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Abstract

The class of C2-finite sequences is a natural generalization of holonomic sequences and
consists of sequences satisfying a linear recurrence with C-finite coefficients, i.e., coefficients
satisfying a linear recurrence with constant coefficients themselves. Recently, we investigated
computational properties of C2-finite sequences: we showed that these sequences form a
difference ring and provided methods to compute in this ring.

From an algorithmic point of view, some of these results were not as far reaching as we
hoped for. In this paper, we define the class of simple C2-finite sequences and show that it
satisfies the same computational properties, but does not share the same technical issues. In
particular, we are able to derive bounds for the asymptotic behavior, can compute closure
properties more efficiently, and have a characterization via the generating function.

1 Introduction

Many interesting combinatorial objects or coefficient sequences of special functions satisfy linear
recurrences with polynomial coefficients [5]. This class of sequences is also known under the
names holonomic, D-finite, or P -recursive. It is well-known that holonomic sequences are closed
under several operations such as addition, multiplication, taking subsequences, etc. The gener-
ating function of a holonomic sequence satisfies a linear differential equation with polynomial
coefficients and there is a one-to-one correspondence between the sequence representation and
the generating function representation. All these properties can be executed algorithmically [15]
and they are implemented in different computer algebra systems [13].

If the recurrence coefficients are just constants, these sequences are also called C-finite or C-
recursive. Recently, we have defined the class of C2-finite sequences [12] as sequences satisfying
a linear recurrence relation with C-finite coefficients. Holonomic and q-holonomic sequences are
strictly contained in this set. The main computational issue when working with this more general
class (compared to holonomic sequences) is the presence of zero divisors.

To our knowledge, C2-finite sequences have first been introduced formally by Kotek and
Makowsky [18] in the context of graph polynomials. Thanatipanonda and Zhang [24] gave an
overview on different properties of polynomial, C-finite and holonomic sequences and considered
an extension under the name X-recursive sequences. The setting in these articles is slightly

∗The research was funded by the Austrian Science Fund (FWF) under the grant W1214-N15, project DK15.
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different which leads to complications if one aims at developing an algorithmic approach. So
far [12], we have shown that C2-finite sequences form a difference ring with respect to termwise
addition and termwise multiplication and presented a first step towards setting up the theory
of C2-finite sequences algorithmically. An implementation of these methods in SageMath [25] is
under development and already available for download.1

Still, for C2-finite sequences, it is not (always) clear a priori whether they are effectively
computable. In this paper we define (in analogy to simple P -recursive sequences [17]) simple C2-
finite sequences as sequences satisfying linear recurrences with C-finite coefficients and constant
leading coefficient. In fact, most C2-finite sequences we studied are even simple C2-finite. These
include, for example, sparse subsequences of C-finite sequences.

We show that the class of simple C2-finite sequences is a computable subring of the ring of
C2-finite sequences. When executing closure properties, it is possible to algorithmically compute
recurrences with coefficients of smaller order compared to the ones obtained with the meth-
ods for general C2-finite sequences. Additionally, we derive asymptotic bounds and obtain a
characterization for the generating functions of simple C2-finite functions.

In Section 2.2, we give the definition of simple C2-finite sequences and derive the asymptotic
bounds (Subsection 2.3). In Section 3, we provide the algebraic characterization of simple C2-
finite sequences that serves as the theoretical backbone. Next, in Section 4, we consider in
full detail the closure properties addition and multiplication of two simple C2-finite sequences.
Finally, in Section 5, we show which type of functional equation the generating functions of
(simple) C2-finite functions satisfy and how they are related to the recurrence relation satisfied
by the sequence.

2 Preliminaries

We introduce some notation and basic ideas that are used throughout the article. We call a ring
(or field) computable if all elements admit a finite representation, the ring (or field) operations
can be computed effectively and we can decide whether an element is zero. In the entire paper
Q ⊆ K ⊂ Q denotes a number field. In particular, K is a computable subfield of the field of
algebraic numbers Q (which is computable itself). Let KN denote the K-algebra of sequences
under termwise addition and termwise multiplication (the Hadamard product). We write a(n)
for a sequence a = (a(n))n∈N ∈ KN. It will be always be clear from the context if we mean
the sequence a or a specific term of the sequence. Furthermore, σ denotes the shift operator
σ(a(n))n∈N := (a(n + 1))n∈N. A difference subring R ⊆ KN is a subring which is closed under
shifts. The ring R[σ] is in general non-commutative and an element A :=

∑r
i=0 ciσ

i ∈ R[σ] acts
on a sequence a ∈ KN in the natural way as Aa = (

∑r
i=0 ci(n)a(n+ i))n∈N. We call r the order

of the operator A.

2.1 C-finite sequences

A sequence c ∈ KN is called C-finite if there is a non-zero operator C :=
∑r
i=0 γiσ

i ∈ K[σ] with
Cc = 0. The order of c is the minimal order of such an annihilating operator. The sequence c can
be described uniquely by the operator C and initial values c(0), . . . , c(r − 1). The set of C-finite
sequences forms a difference ring under elementwise addition and multiplication. We denote this
ring byRC . These sequences are also closed under taking subsequences at arithmetic progressions
and interlacing. Also, the Cauchy product of two C-finite sequences is again C-finite. These are
called closure properties of C-finite sequences [15].

1The package can be obtained from https://github.com/PhilippNuspl/rec_sequences.
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Let C :=
∑r−1
i=0 γiσ

i + σr be the unique monic minimal annihilating operator of the C-finite

sequence c. Then, χc(x) :=
∑r−1
i=0 γix

i + xr ∈ K[x] is called the characteristic polynomial of c.
The roots of c are called the eigenvalues of c and determine the asymptotic growth of c: Let
L ⊇ K be the splitting field of χc(x). Then, χc(x) factors as χc(x) =

∏m
i=1(x−λi)di where λi ∈ L

are the pairwise different eigenvalues of c and di their respective multiplicities. Then, there is an
index n0 ∈ N and polynomials p1, . . . , pm ∈ L[x] with deg(pi) = di− 1 for i = 1, . . . ,m such that

c(n+ n0) =

m∑
i=1

pi(n)λni , for all n ≥ 0.

We call this the closed form of c [15, 21]. The λi and polynomials pi can be computed [9, 4].
The index n0 can be chosen as the minimal i such that γi 6= 0. Let

Bc :=
{(
ndiλni

)
n∈N | i ∈ {1, . . . ,m}, di ≤ deg(pi)

}
. (1)

Then, the sequence c is an L-linear combination of sequences in Bc from n0 on.
Using the closed form representation, it is clear that every C-finite sequence can be bounded

by an exponential sequence. I.e., for every C-finite sequence c there is an α ∈ Q such that
|c(n)| ≤ αn for all n ≥ 1 [6].

2.2 Simple C2-finite sequences

We can now introduce C2-finite sequences as sequences satisfying a linear recurrence with coef-
ficients which are themselves C-finite.

Definition 2.1. A sequence a ∈ KN is called C2-finite over K if there are C-finite sequences
c0, . . . , cr over K with cr(n) 6= 0 for all n such that

c0(n)a(n) + · · ·+ cr(n)a(n+ r) = 0, for all n ∈ N. (2)

As the leading coefficient has no zeros, such a C2-finite sequence a can again be described by
finite data, namely the coefficients c0, . . . , cr and the initial values a(0), . . . , a(r−1). In [12] it was
shown that the set of C2-finite sequences is a ring under elementwise addition and multiplication
and some methods to compute in this ring were presented. For recognizing whether a recurrence
of the form (2) indeed defines a C2-finite sequence, we need to decide whether the leading
coefficient cr has any zeros. This is known as the Skolem-Problem and it is not known whether
it is decidable in general [23].

In order to avoid this problem, we introduce sequences satisfying a recurrence of the form (2)
where the leading coefficient cr is just a non-zero constant in K. In this case, we can multiply
the entire equation (2) by 1

cr
. Hence, we can equivalently assume that cr = 1.

An analogous construction, called simple P -recursive sequences, was also introduced for holo-
nomic sequences [17]. These are sequences satisfying a linear recurrence with polynomial coef-
ficients with a constant leading coefficient. These simple P -recursive sequences are a proper
subring of the ring of holonomic sequences as the sequence of Catalan numbers is holonomic but
not simple P -recursive [17, Section 8.1.5].

Definition 2.2. A sequence a ∈ KN is called simple C2-finite over K if there are C-finite
sequences c0, . . . , cr−1 over K such that

c0(n)a(n) + · · ·+ cr−1(n)a(n+ r − 1) + a(n+ r) = 0 (3)

for all n ∈ N.
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Most C2-finite sequences that are discussed in [18, 24, 12] are in fact simple C2-finite.

Example 2.3. Let c be a C-finite sequence. Then, a(n) =
∏n
i=1 c(i) defines a simple C2-finite

sequence satisfying
−c(n+ 1)a(n) + a(n+ 1) = 0, for all n ∈ N.

If c denotes the Fibonacci numbers, these are called Fibonorial or Fibonacci factorial numbers
(A003266 in the OEIS [10]). If c denotes the Lucas numbers, they are called Lucastorial (A135407
in the OEIS).

Example 2.4. Let f denote the Fibonacci sequence. Then b(n) = f(n2) satisfies a C2-finite
recurrence of order 2 with coefficients having maximal order 2 [18]. This sequence is even simple
C2-finite and satisfies a recurrence of order 3 with coefficients having order at most 4:

−f(6n+ 11)b(n)− c1(n)b(n+ 1) + f(6n+ 9)b(n+ 2) + b(n+ 3) = 0

with

c1(n)− 54c1(n+ 1) + 331c1(n+ 2)− 54c1(n+ 3) + c1(n+ 4) = 0

and initial values

c1(0) = 136, c1(1) = 6710, c1(2) = 317434, c1(3) = 14927768.

This recurrence can be found using guessing and fixing the coefficients of the recurrence to only
involve C-finite sequences which have certain powers of the golden ratio (and its conjugate)
as roots. The recurrence can then be verified using closure properties of C2-finite sequences.
Using an algorithm for computing algebraic relations of C-finite sequences due to Kauers and
Zimmermann [16], we can write c1 in terms of the Fibonacci sequence as

c1(n) = f(4n+ 6)(−1− 2f(4n+ 4) + 3f(4n+ 6)).

The result of Example 2.4 holds more generally. The proof of Corollary 3.6 in [12] shows
that for every C-finite sequence c, the subsequence c(jn2 + kn + l) is simple C2-finite for
every j, k, l ∈ N.

2.3 Bounds

Lemma 5 in [18] states, without a proof, that all C2-finite sequences with a leading coefficient

cr with cr(n) ∈ Z for all n ∈ N are bounded by a sequence αn
2

. Hence, every simple C2-finite
sequence can be bounded in the same way. For the sake of completeness we include a proof here.
The proof is analogous to the case of holonomic sequences [8, Proposition 1.2.1].

Lemma 2.5. Let a be a simple C2-finite sequence over K. Then, there is an α ∈ Q such that
|a(n)| ≤ αn2

for all n ≥ 1.

Proof. Suppose a satisfies the recurrence

c0(n) a(n) + · · ·+ cr−1(n) a(n+ r − 1) + a(n+ r) = 0

for all n ∈ N with c0, . . . , cr−1 ∈ RC . Then, for all ci(n) with i = 0, . . . , r − 1 there exists an
αi ∈ Q such that |ci(n)| ≤ αni for all n ≥ 1. Let 1 ≤ α ∈ Q be large enough such that

r−1∑
i=0

αni ≤ r
(

max
i=0,...,r−1

αi

)n
≤ αn
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for n ≥ 1 and large enough such that |a(n)| ≤ αn
2

holds for n = 1, . . . , r − 1. We show

|a(n)| ≤ αn
2

by induction on n. Suppose the inequality holds for all a(i) with i ≤ n+ r − 1. In
the induction step we have

|a(n+ r)| =

∣∣∣∣∣
r−1∑
i=0

ci(n)a(n+ i)

∣∣∣∣∣ ≤
r−1∑
i=0

|ci(n)||a(n+ i)| ≤
r−1∑
i=0

αni α
(n+i)2

≤ α(n+r−1)2
r−1∑
i=0

αni ≤ α(n+r−1)2αn ≤ α(n+r)2 .

The bound in Lemma 2.5 is exact as sequences αn
2

for α ∈ Q are simple C2-finite.
It is not clear whether the same bound holds for C2-finite sequences in general. Let c be

C-finite and non-zero everywhere. To generalize the proof of Lemma 2.5 to C2-finite sequences
there would have to exist a 0 6= α ∈ Q such that |c(n)| ≥ αn for all n ∈ N. We are only aware of
such bounds for special cases where these bounds are used to decide the Skolem-Problem [22, 26].

Lemma 2.5 shows that the sequences a(n) = 2n
3

and b(n) =
∏n
i=0 i! are not simple C2-finite.

Nevertheless, both sequences satisfy a linear recurrence. In particular, the sequence a is C3-finite
and b is D2-finite [11].

It is well known that the sequence nn is not holonomic [7]. In [3], polynomial recursive and
rational recursive sequences were introduced. A sequence is called polynomial (rational) recursive
if it can be described by a certain system of polynomial (rational) difference equations. It was
shown that nn is neither polynomial nor rational recursive. As simple C2-finite sequences are
polynomial recursive and C2-finite sequences are rational recursive, nn is not (simple) C2-finite
over Q. The Catalan numbers are holonomic but not polynomial recursive [3, Corollary 8] and
not simple P -recursive [17, Section 8.1.5]. In particular, the Catalan numbers are not simple
C2-finite over Q. This is due to the fact that simple P -recursive sequences are eventually periodic
modulo a prime p whereas the Catalan numbers are not [1]. Hence, not all holonomic sequences
are simple C2-finite sequences.

3 Algebraic characterization

For sequences c0, . . . , cr ∈ RC we denote by Kσ[c0, . . . , cr] the smallest K-difference-algebra which
contains the sequences c0, . . . , cr. I.e., this is the smallest difference ring containing the sequences
c0, . . . , cr, their shifts and all constants. We show that such algebras are always Noetherian. The
proof follows the argument from [12, Theorem 3.5].

Lemma 3.1. Let c0, . . . , cr ∈ RC . Then, Kσ[c0, . . . , cr] is a Noetherian ring.

Proof. All the K-vector spaces 〈σicj | i ∈ N〉K are finitely generated. Hence, also the difference
algebras Kσ[cj ] are finitely generated. Therefore, also Kσ[c0, . . . , cr] is finitely generated and a
Noetherian ring [2, Corollary 7.7].

Let a ∈ KN and let Q(RC) denote the total ring of fractions of RC . [12, Theorem 3.3] shows
that a is C2-finite if and only if the module

〈σia | i ∈ N〉Q(RC)

is finitely generated. The same arguments can be used to show the following analogous theorem
for simple C2-finite sequences.
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Theorem 3.2. The following are equivalent:

1. The sequence a is simple C2-finite.

2. There exists an operator A =
∑r−1
i=0 ciσ

i + σr ∈ RC [σ] and a simple C2-finite sequence b
with Aa = b.

3. The module 〈σia | i ∈ N〉RC
over the ring RC is finitely generated.

Using Lemma 3.1 and Theorem 3.2 we can show that the set of simple C2-finite sequences is
a difference ring.

Theorem 3.3. The set of simple C2-finite sequences is a difference ring under termwise addition
and termwise multiplication.

Proof. Let a, b be simple C2-finite sequences and

A = c0 + c1σ + · · ·+ cr1−1σ
r1−1 + σr1

B = d0 + d1σ + · · ·+ dr2−1σ
r2−1 + σr2

the corresponding annihilating operators. Let

R := Kσ[c0, . . . , cr1−1, d0, . . . , dr2−1] ( RC .

By the definition of a and b, the modules 〈σia | i ∈ N〉R and 〈σib | i ∈ N〉R are both finitely
generated. With Lemma 3.1, R is a Noetherian ring. Hence,

〈σi(a+ b) | i ∈ N〉R ⊆ 〈σia | i ∈ N〉R + 〈σib | i ∈ N〉R

and

〈σi(ab) | i ∈ N〉R ⊆ 〈σi(a)σj(b) | i, j ∈ N〉R

are finitely generated as they are submodules of finitely generated modules over a Noethe-
rian ring. In particular, there is an r ∈ N such that σr(a + b) is an R-linear combination of
σ0(a+ b), . . . , σr−1(a+ b) and there is an s ∈ N such that σs(ab) is an R-linear combination of
σ0(ab), . . . , σs−1(ab). Hence, a+ b and ab are simple C2-finite.

The operator

Ã := σ(c0) + σ(c1)σ + · · ·+ σ(cr1−1)σr1−1 + σr1 ∈ RC [σ]

annihilates σa as Ã(σa) = (σA)a = 0. Hence, the ring of simple C2-finite sequences is also closed
under shifts.

4 Computable ring

For computing closure properties of C2-finite sequences, the Skolem-Problem is a limiting factor.
Hence, it is not known whether the ring of C2-finite sequences is computable [12]. For simple
C2-finite sequences the situation is easier and we can show that the ring is in fact computable.
The idea is that we can reduce the computation of closure properties to solving a linear system
over a Noetherian subring of RC . Using the closed form of C-finite sequences, we can compute
a solution of such a linear system.
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4.1 Ansatz

Suppose a, b are simple C2-finite sequences of order r1, r2, respectively, satisfying recurrences

c0(n)a(n) + · · ·+ cr1−1(n)a(n+ r1 − 1) + a(n+ r1) = 0,

d0(n)b(n) + · · ·+ dr2−1(n)a(n+ r2 − 1) + b(n+ r2) = 0.

Furthermore, we define the companion matrix Ma of the sequence a as

Ma :=


0 0 . . . 0 −c0
1 0 . . . 0 −c1
0 1 . . . 0 −c2
...

...
. . .

...
...

0 0 . . . 1 −cr1−1

 ∈ Rr1×r1C .

Using the recurrence of a, we can express higher order shifts σia as RC-linear combinations of
the shifts a, σa, . . . , σr1−1a. In particular, there are vectors ui := (ui,0, . . . , ui,r1−1)> ∈ Rr1C such

that σia =
∑r1−1
j=0 ui,jσ

ja for all i ∈ N. Clearly, u0 is the 0-th unit vector e0 := (1, 0, . . . , 0).
The other ui can be iteratively computed as ui+1 := Maσ(ui) [12, Lemma 4.2]. Let vi be the
corresponding vectors for b.

To compute a recurrence for the addition a+b or the multiplication ab we can make an ansatz
of some order s with undetermined coefficients x0, . . . , xs−1. Using the recurrences of a and b,
this ansatz can be reduced to the linear system

(w0, w1, . . . , ws−1)x = −ws

where wi = ui⊕vi is the direct sum in the case of the addition and wi = ui⊗vi is the Kronecker
product in the case of multiplication [12]. To be more concise, we write Asx = −ws for this
system.

By construction, all components of wi are contained in the ringR := Kσ[c0, . . . , cr1 , d0, . . . , dr2 ].
With Lemma 3.1, R is a Noetherian ring. In particular, if the ansatz s is chosen big enough, the
linear system has a solution in R:

Lemma 4.1. The ansatz for the addition and multiplication of simple C2-finite sequences can
be chosen big enough such that the corresponding linear system has a solution in R.

Proof. By the construction of the As we have an increasing chain of modules

ImA0 ⊆ ImA1 ⊆ ImA2 ⊆ · · · ⊆ Rm.

Since R is Noetherian, this chain has to stabilize. In particular, there is an s such that ImAs =
ImAs+1. Then, ws ∈ Ims+1 = ImAs. Therefore, Asx = −ws has a solution x ∈ Rs.

4.2 Solving linear systems

Now, we show how we can compute a solution x ∈ Rs of a linear system Ax = b where A ∈
Rm×s, b ∈ Rm for a Noetherian ring R ⊆ RC . We heavily use the closed form of C-finite
sequences. Therefore, we assume that the base field is always the field of algebraic numbers Q.
Note that every C-finite sequence over Q has again a closed form as Q is algebraically closed
itself. First, we consider the special case, where we compute a constant solution of such a system.

Lemma 4.2. We can compute all constant solutions x ∈ Qs of the linear system Ax = b where
A ∈ Rm×sC and b ∈ RmC . In particular, we can decide whether such a solution exists.
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Proof. It is sufficient to consider one equation, i.e., A ∈ R1×s
C . The set of constant solutions is

an affine subspace of Qs. For several equations we can compute the intersection of these affine
subspaces to determine all solutions. Using the closed form of the sequences, we can rewrite the
equation Ax = b as

l∑
k=1

(∑
i∈Sk

εk,ixi + εk

)
︸ ︷︷ ︸

=:yk

(n− n0)dkλn−n0

k = 0, for all n ≥ n0 (4)

with n0 ∈ N, and εk,i, εk, λk ∈ Q, dk ∈ N and Sk ⊆ {1, . . . , s} for all k = 1, . . . , l. Certainly,
if yk = 0 for all k = 1, . . . , l we have a solution. On the other hand, evaluating this equation
for n = n0, n0 + 1, . . . , yields a linear system for the yk. This linear system is a generalized
Vandermonde matrix, in particular it is regular [19, 20]. Therefore, if equation (4) holds, then
yk = 0 for all k = 1, . . . , l. This yields a linear system over Q which can be solved. For the initial
terms n = 0, 1, . . . , n0 − 1 the equation Ax = b can simply be solved over Q. The affine space of
all solutions of the single equation is now given as the intersection of the affine subspace arising
from solving equation (4) and the affine subspaces arising from the initial terms.

Let R := Kσ[c0, . . . , cr] for C-finite sequences c0, . . . , cr. Suppose n0 is the largest index such
that each ci is a Q-linear combination of sequences in Bci , as defined in (1), from n0 on. We
write

B := Bc0 ∪ · · · ∪Bcm ∪ {1}.
Then, for any sequence c ∈ R there is an N ∈ N and xd1,...,dN ∈ Q such that

c(n) =
∑

d1,...,dN∈B

xd1,...,dNd1(n) · · · dN (n), for all n ≥ n0.

Lemma 4.3. Let A ∈ Rm×s and b ∈ Rm. If Ax = b has a solution x ∈ Rs, we can compute
such a solution.

Proof. For N = 1, 2, . . . we write

xi =
∑

d1,...,dN∈B

xi,d1,...,dNd1 · · · dN

for unknown coefficients xi,d1,...,dN ∈ Q. Then, Ax = b can be written equivalently as linear
system for these unknown coefficients xi,d1,...,dN . With Lemma 4.2 we can check whether the
linear system has a solution for these xi,d1,...,dN . As we know that a solution x exists, this
algorithm has to terminate.

We can now combine the results from Section 4.1 and Lemma 4.3 to show the following main
theorem:

Theorem 4.4. The ring of simple C2-finite sequences over Q is computable.

Proof. Suppose a, b are simple C2-finite with annihilating operators
∑r1−1
i=0 ciσ

i + σr1 ,∑r2−1
i=0 diσ

i + σr2 , respectively. Using the theory presented in Section 4.1, there is an order
s ∈ N of the ansatz such that the corresponding linear system over the computable Noetherian
ring R := Qσ[c0, . . . , cr1−1, d0, . . . , dr1−1] has a solution. This linear system can be computed
and a solution of the system can be obtained with Lemma 4.3. As we do not know a priori
how big this order s is and how big the N in the proof of Lemma 4.3 has to be chosen, we can
simultaneously increase s and N . Eventually, this algorithm terminates and any solution gives
rise to a recurrence for a+ b or ab.
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C2-finite sequences are also closed under taking differences, partial sums, subsequences at
arithmetic progressions and interlacing [12, 11]. The same proofs carry over to simple C2-finite
sequences. Even more, as these operations can be reduced to solving linear systems, these closure
properties can be computed effectively.

4.3 Example

Consider the sequences

2na(n) + a(n+ 1) = 0, b(n) + b(n+ 1) = 0.

Both are simple C2-finite. We want to compute a recurrence for c = a+ b. An ansatz of order 3
yields the linear system (

1 −2n 2 · 4n
1 −1 1

)x0x1
x2

 =

(
8 · 8n

1

)
.

This is the smallest system which has a solution. Using the generalized inverse method from [12]
to compute the solution we get the recurrence(

−25n+4 + 24n+2 + 23n+3 − 22n+1
)
c(n)

+
(
25n+4 − 23n+3 − 22n+1 + 1

)
c(n+ 2)

+
(
24n+2 − 22n+2 + 1

)
c(n+ 3) = 0

if we use columns 0 and 2 of the matrix. Using columns 1 and 2 we get(
23n+4 − 3 · 22n+2 + 2n+1

)
c(n+ 1)

+
(
23n+4 − 22n+3 − 2n+1 + 1

)
c(n+ 2)

+
(
22n+2 − 2n+2 + 1

)
c(n+ 3) = 0.

Both recurrences have coefficients with maximal order 4. By Theorem 3.3, we know that c also
has to satisfy a recurrence with leading coefficient 1.

If we make an ansatz xi = xi,1 + xi,22n, the corresponding linear system for the xi,j ∈ Q is
given by 

1 0 0 0 0 0
0 1 −1 0 0 0
0 0 0 −1 2 0
0 0 0 0 0 2
1 0 −1 0 1 0
0 1 0 −1 0 1




x0,1
x0,2
x1,1
x1,2
x2,1
x2,2

 =


0
0
0
8
1
0

 .

This system has the unique solution

(x0,1, x0,2, x1,1, x1,2, x2,1, x2,2) = (0, 2, 2, 6, 3, 4)

which gives rise to the recurrence

(2 · 2n) c(n) + (2 + 6 · 2n)c(n+ 1)

+ (3 + 4 · 2n) c(n+ 2)+c(n+ 3) = 0.

Hence, the simple C2-finite recurrence we have found using this new method is much shorter
(i.e., the coefficients have lower order) than the ones computed with the original method.
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5 Generating functions

Let KJxK denote the ring of formal power series over a field K. A common technique when
working with sequences is to switch between the representation as a sequence a(n) ∈ KN and
as its generating function g(x) =

∑
n≥0 a(n)xn ∈ KJxK. This is particularly useful for C-finite

sequences (which have a one-to-one relation with rational functions) and holonomic sequences
(which have a one-to-one relation with functions satisfying linear differential equations with
polynomial coefficients). Hence, it is natural to investigate which properties the generating
functions of (simple) C2-finite sequences satisfy. Some first steps in this direction were already
taken in [24].

5.1 Computing functional equation from recurrence

Let a be a C2-finite sequence over a field K with annihilating operatorA = c0+· · ·+crσr ∈ RC [σ].
Let L ⊇ K be the smallest field which contains all splitting fields of the characteristic polynomials
of c0, . . . , cr. We call L the splitting field of a.

For natural numbers n ∈ N we write

nk := n(n− 1) · · · (n− k + 1)

for the falling factorial. Let λ ∈ L. Then, we write g(d)(λx) for the d-th derivative of the formal
power series g(λx), i.e.,

g(d)(λx) =
∑
n≥d

ndλna(n)xn−d.

Theorem 5.1. Let a be a C2-finite sequence over K with splitting field L and let
g(x) =

∑
n≥0 a(n)xn be its generating function. Then, g(x) satisfies a functional equation of

the form

m∑
k=1

pk(x)g(dk)(λkx) = p(x) (5)

for p, p1, . . . , pm ∈ L[x], d1, . . . , dm ∈ N and λ1, . . . , λm ∈ L.

Proof. Consider the defining recurrence of a:

c0(n)a(n) + · · ·+ cr(n)a(n+ r) = 0, for all n ∈ N.

Multiplying by xn and summing over all n ∈ N yields∑
n≥0

c0(n)a(n)xn + · · ·+
∑
n≥0

cr(n)a(n+ r)xn = 0. (6)

The coefficients c0, . . . , cr have some closed form for all n ≥ n0. Hence, the left-hand side of
equation (6) is just an L-linear combination of power series of the form

h̃(x) :=
∑
n≥n0

njλna(n+ i)xn

for j ∈ N, i ∈ {0, . . . , r}, λ ∈ L. The first terms n = 0, . . . , n0 − 1 in (6) just yield some
polynomial factors. Furthermore, it is sufficient to consider formal power series of the form
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h(x) :=
∑
n≥0 n

jλna(n + i)xn as h(x) − h̃(x) is again polynomial. Hence, also these factors

h(x)− h̃(x) contribute to the right-hand side of (5).

Let S(k, l) denote the Stirling numbers of the second kind. Then, nk =
∑k
l=0 S(k, l)nl.

Therefore,

h(x) =
∑
n≥i

(n− i)jλn−ia(n)xn−i =
∑
n≥i

(
j∑

k=0

(
j

k

)
nk(−i)j−k

)
λn−ia(n)xn−i

=

j∑
k=0

k∑
l=0

(
j

k

)
(−i)j−kS(k, l)

∑
n≥i

nlλn−ia(n)xn−i

=

j∑
k=0

k∑
l=0

(
j

k

)
(−i)j−kS(k, l)

xl−i

λi

∑
n≥i

nlλna(n)xn−l

=

j∑
k=0

k∑
l=0

(
j

k

)
(−i)j−kS(k, l)

xl−i

λi

(
g(l)(λx) + pk,l(x)

)
where pk,l(x) ∈ L[x] is defined as

pk,l(x) =

{
−
∑i−1
n=l n

lλna(n)xn−l, if i > l,

0, otherwise.

Hence, in particular h(x) =
∑j
l=0 ql(x)g(l)(λx) + q(x) with q0, . . . , qj , q ∈ L(x). Using this in

equation (6) and clearing the denominator xr yields a functional equation of the desired form.
This functional equation is nontrivial, i.e., the right-hand side of the equation does not

simplify to zero: Let njλn be a term in cr(n) with j maximal. This term yields a nonzero term
xj−rg(j)(λx) in the functional equation which cannot cancel because of the maximality of j.

The proof of Theorem 5.1 uses the closed form representation of the C-finite coefficients and
generalizes the classical proof for holonomic sequences [15]. A close investigation of the proof
shows the following bounds (in the special case of holonomic sequences, we get precisely the
known bounds):

1. We have deg pk ≤ r + maxi(ord ci).

2. The λk are exactly the roots of the polynomials χci .

3. The derivatives dk are bounded by the highest multiplicity of the root λk in any χci . In
particular, maxk dk ≤ maxi(ord ci).

4. Let n0 be minimal such that all c0, . . . , cr have closed forms from n0 on. We have
deg(p) < max(r, n0). If we differentiate the functional equation max(r, n0) times, we get
a homogeneous functional equation (i.e., p = 0). The functional equation then satisfies
maxk dk ≤ maxi(ord ci) + max(r, n0).

5. If we are given a functional equation as in equation (5) we can get a homogeneous functional
equation of same degree and order (however, with the caveat that we might add more terms,
i.e., increase m, and change the zeros λk): In (5) we can substitute x → δx and subtract
this new equation form the original one. For suitable δ this decreases the degree of the
right-hand side and iterating this process yields a homogeneous equation.
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Theorem 5.1 also generalizes the result for q-holonomic sequences: Every q-holonomic se-
quence satisfies a q-shift equation [14]. In this case we would have λk = qk.

Example 5.2. Let a(n) = f(n2) be the sparse subsequence of the Fibonacci sequence f . The
generating function g of a satisfies the functional equation(

φ3x2 − φ−3
)
g
(
φ2x

)
−
(
ψ3x2 − ψ−3

)
g
(
ψ2x

)
+xg

(
ψ4x

)
− xg

(
ψ4x

)
= (ψ − φ)x

where φ := 1+
√
5

2 denotes the golden ratio and ψ := 1−
√
5

2 its conjugate.

Example 5.3. Since 1
n! is C2-finite (as it is D-finite), the coefficient sequence of the exponential

generating function
∑
n≥0

a(n)
n! x

n of a C2-finite sequence a is again C2-finite. Let b be the
coefficient sequence of the exponential generating function of the fibonorial numbers. Then, b
satisfies

f(n+ 1)b(n)− (n+ 1)b(n+ 1) = 0, for all n ∈ N.

Let h(x) =
∑
n≥0 b(n)xn be the generating function of b. Then, h satisfies

φh(φx)− ψ h(ψx)− (φ− ψ)h′(x) = 0

where φ, ψ are as in Example 5.2.

5.2 Computing recurrence from functional equation

We have seen that the generating functions of C2-finite sequences satisfy a certain type of func-
tional equations. Now, we want to understand, whether the converse holds as well. The question
is if, given a functional equation of the form (5), the corresponding coefficient sequence is C2-
finite. We will see that this is not necessarily the case. The next theorem shows, however,
that we always get a linear recurrence with C-finite coefficients. This recurrence can have a
leading coefficient with infinitely many zeros. Sequences satisfying such recurrences are called
X-recursive [24].

Theorem 5.4. Let g(x) =
∑
n≥0 a(n)xn satisfy a functional equation of the form

m∑
k=1

pk(x)g(dk)(λkx) = p(x)

for p, p1, . . . , pm ∈ L[x], d1, . . . , dm ∈ N and λ1, . . . , λm ∈ L. Then, the coefficient sequence
(a(n))n∈N satisfies a linear recurrence with C-finite coefficients over L.

Proof. The functional equation is an L-linear combination of functions

xjg(d)(λx) = xj
∑
n≥d

ndλna(n)xn−d =
∑
n≥j

(n+ d− j)dλn+d−ja(n+ d− j)xn.

We can compute this for every factor appearing in the functional equation. Comparing the
coefficients yields a linear recurrence with C-finite coefficients.

First, we give an example of a functional equation which gives rise to a simple C2-finite
recurrence for the coefficient sequence.
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Example 5.5. Let g(x) =
∑
n≥0 a(n)xn satisfy the equation

xg(2x) + g(x) = 1.

Then, a(0) = 1 and
2na(n) + a(n+ 1) = 0, for all n ∈ N.

However, there are more formal power series satisfying such functional equations than C2-
finite sequences. The equation satisfied by even and odd functions are of the form (5). A
function g(x) =

∑
n≥0 a(n)xn satisfies the equation g(x) = g(−x) (i.e., is even) if and only if

the coefficient sequence a(n) satisfies (1 − (−1)n)a(n) = 0 for all n ∈ N (i.e., a(n) = 0 for all
odd n ∈ N). By construction, C2-finite sequences are uniquely defined by finitely many elements
α ∈ K. This means in particular that there are only countably many C2-finite sequences. On
the other hand, there are uncountably many even functions. Hence, the coefficient sequences of
functions satisfying a functional equation of the form (5) are usually not C2-finite.

For simple C2-finite we can, however, refine the condition on the functional equation to get
an equivalent characterization for the generating function. A careful inspection of the proofs of
Theorem 5.1 and Theorem 5.4 shows the following theorem:

Theorem 5.6. The sequence a ∈ QN
is simple C2-finite if and only if its generating function

g(x) =
∑
n≥0 a(n)xn satisfies a functional equation of the form

m∑
k=1

αkx
jkg(dk)(λkx) = p(x)

for

1. α1, . . . , αk, λ1, . . . , λk ∈ Q \ {0},

2. j1, . . . , jm, d1, . . . , dm ∈ N,

3. p ∈ Q[x] and

4. let s := maxk=1,...,m(dk − jk), then for all k = 1, . . . ,m with dk − jk = s we have jk = 0
and λk = 1.

5.3 Cauchy product

For C-finite (or holonomic) sequences a(n), b(n), also the Cauchy product

(a� b)(n) :=

n∑
i=0

a(i)b(n− i)

is C-finite (or holonomic). It is not known whether the same holds for (simple) C2-finite se-
quences. Even for simple examples we were not able to find a recurrence:

Question 5.7. Let a(n) = 2n
2

and b(n) = 3n
2

. Then, both sequences a, b are (simple) C2-finite.
Is the Cauchy product a� b again (simple) C2-finite?

However, if one of the sequences is C-finite, then the Cauchy product is again (simple) C2-
finite.
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Lemma 5.8. Let a be C2-finite and b be C-finite over K. Then, the Cauchy product c := a� b
is again C2-finite over the splitting field L of the characteristic polynomial of b.

Proof. First, let b(n) = ndλn for all n ∈ N for some k ∈ N, λ ∈ L and c = a � b. Furthermore,
we denote al(n) :=

∑n
i=0 a(i)(n− i)lλn−i for l = 0, . . . , d. Then, for all j ∈ N, n ∈ N we have

σjc(n) =

n+j∑
i=0

a(i)(n+ j − i)dλn+j−i =

d∑
l=0

λj
(
d

l

)
jd−l

n+j∑
i=0

a(i)(n− i)lλn−i

=

d∑
l=0

λj
(
d

l

)
jd−lal(n) +

d∑
l=0

λj
(
d

l

)
jd−l

j∑
i=1

a(n+ i)(−i)lλ−i.

Let A = c0 + c1σ + · · · + crσ
r be an annihilating operator of a. With Lemma 3.1, the ring

R := Lσ[c0, . . . , cr] is Noetherian. The computation above shows

〈σjc | j ∈ N〉Q(R) ⊆ 〈a0, . . . , ad〉Q(R) + 〈σja | j ∈ N〉Q(R).

With [12, Lemma 3.1], the module on the right-hand side is finitely generated, hence also the
module on the left-hand side is finitely generated. Therefore, with [12, Lemma 3.2], the sequence
c is C2-finite. As C2-finite sequences are closed under elementwise addition and every C-finite
sequence is just a linear combination of such exponential sequences from some term n0 on, the
Cauchy product of a C2-finite sequence with a C-finite sequence is again C2-finite.

The proof of Lemma 5.8 works in the same way for simple C2-finite sequences. Hence, the
Cauchy product of a simple C2-finite sequence with a C-finite sequence is again simple C2-finite.

Example 5.9. Let a(n) = 2n
2

, b(n) = 3n, c = a� b. Then, c is again C2-finite and satisfies

4nc(n)− ( 1
34n + 1

8 )c(n+ 1) + 1
24c(n+ 2) = 0, for all n ∈ N

and c(0) = 1, c(1) = 5.

6 Conclusion

Summarizing, we have shown that simple C2-finite sequences form a computable ring for which
most of the closure properties satisfied by holonomic sequences carry over. Furthermore, we gave
a characterization of the generating function of simple C2-finite sequences as well as asymptotic
bounds.

In our presentation, the theory is restricted to sequences defined over a number field. This
includes for instance integer sequences arising from combinatorial problems. Some parts can,
however, be generalized to other fields. For instance, Section 3 carries over immediately to
arbitrary fields, i.e. the set of simple C2-finite sequences over any field forms a ring.

One common technique to discover short recurrences for a given sequences is using guess-
and-prove. The recurrences obtained for simple C2-finite sequences are already smaller than the
recurrences computed with the previous approach. Still, for many applications an efficient guess-
ing routine would be desirable. This would come handy, for instance, for further investigation of
the Cauchy-product of simple C2-finite sequences.

Analogously to C2-finite sequences, one can define D2-finite (or P 2-recursive) sequences as
sequences satisfying a linear recurrence with D-finite coefficients. Again, this class forms a ring
[11]. One can also define simpleD2-finite sequences asD2-finite sequences with a constant leading
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coefficient. The proof of Section 3 for simple C2-finite sequences carries over immediately to this
case showing that simple D2-finite sequences form a ring. For proving that the ring of simple
C2-finite sequences is computable, we heavily relied on the closed form of C-finite sequences.
Such a closed form does not exist for D-finite sequences. Hence, it is not clear whether this new
ring is computable.
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