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Abstract

Deciding positivity for recursively defined sequences based on only the recursive descrip-
tion as input is usually a non-trivial task. Even in the case of C-finite sequences, i.e.,
sequences satisfying a linear recurrence with constant coefficients, this is only known to
be decidable for orders up to five. In this paper, we discuss several methods for proving
positivity of C-finite sequences and compare their effectiveness on input from the Online
Encyclopedia of Integer Sequences (OEIS).

1 Introduction

A sequence is called D-finite (or P -recursive or holonomic), if it satisfies a linear recurrence with
polynomial coefficients. These sequences appear in many applications, e.g. in combinatorics or as
coefficient sequences of special functions [7]. They are interesting from the symbolic computation
point of view, as they can be represented by a finite amount of data – the recurrence coefficients
and sufficiently many initial values. Several closure properties hold for holonomic sequences and
there exist summation algorithms that work with this representation for input and output. These
methods are used to automatically prove and derive identities for holonomic sequences. When it
comes to automatic proving of inequalities on holonomic sequences, there are not many algorithms
available. Gerhold and Kauers [10] introduced a method in 2005 that can be used for sequences
satisfying (a system of) recurrences including in particular holonomic sequences. This method
(together with variations of it) has been applied successfully on several examples [14, 26, 28].
Still, a priori it is not known in general whether the procedure terminates [19].

In this paper, we restrict our study to C-finite sequences, i.e., holonomic sequences with
constant coefficients and the problem of proving positivity. This is known to be decidable for
integer linear recurrences of order 2 [11], order 3 [20], order at most 5 and related to difficult
number theoretic problems for higher order [25]. We give an overview over some methods which
can be used to prove the positivity of C-finite sequences, including the Gerhold-Kauers method
and the most used variation (Algorithms 1 and 2 below). Other methods are based on theoretical
results that, as far as we know, have not yet been implemented and tested on practical input
on a larger scale. For testing the effectiveness of these different algorithms, we use input from

∗The research was funded by the Austrian Science Fund (FWF) under the grant W1214-N15, project DK15.
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the Online Encyclopedia of Integer Sequences (OEIS) [24] that are likely candidates for positive
sequences. Our implementations are done both in SageMath and Mathematica and the source
files as well as testing data are made available online.

2 Preliminaries

We introduce some notations and definitions that will be used throughout the paper. We always
assume that Q ⊆ K ( R is some number field. We denote the field of algebraic numbers by Q
and the field of real algebraic numbers by A := Q∩R. We denote the K-vector space of sequences
by KN and σ denotes the shift operator σ((c(n))n∈N) := (c(n+ 1))n∈N.

2.1 Linear recurrence sequences

We denote the ore algebra of shift operators by K[x]〈σ〉. Let A =
∑r
i=0 pi(x)σi ∈ K[x]〈σ〉. If

pr 6= 0, then r is called the order of A and maxi=0,...,r deg(pi) is called the degree of A. The
operator A acts on a sequence c ∈ KN in the natural way as

Ac = (p0(n)c(n) + · · ·+ pr(n)c(n+ r))n∈N.

A sequence c ∈ KN is called D-finite (or P -recursive or holonomic) if there is a non-zero oper-
ator A ∈ K[x]〈σ〉 with Ac = 0, i.e., the sequence satisfies a linear recurrence with polynomial
coefficients. We call A an annihilating operator of c. It is well known that D-finite sequences
form a computable difference ring [18]. The minimal possible order r of an annihilating operator
is also called the order of the sequence c. The degree of c is then just defined as the degree of
this operator.

A D-finite sequence c is called C-finite if it satisfies a linear recurrence with constant coeffi-
cients, i.e., if there are γ0, . . . , γr ∈ K with γr 6= 0 such that

γ0c(n) + · · ·+ γrc(n+ r) = 0, for all n ∈ N. (1)

Again, the order of c as a C-finite sequence is the minimal r (note that the order of c consid-
ered as a C-finite sequence can be different from the order considered as a D-finite sequence,
cf. Lemma 3.4). The set of C-finite sequences is again a computable difference ring. Every such
sequence can be uniquely described by the coefficients of the recurrence γ0, . . . , γr and sufficiently
many initial values c(0), . . . , c(r − 1).

2.2 Characteristic polynomial

For an operator A =
∑r
i=0 pi(x)σi ∈ K[x]〈σ〉 the characteristic polynomial is defined as

χ(A) := lcx

(
r∑
i=0

pi(x)yi

)
∈ K[y].

The roots of χ(A) are called eigenvalues and usually govern the asymptotic behavior of sequences
which are annihilated by A [19].

We can extend the notion of the characteristic polynomial to the left-Noetherian ring K(x)〈σ〉:
For a univariate polynomial p ∈ K[x] we denote by coeff (p, i) ∈ K the coefficient of xi in p. For a

rational function p(x)
q(x) with coprime p, q ∈ K[x] we define the degree as deg(p/q) = deg(p)−deg(q)

and call
lc(p/q) := coeff (p/q,deg(p/q)) := lc(p)/ lc(q)
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the leading coefficient of p/q. Now, for an operator A =
∑r
i=0

pi(x)
qi(x)

σi ∈ K(x)〈σ〉 with deg(A) :=

maxi=0,...,r deg(pi/qi) we define the characteristic polynomial as

χ(A) :=

r∑
i=0

deg(pi/qi)=deg(A)

lc(pi/qi)y
i ∈ K[y].

Lemma 2.1. Let A,B ∈ K(x)〈σ〉. Then χ(AB) = χ(A)χ(B).

Proof. Let A :=
∑r
i=0 pi(x)σi ∈ K(x)〈σ〉 and B :=

∑s
j=0 qj(x)σj ∈ K(x)〈σ〉 and

dA := maxi=0,...,r deg pi, dB := maxj=0,...,s deg qj ∈ Z their respective degrees. We show that AB
has degree dA + dB. By the definition of multiplication in K(x)〈σ〉 and the properties of the
degree of a rational function, the degree of AB is certainly bounded by dA + dB. Let i′, j′ be
maximal such that deg pi′ = dA and deg qj′ = dB. We show that the coefficient of σi

′+j′ of AB
has degree dA+dB: This coefficient is given by

∑i′+j′

l=0 pl(x)qi′+j′−l(x+ l). Because of the choice
of i′, j′ we have

deg(pl(x)qi′+j′−l(x)) = deg(pl(x)) + deg(qi′+j′−l(x+ l)) < dA + dB

for all l 6= i′. For l = i′, we have deg(pl(x)qi′+j′−l(x)) = dA + dB, so by the properties of the
degree we have

deg

i′+j′∑
l=0

pl(x)qi′+j′−l(x+ l)

 = max
l=0,...,i′+j′

(deg (pl(x)) + deg (qi′+j′−l(x+ l)))

= dA + dB.

Next, we show that all coefficients of χ(A)χ(B) and χ(AB) agree. Let i ∈ {0, . . . , r + s}.
Then,

coeff (χ(A), i) = coeff (pi(x), dA) , coeff (χ(B), i) = coeff (qi(x), dB)

and therefore

coeff (χ(A)χ(B), i) =

i∑
j=0

coeff (pj(x), dA) coeff (qi−j(x), dB) .

In the first part of the proof we have shown that AB has degree dA + dB. Therefore,

coeff (χ(AB), i) = coeff

 i∑
j=0

pj(x)qi−j(x+ j), dA + dB


=

i∑
j=0

coeff (pj(x)qi−j(x+ j), dA + dB)

=

i∑
j=0

coeff (pj(x), dA) coeff (qi−j(x+ j), dB)

=

i∑
j=0

coeff (pj(x), dA) coeff (qi−j(x), dB) .
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Suppose A is an annihilator of a and B an annihilator of b. Then, the least common left
multiple lclm(A,B) is an annihilator of a+ b [16].

Lemma 2.2. Let A,B ∈ K[x]〈σ〉. Then

χ(A) | χ(lclm(A,B)) and χ(B) | χ(lclm(A,B)).

In particular, we have
lcm(χ(A), χ(B)) | χ(lclm(A,B)).

Proof. Let C ∈ K(x)〈σ〉 be such that CA = lclm(A,B). Then, with Lemma 2.1 we have

χ(lclm(A,B)) = χ(CA) = χ(C)χ(A).

Example 2.3. In Lemma 2.2, divisibility cannot be replaced with equality. Consider A := 1+σ
and B := x+ (x+ 1)σ. Then,

χ(A) = χ(B) = 1 + y,

but
χ(lclm(A,B)) = χ(x+ (2x+ 2)σ + (x+ 2)σ2) = 1 + 2y + y2.

An operator A =
∑r
i=0 piσ

i ∈ K[x]〈σ〉 is called balanced if

deg p0 = deg pr = max
i=0,...,r

deg pi.

Equivalently, A is balanced if and only if the degree of χ(A) ∈ K[y] equals the order of A and
the trailing coefficient of χ(A) is non-zero, i.e., y - χ(A).

2.3 Positivity

Suppose we are given a C-finite sequence c in terms of a recurrence and sufficiently many initial
values. Our goal is to prove c(n) > 0 for all n ∈ N (i.e., show that c is positive) or to find
an index n0 ∈ N such that c(n0) ≤ 0. The very same methods can always be applied to show
non-negativity instead of strict positivity of a sequence.

If b, c are C-finite sequences, then the inequality b > c (or b ≥ c) can easily be reduced to the
positivity problem. The sequence b−c is again C-finite. Hence, proving the equivalent positivity
problem b− c > 0 (or b− c ≥ 0) shows the original inequality.

Suppose c is C-finite satisfying the recurrence (1). Let k ∈ N be minimal such that γk 6= 0.
Now, define d := σkc. Then, d is again C-finite satisfying the recurrence

γkd(n) + · · ·+ γrd(n+ r − k) = 0, for all n ∈ N.

The sequence c is positive if and only if the sequence d and the initial values c(0), . . . , c(k − 1)
are positive. Therefore, we can (and will) always assume that a C-finite sequence c is given
by a recurrence with coefficients γ0, . . . , γr with γ0, γr 6= 0. Such a sequence c can then always
be written as a polynomial-linear combination of exponential sequences. One can compute
polynomials p1, . . . , pm ∈ Q[x] and pairwise distinct non-zero constants λ1, . . . , λm ∈ Q such
that

c(n) =

m∑
i=1

pi(n)λni , for all n ∈ N. (2)
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These λi are called the eigenvalues of c and they are the roots of the characteristic polynomial∑r
i=0 γiy

i ∈ K[y] of c. More precisely, if λi is a root of multiplicity di, then deg(pi) = di − 1.
Hence, r =

∑m
i=1 di [18].

Two sequences b, c which are non-zero from some term on are called asymptotically equivalent

if limn→∞
b(n)
c(n) = 1. In this case, we write b ∼ c. The asymptotic behavior of c is governed by

the k eigenvalues of maximal modulus, we call them the dominant eigenvalues. We assume

|λ1| = · · · = |λk| > |λk+1| ≥ · · · ≥ |λm|.

Let d := maxi=1,...,k deg pi. Then, c(n) ∼ nd
∑k
i=1 coeff (pi, d)λni [18].

In the special case that we have a unique dominant eigenvalue (i.e., k = 1) we have c(n) ∼
γndλn1 for some γ [18]. Hence, c can only be a positive sequence if 0 < γ, λ1 ∈ A. Then, c
is positive if and only if c(n)/λn1 is positive. Therefore, it is sufficient to show positivity of a
sequence

p(n) +

m∑
i=1

(
pi(n)λni + pi(n)λi

n
)

+

l∑
i=1

qi(n)ρni (3)

with p ∈ A[x], p1, . . . , pm ∈ Q[x], q1, . . . , ql ∈ A[x] and constants λ1, . . . , λm ∈ Q, ρ1, . . . , ρl ∈ A
where the leading coefficient of p is positive [25].

3 Algorithms

In this section we give an overview over some methods which can be used to prove the positivity
of a C-finite sequence. Algorithms 1 and 2 introduced below in sections 3.1, 3.2 can be applied to
D-finite sequences. As such they can be used to prove positivity of C-finite sequences. However,
sometimes C-finite sequences satisfy a D-finite recurrence of lower order, which is better suited
as input for these methods. In section 3.3, we discuss when such a D-finite recurrence exists.
A method based on the combination of Algorithms 1 and 2 as well as on the closed form of a
C-finite sequence is introduced in section 3.5. The methods described in sections 3.4 and 3.6
also make use of the closed form of C-finite sequences. They are based on known results, but we
believe that they had not been implemented so far.

3.1 Algorithm 1

In 2008 [10] a method based on cylindrical algebraic decomposition [5, 6, 3, 1] (CAD) was
introduced which can be used to show positivity of sequences that can be defined recursively
along some discrete parameter. This procedure, however, is not guaranteed to terminate. For
D-finite sequences of small order conditions which guarantee the termination of the algorithm
were found [19, 27].

We give a short description of Algorithm 1 from [19]. For a D-finite sequence c of order r,
the Q(x)-vector space which is generated by the shifts of c is finitely generated [18]. In fact, it
is generated by c, . . . , σr−1c, i.e.,

〈σic | i ∈ N〉Q(x) = 〈c, . . . , σr−1c〉Q(x).

Hence, for all ρ ∈ N there are rational functions qρ,0(x), . . . , qρ,r−1(x) ∈ K(x) with c(n + ρ) =∑r−1
i=0 qρ,i(n)c(n+ i) for all n ∈ N. The idea now is to check with CAD whether c(n), . . . , c(n+

r−1) > 0 implies c(n+r) > 0 where c(n+r) can be written in terms of the c(n), . . . , c(n+r−1).
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If this is true, then by induction it would be sufficient to check finitely many initial values to
deduce positivity of the entire sequence. If, however, this cannot be shown, then we can add
c(n + r) > 0 to the hypothesis and show c(n + r + 1) > 0. This process is iterated. In the
iteration step ρ ≥ r we try to show positivity of the formula

Φ(ρ, c) := ∀y0, . . . , yr−1, x ∈ R :

x ≥ 0 ∧
ρ−1∧
j=0

r−1∑
i=0

qj,i(x)yi > 0

 =⇒
r−1∑
i=0

qρ,i(x)yi > 0.

Formula Φ(ρ, c) is a generalized induction formula over the reals. It is certainly sufficient to
prove the initial induction step and has the advantage of being a valid input for CAD. Here, we
give a slightly adjusted version which searches for an index n0 such that the sequence σn0c is
positive. If such an n0 can be found by the algorithm, then it is sufficient to check the initial
values c(0), . . . , c(n0 − 1) of the sequence to prove positivity of c.

Input : D-finite sequence c of order r
output: n0 such that σn0c is positive
n, n0 ← 0
d← c
while n < r or ¬Φ(n, d) do

if d(n) > 0 then
n← n+ 1

else
n0 ← n0 + n+ 1
d← σn+1d
n← 0

end

end
return n0

Algorithm 1e: Adjusted version of Algorithm 1 from [19]

Clearly, Algorithm 1e is not guaranteed to terminate. E.g., if the input sequence c is negative,
then the algorithm never terminates. Suppose the sequence c is eventually positive, i.e., there
exists an n0 ∈ N such that σn0c is positive. Since χ(c) = χ(σn0c), the same termination
conditions for Algorithm 1 in [19] now also apply to Algorithm 1e.

Example 3.1. The sequence A001584 is C-finite of order 8 satisfying

c(n)− c(n+ 2) + 2c(n+ 5)− c(n+ 8) = 0

with initial values c(0) = · · · = c(7) = 1. Algorithm 1e terminates for this sequence whereas all
other algorithms do not terminate in reasonable time.

3.2 Algorithm 2

Algorithm 2 in [19] again uses CAD to prove positivity of a D-finite sequence. The idea is to
check whether there is a µ > 0 such that c(n+1) ≥ µc(n) for all n ∈ N. By induction, if there is a
µ > 0 such that c(n+1) ≥ µc(n), . . . , c(n+r−1) ≥ µc(n+r−2) implies c(n+r) ≥ µc(n+r−1),
then it is again sufficient to check finitely many initial values to prove positivity of c. Hence, the
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important step in the algorithm is to use CAD to check the validity of the formula

Ψ(ξ, µ, c) := ∀y0, . . . , yr−1 ∈ R∀x ∈ R≥ξ :

(
y0 > 0 ∧

r−2∧
i=0

yi+1 ≥ µyi

)
=⇒

r−1∑
i=0

qi(x)yi ≥ µyr−1

where qi ∈ K(x) are such that c(n+ r) =
∑r−1
i=0 qi(n)c(n+ i) for all n ∈ N.

Again, we give a slightly adjusted version which searches for an index n0 such that the
sequence σn0c is positive. If the input sequence c is eventually positive, then the same termination
conditions as for Algorithm 2 in [19] apply in this adjusted version.

Input : D-finite sequence c of order r
output: n0 such that σn0c is positive
n, n0 ← 0
d← c
Ψ(ξ, µ)← quantifier free formula equivalent to Ψ(ξ, µ, d)
for n = 0, 1, . . . do

if d(n) ≤ 0 then
n0 ← n0 + n+ 1
d← σn+1d
Ψ(ξ, µ)← quantifier free formula equivalent to Ψ(ξ, µ, d)
n← 0

else if ∃µ > 0:
r−2∧
i=0

d(n+ i+ 1) ≥ µd(n+ i) ∧ Ψ(n, µ) then

return n0
end

Algorithm 2e: Adjusted version of Algorithm 2 from [19]

Example 3.2. The sequence A005682 is C-finite of order 6 satisfying

c(n) + c(n+ 2)− 2c(n+ 5) + c(n+ 6) = 0

with initial values c = 〈1, 2, 4, 8, 15, 28, . . . 〉. Algorithm 2e terminates for this sequence whereas
Algorithm 1e seems to not terminate.

3.3 D-finite reduction

Clearly, every C-finite sequence is also D-finite. Sometimes, C-finite sequences satisfy shorter
D-finite recurrences. In these cases it can be helpful to use this shorter D-finite recurrence as
the next example shows.

Example 3.3. Let c be the sequence defined by c(n) = n2 + 1 for all n ∈ N (A002522). If c
is considered as a C-finite sequence of order 2, then neither Algorithm 1e nor Algorithm 2e
terminate. If c is, however, considered as a D-finite sequence of order 1 and degree 2, then both
algorithms terminate with the output 0 showing that c is indeed positive.

The next theorem shows that we can find a shorter D-finite recurrence of a C-finite sequence c
if and only if c has eigenvalues of higher multiplicities or equivalently the characteristic polynomial
of c is not squarefree.

Lemma 3.4. Let c be a C-finite sequence of order r with y - χ(c). Then, c is D-finite of order
m < r if and only if χ(c) is not squarefree.
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Proof. Suppose c is given as in (2).
⇐=: The sequences pi(n)λni are D-finite of order 1 and degree di over Q. Hence, by the

bounds for closure properties of D-finite sequences, c(n) is D-finite of order at most m over Q
[18]. [9, Lemma 2] shows that the sequence is then also D-finite over K with the same order and
degree. In particular, if χ(c) is not squarefree, then r =

∑m
i=1 di > m.

=⇒: Suppose c satisfies a D-finite recurrence of order m < r and degree d

m∑
i=0

pi(n)c(n+ i) = 0 for all n ∈ N (4)

with pi(n) =
∑d
k=0 pi,kn

k where not all pi,k are zero. Furthermore, suppose that c is C-finite
of order r with pairwise distinct eigenvalues λ1, . . . , λr ∈ Q, i.e., c(n) can be written as c(n) =∑r
j=1 γjλ

n
j for some γj ∈ Q. Using this closed form in (4) yields

d∑
k=0

 m∑
i=0

r∑
j=1

pi,kγjλ
n+i
j

nk = 0. (5)

Let γk,j :=
∑m
i=0 pi,kγjλ

i
j , then (5) is equivalent to

∑d
k=0

(∑r
j=1 γk,jλ

n
j

)
nk = 0. For n =

0, . . . , r(d + 1) − 1 we get a homogeneous linear system for the γk,j . The corresponding matrix
is regular [21, Theorem 2.2.1],[12, Proposition 2.11], so γk,j = 0 for all k, j. Let k be such that
pi,k 6= 0 for some i. Then,

0 =

r∑
j=1

λnj

m∑
i=0

pi,kγjλ
i
j =

m∑
i=0

r∑
j=1

pi,kγjλ
n+i
j =

m∑
i=0

pi,kc(n+ i).

Hence, c satisfies a C-finite recurrence of order m < r, a contradiction to c being C-finite of
order r.

The proof of Lemma 3.4 shows that precisely the polynomial factors can be reduced in the D-
finite recurrence, i.e., the m in the statement of Lemma 3.4 is the number of distinct eigenvalues
of the sequence, which is also denoted by m in equation (2). The degree of the D-finite recurrence
can be bounded by

(m(m+ 1)−m) max
i=1,...,m

di = m2 max
i=1,...,m

di ≤ r3

using [15, Theorem 2].
In practice, we can easily check whether χ(c) is squarefree by checking whether χ(c) and its

derivative are coprime. The shorter D-finite recurrence can then be either found by guessing or
by computing it explicitly from the closed form of c.

3.4 Classical algorithm for sequences with unique dominant eigenvalue

If a C-finite sequence has a unique dominant eigenvalue, checking positivity of the sequence is
known to be decidable [25]. In this section we give a full description of such an algorithm based
on that result.

As discussed in Section 2.3 we can assume that a C-finite sequence c is given in its closed
form representation, i.e., as

c(n) = p(n) + r(n) (6)
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where p ∈ A[x] with lc(p) > 0 and r(n) =
∑m
i=1 pi(n)λni with pi ∈ Q[x], λi ∈ Q and 1 >

|λ1| ≥ |λ2| ≥ · · · ≥ |λm|. The idea is now to compute an ε ∈ (0, 1) and n0, n1 ∈ N such that
|r(n)| < (1− ε)n for n ≥ n0 and p(n) ≥ (1− ε)n for n ≥ n1. Then, clearly c(n) is positive from
max(n0, n1) on. The initial values can be checked separately again.

Input : C-finite sequence c of the form (6)
output: true if c(n) > 0 for all n ∈ N and false otherwise

ε← 1−|λ1|
2

compute n0 such that |r(n)| < (1− ε)n for all n ≥ n0
compute n1 such that p(n) ≥ (1− ε)n for all n ≥ n1
if c(n) > 0 for n = 0, . . . ,max(n0, n1) then

return true
else

return false
end

Algorithm C: Positivity for sequences with dominant eigenvalues [25]

For a polynomial pi(x) =
∑di
j=0 γi,jx

j ∈ A of degree di we can easily compute a constant

ci ∈ A such that |pi(n)| ≤ cin
di for all n ≥ 1. For example, we can choose ci :=

∑di
i=0|γi,j |.

Let c :=
∑m
i=1 ci and d := max(d1, . . . , dm), i.e., the maximal multiplicity of the eigenvalues

λ1, . . . , λm. Furthermore, let ε := 1−|λ1|
2 . Then, 1− ε = |λ1|+ ε.

First, we show how n0 can be found such that |r(n)| < (1− ε)n for n ≥ n0. Let µ := |λ1|+ε
|λ1| .

If d = 0, then

|r(n)| ≤ c|λ1|n < (1− ε)n ⇐⇒ log(c)
log(µ) < n.

Hence, we can choose n0 := d log(c)log(µ)e in this case. If d > 0, then

|r(n)| ≤ c nd|λ1|n < (1− ε)n ⇐⇒ log(c1/d) < n
d log(µ)− log(n).

The derivative of the right-hand side of this inequality is positive if n > d
log(µ) , i.e., from d d

log(µ)e
on the sequence on the right-hand side is monotonously increasing. Hence, if the inequality is
true for some n0 ≥ d d

log(µ)e, then it is true for all n ≥ n0. Checking these values one by one, we

will find a suitable n0 eventually.

If the polynomial p(x) = p0 is just constant, then p(n) ≥ (1− ε)n if and only if n ≥ log(p0)
log(1−ε) .

Otherwise, we can compute the largest real root x1 of the derivative of p(x). If p(n1) ≥ (1− ε)n1

for any n1 ≥ dx1e, then the inequality holds for all n ≥ n1.

Example 3.5. The C-finite sequence A000126 is C-finite of order 4 satisfying

c(n)− c(n+ 1)− 2c(n+ 2) + 3c(n+ 3)− c(n+ 4) = 0

with initial values c = 〈1, 2, 4, 8, . . . 〉. The sequence has the unique dominant root 1+
√
5

2 . Algo-
rithm 1e and Algorithm 2e seem to not terminate whereas Algorithm C (see below) terminates.

3.5 Combination of Algorithm 1 and Algorithm 2

In the case that the C-finite sequence has a unique dominant eigenvalue, we can combine the
closed form representation of the sequence together with Algorithm 1e and Algorithm 2e. As we
know that the polynomial term p(n) in (3) certainly dominates the exponential terms, we can
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find indices ni using Algorithm 1e and Algorithm 2e from which on the exponential sequences
are dominated by the polynomial term. These input sequences have very low order (maximum
order 3). Therefore, the termination criteria in [19] show that these algorithms terminate in most
instances.

Input : C-finite sequence c of the form (3)
output: true if c(n) > 0 for all n ∈ N and false otherwise
for i← 1 to m do

ni,Q ← Algorithm 1e applied to p(n)
m+l + pi(n)λni + pi(n)λi

n

end
for i← 1 to l do

ni,A ← Algorithm 2e applied to p(n)
m+l + qi(n)ρni

end
n0 ← max(n1,Q, . . . , nm,Q, n1,A, . . . , nl,A)

if c(n) > 0 for n = 0, . . . , n0 then
return true

else
return false

end
Algorithm P: Positivity for sequences with dominant eigenvalues

As Algorithm 2e terminates for essentially all sequences of order 2, the real algebraic part of
the Algorithm P certainly terminates.

Theorem 3.6. Algorithm P terminates if m = 0, i.e., if all eigenvalues of c are real algebraic.

Proof. Each sequence h(n) := p(n)
m+l + qi(n)ρni is the sum of two balanced D-finite sequences g, f

over A satisfying the recurrences

−p(n+ 1)g(n) + p(n)g(n+ 1) = 0, −q(n+ 1)ρif(n) + q(n)f(n+ 1) = 0

with characteristic polynomials

χ(G) = lc(p)(y − 1), χ(F) = lc(q)(y − ρi)

where G,F denote the annihilating operators of g, f , respectively. As these characteristic poly-
nomials are coprime, Lemma 2.2 yields

χ(H) = χ(G)χ(F) = γ(y − 1)(y − ρi)

for some constant γ where H denotes the annihilating operator of h. In particular, H is balanced.
Furthermore, h ∼ p(n) by construction. With [19, Theorem 3], Algorithm 2e terminates with
input h.

It is conjectured that Algorithm 1e terminates for sequences of order 3 if the eigenvalues are
complex. This is the case if we apply Algorithm 1e. Hence, if the conjecture is true, Algorithm P
terminates for all C-finite sequences with a unique dominant eigenvalue.

Theorem 3.7. Assume Conjecture 1 from [19] is true. Then, Algorithm P terminates.

10



Proof. The proof of Theorem 3.6 already shows that the algorithm terminates for the real al-

gebraic eigenvalues. Analogously, in the complex case, the sequences h(n) := p(n)
m+l + pi(n)λni +

pi(n)λi
n

are D-finite of order 3 with a balanced annihilating operator H with characteristic
polynomial

χ(H) = γ(y − 1)(y − λi)(y − λi)

for some constant γ. With Conjecture 1, Algorithm 1e terminates on this input.

Example 3.8. The sequence A002248 is C-finite of order 4 satisfying the recurrence

4c(n)− 8c(n+ 1) + 7c(n+ 2)− 4c(n+ 3) + c(n+ 4) = 0

with initial values c = 〈2, 8, 14, 16, . . . 〉. The sequence has the unique dominant eigenvalue 2.
Neither Algorithm 1e nor Algorithm 2e seem to terminate. However, both Algorithm C and
Algorithm P terminate in negligible time.

3.6 Decomposition into non-degenerate sequences

A C-finite sequence c is called degenerate if the ratio λi

λj
of two distinct eigenvalues λi, λj is a

root of unity. Every C-finite sequence c can be written as the interlacing of non-degenerate and
zero-sequences c1, . . . , ck [8, Theorem 1.2]. For proving inequalities for C-finite sequences this
decomposition often turned out useful [23, 31, 25]. For proving positivity of c we can compute
this decomposition and prove positivity for every subsequence c1, . . . , ck.

One can explicitly compute the eigenvalues of a C-finite sequence and check whether the ratio
of two eigenvalues is a root of unity [4]. Hence, a naive algorithm can decompose a sequence c
into k subsequences

c1(n) = c(kn), . . . , ck(n) = c(kn+ k − 1)

and check whether all these subsequences are either zero or non-degenerate. Eventually, for large
enough k, this is the case. This already works well in practice as we see in Section 4. A more
efficient algorithm is given in [32].

Example 3.9. The sequence A000115 is C-finite of order 8 and satisfies the recurrence

c(n)− c(n+ 1)− c(n+ 2)+c(n+ 3)

−c(n+ 5) + c(n+ 6) + c(n+ 7)−c(n+ 8) = 0.

with initial values c = 〈1, 1, 2, 2, 3, 4, 5, 6, . . . 〉. It has 6 dominant eigenvalues and is degenerate.
It can be decomposed into 10 non-degenerate sequences with unique dominant eigenvalues. For
these subsequences Algorithm C and Algorithm P both have no problem showing positivity.

4 Comparison

As far as we are aware the only implementations of the algorithms presented in Section 3 are
implementations of the Gerhold-Kauers method for Mathematica in the package SumCracker

[13] and for SageMath [30]. We have implemented the presented algorithms in SageMath and in
Mathematica and tested them on C-finite sequences which could be obtained from the OEIS by
guessing.
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4.1 Test set

We used guessing on the terms given in the OEIS to check for each sequence whether it is C-
finite. To have reasonable certainty that the guessed recurrence is indeed correct we make sure
that the corresponding linear systems are overdetermined with at least 15 more equations than
variables. We take the first 1000 of these sequences for which the first 500 terms are strictly
positive and are therefore highly likely to be positive altogether1.

The maximal order of these sequences is 42. The following table shows the number of se-
quences of each given order:

order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 > 15
73 134 117 139 120 80 87 36 47 27 31 14 17 10 10 58

More than half of these sequences, 567, have a unique dominant eigenvalue. There are 102,
40, 70, 32 sequences with 2, 3, 4, 5 distinct dominant eigenvalues, respectively. Hence, there are
139 sequences with more than 6 distinct dominant eigenvalues.

About half of the sequences, 513, have a characteristic polynomial which is not squarefree.
By Lemma 3.4 these are the sequences which have a shorter D-finite recurrence.

4.2 SageMath implementation

The methods for proving inequalities for C-finite sequences (and in a limited way for D-finite
sequences) are part of the rec sequences package which is itself based on the ore algebra

package [17]. SageMath provides an interface to QEPCAD which allows CAD computations
[29, 2]. This is used in the implementations of Algorithm 1 and Algorithm 2. For Algorithm C
we rely on the implementation of number fields in SageMath. As the bounds which are computed
in Algorithm C rely on logarithm computations on real algebraic numbers, we assume that
SageMath can approximate those numbers at least to the closest integer. The check whether a
sequence is degenerate uses a naive implementation and checks whether the ratio of two roots is
a root of unity. This turns out to be the bottleneck in many computations. Hence, the package
would certainly benefit from a better implementation, e.g., the implementation suggested in [32].

The package is publicly available2. We give a list of the methods that can be used on C-finite
sequences to show positivity. Every method has a parameter strict which is True by default and
indicates whether strict positivity or non-negativity should be shown. The additional parameter
time can be used to give an upper bound (in seconds) after which the algorithms should be
terminated, the default value is −1, indicating that they should not stop prematurely.

• is positive algo1 implements Algorithm 1 from [19]. As an additional parameter bound
can be specified which gives an upper bound on the number of iterations.

• is positive algo2 implements Algorithm 2 from [19]. Again, bound can be specified.
This method is also implemented for general D-finite sequences and can be called using
is positive on D-finite sequences.

• is positive dominant root implements Algorithm C for sequences with a unique domi-
nant eigenvalue.

• is positive dominant root decompose first tries to decompose the sequence into non-
degenerate and zero sequences and calls Algorithm C on each of those.

1A table with these sequences and additional information is given on the website https://www3.risc.jku.at/

people/pnuspl/PositivityCFinite. It also contains the detailed results of the SageMath and Mathematica tests.
2The package can be obtained from https://github.com/PhilippNuspl/rec_sequences. Extensive documen-

tation and instructions for the installation can be found under the same link.
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• is positive is a combination of all these algorithms which additionally uses a reduction
to D-finite sequences if possible. This method is also applied if the comparison operators
>,<,>=,<= are used.

The following example session shows how the methods can be used.

sage: from rec_sequences.CFiniteSequenceRing import *

sage: C = CFiniteSequenceRing(QQ)

sage: f = C([1,1,-1], [0 ,1]) # Fibonacci numbers

sage: f.is_positive(strict=False)

True

sage: var("n")

sage: c1 = C(n^2+1) # A002522

sage: c1 >= 0 # use is_positive implicitly

True

sage: c2 = C([1, -1, -1, 1, 0, -1, 1, 1, -1],

sage: [1, 1, 2, 2, 3, 4, 5, 6]) # A000115

sage: c2.is_positive_dominant_root_decompose ()

True

sage: c = C(1/100 * (-3)^n + 100 * 2^n)

sage: c > 0

False

Using the above mentioned methods, 974 out of the 1000 sequences from the test set could
be proven to be positive where each method was given 60 seconds. The following table gives
an overview on the number of sequences which could be proven to be positive by each method
(“Comb.” stands for a combination of the algorithms and a “D” indicates that decomposition
of the sequence into non-degenerate sequences is used):

Algo. 1 Algo. 2 Algo. C D, Algo. C Comb.
384 327 541 936 967

It is clear that decomposing the sequences and using Algorithm C is the most powerful
method. However, decomposing can be computationally expensive. Hence, in the cases where
Algorithm 1 terminates in the given time, it is usually much faster than the other algorithms.

Example 4.1. The sequence A002466 is C-finite of order 10 satisfying

2c(n) + 15c(n+ 5)− c(n+ 10) = 0

with initial values c = 〈1, 1, 2, 4, 7, 13, 17, 30, 60, 107, . . . 〉. Using our naive method to check
degeneracy, the sequence cannot be shown to be non-degenerate in reasonable time. However,
due to the simple structure of the recurrence, Algorithm 1 succeeds in well under a second.

4.3 Mathematica implementation

The Mathematica package PositiveSequence encompasses several of the algorithms described
in Section 3. It is part of RISCErgoSum which is a collection of Mathematica packages developed
at RISC3. The package GeneratingFunctions is used to compute closure properties of C-finite
sequences [22]. Our package, therefore, uses the same syntax as Mallinger’s package for defining
sequences. Following, we give a list of the methods contained in the PositiveSequence package.
All methods can be used in a strict version to show strict positivity of a sequence (this is the
default) or a non-strict version to show non-negativity of a sequence using the parameter Strict
set to False. If the parameter Verbose is set to True, then more information about the different
computation steps are printed.

3It can be obtained from https://www.risc.jku.at/research/combinat/software/ergosum/RISC/

PositiveSequence.html. A demo notebook can be found on the same webpage.
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• KPAlgorithm1 implements Algorithm 1e, i.e., for a C-finite or D-finite sequence an index
n0 is returned from which the sequence is guaranteed to be positive. If the parameter
Eventual is set to False, then the traditional Algorithm 1 from [19] is executed which
returns True if the sequence is positive or False if the sequence is not positive.

• KPAlgorithm2 implements Algorithm 2e and Algorithm 2 from [19], analogous to
KPAlgorithm1.

• AlgorithmDominantRootClassic is an implementation of Algorithm C.

• AlgorithmDominantRootCAD provides an implementation of Algorithm P.

• AlgorithmClassic and AlgorithmCAD first decompose the sequence into non-degenerate
and zero sequences and check positivity of these subsequences with
AlgorithmDominantRootClassic and AlgorithmDominantRootCAD, respectively.

• PositiveSequence combines some of the previous algorithms.

The methods can be used in the following way:

In[1]:= << RISC‘PositiveSequence‘

In[2]:= f = RE[{{0, 1, 1,−1}, {0, 1}}, c[n]];

In[3]:= PositiveSequence[f, Strict→ False] (∗Fibonacci∗)

Out[3]= True

In[4]:= c1 = SequenceFromExpression[n2 + 1, c[n]];

In[5]:= PositiveSequence[c1] (∗A002522∗)

Out[5]= True

In[6]:= c2 = RE[{{0, 1,−1,−1, 1, 0,−1, 1, 1,−1}, {1, 1, 2, 2, 3, 4, 5, 6}}, c[n]];

In[7]:= AlgorithmClassic[c2] (∗A000115∗)

Out[7]= True

In[8]:= c3 = SequenceFromExpression[1/100 ∗ (−3)n + 100 ∗ 2n, c[n]];

In[9]:= PositiveSequence[c3]

Out[9]= False

Comparing the different algorithms on the test set we see similar results as in the SageMath
implementation. Every method was again aborted after 60 seconds. 980 out of the 1000 sequences
could be shown to be positive by at least one of the methods. The following table shows the
number of sequences which could be proven positive by each method:

Algo. 1 Algo. 2 Algo. C Algo. P D, Algo. C D, Algo. P Comb.
387 325 526 528 940 942 980

A more precise comparison of Algorithm C and Algorithm P shows that the two methods are
not only equally powerful on the test set, but their runtime for the individual examples is also
very similar.

Increasing the time shows that the combined algorithm can show the positivity of 996 se-
quences with a time limit of 12 hours per sequence.
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5 Conclusions

Summarizing, we have investigated some well known and new methods for showing positivity
of C-finite sequences. To our knowledge, most of these algorithms were never implemented and
it was not clear how well they perform on practical examples. It turned out that the methods
are already powerful enough to prove the positivity of most C-finite sequences from the OEIS in
reasonable time.

One of the main bottlenecks of our implementation is the decomposition of a sequence into
non-degenerate subsequences. More efficient algorithms for this decomposition would therefore
greatly benefit the implementation. Furthermore, the decomposition as well as Algorithm C
heavily depend on fast arithmetics with algebraic numbers. Hence, it makes sense to implement
algorithms for positivity on top of fast libraries for algebraic numbers computations.

The given algorithms already cover most of the sequences appearing in combinatorial exam-
ples. One can, however, construct examples of non-degenerate sequences which have multiple
dominant eigenvalues. For sequences with up to 5 dominant eigenvalues, positivity is still known
to be decidable [25]. It would certainly be interesting to check whether and how these methods
can be applied and implemented in practice.
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2021-09 A. Jiménez Pastor, P. Nuspl, V. Pillwein: An extension of holonomic sequences: C2-finite

sequences Dec 2021. Eds.:: P. Paule, M. Kauers

The complete list since 2009 can be found at

https://www.dk-compmath.jku.at/publications/



Doctoral Program

“Computational Mathematics”

Director:
Assoc. Prof. Dr. Veronika Pillwein
Research Institute for Symbolic Computation

Deputy Director:
Prof. Dr. Bert Jüttler
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