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LOG-CONVEXITY AND THE OVERPARTITION FUNCTION

GARGI MUKHERJEE

Abstract. Let p(n) denote the overpartition function. In this paper, we obtain an inequal-

ity for the sequence ∆2 log n−1
√
p(n− 1)/(n− 1)α which states that

log

(
1+

3π

4n5/2
−11 + 5α

n11/4

)
< ∆2 log n−1

√
p(n− 1)/(n− 1)α < log

(
1+

3π

4n5/2

)
for n ≥ N(α),

where α is a non-negative real number, N(α) is a positive integer depending on α and ∆ is

the difference operator with respect to n. This inequality consequently implies log-convexity

of
{

n
√
p(n)/n

}
n≥19

and
{

n
√
p(n)

}
n≥4

. Moreover, it also establishes the asymptotic growth

of ∆2 log n−1
√
p(n− 1)/(n− 1)α by showing lim

n→∞
∆2 log n

√
p(n)/nα =

3π

4n5/2
.

Mathematics Subject Classifications. Primary 05A20; 11N37.

Keywords. Log-convexity; Overpartitions.

1. Introduction

An overpartition of n is a nonincreasing sequence of natural numbers whose sum is n in

which the first occurrence of a number may be overlined and p(n) denotes the number of over-

partitions of n. For convenience, define p(0) = 1. For example, there are 8 overpartitions of 3

enumerated by 3, 3, 2+1, 2+1, 2+1, 2+1, 1+1+1, 1+1+1. Systematic study of overpartition

began with the work of Corteel and Lovejoy [4], although it has been studied under different

nomenclature that dates back to MacMahon. Analogous to Hardy-Ramanujan-Rademacher

formula for partition function (cf. [7],[10]), Zuckerman [13] gave a formula for p(n) that reads

p(n) =
1

2π

∞∑
k=1
2-k

√
k

k−1∑
h=0

(h,k)=1

ω(h, k)2

ω(2h, k)
e−

2πinh
k

d

dn

(
sinh π

√
n

k√
n

)
, (1.1)

where

ω(h, k) = exp

(
πi

k−1∑
r=1

r

k

(
hr

k
−
⌊
hr

k

⌋
− 1

2

))
for positive integers h and k. In somewhat a similar spirit as Lehmer [8] obtained an error

bound for the partition function, Engel [6] provided an error term for p(n)

p(n) =
1

2π

N∑
k=1
2-k

√
k

k−1∑
h=0

(h,k)=1

ω(h, k)2

ω(2h, k)
e−

2πinh
k

d

dn

(
sinh π

√
n

k√
n

)
+R2(n,N), (1.2)

1



2 GARGI MUKHERJEE

where ∣∣R2(n,N)
∣∣ < N5/2

πn3/2
sinh

(
π
√
n

N

)
. (1.3)

A positive sequence {an}n≥0 is called log-convex if for n ≥ 1,

a2n − an−1an+1 ≤ 0,

and it is called log-concave if for n ≥ 1,

a2n − an−1an+1 ≥ 0.

Engel [6] proved that {p(n)}n≥2 is log-concave by using the asymptotic formula (1.2) with

N = 2 followed by (1.3). Prior to Engel’s work on overpartitions, log-concavity of partition

function p(n) and its associated inequalities has been studied in a broad spectrum, for example

see [1], [2], and [5]. Following the same line of studies, Liu and Zhang [9] proved a list of

inequalities for overpartition function.

Sun [11] initiated the study on log-convexity problems associated with p(n), later settled by

Chen and Zheng [3, Theorem 1.1-1.2]. In a more general setting, Chen and Zheng studied

log-convexity of { n
√
p(n)/nα}n≥n(α) (cf. [3, Theorem 1.3]). Moreover, they discovered the

asymptotic growth of the sequence ∆2 log n
√
p(n) (cf. [3, Theorem 1.4]).

The main objective of this paper is to prove all the theorems [3, Theorem 1.1-1.4] but in

context of overpartitions. Our goal is to obtain a much more general inequality, given in

Theorem 1.1, which at once implies [3, Theorem 1.1-1.4] for p(n), presented in Corollary 1.2-

1.5. More explicitly, in Theorem 1.1, we get a somewhat symmetric upper and lower bound

of n
√
p(n)/nα, as shown in (1.4). We note that the lower bound presented in (1.4) depicts

a finer inequality than merely stating ∆2 log n
√
p(n)/nα > 0 which implies log-convexity. In

another direction, we note that (1.4) readily suggests that
3π

4
is the best possible constant

so as to understand the asymptotic growth of ∆2 log n
√
p(n)/nα, given in Corollary 1.5.

For α ∈ R≥0, define rα(n) := n
√
p(n)/nα.

Theorem 1.1. Let α ∈ R≥0 and

N(α) :=


max

{[3490

α

]
+ 2,

⌈(4(11 + 5α)

3π

)4⌉
, 5505

}
if α ∈ R>0,

4522 if α = 0.

Then for n ≥ N(α),

log

(
1 +

3π

4n5/2
− 11 + 5α

n11/4

)
< ∆2 log rα(n− 1) < log

(
1 +

3π

4n5/2

)
. (1.4)

Corollary 1.2. The sequence
{
n
√
p(n)/nα

}
n≥N(α)

is log-convex.

Proof. From (1.4), it is immediate that

rα(n+ 1)rα(n− 1)

r2α(n)
> 1 +

3π

4n5/2
− 11 + 5α

n11/4
for all n ≥ N(α).
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We finish the proof by observing that

1 +
3π

4n5/2
− 11 + 5α

n11/4
> 1 for all n ≥ N(α).

�

Corollary 1.3. The sequences
{
n
√
p(n)/n

}
n≥19 and

{
n
√
p(n)

}
n≥4 are log-convex.

Proof. In order to prove
{
n
√
p(n)/n

}
n≥19 and

{
n
√
p(n)

}
n≥4 are log-convex, after corollary

1.2, it remains to check numerically for 19 ≤ n ≤ 5504 and 4 ≤ n ≤ 4521, which is done in

‘Mathematica’ interface. �

Corollary 1.4. For all n ≥ 2, we have

n
√
p(n)

n+1
√
p(n+ 1)

(
1 +

3π

4n5/2

)
>

n−1
√
p(n− 1)
n
√
p(n)

. (1.5)

Proof. It is an immediate implication of (1.4) as it is only left over to verify (1.5) for 2 ≤
n ≤ 4522, which we did numerically in ‘Mathematica’. �

Corollary 1.5.

lim
n→∞

n5/2∆2 log rα(n) =
3π

4
. (1.6)

Proof. Multiplying both side of (1.4) by n5/2 and taking limit as n tends to infinity, we get

(1.6). �

2. Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1. First, we state the Lemma 2.1 [3, Lemma

2.1] of Chen and Zheng which will be useful in the proofs of Lemmas 2.2-2.4. These lemmas

further direct to get upper bound and lower bound of ∆2 log rα(n) respectively in Lemma 2.5

and 2.6, finally results (1.4).

Lemma 2.1. [3, Lemma 2.1] Suppose f(x) has a continuous second derivative for x ∈ [n−
1, n+ 1]. Then there exists c ∈ (n− 1, n+ 1) such that

∆2f(n− 1) = f(n+ 1) + f(n− 1)− 2f(n) = f ′′(c). (2.1)

If f(x) has an increasing second derivative, then

f ′′(n− 1) < ∆2f(n− 1) < f ′′(n+ 1). (2.2)

Conversely, if f(x) has a decreasing second derivative, then

f ′′(n+ 1) < ∆2f(n− 1) < f ′′(n− 1). (2.3)
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We start by laying out a brief outline of Engel’s primary set up [6] for proving log-concavity

of {p(n)}n≥2. Setting N = 3 in (1.2), we express p(n) as

p(n) = T (n) +R(n), (2.4)

where

T (n) =
c

µ(n)2

(
1− 1

µ(n)

)
eµ(n), (2.5)

R(n) =
1

8n

(
1 +

1

µ(n)

)
e−µ(n) +R2(n, 3) (2.6)

with c =
π2

8
and µ(n) = π

√
n. In order to estimate the upper and lower bound of

∆2 log rα(n− 1), it is necessary for us to express ∆2 log rα(n− 1) in the following form

∆2 log rα(n− 1) = ∆2 1

n− 1
log p(n− 1)− α ∆2 1

n− 1
log(n− 1)

= ∆2 1

n− 1
log T (n− 1) + ∆2 1

n− 1
log

(
1 +

R(n− 1)

T (n− 1)

)
− α ∆2 1

n− 1
log(n− 1).

(2.7)

Define

E(n− 1) = log

(
1 +

R(n− 1)

T (n− 1)

)
(2.8)

and rewrite (2.7) as

∆2 log rα(n− 1) = ∆2 1

n− 1
log T (n− 1) + ∆2 1

n− 1
E(n− 1)− α ∆2 1

n− 1
log(n− 1) (2.9)

Therefore, in order to estimate ∆2 log rα(n− 1), it is sufficient to estimate each of the three

factors, appearing on the right hand side of (2.9).

Lemma 2.2. Let

G1(n) =
3π

4(n+ 1)5/2
− 5 logµ(n− 1)

(n− 1)3
, (2.10)

G2(n) =
3π

4(n− 1)5/2
− 3 logµ(n+ 1)

(n+ 1)3
+

4

(n− 1)3
. (2.11)

Then for n ≥ 2, we have

G1(n) < ∆2 1

n− 1
log T (n− 1) < G2(n). (2.12)

Proof. Using the definition of T (n) (2.5), we write

∆2 1

n− 1
log T (n− 1) =

4∑
i=1

∆2 gi(n− 1), (2.13)
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where

g1(n) =
µ(n)

n
,

g2(n) = −3 log µ(n)

n
,

g3(n) =
log (µ(n)− 1)

n
,

and g4(n) =
log c

n
.

It can be easily checked that for n ≥ 3, g
′′′
1 (n) < 0, g

′′′
2 (n) > 0, g

′′′
3 (n) < 0, and g

′′′
4 (n) < 0. As

a consequence, for n ≥ 3, g
′′
1(n), g

′′
3(n), and g

′′
4(n) are decreasing, whereas g

′′
2(n) is increasing.

Applying Lemma 2.1, we get for i ∈ {1, 3, 4},

g
′′
i (n+ 1) < ∆2 gi(n− 1) < g

′′
i (n− 1) (2.14)

and

g
′′
2(n− 1) < ∆2 g2(n− 1) < g

′′
2(n+ 1). (2.15)

From (2.13) and (2.14)-(2.15), we obtain for all n ≥ 3,

∆2 1

n− 1
log T (n− 1) < g

′′
1(n− 1) + g

′′
2(n+ 1) + g

′′
3(n− 1) + g

′′
4(n− 1) (2.16)

and

∆2 1

n− 1
log T (n− 1) > g

′′
1(n+ 1) + g

′′
2(n− 1) + g

′′
3(n+ 1) + g

′′
4(n+ 1), (2.17)

where

g
′′
1(n) =

3π

4n5/2
, (2.18)

g
′′
2(n) =

9

2n3
− 6 logµ(n)

n3
, (2.19)

g
′′
3(n) =

2 log(µ(n)− 1)

n3
− 5π

4n5/2(µ(n)− 1)
− π2

4n2(µ(n)− 1)2
, (2.20)

and g
′′
4(n) =

2 log c

n3
. (2.21)

We first estimate the upper bound of ∆2 1

n− 1
log T (n− 1) by (2.16) and (2.18)-(2.21).

∆2 1

n− 1
log T (n− 1) <

3π

4(n− 1)5/2
+

9

2(n+ 1)3
− 6 logµ(n+ 1)

(n+ 1)3

+
2 log(µ(n− 1)− 1)

(n− 1)3
− 5π

4(n− 1)5/2(µ(n− 1)− 1)
− π2

4(n− 1)2(µ(n− 1)− 1)2

+
2 log c

(n− 1)3

=
3π

4(n− 1)5/2
+ U1(n) + U2(n),

(2.22)
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where

U1(n) = −6 logµ(n+ 1)

(n+ 1)3
+

2 log(µ(n− 1)− 1)

(n− 1)3
(2.23)

and U2(n) =
9

2(n+ 1)3
− 5π

4(n− 1)5/2(µ(n− 1)− 1)
− π2

4(n− 1)2(µ(n− 1)− 1)2
+

2 log c

(n− 1)3
.

(2.24)

It can be easily check that for all n ≥ 2,

U2(n) <
4

(n− 1)3
. (2.25)

For an upper bound of U1(n), we observe that for all n ≥ 15,

2

(n− 1)3
<

3

(n+ 1)3
and log(µ(n)− 1) < logµ(n+ 1), (2.26)

that is,
2 log(µ(n− 1)− 1)

(n− 1)3
<

3 logµ(n+ 1)

(n+ 1)3
. (2.27)

Consequently for n ≥ 15 we get,

U1(n) < −3 logµ(n+ 1)

(n+ 1)3
(2.28)

Invoking (2.25) and (2.28) into (2.22), we have for n ≥ 15,

∆2 1

n− 1
log T (n− 1) <

3π

4(n− 1)5/2
− 3 logµ(n+ 1)

(n+ 1)3
+

4

(n− 1)3
= G2(n). (2.29)

For lower bound of ∆2 1

n− 1
log T (n− 1), using (2.17) and (2.18)-(2.21) we obtain

∆2 1

n− 1
log T (n− 1) >

3π

4(n+ 1)5/2
+

9

2(n− 1)3
− 6 logµ(n− 1)

(n− 1)3

+
2 log(µ(n+ 1)− 1)

(n+ 1)3
− 5π

4(n+ 1)5/2(µ(n+ 1)− 1)
− π2

4(n+ 1)2(µ(n+ 1)− 1)2

+
2 log c

(n+ 1)3

=
3π

4(n+ 1)5/2
+ L1(n) + L2(n),

(2.30)

where

L1(n) = −6 logµ(n− 1)

(n− 1)3
+

2 log(µ(n+ 1)− 1)

(n+ 1)3
(2.31)

and L2(n) =
9

2(n− 1)3
− 5π

4(n+ 1)5/2(µ(n+ 1)− 1)
− π2

4(n+ 1)2(µ(n+ 1)− 1)2
+

2 log c

(n+ 1)3
.

(2.32)
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Similarly as before, one can check that for n ≥ 9,

L2(n) > 0 and L1(n) > −5 logµ(n− 1)

(n− 1)3
. (2.33)

(2.30) and (2.33) yield for n ≥ 9,

∆2 1

n− 1
log T (n− 1) >

3π

4(n+ 1)5/2
− 5 logµ(n− 1)

(n− 1)3
= G1(n). (2.34)

(2.29) and (2.34) together imply (2.12) for n ≥ 15. We finish the proof by checking (2.12)

numerically for 2 ≤ n ≤ 14. �

Lemma 2.3. For n ≥ 38,

∣∣∆2 1

n− 1
E(n− 1)

∣∣ < 5

n− 1
e
−
µ(n− 1)

12 . (2.35)

Proof. Using (2.8), we get for n ≥ 2,

∆2 1

n− 1
E(n−1) =

1

n+ 1
log(1+e(n+1))− 2

n
log(1+e(n))+

1

n− 1
log(1+e(n−1)), (2.36)

where

e(n) =
R(n)

T (n)
.

Taking absolute value of ∆2 1

n− 1
E(n− 1) in (2.36), we obtain for all n ≥ 2,

∣∣∆2 1

n− 1
E(n− 1)

∣∣ ≤ 1

n+ 1
| log(1 + e(n+ 1))|+ 2

n
| log(1 + e(n))|+ 1

n− 1
| log(1 + e(n− 1))|.

(2.37)

Therefore, it is enough to estimate |e(n)|. Before proceed to estimate, let us recall the bound

of Engel [6](cf. (1.3)) for N = 3 that yields for n ≥ 1,

|R2(n, 3)| < 9
√

3

2n µ(n)
eµ(n)/3 (2.38)
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by making use of the fact that sinh(x) <
ex

2
for x > 0. Recalling the definitions in (2.5)-(2.6),

we obtain

|e(n)| =

∣∣∣∣∣
(

1 +
1

µ(n)

)
(

1− 1

µ(n)

)e−2µ(n) +
R2(n, 3)

1

8n

(
1− 1

µ(n)

)
eµ(n)

∣∣∣∣∣

≤

(
1 +

1

µ(n)

)
(

1− 1

µ(n)

)e−2µ(n) +
36
√

3

µ(n)

(
1− 1

µ(n)

)e−2µ(n)/3 (by (2.38))

=
e−2µ(n)/3

µ(n)− 1

[(
µ(n) + 1

)
e−4µ(n)/3 + 36

√
3

]

=
e−µ(n)/12

µ(n)− 1

[((
µ(n) + 1

)
e−4µ(n)/3 + 36

√
3
)
e−µ(n)/2

]
e−µ(n)/12. (2.39)

It can be easily check that

e−µ(n)/12

µ(n)− 1
< 1 for all n ≥ 1 (2.40)

and ((
µ(n) + 1

)
e−4µ(n)/3 + 36

√
3
)
e−µ(n)/2 < 1 for all n ≥ 7. (2.41)

Invoking (2.40) and (2.41) into (2.39), we obtain for n ≥ 7

|e(n)| < e−µ(n)/12 (2.42)

and consequently for n ≥ 38,

e−µ(n)/12 <
1

5
. (2.43)

Putting together (2.42) and (2.43), we get for all n ≥ 38,

|e(n)| < 1

5
. (2.44)

Next we note that for all n ≥ 38,

| log(1 + e(n))| ≤ |e(n)|
1− |e(n)|

<
5

4
|e(n)| (2.45)

because of the fact that, for |x| < 1,

| log(1 + x)| < |x|
1− |x|

.

From (2.37) and (2.45), we obtain for n ≥ 38,∣∣∆2 1

n− 1
E(n− 1)

∣∣ < 5

4

( |e(n+ 1)|
n+ 1

+ 2
|e(n)|
n

+
|e(n− 1)|
n− 1

)
. (2.46)
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Plugging (2.42) into (2.46), we have for n ≥ 38,∣∣∆2 1

n− 1
E(n− 1)

∣∣ < 5

4

(e−µ(n+1)/12

n+ 1
+ 2

e−µ(n)/12

n
+
e−µ(n−1)/12

n− 1

)
<

5

n− 1
e−µ(n−1)/12 (2.47)

because the sequence
{ 1

n
e−µ(n)/12

}
n≥1

is decreasing. �

Lemma 2.4. For α ∈ R>0 and n ≥ 7,

− 2α log(n− 1)

(n− 1)3
+

3α

(n− 1)3
< −α ∆2 1

n− 1
log(n− 1) < −2α log(n+ 1)

(n+ 1)3
+

3α

(n+ 1)3
. (2.48)

Proof. We observe that, for n ≥ 7,(
− log n

n

)′′′
= −11

n4
+

6 log n

n4
> 0.

Setting f(n) := − log n

n
and applying Lemma 2.1, we obtain for n ≥ 7,

− 2 log(n− 1)

(n− 1)3
+

3

(n− 1)3
< −∆2 1

n− 1
log(n− 1) < −2 log(n+ 1)

(n+ 1)3
+

3

(n+ 1)3
. (2.49)

Since α is a positive real number, from (2.49), we obtain (2.48). �

Lemma 2.5. For α ∈ R≥0 and n ≥ 4021,

∆2 log rα(n− 1) < log

(
1 +

3π

4n5/2

)
. (2.50)

Proof. Using (2.12), (2.35) and (2.48) into (2.9), we obtain for n ≥ 38,

∆2 log rα(n− 1) < G2(n) +
5

n− 1
e
−
µ(n− 1)

12 − 2α log(n+ 1)

(n+ 1)3
+

3α

(n+ 1)3
. (2.51)

Note that for all n ≥ 4,

− 2α log(n+ 1)

(n+ 1)3
+

3α

(n+ 1)3
≤ 0 (2.52)

and for n ≥ 4021,

5

n− 1
e
−
µ(n− 1)

12 <
5

(n− 1)3
. (2.53)

Therefore from (2.52)-(2.53), for all n ≥ 4021, it follows that

∆2 log rα(n− 1) <
3π

4(n− 1)5/2
− 3 logµ(n+ 1)

(n+ 1)3
+

9

(n− 1)3
. (2.54)

Apparently, for all n ≥ 93,

3π

4(n− 1)5/2
− 3 logµ(n+ 1)

(n+ 1)3
+

9

(n− 1)3
<

3π

4n5/2
− 9π2

32n5
. (2.55)
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Using the fact that for x > 0, log(1 + x) > x− x2

2
, from (2.54) and (2.55), we finally arrive

at

∆2 log rα(n− 1) < log
(

1 +
3π

4n5/2

)
. (2.56)

�

Lemma 2.6. For α > 0 and n ≥ max

{[3490

α

]
+ 2,

⌈(4(11 + 5α)

3π

)4⌉
, 5505

}
,

∆2 log rα(n− 1) > log

(
1 +

3π

4n5/2
− 11 + 5α

n11/4

)
. (2.57)

Proof. Using (2.12), (2.35) and (2.48) into (2.9), we obtain for n ≥ 38,

∆2 log rα(n− 1) > G1(n)− 5

n− 1
e
−
µ(n− 1)

12 − 2α log(n− 1)

(n− 1)3
+

3α

(n− 1)3
. (2.58)

It is easy to check that for n ≥ max
{[3490

α

]
+ 2, 4522

}
:= N1(α),

− 5

n− 1
e
−
µ(n− 1)

12 +
3α

(n− 1)3
>

3α

(n− 1)3
− 10470

(n− 1)4
> 0. (2.59)

Therefore for all n ≥ N1(α),

∆2 log rα(n− 1) >
3π

4(n+ 1)5/2
− 5 logµ(n− 1)

(n− 1)3
− 2α log(n− 1)

(n− 1)3
. (2.60)

It is immediate that for n ≥ 11,

logµ(n− 1) < log(n− 1) (2.61)

and for n ≥ 5505,

log(n− 1) < (n− 1)1/4. (2.62)

Putting (2.61) and (2.62) into (2.60), we obtain for n ≥ max{N1(α), 5505},

∆2 log rα(n− 1) >
3π

4(n+ 1)5/2
− 5 + 2α

(n− 1)11/4
(2.63)

It remains to show that

3π

4(n+ 1)5/2
− 5 + 2α

(n− 1)11/4
>

3π

4n5/2
− 11 + 5α

n11/4
. (2.64)

For n ≥ max

{⌈(
15π

8(α+ 1)

)4/3⌉
, 5

}
:= N2(α), it follows that

11 + 5α

n11/4
− 5 + 2α

(n− 1)11/4
>
n≥5

1 + α

n11/4
>

15π

8n7/2
>
n≥1

3π

4

(
1

n5/2
− 1

(n+ 1)5/2

)
. (2.65)

From (2.63) and (2.64), we obtain for n ≥ max
{
N1(α), N2(α), 5505

}
,

∆2 log rα(n− 1) >
3π

4n5/2
− 11 + 5α

n11/4
. (2.66)
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It is easy to check that for n ≥

⌈(4(11 + 5α)

3π

)4⌉
:= N3(α),

3π

4n5/2
− 11 + 5α

n11/4
> 0 (2.67)

and using the fact that for x > 0, x > log(1+x), we finally get for n ≥ max{N1(α), N3(α), 5505}(
since, N3(α) > N2(α) for α > 0

)
,

∆2 log rα(n− 1) > log
(

1 +
3π

4n5/2
− 11 + 5α

n11/4

)
. (2.68)

�

Proof of Theorem 1.1: For α ∈ R>0, from (2.50) and (2.57) we obtain for all n ≥

max

{[3490

α

]
+ 2,

⌈(4(11 + 5α)

3π

)4⌉
, 5505

}
,

log

(
1 +

3π

4n5/2
− 11 + 5α

n11/4

)
< ∆2 log rα(n− 1) < log

(
1 +

3π

4n5/2

)
. (2.69)

For α = 0, we have already seen that for n ≥ 4021,

∆2 log rα(n− 1) < log

(
1 +

3π

4n5/2

)
. (2.70)

For α = 0, using (2.12) and (2.35) into (2.9), we get for n ≥ 38,

∆2 log rα(n− 1) > G1(n)− 5

n− 1
e
−
µ(n− 1)

12 . (2.71)

Following the same approach, it can be checked that for n ≥ 4522,

− 5

n− 1
e
−
µ(n− 1)

12 > − 10470

(n− 1)4
(2.72)

and consequently for n ≥ 476,

G1(n)− 10470

(n− 1)4
>

3π

4n5/2
− 11

n11/4
> 0. (2.73)

So, for α = 0, by (2.71)-(2.73), we obtain for n ≥ 4522,

∆2 log rα(n− 1) > log

(
1 +

3π

4n5/2
− 11

n11/4

)
. (2.74)

Putting (2.70) and (2.74), for n ≥ 4522, it follows that

log

(
1 +

3π

4n5/2
− 11

n11/4

)
< ∆2 1

n− 1
log p(n− 1) < log

(
1 +

3π

4n5/2

)
. (2.75)

This finishes the proof. �
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3. Conclusion

We conclude this paper by considering the following problem;

Problem 3.1. Let α be a non-negative real number. Then for each r ≥ 1, does there exists a

positive integer N(r, α) so that for all n ≥ N(r, α), one can obtain both upper bound and lower

bound of (−1)r∆r log rα(n) that finally shows the asymptotic growth of (−1)r∆r log rα(n) as

n tends to infinity?

For r = 2, we have already seen that one can estimate (−1)r∆r log rα(n), as given in

Theorem 1.4 and its asymptotic growth is reflected in Corollary 1.5.
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