INEQUALITIES FOR HIGHER ORDER DIFFERENCES OF THE LOGARITHM OF THE OVERPARTITION FUNCTION AND A PROBLEM OF WANG-XIE-ZHANG
 Gargi Mukherjee

Editorial Board: Bruno Buchberger
Evelyn Buckwar
Bert Jüttler
Ulrich Langer
Manuel Kauers
Peter Paule
Veronika Pillwein
Silviu Radu
Ronny Ramlau
Josef Schicho
Managing Editor: Diego Dominici
Communicated by: Manuel Kauers
Veronika Pillwein

DK sponsors:

- Johannes Kepler University Linz (JKU)
- Austrian Science Fund (FWF)
- Upper Austria

INEQUALITIES FOR HIGHER ORDER DIFFERENCES OF THE LOGARITHM OF THE OVERPARTITION FUNCTION AND A PROBLEM OF WANG-XIE-ZHANG

GARGI MUKHERJEE

Abstract

Let $\bar{p}(n)$ denote the overpartition function. In this paper, our primary goal is to study the asymptotic behavior of the finite differences of the logarithm of the overpartition function, i.e., $(-1)^{r-1} \Delta^{r} \log \bar{p}(n)$, by studying the inequality of the following form $$
\log \left(1+\frac{C(r)}{n^{r-1 / 2}}-\frac{1+C_{1}(r)}{n^{r}}\right)<(-1)^{r-1} \Delta^{r} \log \bar{p}(n)<\log \left(1+\frac{C(r)}{n^{r-1 / 2}}\right) \text { for } n \geq N(r)
$$

where $C(r), C_{1}(r)$, and $N(r)$ are computable constants depending on the positive integer r, determined explicitly. This solves a problem posed by Wang, Xie and Zhang in the context of searching for a better lower bound of $(-1)^{r-1} \Delta^{r} \log \bar{p}(n)$ than 0 . By settling the problem, we are able to show that

$$
\lim _{n \rightarrow \infty}(-1)^{r-1} \Delta^{r} \log \bar{p}(n)=\frac{\pi}{2}\left(\frac{1}{2}\right)_{r-1} n^{\frac{1}{2}-r} .
$$

Mathematics Subject Classifications. Primary 05A20; 11B68.
Keywords. Overpartition, log-concavity, Finite difference.

1. Introduction

An overpartition of a positive integer n is a nonincreasing sequence of positive integers whose sum is n in which the first occurrence of a number may be overlined, $\bar{p}(n)$ denotes the number of overpartitions of n, and we define $\bar{p}(0)=1$. For example, there are 8 overpartitions of 3 enumerated by $3, \overline{3}, 2+1, \overline{2}+1,2+\overline{1}, \overline{2}+\overline{1}, 1+1+1, \overline{1}+1+1$. A thorough study of the overpartition function started with the work of Corteel and Lovejoy [4], although it has been studied under different nomenclature that dates back to MacMahon. Similar to the Hardy-Ramanujan-Rademacher formula for the partition function (cf. [9], [13]), Zuckerman's [15] formula for $\bar{p}(n)$ states that

$$
\begin{equation*}
\bar{p}(n)=\frac{1}{2 \pi} \sum_{\substack{k=1 \\ 2 \nmid k}}^{\infty} \sqrt{k} \sum_{\substack{h=0 \\(h, k)=1}}^{k-1} \frac{\omega(h, k)^{2}}{\omega(2 h, k)} e^{-\frac{2 \pi i n h}{k}} \frac{d}{d n}\left(\frac{\sinh \frac{\pi \sqrt{n}}{k}}{\sqrt{n}}\right), \tag{1.1}
\end{equation*}
$$

where

$$
\omega(h, k)=\exp \left(\pi i \sum_{r=1}^{k-1} \frac{r}{k}\left(\frac{h r}{k}-\left\lfloor\frac{h r}{k}\right\rfloor-\frac{1}{2}\right)\right)
$$

for positive integers h and k. Similarly as Lehmer [10] obtained an error bound for the partition function $p(n)$, Engel [6] determined an error term for $\bar{p}(n)$ and found that

$$
\begin{equation*}
\bar{p}(n)=\frac{1}{2 \pi} \sum_{\substack{k=1 \\ 2 \nmid k}}^{N} \sqrt{k} \sum_{\substack{h=0 \\(h, k)=1}}^{k-1} \frac{\omega(h, k)^{2}}{\omega(2 h, k)} e^{-\frac{2 \pi i n h}{k}} \frac{d}{d n}\left(\frac{\sinh \frac{\pi \sqrt{n}}{k}}{\sqrt{n}}\right)+R_{2}(n, N) \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\left|R_{2}(n, N)\right|<\frac{N^{5 / 2}}{\pi n^{3 / 2}} \sinh \left(\frac{\pi \sqrt{n}}{N}\right) \tag{1.3}
\end{equation*}
$$

A positive sequence $\left\{a_{n}\right\}_{n \geq 0}$ is log-concave if for all $n \geq 1$,

$$
a_{n}^{2}-a_{n-1} a_{n+1} \geq 0
$$

Engel [6] proved that $\{\bar{p}(n)\}_{n \geq 2}$ is log-concave by using the asymptotic formula (1.2) with $N=3$ followed by (1.3). Prior to Engel's work on overpartitions, the log-concavity of the partition function $p(n)$ and its associated inequalities has been studied in a wider spectrum, details can be found in [1], [2], and [5]. Liu and Zhang [11] proved a family of inequalities for the overpartition function.
Chen, Guo and Wang [3] introduced the notion of ratio log-convexity of a sequence and established that ratio log-convexity implies log-convexity under a certain initial condition. A sequence $\left\{a_{n}\right\}_{n \geq k}$ is called ratio log-convex if $\left\{a_{n+1} / a_{n}\right\}_{n \geq k}$ is log-convex or, equivalently, for $n \geq k+1$,

$$
\log a_{n+2}-3 \log a_{n+1}+3 \log a_{n}-\log a_{n-1} \geq 0
$$

Let Δ be the difference operator defined by $\Delta f(n)=f(n+1)-f(n)$. Similar to the work done by Chen et al. [2] for $p(n)$, Wang, Xie and Zhang [14] proved the following two theorems.

Theorem 1.1. [14, Theorem 3.1] For each $r \geq 1$, there exists a positive number $n(r)$ such that for all $n \geq n(r)$,

$$
(-1)^{r-1} \Delta^{r} \log \bar{p}(n)>0 .
$$

Theorem 1.2. [14, Theorem 4.1] For each $r \geq 1$, there exists a positive number $n(r)$ such that for all $n \geq n(r)$,

$$
(-1)^{r-1} \Delta^{r} \log \bar{p}(n)<1+\frac{\pi}{2}\left(\frac{1}{2}\right)_{r-1} \frac{1}{n^{r-\frac{1}{2}}},
$$

where $(\alpha)_{r}:=\alpha \cdot(\alpha+1) \cdots(\alpha+n-1)$.
They raised the following question:
Problem 1.3. [14, Problem 3.4] Does there exist a positive number A such that

$$
\frac{(-1)^{r-1} \Delta^{r} \log \bar{p}(n)}{n^{-(r-1 / 2)}}>A
$$

for any r and all sufficiently large n ?

In other words, their statement reads "Moreover, we also wish to seek for a sharp lower bound for $(-1)^{r-1} \Delta^{r} \log \bar{p}(n)$ ".
The main motivation of this paper is to give an affirmative solution to the Problem 1.3 in Theorems 1.4 and 1.6. This in turn clarifies the asymptotic growth of $(-1)^{r-1} \Delta^{r} \log \bar{p}(n)$, see Corollary 1.7. Moreover, we reprove the log-concavity and its companion inequality in Corollary 1.8.

Theorem 1.4. For $n \geq 26$,

$$
\begin{equation*}
\log \left(1+\frac{\pi}{2 \sqrt{n}}\right)<\Delta \log \bar{p}(n)<\log \left(1+\frac{\pi}{2 \sqrt{n}}+\frac{\pi^{2}}{40 n}\right) \tag{1.4}
\end{equation*}
$$

For $r \geq 2$, we define

Definition 1.5.

$$
\begin{align*}
N_{0}(m) & := \begin{cases}1, & \text { if } m=1, \\
2 m \log m-m \log \log m, & \text { if } m \geq 2,\end{cases} \tag{1.5}\\
N_{1}(r) & :=\max \left\{85,\left[\frac{4}{\pi^{2}} N_{0}^{2}(2 r+2)\right\rceil\right\}, \tag{1.6}\\
C(r) & :=\frac{\pi}{2}\left(\frac{1}{2}\right)_{r-1}, \tag{1.7}\\
C_{1}(r) & :=(r-1)!+4 r^{2} C(r), \tag{1.8}\\
C_{2}(r) & :=\sum_{k=0}^{2 r-2} \frac{1}{(k+1) \pi^{k+1}}\left(\frac{k+1}{2}\right)_{r} \frac{1}{r^{k}}+\frac{r}{10^{r}}, \tag{1.9}\\
N_{2}(r) & :=\left\lceil\left(\frac{1+C_{1}(r)}{C(r)}\right)^{2}\right], \tag{1.10}\\
N_{3}(r) & :=\max \left\{N_{1}(r), 2 r^{2},\left\lceil\left(\frac{2^{r+1}\left(C_{2}(r)+1\right)}{(r-1)!}\right)^{2}\right],\left[\sqrt[r-1]{\left(\frac{2^{r} C^{2}(r)}{(r-1)!}\right)}\right]\right\} \tag{1.11}
\end{align*}
$$

$$
\begin{equation*}
N(r):=\max \left\{N_{2}(r), N_{3}(r)\right\} . \tag{1.12}
\end{equation*}
$$

Theorem 1.6. For $r \in \mathbb{Z}_{\geq 2}$ and $n \geq N(r)$,

$$
\begin{equation*}
0<\log \left(1+\frac{C(r)}{n^{r-1 / 2}}-\frac{1+C_{1}(r)}{n^{r}}\right)<(-1)^{r-1} \Delta^{r} \log \bar{p}(n)<\log \left(1+\frac{C(r)}{n^{r-1 / 2}}\right) \tag{1.13}
\end{equation*}
$$

where $C(r)$ and $C_{1}(r)$ are given in 1.7)-1.8).
Corollary 1.7. For $r \in \mathbb{Z}_{\geq 1}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{r-1 / 2}(-1)^{r-1} \Delta^{r} \log \bar{p}(n)=\frac{\pi}{2}\left(\frac{1}{2}\right)_{r-1} \tag{1.14}
\end{equation*}
$$

Proof. Multiplying both sides of (1.4) (resp. (1.13)) by \sqrt{n} (resp. by $n^{r-1 / 2}$) and taking limit as n tends to infinity, we obtain (1.14).

Corollary 1.8. [6, Theorem 1.2] For $n \geq 4, \bar{p}(n)$ is \log-concave.
Proof. Observe that $N(2)=344$ and from the lower bound of 1.13), we observe that $\{\bar{p}(n)\}_{n \geq 344}$ is log-concave and for the rest $5 \leq n \leq 343$, we confirm by numerical checking in Mathematica.

Corollary 1.9. [11, Equation (1.6)] For $n \geq 2$,

$$
\begin{equation*}
\frac{\bar{p}(n-1)}{\bar{p}(n)}\left(1+\frac{\pi}{4 n^{3 / 2}}\right)>\frac{\bar{p}(n+1)}{\bar{p}(n)} . \tag{1.15}
\end{equation*}
$$

Proof. Similar to the proof of Corollary 1.8, take $r=2$ and from the upper bound of (1.13), we conclude the proof.

Corollary 1.10. For $n \geq 18, \bar{p}(n)$ is ratio \log-convex.
Proof. Take $r=3$ and observe that $N(3)=1486$ and rest of the proof is similar to the proof of Corollary 1.8.

As an immediate consequence of Corollary 1.10, we have
Corollary 1.11. [7. Corollary 1.3] The sequence $\{\sqrt[n]{\bar{p}(n)}\}_{n \geq 4}$ is log-convex.
This paper is organized as follows. A preliminary setup for decomposing $(-1)^{r-1} \Delta^{r} \log \bar{p}(n)$ $=H_{r}+G_{r}$ (cf. see (2.4) and (2.5), as done in [14] and consequently, estimations for both H_{r} and G_{r} are given in Section 2. Proofs of Theorems 1.4 and 1.6 are given in Section 3.

2. PRELIMINARY LEMMAS

Following the notations given in Engel [6] and Wang, Xie and Zhang [14], split $\bar{p}(n)$ as

$$
\begin{equation*}
\bar{p}(n)=\widehat{T}(n)\left(1+\frac{\widehat{R}(n)}{\widehat{T}(n)}\right), \tag{2.1}
\end{equation*}
$$

where

$$
\begin{align*}
\widehat{T}(n) & =\frac{1}{8 n}\left(1-\frac{1}{\widehat{\mu}(n)}\right) e^{\widehat{\mu}(n)} \tag{2.2}\\
\text { and } \widehat{R}(n) & =\frac{1}{8 n}\left(1+\frac{1}{\widehat{\mu}(n)}\right) e^{-\widehat{\mu}(n)}+R_{2}(n, 3) \tag{2.3}
\end{align*}
$$

with $\widehat{\mu}(n)=\pi \sqrt{n}$.
Taking the logarithm on both sides of (2.1) and plugging the definitions from (2.2)-(2.3), we obtain

$$
\log \bar{p}(n)=\log \frac{\pi^{2}}{8}-3 \log \widehat{\mu}(n)+\log (\widehat{\mu}(n)-1)+\widehat{\mu}(n)+\log \left(1+\frac{\widehat{R}(n)}{\widehat{T}(n)}\right)
$$

Therefore,

$$
\begin{equation*}
(-1)^{r-1} \Delta^{r} \log \bar{p}(n)=H_{r}+G_{r} \tag{2.4}
\end{equation*}
$$

where

$$
\begin{align*}
H_{r} & =(-1)^{r-1} \Delta^{r}(-3 \log \widehat{\mu}(n)+\log (\widehat{\mu}(n)-1)+\widehat{\mu}(n)) \tag{2.5}\\
G_{r} & =(-1)^{r-1} \Delta^{r} \log \left(1+\frac{\widehat{R}(n)}{\widehat{T}(n)}\right) \tag{2.6}
\end{align*}
$$

Then we have that for $r \geq 1$,

$$
\begin{equation*}
H_{r}-\left|G_{r}\right| \leq(-1)^{r-1} \Delta^{r} \log \bar{p}(n) \leq H_{r}+\left|G_{r}\right| . \tag{2.7}
\end{equation*}
$$

To estimate the bounds for $(-1)^{r-1} \Delta^{r} \log \bar{p}(n)$, we need to establish bounds for H_{r} and $\left|G_{r}\right|$. Our first goal is to determine a bound for $\left|G_{r}\right|$ for $r \geq 1$ and then we further proceed with H_{r} but splitting in two cases, i.e., for $r=1$ and $r \geq 2$.

Lemma 2.1. [8, Lemma 2.1] For any integer $m \geq 1$ and $x \geq N_{0}(m)$,

$$
x^{m} e^{-x}<1
$$

where $N_{0}(m)$ is defined in 1.5.

$$
\text { Recall that } N_{1}(r)=\max \left\{85,\left\lceil\frac{4}{\pi^{2}} N_{0}^{2}(2 r+2)\right\rceil\right\}(\text { cf. (1.6) })
$$

Lemma 2.2. For all $n \geq N_{1}(r)$ and $r \geq 1$,

$$
\begin{equation*}
\left|G_{r}\right|<\frac{1}{n^{r+1}} \tag{2.8}
\end{equation*}
$$

Proof. Define $\widehat{e}(n):=\frac{\widehat{R}(n)}{\widehat{T}(n)}$. From the definition of $\widehat{R}(n)$ and $\widehat{T}(n)$ (cf. Equation 2.2)-2.3), we have

$$
\begin{align*}
&|\widehat{e}(n)|=\frac{|\widehat{R}(n)|}{|\widehat{T}(n)|} \\
&=\left|\frac{\frac{1}{8 n}\left(1+\frac{1}{\widehat{\mu}(n)}\right) e^{-\widehat{\mu}(n)}+R_{2}(n, 3)}{\frac{1}{8 n}\left(1-\frac{1}{\widehat{\mu}(n)}\right) e^{\widehat{\mu}(n)}}\right| \\
&<\frac{\widehat{\mu}(n)+1}{\widehat{\mu}(n)-1} e^{-2 \widehat{\mu}(n)}+\frac{36 \sqrt{3}}{\widehat{\mu}(n)-1} e^{-2 \widehat{\mu}(n) / 3} \\
&\left.\quad \quad \quad \quad \text { using } N=3 \text { in } \sqrt{1.3}) \text { and } \sinh (x)<\frac{e^{x}}{2} \text { for } x>0\right) \\
&=\frac{1}{\widehat{\mu}(n)-1} e^{-\widehat{\mu}(n) / 2}\left((\widehat{\mu}(n)+1) e^{-3 \widehat{\mu}(n) / 2}+36 \sqrt{3} e^{-\widehat{\mu}(n) / 6}\right) . \tag{2.9}
\end{align*}
$$

Since for all $n \geq 85$,

$$
(\widehat{\mu}(n)+1) e^{-3 \widehat{\mu}(n) / 2}+36 \sqrt{3} e^{-\widehat{\mu}(n) / 6}<\frac{1}{2} \text { and } \frac{1}{\widehat{\mu}(n)-1}<1
$$

from (2.9), it follows that for all $n \geq 85$,

$$
\begin{equation*}
|\widehat{e}(n)|<\frac{1}{2} e^{-\widehat{\mu}(n) / 2} \tag{2.10}
\end{equation*}
$$

Therefore, for all $n \geq 85$,

$$
\begin{align*}
\left|G_{r}\right| & \left.=\left|\sum_{i=0}^{r}(-1)^{r-1} \Delta^{r} \log (1+\widehat{e}(n))\right| \quad(\text { by } \overline{2.6})\right) \\
& =\left|\sum_{i=0}^{r}(-1)^{r-i}\binom{r}{i} \log (1+\widehat{e}(n+i))\right| \\
& \leq \sum_{i=0}^{r}\binom{r}{i}|\log (1+\widehat{e}(n+i))| \\
& \leq \sum_{i=0}^{r}\binom{r}{i} \frac{|\widehat{e}(n+i)|}{1-|\widehat{e}(n+i)|}\left(\text { since },|\log (1+x)| \leq \frac{|x|}{1-|x|} \text { for }|x|<1\right) \\
& \leq 2 \sum_{i=0}^{r}\binom{r}{i}|\widehat{e}(n+i)|\left(\text { as } \frac{x}{1-x} \leq 2 x \text { for } 0<x \leq \frac{1}{2}\right) \\
& <\sum_{i=0}^{r}\binom{r}{i} e^{-\widehat{\mu}(n+i) / 2}(\text { by }(2.10)) \\
& \leq \sum_{i=0}^{r}\binom{r}{i} e^{-\widehat{\mu}(n) / 2}\left(\text { since, }\left\{e^{-\widehat{\mu}(n) / 2}\right\}_{n \geq 1} \text { is a decreasing sequence }\right) \\
& =2^{r} e^{-\widehat{\mu}(n) / 2} . \tag{2.11}
\end{align*}
$$

Now applying Lemma 2.1 with $m=2 r+2$ and assigning $x \mapsto \frac{\widehat{\mu}(n)}{2}$, it follows that for $n \geq\left\lceil\frac{4}{\pi^{2}} N_{0}^{2}(2 r+2)\right\rceil$,

$$
\begin{equation*}
e^{-\widehat{\mu}(n) / 2}<\left(\frac{2}{\pi}\right)^{2 r+2} \frac{1}{n^{r+1}} \Longrightarrow 2^{r} e^{-\widehat{\mu}(n) / 2}<\left(\frac{2 \sqrt{2}}{\pi}\right)^{2 r+2} \frac{1}{n^{r+1}}<\frac{1}{n^{r+1}} \tag{2.12}
\end{equation*}
$$

Before we state the bounds for H_{r}, we recall the following result due to Odlyzko [12] on the relation between the higher order differences of a smooth function and its derivatives.

Proposition 2.3. Let r be a positive integer. Suppose that $f(x)$ is a function with infinite continuous derivatives for $x \geq 1$, and $(-1)^{k-1} f^{(k)}(x)>0$ for $k \geq 1$. Then for $r \geq 1$,

$$
(-1)^{r-1} f^{(r)}(x+r) \leq(-1)^{r-1} \Delta^{r} f(x) \leq(-1)^{r-1} f^{(r)}(x)
$$

Lemma 2.4. For all $n \geq 1$,

$$
\begin{equation*}
L^{(1)}(n) \leq H_{1} \leq U^{(1)}(n), \tag{2.13}
\end{equation*}
$$

where

$$
\begin{align*}
U^{(1)}(n) & =\frac{\pi}{2 \sqrt{n}}-\frac{3}{2(n+1)}+\frac{\pi}{2 \sqrt{n}(\widehat{\mu}(n)-1)} \tag{2.14}\\
\text { and } L^{(1)}(n) & =\frac{\pi}{2 \sqrt{n+1}}-\frac{3}{2 n}+\frac{\pi}{2 \sqrt{n+1}(\widehat{\mu}(n+1)-1)} . \tag{2.15}
\end{align*}
$$

Proof. Equation (2.13) follows immediately by applying Proposition 2.3 on each of the factors in H_{r} being present in (2.5) for $r=1$.

Lemma 2.5. For $r \geq 2$ and $n \geq 2 r^{2}$,

$$
\begin{equation*}
\frac{C(r)}{n^{r-\frac{1}{2}}}-\frac{C_{1}(r)}{n^{r}}<H_{r}<\frac{C(r)}{n^{r-\frac{1}{2}}}-\frac{(r-1)!}{2^{r} n^{r}}+\frac{C_{2}(r)}{n^{r+\frac{1}{2}}}, \tag{2.16}
\end{equation*}
$$

where $C(r), C_{1}(r)$, and $C_{2}(r)$ are given by (1.7)-1.9).
Proof. Rewrite (2.5) as

$$
\begin{equation*}
H_{r}=(-1)^{r-1} \Delta^{r}(\widehat{\mu}(n)-2 \log \widehat{\mu}(n))-\sum_{k=1}^{\infty}(-1)^{r-1} \Delta^{r}\left(\frac{1}{k \widehat{\mu}(n)^{k}}\right) \tag{2.17}
\end{equation*}
$$

and applying Proposition 2.3, we get

$$
\begin{align*}
\frac{\pi}{2}\left(\frac{1}{2}\right)_{r-1} \frac{1}{(n+r)^{r-\frac{1}{2}}}-\frac{(r-1)!}{n^{r}} & +\sum_{k=1}^{\infty} \frac{1}{k \pi^{k}}\left(\frac{k}{2}\right)_{r} \frac{1}{(n+r)^{r+\frac{k}{2}}} \leq H_{r} \tag{2.18}\\
& \leq \frac{\pi}{2}\left(\frac{1}{2}\right)_{r-1} \frac{1}{n^{r-\frac{1}{2}}}-\frac{(r-1)!}{(n+r)^{r}}+\sum_{k=1}^{\infty} \frac{1}{k \pi^{k}}\left(\frac{k}{2}\right)_{r} \frac{1}{n^{r+\frac{k}{2}}}
\end{align*}
$$

Since for all positive integers n, r and k,

$$
\sum_{k=1}^{\infty} \frac{1}{k \pi^{k}}\left(\frac{k}{2}\right)_{r} \frac{1}{(n+r)^{r+\frac{k}{2}}}>0
$$

Therefore,

$$
\begin{equation*}
\frac{\pi}{2}\left(\frac{1}{2}\right)_{r-1} \frac{1}{(n+r)^{r-\frac{1}{2}}}-\frac{(r-1)!}{n^{r}}<H_{r} \leq \frac{\pi}{2}\left(\frac{1}{2}\right)_{r-1} \frac{1}{n^{r-\frac{1}{2}}}-\frac{(r-1)!}{(n+r)^{r}}+\sum_{k=1}^{\infty} \frac{1}{k \pi^{k}}\left(\frac{k}{2}\right)_{r} \frac{1}{n^{r+\frac{k}{2}}} \tag{2.19}
\end{equation*}
$$

Now we further investigate the lower bound of H_{r}, given in (2.19).

$$
\begin{align*}
H_{r} & \geq \frac{\pi}{2}\left(\frac{1}{2}\right)_{r-1} \frac{1}{(n+r)^{r-\frac{1}{2}}}-\frac{(r-1)!}{n^{r}} \\
& =\frac{\pi}{2}\left(\frac{1}{2}\right)_{r-1} \frac{1}{n^{r-\frac{1}{2}}}\left(1+\frac{r}{n}\right)^{-r+\frac{1}{2}}-\frac{(r-1)!}{n^{r}} \\
& =\frac{\pi}{2}\left(\frac{1}{2}\right)_{r-1} \frac{1}{n^{r-\frac{1}{2}}}+\frac{\pi}{2}\left(\frac{1}{2}\right)_{r-1} \frac{1}{n^{r-\frac{1}{2}}} \sum_{m=1}^{\infty}\left(-\frac{2 r-1}{2}\right)\left(\frac{r}{n}\right)^{m}-\frac{(r-1)!}{n^{r}} . \tag{2.20}
\end{align*}
$$

To bound the infinite series in 2.20 , we proceed as follows

$$
\begin{align*}
&\left|\sum_{m=1}^{\infty}\binom{-\frac{2 r-1}{2}}{m}\left(\frac{r}{n}\right)^{m}\right|=\left|\sum_{m=1}^{\infty} \frac{(-1)^{m}}{4^{m}} \frac{\binom{2 r+2 m-2}{r+m-1}\binom{r+m-1}{r-1}}{\binom{2 r-2}{r-1}}\left(\frac{r}{n}\right)^{m}\right| \\
&\left.\leq \sum_{m=1}^{\infty} \frac{1}{4^{m}} \frac{\binom{2 r+2 m-2}{r+m-1}}{\binom{r+m-1}{r-1}}\left(\frac{r}{n}\right)^{m-1} \begin{array}{l}
m \\
r-1
\end{array}\right) \\
& \leq \sum_{m=1}^{\infty} \frac{2 \sqrt{r-1}}{\sqrt{\pi(r+m-1)}}\binom{r+m-1}{r-1}\left(\frac{r}{n}\right)^{m} \\
& \quad\left(\text { since }, \frac{4^{k}}{2 \sqrt{k}} \leq\binom{ 2 k}{k} \leq \frac{4^{k}}{\sqrt{\pi k}} \forall k \geq 1\right) \\
&<\frac{2 r}{n} \sum_{m=0}^{\infty}\binom{r+m}{r-1}\left(\frac{r}{n}\right)^{m} \\
& \leq \frac{2 r}{n} \sum_{m=0}^{\infty} r^{m+1}\left(\frac{r}{n}\right)^{m}\left(\text { as, }\binom{r+m}{r-1} \leq r^{m+1}\right) \\
&=\frac{2 r^{2}}{n} \sum_{m=0}^{\infty}\left(\frac{r^{2}}{n}\right)^{m} \leq \frac{4 r^{2}}{n} \text { for all } n \geq 2 r^{2} . \tag{2.21}
\end{align*}
$$

From (2.20) and 2.21), it follows that for $n \geq 2 r^{2}$,

$$
\begin{align*}
H_{r} & \geq \frac{\pi}{2}\left(\frac{1}{2}\right)_{r-1} \frac{1}{n^{r-\frac{1}{2}}}-\frac{\pi}{2}\left(\frac{1}{2}\right)_{r-1} \frac{4 r^{2}}{n^{r+\frac{1}{2}}}-\frac{(r-1)!}{n^{r}} \\
& >\frac{\pi}{2}\left(\frac{1}{2}\right)_{r-1} \frac{1}{n^{r-\frac{1}{2}}}-\left((r-1)!+2 \pi r^{2}\left(\frac{1}{2}\right)_{r-1}\right) \frac{1}{n^{r}} . \tag{2.22}
\end{align*}
$$

This finishes the estimation of the lower bound for H_{r}.
For the upper bound estimation of H_{r}, we start with (2.19) in the following way

$$
\begin{align*}
& H_{r} \leq \frac{C(r)}{n^{r-\frac{1}{2}}}-\frac{(r-1)!}{(n+r)^{r}}+\sum_{k=1}^{\infty} \frac{1}{k \pi^{k}}\left(\frac{k}{2}\right)_{r} \frac{1}{n^{r+\frac{k}{2}}} \\
& <\frac{C(r)}{n^{r-\frac{1}{2}}}-\frac{(r-1)!}{(2 n)^{r}}+\sum_{k=1}^{\infty} \frac{1}{k \pi^{k}}\left(\frac{k}{2}\right)_{r} \frac{1}{n^{r+\frac{k}{2}}} \quad\left(\text { since }, \frac{1}{(n+r)^{r}}>\frac{1}{(2 n)^{r}} \forall n>r\right) \\
& =\frac{C(r)}{n^{r-\frac{1}{2}}}-\frac{(r-1)!}{(2 n)^{r}}+\frac{1}{n^{r+\frac{1}{2}}} \sum_{k=0}^{2 r-2} \frac{1}{(k+1) \pi^{k+1}}\left(\frac{k+1}{2}\right)_{r} \frac{1}{\sqrt{n}^{k}}+\frac{1}{n^{r+\frac{1}{2}}} \sum_{k=2 r}^{\infty} \frac{1}{k \pi^{k}}\left(\frac{k}{2}\right)_{r} \frac{1}{\sqrt{n}^{k-1}} \\
& \leq \frac{C(r)}{n^{r-\frac{1}{2}}}-\frac{(r-1)!}{(2 n)^{r}}+\frac{1}{n^{r+\frac{1}{2}}} \underbrace{\sum_{k=0}^{2 r-2} \frac{1}{(k+1) \pi^{k+1}}\left(\frac{k+1}{2}\right)_{r} \frac{1}{r^{k}}}_{:=\widehat{C_{2}}(r)}+\frac{r}{n^{r+\frac{1}{2}}} \underbrace{\sum_{k=2 r}^{\infty} \frac{1}{k \pi^{k}}\left(\frac{k}{2}\right)_{r} \frac{1}{r^{k}}}_{:=S(r)} \tag{2.23}\\
& \text { (since, } \frac{1}{\sqrt{n}^{k}} \leq \frac{1}{r^{k}} \forall n \geq r^{2} \text {). }
\end{align*}
$$

In order to estimate the infinite series $S(r)$, we need to give an upper bound of $\left(\frac{k}{2}\right)_{r}$ by rewriting as

$$
\left(\frac{k}{2}\right)_{r}=\left(\frac{k}{2}\right)^{r} \prod_{i=0}^{r-1}\left(1+\frac{2 i}{k}\right):=\left(\frac{k}{2}\right)^{r} P(r, k) .
$$

Now,

$$
\begin{equation*}
\log P(r, k)=\sum_{i=0}^{r-1} \log \left(1+\frac{2 i}{k}\right)<\sum_{i=0}^{r-1} \frac{2 i}{k}=\frac{r(r-1)}{k} \Longrightarrow P(r, k)<e^{\frac{r(r-1)}{k}} . \tag{2.24}
\end{equation*}
$$

Using (2.24), we obtain

$$
\begin{equation*}
S(r)<\sum_{k=2 r}^{\infty} \frac{1}{k \pi^{k}}\left(\frac{k}{2}\right)^{r} e^{\frac{r(r-1)}{k}} \frac{1}{r^{k}} \leq \frac{e^{\frac{r-1}{2}}}{2^{r}} \sum_{k=2 r}^{\infty} \frac{k^{r-1}}{(\pi r)^{k}} \quad\left(\text { since }, e^{\frac{r(r-1)}{k}} \leq e^{\frac{r-1}{2}} \forall k \geq 2 r\right) . \tag{2.25}
\end{equation*}
$$

Moreover, $k^{r-1}<r^{k}$ for all $r \geq 2$ and $k \geq 2 r$. To observe this fact, we first note that to prove $k^{r-1}<r^{k}$, it is equivalent to show

$$
\begin{equation*}
\frac{r-1}{\log r}<\frac{k}{\log k} \tag{2.26}
\end{equation*}
$$

Define $f(x):=\frac{x}{\log x}$ and observe that $f(x)$ is strictly increasing for all $x>e$. As $k \geq 2 r \geq$ $4>e$, it follows that $f(k)>f(2 r)$ and the fact that $f(2 r)>\frac{r-1}{\log r}$ for $r \geq 2$, we conclude (2.26).

Applying (2.26) in 2.25, we get

$$
\begin{equation*}
S(r)<\frac{e^{\frac{r-1}{2}}}{2^{r}} \sum_{k=2 r}^{\infty} \frac{1}{\pi^{k}}=\frac{\pi}{\sqrt{e}(\pi-1)}\left(\frac{\sqrt{e}}{2 r^{2}}\right)^{r}<\frac{1}{10^{r}} . \tag{2.27}
\end{equation*}
$$

Hence, by (2.27) and (2.23), we obtain for all $n \geq r^{2}$,

$$
\begin{equation*}
H_{r}<\frac{C(r)}{n^{r-\frac{1}{2}}}-\frac{(r-1)!}{2^{r} n^{r}}+\frac{\widehat{C_{2}}(r)}{n^{r+\frac{1}{2}}}+\frac{r}{10^{r} n^{r+\frac{1}{2}}}=\frac{C(r)}{n^{r-\frac{1}{2}}}-\frac{(r-1)!}{2^{r} n^{r}}+\underbrace{\left(\widehat{C_{2}}(r)+\frac{r}{10^{r}}\right)}_{=C_{2}(r)} \frac{1}{n^{r+\frac{1}{2}}} \tag{2.28}
\end{equation*}
$$

3. Proof of Theorem 1.4 and 1.6

Proof of Theorem 1.4 Applying (2.13) and (2.8) in 2.7), we have for $n \geq 85$,

$$
\begin{equation*}
L^{(1)}(n)-\frac{1}{n^{2}}<\Delta \log \bar{p}(n)<U^{(1)}(n)+\frac{1}{n^{2}} . \tag{3.1}
\end{equation*}
$$

It is straightforward to show that for $n \geq 457$,

$$
\begin{equation*}
-\frac{3}{2(n+1)}+\frac{\pi}{2 \sqrt{n}(\widehat{\mu}(n)-1)}+\frac{1}{n^{2}}<-\frac{\pi^{2}}{10 n} \tag{3.2}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
U^{(1)}(n)+\frac{1}{n^{2}}<\frac{\pi}{2 \sqrt{n}}-\frac{\pi^{2}}{10 n} . \tag{3.3}
\end{equation*}
$$

Define $c_{n}:=\frac{\pi}{2 \sqrt{n}}-\frac{\pi^{2}}{10 n}$ and $d_{n}:=\frac{\pi}{2 \sqrt{n}}+\frac{\pi^{2}}{40 n}$. Observe that $c_{n}<1$ for $n \geq 1$ and $d_{n}<1$ for $n \geq 3$ and consequently for $n \geq 3$,

$$
\begin{equation*}
c_{n}<d_{n}-\frac{d_{n}^{2}}{2}+\frac{d_{n}^{3}}{3}-\frac{d_{n}^{4}}{4}<\log \left(1+d_{n}\right) \tag{3.4}
\end{equation*}
$$

since, $\log (1+x)>x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}$ for $x>0$. Invoking (3.3) and (3.4) in (3.1), we get for $n \geq 457$,

$$
\begin{equation*}
\Delta \log \bar{p}(n)<\log \left(1+\frac{\pi}{2 \sqrt{n}}+\frac{\pi^{2}}{40 n}\right) \tag{3.5}
\end{equation*}
$$

Similarly as before, it can be readily shown that for $n \geq 79$,

$$
\begin{equation*}
L^{(1)}(n)-\frac{1}{n^{2}}>\frac{\pi}{2 \sqrt{n}}-\frac{\pi^{2}}{8 n}+\frac{\pi^{3}}{24 n^{3 / 2}} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\pi}{2 \sqrt{n}}-\frac{\pi^{2}}{8 n}+\frac{\pi^{3}}{24 n^{3 / 2}}>\log \left(1+\frac{\pi}{2 \sqrt{n}}\right) \tag{3.7}
\end{equation*}
$$

as $\log (1+x)<x-\frac{x^{2}}{2}+\frac{x^{3}}{3}$ for $x>0$. Applying (3.6) and (3.7) into (3.1), it follows that for $n \geq 85$,

$$
\begin{equation*}
\Delta \log \bar{p}(n)>\log \left(1+\frac{\pi}{2 \sqrt{n}}\right) \tag{3.8}
\end{equation*}
$$

Equations (3.5) and (3.8) conclude the proof of Theorem 1.4 except for $26 \leq n \leq 456$, which we confirm by numerical checking in Mathematica.

Proof of Theorem 1.6. Applying (2.8) and (2.16) to the lower bound of (2.7), it follows that for $n \geq \max \left\{N_{1}(r), 2 r^{2}\right\}$,

$$
\begin{align*}
(-1)^{r-1} \Delta^{r} \log \bar{p}(n) & >\frac{\pi}{2}\left(\frac{1}{2}\right)_{r-1} \frac{1}{n^{r-\frac{1}{2}}}-\left((r-1)!+2 \pi r^{2}\left(\frac{1}{2}\right)_{r-1}\right) \frac{1}{n^{r}}-\frac{1}{n^{r+1}} \\
& >\frac{\pi}{2}\left(\frac{1}{2}\right)_{r-1} \frac{1}{n^{r-\frac{1}{2}}}-\left(1+(r-1)!+2 \pi r^{2}\left(\frac{1}{2}\right)_{r-1}\right) \frac{1}{n^{r}} \\
& =\frac{C(r)}{n^{r-\frac{1}{2}}}-\frac{1+C_{1}(r)}{n^{r}} . \tag{3.9}
\end{align*}
$$

Following (1.10), $N_{2}(r)=\left\lceil\left(\frac{1+C_{1}(r)}{C(r)}\right)^{2}\right\rceil$. Then for all $n \geq \max \left\{N_{1}(r), 2 r^{2}, N_{2}(r)\right\}$, it follows that

$$
\begin{equation*}
(-1)^{r-1} \Delta^{r} \log \bar{p}(n)>\log \left(1+\frac{C(r)}{n^{r-\frac{1}{2}}}-\frac{1+C_{1}(r)}{n^{r}}\right)>0 \tag{3.10}
\end{equation*}
$$

For the upper bound estimation, putting (2.8) and (2.16) together into the upper bound of (2.7), it follows that for $n \geq \max \left\{N_{1}(r), 2 r^{2}\right\}$,

$$
\begin{align*}
(-1)^{r-1} \Delta^{r} \log \bar{p}(n) & <\frac{C(r)}{n^{r-\frac{1}{2}}}-\frac{(r-1)!}{2^{r} n^{r}}+\frac{C_{2}(r)}{n^{r+\frac{1}{2}}}+\frac{1}{n^{r+1}} \\
& <\frac{C(r)}{n^{r-\frac{1}{2}}}-\frac{(r-1)!}{2^{r} n^{r}}+\frac{C_{2}(r)+1}{n^{r+\frac{1}{2}}} . \tag{3.11}
\end{align*}
$$

Next, our goal is to show

$$
-\frac{(r-1)!}{2^{r} n^{r}}+\frac{C_{2}(r)+1}{n^{r+\frac{1}{2}}}<-\frac{C^{2}(r)}{2 n^{2 r-1}}
$$

which is equivalent to

$$
\begin{equation*}
\frac{C^{2}(r)}{2}<n^{r-1}\left[\frac{(r-1)!}{2^{r}}-\frac{C_{2}(r)+1}{\sqrt{n}}\right] \tag{3.12}
\end{equation*}
$$

Note that for all $n \geq\left\lceil\left(\frac{2^{r+1}\left(C_{2}(r)+1\right)}{(r-1)!}\right)^{2}\right\rceil, \frac{(r-1)!}{2^{r+1}}-\frac{C_{2}(r)+1}{\sqrt{n}}>0$ and therefore

$$
\begin{equation*}
n^{r-1}\left[\frac{(r-1)!}{2^{r}}-\frac{C_{2}(r)+1}{\sqrt{n}}\right]=n^{r-1}\left[\frac{(r-1)!}{2^{r+1}}+\frac{(r-1)!}{2^{r+1}}-\frac{C_{2}(r)+1}{\sqrt{n}}\right]>n^{r-1} \frac{(r-1)!}{2^{r+1}} . \tag{3.13}
\end{equation*}
$$

Hence, to prove (3.12), it is sufficient to prove

$$
\begin{equation*}
n^{r-1} \frac{(r-1)!}{2^{r+1}}>\frac{C^{2}(r)}{2} \text { which holds for all } n \geq\left\lceil\sqrt[r-1]{\left(\frac{2^{r} C^{2}(r)}{(r-1)!}\right)}\right\rceil . \tag{3.14}
\end{equation*}
$$

Recall that

$$
N_{3}(r)=\max \left\{N_{1}(r), 2 r^{2},\left\lceil\left(\frac{2^{r+1}\left(C_{2}(r)+1\right)}{(r-1)!}\right)^{2}\right\rceil,\left\lceil\sqrt[r-1]{\left(\frac{2^{r} C^{2}(r)}{(r-1)!}\right)}\right\rceil\right\} \quad(\text { cf. (1.11) })
$$

. From (3.11) and (3.12), it follows that for $n \geq N_{3}(r)$,

$$
\begin{equation*}
(-1)^{r-1} \Delta^{r} \log \bar{p}(n)<\frac{C(r)}{n^{r-\frac{1}{2}}}-\frac{C^{2}(r)}{2 n^{2 r-1}}<\log \left(1+\frac{C(r)}{n^{r-1 / 2}}\right) . \tag{3.15}
\end{equation*}
$$

Equation (3.10) and (3.15) together imply that for $n \geq \max \left\{N_{2}(r), N_{3}(r)\right\}=N(r)$, 1.13) holds.

Acknowledgements

The author would like to express sincere gratitude to her advisor Prof. Manuel Kauers for his valuable suggestions on the paper. The author was supported by the Austrian Science Fund (FWF) grant W1214-N15, project DK13.

References

[1] W. Y. C. Chen. Recent developments on log-concavity and q-log-concavity of combinatorial polynomials. 22nd International Conference on Formal Power Series and Algebraic Combinatorics, 2010, http://www. billchen.org/talks/2010-FPSAC.pdf.
[2] W. Y. C. Chen, L. X. W. Wang and G. Y. B. Xie. Finite differences of the logarithm of the partition function. Math. Comput., 85:825-847, 2016.
[3] W. Y. C. Chen, J. J. F. Guo and L. X. W. Wang. Infinitely log-monotonic combinatorial sequences. Adv. Appl. Math., 52: 99-120, 2014.
[4] S. Corteel and J. Lovejoy. Overpartitions. Trans. Am. Math. Soc. 356, 1623-1635, 2004.
[5] S. DeSalvo and I. Pak. Log-concavity of the partition function. Ramanujan J., 38(1):61-73, 2015.
[6] B. Engel. Log-concavity of the overpartition function. Ramanujan J. 43(2), 229-241, 2017.
[7] G. Mukherjee. Log-convexity and the overpartition function, Ramanujan J., to appear.
[8] G. Mukherjee, H. W. J. Zhang and Y. Zhong. Higher order log-concavity of the overpartition function and its consequences, in preparation.
[9] G. H. Hardy, S. Ramanujan. Asymptotic Formulae in Combinatory Analysis. Proc. London Math. Soc. 17: 75-115, 1918.
[10] D. H. Lehmer. On the remainders and convergence of the series for the partition function. Trans. Amer. Math. Soc., 46:362-373, 1939.
[11] E. Y. S. Liu and H. W. J. Zhang. Inequalities for the overpartition function. Ramanujan J., 54(3): 485509, 2021.
[12] A. M. Odlyzko. Differences of the partition function. Acta Arith., 49:237-254, 1988.
[13] H. Rademacher. A convergent series for the partition function p (n). Proc. Nat. Acad. Sci. 23, 78-84, 1937.
[14] L. X. W. Wang, G. Y. B. Xie, A. Q. Zhang. Finite difference of the overpartition function. Adv. Appl. Math. 92, 51-72, 2018.
[15] H. S. Zuckerman. On the coefficients of certain modular forms belonging to subgroups of the modular group. Trans. Am. Math. Soc. 45(2), 298-321, 1939.

Institute for Algebra, Johannes Kepler University, Altenberger Strasse 69, A-4040 Linz, Austria.

Email address: gargi.mukherjee@dk-compmath.jku.at

Technical Reports of the Doctoral Program "Computational Mathematics"

2022
2022-01 D. Dominici: Comparative asymptotics for discrete semiclassical orthogonal polynomials Jan 2022. Eds.: M. Kauers, P. Paule
2022-02 P. Nuspl, V. Pillwein: Simple C^{2}-finite Sequences: a Computable Generalization of C-finite Sequences Feb 2022. Eds.: M. Kauers, P. Paule
2022-03 P. Nuspl, V. Pillwein: A comparison of algorithms for proving positivity of linearly recurrent sequences May 2022. Eds.: M. Kauers, P. Paule
2022-04 G. Mukherjee, H. W.J. Zhang, Y. Zhong: Higher order log-concavity of the overpartition function and its consequences May 2022. Eds.: M. Kauers, V. Pillwein
2022-05 G. Mukherjee: Log-Convexity and the Overpartition Function May 2022. Eds.: M. Kauers, V. Pillwein
2022-06 G. Mukherjee: Inequalities for the overpartition function arising from determinants May 2022. Eds.: M. Kauers, V. Pillwein
2022-07 G. Mukherjee: Inequalities for higher order differences of the logarithm of the overpartition function and a problem of Wang-Xie-Zhang May 2022. Eds.: M. Kauers, V. Pillwein

2021

2021-01 J. Qi: A tree-based algorithm on monomials in the Chow group of zero cycles in the moduli space of stable pointed curves of genus zero Jan 2021. Eds.: S. Radu, J. Schicho
2021-02 A. Jiménez Pastor, P. Nuspl, V. Pillwein: On C^{2}-finite sequences Feb 2021. Eds.: M. Kauers, P. Paule

2021-03 A. Jiménez Pastor: Simple differentially definable functions Feb 2021. Eds.: M. Kauers, V. Pillwein

2021-04 U. Langer, A. Schafelner: Simultaneous space-time finite element methods for parabolic optimal control problems March 2021. Eds.: V. Pillwein, R. Ramlau
2021-05 U. Langer, A. Schafelner: Space-time hexahedral finite element methods for parabolic evolution problems March 2021. Eds.: B. Jüttler, V. Pillwein
2021-06 D. Jodlbauer, U. Langer, T. Wick: Efficient monolithic solvers for fluid-structure interaction applied to flapping membranes April 2021. Eds.: B. Jüttler, V. Pillwein
2021-07 U. Langer, A. Schafelner: Adaptive space-time finite element methods for parabolic optimal control problems May 2021. Eds.: V. Pillwein, R. Ramlau
2021-08 D. Dominici: Recurrence relations for the moments of discrete semiclassical orthogonal polynomials November 2021. Eds.: P. Paule, M. Kauers
2021-09 A. Jiménez Pastor, P. Nuspl, V. Pillwein: An extension of holonomic sequences: C^{2}-finite sequences Dec 2021. Eds.:: P. Paule, M. Kauers

The complete list since 2009 can be found at https://www.dk-compmath.jku.at/publications/

Doctoral Program

"Computational Mathematics"

Director:

Assoc. Prof. Dr. Veronika Pillwein
Research Institute for Symbolic Computation

Deputy Director:

Prof. Dr. Bert Jüttler
Institute of Applied Geometry

Address:

Johannes Kepler University Linz
Doctoral Program "Computational Mathematics"
Altenbergerstr. 69
A-4040 Linz
Austria
Tel.: ++43 732-2468-6840

E-Mail:

office@dk-compmath.jku.at

Homepage:

http://www.dk-compmath.jku.at

