

Remark 13 Suppose that \(\theta < 2. \) It follows from (57) that to find the leading term in the asymptotic expansion of \(\alpha_k(n) \) as \(n \to \infty, \) one needs to consider only the term with \(j = 0. \) Thus,

\[\alpha_{k+1}(n) \sim -s_1(n) \alpha_k(n-1), \quad n \to \infty \]

and we conclude that

\[\alpha_k(n) \sim (-1)^k \prod_{j=0}^{k-1} s_1(n-j), \quad n \to \infty. \]

Using (35), we get

\[\alpha_k(n) = (-1)^k n^{k\theta} \left[1 + k \left(r_1 - \frac{k-1}{2} \theta \right) n^{-1} + O \left(n^{-2} \right) \right], \quad n \to \infty. \]
Example 14 Let $\theta = 1$. As $n \to \infty$, we have
\[
\frac{\alpha_k(n)}{(x + 1 - n)_k} = 1 + \frac{x + 1 + r_1}{n} k + O(n^{-2}),
\]
and therefore
\[
\Phi_n(z; x) = e^z \left[1 + \frac{x + 1 + r_1}{n} z + O(n^{-2}) \right], \quad n \to \infty. \tag{58}
\]

2.4 The variable w

If we use (30) with $\theta = 2$, we get
\[
s_1 = n^2 + r_1 n + r_2 + r_3 n^{-1} + O(n^{-2}),
\]
\[
s_2 = n^2 + r_1 n + r_2 + 2 r_3 n^{-1} + O(n^{-2}),
\]
\[
s_3 = n^2 + r_1 n + r_2 + 3 r_3 n^{-1} + O(n^{-2}),
\]
and this is clearly not an asymptotic sequence. As we showed in [14], what we need is to change variables from z to
\[
w = \frac{z}{z - 1}. \tag{59}
\]

Theorem 15 Let $\sigma_n(z)$ defined by (16). If we write
\[
\sigma_n(w) = \sum_{k=0}^{\infty} \xi_k(n) w^k,
\]
we have
\[
\xi_0(n) = \frac{n(n-1)}{2}, \quad \xi_1(n) = -n \frac{(n-1 + a)_1}{(n + b)_1}, \tag{60}
\]
and
\[
\xi_k = \xi_{k-1} + \frac{1}{k(k-1)} \sum_{j=1}^{k-1} (k-j) \xi_{k-j} \Delta \xi_j, \quad k \geq 2. \tag{61}
\]

Proof. See [14].
Remark 16 If we use (35) in (60), we get

\[\xi_1(n) = -n^2 \sum_{k=0}^{\infty} r_k n^{-k}, \]

(62)

where the coefficients \(r_k \) can be computed using (37).

The asymptotic behavior of the coefficients \(\xi_k(n) \) is given in the following result.

Theorem 17 For all \(k \geq 2 \), we have

\[\xi_k(n) = O\left(n^{-k+1}\right), \quad n \to \infty. \]

(63)

Proof. See [14]. \[\square \]

Remark 18 For the first few \(\xi_k(n) \), we can use (61) and (62), and obtain

\[\begin{align*}
\xi_2(n) &= \frac{r_3}{n} + \frac{r_1 r_3 + 3 r_4}{n^2} + O\left(n^{-3}\right), \\
\xi_3(n) &= -\frac{r_1 r_3 + 2 r_4}{n^2} + O\left(n^{-3}\right), \\
\xi_4(n) &= \frac{(1 + r_1^2 + r_2) r_3 + 5(r_1 r_4 + r_5)}{n^3} + O\left(n^{-4}\right),
\end{align*} \]

(64)

as \(n \to \infty \), in agreement with (63).

Note that we have

\[\gamma_n = z \sigma'_n(z) = w (1 - w) \hat{\sigma}_n(w), \]

where we will always use the notation

\[\hat{\Phi}_n = \partial_w \Phi_n. \]

Therefore, in this case we define

\[\gamma_n(w) = w (1 - w) g_n(w), \]

(65)

with

\[g_n(w) = \sum_{k=0}^{\infty} (k + 1) \xi_{n,k+1} w^k. \]
Example 19 Using (62) and (64), we can compute the first terms in the asymptotic expansions of $\sigma_n(w)$, $\beta_n(w)$, and $g_n(w)$:

$\sigma_n(w) = \left(\frac{1}{2} - w\right)n^2 - \left(\frac{1}{2} + r_1w\right)n - r_2w + r_3(w - 1)wn^{-1} + O(n^{-2})$,

$\beta_n(w) = (1 - 2w)n - (1 + r_1)w - r_3(w - 1)wn^{-2} + O(n^{-3})$, (66)

and

$g_n(w) = -n^2 - r_1n - r_2 + r_3(2w - 1)n^{-1} + O(n^{-2})$, (67)

as $n \to \infty$.

3 Numerical results

Since we can write the falling factorial polynomials in terms of factorials (46), we can use the reflection formula for the Gamma function [37, 5.5.3]

$\Gamma(z) \Gamma(1-z) = \frac{\pi}{\sin(\pi z)}$,

and obtain

$\phi_n(x) = \frac{x!}{\Gamma(x + 1 - n)} = \frac{x! \sin[\pi (n-x)]}{\pi} \Gamma(n-x)$.

But

$\sin(\pi (n-x)) = -\cos(\pi n) \sin(\pi x) = (-1)^{n+1} \sin(\pi x)$,

and therefore

$\phi_n(x) = (-1)^{n+1} x! \frac{\sin(\pi x)}{\pi} \Gamma(n-x)$.

Thus, in order to plot the different asymptotic approximations for $P_n(x; z)$, we will consider two cases:

i) On the negative real axis, we shall graph

$\frac{P_n(x; z)}{\Gamma(n-x)}$ and $(-1)^{n+1} x! \frac{\sin(\pi x)}{\pi} \Phi_n(z; x)$, (68)

since both functions are analytic, nonzero, and bounded in this region.
ii) On the positive real axis (with \(x < n \)), we shall graph
\[
\frac{P_n(x; z)}{x! \Gamma(n - x)} \quad \text{and} \quad (-1)^{n+1} \frac{\sin(\pi x)}{\pi} \Phi_n(z; x),
\] (69)
since both functions are analytic and bounded in this region.

To compute the polynomials \(P_n(x; z) \), we first compute the moments of \(L \) on the monomial basis (8) to a very high order of accuracy (with error less than \(\varepsilon = 10^{-100} \)), solve the system of equations (3)
\[
\mu_{n+k} + \sum_{i=0}^{n-1} \mu_{k+i} \xi_{n,i} = 0, \quad 0 \leq k \leq n - 1,
\]
and construct the polynomials using (4),
\[
P_n(x; z) = x^n + \sum_{i=0}^{n-1} \xi_{n,i}(z) x^i.
\]
After that, we double-check that
\[
|L[x^k P_n]| < \varepsilon, \quad 0 \leq k \leq n - 1, \quad |L[x^n P_n]| > \varepsilon.
\]

We have tried other methods (using Hankel determinants, recurrences, or the Toda equations and the 3-term recurrence relation), but found them unsatisfactory from a numerical point of view.

4 Asymptotic analysis

In this section, we will obtain asymptotic approximations for \(P_n(x; z) \) as \(n \to \infty \), with \(x = O(1) \) and all other parameters fixed. Because of the moments’ recurrence (9), the analyticity of all the moments \(\mu_n(z) \) (and in consequence the polynomials \(P_n \) themselves) as functions of \(z \) will agree with that of the first moment \(\mu_0(z) \).

But since \(\mu_0(z) \) is a hypergeometric function,
\[
\mu_0(z) = _pF_q \left(\begin{array}{c} a \\ b \end{array} ; z \right) = \sum_{x=0}^{\infty} \frac{(a)_x}{(b+1)_x} \frac{z^x}{x!}, \quad a \in \mathbb{K}^p, b \in \mathbb{K}^q,
\]
its domain of analyticity depends on the parameters \(p, q \). We have three cases to consider:

(i) If \(p < q + 1 \), then \(\mu_0(z) \) is an entire function of \(z \). From (34), we see that this corresponds to the case \(\theta < 2 \).

(ii) If \(p = q + 1 \) \((\theta = 2)\), then \(\mu_0(z) \) is analytic inside the unit circle, \(|z| < 1\), and can be extended by analytic continuation to the cut plane \(\mathbb{C} \setminus (1, \infty) \).

(iii) If \(p > q + 1 \) \((\theta > 2)\), then \(\mu_0(z) \) diverges for all \(z \neq 0 \), except when one of the numerator parameters is a negative integer, and \(\mu_0(z) \) becomes a polynomial \((\text{in } z)\) of degree \(N \). We will not study this situation in this paper, since in this case we need to scale \(n \) in terms of \(N \) and consider the limit as \(N \to \infty \) (see [13] for the Krawtchouk polynomials).

We will divide the first case (i) in 3 subcases:

(a) When \(p = q \) \((\theta = 1)\), \(\mu_0(z) \) is entire (but barely!) and the asymptotic expansion of \(P_n(x; z) \) will contain an exponential multiple \(e^z \).

(b) When \(p = q - 1 \) \((\theta = 0)\), \(P_n(x; z) \) will have a regular asymptotic expansion.

(c) When \(p < q - 1 \) \((\theta < 0)\), some of the first terms in the asymptotic expansion of \(P_n(x; z) \) will be missing.

If \(p = q + 1 \) \((\theta = 2)\), then \(\mu_0(z) \) will have a logarithmic singularity at \(z = 1 \). Thus, we expect that the asymptotic expansion of \(P_n(x; z) \) will have a factor of the form \((1 - z)^{\varsigma} \), where the power could depend on \(n \) (and \(x \)). In this case, it is better to perform a change of variables and work with \(w \) defined in (59).

Notation 20 We say that a family of polynomials is of type \((p, q)\), if it’s orthogonal with respect to the functional (5) with \(a \in \mathbb{K}^p \) and \(b \in \mathbb{K}^q \).

4.1 Case \(p = q \) \((\theta = 1)\)

From (58), we see that in this case we should ”peel off” an exponential term from \(\Phi_n(z; x) \). Thus, if

\[
\Phi_n(z; x) = e^z \Lambda_n(z; x),
\]

we have

\[
\Phi'_n = e^z (\Lambda_n + \Lambda'_n), \quad \Phi''_n = e^z (\Lambda_n + 2\Lambda'_n + \Lambda''_n).
\]
and (52) becomes
\[z\Lambda''_n + (2z + x + 1 - \beta_n)\Lambda'_n + (z + x + 1 - \beta_n + g_n)\Lambda_n = 0. \]
(71)

From (40) and (41), we see that
\[\beta_n = n + \tilde{\beta}_n, \quad g_n = n + \tilde{g}_n, \quad \tilde{\beta}_n = O(1), \quad \tilde{g}_n = O(1), \quad n \to \infty, \]
and hence
\[z\Lambda''_n + \left(2z + x + 1 - n - \tilde{\beta}_n \right)\Lambda'_n + \left(z + x + 1 + \tilde{g}_n - \tilde{\beta}_n \right)\Lambda_n = 0. \]
(72)

Thus, we shall have \(\Lambda_n = O(1), \quad n \to \infty. \)
Replacing
\[\tilde{\beta}_n(z) = \sum_{k=0}^{\infty} v_k(z) n^{-k}, \quad \tilde{g}_n(z) = \sum_{k=0}^{\infty} u_k(z) n^{-k}, \]
and
\[\Lambda_n(z; x) = \sum_{k=0}^{\infty} \lambda_k(z; x) n^{-k}, \]
in (72) and comparing coefficients of \(n^{-k} \), we obtain the recurrence
\[\lambda'_{k+1} = z\lambda''_k + (2z + x + 1)\lambda'_k + (z + x + 1)\lambda_k + \sum_{j=0}^{k} [(u_{k-j} - v_{k-j})\lambda_j - v_{k-j}\lambda'_j]. \]
(73)

From (53) and (70) we have \(\Lambda_n(0; x) = \Phi_n(0; x) = 1, \) and therefore
\[\lambda_k(0; x) = \delta_{0,k}, \quad k \geq 0. \]
(74)

Note that from (40) and (41) we see that
\[u_0 = r_1, \quad u_1 = r_2, \quad u_2 = 2zr_2 + r_3, \]
\[v_0 = z, \quad v_1 = 0, \quad v_2 = -r_2z. \]

When \(k = -1, \) (73) and (74) give
\[\lambda'_0 = 0, \quad \lambda_0(0; x) = 1, \]
and thus
\[\lambda_0(z; x) = 1. \] (75)

Using (75) in (73), we get
\[\lambda'_1 = z + x + 1 + u_0 - v_0 = x + 1 + r_1, \]
and since \(\lambda_1(0; x) = 0 \), we obtain
\[\lambda_1(z; x) = (x + 1 + r_1) z. \] (76)

Similarly, using (75) and (76) in (73), we get after some simplification
\[\lambda'_2 = \lambda'_1 (x + 1 + z) + \lambda_1 \lambda'_1 + r_2, \]
and since \(\lambda_2(0; x) = 0 \), we conclude that
\[\lambda_2 = \lambda'_1 \left(x + \frac{z}{2} + 1 \right) z + \frac{1}{2} (\lambda_1)^2 + r_2 z, \]
or
\[\lambda_2(z; x) = [(x + 1) (x + 1 + r_1) + r_2] z + (x + 1 + r_1) (x + 2 + r_1) \frac{z^2}{2}. \] (77)

4.1.1 Polynomials of type \((0, 0)\) (Charlier polynomials).

The Charlier polynomials were introduced by Carl Vilhelm Ludwig Charlier (1862–1934) in his paper [7] and have the hypergeometric representation
\[P_n(x; z) = (-z)^n \binom{-n, -x}{-} \frac{-1}{z}. \]

For this family, we have \(r_k = 0, \ k \geq 1 \), and therefore
\[\beta_n = n + z, \quad g_n = n. \]

Replacing in (71), we get
\[z \Lambda''_n + (z + x + 1 - n) \Lambda'_n + (x + 1) \Lambda_n = 0. \] (78)

Therefore, the recurrence (73) becomes
\[\lambda'_{k+1} = z \lambda''_k + (z + x + 1) \lambda'_k + (x + 1) \lambda_k, \]
\[
\lambda_{k+1}(z) = z(\lambda_k' + \lambda_k) + x \left[\lambda_k(z) - \lambda_k(0) \right] + x \int_0^z \lambda_k(t) \, dt.
\]

Starting with \(\lambda_0(z) = 1 \), we obtain
\[
\begin{align*}
\lambda_1(z) &= (x+1)z, \\
\lambda_2(z) &= (x+1)^2 z + (x+1) z^2, \\
\lambda_3(z) &= (x+1)^3 z + (x+1)^2 (2x+3) \frac{z^2}{2} + (x+1) \frac{z^3}{6}.
\end{align*}
\]

However, in this case the ODE satisfied by \(\Lambda_n(z; x) \) (78) has the exact solution [12]
\[
\Lambda_n(z; x) = \frac{1}{F_1 \left(\frac{x+1}{x+1-n}; -z \right)},
\]
where we have used the initial value \(\Lambda_n(0; x) = 1 \). Therefore,
\[
\Lambda_n(z; x) = \sum_{k=0}^{\infty} \frac{(x+1)_k}{(x+1-n)_k} \frac{(-z)^k}{k!} (80)
\]
and using the first few terms we obtain
\[
\sum_{k=0}^{3} \frac{(x+1)_k}{(x+1-n)_k} \frac{(-z)^k}{k!} = 1 + \frac{(x+1)z}{n} + \left[(x+1)^2 z + (x+1)^2 \frac{z^2}{2} \right] n^{-2} + \left[(x+1)^3 z + (x+1)^2 (2x+3) \frac{z^2}{2} + (x+1) \frac{z^3}{6} \right] n^{-3} + O(n^{-4})
\]
as \(n \to \infty \), in agreement with (79).

4.1.2 Polynomials of type \((1, 1)\) (generalized Meixner)

For this family, we have
\[
\frac{s_1(n)}{n} = \frac{n+a-1}{n+b} = 1 + \frac{a-b-1}{n+b} = 1 + (a-b-1) \sum_{k=1}^{\infty} \frac{(-b)^{k-1}}{n^k},
\]
and therefore
\[
r_k = (a-b-1)(-b)^{k-1}, \quad k \geq 1.
\]

Using (81) in (75)–(77), we get \(\lambda_0(z; x) = 1 \),
\[
\lambda_1(z; x) = (x+a-b)z,
\]

and
\[
\lambda_2(z; x) = (x+1)z,
\]

and so on.
Figure 1: A plot of the scaled generalized Meixner polynomial $P_{10}(x; z)$ and its approximation.

and

$$\lambda_2(z; x) = \left[(x + a)(x + 1 - b) + b^2 \right] z + (x + a - b + 1)(x + a - b) \frac{z^2}{2}.$$

In Figures 1 and 2, we plot the functions (68)–(69) with

$$\Phi_n(z; x) = e^{z} \left[1 + \frac{\lambda_1(z; x)}{n} + \frac{\lambda_2(z; x)}{n^2} \right],$$

$n = 10, a = 0.2479357, b = 0.7146983$, and $z = 0.3974126$.

For additional information on these polynomials, see [6], [9], [15], [16], [17], [19].
Figure 2: A plot of the scaled generalized Meixner polynomial $P_{10}(x; z)$ and its approximation.
4.1.3 Polynomials of type $(2, 2)$

For this family, we have

$$s_1(n) = \frac{(n + a_1 - 1)(n + a_2 - 1)}{(n + b_1)(n + b_2)} =$$

$$1 + \frac{(a_1 - b_2 - 1)(a_2 - b_1 - 1)}{(b_1 - b_2)(n + b_2)} - \frac{(a_1 - b_1 - 1)(a_2 - b_1 - 1)}{(b_1 - b_2)(n + b_1)}$$

and therefore

$$r_k = \frac{\tau_k^{(1)}(b_2) - \tau_k^{(1)}(b_1)}{b_1 - b_2}, \quad k \geq 1,$$

with

$$\tau_k^{(1)}(b) = (b - a_1 + 1)(b - a_2 + 1)(-b)^{k-1}.$$

In particular,

$$r_1 = a_1 + a_2 - b_1 - b_2 - 2,$$

$$r_2 = 1 - a_1 - a_2 - (a_1 + a_2 - 2)(b_1 + b_2) + b_1^2 + b_2^2 + b_1b_2 + a_1a_2.$$

Using (82) in (75)–(77), we get $\lambda_0(z; x) = 1$,

$$\lambda_1(z; x) = (x + a_1 + a_2 - b_1 - b_2 - 1)z,$$

and

$$\lambda_2(z; x) = [(x + 1)(x + a_1 + a_2 - b_1 - b_2 - 1) + r_2]z$$

$$+ (x + a_1 + a_2 - b_1 - b_2 - 1)(x + a_1 + a_2 - b_1 - b_2)\frac{z^2}{2}.$$

In Figures 3 and 4, we plot the functions (68)–(69) with

$$\Phi_n(z; x) = e^z \left[1 + \frac{\lambda_1(z; x)}{n} + \frac{\lambda_2(z; x)}{n^2}\right],$$

$n = 10$, $a_1 = 0.2479357$, $a_2 = 0.1963478$, $b_1 = 0.7146983$, $b_2 = 0.5712349$, and $z = 0.3974126$.

For additional information on these polynomials, see [15] and [17].
Figure 3: A plot of the scaled polynomial of type (2,2) $P_{10}(x;z)$ and its approximation.
Figure 4: A plot of the scaled polynomial of type $(2,2)\ P_{10}(x; z)$ and its approximation.
4.2 Case $p = q - 1$ ($\theta = 0$)

From (42) and (43), we see that

$$\beta_n = n + n^{-2}\tilde{\beta}_n, \quad \tilde{\beta}_n = O(1), \quad g_n = O(1), \quad n \to \infty,$$

and replacing in (52), we get

$$z\Phi_n'' + \left(x + 1 - n - n^{-2}\tilde{\beta}_n\right)\Phi_n' + g_n\Phi_n = 0.$$ \hfill (83)

Thus, we shall have $\Phi_n = O(1), n \to \infty$ with $\Phi_n(0; x) = 1$. Replacing

$$\tilde{\beta}_n(z) = \sum_{k=0}^{\infty} v_k(z) n^{-k}, \quad g_n(z) = \sum_{k=0}^{\infty} u_k(z) n^{-k},$$

and

$$\Phi_n(z; x) = \sum_{k=0}^{\infty} \varphi_k(z; x) n^{-k}, \quad \varphi_k(0; x) = \delta_{0,k}, \quad k \geq 0,$$

in (83) and comparing coefficients of n^{-k}, we obtain the recurrence

$$\varphi_{k+1}' = z\varphi_k'' + (x + 1)\varphi_k' + \sum_{j=0}^{k} \varphi_j u_{k-j} - \sum_{j=0}^{k-2} \varphi_j' v_{k-2-j}.$$ \hfill (84)

Replacing $\varphi_0 = 1$ in (84) with $k = 0$, we have

$$\varphi_1' = u_0 = 1,$$

and therefore

$$\varphi_1(z; x) = z.$$ \hfill (85)

Using $\varphi_0 = 1, \varphi_1 = z$ in (84) with $k = 1$, we get

$$\varphi_2' = x + 1 + u_1 + z u_0 = x + 1 + r_1 + z,$$

and hence

$$\varphi_2(z; x) = (x + 1 + r_1) z + \frac{z^2}{2}.$$ \hfill (86)

Similarly, we have

$$\varphi_3' = z + (x + 1)\varphi_2' + \varphi_0 u_2 + \varphi_1 u_1 + \varphi_2 u_0 - \varphi_0' v_0$$

$$= z + (x + 1)\varphi_2' + r_2 + r_1 z + \varphi_2,$$

and we conclude that

$$\varphi_3(z; x) = [(x + 1)(x + 1 + r_1) + r_2] z + [2(x + 1 + r_1) + 1] \frac{z^2}{2} + \frac{z^3}{6}.$$ \hfill (87)
4.2.1 Polynomials of type \((0, 1)\) (generalized Charlier)

For this family, we have

\[
s_1(n) = \frac{n + b}{n + b_1 \cdot n + b_2} = \sum_{k=0}^{\infty} \frac{(-b)^k}{n^k},
\]

and therefore

\[
r_k = (-b)^k, \quad k \geq 0.
\]

Using (88) in (85)–(87), we get

\[
\Phi_n(z; x) \sim 1 + \frac{z}{n} + \frac{(x + 1 - b) \cdot z + \frac{z^2}{2}}{n^2} + \frac{[(x + 1) (x + 1 - b) + b^2] \cdot z + [2 (x + 1 - b) + 1] \cdot \frac{z^2}{2} + \frac{z^3}{6}}{n^3}
\]
as \(n \to \infty\).

In Figures 5 and 6, we plot the functions (68)–(69) with

\[
\Phi_n(z; x) = 1 + \frac{\varphi_1(z; x)}{n} + \frac{\varphi_2(z; x)}{n^2},
\]

\(n = 10, b = 0.7146983,\) and \(z = 0.3974126.\)

For additional information on these polynomials, see [9], [15], [16], [17], [26], [45], [48].

4.2.2 Polynomials of type \((1, 2)\)

For this family, we have

\[
s_1(n) = \frac{n (n + a - 1)}{(n + b_1) \cdot (n + b_2)} = 1 + \frac{(a - 1 - b_1) \cdot b_1}{(b_1 - b_2) \cdot (n + b_1)} - \frac{(a - 1 - b_2) \cdot b_2}{(b_1 - b_2) \cdot (n + b_2)},
\]

and therefore

\[
r_k = \frac{(b_1 + 1 - a) \cdot (-b_1)^k + (a - 1 - b_2) \cdot (-b_2)^k}{b_1 - b_2}, \quad k \geq 0.
\]

In particular,

\[
r_0 = 1, \quad r_1 = a - b_1 - b_2 - 1, \quad r_2 = (1 - a) \cdot (b_1 + b_2) + b_1^2 + b_2^2 + b_1 b_2.
\]
Figure 5: A plot of the scaled generalized Charlier polynomial $P_{10}(x; z)$ and its approximation.
Figure 6: A plot of the scaled generalized Charlier polynomial $P_{10}(x; z)$ and its approximation.
Using (89) in (85)–(87), we get
\[\Phi_n(z; x) = 1 + zn^{-1} + \left[(x + a - b_1 - b_2) z + \frac{z^2}{2} \right] n^{-2} + \left[(x + 1) (x + a - b_1 - b_2) + r_2 \right] zn^{-3} + \left[(x + a - b_1 - b_2 + \frac{1}{2}) z^2 + \frac{z^3}{6} \right] n^{-3} + O(n^{-4}) \]
as \(n \to \infty \).

In Figures 7 and 8, we plot the functions (68)–(69) with
\[\Phi_n(z; x) = 1 + \frac{\varphi_1(z; x)}{n} + \frac{\varphi_2(z; x)}{n^2}, \]
n = 10, \(a = 0.2479357 \), \(b_1 = 0.7146983 \), \(b_2 = 0.5712349 \), and \(z = 0.3974126 \).

For additional information on these polynomials, see [15] and [17].

4.3 Case \(p < q - 1 \) (\(\theta < 0 \))
Looking at (44) and (45), suggests that as \(n \to \infty \),
\[\beta_n = n + n^{\theta-1} \tilde{\beta}_n, \quad \tilde{\beta}_n = O(1), \quad g_n = n^\theta \tilde{g}_n, \quad \tilde{g}_n = O(1), \]
and replacing in (52), we get
\[z \Phi''_n + \left(x + 1 - n - n^{\theta-1} \tilde{\beta}_n \right) \Phi'_n + n^\theta \tilde{g}_n \Phi_n = 0. \tag{90} \]
Thus, we expect that
\[\Phi_n(z; x) = 1 + n^{\theta-1} \tilde{\Phi}_n(z; x), \quad \tilde{\Phi}_n = O(1), \quad n \to \infty \]
with \(\tilde{\Phi}_n(0; x) = 0 \), and therefore the ODE (90) becomes
\[zn^{\theta-1} \tilde{\Phi}''_n + \left(x + 1 - n - n^{\theta-1} \tilde{\beta}_n \right) n^{\theta-1} \tilde{\Phi}'_n + n^\theta \tilde{g}_n + n^{2\theta-1} \tilde{g}_n \tilde{\Phi}_n = 0, \]
or
\[z \tilde{\Phi}''_n + \left(x + 1 - n - n^{\theta-1} \tilde{\beta}_n \right) \tilde{\Phi}'_n + n \tilde{g}_n + n^\theta \tilde{g}_n \tilde{\Phi}_n = 0. \tag{91} \]
Replacing
\[\tilde{\beta}_n(z) = \sum_{k=0}^{\infty} v_k(z) n^{-k}, \quad g_n(z) = \sum_{k=0}^{\infty} u_k(z) n^{-k}, \]
Figure 7: A plot of the scaled polynomial of type \((1,2)\) \(P_{10}(x; z)\) and its approximation.
Figure 8: A plot of the scaled polynomial of type (1,2) $P_{10}(x;\tau)$ and its approximation.
and
\[\tilde{\Phi}_n(z; x) = \sum_{k=0}^{\infty} \varphi_k(z; x) n^{-k}, \quad \varphi_k(0; x) = 0, \quad k \geq 0 \]
in (91) and comparing coefficients of n^{-k}, we obtain the recurrence
\[\varphi'_k = u_k + z\varphi''_{k-1} + (x + 1) \varphi'_{k-1} + \sum_{j=0}^{k-1+\theta} \varphi_j u_{k-1+\theta-j} - \sum_{j=0}^{k+\theta-2} \varphi'_j v_{k+\theta-2-j}. \quad (92) \]

Setting $k = 0$ in (92), we get
\[\varphi'_0 = u_0 = 1, \]
and therefore
\[\varphi_0(z; x) = z. \quad (93) \]

For $k = 1$, we have
\[\varphi'_1 = u_1 + z\varphi''_0 + (x + 1) \varphi'_0 + \sum_{j=0}^{\theta} \varphi_j u_{\theta-j} - \sum_{j=0}^{\theta-1} \varphi'_j v_{\theta-1-j}, \]
but since $\theta < 0$ and $\varphi_0 = z$,
\[\varphi'_1 = u_1 + x + 1 \]
and hence
\[\varphi_1(z; x) = (x + 1 + r_1) z. \quad (94) \]

Continuing this way, we see that
\[\varphi'_k = u_k + z\varphi''_{k-1} + (x + 1) \varphi'_{k-1}, \quad 1 \leq k < 1 - \theta, \]
and for $k = 1 - \theta$
\[\varphi'_{1-\theta} = u_{1-\theta} + z\varphi''_{-\theta} + (x + 1) \varphi'_{-\theta} + \varphi_0 u_0. \]

Thus,
\[\varphi_k(z; x) = \int_0^z u_k(t) \, dt + z\varphi'_{k-1}(z; x) + x\varphi_{k-1}(z; x), \quad 1 \leq k < 1 - \theta, \quad (95) \]
and
\[\varphi_{1-\theta}(z; x) = \int_0^z u_{1-\theta}(t) \, dt + z\varphi'_{-\theta}(z; x) + x\varphi_{-\theta}(z; x) + \frac{z^2}{2}. \quad (96) \]
4.3.1 Polynomials of type $(0, 2)$

For this family, we have

\[
\frac{s_1(n)}{n^{-1}} = \frac{n^2}{(n + b_1)(n + b_2)} = 1 + \frac{b_2^2}{(b_1 - b_2)(n + b_2)} - \frac{b_1^2}{(b_1 - b_2)(n + b_1)},
\]

and therefore

\[
r_k = \frac{(-b_2)^{k+1} - (-b_1)^{k+1}}{b_1 - b_2}, \quad k \geq 0.
\]

In particular,

\[
r_0 = 1, \quad r_1 = -(b_1 + b_2), \quad r_2 = b_1 b_2 + b_1^2 + b_2^2.
\]

Using (97) in (94) and (96), we get

\[
\varphi_1(z; x) = (x + 1 - b_1 - b_2) z,
\]

\[
\varphi_2 = \int_0^z u_2(t) \, dt + z \varphi'_1 + x \varphi_1 + \frac{z^2}{2} = \int_0^z r_2 dt + (x + 1) (x + 1 - b_1 - b_2) z + \frac{z^2}{2},
\]

and hence

\[
\varphi_2(z; x) = (b_1 b_2 + b_1^2 + b_2^2) z + (x + 1) (x + 1 - b_1 - b_2) z + \frac{z^2}{2}.
\]

Combining the results above and recalling that $\varphi_0 = z$, we obtain

\[
\Phi_n(z; x) = 1 + \frac{z}{n^2} + (x + 1 - b_1 - b_2) zn^{-3}
\]

\[
+ \left[(b_1 b_2 + b_1^2 + b_2^2) z + (x + 1) (x + 1 - b_1 - b_2) z + \frac{z^2}{2} \right] n^{-4} + O \left(n^{-5} \right).
\]

In Figures 9 and 10, we plot the functions (68)–(69) with

\[
\Phi_n(z; x) = 1 + n^{-2} \left[\varphi_0(z; x) + \frac{\varphi_1(z; x)}{n} \right],
\]

$n = 10, b_1 = 0.7146983, b_2 = 0.5712349, \text{ and } z = 0.3974126.$

For additional information on these polynomials, see [15] and [17].
Figure 9: A plot of the scaled polynomial of type (0,2) $P_{10}(x;z)$ and its approximation.
Figure 10: A plot of the scaled polynomial of type $(0,2)\ P_{10}(x; z)$ and its approximation.
4.4 Case $p = q + 1$ ($\theta = 2$)

Let w be defined by (59). Using

$$\frac{\partial z}{\partial z} = -(w - 1)^2 \partial w, \quad \frac{\partial^2 z}{\partial w^2} = (w - 1)^4 \partial_w^2 + 2(w - 1)^3 \partial w,$$

in (24), we get

$$w^2 (1-w)^2 \partial_w^2 \Phi_n + (x + 1 - \beta_n - 2w) w (1-w) \partial_w \Phi_n + \gamma_n \Phi_n = 0,$$

and from (65) we have

$$w (1-w) \ddot{\Phi}_n + (x + 1 - \beta_n - 2w) \dot{\Phi}_n + g_n \Phi_n = 0. \quad (98)$$

Based on the case $\theta = 1$ (Section 4.1), we expect that $\Phi_n (w; x)$ will contain an exponential term. Replacing

$$\Phi_n (w; x) = \exp \left[\Upsilon_n (w; x) \right], \quad \Upsilon_n (0; x) = 0,$$

in (98), we obtain

$$w (1-w) \left[\ddot{\Upsilon}_n + \left(\dot{\Upsilon}_n \right)^2 \right] + (x + 1 - \beta_n - 2w) \dot{\Upsilon}_n + g_n = 0. \quad (99)$$

From (66)–(67), we have

$$\beta_n = (1 - 2w) n - (1 + r_1) w + \bar{\beta}_n, \quad \bar{\beta}_n = O(n^{-2}), \quad n \to \infty,$$

$$g_n = -n^2 - r_1 n + \tilde{g}_n, \quad \tilde{g}_n = O(1), \quad n \to \infty, \quad (100)$$

and replacing in (99) gives, to leading order,

$$w (1-w) \left(\dot{\Upsilon}_n \right)^2 \sim (1-2w) n \dot{\Upsilon}_n + n^2, \quad n \to \infty$$

and therefore

$$\dot{\Upsilon}_n \sim \frac{n}{w}, \quad \text{or} \quad \dot{\Upsilon}_n \sim \frac{n}{w-1}, \quad n \to \infty.$$

Since we want $\Upsilon_n (w; x)$ to be analytic in a neighborhood of $w = 0$, we choose

$$\Upsilon_n (w; x) \sim \ln (1-w) n, \quad n \to \infty,$$

and set

$$\Upsilon_n (w; x) = \ln (1-w) n + \sum_{k=0}^{\infty} \epsilon_k (w; x) n^{-k}, \quad \epsilon_k (0; x) = 0, \quad k \geq 0, \quad (101)$$
\[\tilde{\beta}_n (w) = \sum_{k=2}^{\infty} v_k (w; x) n^{-k}, \quad \tilde{g}_n (w) = \sum_{k=0}^{\infty} u_k (w; x) n^{-k}, \quad (102) \]

where from (66)–(67) we see that
\[v_2 = r_3 (1 - w) w, \quad u_0 = -r_2, \quad u_1 = r_3 (2w - 1). \quad (103) \]

Using (101)–(102) in (99) and comparing powers of \(n \), we get
\[\epsilon_0 = \frac{x + 1 + r_1}{w - 1}. \]

Thus, since \(\epsilon_0 (0; x) = 0 \),
\[\epsilon_0 (w; x) = (x + 1 + r_1) \ln (1 - w). \]

We could proceed in this manner, but instead we consider \(\Psi_n (w; x) \) defined by
\[\Phi_n (w; x) = (1 - w)^{n+x+1+r_1} \Psi_n (w; x), \quad (104) \]
so that
\[\Psi_n (w; x) = \exp \left[\sum_{k=1}^{\infty} \epsilon_k (w; x) n^{-k} \right] = O (1), \quad n \to \infty. \]

Using (100) and (104) in (98), we get
\[w (1 - w)^2 \ddot{\Psi}_n + (1 - w) \left[x + 1 - w(r_1 + 2x + 3) - \tilde{\beta}_n - n \right] \dot{\Psi}_n \]
\[+ \left[(n + x + 1 + r_1) \tilde{\beta}_n + (1 - w) \tilde{g}_n - (x + 1)(x + 1 + r_1) \right] \Psi_n = 0. \quad (105) \]

Replacing (102) and
\[\Psi_n (w; x) = \sum_{k=0}^{\infty} \psi_k (w; x) n^{-k}, \quad \psi_k (0; x) = \delta_{0,k}, \quad k \geq 0 \]
in (105), we obtain the recurrence
\[(1 - w) \dot{\psi}_{k+1} = w (1 - w)^2 \ddot{\psi}_k + (1 - w) \left[x + 1 - (r_1 + 2x + 3)w \right] \dot{\psi}_k \]
\[+ (x + 1) (x + 1 + r_1) (w - 1) \psi_k + (1 - w) \sum_{j=0}^{k} \psi_j u_{k-j} \]
\[+ \sum_{j=0}^{k-1} \psi_j v_{k+1-j} + \sum_{j=0}^{k-2} \left[(x + 1 + r_1) \psi_j - \dot{\psi}_j \right] v_{k-j} = 0. \quad (106) \]
Setting \(k = 0 \) and \(\psi_0 = 1 \) in (106), we obtain

\[
\dot{\psi}_1 = - (x + 1) (x + 1 + r_1) + u_0,
\]

and since \(u_0 = -r_2 \) and \(\psi_1 (0; x) = 0 \), we conclude that

\[
\psi_1 (w; x) = - [(x + 1) (x + 1 + r_1) + r_2] w.
\] \hspace{1cm} (107)

Replacing \(k = 1 \) and \(\psi_0 = 1 \) in (106), we have

\[
(1 - w) \dot{\psi}_2 = (1 - w) [x + 1 - (r_1 + 2x + 3)w] \dot{\psi}_1
\]

\[
+ (x + 1) (x + 1 + r_1) (w - 1) \psi_1 + (1 - w) (u_1 + \psi_1 u_0) + v_2,
\]

and using (103) and \(\psi_1 = w \dot{\psi}_1 \), we get

\[
(1 - w) \dot{\psi}_2 = (1 - w) (x + 1 - (r_1 + 2x + 3)w) \dot{\psi}_1
\]

\[
+ (x + 1) (x + 1 + r_1) (w - 1) w \dot{\psi}_1
\]

\[
+ (1 - w) \left(r_3 (2w - 1) - r_2 w \dot{\psi}_1 \right) + r_3 (1 - w) w,
\]

or

\[
\dot{\psi}_2 = [x + 1 - ((x + 2) (x + 2 + r_1) + r_2) w] \dot{\psi}_1 + r_3 (3w - 1).
\]

Since \(\psi_2 (0; x) = 0 \), we conclude that

\[
\psi_2 (w; x) = \left[(x + 1) w - ((x + 2) (x + 2 + r_1) + r_2) \frac{w^2}{2} \right] \dot{\psi}_1 + \frac{r_3}{2} w (3w - 2),
\]

and noting from (107) that

\[
- [(x + 2) (x + 2 + r_1) + r_2] w = \psi_1 (w; x + 1),
\]

we can write

\[
\psi_2 (w; x) = \left[x + 1 + \frac{1}{2} \psi_1 (w; x + 1) \right] \psi_1 (w; x) + \frac{r_3}{2} w (3w - 2). \] \hspace{1cm} (108)

4.4.1 Polynomials of type \((1, 0)\) (Meixner polynomials)

The Meixner polynomials were introduced by Josef Meixner (1908 – 1994) in his paper [35] and have the representation

\[
P_n (x; z) = (a)_n \left(1 - \frac{1}{z} \right)^{-n} _2F_1 \left[\begin{array}{c} -n, -x \\ a \end{array}; 1 - \frac{1}{z} \right], \quad z \in \mathbb{C} \setminus [1, \infty).
\]
For this family, we have
\[-\frac{\xi_1(n)}{n^2} = \frac{n + a - 1}{n},\]
and therefore
\[r_0 = 1, \quad r_1 = a - 1, \quad r_k = 0, \quad k \geq 2, \tag{109}\]
and
\[
\beta_n (w) = (1 - 2w) n - aw, \quad g_n (w) = -n^2 - (a - 1) n. \tag{110}
\]
Thus, in this case \(\tilde{\beta}_n = \tilde{g}_n = 0 \), and using (109) in (105), we obtain
\[
w (1 - w) \ddot{\Psi}_n + [x + 1 - (2x + 2 + a)w - n] \Psi_n - (x + 1) (x + a) \Psi_n = 0, \tag{111}
\]
while the recurrence (106) becomes
\[
\dot{\psi}_{k+1} = w (1 - w) \ddot{\psi}_k + [x + 1 - (2x + 2 + a)w] \dot{\psi}_k - (x + 1) (x + a) \psi_k.
\]
It follows that, as \(n \to \infty \),
\[
\Psi_n (w; x) \sim 1 - (x + 1) (x + a) wn^{-1} - [x + 1 - \frac{1}{2} (x + 2) (x + 1 + a) w] (x + 1) (x + a) wn^{-2}. \tag{112}
\]
However, the ODE (111) can be solved exactly, and we have [12]
\[
\Psi_n (w; x) = _2F_1 \left(\begin{array}{c} x + 1, x + a \\ x + 1 - n \end{array} ; w \right),
\]
and using the first couple of terms, we get
\[
\Psi_n (w; x) \sim \sum_{k=0}^{2} \frac{(x + 1)_k (x + a)_k}{(x + 1 - n)_k} \frac{w^k}{k!} \sim - (x + 1) (x + a) wn^{-1} - (x + 1) (x + a) w \left[x + 1 - \frac{1}{2} (x + 2) (x + 1 + a) w \right] n^{-2}, \quad n \to \infty,
\]
in agreement with (112).
4.4.2 Polynomials of type $(2, 1)$ (generalized Hahn polynomials of type I)

For this family, we have

\[
\frac{\xi_1 (n)}{n^2} = \frac{(n + a_1 - 1)(n + a_2 - 1)}{n(n + b)}
= 1 + \frac{(a_1 - 1)(a_2 - 1)}{bn} - \frac{(b + 1 - a_1)(b + 1 - a_2)}{b(n + b)},
\]

and therefore

\[
\begin{align*}
 r_0 &= 1, \quad r_1 = a_1 + a_2 - 2 - b, \\
 r_k &= (b + 1 - a_1)(b + 1 - a_2)(-b)^{k-2}, \quad k \geq 2.
\end{align*}
\]

(113)

Using (113) in (107)–(108), we get

\[
\begin{align*}
 \psi_1 (w; x) &= -\left[(x + 1)(x + a_1 + a_2 - 1 - b) + (b - a_1 + 1)(b - a_2 + 1) \right] w \\
 \psi_2 (w; x) &= \left[x + 1 + \frac{1}{2} \psi_1 (w; x + 1) \right] \psi_1 (w; x) \\
 &\quad - \frac{1}{2} (b - a_1 + 1)(b - a_2 + 1)(3w - 2).
\end{align*}
\]

In Figures 11 and 12, we plot the functions (68)–(69) with

\[
\Phi_n (w; x) = (1 - w)^{n + x + 1 + r_1} \left[1 + \frac{\psi_1 (w; x)}{n} + \frac{\psi_2 (w; x)}{n^2} \right],
\]

\[
n = 10, \quad a_1 = 0.2479357, \quad a_2 = 0.1963478, \quad b = 0.7146983, \quad z = -0.01574126,
\]

and \(w = 0.0154973 \).

For additional information on these polynomials, see [11], [15], [16], [17], [20].
Figure 11: A plot of the scaled generalized Hahn polynomial $P_{10}(x; z)$ and its approximation.
Figure 12: A plot of the scaled generalized Hahn polynomial $P_{10}(x; z)$ and its approximation.
4.4.3 Polynomials of type $(3, 2)$

For this family, we have

\[
\frac{-\xi_1(n)}{n^2} = \frac{(n + a_1 - 1)(n + a_2 - 1)(n + a_3 - 1)}{n(n + b_1)(n + b_2)}
\]

\[
= 1 + \frac{(a_1 - 1)(a_2 - 1)(a_3 - 1)}{b_1 b_2 n} + \frac{(a_1 - b_1 - 1)(a_2 - b_1 - 1)(a_3 - b_1 - 1)}{(b_1 - b_2)b_1(n + b_1)}
\]

\[
- \frac{(a_1 - b_2 - 1)(a_2 - b_2 - 1)(a_3 - b_2 - 1)}{(b_1 - b_2)b_2(n + b_2)},
\]

and therefore

\[
r_0 = 1, \quad r_1 = a_1 + a_2 + a_3 - 3 - b_1 - b_2,
\]

\[
r_k = \frac{\tau_k^{(2)}(b_1) - \tau_k^{(2)}(b_2)}{b_1 - b_2}, \quad k \geq 2,
\]

where

\[
\tau_k^{(2)}(b) = (b - a_1 + 1)(b - a_2 + 1)(b - a_3 + 1)(-b)^{k-2}.
\]

At this point, we truly reach the limit of being able to type expressions in a compact way. For the first terms in the asymptotic expansion of these polynomials, we refer to the general formulas (107)–(108) with \(r_1, r_2 \) given by (114).

In Figures 13 and 14, we plot the functions (68)–(69) with

\[
\Phi_n(w; x) = (1 - w)^{n+x+1+r_1} \left[1 + \frac{\psi_1(w; x)}{n} + \frac{\psi_2(w; x)}{n^2} \right],
\]

\(n = 10, a_1 = 0.2479357, a_2 = 0.1963478, a_3 = 0.3614782, b_1 = 0.7146983, b_2 = 0.5712349, z = -0.01574126, \) and \(w = 0.0154973. \)

For additional information on these polynomials, see [15] and [17].

5 Conclusions

We have given asymptotic expansions for the ratio

\[
\frac{P_n(x; z)}{\phi_n(x)}, \quad x = O(1), \quad x \notin \mathbb{N}_0,
\]
Figure 13: A plot of the scaled polynomial of type (3,2) $P_{10}(x; z)$ and its approximation.
Figure 14: A plot of the scaled polynomial of type (3,2) $P_{10}(x;z)$ and its approximation.
as $n \to \infty$, where z (and any other parameters) is fixed. The polynomials $P_n(x; z)$ are orthogonal with respect to the linear functional

$$L[u] = \sum_{x=0}^{\infty} u(x) \frac{(a)_x}{(b+1)_x} \frac{z^x}{x!}, \quad a \in \mathbb{K}^p, \ b \in \mathbb{K}^q,$$

and depending on the value of the parameter $\theta = p + 1 - q$, we have the following cases:

(i) If $\theta < 1$, then

$$\frac{P_n(x; z)}{\phi_n(x)} = 1 + zn^{\theta-1} \left[1 + \frac{x + 1 + r_1}{n} + O\left(n^{-2}\right) \right], \quad n \to \infty,$$

where

$$\frac{(1-n^{-1} + an^{-1})}{(1+bn^{-1})} = \sum_{k=0}^{\infty} r_k n^{-k}.$$

(ii) If $\theta = 1$, then as $n \to \infty$

$$\frac{P_n(x; z)}{\phi_n(x)} = e^z \left[1 + \frac{x + 1 + r_1}{n} z + O\left(n^{-2}\right) \right].$$

This result extends our previous work on the Charlier polynomials, [10], [12].

(iii) If $\theta = 2$, then as $n \to \infty$

$$\frac{P_n(x; w)}{\phi_n(x)} = (1-w)^{n+x+1+r_1} \left[1 - \frac{(x + 1)(x + 1 + r_1) + r_2}{n} w + O\left(n^{-2}\right) \right],$$

where $w = \frac{z}{z-1}$. This result extends our previous work on the Meixner polynomials, [10], [12].

(iv) If $\theta > 2$, then the polynomials $P_n(x; w)$ depend on a parameter N, with $-N \in \mathbb{N}$. We have not analyzed this case, since it will require scaling N in terms of n. For some related work on the Krawtchouk polynomials, see [13]. We plan to study this case in a forthcoming paper.

Acknowledgement 21 This work was done while visiting the Johannes Kepler Universität Linz and supported by the strategic program “Innovatives OÖ–2010 plus” from the Upper Austrian Government.

We thank Prof. Manuel Kauers for his help on some aspects of the numerical calculations.
References

D. B. Rolanía, B. de la Calle Ysern, and G. López Lagomasino. Ratio and relative asymptotics of polynomials orthogonal with

Technical Reports of the Doctoral Program
“Computational Mathematics”

2022

2022-01 D. Dominici: *Comparative asymptotics for discrete semiclassical orthogonal polynomials* Jan 2022. Eds.: M. Kauers, P. Paule

2021

2021-08 D. Dominici: *Recurrence relations for the moments of discrete semiclassical orthogonal polynomials* November 2021. Eds.: P. Paule, M. Kauers

The complete list since 2009 can be found at
https://www.dk-compmath.jku.at/publications/
Doctoral Program

“Computational Mathematics”

Director: Assoc. Prof. Dr. Veronika Pillwein
Research Institute for Symbolic Computation

Deputy Director: Prof. Dr. Bert Jüttler
Institute of Applied Geometry

Address: Johannes Kepler University Linz
Doctoral Program “Computational Mathematics”
Altenbergerstr. 69
A-4040 Linz
Austria
Tel.: ++43 732-2468-6840

E-Mail: office@dk-compmath.jku.at

Homepage: http://www.dk-compmath.jku.at

Submissions to the DK-Report Series are sent to two members of the Editorial Board who communicate their decision to the Managing Editor.