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Abstract

Studying objects defined by algebraic equations has been an active research area for a
long time. The reason for the interest is the wide variety of applications, which appear in
mathematical modeling and physics. Modeling algebraic objects is an essential ingredient
of free-form surface visualization and numerical simulations. Thus modeling algorithms are
frequently used in CAD-systems, manufacturing, robotics etc. Several problems in applica-
tions are described by multivariate polynomial systems with a low dimensional solution set.
In the thesis we present a method to generate bounding regions for one- or zero-dimensional
solution sets of multivariate polynomial systems.

The one-dimensional solution set of a multivariate polynomial system forms an algebraic
curve. These curves are defined as the intersection curves of algebraic surfaces. Representing
these algebraic curves is a fundamental problem of some geometric algorithms. For instance
such algebraic curves appear as the boundary curves of surfaces created by Boolean operations
or the self-intersection curves of surfaces. Due to the importance of these curves several
algorithms have been introduced to approximate them, especially for curves embedded in
lower dimensional spaces. We formulate in the thesis a new geometrical method, which
approximates one-dimensional algebraic sets. The algorithm generates a set of quadratic
regions, the so called “fat arcs” , which encloses the algebraic curve within a user specified
tolerance. We describe different methods, how to generate these bounding regions, and we
study their behavior. Then we combine the fat arc generation with the standard subdivision
technique.

The computation of zero-dimensional solution sets of multivariate polynomial systems
has also several applications in algebra and geometry. Therefore various methods exist to
find or to isolate the roots of polynomial systems. They use symbolic, numeric or combined
techniques in order to find the solutions. In the end of the thesis we generalize the definition
of fat arcs to the concept of fat spheres. We introduce an iterative domain reduction method
based on fat sphere generation. This method generates sequences of bounding regions, which
converge with order three to the single roots of a multivariate polynomial system.



Zusammenfassung

Analyse und Bearbeitung von Objekten aus der reellen algebraischen Geometrie sind seit
langem ein bedeutendes Forschungsfeld. Ein Grund dafiir sind ihre vielfdltigen Anwendungen,
welche unter anderem in der mathematischen Modellierung und Physik auftreten. Methoden
zur Modellierung algebraischer Objekte sind fiir die Darstellung von Freiformflichen und nu-
merischen Simulationen von essentieller Bedeutung. Dementsprechend finden diese Methoden
Anwendung in CAD-Systemen, in der industriellen Fertigung, der Robotik, etc. Viele Prob-
leme werden dabei in Form multivariater polynomieller Systeme mit niedrigdimensionaler
Losungsmenge dargestellt. In dieser Arbeit présentieren wir eine Methode zur Erstellung von
,bounding regions” fiir ein- und nulldimensionale Lisungsmengen multivariater polynomieller
Systeme.

Die eindimensionale Losungsmenge eines multivariaten polynomiellen Systems bildet eine
algebraische Kurve. Diese Kurven konnen als Schnittkurven algebraischer Flichen betrachtet
werden. Die Darstellung dieser algebraischen Kurven ist ein fundamentales Problem der algo-
rithmischen Geometrie. Solche Kurven entstehen zum Beispiel als Randkurven von Fliachen
bei Anwendung boolescher Operationen oder als Selbstschnitte von Flachen. Aufgrund ihrer
grofsen Bedeutung existieren bereits viele Algorithmen zur Approximation algebraischer Kur-
ven, speziell Kurven eingebettet in niedrigdimensionale Rdume. Wir formulieren in dieser Ar-
beit eine neue geometrische Methode, die eindimensionale, algebraische Mengen approximiert.
Der Algorithmus erzeugt Regionen zweiten Grades, sogenannte ,fat arcs” , die die algebraische
Kurve unter Beriicksichtigung einer vorgegebenen Toleranz abdecken. Wir beschreiben ver-
schiedene Methoden diese ,bounding regions” zu erzeugen und analysieren deren Verhalten.
Weiters vereinen wir die ,fat arc” Erzeugung mit der Subdivisionsmethode.

In der Algebra und in der Geometrie hat das Auffinden nulldimensionaler Losungsmengen
multivariater polynomieller Systeme zahlreiche Anwendungen. Daher existieren viele Meth-
oden solche Lésungen polynomieller Systeme zu finden oder zu isolieren. Diese Methoden
verwenden symbolische, numerische oder kombinierte Techniken zum Auffinden der Losun-
gen. Am Ende dieser Arbeit verallgemeinern wir die Definition der ,fat arcs” zum Konzept
der ,fat spheres” . Wir fiihren eine iterative Gebietunterteilungsmethode ein, die auf ,fat
spheres” basiert. Diese Methode erzeugt ,bounding regions”, die in dritter Ordnung gegen die
einfachen Wurzeln multivariater polynomieller Systeme konvergieren.



Osszefoglalas

Az algebrai feliiletek és gorbék vizsgalata mar husszu ideje igen aktiv kutatési teriilet. En-
nek oka, hogy a matematikai modellezés és a fizika teriiletén szamos alkalmazasuk ismert. Az
algebrai objektumok modellezése fontos GsszeteviGje a feliiletek megjelenitésének és bizonyos
numerikus szimulidcioknak. Ennek megfelelGen gyakran taldlkozhatunk kiilonb6zé modellezs
algoritmusokkal CAD-rendszerekben, gyartasi folyamatok sordn, a robotikaban stb. A gyako-
rlatban szamos probléma irhato le olyan tébbvaltozds polinomrendszerek segitségével, melyek
megoldéstere alacsony dimenzios. A kovetkezSkben egy olyan modszert ismertetiink, amely
tobbvaltozos polinomrendszerek egy- vagy nulldimenziés megoldashalmazat kozeliti tigyn-
evezett hatarolo teriiletek (bounding regions) segitségével.

Egy tobbvaltozos polinom-egyenletrendszer egydimenziés megoldashalmaza algebrai gor-
bét hataroz meg. Az ilyen gérbék mint algebrai feliilletek metszésgorbéi allnak elg. Néhany
geometriai algoritmusnak alapvetd épitSkove ezen gorbék leirdsa. Ilyen gorbék példaul a
Bool-féle miiveletek segitségével elgallitott feliiletek hatargorbéi vagy onatmetszé feliiletek
metszésgdrbéi is. Fontossaguknak koszonhetfen ilyen gorbék kozelitésére szamos algoritmus
ismert, kiilondsen alacsony dimenzos terekbe dgyazott gorbére. A disszertacioban egy olyan
1j geometriai moédszert mutatunk be, amely segitségével egydimenzids algebrai sokasdgokat
kozelithetiink. Az 10j algoritmus kvadratikus hatarold teriileteket, tigynevezett ,yvastagitott
iveket” (fat arcs) szamol, melyek magukba foglaljak az algebrai gorbét, mindamellett &t-
mérdjiikk nem halad meg egy elére megadott hibahatart. A disszertacioban t6bb kiillénbozs
modszert is ismertetiink a vastagitott ivek szémolasara, és vizsgéljuk ezek kiilénb6z6 tulajdon-
sagait is. Végiil kombinéljuk a hatarold teriiletek szamolasat az algebrai gérbék felosztasaval.

Tobbvaltozés polinomrendszerek nulldimenziés megoldashalmazanak kiszamitasa az alge-
bra és a geometria szidmos alkalmazasiasdban fontos szerepet jatszik. Ezért tobb kiilonb6zs
modszer is ismert polinom-egyenletrendszerek gyokeinek kiszamitésasra és szétvalasztasara.
Ezek az algoritmusok szimbolikus, numerikus vagy vegyes megoldasi technikdkat alkalmaz-
nak a megoldasok keresésekor. A disszertacid utolso fejezetében altalanositjuk a vastagitott
ivek definicidjat, és bevezetjiik a vastagitott gomb fogalmat. Bemutatunk egy olyan iter-
ativ algoritmust, mely vastagitott gombdket hasznal a gyokdket kozelité hatarold teriiletek
csokkentésére. Ez a modszer régiok olyan sorozatéval kozeliti az egyes megoldasokat, amely
harmadrendben konvergél a tobbvéltozos egyenletrendszer egyszeres gyokeihez.
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Chapter 1

Introduction

1.1 Polynomial Solvers

Solving multivariate polynomial systems is a key problem in algebra and geometry. It has
several applications, therefore various methods exist to compute the solution sets of polyno-
mial systems. These methods are using symbolic, numeric or combined techniques in order
to find the solutions.

Representing algebraic curves is a fundamental problem of geometric computing. Im-
plicitly defined algebraic curves can be described as the intersection curves of algebraic sur-
faces. Computation of such a surface-surface intersection is a basic operation in geometric
modeling.

Intersecting low degree implicitly defined surfaces has attracted a lot of interest in the
literature. Quadratic surfaces are the simplest curved surfaces, therefore they are frequently
used in computational geometry. The intersection computation of such surfaces has been
discussed thoroughly in [8, 11, 40, 45, 46].

Several different methods have been developed for computing the intersection of algebraic
surfaces (see [19, 31, 39]). Many of them are symbolic-numeric algorithms. The most widely
used numeric methods are the lattice evaluation, tracing and subdivision-based methods.

Lattice evaluation techniques generate a set of low dimensional sub-problems. The solu-
tions of these sub-problems are interpolated to approximate the general solution. Marching
or tracing methods generate point sequences along the connected components of the curve.
They necessarily use some topological information to find starting, turning and singular
points [3, 10, 16, 22].

Subdivision algorithms decompose the problem into several sub-problems, and sort these
problems according to the curve topology [2, 25]. The decomposition terminates if suitable
approximating primitives can be generated for each sub-problem [29]. In order to construct
these approximating primitives several local approximation techniques can be applied, such
as interpolation, bounding region generation or least-squares approximation.

Real root finding is considered as a difficult task. It is an important problem, therefore
several methods were developed to solve it. A general overview about the multivariate root
finding algorithms is given in [13, 38]. The solvers described in the literature are using either
algebraic or geometric tools.



1 Introduction

Algebraic approaches, such as Grobner-basis technique [5], resultant based methods or
continuous fractions methods assure exact and efficient solution algorithms. These algorithms
frequently provide more information about the solutions than it is needed in the applications.
It is often unnecessary to compute all solutions. For instance, CAD-systems usually require
information only about real solutions, which lie in a certain domain. Moreover these symbolic
methods are not really suitable for numerical computations. An algebraic solver, which is
using the Grobner-basis technique, was developed for instance by Rouillier [33] for bi-variate
polynomial systems. Busé et al. considered resultant based methods in [6, 7]. In [14] an
algebraic method is described, which is using Sturm-Habicht sequences.

Homotopy solvers compute a family of root-finding problems. The method transforms a
simple problem to the original one in several steps, and computes the roots of each inter-
mediate problem. The computed sequence of roots converges to the solutions of the original
root-finding problem. However such computations usually require inefficient memory and
time. Polynomial solvers based on homotopy methods are described in [24, 28].

In order to develop robust approximation algorithms a great leap forward was to use
Bernstein-Bézier polynomials. The stability of this representation form allows to develop
algorithms for approximating algebraic sets given in higher dimensional space. The first gen-
eral numerical algorithms using polynomials given in BB-form were developed by Sherbrooke
and Patrikalakis [39]. These are subdivision methods for finding zero dimensional solution
sets of multivariate polynomial equations.

Subdivision algorithms are based on the “divide and conquer” paradigm. They compute
in a certain domain (usually in an axis-aligned box), and provide information only about
real-roots. If we are interested in certain properties of a root, like multiplicity, then further
computations are necessary. Subdivision algorithms decompose the problem into several sub-
problems. The decomposition terminates if suitable bounding primitives can be generated
in each sub-problem [29]. In order to construct these approximating primitives several local
domain reduction strategies can be applied. The first subdivision solvers were developed by
Sederberg et al. for bivariate Bézier-polynomials. They are using clipping and subdivision
techniques [35, 36]. Later on a family of algorithms was invented, which is using projection
techniques [39]. The most recently developed solvers are published by Mourrain et al. [13]
and Elber et al. [12].

1.2 Outline

In the thesis we present a method to bound one- or zero-dimensional solution sets of multi-
variate polynomial systems. In order to approximate the solution of such polynomial systems
we put the emphasis on the geometrical properties of them. We develop numeric algorithms
based on a new bounding region generation method and the standard subdivision technique.
We introduce an algorithm, which generates a set of quadratic bounding regions for implic-
itly defined algebraic curves. Later these regions are generalized to bound implicitly defined
surfaces. Computing the intersection of these bounding regions leads to a technique, which
generates bounding domains around the real roots of multivariate polynomial systems.

In the next chapter we describe a method, which generates bounding regions for implicitly
defined planar curves. This method is using special bounding primitives, the so called “fat
arcs” . The construction of fat arcs was introduced by Sederberg [37] to approximate planar
parametric Bézier curves. We generalize this definition in order to bound implicitly defined
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curves. We present several different techniques to generate fat arcs in R%. After discussing
the main steps and the properties of these techniques we compare them. Then we combine
the local fat arc generation with iterative subdivision. In the end of the chapter we present
several examples and show an application.

In Chapter 3 we present an algorithm, which generates bounding regions for implicitly
defined algebraic space curves. The method is the generalization of the fat arc generation
technique from Chapter 2. We analyze the properties of the curve approximation method in
the three-dimensional case, and combine it with subdivision technique. Finally we present
some examples and applications of the method.

The three-dimensional fat arc generation technique can also be generalized to implicitly
defined algebraic curves represented in the n-dimensional space. In the fourth chapter we
present an algorithm, which generates fat arcs to bound one-dimensional algebraic sets in
R™. We describe also the general properties of the technique.

In Chapter 5 we introduce fat spheres as multidimensional bounding regions for implic-
itly defined algebraic objects. Then we describe a local domain reduction strategy to bound
intersection points of algebraic objects. We combine this local algorithm with iterative subdi-
vision. This hybrid algorithm can be applied for approximating the real roots of multivariate
polynomial systems. In the end of the chapter we present several two- and three-dimensional
examples.

Finally we summarize the results of the thesis in Chapter 6.
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Chapter 2

Fat Arcs for Implicitly Defined Planar
Curves

The approximation of implicitly defined curves is one of the fundamental problems in com-
putational geometry. In this chapter we present two techniques, which generate bounding
regions for implicitly defined curves. Both methods are the generalization of an approxima-
tion technique for planar parametric curves using special bounding primitives. After discussed
the main steps and the properties of the algorithms, we compare them. In the end of the
chapter we present several examples and show an application.

2.1 Fat Arcs in 2D

In this section first we give a short overview of the related work on planar curve approxima-
tion. Then we introduce fat arcs, which are special type of bounding primitive for planar
parametric curves. In order to generalize the definition of these primitives to implicitly de-
fined curves, we describe the planar algebraic curves as the zero level set of polynomials in
Bernstein-Bézier tensor product form.

2.1.1 Bounding Region Generation

Bounding regions, which enclose segments of planar curves, are frequently needed for various
geometric computations, e.g., for solving the intersection problem between two planar curves.
Axis-aligned bounding boxes (min-max boxes), which can easily be generated both for planar
parametric curves and for implicitly defined curves, are one of the simplest instances. Other
useful primitives include fat lines (bounding strips, see e.g. [4]), the convex polygons obtained
as a convex hull of the control polygons or fat arcs [37].

The performance of a bounding region depends on the approximation order. For a bound-
ing primitive with approximation order k£ the number of primitives needed to bound a curve
with a given tolerance e grows like W Consequently, the use of geometric primitives with
higher approximation order may provide computational advantages. Bounding boxes have
only approximation order k = 1, while both the convex hull of control polygons and fat lines
provide approximation order 2, and fat arcs even have approximation order 3.

Clearly, it is possible to define bounding regions with an even higher approximation order.
Fat arcs seem to be particularly useful since they provide a reasonable trade-off between
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geometric flexibility and the computational simplicity of elementary geometric operations.
For instance, the computation of the intersection of two circular arcs requires solely the
solution of quadratic equations, while this becomes far more complicated for higher order
objects.

Various methods have been described in the literature for generating an arc spline curve
which approximates a given parametric curve with a prescribed tolerance, see e.g. [48] for
many related references. The use of arc splines for geometric design applications can be traced
back to a classical VTO report of Sabin [34|. Marciniak and Putz dealt with the minimization
of the number of arcs to approximate a curve under a give tolerance [27]. Later Qiu et al.
improved their method [32]|. In a number of papers, Meek and Walton applied arc splines to
approximate parametric curves [42, 43, 44] Yong used arc splines for quadratic Bézier curve
approximation [49]. Feichtinger et al. compared various biarc interpolation schemes [41].
Held and Eibl approximated with biarcs simple planar polygons either for symmetric and
asymmetric tolerance bounds [18].

2.1.2 Fat Arcs for Planar Parametric Curves

The construction of fat arcs was introduced by Sederberg [37]. He developed a method
to approximate planar parametric Bézier curves. His method generates a set of bounding
regions, each consisting of an approximating circular arcs with some finite thickness.

The approximating arc — the so called median arc — is usually defined by three points from
the parametric curve. These interpolation points can be chosen in various ways |26, 37|, for
instance as the two endpoints of the curve segment and the intersection point of the bisector
of the endpoints and the curve segment. Of course, any other approximating arc generation
technique can be used for median arc generation.

The next step of the method is to measure the distance between the curve and the median
arc. Frequently an upper bound is used to estimate the distance. An offset of the median arc
can be defined with this distance bound. The boundaries of the offset are concentric arcs,
whose radii are the sum and the difference of the median arc radius and the distance bound.
This offset is a part of an annulus, and it defines a bounding region for the original curve
segment.

P1, bisector

r(t)

Figure 2.1: Fat arc generation for planar parametric curve.

Since the approximation order of circular arcs is equal to three, the offset distance behaves
as O(h?), where h is the length of the given curve segment. So the method is simple, and it

6
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has a relatively high convergence rate.

All existing algorithms for fat arc generation deal exclusively with parametric curves. Our
aim is to apply this method to implicitly defined curves. Although the steps of the algorithm
are more complicated in the implicit case, the expected convergence rate is the same as for
the parametric curves. So we implemented different approximation and distance bounding
techniques to get a fast and accurate computational method.

2.1.3 Regular Planar Algebraic Curves

In order to construct fat arcs for planar algebraic curves, we assume that the bivariate polyno-
mial f defining the curve is given by its tensor-product Bernstein-Bézier (BB) representation
with respect to the rectangular domain Qg = [a1, £1] X [ag, B2].

y) =YY diBlu(@)B},(y). (2.1)

i=0 j=0

with certain coefficients d;; € R, where

- () () (25) e e

The curve is given as the zero set of the bivariate polynomial

C(f,Q0) ={(z,y) : f(z,y) =0} N€. (2.3)

Clearly, the curve may be an empty point set, or it may consist of more than one curve
segment. In order to control the behavior of the curve in the computational domain we use
the following definition.

Definition 2.1. A point p of an algebraic curve C(f,Q) is called singular in the domain
QO C Qq, if the gradient vector V f(p) is zero (and called regular otherwise). A curve segment
1s reqular, if any point of the segment is reqular.

A regular curve consists of one or more single branches of the curve without any self-
intersection or loops.

Observation 2.2. A general lower bound can be given for the gradient length in any point
(z,y) of a domain Q with using the BB-representation of the polynomial f. The tensor—
product BB-representation of the square of the gradient length is

(WY + <af . > %ithm )B"(y). (2.4)

=0 j=0

It can be found using the differentiation, product and degree elevation formulas of BB-
polynomials (see [19]). This representation provides us a general lower bound for the gradient
length

IVl > \/max{o,%n hijh = G. (2.5)

If G is non-zero, then the gradient does not vanish in the domain €. This implies also, that
the curve C(f,2) is regular in the domain .
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2.2 Fat Arc Generation with Parametric Arcs

In this section we describe a fat arc generation method for implicitly defined curves. The
algorithm is based on a technique, which is similar to the original construction for planar
parametric curves. It generates interpolating circular arcs as median arcs, and computes fat
arc thickness with the help of one-sided Hausdorff distance.

2.2.1 Topological Criterion

In order to generate fat arcs with interpolation technique, we need to detect domains con-
taining only one segment of the implicitly defined curve. Various criteria have been discussed
in the literature for isolating a single segment of an algebraic curve. For instance, different
types of discriminating curve families have been used in [47]. These discriminating fam-
ilies are particularly useful in combination with algorithms that trace the algebraic curve
segments.

We are interested in a criterion which guarantees that the sub-domain Q C €y contains a
regular single curve segment with exactly two transversal intersections with the boundaries.
Empty domains, which do not contain any points of the curve, should be also detected.
In order to find such domains we analyze the sign changes of the BB-coefficients in the
representation.

Observation 2.3. If a polynomial is represented by only negative or only positive
BB-coefficients in a sub-domain €2, then none of the points in the domain belongs to the
zero set of the polynomial.

This observation follows from the convex hull property of BB-polynomials. A function
with only positive or negative coefficients can be bounded away from zero by the coefficient
which has the smallest absolute value.

We would like to generate fat arcs for curve segments, which consist of a single arc,
are regular and do not form loops in the domain. The following Lemma 2.4 gives sufficient
conditions to detect domains with single segment of a regular algebraic curve.

Lemma 2.4. Consider a reqular algebraic curve segment defined by the polynomial in the
form (2.1) over a domain Q2. We say that the coefficients exhibit a corner event, if

e the coefficient at one of the corners is equal to zero and
e the first non-zero coefficients along the two neighboring boundaries have a different sign.
We say that the the coefficients exhibit an edge event, if

e the control polygon along one of the domain boundaries has exactly one sign change
from plus to minus or vice versa.

If the number of the corner and edge events is equal to two in 2, then the domain contains a
single curve segment, which is connected, and which intersects the boundaries of the domain
i exactly two points.

Proof. For the proof it suffices to observe that each event guarantees that the implicitly
defined curve crosses the boundaries of the domain in exactly one point. Since we supposed
that the curve is regular, no self-intersections or loops appears in the domain. O



2.2 Fat Arc Generation with Parametric Arcs

The conditions of Lemma 2.4 are sufficient, but not necessary. For example, the lemma
excludes the case of a single arc, which crosses twice the same segment of the domain bound-
ary. However, in some cases the conditions of Lemma 2.4 are also necessary in the asymptotic
sense. The following lemma describes such a special case. It supposes that the coordinates of
the gradient vector are not vanishing in any point of the algebraic curve in the computational
domain (the curve is regular in both coordinate directions).

Lemma 2.5. Consider an algebraic curve segment defined by the polynomial f over a
domain Qq. We suppose that there exists G > 0, such that if (x,y) € Qo satisfies f(x,y) =0,
then the partial derivatives satisfy

min{| fz(z, )|, | fy(z,9)|} > G. (2.6)

Under these conditions after a certain number of successive subdivisions of g each sub-
domain salisfies either the condition of Lemma 2.4 or the conditions of Observation 2.3.
This implies that all sub-domains are detected as a domain with single curve segment or an
empty domain.

Proof. We supposed that there exists G > 0 which is a lower bound for the partial derivatives
along the curve. Therefore the BB-coefficients in the representation of f, and f, can be
bounded away from zero if we compute in a sufficiently small sub-domain of €2 close to the
algebraic curve. Thus the restriction of f, and f, to a domain boundary (z=constant or
y—constant) has only positive or only negative control points in the BB-representation. It
means that f has a sequence of control points restricted to each domain boundary, which is
monotone increasing or decreasing.

If the first and last control points have the same sign along a certain domain boundary,
then all control points have the same sign. In this case according to Lemma 2.4 no event
occurs along the domain boundary. If the first and last control points have different sign,
then exactly one sign change occurs along the control polygon. It means that an edge event
occurs. If one of the end control point is zero, it gives a corner event.

Each control polygon is monotone increasing or decreasing along the domain boundaries,
and they are connected in the corners of the domain. Therefore the sum of the number of
corner and edge events has to be even. If this event number is zero, then Observation 2.3
is satisfied. It is because all coefficients are strictly positive or negative along the domain
boundary, and the partial derivatives are also bounded away from zero. If the corner and
edge event number is equal to two, then the conditions of Lemma 2.4 are satisfied. In the case
when the number of corner and edge event is more than two the domain contains more than
one curve segment. They are not intersecting each other since the gradient is not vanishing.
Therefore these segments are separated via subdivision in to different domains. O

Remark 2.6. The conditions of Lemma 2.5 are necessary in a sense, that after a certain
number of subdivisions all domains satisfy either the condition of Lemma 2.4 or the condi-
tions of Observation 2.3. The following example demonstrates the topology detection, if the
conditions of Lemma 2.5 are not satisfied. Suppose that our algebraic curve is defined by the
polynomial

1

flay) =y - <x— §>27 (z,y) € Q= [0,1].

9



2 Fat Arcs for Implicitly Defined Planar Curves

Along the domain boundary, which is defined by y = 0, the point x = % is a point of

the algebraic curve. We study the domains around the point (%, 0) generated by adaptive
subdivision. Each such domain has a boundary along y = 0, which can be represented by
the interval = € [a,b]. The function restricted to this segment of the domain boundary is

£(2,0) = g(a) = — <x— —>2, z € [a,b].

The adaptive subdivision implies that a and b are rational numbers in the form 2% < 1, where
k,n € Z. Thus 1 € (a,b) moreover

ga) <0, g(b)<0 and g G) — 0.

Therefore the control polygon of g has always at least two sign changes, or it has a control
point equal to zero, which is not the end point of the control sequence. This implies that
neither the condition of Observation 2.3 nor the conditions of Lemma 2.4 can be fulfilled for
any sub-domains generated around the curve point (%, 0).

Remark 2.7. Suppose that the points of the algebraic curve, which have tangent vector
parallel to a coordinate axes, are not on the grid lines of the adaptive subdivision. Then after
a certain number of subdivisions all sub-domains are detected as a domain with single curve
segment or as an empty domain.

2.2.2 Local Algorithm

We present here a local algorithm, which generates fat arc in domains consisting a single
segment of the curve. It assumes that the conditions of Lemma 2.4 are satisfied. Later on
we will describe a global algorithm, which detects the domains, where the local algorithm is
applicable. The local algorithm —summarized in Algorithm 1 —is based on the corresponding
techniques in the parametric case. It generates median arc in a parametric form with inter-
polation technique (see later in Section 2.2.3) and uses the estimated Hausdorff distance (in
Section 2.2.4).

The algorithm is successful, if it finds the median arc, and the fat arc thickness is smaller
than the prescribed tolerance €. Then the algorithm returns with a fat arc, which bounds
the curve segment.

It may happen, that there are no fat arc boundaries, or only one of the bounding arcs
can be generated (e.g. when the distance bound of the median arc and the implicitly defined
curve is greater then the radius of the meridian circle, or one of the bounding arcs does not
intersect the computational domain). The local algorithm fails if no fat arc is generated and
returns with the empty set.

Fig.2.2 presents three examples of fat arcs which have been generated with the help of
Algorithm 1.

2.2.3 Median Arc Generation with Interpolation

This approximation technique is based on the corresponding techniques in the parametric
case. Therefore we have to ensure that the algebraic curve has a single segment in the

10



2.2 Fat Arc Generation with Parametric Arcs

Algorithm 1 FatArcLocal_2d1 (f,$2,¢)

Require: The conditions of Lemma 2.4 are satisfied.

I: Pend = {P1,P2} < approximate end points of the implicitly defined curve

2: pmia = {P3} « approximate inner point of the implicitly defined curve

3. if #pepg = 2 and #pig = 1 then

4: S + circle through p1, p2, p3 {median circle}
5. o< upper bound of HD(S N, CUIN) {see Lemma 2.8}
6: if o <e and p < radius of S then

7 S, + offset ring of S with distance p {fat circle}
8: S§*T,87 « inner and outer circle of 9S,

9: if there is no sign change of f along STNQ or ST NQ then

10: return NS, {fat arc has been found}
11: end if

12 end if

13: end if

14: return ( {no fat arc has been found}

Figure 2.2: Examples for fat arc generation with the help of algorithm FatArcLocal_2d1. The
red curves are the implicitly defined curves. The median circles are shown in green.

computational domain. We use Lemma 2.4 to detect such curve segments. In order to
construct the median arc we approximate three points of the implicitly defined curve. Two
of them are the intersection points of the curve with the domain boundary, while the third
point is the intersection point of the bisector of the first two approximation points.

From Lemma 2.4 we know also, that in the case of a corner event the corner of the com-
putational domain is a point of the curve. In the case of an edge event the corresponding edge
contains an intersection of the curve with the boundary of the domain. It is approximated
then, such that we consider the restriction of f to the edge, and generate its best L? approxi-
mation by a quadratic polynomial ¢*. This polynomial additionally interpolates the values of
f at the two end points of the edge. The root of ¢* then defines the approximate intersection
of the implicitly defined curve with the edge. If no simultaneous corner event occurs at the
end points of the edge, then there is exactly one root of ¢*, since the BB-coefficients of f
possess exactly one sign change from plus to minus or vice versa.

After generating the first two points we restrict the function f to the intersection of
their bisector with the domain. Again we generate its best L? approximation by a quadratic
polynomial ¢*, which additionally interpolates the values of f at the two end points. The

11



2 Fat Arcs for Implicitly Defined Planar Curves

root of ¢* then defines the approximate intersection of the curve with the bisector.
We use the linear parameterization of the line segments, the two edges and the bisector

L= {(l2(t),1y(t)), t € [to, t1]}-
The general formulation of the quadratic approximation is

(2.7)

* = min H - ‘
¢" = min fl,—a
where ) denotes the set of the suitable quadratic polynomials along £. The root of ¢* is
the approximate intersection point of the curve with the line segment £. The median arc
generation is successful if we find all three approximating points p1,p2 and p3 in Q (see
Fig.2.3).

L2(c)’

(B1,B2)
\ P2 = L(t7)
. ¢
Ne
. t
L a2 t;\lﬂz
(ﬁ17 a?)

Figure 2.3: Median arc generation.

2.2.4 Distance of Parametric and Implicitly Defined Curves

We want to bound the distance between the median arc and the curve using a result from
[1]. The implicitly defined curve is given as the zero set of the bivariate polynomial C in

the domain © = [0,1]2. On one hand, we consider the median arc as a parametric curve
s : t — s(t) with parameter domain ¢ € [0, 1], which traces the point set
S={s(t) : te[0,1]}, (2.8)

where we assume that S C [0,1]2. On the other hand, in order to avoid certain technical
difficulties, we consider the set

C*=CUd, (2.9)
which is obtained by adding the boundary of the domain to the curve C. The one-sided
Hausdorff distance of C* and S is defined as

HDq(S,C*) = sup inf

x —s(t)]. 2.10
s inf = s(0) (210)

We recall the following result from [1]

12



2.2 Fat Arc Generation with Parametric Arcs

Theorem 2.8 (Aigner-Jiittler). If there exist positive constants G,n such that

vxeQ: G<|(VHX) and Vte[0,1]: |(fos)(t)|<n (2.11)
hold, then the one-sided Hausdorff distance is bounded by
HDo(S,C*) < g (2.12)

Consequently, the parametric curve is contained in g-neighborhood of C*, where o = n/G.
However, it should be noted that this distance bound does not guarantee that the implicitly
defined curve is also contained in an p-neighborhood of the parametric curve. The algorithm
presented here uses an additional test to guarantee this property. Nevertheless, in all com-
puted examples the above distance bound provided a safe and conservative estimate for the
Hausdorff distance of the implicitly defined and the parametric curve.

Evaluation of the Constants. In order to find the constants G and 7 in Theorem 2.8,
we represent the median arc as a quadratic rational Bézier curve,

& W; B2(t)
st)=Y s———2 __ teo,1]. 2.13
(t) E% S 50 € [0,1] (2.13)

Since it is a circular arc but not a whole circle, its weight satisfy
wog=ws =1 and —1<w <1. (214)

The composition f o s is a rational function of degree 2(m + n) which can be represented in
rational BB-form with certain coefficients d; and weights w;. The weights are computed with
the evaluation of the (m + n)th power of the denominator in (2.13).

Z?;nown djw; BT (1) _ s5n(t)
ST, B 540

To find a suitable upper bound for the composition, first we consider with the denominator

(fos)(t)| =

(2.15)

2m+2n

2 n+m
sa(t) = > w;BI"T(t) = (ZwiBf(t)> .
j=0 =0

Because of (2.14) there exists A\, 0 < A < 2 such that w; = A — 1. It means, that

2 n+m
(Z wiBf(t)> — (2t — 1) +2x¢(1 —1))"".
i=0
Since t € [0,1] and A € (0, 2]
A n+m
0< <§> <sg(t) <1, Vtelo,1].

Therefore an upper bound 7 can be given as

[(fos)(t)| < _ onlles =1. (2.16)

Wy + 1\
2

In order to find the second constant G, we use the same lower bound that we generated
for certifying the regularity of the curve in the domain (see (2.5)).

13



2 Fat Arcs for Implicitly Defined Planar Curves

Figure 2.4: Left: The graph of fi. Right: Fat arcs for £ = 0.5,0.75, 1.0.

—logd
7t fl

6

5[ f3

f2

05 1.0 15 20

Figure 2.5: Dependency between the fat arc diameter and the domain diameter.

2.2.5 Convergence Rate

We confirm the approximation order of the fat arc generation algorithm (Algorithm 1) by
numerical examples. It is also possible to prove the cubic approximation order of the method,
but it is long and very technical.

Consider the three bivariate polynomials

fAx) = 2t +2dxd + 22329 — 67129 + 25 — 82% — 1229
fa(x) = —13 — 2329 + 1179 — T3 + 23 — 219 (2.17)
fax) = —473 — 523 + 229

with the domains (in global coordinates)
Y, = [-107%,107%] x [-107",107"], keR. (2.18)

In the case of the first polynomial Fig.2.4 shows the result of the fat arc constructions for
several values of k. The implicitly defined curve is the red one, the median arc denoted with
green, and the fat arcs are represented with black.

Fig.2.5 visualizes the relation between the width of the fat arc and the size of the domain
diameter for the three polynomials in (2.17). For sufficiently large values of k the slopes of
the three curves in the doubly-logarithmic plot are all three, thus confirming the expected
approximation order.

14



2.3 Fat Arc Generation with Implicitly Defined Arcs

Algorithm 2 GenerateFatArcsi(f,(,¢)

1. if mind;; > 0 or maxd;; < 0 then

2:  return () {the domain is empty}
3: end if

4: if f satisfies the conditions of Lemma 2.4 then

5. F < FatArcLocal_2d1(f,,¢) {single fat arc generation}
6: if F # () then

7 return F {... has been successful }
8: end if

9: end if

10: if diameter of 2 > ¢ then

11:  subdivide the domain into 4 sub-domains Q4,...,Qy {quadsection}
12:  return |Ji_ GenerateFatArcsi(f, (), e) {recursive call}
13: end if

14: return € {current domain is small enough}

2.2.6 Global Algorithm

The algorithm, GenerateFatArcsi (see Algorithm 2), combines the fat arc generation for
single curve segments with recursive subdivision. First it analyzes the signs of the Bernstein—
Bézier coefficients with respect to the current domain. If no sign change is present, then the
current domain does not contain any components of the implicitly defined curve according
to Observation 2.3. Otherwise it checks the conditions of Lemma 2.4, and tries to apply the
local fat arc generation (Algorithm 1) for domains with single curve segments. If the local
algorithm fails, then the algorithm either subdivides the current domain into four squares or
returns the entire domain, if its diameter is already below the user-defined threshold e.

Note that the algorithm may return domains which do not contain any segments of the
implicitly defined curve ("false positive domains"). This can be avoid in the case when the
partial derivatives are bounded away from zero and the user specified threshold e is small
enough (see in Lemma 2.5). However, it is always guaranteed, that the algorithm returns
with a set of regions which contains the whole algebraic curve.

2.3 Fat Arc Generation with Implicitly Defined Arcs

In this section we describe local fat arc generation technique using implicitly defined arcs.
We show different techniques to generate approximating circular arcs in implicit form. Then
we also describe how to estimate the distance of implicitly defined planar curves. In the end
we present a global algorithm using hierarchical subdivision for generating bounding regions
for planar algebraic curves.

2.3.1 Local Algorithm

As an alternative we consider a local algorithm for generating fat arcs using implicitly
defined arcs. It is summarized in Algorithm 3. This algorithm generates an approximate
quadratic polynomial s with circular zero contour, and uses the BB-norm to estimate the

15



2 Fat Arcs for Implicitly Defined Planar Curves

Algorithm 3 FatArcLocal_2d2 (f,$2,¢)

Require: The gradient does not vanish in €.

1: f = 1f modified polynomial and its special quadratic approximation s
2: if [ exists then

3: 8 < zero contour of s {median circle}
4 d|If —slgs

5: G < lower bound for |V f|| {see (2.5)}
6: if G exists and p = % < ¢ then

7: St,8~ « zero contour of s +d and s — d {fat circle boundaries}
8: F(s,0,Q) = {x: Ixq, |x — X0| <, s(x0) =0} NQ {fat arc}
9: return Cy {fat arc has been found}
10:  end if

11: end if

12: return {no fat arc has been found}

fat arc thickness (Algorithm 3). For generating the approximate quadratic polynomial we
will present two different methods in the next sections. The first one is using least-squares
technique. The second one is operating with the modified Taylor expansion of the original
polynomial f. Both methods are computing quadratic approximating polynomial for a mod-
ified polynomial f , which is the original polynomial f multiplied with a linear polynomial
[. This additional linear term guarantees the existence of the approximating polynomial and
its convergence rate.

This fat arc generation technique only assumes that we have a regular curve segment in
the domain. Therefore no other topological information is necessary for the fat arc generation.

The algorithm succeeds if it finds the median arc, and the fat arc thickness is smaller than
the prescribed tolerance €. Then the output is the intersection of a fat arc and the domain
), which contains the curve. It can also happen like in Algorithm 1, that there are no fat
arc boundaries, or only one of the bounding arcs can be generated. Then the local algorithm
fails and returns the empty set.

Fig.2.6 presents five local fat arc generation examples with different median arc and
distance estimation technique. In the first row the figures are generated with the help of
Algorithm 1 using parametric median arcs and computing an upper bound for the one-sided
Hausdorff distance. In the lower rows Algorithm 3 is used generating implicitly defined
median arcs in four different ways and using the distance estimation for implicitly defined
curves (see Section 2.3.5). The second, third and the fourth rows contain the results of the
least-squares technique. In the second row we applied least square approximation with linear
normalization, while in the next two rows quadratic normalization. The last row presents
the outputs from the algorithm, which uses modified quadratic Taylor expansion to generate
median arcs. However, even if the distance estimation technique seems to be weaker in the
case of Algorithm 3, it provides the cubic approximation order as we will see later.

2.3.2 Median Arc Generation with Least-Squares Approximation

Least-squares approximation is a standard technique for finding an approximating polyno-
mial. In order to generate a quadratic polynomial with circular zero level set we are searching
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2.3 Fat Arc Generation with Implicitly Defined Arcs

ol 7S
b 4 4 4 |

/]

Figure 2.6: Comparison of the local fat arc generation techniques. In the first row the fat
arcs are generated by FatArcLocal_2d1, in the other rows the algorithm FatArcLocal_2d2 is
used. Three rows in the middle are showing results of least-squares approximation with different
normalization techniques. In the second row we used linear normalization condition (see in
(2.20)). In the next two rows the quadratic conditions (2.21) and (2.22) are used. In the last
row the outputs from Taylor expansion modification are shown (see in Section 2.3.3). The red
curves are the implicitly defined curves. The median arcs are shown in green.

for a polynomial in the form
s(z,y) = a(z® + y°) + bz + cy + d.
17



2 Fat Arcs for Implicitly Defined Planar Curves

To provide the cubic convergence rate for the approximation, we modify the original function
using a linear term

f(xy) = Uz, y) f(z,y) = (lo + hix + ly) f(2, ).

The optimization problem can be formed as follows

N 2
i — dxdy. 2.19
o [ F=s] deay (2.19)

In order get a unique solution we have to normalize the minimization problem. Here
we present three different strategies. The first normalization technique is using a linear
condition. It is a natural condition in the sense that the modified polynomial f keeps the
original function value in the center (¢*,¢¥) of the computational domain

lo+ L +1lac? = 1. (2.20)

Another possible choice for normalization is to control the gradient length of the approxi-
mating polynomial s. Such condition determines two possible solutions for s(z,y). The one
with smaller value in (2.19) can be used as an approximating polynomial. A natural choice
of the quadratic normalization condition is

|| =1 (2.21)

(c®,cY)

Another possibility is to use a quadratic normalization condition which approximates better
the secondary shape of the original implicitly defined curve. Namely we can suppose for
instance

V5| (2.22)

1w

(c%,cv (ct,cv)

A few examples are shown in Fig.2.6 for the result of the different least-square approx-
imation methods. The three rows in the middle contain the result of the three different
normalization techniques. They are shown in the same order as we described them here.

2.3.3 Median Arc Generation Using Taylor Expansion

In this technique we also reformulate the approximation problem in the computational domain
Q. The given polynomial f will be multiplied by a linear term [

f=1f =tz —c)+lbly—)f(zy), (2.23)
where ¢ = (¢, ¥) denotes the center point of Q2. Obviously the zero level set of the polynomial

f will contain each point of the zero level set of f. We choose the linear function [ such that
the Hessian of f at the center of the domain is a scalar multiple of the identity matrix.

H(f)(c) = ( 3 g ) A eR. (2.24)

If such f can be found, then the quadratic Taylor expansion of f about c has a special form.
More precisely, this polynomial has always circular zero contour. In order to find f we need
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2.3 Fat Arc Generation with Implicitly Defined Arcs

to solve a linear system for w,l; and ly. The condition (2.24) leads to the following system
of equations in the center of the domain

fmm(c)_fyy(c) = 0
fey(c) = 0. (2.25)

If the system has full rank, we have a solution set with one degree of freedom. Therefore we
handle the constant term of [, v as a parameter of the solution set.

Lemma 2.9. Given a bivariate polynomial f over the domain 2. We suppose that the
gradient of f does not vanish in the center c of )

Vs #o.
Then for any value of u # 0 and u € R there exists a unique solution for [.

Proof. The Hessian matrix of f can be expressed with the help of f and !
H(f)(c) = VI(e)V ()" + Vf(c)Vi(e)" +U(c)H(f)(c) =
=Vi(c)Vf(c)" + Vf(c)Vi(c)" + uH(f)(c). (2.26)

In the center of the domain the equation system (2.25) can be written as

_ fxz(c) _fy(c) L — %(fxz(c)_fyy(c))
Al‘(fy«:) u(e) )(h)‘ ( Fun(©) ) 220

We supposed that the gradient vector does not vanish in c. Therefore the determinant
of A is not zero. Then there exist I3 and ls, which satisfy (2.27). It implies, that [ can
be computed for any non-zero value of u uniquely. For an arbitrary u # 0 the solution is
(l1,12) = (0,0) if and only if the Hessian of f already fulfills the condition (2.24). In this case
the polynomial [ is the constant function

[ = (2.28)
0

With the conditions (2.25) for a fixed value of u # 0 the polynomial [ can be computed
uniquely according to Lemma 2.9. Therefore we can compute then f uniquely for any u # 0.
We introduce the function G, which assign to a function f, a value of v and the center point
c of a domain ) the associated f function according to the construction in Lemma 2.9

G(f.u.c)=f=1f. (2.29)
Observation 2.10. The choice of the parameter value v has no effect on the zero contour
of the computed new polynomial f. It is just a constant multiplier of the linear polynomial
[ in the solution. Therefore it can be chosen arbitrarily.

The quadratic Taylor expansion of f about c will have the following form, since the
condition (2.24) is satisfied
. . . 1.
(2,) = T2, (@9) = F(©) + fol€)@ = )+ fu©)y = )+ 5 faw (2 = ) + (y = )?) . (2:30)

It is a bivariate quadratic polynomial with a circular zero contour. Therefore the algebraic
curve s = 0 will be chosen as median arc to approximate the curve f = 0 in ). Later on the
error of the approximation is estimated by a distance bound for the implicitly defined curves
s=0and f=0.
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2 Fat Arcs for Implicitly Defined Planar Curves

2.3.4 Connection with the Osculating Circles

We analyze here the properties of the median arcs generated by the Taylor expansion modi-
fication technique.

Lemma 2.11. Consider a function f, which defines an algebraic curve in o C R?

C(F.Q0) = {x : £(x) = 0} N Q.

We assume that the point p € Qg is on the algebraic curve p € C. Suppose that € is a
sub-domain of Qo and it has the center point p. We compute f = G(f,u,p). Then the arc,
defined by the zero set of the quadratic Taylor expansion s = Tg(f), 18 the osculating circle
of C(f,Q0) in the point p.

Proof. The function f defines the following algebraic curve
C(f.0) = {x : f(x) =0} N .

We know from the computational method generates f , that the algebraic curves C and ¢
satisfy
C CC.

If we consider only a small regular segment of C and C which is contained by € C g, then
both of them represent the same single arc of the algebraic curve with the point p on it.
The circle defined by the zero set of the quadratic Taylor expansion s = T;(p) is

S(5,9Q) ={x: s(x)=0}NAQ.

We would like to show that S has a second order contact with the algebraic curve C in the
point p. This is sufficient in order to prove that § is the osculating circle of C, since the
osculating circle is unique and § is a circular arc. According to the definition of S, it has a
second order contact with C in the point p. As we already noticed C = C in the neighborhood
of p, therefore S has a second order contact with C in the point p. U

Remark 2.12. We can compute the curvature of C in the point p. For an implicitly defined
curve it is computed from the first and second partial derivatives of the function with the
help of the formula (see for instance in [15])

T

V) H( () (V(p)*)
Ivim)|’ ’

K(f,p) =

where

Vi)' = (=fy(p), f+(P)):
We know, that

k(f.p) = k(f.p) = K(s,p).
Thus

V) H() ) (Vp)H)"
k(f,p) = =
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2.3 Fat Arc Generation with Implicitly Defined Arcs

VierHOm) (Vi)
S ) T e

Therefore A = f,.(p) satisfies

A= UZH(f, p) va(P)H2

for an arbitrary u # 0 in a point p, where f(p) = 0.

2.3.5 Distance of Implicitly Defined Curves

If we generate fat arcs for implicitly defined curve segments, the distance measuring becomes
more complicated. The reason is the representation of the curve. Nevertheless, the approxi-
mating curve can be represented either in parametric or in implicit form. In order to measure
the distance of two implicitly defined curves we consider the norm H.HgB over the domain €2,
which is the maximum absolute value of the coefficients in the BB-representation. We define
a distance bound of the polynomial f and the approximating polynomial s for all points in
the domain

e=1f = slns- (2.31)
Due to the convex hull property
|f(x) —s(x)] <&, VxeQ.

This means that
s(x) —e < f(x) <s(x)+e, Vxel

A region can be defined in 2 by the approximating polynomial and the distance bound
D(s,e,Q) ={x : |s(x)] <e} N Q.
This is a bounding region for the zero level set of the polynomial f in
Z(f) CD(s,e) CQ.

It is a fat region defined by the median curve s = 0, which contains the implicitly defined
curve f = 0.

In order to bound the thickness of this fat region D(s,e) in the domain © we have to
bound the gradient length of f from below. Suppose that G is a positive constant, which
fulfills in any point x of €2, that

V6] .

Then the distance of the point sets s = +¢ from s = 0 is bounded by

0= (2.32)

Thus the fat arc can be defined as the point set

F(s,0,9) = {x : 3Ixp, s(x0) =0, |x —x0| < 0} N
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2 Fat Arcs for Implicitly Defined Planar Curves

2.3.6 Convergence Rate

Since the approximation order of curves by segments of circular arcs is three (see [37]), the
same result is anticipated for the results produced by local fat arc generation algorithm. Here
we confirm the cubic convergence rate of the method, which generates fat arcs by modifying
the Taylor expansion of the polynomial (see (2.3.3)). We defined f = If for any point ¢
of the domain 2, where c is always the center of the corresponding sub-domain © C €.
The approximating arc s = 0 is given by the quadratic Taylor expansion of f about ¢. The
distance bound has been generated with the help of the BB-norm and a lower bound for the
gradient length.

In order to prove the convergence rate of the method first we have to show, that f
depends continuously on the points of 2g. It means, that the computed polynomial f depends
continuously on the sub-domain 2.

Lemma 2.13. If the gradient of f does not vanish in the domain Qq, then f depends con-
tinuously on the points of the domain.

Proof. We have to show that the computed | = u + I3 (x — ¢®) + la(y — ¢¥) linear polynomial
depends continuously on the point ¢ = (¢*,¥). We compute the coefficient vector (Iy,l2),
such that it satisfies (2.27) for a fixed value of u. The entries of the matrix in (2.27) depends
continuously on (¢, ¢¥) since f is a polynomial. Therefore the direction of the solution vector
depends also continuously on the point. Since we know that u # 0 is fixed, then also [ depends
continuously on the point (¢*, ). O

The next corollary follows from Lemma 2.11 and Lemma 2.13. If we use the Taylor ex-
pansion modification technique described in Section 2.3.3, then we can establish the following
result about the behavior of the generated median circles.

Corollary 2.14. Suppose we have a nested sequence of sub-domains (£2;)i=123.. C Qo
Qit1 C Ly,
which have decreasing diameters &;, such that

lim §; =0,

1—00

and c; denotes the center point of Q;. Consider a function f, which defines an algebraic curve
m Qo C R2
C(f:Q0) ={x : f(x) =0} N Q.

Suppose that there exists a point p, which satisfies f(p) = 0 and for all i : p € Q;. We
compute fl = G(f,u,c;). The median arc is defined by the zero set of the quadratic Taylor
erpansion s; = Tfl(fz) about c;. Then the sequence of computed median circles s;(x,y) =0
converges to a limit circle, which is the osculating circle of C in the point p.

In order to certify the convergence rate of the fat arc generation method using Taylor
expansion modification we consider the behavior of the gradient of the new polynomials
f= G(f,u,c). The following lemma (Lemma 2.15) ensures, that any f has also a non-
vanishing gradient, if we are computing close to the algebraic curve in a sufficiently small
sub-domain of the original computational domain €.
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2.3 Fat Arc Generation with Implicitly Defined Arcs

Lemma 2.15. Suppose that there exists G in Qg for the polynomial f such that

vx €, ||[Vfx)|| =G >o0. (2.33)

We choose an arbitrary but fized value of uw # 0. Then there exists € such that, sz =G(f,u,c)
15 computed 1 a domain € C Qo which has a diameter 0q < €, and there is a point p €
which fulfills f(p) =0, then for any x € Q a general positive bound G can be given as

va(x)H >G> 0.
Proof. Tf x € Q C Qg then
VF(x) = FEVI) + V().
According to the triangular inequality
Vi) = v £ = [ £eviE]| = il [V - [£el Vi) (234

Since we know that there exists a point p € Q such that f(p) = 0, and (2.33) is satisfied,
then

15
[fx)] <5 (2.35)

where ¢ is an upper bound of the diameter of ).
We can suppose that there exists H # 0 such that

VX € QO’ \/i(fzz(x) - fyy(x))2 + fry(x)2 S H,

since f is a polynomial. If the linear system formulated as
Al — < fa(e) —fy(c) > ( h > _ ( 5 (fax(c) = fyy(c)) >
fy(e)  fulc) 2 fry(€) ’

|AY|| < |u|H.

then

Since

A1) = /(72 + 1)@ +B) > G| Vi)

we obtain that
IUIH

HVl H (2.36)
From (2.35) and (2.36) it follows that
60 w0 < 1 27
Suppose that
e < %, (2.38)
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then a positive lower bound can be given for ‘l (x)|

l [ Vi(x elu| H
001 2 fof - L puy VOO ol
Therefore it implies that
160| [VF)| > [u] € - ‘%H >0, (2.39)

So from (2.37) and (2.39) follows that
€ !u‘ H ¢ ‘u| H
V2 G

If we would like to choose ¢, such that HVf(X)H has a positive lower bound, then

e = v~

6‘U|H_6‘U‘H

|u| G- NG a2 > 0,
which means that /3G
2G
B L (2.40)
H(V2+G?)
In this case also (2.38) is satisfied
V2G G? V2G
e < <
H (V2+@&?) H
Therefore for any domain Q with the diameter dq < ¢ fulfills (2.40)
va(x)H > 0.
U

Corollary 2.16. According to Observation 2.10 we can choose uw =1 and we suppose that

1 V2GR

E=—-————.

2H (V2+G?)
Thus for any domain 2, which has the diameter

1 V263
Q< 5T = o

2H (V2+G?)
and contains a point of the curve f =0, it is true that

va(x)H > G—§:G>O.

0.

Both bounds, € and G, are independent of the choice of (if Q is small and contains some
points of the curve). They only depend on f, Qo and u.
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2.3 Fat Arc Generation with Implicitly Defined Arcs

Corollary 2.17. We consider a polynomial f, which fulfills the condition (2.33) on a domain
Q C Qy. We compute f = G(f,u,Q), and the median arc is defined by the zero set of the
quadratic Taylor expansion s = Tg(f) about the center point ¢ of Q. If Q has a sufficiently
small diameter and contains a point p satisfying f(p) = 0, then s is non-constant.

Now we will show that the fat arc thickness is sufficiently small compared with the diam-
eter of the computational domain. The following lemma shows, how the computed fat arc
thickness behaves for a given function f in a certain domain.

Lemma 2.18. Giwen a bivariate polynomial [  defined over the domain
Qo = a1, f1] X [ag, B2].  We suppose that there exists a non-negative lower bound G
such that

V]| =G >o.

For any sub-domain 2 C Qq, which has a sufficiently small diameter and contains a segment
of the algebraic curve f =0, there exists a constant C' € R not depending on € such that

0 < Co3, (2.41)
where ¢ is the corresponding fat arc thickness computed like in (2.32).

Proof. We denote by sq the quadratic Taylor expansion of fg about the center ¢ of the
domain €2, then

< = W(X) 59

O — SQ ‘ ma
Hf oo 6 ves!,xeQ

/

Vv
*

Recall from Lemma 2.13 that fg depends continuously on the points of the computational
domain Q. Therefore for all fo a general upper bound C; can be given for (x). The fat arc
thickness is defined by

fo —sa
IV fal
We know from Corollary 2.16 that for a certain u there exists a general lower bound

0= ‘BB.

0<G<|Vfal

for any sub-domain € C €, which has a sufficiently small diameter. Because of the norm
equivalences there exists a constant Cy such that

Co an — 50 ‘ 3
0< o L 1C1CROT
G 6 G
In order to bound g, we choose
1C 0y
C=-——-
6 G
and arrive at
o< C&%.
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2 Fat Arcs for Implicitly Defined Planar Curves

Algorithm 4 GenerateFatArcs2(f,(,¢)

1. if mind;; > 0 or maxd;; < 0 then

2. return () {the domain is empty}
3: end if

1 if vxe Q  [|[Vf(x)|| >0 then

5. A< FatArcLocal_2d2(f,,¢) {single fat arc generation}
6: if A# () then

7 return A {... has been successful }
8 end if

9: end if

10: if diameter of 2 > ¢ then

11:  subdivide the domain into 4 sub-domains 4, ...,y {quadsection}
12:  return | Ji_,GenerateFatArcs2(f, (Y, ¢) {recursive call}
13: end if

14: return € {current domain is small enough}

Similarly the cubic convergence can be proven for any fat region generated as the thickened
neighborhood of the zero locus of the quadratic Taylor expansion of a polynomial. Even if
this technique is more general, we should not forget, that the fat regions are bounded by
the offset curves of the median curve. These boundary curves should not have cusp or self-
intersections. This is not guaranteed if we use a general bi-quadratic algebraic curve as the
median curve. To avoid such critical cases and also to simplify the computations we restricted
ourselves to use circular arcs as median curves.

2.3.7 Global Algorithm

The algorithm GenerateFatArcs2 (see Algorithm 4) combines the fat arc generation for
single curve segments with recursive subdivision. First it analyzes the signs of the Bernstein—
Bézier coefficients with respect to the current domain. If no sign changes are present, then the
current domain does not contain any components of the implicitly defined curve. Otherwise
the algorithm tries to apply the fat arc generation for a single curve segment. If this is not
successful, then the algorithm either subdivides the current domain into four squares, or
returns the entire domain if its diameter is already below the user-defined threshold e.

2.4 Comparison of the Methods

In the former sections (Section 2.2 and Section 2.3) we described and analyzed various algo-
rithms to generate fat arcs for implicitly defined curves. These techniques are using different
approximating arc generation and distance estimation methods. Here we compare these fat
arc generation techniques.

2.4.1 Comparison of Fat Arc Generation

Median Arc Generation. The first step of the fat arc generation method is to generate
an approximating arc, the median arc. This arc can be represented either in parametric
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2.4 Comparison of the Methods

(rational BB) or in implicit form. We described an approximate interpolation method for
generating a parametric approximating arc s(t) for a polynomial f in Section 2.2.3. It is
clear that a list of median circles generated for a nested list of computational domains,
which converge to a point of the implicitly defined curve p, converges to the osculating
circle of the implicitly defined curve in the point p. The same was proven for the median
circles in the case of the Taylor expansion modification technique (Corollary 2.14). Tt is a
very important property of both methods, if we would like to develop techniques with cubic
convergence. The osculating circle is the only circle with second order contact in a certain
point of a planar curve. Therefore we can establish in advance for instance, that the fat
arc generation technique using least-squares approximation with the quadratic normalization
condition (2.21) cannot have cubic convergence rate. It is because the radius of the median arc
is fixed via the normalization condition, a list of median arcs generated under the conditions
of Corollary 2.14 not necessarily converge to an osculating circle of the algebraic curve.

Distance Bounding. In order to compute the fat arc thickness for parametric median
arc, we use a bound given by Theorem 2.8. It is an upper bound of the one-sided Hausdorff
distance. This bound is given by the ratio of an upper bound of the function value along the
approximating arc and a lower bound of the gradient length in the computational domain
). These bounds can be computed with the help of the convex hull property of the BB-
polynomials (described in Section 2.2.4). On the other hand if we generate the median arc
in implicit form s(z,y) = 0 (see various methods in Section 2.3.2 and Section 2.3.3), then we
have to measure the distance of implicitly defined curves. We described how to bound this
distance in Section 2.3.5. This bounding technique is also using the convex hull property of
the BB-polynomials. The bound is the ratio of the BB-norm of the polynomial (f —s) in the
computational domain € and the lower bound of the gradient length of f in .

The lower bound of the gradient length is computed with the same method by both
techniques, so it is sufficient to compare the nominator of the distance bounds. We observed
that both methods generate median arcs which converge to the osculating circle under the
conditions of Corollary 2.14. It means that for the polynomial f on a sufficiently small
computational domain €2 C 2y the median arcs generated by the two different techniques are
close to each other. Therefore we compare here the fat arc thickness generated for the same
median arc S. Suppose that s(z,y) represents the median arc in implicit form

S(s,Q) ={(x,y) : s(z,y) =0} NQ.

We also suppose that we know the parametric representation of the arc S and it is denoted
by s(t), t € [0,1]. Then we can established that

(fos)t) = (f —s)((t),y(t)),
and it implies that

max [(fos)(t)| < Jnax |(f = 9)(x,y)|.

So the parametric fat arc generation estimates the function value of f along a curve on the
computational domain, while the implicitly defined fat arc generation computes a bound de-
pending on the whole domain €). Therefore usually the distance estimated by the parametric
representation is smaller than in the case of the implicitly defined median arcs. This heuristic
result will be confirmed also in the next section, where we analyze the convergence rate of
all the described methods via an example.
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2 Fat Arcs for Implicitly Defined Planar Curves
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Figure 2.7: Comparison of relation between the fat arc diameter and the domain diameter for
five different fat arc generation methods. The red line P shows the results from the parametric
approximation. The results of least-square approximations are shown by the green line noted
by L, Q1 and Q2. The result of the Taylor expansion modification is represented by the line T’
(blue).

2.4.2 Comparison of Convergence Rate

We compare here the convergence rate of all described fat arc generation methods via an
example. However, we just proved the rate of convergence of the Taylor expansion modifi-
cation, we would like to show through this numerical example the behavior of all formerly
described techniques.

We consider the polynomial

f(z,y) = =3z + 62% — 223 + y + 12,
on the domains (in global coordinates)
Q= [-107%,107%] x [-107%,107%], keR. (2.42)

We visualize for the five different fat arc generation strategies the relation between the
width of the generated fat arcs and the size of the domain diameter in Fig.2.7. For the values of
k=1,1.25,...5 we show the negative logarithm of the associated fat arc diameter in a doubly-
logarithmic plot. The expected approximation order is three. In this example it is confirmed
for all of the strategies. The line denoted by P shows the results from the parametric
approximation, it pretends to have a better approximating constant then the other techniques
with cubic convergence rate. However, the least-square approximation with linear condition
(L), the least-square approximation with quadratic normalization condition, denoted in the
picture by @1 and Q)2 and the Taylor expansion modification 7" also shows cubic convergence
rate. The least-squares approximation with the linear and quadratic normalization conditions
show only a slight difference in the output.
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return fat arc subdivision return () return ()
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Figure 2.8: Example 2.19: The decision tree of algorithm GenerateFatArcs.

2.5 Examples and Application

2.5.1 Examples

We illustrate the performance of both algorithms Algorithm 2 and Algorithm 4 by examples.

Example 2.19. The first example (see Fig.2.8) visualizes the entire algorithm. We apply the
algorithm to a bivariate polynomial of degree (1,4), which has only one arc in the region of
interest, and choose a relatively large tolerance €. The first call of the algorithm produces four
sub-domains which are then analyzed independently. The first domain contains an arc which
can be approximated by a single fat arc. The second domain produces other four sub-domains,
while the third and the fourth domains do not contain any points of the implicitly defined
curve. Finally, analyzing the four second-generation sub-domains leads to three additional
fat arcs and one empty domain. The output is generated by collecting all sub-domains in the
leafs of the subdivision tree.

Example 2.20. We consider a polynomial f of degree (6,9) with randomly generated BB
coefficients in [—1, 1]. Fig.2.9 (a) shows the surface and the implicitly defined curve segments
in the unit square. Fig.2.9 (b) and (c) demonstrate the behavior of the algorithm for different
tolerances . The upper row shows the entire domain, while the lower row shows a zoomed
view of the lower left corner of the domain. In the case of & = 0.1, which is shown in (b), some
domains are returned as bounding regions, since FatArcLocal_2d1 fails and the diameter of
the sub-domains are smaller than €. For the smaller value of € = 0.01, the fat arc generation
succeeded in all generated sub-domains.
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Figure 2.9: Example 2.20: Fat arc generation for different tolerances. The graph of f and the
implicitly defined curve (a), and The fat arcs (top) and a zoomed view (bottom) for ¢ = 0.1 (b)
and for e = 0.01 (c).

In the next three examples we compare fat arcs with (recursively generated) bounding
boxes. In the latter case we also accepted sub-domains as bounding primitives in the fat arc
generation, if their diameter were less than the prescribed tolerance.

Example 2.21. We approximate an implicitly defined curve, see Fig.2.10, by fat arcs (a)
and by bounding domains (b). Clearly, the use of fat arcs leads to a much smaller number
of bounding geometric primitives. This becomes even more dramatic for smaller tolerances.
Figure (c) shows the relation between the number of generated primitives (fat arcs or boxes)
and the tolerance & = /2/2".

Example 2.22. This example is based on an implicitly defined curve which possesses a singu-
lar point (see Fig.2.11). In this situation, the fat arc generation will fail for any domain which
contains the singular point, since no positive lower bound on ||V f|| exists. Consequently, the
algorithm always returns a domain containing this point. Still, the results generated by our
method (left) compare favorably with the use of bounding boxes (right).

Example 2.23. Here we approximated an implicitly defined curve f = 0, where f has the
polynomial order (9,8). Our domain of interest is the unit square Q¢ = [0,1] x [0,1]. The
figures (a) and (b) in Fig.2.12 are generated with the two different fat arc constructions.
The first one with the usage of the local Algorithm FatArcLocal_2d1, the second with the
local Algorithm FatArcLocal_2d2. The tolerance bound is 1072, which is relatively small
compared with the size of the starting domain. In order to reach this precision the number of
the bounding domains is 36 in the first case and 46 in the second one. It is much fewer than
in the case of bounding boxes, where we need 685 boxes to give a sufficient approximation.
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Number of domains

domains
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200

100 fat arcs
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Figure 2.10: Example 2.21: Comparison of fat arcs a) and bounding domains b). The relation
between tolerance and number of bounding primitives c).
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/

Figure 2.11: Example 2.22: Fat arcs (left) and bounding boxes (right) for an implicitly defined
curve with a singular point, where & = 1/2/25.
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Figure 2.12: Example 2.23: Comparison of FatArcLocal_2d1 (a) FatArcLocal_2d2 (b) and
bounding box generation (c). In the lower right corner of each output the generated bounding
primitives are shown from the gray region of the computational domain.

2.5.2 Application: Surface-Surface Intersections

The computation of surface-surface intersections is a potential application of bounding region
generation methods. Here we generate fat arcs to bound the intersection curve of an implic-
itly defined and a parametric surface. In practice this is the so called “mixed” intersection
problem. It is one of the most frequently encountered cases [23]. A good survey on this topic
is given in [30, 31].

Consider an implicitly defined surface h(z,y,z) = 0 and a parametric surface patch
r(£1, &) with domain ©Q = [0,1]?. Then the implicitly defined curve f = hor = 0 describes
the intersection curve in the domain of the parametric surface patch.

Using Algorithm GenerateFatArcs, one can construct a collection of fat arcs with maxi-
mum width € in Q. The region described by them corresponds to a certain subset (a strip)
on the parametric surface patch.

Recall that the coefficients of the first fundamental form are defined as

L9

0
9ij(€1,&2) = zr(81,62) ot
7 J

o€ r(£1,82). (2.43)

In order to relate the thickness of the bounding fat arcs to the thickness of the corresponding
strip on the parametric surface, we present the following observation.

Lemma 2.24. Consider a single fat arc with width 20 in the parameter domain of a para-
metric surface Q. Then there exists a constant C' depending only on the parametric surface,
such that the width of the corresponding fat region on the parametric surface patch is bounded
by

2@\/5.
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Proof. We denote the matrix of first fundamental form corresponding to a point (&1,&2) of
the parametric surface with

o gu(&.&2) 91261, &)
Glent) = ( 912(81,62)  g22(&1,&2) > '

The length L of a curve on the surface which corresponds to any straight line segment in the
parameter domain €

(gl(t)7§2(t)) = (5?758) + t(7717772)7 te [a7 b]7

where
n+m =1

18

b
L= / \/911(51, E)nt + 2g12(&1, E2)mme + goa (€1, )3 dt. (2.44)

In order to find an upper bound for L we are looking for the extremal values of the quadratic
form

911 (€1, €)1 + 2012(61, E2)mme + gaa (€1, E2)m3 = (11, m2) G(€1, &2) (1, )
with the assumption
s = 1L
Using the method of Lagrange multipliers it is easy to show, that for any pair of (£1,&2) the
eigenvalues of G(&1,&2) are real. They can be computed as

g11(61,€2) + 922(&1,€2) £ \/(911(51, &) = 922(€1,62))° + dg12 (1, &2)?
5 :

A2(&1, &) =

If A(&1,&2) = max{| A1 (&1, &), | A2(&1, &2)|} then

|(n1,72) - G(€1,2) - (mm2) | < A&, &)

for any vector, which fulfills n? +n3 = 1.
This observation can now be applied to the lines which pass through the center of the fat
arc (01,02)

(2.45)

(gl(t)7§2(t)) - (01702) +t(7717772)7 le [T_ Q7T+Q]7 (246)
where r is the radius of the median arc and p is the fat arc radius. Since we assume, that the
parametric function continuously differentiable, then A(&1,&2) is also continuous in €2, which
is a compact domain. Therefore there exists a constant such that

0 < A(&,6) < C.
Thus for any line segment (2.46) the integral in (2.44) can be bounded by the general bound
L < 29\/6 .
U

Example 2.25. We consider the intersection of a cubic implicitly defined surface with a
biquadratic surface patch. Fig.2.13, upper row, shows the intersecting surfaces and the
implicitly defined intersection curve in the parameter domain. The lower row shows the
regions on the surface which correspond to fat arcs in the parameter domain for three different
values of the tolerance e.
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e=0.1 e =10.01 e = 0.001

Figure 2.13: Example 2.25: Intersection of a cubic implicit and a biquadratic parametric
surface, represented by fat arcs in the parameter domain. The number of fat arcs grows from 10
for e = 0.1 to 25 for ¢ = 0.01. For the smaller two tolerances, we also zoomed into a segment of
the surface patch.
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Chapter 3

Fat Arcs for 3D Implicit Algebraic
Curves

Implicitly defined algebraic space curves are defined by the intersection curve of algebraic
surfaces. Such curves frequently arise in geometric modeling. Various methods have been
developed for approximating or parameterizing them, and for analyzing their topology. In
this chapter we present an algorithm, which generates bounding regions for algebraic space
curves. The method is the generalization of the fat arc generation method for planar algebraic
curves.

3.1 Fat Arcs in 3D

Here we summarize first the related results in algebraic curve approximation. Then we intro-
duce the definition of fat arcs in R3. In the end of the section we will state the approximation
problem of algebraic space curves given by Bernstein-Bézier polynomials.

3.1.1 Approximating 3D Algebraic Curves

Computation of surface-surface intersections is a fundamental operation in geometric mod-
eling. It is important for evaluating set operations, for computing boundary curves and
closely related to self-intersection problems. A survey of the topic is given by Patrikalakis
and Maekawa [30].

Intersecting low degree algebraic surfaces has attracted a lot of interest in the literature.
Quadratic surfaces are the simplest curved surfaces, therefore they are frequently used in
computational geometry. The intersection computation of such surfaces has been discussed
thoroughly in [8, 11, 40, 45, 46].

Several different methods have been developed for computing the intersection of algebraic
surfaces (see [19, 31, 39]). Many of them are symbolic-numeric algorithms. The most widely
used numeric methods are the lattice evaluation, tracing and subdivision-based methods.
The lattice evaluation techniques compute a set of low dimensional sub-problems. Then the
solution of these sub-problems is interpolated to approximate the general solution. Marching
or tracing methods generate point sequences along the connected components of the curve.
They necessarily use some topological information to find starting, turning and singular
points [3, 22]. Subdivision algorithms are based on the "divide and conquer" paradigm. They
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decompose the problem into several sub-problems, and sort these problems according to the
curve topology [2, 25]. The decomposition terminates if suitable approximating primitives can
be generated in each sub-problems [29]. In order to construct these approximating primitives
several local approximation techniques can be applied, such as interpolation, bounding region
generation, least-squares approximation or Newton-type methods [12].

Several different methods have been developed for computing the intersection of general
algebraic surfaces. Many of them are symbolic-numeric algorithms. For instance, tracing
methods and subdivision-based methods are widely used in practice. These algorithms iden-
tify first the topology of the curve |2, 25]. Then they generate parametric space curves, which
approximate the implicitly defined space curve [20].

3.1.2 Definition of 3D Fat Arcs

We present in this chapter an algorithm, which approximates algebraic space curves with
a set of bounding regions. The bounding primitives are the generalization of the planar
fat arcs (see in Section 2.1.2) in 3D space. The algorithm detects regular algebraic curve
segments, and approximates them with circular arcs. Then the method bounds the distance
of the approximating arc and the algebraic curve segment. FEach bounding region is a tubular
neighborhood of the approximating arcs with a certain radius, which is the appropriate error
bound. Such a bounding primitive is bounded by a segment of a torus and two spherical caps
(see Fig.3.1 (b)).

Definition 3.1. A fat arc is defined R> by
- a segment of a circular arc (median arc) S C Q C R3.
- and a distance p € R.

Then the fat arc is the point set

F(S,0) ={(z,y,2) : I(wo,90,20) €S, V(x —z0)> + (y — 0) + (2 — 20)2 < 0}

The median arc can be represented in two different ways. We can use the parametric form,
since circular arcs can be parametrized exactly by rational Bernstein-Bézier-polynomials. It
provides the computational advantages of BB-representation form, such as the convex hull
property. It is also possible, to define the median arc in an algebraic form. A circular arc
always can be given as the zero set of two spherical equations. Representing it with these
special quadratic equations is advantageous because of the simple intersection and offset
computations.

3.1.3 3d Algebraic Curves

In order to construct fat arcs for algebraic space curves, we shall use the properties of the defin-
ing polynomials. We assume that these defining polynomials are given in the Bernstein-Bézier
tensor product form with respect to an axis aligned box Qp = [a1, 81] X [ag, 2] X [ag, [3]

m n

[y, 2) = Z > dijiBLi(@) B (y) Bi o (), (3.1)

!
i=0 j=0 k=0
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(a) (b)

Figure 3.1: Fat arc in R3. The intersection curve (red) approximated by a circular arc (blue)
(see figure (a)). Figure (b) shows the § neighborhood of the median arc, which is the fat arc
(yellow).

with certain coefficients d;;, € R. The basis functions Bg ,, are defined like in Chapter 2 (2.2).

For such functions f : R3 — R, let us denote the defined algebraic surface in the domain €
with
Z(f,QO) - {(a:,y,z) : f(x7y7z) - 0} N Q.

The algebraic curve is given as the intersection of the zero sets of two polynomials f and g

C(f,9,) = Z(f,Q0) N Z(g,) = {x : f(x)=0, g(x) =0} N (3.2)

with respect to the domain y. Clearly, the curve may be an empty point set, or it may
consist of more than one segment. In order to generate fat arcs, later we consider different
segments of the curve C(f, g, ) in different sub-domains of the original domain Q C Qy. All
these sub-domains are axis-aligned boxes as well.

3.2 Approximation of Regular Curve Segments

In order to generate fat arcs for 3d algebraic curves we present first a local approximation
algorithm, which generates fat arcs only for regular segments of a space curve. Later on we
will combine this local bounding region generation with subdivision technique.

3.2.1 Regularity Criterion

Asin Section 2.2.1 first we identify the empty sub-domains of the computational domain. It is
obvious, that Observation 2.3 in Chapter 2 is true in general for multivariate BB-polynomials.

Observation 3.2. Suppose, that an algebraic curve is represented by two BB-polynomial
in the domain © C R3. If one of the polynomials has only negative or only positive BB-
coefficients over the domain, then none of the points in 2 belongs to the algebraic curve.
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In order to approximate algebraic space curves, we shall detect domains, which contain
only regular segments of the curve. Such domains do not contain loops or self-intersections
of the curve. Therefore we state following the definitions similarly like in the case of planar
algebraic curves (see in Definition 2.1).

Definition 3.3. A point p of an intersection curve C(f,g,2) C R? of two algebraic surfaces
f =0 and g = 0 is called reqular, if the vectors V f(p) and Vg(p) are linearly independent
(and called singular otherwise). An algebraic curve segment is reqular on Q C R3, if each
point of the segment is reqular in the domain.

Definition 3.4. A point p of an intersection curve C(f,g,Q) C R3 of two algebraic sur-
faces is called u-reqular (u can be equal x,y or z), if the u coordinate of the tangent vector
Vf(p) x Vg(p) is not equal to zero. An algebraic curve segment is u-reqular in the domain
Q C R3, if each point of the segment is u-reqular in €.

The relation in between these definitions is formulated in the following lemma.

Lemma 3.5. If an algebraic curve segment in Q C R is x,y or z-reqular (regular at least in
one coordinate), then the curve segment is reqular in the domain. Moreover it is not a loop
and no self-intersection occurs in the domain.

Proof. If we know, that one of the coordinates of the tangent vector does not vanish in €2,
then the tangent vector does not vanish either in the domain. So the curve is regular. It
means, that no self-intersection occurs in the domain. The regularity in one coordinate also
excludes the situation, that the tangent vector of the algebraic curve returns to the same
position if we trace the curve. The curve can not form loops in the domain. O

Control of coordinate regularity. In order to certify domains containing regular alge-
braic curve segments, we use the convex hull property of the Bernstein polynomials. We give
here a sufficient condition for detecting such domains. Namely it is sufficient to show, that
there exists a bound for one of the coordinate of the vector t = V f x Vg in the domain, which
bounds the coordinate function away from zero. Since we compute with BB-polynomials we
can represent each coordinate of vector t = (t!,¢2,¢3) in a BB tensor product form as

[ m n
=N tBh(@) B () B (2),

i=0 j=0 k=0

where the coefficients %) can be computed from the coefficient of f and g, and u = 1,2 or
3. For a certain u we denote with m" the minimum and with M* the maximum of ¢%,. If
m“M* > 0 then

|t”| > min{‘m“

M"|} =T" > 0. (3.3)

)

If such T" exists for v = 1,2 or 3, it ensures us that the curve is regular at least in one
coordinate in €.

3.2.2 Local Algorithm

We describe here an algorithm (Algorithm 5) to approximate regular algebraic curve seg-
ments. It is a local fat arc generation method in certain sub-domains of the original domain
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3.2 Approximation of Regular Curve Segments

Algorithm 5 FatArcLocal_3d(f,g, 2, ¢)

Require: The curve is regular at least in one coordinate in 2.
1: f,§ modified and orthogonalized polynomials {see (3.18)}
2 p,q  T2(f), T2(y) spherical approximations
3: if p, ¢ exist then
4: P < zero contour of p

5: Q< zero contour of ¢

6: S+ PnNQ {median circle}
7. if S # () then

8: G + lower bound for |V f| and ||V3]|

9: K + upper bound for |Vf - V|

10: if 0 < G and 0 < G* — K then

11: 0 + upper bound of HDq(S,C(f,§,Q)) {see Lemma 3.15}
12: if p < e then

13: F={x:3yes |[x—y[<on {fat arc}
14: return F {fat arc has been found}
15: end if

16: end if

17:  end if

18: end if

19: return () {no fat arc has been found}

Q. Later on we will describe a global algorithm, which detects the domains, where the local
algorithm is applicable. This algorithm is based on the fat arc generation technique, what
we introduced in Section 2.3 for the planar algebraic curves.

The local algorithm assumes that the curve is regular at least in one coordinate in order
to approximate a regular algebraic segment which is not a loop.

We have generalized the median arc generation techniques from Section 2.3.2 and
Section 2.3.3. These algorithms generate the median arc in algebraic form, as the inter-
section of two implicitly defined spheres. The intersecting spheres are chosen from a family
of spheres, which approximate certain combinations of the original polynomials. Later on, if
we would like to represent the output in parametric form, it is easy to describe the circular
arcs as rational quadratic curves.

The distance estimation method generalizes and combines the approaches in Section 2.3.5
and Section 2.2.4. It bounds the BB-distance in between each polynomials and the associated
quadratic approximations. Then an upper bound is generated for the one sided Hausdorff-
distance of the median arc and the algebraic space curve. This bound is used then as the
thickness of the fat arc.

The algorithm is successful, if the median arc is found and the fat arc thickness can be
computed and it is smaller than the prescribed tolerance . Then the algorithm returns with
a fat arc, which bounds the curve segment in the appropriate domain. If the local algorithm
fails then the algorithm returns the empty set.

Fig.3.2 presents three examples of fat arcs which have been generated with the help of
Algorithm 5. According to the median arc generation technique we can see different results
for the same algebraic curve segment in each column of the figure. The used median arc
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3 Fat Arcs for 3D Implicit Algebraic Curves

generation techniques are described in Section 3.3. The distance estimation technique is
described in Section 4.4.

3.3 Median Arc Generation

Implicitly defined spaces curves are given as the intersection curve of two implicitly defined
surfaces. In order to approximate algebraic curve segments, we generate implicitly defined
arcs in R3. These algebraic arcs the so called median arcs can be given as the intersection
curve of two implicitly defined spheres. In order to generate the defining spheres of the median
arc, we can choose different strategies. Several fitting techniques, for instance least-squares
fitting, are used in geometric computing. In this section we generalize the approximation
techniques from Section 2.3.

3.3.1 Median Arc Generation with Least-Squares Approximation

Similarly to Section 2.3.2 we can use least-squares approximation to find approximating poly-
nomials. In order to generate a quadratic polynomial with spherical zero level set, we are
searching for a polynomial in the form

si(z,y,2) = ai(2® + 4 + 2%) + bz + ciy + diz + e
We modify the original functions using a linear term

f(x7y7 Z) = l(.’E,y,Z) f(xayaz) - (ZO + ll.’E + l2y + ng) f(xayaz)7
g(x’y, Z) = k(x?y’ Z) g(x,y,Z) = (ko + klx + k?y + ]CgZ) g(x’y’ Z)‘

The approximation problems can be formed as the following optimization problems

miny o / /Q Hf_sl ‘2dxdydz, (3.4)
miny, epo //QHQ—SgH2dxdydz. (3.5)
where
vy = (a1,b1,c1,dy,e1, 00,11, 12, 03),

vy = (a2,by,co,dy,ea, ko, ky, ko, k3).

In order get a unique solution, we have to normalize both minimization problems. Here we
present three different strategies. The first normalization technique is using a linear condition.
It is a natural condition in the sense that the modified polynomial f or g keeps the original
function value in the center of the computational domain 2. For instance for the first problem
(3.4) the condition can be formulated as

lop + 11" + 1oy + 13¢7 =1, (3.6)

where ¢ = (¢*,c¥,¢*) denotes the center of the domain. Another possible choice for nor-
malization is to control the gradient length of the approximating polynomials s;. Such a
condition determine two possible solutions for s;(z,y, z). The one with smaller value in (3.4)

40



3.3 Median Arc Generation

\./, - ;J,»//

Figure 3.2: Examples for fat arc generation with the help of algorithm FatArcLocal_3d. We
used four different median arc generation methods on three examples. In the first three rows
we show fat arcs generated by least squares approximation with linear normalization and least
squares approximation with two different quadratic normalization ((3.7) and (3.8)). In the last
row we can see the fat arcs generated by Taylor expansion modification.
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3 Fat Arcs for 3D Implicit Algebraic Curves

or (3.5) can be used as an approximating polynomial. A natural choice of the quadratic
normalization condition is

HVsi(c)H =1. (3.7)

Another possibility is to use a quadratic normalization condition which approximates better
the secondary shape of the original implicitly defined curve. Namely we can suppose for
instance

[Vsi(e)|| = [V f(e), (3.8)
[Vsa(e)|| = [[Vg(e)] -

We compare the different least-square approximation methods via an example in the
convergence rate analysis in Section 3.5.4.

3.3.2 Median Arc Generation Using Taylor Expansion

The algebraic space curve is given by the zero sets of two polynomials f and g in the domain
Q) C R3. In order to generate the median curve, we reformulate the approximation problem.
More precisely, we try to find a certain combination of the given polynomials f and g, that
possesses a special Hessian matrix in the center point ¢ = (¢%, Y, ¢?) of the sub-domain (.
Such a new polynomial A can be defined as the combination

h=kf+lg, (3.9)
where k and [ are linear polynomials and (z,y, z) € Q

= —c* —cY — F
'ffii,f)) iy ((i - §>) . ZQ(SJ— c(”;));F zf?iz— czc),) (@y,2) € 2.
The zero level set of the polynomial h
Z(h,Q)={x: h(x)=0}NQ
is a surface, which contains the algebraic curve defined by f and g

C(f.9,9) C Z(h,Q).

We choose the coefficients of k and [ such that the Hessian of h is a scalar multiple of the
identity matrix in the center of the domain c.

A0 O
1) =[0 X 0], rer (3.10)
0 0 X

If such an h can be computed, then the zero level set of the quadratic Taylor expansion of
h about c is a sphere. In order to find h, we solve a linear system with eight variables (the
coefficients of k and [) and five equations, that can be deducted from (3.10)

haz(€) — hyy(c) = 0

hyy(c) = hzz(c) = 0
hay(c) = 0 (3.11)
hy.(c) = 0
hy.(c) = 0.



3.3 Median Arc Generation

If the system has full rank, then the solution set in the space of coefficients of k and [ is
three-dimensional. Therefore we choose two coefficients as parameters in advance. More
precisely, we suppose that the values of the constant terms of the polynomials k£ and [ are
arbitrary but fixed (u,v) € R? and different from zero (u # 0 and v # 0).

Lemma 3.6. Given two polynomials f and g over the domain 2 C R3. We suppose that in
the center of the domain

[V £(c) x Vg(c)| # 0. (3.12)

Then for any pair of (u,v) € R%, where u # 0 and v # 0, there exists an exactly one-
dimensional family of non-trivial polynomials, k and 1, such that h = kf + lg satisfies (3.11).

Proof. The Hessian matrix of h can be expressed with the help of f, g,k and [ as
H(h)(c) = VE(c)Vf(c)" + V[(c)Vk(c)" +uH(f)(c)

+Vi(c)Vyg(c)" + Vg(c)Vi(e)" + vH(g)(c). (3.13)

For any values of the parameters u and v, the system (3.11) can be reformulated as

LE —He) 0w —g 0 [}
0 BlO —f© 0 g —a@ ||
Ak=| fyl0) fule) 0 gyl0) gi(e) 0 A L R
0 L) e 0 gl gl || )
f2(c) 0 fz(c)  g:(c) 0 9z(c) Iy
where the vector of constants is
%(fxx(c) - fyy(c)) %(gxx(c) - gyy(c))
%(fyy(c) — fzz(c)) %(gyy(c) — g.2(c))
b=—u f:vy(c) - gzy(c)
faz(c) gx=(C)

In order to be certain that the system (3.14) has a one-parameter family solution system, we
have to show, that the matrix A has rank 5. Therefore we analyze the 5 x 5 sub-matrices
of A. We denote with A; the matrix, which we get from A by deleting ith column. The
determinants of the matrices A4 56 are

2

det(Aq) = —fu(c)||Vf(c) x Vg(o)|”,
det(Az) = £,()]|Vf(c) x Vg(e)||”,
det(Ag) = —f(0)||V(c) x Vg(o)||”-

We know that ||V f(c) x Vg(c)|| # 0. This observation also implies, that one of the coor-
dinates of V f(c): fz(c), fy(c) or f.(c) is non-zero. It means, that one of the determinants
of Ay, A5 or Ag is not zero. So A always has full rank 5. Thus the solution of the system
Ak = b exists, and it is a one dimensional subspace in RS. O
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3 Fat Arcs for 3D Implicit Algebraic Curves

According to Lemma 3.6, for any pair of (u,v) where u # 0 and v # 0, there exists a
one-parameter family of polynomials k and [, such that kf + lg satisfies (3.11). From this
family of polynomials we always choose the one, which minimizes the ls norm

|k||, = min subject to Ak = b, (3.15)

where k = (k1, k2, k3,11,12,13) is the common coefficient vector of k and [. This guarantees
that the solution behaves numerically well during the computations. With the additional
condition (3.15) the polynomials k& and [ can be computed uniquely for each pair of (u,v).
Moreover the result depends continuously on the points of the domain. We introduce the
function G, which assigns to a function f and g, a value of (u,v) and the center point c of a
domain €2 the associated function according to the construction in Lemma 3.6 and the former
assumption (3.15)

G(f,9,(u,v),c) =h=Fkf +lg. (3.16)

Remark 3.7. Suppose that the right hand side of the system (3.14) i.e. the vector b,
vanishes for a certain pair of (u,v). In this case the solution set of (3.14) is a line, which
passes through the origin. Then the linear combination uf + vg fulfills the condition (3.11).
According to (3.15) we always choose the solution of the system (3.14), which has the smallest
length. In this special case both k£ and [ are constants.

The polynomial h = G(f, g, (u,v),c) fulfills the special condition for the Hessian (3.11).
Thus the quadratic Taylor expansion of A about c has a spherical zero level set.

s(x) = T2(h")(x) = (3.17)

= h(c) + Vh(e)" (x — c) + %hm(c)(x —o)f(x—c) VxeQ.

If we compute two polynomials for two different pairs of parameter (u,v) # (u',v’)

f=6(f 9, (u,v),c) and §=G(f,g, (v ,v'),c), suchthat wu,v,u',v" #0, (3.18)
then their quadratic Taylor expansions about ¢ can be denoted by
p=T:f and ¢=T24
These two polynomials define the algebraic set
S(p,q,Q) = {x : p(x) =0, g(x) =0} N

If this algebraic set is not empty, then it forms a circular arc. This arc can be used as an
approximating circular arc of the curve C(f, g,Q). Later on the error of the approximation
is estimated by a distance bound of the algebraic curves C(f, g,) and S(p, q, Q).

Orthogonal pair of functions We compute a pair of polynomials for two different pairs
of parameter (u,v) # (u/,v")

f=0(f.9,(u,v),¢) and §=G(fg,(u',v')c).
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3.3 Median Arc Generation

In order to get efficient distance bound for the algebraic curve and the median arc, we prefer
to generate such a pair of functions f*, g*, which has the property

Vi*(e) L Vg*(c). (3.19)
in the center of the domain. If F' and G are defined as

F

Vsl +3|vie)| (3.20)
¢ = Vi@ -3 |vie).
then the following polynomials satisfy (3.19)

. F . _ G
7] A e 321

Thus we introduce the function O, which assigns to the polynomials f and ¢ and the center
point ¢ of a domain §2. It generates a pair of functions

(f*.9") = O(f,4,0), (3.22)

which is computed with applying the orthogonalization steps (3.20) and (3.21).
The functions f and § are linearly independent since we computed them as the sum and
the difference of two linearly independent non-zero functions.

Remark 3.8. Any linear combination of h; = T'(f, g, (u;,v;), c), computed for the parameter
values (u;,v;), fulfills the property of functions with special Hessians (3.11). So if

iLZZCZ'hZ‘, ¢ € R,
i=1
then A also fulfills the condition of special Hessian (see (3.11)). Thus T2(h)(x) = 0 defines a

sphere in R3.

According to this remark, also the condition of special Hessians (3.11) is satisfied by f*
and ¢g*. So we define the following approximating polynomials as

= TZ(f")
q = T:(g").

From the construction of f* and ¢* it is clear, that the vectors Vp(c) and Vg(c) are also
independent and perpendicular to each other. Since f and ¢ satisfy (3.11), the equations
p =0 and ¢ = 0 are equations of a spheres. The median arc S is defined by the intersection
curve of the zero set of the polynomials p and ¢ in the domain.

S(pq,) = {x : p(x) =0, ¢(x) = 0} N Q.

If it is the empty set, then no median arc is generated.
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3 Fat Arcs for 3D Implicit Algebraic Curves

3.3.3 Connection with the Osculating Circle

In this section we suppose, that the center of the computational domain €2 is a point of the
algebraic curve C defined by the polynomials f and g. If the center point is denoted by c,
then

f(e) =g(c) = 0. (3.23)

This special case plays an important role during the computations, since later we would like
to approximate the curve in such sub-domains of the original domain, which tightly enclose
the algebraic curve.

For an arbitrary pair of parameters we compute a new polynomial as the combination of
f and g as defined in Section 3.3.2

h=G(f.9,(u,v),c).

Consider the quadratic polynomial
s ="T2(h).

According to the assumption (3.23) the center of the domain is a point of the zero set of h
and s.

h(c) = s(c) = uf(c) + vg(c) = 0. (3.24)
Then the quadratic approximating polynomial s has the following form
s(x) = Vh(e) (x —¢) + A(x — )T (x — ¢), (3.25)

where the gradient is
Vh(c) =uV f(c)+vVy(c), (3.26)

and the Hessian-matrix has the form
H(h)(c) = AI®,
as in (3.10).

Observation 3.9. Suppose, that A # 0, then the zero set of s can be written in the form
2
1 1 Vh(c
<x - <c + XVh(C)> X — <c + XVh(C)>> = w
Therefore the radius of the sphere s = 0 can be computed as

[VA(e)]|
T

Observation 3.10. The zero set of s defined in (3.25) depends only on the ratio of the chosen
parameters u and v. Therefore the sphere family, computed for different values of (u,v), is a
one-parametric surface family. It can be parametrized by the ratio of v and v. This follows
from the computational method of k and [ and from the special form of the sphere equations
(see in (3.25)). Fig.3.3 (a) visualizes several members of such a sphere family for different
values of the ratio u/v.
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3.3 Median Arc Generation

(a) (c)

Figure 3.3: Sphere family computed with Taylor expansion modification (b) about a point on
the algebraic curve (a) and its intersection with the normal plane of the curve (c). The thin,
black curve is the algebraic curve. The red circle is the osculating circle.

Remark 3.11. In the computations we chose the two parameter pairs (u,v) and (u',v")
usually as (1,2) and (2,1) or (1,5) and (5,1). Both choices generated similar results in our
examples, since the generated median arcs converge to the same limit circle, the osculating
circle. Therefore if u,v,u/,v" # 0 and u/v # u'/v', then (u,v) and (u/,v") are good initial
choices for parameters. It is not possible to improve the general behavior of the algorithm
by the choice of these parameters.

Lemma 3.12. We assume that (3.23) is satisfied in the point c. Then for each sphere
equation, computed for certain (u,v) € R% u,v # 0, the center of the sphere s = 0 lies in
the normal plane of the algebraic curve in the point c. Moreover the inverse of the radius of
the sphere is exactly the normal curvature k,, of the tangent direction V f(c) x Vg(c) of the
surface G(f, g, (u,v),c) in the point c.

Proof. Suppose that in a certain neighborhood of the point ¢ the algebraic curve can be
parametrized with arc length parametrization. It is not a restriction, since we are computing
only with regular segment of the algebraic curve. The parametrization is denoted by

p(t), where p(tg) =rc.

This curve is a curve on the surface h = 0 according to the definition, therefore it satisfies

Thip(t)
dt '
for any 1.
If we compute the first derivative in the point c:
dh(p(t
dh(p(t)) = (Vh(c),p'(to)) = 0.
dt tto

Thus the tangent vector of the algebraic curve is parallel with the cross product of the
gradients V f(c) and Vg(c). In (3.26) we observed, that

Vh(c) =uV f(c) +vVyg(c).
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3 Fat Arcs for 3D Implicit Algebraic Curves

Since s is the quadratic Taylor expansion of h about ¢, we obtain that

(Vs(c),p(to)) = 0.

This implies, that for any value of the parameters (u,v) the gradient of the associated sphere
is in the normal plane of the algebraic curve in the point c.
The second derivative in the point c is

d*h(p(t))

D = (VR(©), B (1)) + Bt M) ()0 (1) =

t=to

= (Vh(c), p"(to)) + A(p'(to), P'(t0)) = 0.

Since we used the arc length parametrization
(Vh(c), P (to)) — A = 0.
The polynomial s is the quadratic Taylor expansion of h about c, therefore also

(Vs(c),p"(to)) = .
If we expand the scalar product:

HVS(C)H Hp”(tO)H cos p = —\,

where ¢ denotes the angle of the surface normal Vh(c) and the normal direction of the
algebraic curve in c¢. According to the Theorem of Meusnier and Observation 3.9 we finally
arrive at

A 1
KCOS Y = Ky = 7———

HVS(C)H T

which proves the lemma. O

As an example Fig.3.3 (b) shows the intersection of the sphere family and the normal
plane of the algebraic curve. Each sphere of the family intersects this plane in a great circle.
These circles intersect each other in two points on the normal of the algebraic space curve.

Corollary 3.13. The functions f and g define an algebraic curve C(f,g,Q) in Q C R3. We
assume that the point ¢ € Q lies on the algebraic curve ¢ € C(f,g,). We compute the
function family h(u,v) = G(f, g, (u,v),c) with special Hessian for f and g in the point c.
The quadratic Taylor expansion for any (u,v) pair u,v # 0 has a spherical zero level set. The
intersection of this sphere family is a circle, which is the osculating circle of C(f,g,) in the
point c.

Proof. In each point of a curve on a surface the osculating circle is the normal section of the
curvature sphere of the surface [21]. In Lemma 3.12 we observed that this curvature sphere
for any h(u,v) = 0 surface is the zero set of the quadratic Taylor expansion. These spheres
have the same intersection curve with the osculating plane of C(f, g,2) in the point ¢, which
is exactly the osculating circle. O
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3.4 Distance Estimate

In this section we describe a method to estimate the distance of two algebraic space curves.
In order to get a distance bound, we combine a distance bound of parametric and algebraic
curves and a distance estimation strategy between algebraic surfaces.

3.4.1 Distance of Implicitly Defined Surfaces

First we generalize the distance estimation technique from Chapter 2.3.5 for algebraic sur-
faces. In order to measure the distance of algebraic surfaces, we consider the BB-norm over
the domain © C R3: H.HgB , which is the maximum absolute value of the coefficients in the
BB-representation. With the help of the norm, a distance bound can be defined between an
arbitrary polynomial f and an approximating polynomial p for all point in the domain

e = [|f = pllys- (3.27)
Due to the convex hull property
|f(x) —p(x)| <&, Vxe.

This implies that
p(x) —e < f(x) <p(x)+e Vxe. (3.28)

A region can be defined in € by the approximating polynomial and the distance bound
D(pe) = {x : [p(x)| <} N Q.

The algebraic surface defined by f is the point set
Z(£,9) = {x : f(x) =0} N Q.

The region D is a bounding region for the zero level set of the polynomial f in

Z(f,Q) CD(p,e) CQ.

3.4.2 Distance of Algebraic and Parametric Space Curves

In order to bound the distance of algebraic space curves, we recall a former result from [20].
In the paper a technique is described to bound the distance of parametric and algebraic space
curves.

We assume that the a curve segment r(t) is defined with the parameter domain ¢ € [0, 1]
in © C R3. The curve traces the point set

R={r(t) : t[0,1]}.

The algebraic curve C(f,g,Q) is defined by the intersection curve of f and g on the sub-
domain €. In order to avoid certain technical difficulties, we bound the distance between the
point set R and

C*=CuUdnN,
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where 02 denotes the boundary of the domain. The one-sided Hausdorff-distance is defined
as
HDq(R,C*) = sup inf ||x —r(t)]. (3.29)
te[o,1] X€C*

In order to bound this distance we use the following result form [20].

Theorem 3.14 (Jiittler-Chalmoviansky). Consider a curve segment r(t) : t — O, which
traces the point set R. The functions f and g define the algebraic curve C(f,g,) in Q. We
assume that positive constants G and K ezist, such that

G < HVfH and G < HVQH )

and
‘Vf . Vg‘ < K.

If h denotes the function \/ f2 + g2, then
|Vh]| < VG- K vxeQ.

Moreover if there exists a positive constant M, that f(r(t))? + g(r(t))? < M?, then the one-
sided Hausdorff-distance is bounded by

M

(3.30)

3.4.3 Distance of Algebraic Space Curves

If we would like to estimate the distance of algebraic space curve we can measure first the
distance of the defining algebraic surfaces. Suppose that an algebraic curve C(f,g,Q) is
defined by the polynomials f and g in the domain . An approximating space curve S is
given by two approximating algebraic surfaces p =0 and ¢ =0 as

S(pq,) = {x : p(x) =0, ¢(x) = 0} N Q.

The polynomial p approximates f, as ¢ is an approximating polynomial of g. We estimate
the distance between the algebraic surfaces and the approximating surfaces pairwise using
the technique from Section 3.4.1.

Q Q
er=|f-plgs. c2=l9-dllgs-
For all points x € S(p, q,?) it is satisfied that
|f(x)| <er and |g(x)| < e (3.31)
according to the definition p(x) = 0 and ¢(x) = 0.

Corollary 3.15. Consider two algebraic curves C(f,g,Q) and S(p,q,?), defined by the poly-
nomials f,g and p,q in the domain Q C R3. We denote by 1 and o the norms

Q Q
€1 = Hf —pHBB and &3 = Hg— qHBB'

50



3.4 Distance Estimate

We assume that the positive constants G and K exist, such that
G< Vsl and G <]V,

and
IVf-Vyg| <K.

IfG >0 and G*> — K > 0, then for all points x € S exists a point'y € C such that

(3.32)

Therefore

V)2 +g(x)? < /el + 3.
Then Theorem 3.14 can be applied to bound the distance of C and S§ with the help of the
constants G, K and

M = /e} + 3.
U

Corollary 3.15 gives us an upper bound of the distance between two algebraic space curves:

2 2

€1+ &3
= == 3.33
°=\Ve -k (3.33)

So the bounding fat region can be defined as the point set

F(p,q,0,2) ={x : Ixg: p(x0) =0, g(x0) =0, |x —xo| < 0} N

Evaluation of the Constants The defining polynomials of the algebraic curves f, g and
p, q are given in the BB-tensor product form. In order to find the constants in Corollary 3.15,
we use the convex hull property of these polynomials.

The BB-norm of a polynomial is the maximum of the absolute values of the coefficients.
Suppose that the difference polynomials are represented in the form

I m n
f—p= Z Z Z aijkB@l'(x)B;‘n(y)Bg(Z)

i=0 j=0 k=0

and

Then the norms can be evaluated as
e1 = |f = pllan = max fa]
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and
2 = lo— alf = mae
BB gk Y
The constant G is a lower bound of the gradient length of both functions f and g. We
can represent the square of the gradient length in a BB-tensor product form

2m 2n

F2+ f24 52 —ZZZ%R B} (y) B ()

i=0 j=0 k=0

2m 2n

g+ g+ 9= Z SN Bl(@) B (y) B (2).

i=0 j=0 k=0

Then a suitable lower bound is

G = mm{rr’;lﬁcfk,mlgcwk}
if the minimum is positive.

The value of K can also be given with the help of the convex hull property of BB-
polynomials. The representation of V f - Vg can be computed as

I+ m+m n+n

fzgz + fygy + f.9. = Z Z Z dzkalH Bm+m( )B£+ﬁ(z)-

=0 j=0 k=0

Then a suitable upper bound is
0,5,k

3.5 Convergence

Since we generate quadratic approximating curves, we expect that the fat arc generation
algorithm has cubic convergence rate. We analyze in this section the convergence rate of
the method and certify the third order convergence of the fat arcs in Lemma 3.21. Then we
demonstrate the behavior of the bounding regions through some examples.

3.5.1 Continuity of Taylor Expansion Modification

The local fat arc generation technique first approximates the intersection curve of two alge-
braic surfaces defined by the polynomials f and g by a circular arc. This arc is defined as the
intersection curve of two spheres. These spheres are given as the zero level set of the poly-
nomials p and g. The polynomials are the quadratic Taylor expansion of certain polynomials
with a special Hessian (see Section 3.3.2) about the center point ¢ of the sub-domain Q C .
The polynomials with special Hessian are computed as the combination of the polynomials
f and g in the form h = kf +1g = G(f, g, (u,v), c) for certain pair (u,v) # (0,0), where the
terms k and [ are linear polynomials.

In order to prove the convergence of the generated arcs, we have to show, that the
computed polynomials depend continuously on the points of g for a fixed choice of (u,v). It
means, that the polynomial G(f, g, (u,v),c) depends continuously on the choice of the point
c.
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3.5 Convergence

Lemma 3.16. Given two polynomials f,g over the domain 2 C Qg. We suppose that for
any point c € Qg

|V £(c) x Vg(c)]| # 0. (3.34)
For an arbitrary but fized pair of u and v € R\ {0} we compute the polynomial

h = Q(f,g, (u,v), C)

with a special Hessian (see Lemma 3.6) under the condition (3.15). Then h depends contin-
uwously on the points of the domain €.

Proof. We have to show that the computed linear factors k£ and [ depend continuously on
the point ¢. We computed the coefficient vector k = (ky, ko, k3, 11, l2,13), such that it satisfies
the linear system Ak = b in (3.14) and minimizes the ly-norm of the vector k (see (3.15)).
If (3.34) is true, then A has full rank in any point ¢ € Qg (see proof of Lemma 3.6). For a
full rank matrix the vector, which satisfies (3.14) and (3.15), can be computed as

k=AT(AAT) !b.
—_——
AT
The matrix AT is the so called Moore-Penrose generalized inverse of A (see [9]). Since f
and ¢ are polynomials, the entries of the matrix A and the vector b depend continuously on
the point c. Therefore the vector k also depends continuously on the point c¢. The values of

u # 0 and v # 0 are fixed real numbers. So all coefficients u, v, k;, i =1...3and [;, 1 =1...3
depend continuously on c. Therefore also kf + lg depends continuously on the point c. [

The next corollary follows from Lemma 3.13 and Lemma 3.16. If we modify the Taylor
expansion as it is described in Section 3.3.2, then we can establish the result considering the
behavior of a sequence of the generated median circles.

Corollary 3.17. Suppose we have a nested sequence of sub-domains (£2;)i=123.. C Qo

Qi+1 C QZ‘,
which have decreasing diameters 6;, such that

lim §; =0,

1—00

and c; denotes the center point of ;. Consider a pair of functions f and g, which defines
an algebraic curve in Qg C R3

C(f,9:90) = {x : f(x) =0, g(x) = 0} N Q.

Suppose that there exists a point p, which satisfies f(p) = g(p) = 0, not an inflection point
of C(f,9,Q) and p € Q; for all i. We compute

A~

fi=G(f,9,(u,v),¢;) and G =G(f,g,(u,v),c;)

for fized values of u,v,u’,v" # 0. We consider the circles defined by the zero set of the
quadratic Taylor expansions

pi=T2fi and q =TZ2g.

Then the sequence of these circles converges to a limit circle, which is the osculating circle of
C(f,g,Q) in the point p.
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3 Fat Arcs for 3D Implicit Algebraic Curves

Corollary 3.18. For all ¢ € Qg if we compute f = G(f, g, (u,v),¢) = kf +1g, then the norm
of the common coefficient vector k can be bounded by a constant

I < L,

which depends only on f, 9,90 and on the choice of (u,v).

3.5.2 General Lower Bound for the Gradient Length

The following lemma (Lemma 3.19) ensures, that G(f, g, (u,v),c) has also a non-vanishing
gradient if we compute fat arcs in sufficiently small sub-domains, which enclose the algebraic
curve.

Lemma 3.19. Suppose that there exists G > 0 in Qg for the polynomials f and g such that
vx €, ||[Vf(x)|]|>GCG and |Vy(x)|| > G. (3.35)

Consider a domain Q C g, which has a diameter 6q < €, and there is a point p € €2 such
that for alli=1,...n—1,

f(p)=g(p) =0.

The parameters u # 0 and v # 0 are arbitrary but fivzed. We compute h = G(f, g, (u,v),c). If
€ 1is sufficiently small, then there exists G > 0 constant, such that for any x € €

HVh H >G>0
Proof. If x € Q C Qg then
Vh(x) = FR)VE(x) + kx)Vf(x) + 9(x)VI(x) + [(x)Vg(x),

where k and [ are computed as described in Section 3.3.2. According to the triangle inequality

V()| > ||k(x) )—i—l(x)Vg(x)H — | f(x)VE(x) + g(x)VI(x)|| > (3.36)
> |[kx)V f(x) + 1) Ve[| = [ [VEE)] = oG] [ Vi)
Since we know that there exists a point p € Q such that f(p) = g(p) = 0, we obtain
Feo <5 and g0 < < (3.37)

where ¢ is an upper bound of the diameter of 2. In Corollary 3.18 we also observed, that
there exists L > 0 such that
]| < L.

Since kT = (VET, vIT),
|[VEx)|| <L and ||Vi(x)| < L.

We can also bound the value of the linear polynomials k& and [ on a sufficiently small sub-
domain €). Suppose that the diameter of 2 is smaller than e. If x € €2, then

k(x)| = u+ki(x— )+ ko(y — ) + ks(z — )| > |u| - %\/gL, (3.38)

Ix)| =[v+h(e—c) +bly—c) +is(z—c)| > |v] - %\@L,
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3.5 Convergence

where ¢ = (¢, Y, ¢*) denotes the center of 2. Since u and v non-zero, if

min {u,v}

V3L

e < (3.39)

then {k‘(az){ > u/2 and ‘l(az){ >wv/2.

We supposed that V f(x) and Vg(x) are linearly independent in any point of Q. If (3.39)
is satisfied for an €2 C g, then there exists a general bound G depending on u,v and G, such
that

|k(x)Vf(x) +1(x)Vg(x)|| >G>0, VYxeQ

Therefore for all x € 2

[VhG]| = &= | £6 VRGO = oViGo)] =

> G- L|f(x)] - L]g(x)].
Since we know that there exists a point p € Q such that f(p) = g(p) =0,

2e L

HVh(x)H > G- Nel

Suppose that

GG v
— i S —— . 3.40
€ = min { oL V3L \/§L} ( )

If the diameter of 2, denoted by dq, satisfies

then

O

Corollary 3.20. Suppose that the conditions of Lemma 3.19 are fulfilled for a certain pair of
polynomials f and g on the domain Q. If h = G(f, g, (u,v),c) is computed in a sufficiently
small sub-domain ) C Qg for an arbitrary pair of parameters u,v # 0, then s = T2(h) # 0.

3.5.3 Convergence of Taylor Expansion Modification

Now we have to show that the fat arc thickness is sufficiently small compared with the
diameter of the computational domain. The following lemma shows, how the computed fat
arc thickness behaves as the size of the domain tends to zero.

Lemma 3.21. Given  two  polynomials  f,g  defined  over the  domain
Qo = [a1, B1] X [ag, Bo] X [a3,B83] CR3.  We suppose that the conditions of Lemma 3.19
are satisfied. We compute a pair polynomials with special Hessian and apply the orthogonal-
ization function (see (3.22))

(f.9) =0 (G(f,9.(u,v),c), G(f,g, (W ,v'),¢), c)
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3 Fat Arcs for 3D Implicit Algebraic Curves

in the center point c of a sub-domain 0 C Qq. If the diameter dq of the sub-domain € is
sufficiently small, then there exists a constant C' € R such that

0 < C8, (3.41)

where o is the corresponding fat arc thickness computed as in (3.33).

~

Proof. Since the conditions of Lemma 3.19 are satisfied, we know that there exists G such
that
min{|[Vf], [|V3ll} = G,

for any sufficiently small sub-domain €2, which encloses the curve. We denote by p and ¢ the
quadratic Taylor expansion of f and § about the center ¢ of the domain 2. Then

Foo =i <t max S s

oo ¢ 00 6 vest,xen dv3 @
and

g =g —T%(g 4% ¥

Hg - quo - Hg - c(g) 00 < éversr’llf,i))c(eﬂ dv3 (X) Q-

k3%

Recall from Lemma 3.16 that G depends continuously on the points of the computational

domain Qg for each pair of (u,v), where u # 0 and v # 0. Therefore also f and ¢ depend

continuously on the points of the computational domain €2y. Thus for all f a general upper

bound Cj can be given for (%) and for all § a general upper bound Cy can be given for (s:x).
The fat arc thickness is defined by

oo — €2 + &2
Gi — Ko’

f_pHBB and £y = HQ— qHBB

where
g1 =

Because of the norm equivalences there exist C3 and CYy, such that
e Hf_pH and 5 < Cy g —q|| -
o

So we observe, that

1
e?+e2 < 6‘/(0103)2 + (C2Cy)2 6.

~~

M

We assumed that G < Gq is a general lower bound for HV f H and HV@H independent

of the choice of the sub-domain €2, if it is sufficiently small. Since we also applied the
orthogonalization step to the polynomials f and g,

vi(c) - vg(c)‘ ~0 (3.42)
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3.5 Convergence

in the center point ¢ of a domain ). If the diameter of the sub-domain 2 is sufficiently small,
then there exists K > 0, which does not depend on 2 and each x € {2 satisfies

Vi) Vix)| < K.

According to (3.42) if the diameter of the sub-domain is sufficiently small, then the general
bound K satisfies K < G?. Thus this implies, that

M 83 _ M &3

o < < — < C53.
\/Gg—f(ﬂ VG- K ¢

3.5.4 Comparison of Convergence Rate

We confirm here the approximation order of the local fat arc generation algorithm
(Algorithm 5) by numerical examples. We generate fat arcs for single algebraic space curve
segments in different domains. We show, how the fat arc diameter behaves, if we reduce the
size of the computational domain.

The domains are the axis aligned boxes in the global coordinate system:

Qp =[-107%,107%3, keR. (3.43)

Fig.3.4 shows the result of the fat arc constructions with using the Taylor expansion
modification in three different € for the pair of polynomials

fl(.%',y,Z) = T Yz
gl(.%',y,Z) = .’E2+y2+(2—1)2—1.

In the first figure on the top is the implicitly defined curve shown in red. The other figures
visualize the generated fat arcs for £k =1, 1.5, and 2.
We consider two pairs of polynomials in the domains €, 1 < k < 8.25:

f?(xayaz) - .%'+Z2—y2’2,
ga(z,y,2) = 2 —dy+y*—24052%
and
fa(z,y,2) = 0.0dx — 2 + 23 + 0.44y — 0.4xy + 2%y — 1.49° +
zy? + 3 +0.042 + 222 — 04yz + %2 — 22 + 22 +y2? + 23,
g3(z,y,2) = z—2*+xy+y*+yz+0.252%

In Fig.3.5 we visualize the relation between the width of the generated fat arcs and the size of
the domain diameter for the fat arc generation strategies with different median arc generation
techniques. In the left the results for the polynomials f; and go are shown for the values of
k=1,1.25...6. In the right side the test polynomials were f3 and g3, and the outputs are
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3 Fat Arcs for 3D Implicit Algebraic Curves

Figure 3.4: Above: The zero set of f; and g; with the intersection curve for & = 0. Below: Fat
arcs for k =1, 1.5, 2

computed for the values k = 2,2.25...7. We show the negative logarithm of the associated
fat arc diameter in a doubly-logarithmic plot. The expected approximation order is three. In
the examples it is confirmed for the Taylor expansion modification. The lines denoted by L
show the result of least-squares approximation with linear condition (see condition in (3.6)).
The least-square approximations with quadratic normalization conditions (3.7) and (3.8),
denoted in the figures by @1 and (2. However, these least-squares approximation strategies
gave nearly the same results. By the Taylor expansion modifications we used two different
(u,v) parameter pairs. The line denoted by T3 shows the result by the choice

(u7 1)) - (17 2)7 (ul7 vl) - (27 1)7
and T5 shows the output by the parameter pair
(u,v) = (1,5), (u',v") =(5,1).

However, here the outputs for the two strategies show nearly the same results again.

3.6 Fat Arc Generation for Algebraic Space Curves

Subdivision is a frequently used technique and it is often combined with local approximation
methods. Such hybrid algorithms subdivide the computational domain in order to separate
regions where the topology of the curve can be described easily. The local curve approxima-
tion techniques can be applied in the sub-domains, where the topology of the curve has been
successfully analyzed. The regions with unknown curve behavior can be made smaller and
smaller with subdivision.
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—logd —logd

. 1 .

b T T 20+ T Ty

L i 1
15 3 [

I 5 3 Q1

[ LQ1Q2 i Qs
10l [

L 10,

5j 5,
07\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ko’wwww\\ ] S S T TS S [N T Y Y N N w\k
0 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

Figure 3.5: Comparison of relation between the fat arc diameter and the domain diameter for
five median arc generation strategies. The negative logarithm of the associated fat arc diameter
are shown in a doubly-logarithmic plot, in the left side for the polynomials f> and g3, in the
right side for f3 and gs. The red lines, denoted by 71 and T2, show the results from the
Taylor expansion modification by different parameter values. The lines denoted in the picture
by @1 (black) and Q2 (green) show the output of least-square approximation with quadratic
normalization conditions ((3.7) and (3.8)). The result of least-square approximation with linear
condition is denoted by L. The lines, denoted by 71 and T2 overlap each other as well as the
ones denoted by L and Q2

3.6.1 Global Algorithm

The algorithm GenerateFatArcs (see Algorithm 6) generate fat arcs for general algebraic
space curves. It combines the fat arc generation for single curve segments with recursive
subdivision.

First it analyzes the Bernstein—Bézier coefficients of the polynomials with respect to the
current sub-domain. If no sign change is present for one or both of the polynomials, then
the current domain does not contain any components of the algebraic curve. Otherwise the
algorithm tries to apply the fat arc generation for the algebraic curve segment. If this is not
successful, then the algorithm either subdivides the current domain into eight sub-domains,
or returns the entire domain, if its diameter is already below the user-defined threshold e.

Note that the algorithm may return domains which do not contain any segments of the
implicitly defined curve (“false positive boxes”). However, it is guaranteed that the method
returns a collection of bounding regions, which contains the implicitly defined curve.

3.6.2 Examples
Example 3.22. The implicitly defined curve is described by the equation system

y2 +2x—-1 = 0,

z422-04 =
It is represented in the unit box Q = [0,1]3. The first figure of Fig.3.6 shows the generated
median arcs, the second presents the generated fat arcs within the computational domains.

The tolerance was set to € = 0.05. The number of generated fat arcs is five. In the further
examples we do not visualize the whole fat arcs, only the median arcs and bounding boxes,
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3 Fat Arcs for 3D Implicit Algebraic Curves

Algorithm 6 GenerateFatArcs(f,g,Q,¢)

1: if Obs.3.2 true for f and g then

2:  return () {the sub-domain is empty}
3: end if

4: if the curve is regular in 2 at least in one coordinate then

5. A<« FatArcLocal_3d(f,g,Q,¢) {single fat arc generation}
6: if A# () then

7 return A {... has been successful }
8 end if

9: end if

10: if diameter of 2 > ¢ then

11:  subdivide the domain into 8 sub-domains €4, ..., g {subdivision}
12:  return |J}_ GenerateFatArcs(f,(;,¢) {recursive call}
13: end if

14: return € {current domain is small enough}

Figure 3.6: Median arcs and fat arcs for implicitly defined space curve.

since the fat arc shows only a slight difference compared to the thickened median arc by
relatively small tolerance.

Example 3.23. In this example we approximate the intersection curve of quadric surfaces.
We apply the algorithm GenerateArcs for three different intersections of four different pairs of
quadric surfaces. The outputs are represented in Fig. 3.7. The numbers of used approximating
primitives are given in Tab. 3.1 for each intersection curve. If the curve has a singular point
(here in 1.(b), 2.(c), 3.(b) and 4.(c)), then the algorithm returns not only fat arcs but also
sub-domains as abounding regions. All the examples are represented in the unit cube [0, 1]3.
The intersection curves are approximated within the tolerance e = 0.01. In example 1.(b)
we approximate an algebraic curve, which has a singular point (the tangent vector vanishes).
This curve is the so called Viviani curve, which is defined by the intersection of a sphere and
a cylinder, which is touching the sphere. Since the fat arc generation is not possible in a
domain where the curve has singular point, the approximating algorithm uses not only fat
arcs but also a few sub-domains to bound the space curve. In Fig.3.8 we show the result of
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2.(c)-singular

3.(a) 3.(b)-singular

4.(c)-singular

Figure 3.7: Approximation of the intersection curves of quadric surfaces.
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3 Fat Arcs for 3D Implicit Algebraic Curves

Table 3.1: Approximating intersection curve of quadric surfaces. The number of used approxi-
mating primitives are given for the examples shown in Fig. 3.7.

Quadric Surfaces Position (see Fig. 3.7) | Number of Arcs | Number of Boxes
(a) 80 0
1. sphere + cylinder (b)-singular 104 248
(c) 52 0
2. ellipsoid + (a) 80 0
hyperboloid of one (b) 76 0
sheet (c)-singular 96 76
3. rotational (a) 60 0
paraboloid -+ (b)-singular 108 156
hyperbolic paraboloid (c) 50 0
4. hyperboloid of two (a) 80 0
sheets + elliptic (b) 80 0
cylinder (c)-singular 88 612

the fat arc generation algorithm in comparison with bounding box generation for the curve
by different tolerance bounds ¢ = 0.1,0.01 and € = 0.001. In the first row of the figure the
output of the fat arc generation method is visualized. The median arcs of the generated fat
arcs are shown in red and the boxes, which are used themselves as bounding primitives, are
shown as gray cubes. In the second row the results of bounding box generation algorithm
are shown (gray cubes) for the same tolerances. The numbers of used bounding primitives
are shown in Table 3.2.

Example 3.24. In this example we approximate the isophotes of surfaces for different light
directions. Isophotes are curves on a surface, where all points are exposed with equal light
intensity from a given light source. An isophote of an implicitly defined surface f = 0 for a
fixed direction vector d and angle ¢ traces the point set

Z(f,d,¢) ={p : f(p) =0, (d,Vf(p)) = cos(p)|Vf(P)I},

if we suppose that the direction vector is a unit vector. In order to describe an isophote for
a given d and ¢, we used the algebraic equation system

f=0,
(fod® + fyd” + f0°)" = cos® o (7 + fy + f2) = 0,
where d = (d*,d¥, d?). These two equations allocate the points of the isophotes, which belong

to the direction d and the angles ¢ and (7 — ¢). We approximate some isophotes of three
different implicitly defined surfaces

S = {(@,y,2): 3y —2+05=0},
82 = {('I’yaz) : $2+2y2+222—1:0},
Ss = {(z,9,2): 2® +0.5y> + 2 — 0.5 =0},

62



3.6 Fat Arc Generation for Algebraic Space Curves

Table 3.2: Approximating intersection curve with singular point. The numbers of used approx-
imating primitives are given for the examples shown in Fig. 3.8.

- Number of Primitives Number of Boxes
Num. of Arcs | Num. of Boxes
0.1 68 56 284
0.01 104 248 2840
0.001 212 1592 26411

Fat arc generation

Bounding boxes

e=0.1 e=0.01

Figure 3.8: Fat arc generation for the Viviani curve. In the first row the outputs of the fat arc
generation method are shown for three different tolerance bounds. In the second row the result
of the bounding box generation is shown for the same tolerance bounds as in the first row.
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3 Fat Arcs for 3D Implicit Algebraic Curves

Table 3.3: Number of used approximating primitives in the isophote approximations (see ex-
ample in Fig.3.9.

(0,0, 1) (—1,1,—4) (—2,0,-3)
cos | Num. of Arcs CoS Num. of Arcs | cose | Num. of Arcs
0.8 66 0.7 19 0.5 15
S1 0.85 44 0.8 25 0.65 18
0.9 48 0.88 56 0.8 28
0.95 32 0.95 54 0.9 22
0.99 28 0.99 26 0.97 31
(0,—1,0) (—1,0,—1) (—1,—-2,-1)
cos | Num. of Arcs CoS Num. of Arcs | cose | Num. of Arcs
0.4 112 0.2 152 0.4 152
Ss 0.6 96 0.3 132 0.6 106
0.8 128 0.6 104 0.7 82
0.9 104 0.8 52 0.8 80
0.99 80 0.9 80 0.9 80
(—1,—-1,-1) (—1,1,0) (0,—1,-1)
cosp | Num. of Arcs | cose | Num. of Arcs | cosp | Num. of Arcs
0.6 28 0.2 35 0.3 16
S3 0.7 32 0.4 52 0.4 32
0.75 58 0.52 75 0.5 44
0.8 107 0.7 80 0.7 70
0.85 120 0.82 58 0.99 79

with the help of the fatarc generation algorithm. For all the surfaces we compute isophotes for
three different light directions (see Fig. 3.9). In Tab. 3.3 we show the number of used approx-
imating arcs for each isophote, along with the light directions and angles. We approximated
the isphotes in the domain [—1,1]% within the tolerance & = 0.05.
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Chapter 4

Fat Arcs for Implicitly Defined
Algebraic Curves

In this chapter we present an algorithm, which generalizes the fat arc generation method to
bound one-dimensional algebraic sets. We consider algebraic systems consist of n — 1 linearly
independent polynomials, which define one dimensional algebraic set (a set of curves) in R".

4.1 Generalized Fat Arcs

We summarize in this section first the related results in approximation of one-dimensional
algebraic sets. Then we introduce the definition of fat arcs in R™. In the end of the section we
will state the approximation problem, such that one-dimensional algebraic sets are defined
by polynomials represented in Bernstein—Bézier form.

4.1.1 Approximation of Algebraic Space Curves

Recently the interest for higher dimensional algebraic objects has been increased in research.
The reason is the wide variety of applications, which appear in practice or in physics, for in-
stance the description of physical fields with several free variables, movements or deformation
of surfaces and volumes. Some of these problems are formulated with the help of multivariate
polynomial systems. In particular we consider such systems, which have one dimensional set
of solutions.

The first numerical approaches were formulated to approximate the solution set of uni-
variate and bivariate polynomials. However, even in the univariate case these computations
are very unstable for higher degree. In order to develop robust approximation algorithms a
great leap forward was to use Bernstein-Bézier polynomials. The stability of this representa-
tion form allows to generalize the approximation algorithms for algebraic sets given in higher
dimensional space. The first general numerical algorithms, which computed with polynomials
given in BB-form, were developed by Sherbrooke and Patrikalakis [39]. These are subdivision
methods for finding zero dimensional solution set of multivariate polynomial equations. A
more sophisticated algorithm was presented by Elber and Kim in [12]. It uses multivari-
ate Newton-Raphson method combined with subdivision, in order to reduce the number of
subdivision steps during the computations. Moreover this method can be applied to under-
determined systems, where the set of solutions has arbitrary many dimensions, although it
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4 Fat Arcs for Implicitly Defined Algebraic Curves

requires to compute some topological information about the solution set. The method of El-
ber and Kim has the additional advantage, that it can be extended to detect semi algebraic
sets.

4.1.2 Definition of Generalized Fat Arcs

We would like to bound implicitly defined algebraic curves in R™ with a set of regions. We
generalize the fat arc construction, which we defined formerly in two- (Section 2.1.2) and
three-dimensional space (Section 3.1.2). Generally a fat arc is a bounding region, which is a
tubular neighborhood with a certain radius of an approximating arc.

Definition 4.1. A fat arc is defined in R™ by
- a segment of a circular arc (median arc) S C Q C R™.
- and a distance p € R.

The fat arc is the point set
F(S,0) ={x: Ix¢ €S,

x—xoll, < o}

As we saw in Section 2.1.2 in the two-dimensional case, the fat arc is a bounding region,
which consists of a part of an annulus and two circular disks. In the three-dimensional case
(see Section 3.1.2) it is bounded by a segment of a torus and two spherical caps. Generally
we can say that in the n-dimensional space a fat arc is a thickened circular arc, which is
bounded by a toroidal part and two spherical cups in the end.

The median arc can be represented as the zero set of spheres. This algebraic representation
form is advantageous, since it simplifies the computation of the intersection of spheres.

4.1.3 Algebraic Space Curves

Since the visualization of higher dimensional space curves is difficult, and the number of
required computational steps climbs fast with the raise of the dimension, the choice of the
representation plays an important role. The most widely used representations of polynomials
in geometric computing are the monomial, Lagrange, Hermite, B-Spline and Bézier forms.
In order to construct fat arcs for algebraic curves, we shall use the properties of the defining
polynomials. Tt is the most advantageous option, if the polynomials are given in the Bernstein-
Bézier tensor product form. It provides the convex-hull property, the de Castejau-algorithm,
degree manipulation formulas etc. Therefore we suppose that the input polynomials are
defined in the form

1
f(x) = diBia(x), (4.1)
k=0
with respect to an axis aligned domain
Qp = x;‘zl[ai,ﬁi] C R™.

The coordinates of the vector 1 = (1Y), denote the maximal degree of the basis polynomials
in each variables z*. The vector of indexes k is

k = (k)™ ,, such that k' € {0,...1°}.
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4.2 Approximation of Regular Curve Segments

The coefficients are given as dix € R, and the functions are
n
Bia(x) = [ [ Bj (e,
i=1

where BZ]n is defined as (2.2). For such functions f : R” — R, let us denote the zero level set
with

Z(£,00) = {x : f(x) =0} N9y,

An algebraic curve is given as the intersection of the zero sets of the polynomials

F={fi,...,fa-1}

n—1
C(F, Q) =) Z(fi, ) ={x: Vi=1,...n—1, fi(x) =0} N Q (4.2)
i=1

with respect to the domain €2y. Clearly, the curve may be the empty set, or it may consist
of higher dimensional segments.

4.2 Approximation of Regular Curve Segments

In order to generate fat arcs for algebraic curves in R, we present a local algorithm, which
generates fat arcs only for regular segments of the curve. In this section first we describe the
general definition of regular and coordinate-regular curve segments. Then we present a local
algorithm to generate fat arcs, and we analyze the behavior of this algorithm. Later on we
will combine this local bounding region generation with a subdivision technique.

4.2.1 Regularity Criterion

In order to bound an algebraic curve, we analyze the behavior of the curve in the compu-
tational domain. We identify first empty sub-domains of the computational domain as in
Section 2.2.1 and Section 3.2.1. It is obvious, that Observation 3.2 is true in general for mul-
tivariate polynomials in BB-representation. Therefore we can apply it in general for detecting
the domains without any segment of the algebraic curve.

In the two and three dimensional cases we used certain regularity criteria to find single
segments of the algebraic curve. For the verification of such criteria we used the convex hull
property of the Bernstein polynomials. Here we state similar conditions as in the case of two
and three dimensional algebraic curves. Therefore we use the definitions:

Definition 4.2. A point p € Q of an algebraic curve C(F,Q2) C R™ defined by the the
polynomial system F = {f1,..., fan—1} is called reqular, if the Jacobian-matriz

JI)(p) = (Vfi(p),-- - Vin1(p))

has full rank (and called singular otherwise). An algebraic curve segment is reqular on  C
R™, if each point of the segment is regular in the domain.
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4 Fat Arcs for Implicitly Defined Algebraic Curves

Definition 4.3. Suppose that an algebraic curve is defined by the polynomial system
F={f1,...,fn-1}. In any point p of the intersection curve C(F,Q) C R™ we define the
sub-matrices of the Jacobian J(F)(p) as

Ji(F)(p) = ( (VA®))jrir- - (Va1(P))jri )

which are the (n—1) x (n—1) matrices, we get from J(F)(p) with deleting the ith row. Then
a point p of the algebraic curve C(F,Q) C R™ is called i-reqular for i € {1,...n}, if

det(Ji(F)(p)) # 0,

and called i-singular otherwise. An algebraic curve segment is i-reqular in the domain £ C R"™,
if each point of the segment is i-reqular in 2.

Lemma 4.4. If there exists i, such that the algebraic curve segment is i-reqular (reqular at
least in one coordinate) in the sub-domain  C R™, then the curve segment is reqular on ).
Moreover it is not a loop.

Proof. Tf the algebraic curve is i-regular in a point p, then

det(Ji(F)(p)) # 0.

Thus J;(F'), which is the sub-matrix of J(F") has full rank: n — 1. Therefore also the matrix
J(F) has at least rank n — 1. Since J(F) € R™ (=1 it implies that .J(F) has full rank.
The tangent vector of the curve C(F,{2) in a point p is the unit vector, which is per-
pendicular to the sub-space span by gradient vectors V f;(p), ¢ = 1,...n — 1. If the curve
is ¢-regular on a sub-domain €2, then the i¢th coordinate of the tangent vector is not zero in
any point of 2. Therefore the regularity in the ith coordinate excludes the situation, that the
tangent vector returns to the same position if we trace the curve. So we cannot have loops
in the domain. U

Control of coordinate regularity. In order to identify domains with i-regular curve
segments, we use the convex hull property of the defining polynomials. We give here a
sufficient condition for detecting such domains. Namely it is sufficient to show, that there
exists a positive lower bound for the absolute value of one of the determinants J;(F")(x) in the
domain €2, which bounds the value of the determinant away from zero. Since we compute with
BB-polynomials we can represent the coordinates of the gradient vector of the polynomial
f € F in BB-tensor product form using the notation of Section 4.1.3

I—e;

ij (X) = Z (dk - dk—ej)Bk—ej,l—ej (X)a

k

where dy are the coefficients of f € F and

<.

Thus the determinant of each J;(F) matrix can be also given in a BB-tensor product form.
If we denote by m; the minimum and by M; the maximum coefficient of det J;(F'), then for
M;m; >0

|det J;(F)| > min{|M;], |m;]} > 0.
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4.3 Median Arc Generation

If such m; and M; exist for an i, it implies that the curve is regular with respect to the ith
coordinate in €.

However, one has to be careful to apply this regularity check, because it is computationally
expensive. Suppose that each polynomial has the same degree bound L = max{ly,ls,...1,},
then the cost of computation for one determinant is O(n3L"*1). In comparison, the cost of
the de Casteljau algorithm for a polynomial in one coordinate direction is O(L"*!) such as a
multiplication of two polynomials. To find empty domains has less computational cost. It is
comparable with the size of our input polynomials, it needs O(L") steps for each polynomials,
so to find an empty domain costs O(nL").

4.2.2 Local Algorithm

We present here an algorithm (Algorithm 7), which is the generalization of the local fat arc
generation for two and three dimensional regular curve segments. It generates bounding
regions in sub-domains, where the n-dimensional curve is regular with respect to at least one
coordinate. Later on this local method will be combined with subdivision technique like the
two and three-dimensional local fat arc generation methods (Algorithm 3 and 5).

In order to detect sub-domains with regular algebraic curve segments, we use the approach
described in Section 4.2.1.

The fat arc generation is similar to the low dimensional cases described in Section 2.3.1
and Section 3.2.2. First we compute the median arc. Therefore we generalize the arc
generation technique, which is computing polynomials with special Taylor expansions (see
Section 2.3.3, Section 3.3.2). This method computes the median arc in algebraic form, as the
zero set of special quadratic equations, which are simply equations of spheres.

The distance estimation method generalizes the approach from Section 4.4. It bounds
the BB-distance in between each polynomial and the associated quadratic Taylor expansion.
Then an upper bound is generated for the one-sided Hausdorff distance of the median arc
and the algebraic space curve.

The algorithm is successful, if the median arc is found, the fat arc thickness can be
computed, and it is smaller than the prescribed tolerance . Then the algorithm returns a fat
arc, which bounds the curve segment in the appropriate sub-domain. If the local algorithm
fails then it returns the empty set.

4.3 Median Arc Generation

The local algorithm generates first an approximating arc (median arc) for the implicitly
defined curve. The median arc generation methods for two- and three-dimensional curves
can be found in Section 2.2.3, 2.3.2, 2.3.3 and Section 3.3. In Section 2.2.3 we described
a method, which generates parametric approximation of implicitly defined curves. All the
other methods, we presented, generate approximating arc in implicit form. These methods
can be generalized to higher dimensional curves. However, we generalize in this section only
the strategy, which modifies the Taylor expansion of the polynomials.

4.3.1 Median Arc Generation Using Taylor Expansion

We suppose that the polynomial system F = {f1, fa,..., fn—1} describes a one dimensional
algebraic set in R™. Let us denote the algebraic variety of the system in the sub-domain 2
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4 Fat Arcs for Implicitly Defined Algebraic Curves

Algorithm 7 FatArcLocal_nd (F,(,¢)

Require: The curve is regular with respect to at least one coordinate in ).
1: fz modified polynomials
2: p; + T f,) spherical approximations
3. if p; #0 then
4:  P; < zero contour of p;

5 S ] P {median circle}
6: if S # () then
7. G+Vie{l,...,n—1}, 0<G<|V]
8: K + upper bound for |Vf} . ij|
9: if 0 < G and 0 < G?— (";')K then
10: 0 + upper bound of HDq(S,C(f;,Q)) {see Lemma 4.18}
11: if p < e then
12: ]::{X:EIyES,X—y|§Q}ﬂQ {fat arc}
13: return F {fat arc has been found}
14: end if
15: end if
16:  end if
17: end if
18: return {no fat arc has been found}
by

C(F,Q) ={x:VfeF, f(x)=0}NnQ.

We further assume that this curve segment is regular at least in one coordinate in the sub-
domain . In order to generalize the median arc generation method from Section 2.3.3 and
Section 3.3.2, we reformulate the polynomial system F. We compute an algebraic system F
with n — 1 new polynomials, such that for all f eF

VieF, CFQ) cZ(f,Q) ={x:fx)=0}nQ.
Moreover each new polynomial f € F has to satisfy the condition

A - 0
H()e)=] : . | =AI"", XeR, (4.3)
0 --- \

where ¢ denotes the center of the sub-domain €2. The quadratic Taylor expansion of f about ¢

; ; SOf(Q), i a AN i
px) =T¢(f) = fle)+ ) 5@ =)+ 5 (o' =)
i=1 i=1
possesses a spherical zero contour p(x) = 0.

Definition 4.5. A polynomial f is called a polynomial with special Hessian in the point c,
if the Hessian matriz of f in the point c is equal to a matriz \XI"*", where X € R.
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4.3 Median Arc Generation

A polynomial f with special Hessian in the point c satisfies the equations

0°fe) 9 f(e)

Oxidxrt  Oritlogitl

=0, 2=1,...n—1

and

& f(c) o
— = < <n. .
DiD] 0, 1<i<j<n (4.4)

We compute the polynomial f € F as certain combination of the original polynomials f; € F.
In order to provide sufficiently many degrees of freedom in the system (4.4), we consider
polynomial multipliers in the combinations. On the other hand we restrict ourselves to linear
multipliers. So each polynomial with special Hessian is computed as

F&x) =Y k(%) f5(x), (4.5)

j€J
where J C {1,...,n — 1}. The linear multipliers are given for each j € J as
kj(x) =u;+ > ki(a' =), K, u; €R, (4.6)
i=1

where ¢ = (c!)_; denotes the center point of the sub-domain . The coefficients of k; can
be computed by solving a linear system. In order to avoid that the system (4.4) becomes
overdetermined, the number of unknowns in the multipliers has to be greater than equal as
the number of equations.

In the former chapters for n = 2,3 we used all polynomials f; in the computation of
the new polynomials. For n = 2 this was obvious, since we had only one polynomial, and
we used a single linear polynomial as a multiplier, which has three coefficients. The system
characterizing the special Hessian matrix has two equations. If we fix the constant term
of the linear multiplier, we arrive at a non-homogeneous system, which has full rank under
certain conditions (see Lemma 2.9). Thus the system has a unique solution.

In three dimensions, the system (4.4) has five equations. If we use the combination of
both input polynomials and fix the constant terms of the linear multipliers, we have six free
variables. So the system is under-determined. We observed, that our equation system in
(3.11) has a full rank, if the condition of Lemma 3.6 for the gradients is satisfied. In order to
compute the multipliers k; uniquely, we chose from the solution space of the coefficients the
shortest solution vector (3.15). This minimization problem always has a unique solution.

In the n-dimensional case a polynomial f defined as in (4.5) can be found by solving a
homogeneous system with w — 1 equations. To avoid that the system (4.4) becomes
overdetermined, the number of equations should not exceed the number of variables. In the
n-dimensional space a linear polynomial has n + 1 coefficients. In order to obtain non-trivial
solution, we always choose the constant term wu; of the linear multipliers k; as arbitrary but
fixed parameter values for all j. Thus the equation system reduces to a non-homogeneous
one, where each linear multiplier provides n free variables. By this assumption, if the trivial
solution satisfies the system (4.4), it implies that a certain linear combination of the original
polynomials also satisfy (4.3).

73



4 Fat Arcs for Implicitly Defined Algebraic Curves

Observation 4.6. Let Ny denote the number of the elements of the index set J C {1,...,n}.
In order to avoid that the system (4.4) is overdetermined for an arbitrary but fixed parameter
vector u = (uj)jey,
n(n+1)
2
should be satisfied. This implies that

—1—-n-N;<0

[” ; ﬂ < Njy. (4.7)

If a new polynomial f is computed as

x) = Y k(%) f;(x), (4.8)

jed
and c is the center of the computational domain €2, then

= Vki(©)Vf(e)" + V() Vk;(c)" + kj(c)H(f;)(c).

jed

Since we know that the value kj(c) = u; are arbitrary but fixed, the system (4.4) can be
written as

Ajk = by, (4.9)
where k consists of the coefficient vectors of the polynomials k; for j € J
k' = ((kjl : kn)JEJ)

The rows of the system are the equations derived from (4.4) by substituting (4.5) and (4.6).
The vector by € R**+1)/2=1 ¢onsists of the coordinates

~Y <82fj(c) - a2Afj+1('C) ) ’ forall1<i<n—1

0zi0rt  Oxtt+logi+l
jed

(4.10)

9% f;(c)
_Z ]axka$l7 forall1<k<n,k+1<I1<n
JeJ

depending on the order of the equations in (4.4). All entries of the matrix Ay are equal to

zero or to
9fj(c)
oz’

In the next section, in Section 4.3.2, we consider in details the structure and the solvability
of such systems. In Lemma 4.10 we show, that a polynomial f with special Hessian in the
center point ¢ of a sub-domain 2 can always be computed, if the gradient vectors V f;(c) are
linearly independent and f is the combination of all polynomials in F’

+

, forcertain 1 <i<n-—1,j€J. (4.11)

n—1

F) = ki) fu(x), (4.12)

i=1
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Table 4.1: Construction of new polynomials with special Hessian.

4.3 Median Arc Generation

dimension | num. of equ. | num. of coeff. | dim. of sol.sys.

n sn(n+1)—1 n(n—1) 2(n—1)(n—2)
2 2 2 0
3 5 6 1
4 9 12 3
5 14 20 6
6 20 30 10

100 5049 9900 4851

1000 500499 999000 498501

ie. if J ={1,...,n — 1}. Therefore we denote the linear system (4.9) for the index set
J=A{1,...,n—1} by

A:=A; and b:=Dbj.

In order to find the coefficients of k; we solve the non-homogeneous system
Ak = b,

with an (n(n — 1)/2) x (n(n — 1)) matrix which has full rank (see Lemma 4.10). We show
in Table 4.1 the behavior of this linear system for different value of the dimension n. It is
obvious, that the number of coefficients and the dimension of the solution system increases
drastically if we increase the dimension n. However, in low dimensional cases, like n = 2,3,
the size of the linear system is still small.

The solution of system (4.4) for three- or higher dimensional problems has an at least one
dimensional solution space. However, we need only one set of coefficients, which defines the
multipliers k;. Therefore we compute the solution vector k, which has the smallest ls norm

HkH2 — min subject to Ak = b. (4.13)

Therefore the multipliers k; obtained by the construction are unique for each parameter
vector u. So we can introduce function G, whose value depends on the set of polynomials
F={f1,..., fn_1}, a value of u and the center point ¢ of a domain 2. The associated value
of the function is given as the solution of the minimization problem (4.13)

n—1
G(F,u,c) =Y kifi. (4.14)
i=1

Remark 4.7. If the right hand side of the system (4.9), vector b, vanishes for a certain
parameter vector u, then the solution set of (4.9) is a subspace of R™"=1D Tt implies that
also the trivial solution is a solution of the system. Therefore the linear combination of f; € F'
fulfills the condition (4.4). According to (4.13) we always choose the solution of the system
(4.9) which has the smallest length. So in this special case all k; are constants.

The polynomial f = G(F,u,c) is a polynomial with special Hessian in the point c. Thus
the quadratic Taylor expansion of f about ¢ has a spherical zero level set. We compute
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4 Fat Arcs for Implicitly Defined Algebraic Curves

n — 1 polynomials F= {fl, . ,fn_l} for different parameter vectors u;, i = 1,...n— 1. The
quadratic Taylor expansion of each polynomial f; € F' about ¢, denoted by

pi = T2,

has a spherical zero level set. If P = {p1,...,pn—1}, then these quadratic polynomials define
the algebraic set
S(P,Q) ={x : Vp; € P, pi(x) =0} N Q.

If this algebraic set is one dimensional, then it forms a circular arc. Later we show in
Section 4.5.2, that asymptotically this arc exists. The arc can be used as an approximating
circular arc of the curve C(F,Q2). We estimate the error of this approximation by bounding
the distance of the algebraic sets C(F,2) and S(P, ().

4.3.2 Computing Polynomials with Special Hessian

In order to compute a polynomial with special Hessian, one has to solve a linear systems
(4.9) which is derived from (4.4) with substituting (4.5) and (4.6). To describe the matrix of
such linear system, we introduce the following operator A : R" — R((n+1)/2=1)xn gych that

A = (4t )

where Aj is the (n — 1) x n dimensional matrix

and the matrix Ao is w x n dimensional

v ol 0 0
o0 ol 0 0
™0 0 vl
0 v3 ¥ 0 0
Ay = 0 o 0 2 0
0 v 0 0 2
0 . 0 " Un_l

According to the definition of A the sub-matrices of Ay can be given as the concatenation of
the matrices

A; = (A(Vfj(c)))jes
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Lemma 4.8. If v € R" is not the null-vector, then
rank(A(v)) = n.

Proof. The vector v = (v)_; is not the null-vector, thus there exists a coordinate v/ # 0.
According to the definition of the operator A the following n X n sub-matrix can be selected
from A(v) for j <n

A | vl ... 0
0 02
S; = vl J+1
Tl VI
0
0 L 0
If j =n, then
o™ 0 vl
0 " v2
S, = :
o™ ,Un—l
vnfl "

Therefore we observe, that

(,U])n 2 ((v] 2 4 v]+1 2)2

det(Sj) :{ (V") ( (" 1)2 om)

Since we supposed that v/ is non-zero

det(Sj) 7£ 0.

Thus A(v) always has a non-singular n X n sub-matrix. Since A(v) is a matrix with n
columns we arrive at

rank(A(v)) = n.

Lemma 4.8 guarantees, that A(v) is a matrix with full rank if v # 0.
Remark 4.9. Each coordinate of the vector A(v)u can be given as

viut — vy for certain 1 <i<n—1

or as
vFul + otuF forcertain 1 <k<n-—-1,k+1<[<n.

Since these coordinates are symmetric in v and u it implies that
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Therefore we can establish that, if we multiply it by the vector u € R"
Aviu=0 iff v=0oru=0.

Now we define an operator B, which combines the image matrices of the operator A for
a certain set of vectors. If v; € R for i = 1,...,k, then

B RV oy ROGHD2DxE By ) = (A(v) | A(v)] . [A(VR))
The definition of A and B implies, that the matrix of the system (4.9) can be given as
Ay = (A(Vf;(c)))ey = BU(V filc))jer)

Theorem 4.10. Suppose that the vectors v; € R™ fori =1,...,k are linearly independent.
Then

dim (Ker(B(v1, ..., vi))) > (’;)

Proof. A vector u € R™ is the element of the kernel of the matrix B(vy,...,vy) if
B(vi,...,vp)u=0.

We consider the set of vectors N

N=¢(0,...,0,v/,0,...,0,—v;,0,....,00" : 1< j<i<k
—— —— ——
n(j—1) n(i—j—1) n(j—i)

These vectors are linearly independent, since any linear combinations of them forms a vector,
which is a certain linear combination of the vectors v; in between the (j — 1)n + 1-th and
jn-th coordinates. Moreover according to Remark 4.9 for any u € N

B(vi,...,vi)u=A(vy)(vj) + Av;)(—=vi) = A(vi)(v;) — A(vj)(v;) = 0.

Since the set of vectors N consists of (’;) elements, it implies that

dim (Ker(B(v1, ..., vi))) > (S)

Corollary 4.11. The matriz of the system (4.9) for an index set J is as

Ay =B((Vfj(c))jes)
If Vfi(c) are linearly independent for j € J, then the rank of Ay can be bounded by
N,
rank(Aj) <n-Nj— ( 2‘]),
where Ny the size of the index set J.
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Observation 4.12. Given a set of (n — 1) polynomials F' = {f;}"~]' in a certain domain €.
We choose an index set J C {1,...,n — 1} which specifies the set of polynomials {f;};eJ.
Suppose that the gradient vectors V fj(c) are linearly independent for j € J in the center
point ¢ of 2. In order to compute a polynomial with special Hessian in the point ¢, we need
to solve the linear system (4.9). If J C {1,...,n — 1}, then the rank of the system matrix is
smaller than the number of rows (the matrix does not have full rank).

We compute a new polynomial with special Hessian by solving the linear system (4.9).
The right-hand side of the system bj is computed as the combination of the parameter
values u = (u;) ey and the second derivatives of the polynomials evaluated in the center of
the computational domain (see (4.10)). If the system matrix Ay has full rank and there are
more variables than equations, it guarantees that for any choice of u = (u;);ecy the linear
system has a solution. According to Observation 4.12 Ay has full rank if the new polynomial

A

f is computed for the index set J = {1,...,n— 1}, i.e. as the combination of all polynomials
in F.
Note that Corollary 4.11 only implies for the index set J = {1,...,n — 1}, that
1
rank(Aj) < @ -1
Therefore we still have to prove, that for J={1,...,n— 1}
1
rank(Ajy) > @ -1

Lemma 4.13. Given a set of linearly independent vectors {v; ?;11 € R"™, then

1
rank(B(vy,...,vp_1)) = @ -1
Proof. We describe here how to prove that the rows of the matrix B(vy,...,v,_1) are linearly

independent for n = 3. Analogously the same can be proven for higher dimensional cases.
If n = 3 the matrix B(vy,vs) is defined by the vectors vi,ve € R3, which are both not
the zero vectors. The matrix is

1 2 1 2
vi —vi 0 vy —v; 0

0 v —v} 0 i —u3
B(vi,va) = (A(vi)[A(v2)) = [ v§ v 0 w3 vy 0 |,
v 0 vi w3 0 va

3 2 2
0 o7 oy 0 O U3

where viT = (vil, v?, vf’) Since vq, vy € R3 are linearly independent there exists only one unit
vector m € R?, which is perpendicular to both vectors v; and vo. We assume, that there is

a vector ul = (u',u? v, u*,u’) # 0, which satisfies
T
u B(Vl,Vg) = 0,

i.e. the rows of the matrix are linearly dependent. Let us denote by B the matrix, which we
derive from B(vy,vsa) by changing the order of the columns

vl vl - =2 0 0

0 0 v w3 —v} —u3
B=| v v o o 0 0

v v 0 0 vi vl

3 3 2 2
0 0 vy vy vy V3
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If the first two coordinates of u™B are zero, then the equations

U= emt,
ud = eym?, (4.15)
ut = em?,

have to be satisfied for a certain ¢; € R, where m = (m!, m?, m?). If the third and the fourth

coordinates of uTB are zero then

w—ul = cem?,
u = coml, (4.16)
u’ = com?,

and if the last two coordinates are zero, then

—u? = czmd,
ut = czml, (4.17)
u’ = c3m?,

have to be satisfied for certain c2,c3 € R. The second and the third equation of each system
(4.15), (4.16) and (4.17) imply for all 7,5 € {1,2,3} that

iji = cimj.
If we add the first three equations from (4.15), (4.16) and (4.17), then we obtain that
cimt 4+ cam? 4 esm® = 0. (4.18)

Suppose that ¢; # 0, then we substitute each m? for (cj/c;)m’ where i # j in (4.18), which
results that
mi(c? +c3 +c3) = 0.

Therefore m; has to be zero. This implies, that for all ¢ = 1,2, 3 either ¢; is zero or m; is zero.
Therefore we can derive from (4.15), (4.16) and (4.17), that all coordinates of the vector u
are zero. It is in contradiction with our assumption, that u # 0. Thus the rows of B and
also the rows of B(vy, va) are linearly independent. Since the number of rows in B(vy,va) is
less than the number of columns, the rank of the matrix is equal to the number of rows

33+1)

rank(B(vyi,vs)) = 5

—1=5.

This lemma implies, that the matrix of the linear system (4.9)

Ay =B((Vj(c))jer)
for J ={1,...,n — 1} has the rank

n+1)

rank(Aj) = ! -1

2 )
if we suppose that the gradient vectors of the original polynomial system F' are linearly
independent in the center of the computational domain.
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4.3.3 Orthogonalization of the Polynomial System

In order to get efficient error bound for the algebraic curves C(F,Q) and S(P,Q), we re-define
the set of polynomials F'. We use the linear combinations of them to keep the special form
of each polynomials.

Remark 4.14. If each f, € F fulfills the property of functions with special Hessians (4.4),
then any linear combination of them

h=> cfi, céeR,
fiEﬁ
also fulfills the condition of special Hessian (see (4.4)). Thus T2(h)(x) = 0 defines a sphere
in R"™.
Therefore a new set of polynomials can be generated F™*, such that

Vij=1,...n—1,i#j, Vfic)LVfic). (4.19)

in the center of the domain. This new system can be deduced with the help of the
Gram-Schmidt orthogonalization of the vectors V fi(c). If the vectors Vfi(c) are linearly
independent, then we can compute n — 1 vectors v;, which are pairwise orthogonal, and each
new vector is the linear combination of V fl(c)

n—1
v = Zﬂivfi(c)a wi € R.
i=1
If we compute the linear combination of the polynomials f, with the same coefficients

n—1
i=1

then they also fulfill the condition of special Hessians according to Remark 4.14. Moreover
(4.19) is satisfied for each pair of polynomials. Thus we introduce the function O, which
assigns to the polynomials f, and the center point ¢ of a domain ). It generates a set of
polynomials

F*=0OF,c)={ff :i=1,...n—1} (4.20)

as it is described above.

4.3.4 Connection with the Osculating Circle

Now we consider the case, where the center of the computational domain 2 is a point of the
algebraic curve C defined by the polynomials f;, ¢ = 1,...n—1. If the center point is denoted
by c, then

Vie{l,...n—1}, fi(c)=0. (4.21)

As we saw it in the three dimensional case, this special case plays an important role during
the computations.
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4 Fat Arcs for Implicitly Defined Algebraic Curves

A new set of polynomials F' is computed as the combination of f; using a the strategy
from Section 4.3.1. The quadratic approximation of each polynomial is

si =T ().
If (4.21) is satisfied, then the quadratic approximating polynomial s; has the following form
si(x) = Vi)' (x —c) + Ni(x — )T (x — ¢), (4.22)

where

H(fi)(c) = MI",

like in (4.3). So we can represent the zero set of each s; in the form

<X — <c+ %Vfi(d) X — <c+ %Vfi(c)>> = w’

7

as we already observed in the three-dimensional case. The radius of the sphere s; = 0 has
the length
_ Vi@l

" \

Lemma 4.15. Suppose we have a system of polynomials F = {f;;i = 1,...n — 1} and
J={1,...n—1}. The polynomial system defines an algebraic curve in the domain <

C(F,Q) = {x, Vi fi(x) =0} N Q.
For any polynomial f 18 computed as
f=G(Fj,u,c).
The sphere defined as the zero set of the polynomial
s =T2(f)

has at least second order contact with the algebraic curve C. Moreover the intersection curve of
the affine subspace defined by the tangent and the normal direction of the curve (the osculating
plane) in the point ¢ and the sphere is the osculating circle of the curve in the point c.

Proof. In this proof we use similar reasoning as in the three-dimensional case in Lemma, 3.12.
Suppose that in a certain neighborhood of the point ¢ the algebraic curve can be parametrized
with arc length parametrization. It is not a restriction, since we are computing only with
regular segment of the algebraic curve. The parametrization is denoted by

p(t), where p(tg)=rc.

This curve is a curve on the surface f = 0 according to the definition, therefore it satisfies

d'f(p(t))

, =0
dt* ’
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for any 7. Since s is the quadratic Taylor expansion of f about c, therefore

(Vs(c), p'(t0)) =0

and
ds(p(t)) _ d*s(p(t))
d  dt?
Moreover if the second derivative vanishes, then

(Vs(c),p"(to)) = A.

Since we parameterized the curve p(t) with arc length parametrization, therefore

= 0. (4.23)

(Vs(c), rn(to)) = A,

where n(ty) denotes the unit normal vector of the curve in the point c. Thus the orthogonal
projection of the radius of the sphere starting from the curve point ¢ to the normal of the

curve has a fixed length
Vs(c) 1
t = —.
(B i) =

It is exactly the radius of the osculating circle of the curve at the point c. We know, that the
intersection of a sphere and a two dimensional affine sub-space is a circle. The radius of such
a circle has the same length as the orthogonal projection of the radius of the sphere starting
from a point of the circle into the affine sub-space. The tangent and normal directions of
the intersection circle of the sphere with the osculating plane are the same as the osculating
circle of the curve, therefore the second statement of the lemma is confirmed. O

4.4 Distance Estimate

In this section we describe a method to estimate the distance of two algebraic space curves.
Since the curves are defined as the intersection of algebraic surfaces, the method is based on
the distance estimation of the implicitly defined surfaces. First we generalize the distance
estimation technique from Section 3.4.2 for implicitly defined and parametric curves. In order
to get a sufficient distance estimation for algebraic space curves, we use pairwise distance
estimation between the defining algebraic surfaces.

4.4.1 Distance of Algebraic and Parametric Space Curves

In order to bound the distance of algebraic space curves, we generalize the result from [20],
which we used in the three dimensional case to bound the distance of parametric and implicitly
defined space curves.

We assume that the a curve segment r(t) is defined with the parameter domain ¢ € [0, 1]
in Q C R™. The curve traces the point set

R={r(t) : te[0,1]}.

The algebraic curve C(F,2) is defined by the zero set of F' = {f;, i = 1,...n — 1} in the
sub-domain €2. In order to avoid certain technical difficulties, we bound the distance between
the point set R and

C*=C(F,Q)uUoQ,
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4 Fat Arcs for Implicitly Defined Algebraic Curves

where 02 denotes the boundary of the domain. The one-sided Hausdorff-distance is defined
as

HDq(R,C*) = sup inf ||x —r(t)]. (4.24)
te[o,1] X€C*

Lemma 4.16. Consider the function h = \/Z?:_f [? defined by the polynomials f; € F. We
assume that positive constants G and K exist, such that

G<|VA|l i=1,..n—1

and

Vi V| <K i#j, i,j=1,..n—1,
then the length of the gradient is bounded by

|Vh|® > &% - (“ ) 1)}( Wx € Q.

Proof. Since
Vh — ZZ 1 ’lvfl

S

we obtain

Vv

e LT e (I S R Y
T f? i \1<i<j<n—1

(¥ 2 24if;

> | V1 )'— 1 ||V V] 2

‘Zizf f7 (,Zl 75 1§i<JZ§n1 Sl 2 L,_]{/
<1

-1
>q2 - (" )

Theorem 4.17. Consider a curve segment r(t) : t — Q, which traces the point set R. The
polynomials f; € F define the algebraic curve C(F,Q). We assume that positive constants G
and K exist, such that

O

G<|VA|l i=1,...n-1

and
IVfi- VI <K i#j4dj=1,...n—1

IfFG? - (";)K >0 and h = /31 f2, then
e VA > \/G2 - <“;1)K.
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4.4 Distance Estimate

Moreover if there exists a positive constant M, that .71 fi(r(t))? < M?, then the one-sided
Hausdorff-distance is bounded by

HDo(R,C") < M (4.25)

G2 — (") K

Proof. We compute a modified polynomial f; = G (F;,u;,c) with respect to the domain  as
the combination of polynomials F;. Suppose that p is a point from the parametric curve r(t).
Let us define the function h = /> ", ff We consider the integral curves defined in €2 by

the vector field —h/ HVhH From Lemma 4.16 we know, that the integral curves are regular
in all inner points of 2. We assume, that the integral curves u(s) are parametrized by arc
length. According to the mean value theorem there exists sg

h(u(s)) = h(u(0)) + sVh(u(so)) - u(so) =

-1
— h(u(0)) — s | Vh(u(so))| < M - 54/G2 — (”2 >K
Since h(x) > 0, then s € [0, s*], where s* = ——2____ F int y the function h(y) = 0
ince h(x) > en s € [0, s*], where s \/m or a point y the function h(y)
if y € C. Since the integral curves are regular there exists a limit

lim u(s) =y,

s—s*

such that y € C. Since we supposed that u(s) is arc length parametrized for all p from the
parametric curve r(t), there exists y € C such that

M
(@) —u(s)] = [lp ¥l < 5" =
2= (K
The same reasoning is applied in [20] to bound the distance of planar curves. g

4.4.2 Distance of Algebraic Space Curves

If we would like to estimate the distance of algebraic space curve, we can measure first the
distance of the defining algebraic surfaces. Suppose that an algebraic curve C is defined by
the polynomials f; € F' in the domain {2

CIF,Q) ={x:Vi=1,....,n—1, fi(x) =0} NQ.

An approximating space curve § is given by the zero set of approximating algebraic surfaces
pi €P
S(P,Q)={x:Vi=1,....,n—1, pi(x) =0} N Q.

The polynomial p; approximates f;.

We estimate the distance between the algebraic surfaces and the approximating surfaces
pairwise. We consider the BB-norm, which is the maximum absolute value of the coefficients
in the BB-representation. With the help of the norm, a distance bound can be defined
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4 Fat Arcs for Implicitly Defined Algebraic Curves

between an arbitrary polynomial f; and an approximating polynomial p; in the domain 2 as
we observed in Section 3.4.1

ei = || fi = pillps - (4.26)
Due to the convex hull property
|fi(x) —pi(x)| <&, VxeQ.

Lemma 4.18. Consider two algebraic curves C(F, Q) and S(P,Y), defined by the polynomials
fi € F and p; € P in the domain Q0 C R™. We denote by €; the norm

EZ‘:Hfi—pngB z':l,...n—l.
Assume, that the constants G and K are exist such that
0<G<|Vf] i=1,...n-1

and
IVfi- V<K i#j4dj=1,...n—1

If G? — (ngl)K > 0, then for all points x € S ezists a point'y € C such that

st el
-y < L —y (4.27)
G2 - (nz )K
Proof. Tt is the consequence of Theorem 4.17 and (4.26). O

Lemma 4.18 gives us an upper bound of the distance between two algebraic space curves.
So the bounding fat region can be defined as the point set

F(Pp, Q) ={x:3xoVi=1,...n—1, pi(x0) =0, |x —x0| < 0} N

The defining polynomials of the algebraic curves f; and p; are given in the BB-tensor
product form. In order to find the constants in Lemma 4.18, we use the convex hull property
of these polynomials.

4.5 Convergence and Global Algorithm

Since we generate quadratic approximating curves, we expect that the fat arc generation
algorithm has cubic convergence rate. We analyze in this section the convergence rate of the
method, and certify the third order convergence of the fat arcs in Lemma 4.24. Then we
combine the local fat arc generation with subdivision.

4.5.1 Continuity of Taylor Expansion Modification

The local fat arc generation technique approximates the intersection curve of algebraic sur-
faces in the domain 2 C Qg C R” by a circular arc. This arc is defined as the intersection
of spheres, which are given as the zero set of the quadratic Taylor expansion of polynomi-
als with special Hessian. In order to prove that these arcs converge to a limit position in
the sub-domains, we have to show, that the computed spheres depend continuously on the
points of g for a fixed choice of the parameter vector u. This means, that the polynomial
f=¢ (F,u,c) depends continuously on the choice of the point c.
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Lemma 4.19. Given the set of polynomials FF = {f; : i = 1,...n — 1} over the domain
Q C Q. We suppose that for any point ¢ € Qg the vector set {V fi(c) : fi € F} is linearly
independent. For an arbitrary but fized vector of parameters u, where vt € R\ {0}, we
compute the polynomial

f: G(F,u,c)

with a special Hessian under the condition (4.13). Then f depends continuously on the points
of the domain Q.

Proof. We have to show that the computed linear factors I; depend continuously on the point
c. We computed the coefficient vector k = (ki, k3,..., k7, ... k" ), such that it satisfies the

cn—1
linear system Ak = b in (4.9) and minimizes the lo-norm of the vector k. If the vector set
{Vfi(c) : f; € F} is linearly independent for any c, then A has full rank (see Corollary 4.11
and Theorem 4.13). In this situation the vector, which satisfies (4.9) and (4.13), can be
computed as
k=AT(AAT) 'b.
—_———
At

The matrix A is the so called Moore-Penrose generalized inverse of A (see [9]). Since f;
is a polynomial the entries of the matrix A and the vector b depend continuously on the
point c. Therefore the vector 1 also depends continuously on the point c¢. The values of
u’ # 0 are fixed real numbers. So all coefficients u’,k/i=1...n—1 and j = 1,...n depend
continuously on c. Therefore also f depends continuously on the point c. O

If we modify the Taylor expansion, then we can establish the following result considering
the behavior of a sequence of the generated median circles.

Corollary 4.20. Suppose we have a nested sequence of sub-domains (£2;)i=123.. C Qo C R"
Qi1 C L,
which have decreasing diameters 6;, such that

lim 6; =0,

11— 00

and c; denotes the center point of Q2;. Consider a set of n — 1 polynomials F', which defines
an algebraic curve i R"

C(F,QQ) = {X :Vf €F, f(X) = 0} N Q.
Suppose that there exists a point p € §; for all i, which satisfies

filp)=0, Vji=1,...n—1,

and it is not an inflection point of the curveAC(F, 90). We compute the set of n — 1 new
polynomials F; for each c;, such that each f; € F; is computed as f; = G(F,uj,c;) for
different but fized vectors of parameters u;, where uf % 0. We consider the circle defined by
the set of polynomials S;, where each s € S; defined as the quadratic Taylor expansion of a

f; € F,. Then the sequence of these circles converges to a limit circle, which is the osculating
circle of the curve C(F, Q) in the point p.
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The next corollary follows from the fact that in the limit position,the zero sets of all
quadratic polynomials intersect the osculating plane of the curve at the point p in the oscu-
lating circle of the curve.

Corollary 4.21. Given a set of polynomials F' = {f; : i =1,...n — 1} in the domain Q.
Suppose we construct the polynomial f, such that

f G(F,u,c) Zk:fl

for an arbitrary but fized parameter vector u, where u' # 0. For all ¢ € Qq the norm of the
common coefficient vector of ki, k = (k}, k3,...,k"_|) can be bounded by a constant

Il < Z,

which depends only on F,Qq and the choice of u.

4.5.2 General Lower Bound for the Gradient Length

The following lemma (Lemma 3.19) ensures, that G(F, u, c¢) has also a non-vanishing gradient
if we compute fat arcs in sufficiently small sub-domains, which enclose the algebraic curve.

Lemma 4.22. Suppose that there exists G in Qg for the polynomials f; € F such that for all
1=1,...n—1

vx €Qo, ||VSix)| =G >o0. (4.28)
Consider a domain 2 C g, which has a diameter éq < e. Suppose that there is a point
p € Q such that for alli =1,...n—1, fi(p) = 0. The vector of parameters u is arbitrary

but fized, such that u’ # 0. We compute f = G(F,u,c). If € is sufficiently small, then there
exists G > 0 constant, such that for any x € €

~

Hvﬂ@HzG>a

Proof. If x € Q C Qg then

n—1

Vi) =) ki) fi(x),

i=1

k; are computed as described in Section 4.3.1. According to the triangle inequality

Z | £i3)| | V()]

(4.29)

HVf@ﬂ\z )V ilx )V ilx

Since we know that there exists a point p € Q such that f;(p) =0, then

Vi=1,...,n=1, [fi(x)|< (4.30)

le

where ¢ is an upper bound of the diameter of €2. In Corollary 4.5.2 we also observed, that
there exists L > 0
<L,
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which only depends on F, )y and the choice of u. Therefore also
Vi=1,...,n—1, |Vk(x)| <L.

We can bound the value of the linear polynomials I; on a sufficiently small sub-domain €.
Suppose that the diameter of 2 is smaller than €. If x € ), then foralli=1,...,n—1

|ki(x)| = u’—l—Zkf(x] — )| > |u'| - %\/EL

where ¢ = (¢/)7_; denotes the center of 2. Since u' are non-zero, if

o ming—i, ,—1{u }’ (4.31)

NG

then |k;(z)| > u'/2.
We supposed that V f;(x) are linearly independent in any point of {2o. If (4.31) is satisfied
for an 2 C €, then there exists a general bound G depending on u and G, such that

>G>0, Vxe.

n—1
=1

Therefore for all x € Q)
n—1 n—1
[Vi6] > ¢ =X laeovhel| = ¢ =LY |-
i=1 : i=1

Since we know that there exists a point p € € such that f(p) = g(p) = 0, then because of

(4.30)
(n—1)eL
—a

. GG ul w1
gzmm{(n—l)L’\/ﬁL"”\/ﬁL}' (4.32)

If the diameter of 2 denoted by dq satisfies

e 2

Suppose that

then

O

Corollary 4.23. Suppose that the conditions of Lemma 4.22 are satisfied for a set of polyno-
mials F in the domain Qq. If f = G(F,u,c) is computed in a sufficiently small sub-domain
Q of Do, then T2(f) # 0.
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4 Fat Arcs for Implicitly Defined Algebraic Curves

4.5.3 Convergence of Taylor Expansion Modification

Now we have to show that the fat arc thickness is sufficiently small compared with the
diameter of the computational domain. The following lemma, shows, how the computed fat
arc thickness behaves as the size of the domain tends to zero.

Lemma 4.24. Given a set of polynomials F' defined over the domain o C R™. We suppose
that the conditions of Lemma 4.22 are satisfied. We compute a set of polynomials F' with
special Hessian for arbitrary but fized vectors of parameters u; and apply the orthogonalization
function

F=0{G(Fuc):i=1...n—1},c),

in the center point c of the sub-domain Q2 C Q. If the sub-domain Q has a sufficiently small
diameter 0q, then there exists a constant C € R, which does not depend on the choice of €2
and satisfies

0< C8, (4.33)

where o is the corresponding fat arc thickness computed as in (4.27).

Proof. Since the conditions of Lemma 4.22 are satisfied, we know that for all fz € I there
exists G such that R R
IVl = G,

for any sufficiently small sub-domain 2, which encloses the curve. We denote by p; the
quadratic Taylor expansion of f; € F' about the center ¢ of the domain 2. Then

|

Recall from Lemma 4.19 that G depends continuously on the points of the computational
domain Qg for each u;, where u; # 0. Therefore also f; depend continuously on the points
of the computational domain 2y. Thus for all f; a general upper bound C; can be given for

()

d*f;
fi—pi J

dv3

1
<= 3.

max
00 6 vesSt xeQ

fi = T2(f)

(x)[ 0

[e.e] ‘

*

The fat arc thickness is defined by

00 = Yot €l
Gg — (") Ka’
where

E; =

fi —pi .

Because of the norm equivalences there exist D;, such that

ei < D; || fi — pi
(o.0]
So we observe, that
n—1 1 n—1
3
i=1 i=1
M

90



4.5 Convergence and Global Algorithm

We assumed that G < Gq is a general lower bound for each HV fl‘ independent of

the choice ofAthe sub-domain 2. Since we also applied the orthogonalization step to the
polynomials f; for any i # j
[Vfie)- Viile)| =0

in the center point ¢ of a domain Q. If the diameter of a sub-domain 2 is sufficiently small,
then there exists K > 0, which does not depend on 2 and each x € () satisfies

Vi) V0| < K

for any i # j. If the diameter of the sub-domains is sufficiently small, then the general bound
K satisfies ("gl)K < G?. Thus this implies that

M &3 M &3

oa < A n—1 = A n—1 = 055’2.
VG~ (e \JG2 - (YK

4.5.4 Global Algorithm

Subdivision is a frequently used technique, and it is often combined with local approximation
methods. Such hybrid algorithms subdivide the computational domain in order to separate
regions where the local curve approximation techniques can be applied. The regions with
unknown curve behavior can be made smaller and smaller with subdivision.

The local algorithm FatArcLocal_nd (see Algorithm 7) generates fat arcs for regular
algebraic space curves. As we saw in the two and three-dimensional case, this local method
can be combined with recursive subdivision.

First the Bernstein—Bézier coefficients of the polynomials are analyzed with respect to
the computational domain. If no sign changes are present for one or both of the polynomials,
then the current domain does not contain any components of the algebraic curve. Otherwise
the fat arc generation technique can be applied. If it is not successful, then the algorithm
either subdivides the current domain into sub-domains, or returns the entire domain, if its
diameter is already below the user-defined threshold €. It is guaranteed that during the
process no region will be eliminated, which contains the implicitly defined curve. However,
it may happen, that the output contains domains without any segments of the implicitly
defined curve (“false positive boxes”).
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Chapter 5

Fat Spheres for Solving Multivariate
Polynomial Systems

Solving multivariate polynomial systems has several applications in algebra and geometry.
Therefore various methods exist to find or to isolate the roots of polynomial systems. They
are using symbolic, numeric or combined techniques in order to find solutions. In this chapter
first we give a brief summary on the topic. We discuss the main classes of solvers and the
existing results. Then we introduce fat spheres, which are multidimensional bounding regions
for implicitly defined algebraic objects. With the help of fat spheres we describe a local
domain reduction strategy, which bounds the intersection of algebraic objects. We combine
this local algorithm with iterative subdivision. This hybrid algorithm can be applied for
approximating the solution of multivariate polynomial systems.

5.1 Fat Arcs and Fat Spheres

In this section we summarize the related work in solving multivariate polynomial systems.
First we describe the different families of solvers. Then we define the fat spheres. Finally we
formulate the root finding problem with polynomials represented in Bernstein-Bézier form.

5.1.1 Real Root Finding Algorithms

Real root finding is considered as a difficult task. A general overview about the multivariate
root finding algorithms is given in [13, 38|. The solvers, described in the literature, are using
either algebraic or geometric tools.

Algebraic approaches, such as the Grobner-basis technique [5], resultant based methods
or continuous fractions methods assure exact and efficient solution algorithms. These algo-
rithms frequently provide more information about the solutions than we need. It is often
unnecessary to compute all solutions. For instance CAD-systems usually require information
only about real solutions, which lie in a certain domain. Moreover these symbolic methods
are not really suitable for numerical computations.

An algebraic solver, which is using the Grébner-basis technique, was developed for in-
stance by Rouillier [33] for bi-variate polynomial systems. Busé et al. considered resultant
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based methods in [6, 7]. In [14] an algebraic method is described, which is using Sturm-
Habicht sequences.

Homotopy solvers compute a family of root-finding problems. The method transforms a
simple problem to the original one in several steps, and compute the roots of each intermediate
problem. The computed sequence of roots converges to the solutions of the original root-
finding problem. However, such computations are usually require inefficient memory and
time.

Polynomial solvers based on homotopy methods can be found in [24, 28|.

Subdivision algorithms are based on the “divide and conquer” paradigm. They compute
in a certain domain (usually in an axis-aligned box) and provide information only about real
roots. If we are interested in certain properties of a root, like multiplicity, then further com-
putations are necessary. These algorithms decompose the problem into several sub-problems.
The decomposition terminates if suitable approximating primitives can be generated in each
sub-problem [29]. In order to construct these approximating primitives, several local do-
main reduction strategies can be applied. These reduction methods are usually based on
interpolation, bounding region generation or least-squares approximation.

The first subdivision solvers were developed by Sederberg et al. for bivariate polynomials
represented in Bernstein-Bézier tensor product form. They are using clipping and subdivision
techniques [35, 36]. Later on a family of algorithms were invented, which is using projection
techniques [39]. The most recently developed solvers are published by Mourrain et al. [13]
and Elber et al. [12].

5.1.2 Definition of Fat Arcs and Fat Spheres

We present in this chapter an algorithm, which combines iterative domain reduction with
a subdivision technique to solve multivariate polynomial systems. The domain reduction
strategy is based on bounding region generation. In Chapter 4 we generated fat arcs as
bounding regions for n-dimensional algebraic curves. These bounding regions consist of a
one-dimensional approximating primitive (a circular arc) and a certain neighborhood of this
curve. In this chapter we consider bounding regions, which are generated as a thickened
neighborhood of a multi-dimensional object. The multi-dimensional object approximates
a part of an algebraic surface, and it is defined as a segment of a sphere. The thickened
neighborhood of the sphere-segment contains each point of the algebraic surface. Therefore
it is a bounding region for the patch of the algebraic surface. So we extend the definition of
fat arcs (see in Definition 4.1) to the concept of fat spheres.

Definition 5.1. A fat sphere is defined in R™ by
- a patch of an arbitrary dimensional sphere (median sphere) S C @ C R™,
- and a distance p € R.

Then the fat region is the point set

F(S,0) ={x : Ix0 €S, ||x — x|, < 0}
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The fat spheres with one-dimensional median sphere are the standard fat arc in R™ (see
in Definition 4.1). In this case the median sphere is a circular arc.

A multi-dimensional median sphere S can always be defined as an algebraic set. It is the
intersection of implicitly defined spheres, each possessing the form

pi = a;{x,x) + (b;,x) +¢; =0, a;,¢; €R, b; € R".

The median spherical patch is defined algebraically as a whole sphere restricted to an axis-
aligned domain

S={x:Vipi(x)=0}NQ.

Median spheres can also be represented in parametric form with the help of rational func-
tions. It is an advantageous property of arcs and spheres, that they possess exact parametric
and implicit representation form. The implicit representation provide us a simple way to rep-
resent the offset of the spheres and to compute the intersection of them, while the parametric
form simplifies the visualization.

5.1.3 Multivariate Polynomial Systems

In order to compute efficiently the real roots of a polynomial system with subdivision tech-
nique, we assume that the polynomials are given in tensor-product Bernstein-Bézier(BB)
form (see (4.1)), with respect to the axis-aligned domain

Qo = xjq|ai, Bi] CR™

For such a polynomial f : R™ — R, let us denote the zero level set with respect to the domain
Qg as

Z(f, QQ) = {X : f(X) = O} N Q.

The solution set of a polynomial system F' = {fi,..., f,} is the intersection of the zero set
of the polynomials

n

R(F, Q) = () Z2(fi ) (5.1)
i=1

with respect to the domain €y. If the system of polynomials is zero-dimensional, then this
algebraic set consists of distinct points or it is the empty set.

5.2 Bounding Region Generation

In order to generate fat spheres for solving polynomial systems, we present first a local domain
reduction strategy. This local algorithm is applied in the sub-domains of the computational
domain §2y. In each sub-domain the zero set of the polynomial system is bounded by inter-
secting fat spheres. Later on we will combine this local domain reduction strategy with a
subdivision technique.
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Algorithm 8 DomainReduction (F,(2)

Require: Each polynomial has sign change in its BB-coefficients in §2.

1: f; modified polynomials with spherical quadratic Taylor expansion p;
2. S ={x:pi(x)=0}NQ {median spheres}
3 e = |fi —pi BB
4: PE = {x : Vi, pi(x) = £&;} NQ + boundaries of fat spheres
5: C + extremal points of fat sphere intersection
6: if C # () then
7. M < min-max box around the points C {new bounding domain}
8: return M
9: end if
10: return {no bounding domain has been found}

5.2.1 Local Algorithm

In order to bound the zero set of a polynomial system, first we detect the empty sub-domains
in the computational domain and eliminate them. Therefore we analyze the sign changes
of the BB-coefficients in the representation of the polynomials. If one of the polynomials
has only negative or only positive BB-coefficients over the sub-domain, then no point of the
sub-domain belongs to the solution set of the polynomial system (see Observation 3.2). Such
sub-domains can be neglected during further computations.

In order to bound the zero set of the polynomials F' = {fi,..., f,}, we generate fat spheres
as bounding regions. First we compute a new system of polynomials with modified Taylor
expansion. The technique, we described in Section 4.3.1, provide us a method to compute
polynomials fi, which has special Hessian matrix in the center point of the sub-domain. The
set of modified polynomials F= { fl, e fn} has a zero set, which contains the solution set
of the polynomials F'

Z(F,Q) C Z(F,Q)

in the sub-domain 2. The quadratic Taylor expansion of the modified polynomials about the
center point ¢ of 2

pi =Te(f;)

has a zero level set, which is a part of a sphere. Each sphere is used as a median sphere to
generate a fat sphere F;. Such a fat sphere is the thickened neighborhood of the median sphere
p; = 0, and it contains the zero set of f, in the sub-domain 2. If all the fat spheres intersect
in €2, then a min-max box is constructed around this intersection (see details Section 5.2.3).
The local algorithm returns this min-max box as a bounding region of the zero set of the
polynomials f; € F.

If the fat spheres have no intersection, then the sub-domain 2 does not contain any point
of Z(F, ), so as no point of Z(F, ). This implies, that no solution of the polynomial system
lies in the sub-domain 2. Thus such a sub-domain with non-intersecting fat spheres can be
neglected in the further computations.

The two-dimensional real root finding algorithm approximates the solution of two bivari-
ate polynomials. In this low dimensional case the definition of fat spheres coincides with the
concept of fat arcs. The median sphere is always a circular arc. In each sub-domain, which is
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5.2 Bounding Region Generation

not detected as a region without any root inside, the local algorithm generates two fat arcs.
These are the bounding regions of the two different algebraic curves. Fig.5.1 presents some
examples of these fat arcs and the bounding box around their intersection. Each figure has
been generated with the help of Algorithm 8. In the second figure one can see, that the fat
arcs intersect each other, however the polynomials have no solution point in the sub-domain.
Such “false positive regions” can be eliminated if we apply the domain reduction iteratively.

In the three-dimensional space the domain reduction algorithm bounds the intersection
of three algebraic surfaces. The fat spheres are generated as thickened three dimensional
spheres. Fig.5.2 presents some examples generated with the help of Algorithm 8.

Figure 5.1: Examples for fat arc intersection with the help of algorithm DomainReduction. The
red curves are the implicitly defined curves. The median circles are shown in green. The gray
regions represent the generated bounding regions: the min-max boxes around the intersections
of fat arcs.

Figure 5.2: Examples for fat sphere intersection generated by the algorithm DomainReduction
in three-dimensional space. The boundary patches of the three fat spheres are represented in
red, green and blue. The gray regions represent the generated bounding regions: the min-max
boxes around the intersections of fat spheres.

In the next sections we consider the most important steps of the local algorithm. We
will first describe the fat sphere generation technique. Then we will show how to generate
min-max box around the intersection of fat spheres.
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5 Fat Spheres for Solving Multivariate Polynomial Systems

5.2.2 Fat Sphere Generation

We approximate the zero set of the polynomials F' = {f1,..., f,} in the sub-domain Q C R".
The geometric interpretation of this problem is to find the intersection points of algebraic
hyper-surfaces in the sub-domain Q. According to this approach we generate fat spheres
as bounding regions for each algebraic surface. Due to the definition of fat spheres first we
compute an approximating sphere segment, the median sphere, for each algebraic surface.
Then we bound the distance of the approximating sphere and the algebraic surface.

With combining the polynomials f € F' we compute a polynomial f , which has a special
Hessian matrix in the center point c of the sub-domain €2,

A - 0
H()e)=]| : . | =", XeR. (5.2)
0 --- \

We apply the same technique as in the fat arc generation method (see Section 4.3.1). We
compute a polynomial f as the combination of the polynomials f; € F with respect to the
index set i € J C{1,...,n} as

/= Z ki fi (5.3)

multiplying with the linear polynomials k; defined as in (4.6). The new polynomial has to
satisfy (5.2). The coefficients of k; can be computed by solving a linear system. In order to
avoid to have only the trivial solution for the coefficient of the multipliers k;, we choose the
constant term of the multipliers arbitrary but fixed, non-zero parameter values. Then the
number of the free coefficients in the multipliers has to be more than the number of equations
in the linear system (see (4.9)). So we avoid to have an overdetermined system.

According to the observations on the solvability of this system in Section 4.3.1 we consider
only the cases, when the combination (5.3) involves n—1 or n polynomials. In these cases the
polynomials k; exist, and they are non-zero linear polynomials. We describe the behavior of
the linear system in Table 5.1 similarly to the case of fat arcs in Table 4.1. If we combine all
polynomials (not only n — 1 ones), then the solution space of k; has an even higher number
of dimension. However, according to our experiences, using all polynomials gives better
approximations and speeds up the shrinking of the bounding regions.

The solution space of the coefficients of k; is at least one-dimensional for the combination
of n — 1 and n polynomials too. However, we need only one collection of coefficients, which
defines the multipliers k;. Therefore we compute the solution vector of coefficients, which has
the minimal ly-norm (as for fat arcs (4.13)).

A modified polynomial with special Hessian matrix has special quadratic Taylor expansion
p="T2 f . This quadratic polynomial defines the algebraic set

S ={x:p(x) =0},

which can be used as median sphere. We estimate the error of the approximation by bounding
the difference of the polynomials f and p. With the help of the BB-norm the distance bound
can be given as

=il oo
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5.2 Bounding Region Generation

Table 5.1: Comparison of strategies to construct polynomials with special Hessian for different
number of variables. The table shows the number of coefficients and the dimension of their
solution space in the construction of a new function f . For each number of dimension n, the
first row shows the results if we combine n — 1 polynomials, the second one if we combine n
polynomials.

| dimension | num. of equ. | num. of multipliers | num. of coeff. | dim. of sol. sys. |

| ; z z
I z E 3
T ; B —
o z i —
100 5049 19090 190900000 iggi

Due to the convex hull property

fx) —p(X)‘ <e, VxeqQ,

which implies that .
p(x) —e < f(x) <p(x)+e Vxe. (5.5)

A~

A fat sphere as bounding region can be defined in Q for f =0 as
Flpe, Q) ={x: [p(x)[ <epn.

The boundaries of this region are the offsets of the median sphere p = 0. This fat sphere is
bounding the zero level set of f.

In the two-dimensional case the fat sphere generation is the same as the fat arc generation.
The zero level set of polynomials and their approximations are given as implicitly defined
curves in R%. In the three-dimensional space we have two different strategies to generate
modified polynomials. We can use either two or all three polynomials from F' to generate a
new polynomial f . Then a fat sphere is defined as a thickened region of a three-dimensional
spherical patch.

5.2.3 Min-max Box of the Intersection of Fat Spheres

We compute a set of polynomials with modified Taylor expansion F' = { fl, e fn} The set
of modified polynomials has the same or a larger solution set as F'

Z(F,Q) C Z(F,Q).

Each polynomial has a special quadratic Taylor expansion p; = T2 fl about the center of the
sub-domain ). These quadratic polynomials define the algebraic sets

Si = {x : pi(x) =0},
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5 Fat Spheres for Solving Multivariate Polynomial Systems

which can be used as median spheres. We bound the distance of the polynomials pairwise

Q

& = ||fi — pi (5.6)

BB

In order to bound the zero set of the polynomials F, we consider the intersection of the
generated fat spheres. Each fat sphere

bounds the zero level set of the polynomial fl in the sub-domain €2. If the intersection of fat

spheres is not empty,
n

1= ﬂ]_—l(puelaﬂ) ?é (Da

i=1
then it contains the zero set of the polynomials f; in the sub-domain €.

Observation 5.2. If the intersection is empty

n

I= ﬂ]_—l(puelaﬂ) — (Da
i=1

then it implies, that the intersection of the zero sets Z; = {x : fi(x) = 0} is also empty

(n]ZmQ:@.

i=1

Thus the domain © has no common point with the zero set of the polynomial system F
and also with the zero set of F'. These sub-domains can be neglected during the further
computations.

Now we consider the case
n

7= ﬂ ./—"Z‘(pi,{fi,ﬂ) 7é @
i=1
The region 7 is a ,curved polytope”, which is bounded by spherical patches and linear sub-
spaces. The spherical patches are a part of the boundary surfaces of the fat spheres. The
pair of bounding spheres of the fat sphere F;(p;,e,) can be described as the point set

Pi ={x: pi(x) =+, } NQ.

The segments of linear subspaces, which bound the fat sphere intersection, are a part of the
boundaries of the sub-domain €.

An example for two-dimensional fat arc intersection is shown in Fig.5.3. Each fat arc is
the intersection of the computational domain and an annulus. The intersection of two fat
arcs is bounded by a curved polygon. The boundaries of the polygon are circular arcs and
line segments.

In general the intersection of fat spheres is a curved polytope. It is not practical to use
it as computational domain in further domain reductions. In order to reduce iteratively the
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Q
'y

() b

Figure 5.3: Extremal points of fat arc intersection. The fat arcs are represented by their
bounding arcs (black) and the median arcs (green). In figure (a) the fat sphere corner points are
marked by yellow dots and the fat sphere extreme points (fat sphere 1-extrema) by pink ones.
The important fat sphere extrema from the fat sphere extrema are marked by red dots in figure
(b). The bounding region of the fat arc intersection is the min-max box generated around the
important fat sphere extrema (gray rectangle).

bounding regions, the output of the domain region has to be an axis-aligned box. Therefore
we compute the min-max box, which bounds the fat sphere intersection Z. This box can be
computed exactly, by finding the extremal points of the fat sphere intersection. For instance
in Fig.5.3 (b) the extremal points of the fat arc intersection are marked by red dots. Four
of these extrema are the intersection points of the fat arc boundaries, while another one is
an extremal point of a boundary arc. In order to find the extremal points of the fat sphere
intersection in general, we use the following definitions.

Definition 5.3. Given a system of polynomials F in the sub-domain Q = x4 lev, Bi]. For
each polynomial f; € F' we can compute the fat sphere

E(pi7€i7 Q)7

where p; is the quadratic Taylor expansion of f, about the center point of the sub-domain 2.
The fat sphere F;(pi,ci, Q) bounds fl = 0 in Q. The ith boundary pair of the domain § is
defined as

0Q; = {x : =a; Vi = Bi}.

The boundary points of the fat sphere F; are contained in the set
Pi ={x: pi(x) =¢; Vpi(x) = —¢i}.

Let Ng denote the number of the elements of an index set S C {1,...,n}. A point x € Q is
called

(1) fat sphere corner point if I,J C {1,...,n}, Ny =k, Ny=n—Fk:

xeX=(0%)P

il jeJ
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5 Fat Spheres for Solving Multivariate Polynomial Systems

(ii) fat sphere m-extreme point if I,J C {1,...,n}, Ny =k, Ny<n—k

xey=()0% (P

iel jed

where Y is an m-dimensional algebraic object, and there exists n — k — m different
indezes | € {1,...,n}\ I, such that

= (5) -

jed

All corner points x of the sub-domain €) are fat sphere corner points for k = n

X € ﬁaQZCX
i=1

All intersection points x of the fat sphere boundaries, which lie in the interior of the domain
Q) are in the point set

n
xe[)PicA,
j=1

These points are fat sphere corner points with k = 0.

Observation 5.4. A fat sphere m-extreme point is always an extreme point of an m-
dimensional object defined by the intersection of spherical patches and linear subspaces.
A fat sphere m-extreme point is a point on the object, where the tangent space (the linear
subspace spanned by the gradient vectors of the intersecting algebraic surfaces) in the point is
perpendicular to n — k —m coordinate directions. For instance the fat sphere (n —1)-extreme
points are the extremal points of the fat sphere boundary patches defined by the equations
pi = e

Observation 5.5. All fat sphere corner points and fat sphere extreme points are defined by
an equation system with n equation in n variables, where all equations are linear or quadratic
ones. The quadratic equations are the equations of spheres. Therefore each fat sphere corner
point and fat sphere extreme point can be computed as the solution of an equation system
consists of n — 1 linear equations and a single quadratic equation.

Definition 5.6. We call a fat sphere corner point or a fat sphere extreme point x an important
fat sphere extrema, if it satisfies for all i € {1,...,n}

—&i <pi(x) <&
thus the point x € T belongs to the intersection of the fat spheres.

Observation 5.7. Definition 5.3 and Observation 5.5 imply, that all important fat sphere
extrema can be computed by solving a finite number of algebraic systems, where each system
consists n — 1 linear and one linear or quadratic equations, and at most 2n inequality tests.

Lemma 5.8. The min-maz boz around the region T = (i, Fi(pi,€i, Q) # 0, which is the fat
sphere intersection in the sub-domain §2, is the min-maz box around the important fat sphere
extrema.
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5.3 Convergence Rate for Single Roots

Proof. The min-max box around Z is the min-max box around the extremal points of the
region. Since the fat sphere intersection is bounded by spherical patches and segments of
linear sub-spaces, any extremal point is either the corner point of the region, or the local
minimum /maximum point of the spherical patch or its boundaries. All corner points of the
intersection Z are contained in the point set of fat sphere corner points. All local extremal
points of Z are fat sphere m-extreme points. Moreover only the points of Z fulfill the condition
for the important fat sphere extrema. O

Fig.5.3 (b) shows a two-dimensional fat arc intersection, where the fat sphere corner points
and the fat sphere extreme points are marked by red and blue dots. The red ones denote the
important fat sphere extrema.

The min-max box of the fat sphere intersection is an axis-aligned box. It contains all
points of the sub-domain €2, which can lie in the zero set of F'. Therefore it can be used as a
reduced bounding region of the zero set of F' in the sub-domain ).

5.3 Convergence Rate for Single Roots

We bound the zero sets of polynomials with the help of quadratic polynomial equations.
Therefore we expect that the rate of convergence of the sequence of bounding regions is equal
to three. These expectation is confirmed in Theorem 5.14 in the end of this section. If we
assume, that the polynomials F possess a single root q in a domain, then the gradient vectors
of the polynomials are linearly independent in the point q. Thus the implicitly defined hyper-
surfaces, defined by the zero set of the polynomials, intersect each other transversely at the
root. Moreover there exists a domain €2y around the root q, such that for any point x € €
holds

det(J(F)(x)) # 0. (5.7)

Namely the gradient vectors V f1(x), V fa(x), ... V fn(x) are linearly independent for all x €
Qo. Therefore we suppose that any point of the initial domain Qg fulfills (5.7).

The fat sphere generation algorithm computes first a set of modified polynomials F. Each
point of Qg fulfills (5.7), so the gradient vectors V f;(x) do not vanish. In Section 4.5.2 we
have shown, that each modified polynomial has a positive lower bound on the gradient length,
if we compute in a sufficiently small sub-domain of £2y. Therefore also the quadratic Taylor
expansions of the modified polynomials are non-zero polynomials. The following lemma
shows, that the gradient vectors of the modified polynomials are linearly independent in a
sufficiently small sub-domain of .

Lemma 5.9. Suppose that the gradient vectors V f1(x), V fa(x), ... V fn(x) of the polynomials
fi € F are linearly independent for all x € Q. Consider a sub-domain Q@ C Qq, which has a
diameter 6o < c. We compute the set of modified polynomials F in the sub-domain Q for the
arbitrary but fized vectors of constants u;, which are linearly independent. If € is sufficiently
small, then for all x € §

~

det(J(E)(x)) # 0.

Proof. The gradient vectors of f; are linearly independent in any point of €2y, therefore there
exists a constant K > 0, such that all x € €y satisfy

|det(J(F)(x))| = K > 0.
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We compute the set of polynomials F,. with special Hessian in a certain point ¢ € g for the
fixed vectors of constants u;. Then the gradient vectors of f; € F¢ in the point ¢ can be
expressed as

Vfi(e) =Y ulVfi(c).
j=1

The vectors of constants u; define the matrix U = (uy,...,u,). Since the vectors u; are
linearly independent, the determinant of U is a positive constant U

|det(U)| =U > 0.
Therefore the determinant of the Jacobian of Fy in the point ¢ satisfies
det(J(Fc)(c))‘ = !det(UT - J(F)(c))| = |det(U)] - |det(J(F)(c))| > UK > 0.

Suppose that €2 C g is a sub-domain with the center point c¢. The set of new polynomials
computed in a point ¢ is F¢. Then there exists e > 0, such that if the diameter dq of the
sub-domain €2 is smaller than &, for all x € Q

det(J(Fc)(x))( > 0.

In Lemma 4.19 we have shown, that for fixed vectors of constants u; the system of polynomials
F¢ depends continuously on the point c. Thus there exists a general bound € > 0, such that
for any sub-domain Q C €, which has the diameter do < €, any x € {2 satisfies

det(J(F)(x))‘ >0,

where F is the set of polynomials with special Hessian in the center of the sub-domain 2. [

Corollary 5.10. The median spheres are the zero set of the quadratic Taylor expansions of
fi about the center of the sub-domain €2

pi =T2(fi)(x).
If the diameter of Q) is sufficiently small, then for all x € Q
det(J(p1, - .. pn)(x)) # 0.
Proof. The construction of p; implies that

det(J(f1,- -, fa)(€))] = [det(I(pr, .. pa) (©)]

The polynomials fz depend continuously on the point c, so as their quadratic Taylor expan-
sions p;. According to the proof of Lemma 5.9 there exists a general bound ¢ > 0, such that
if the diameter dq of the sub-domain 2 is smaller than e, then any x € () satisfies

|det(J(p1, e ,pn)(x))| > 0.
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We computed the fat sphere boundaries as concentric spheres to the median sphere p; = 0.
These spheres are defined by the equations

pi = *e;,

where ¢; is computed as
Q

fz‘—pi

E; = .
BB

Lemma 5.11. We compute o polynomial f, with special Hessian in the center point of the
sub-domain ). Let €; denote the bound

Q
B

fi—T2(f)

61':‘ .
B

Then it satisfies
g; < Cdiam(Q)3.

Proof. The sub-domain €2 is an axis-aligned box. Since all norms are equivalent on finite
dimensional vector spaces, there exists a constant C7, such that

Q Q

g = ||fi —pi BBSC1 fi—nil|

o0

and C7 does not depend on 2. If the center point of 2 is denoted by c, then

Q

Q A3
fi—pi|| = J

1
< = max
oo 6 vestxen|dv?

fi —T2(f) diam(£2)°.

(x)

=

/

Vv
*

Recall from Lemma 4.19 that fl depends continuously on the points of the computational
domain Qg for each parameter vector of u, where v/ # 0. Thus for all Q a global upper
bound Cj can be given for (x). Therefore we observe, that

1
&; S éCngdiam(Q)?’ S Cdiam(Q)g.

O

In order to measure the longest diameter of the intersection of fat spheres we give a
general lower bound on the gradient of a certain function. This result is similar to the one
in Lemma 4.16.

Lemma 5.12. Consider the function and h = />, ¢? defined by the polynomials q; € Q.
We assume that the Jacobian matriz is not singular in any x € )

det(J(Q)(x)) # 0.

For all x € Q, which do not satisfy q;(x) = 0 for i = 1,...n, there exists a positive constant
Lq such that
Vh(x)||* > Lo > 0.
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Proof. Since

2?21 iV

Vh(x) = ,
i 4

we obtain
HVh(X)H _< = 1QZV% i— 1sz%>
\/Zz lqz \/Zz 1qz
ax) " T_9q(x)
J(Q)(x)J(Q)(x) > min v Gram(Vq;(x), ... Vg, (x))v,
~ Jla) laGol] = ivli=1

where q(x)T = (q1(x),...,qn(x)). We assumed, that J(Q)(x) is not singular, therefore
Gram(Vqi(x), ... Vg,(x)) is also non-singular. Moreover it is symmetric. Thus for all x €

[Vh(x)[|> > A(x) > 0,

where A(x) is the minimal eigenvalue of the Gram matrix. Since the Gram matrix is not
singular, and it depends continuously on the points of €2, there exists a positive lower bound
Lo depends on €2, such that

)\(X) > Lo > 0.

O

Lemma 5.13. Consider a domain €y. In each point ¢ € Qg is given a set of polynomials
Qc- Each polynomial p; € Q¢ depends continuously on the point c. We assume that for all
c there exists a sub-domain Qe C Qq, where c is the center point of the sub-domain and the
Jacobian matriz of the polynomial system Q¢ is not singular in any x € Q. Consider the
function

n
D4
i=1

defined by the polynomials q; € Qc. For all x from the sub-domain Q, which do not satisfy
qi(x) =0 fori=1,...n, there exists a general positive constant L such that

[Vhe(x)||* > L > 0.

Proof. Each polynomial ¢; € (). depends continuously on the cho1ce of the point c. Ac-
cording to Lemma 5.12 there exists a lower bound of HVh H for all x € Q., which
bounds the minimal eigenvalue of the Gram matrix of ¢; € Q¢. Therefore for all ¢, where
det(J(Qc)(x)) # 0, there exists a general positive lower bound L, such that any x € Q.
satisfies

IVh(x)||* > L >0,

if x does not satisfy ¢;(x) = 0 for all ¢; € Q. O

Theorem 5.14. Suppose that the gradient vectors of the polynomials f; € F are linearly
independent for all points x € Q. Consider a sub-domain  C Qq, which is sufficiently small
and contains a single root q of the polynomials f;. We compute the set of polynomials F
with special Hessian in the center point of the domain Q) for the arbitrary but fived vectors of
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constants w;, which are linearly independent. If we apply the domain shrinking step of the fat
sphere generation algorithm on the sub-domain ), then there exists a constant C, such that
the generated bounding region Q2* satisfies

diam(9*) < Cdiam(Q)3.

Proof. Suppose that €2 is a sub-domain of €, which contains a single root q. We compute
the set of polynomials F with special Hessian in the center point ¢ of . The median spheres
are defined as the zero set of the quadratic Taylor expansion of the polynomials fZ € F about
the point c

pi(x) = TS (fi) (x).
We denote with ¢; the distance bound of fz and p; computed in the BB-norm in . A fat
sphere is defined by the point set

Filpirei, Q) = {x : [pi(x)| <&}

Let us denote the fat sphere intersection as Z = (), ;. Each fat sphere bounds the hyper-
surface f; = 0, thus the single root q € {2 is contained in the fat sphere intersection

qeInq.

We define the function

where ¢;(x) = pi(x) — pi(q). We consider the integral curves defined by the vector field
—Vh/ HVhH in Q. If Q has a sufficiently small diameter, according to Corollary 5.10 all
x € () satisfy

det(J(p1, ... pn)(x)) # 0.
Since Vp;(x) = V¢;(x), for all x € Q

det(J(q1, - - qn)(x)) # 0. (5.8)

Together with Lemma 5.12 this implies that the integral curves are regular in the inner points
of 2\ {a}.

Suppose that x is an arbitrary point of the fat sphere intersection Z computed in a
sufficiently small domain €. Such a point x € ZNQ fulfills forall t =1,...n

Ipi(x)| < &

We consider the integral curve u(s) with the starting point u(0) = x € Z , which is regular
on Q\ {q}. We assume, that the curve is parametrized by arc length. Such an the integral
curve has a unique limit, if the computational domain is sufficiently small. Since h(x) > 0
and the tangent vectors of the curve u(s) always point to the direction of steepest decent on
h, there exists a parameter value s* such that for s < s*

shﬁnsl* u(s) =q.
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According to the mean value theorem there exists £ € (0, s*) such that

h(u(s*)) — h(u(0))

S*

$* = ( (0)) — h(X) 222 1 z
[Vat(@)] ~ [Vhta©)] =

We supposed that u(s) is arc length parametrized, therefore x € 7 satisfies

I —al| = [[u(0) = u(s)|| < \/%

n 2
Thus any point of Z is closer to q than 4/ 2%72152 So the min-max box Q* C €2, which

contains 7, has a diameter
2 nog2
diam(Q*) < 2 %
\ Lg

In Lemma 4.19 we have shown, that the system of polynomials F depends continuously
on the choice of the domain ). Therefore also each p; and ¢; depend continuously on the
choice of 2. The lower bound Lg of HVh H bounds the minimal eigenvalue of the Gram
matrix of ¢;. According to Lemma 5.12 there exists a general positive lower bound L, such
that any x € 2 satisfies

= Vh(u(§)) - a(€) = — [|Vh(u(¢))]| -

Since h(u(s*)) =0

[Vhx)||” > L > 0.

We have also shown in Lemma 5.11 that there exists a constant D, which does not depend
on the choice of €2, such that

g; < Ddiam(2)3.

Therefore the diameter of the min-max box Q* satisfies
2 noog2
nyin el 2v2D " diam(Q)? = Cdiam(Q)?,
L VL

where C' does not depend on the choice of €. ]

diam(Q*) <2

5.4 TIterative Domain Reduction Algorithm
In this section we present a subdivision algorithm combined with the local domain reduction

strategy Algorithm 8. It is an iterative domain reduction, which reduces the bounding regions
either by subdivision or by bounding fat sphere intersection.
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Algorithm 9 GenerateBoundingBoxes(F, 2, ¢)

1: A < DomainReduction(F,€2) {domain reduction}
2. if 2. diam(A) < diam((2) then

3. if diam(A) > e then

4: GenerateBoundingBoxes(F, A, ¢) {recursive call}
5. else

6: B=BUA

7. end if

8: else

9: if diameter of 2 > ¢ then

10: subdivide the domain  to €; {subdivision}
11: GenerateBoundingBoxes(F, ), ¢) {recursive call}
12:  else

13: B=BUQ

14:  end if

15: end if

16: return B

5.4.1 Algorithm

The global root approximation algorithm (Algorithm 9) is an iterative domain reduction,
which bounds the roots of a multivariate polynomial system F' within a prescribed tolerance
bound . The algorithm computes a set of axis-aligned boxes with the help of hierarchical
subdivision and fat sphere intersection. Each root of the system is approximated via a nested
sequence of domains, which have decreasing diameters. The algorithm reduces the domains,
until each list of nested domains has an element with sufficiently small diameter. Then the
algorithm returns the last element of the lists.

Each domain is analyzed, until it is detected as an empty region or it has a suffi-
ciently small diameter. We detect empty domains via the convex hull property (see in
Observation 3.2). A sub-domain is also empty, if the local algorithm generates fat spheres,
which do not intersect. Then the algorithm does not analyze these domains any further. Nev-
ertheless, it can happen that a domain without root is computed with small diameter, but it
is not detected as an empty region. Thus the output can also contain empty sub-domains.

It is also important to separate the real roots of polynomials to different bounding do-
mains. In some cases we can certify weather a domain in the output contains only one single
root, although this is not always possible. If two real roots have smaller distance than the tol-
erance ¢, they may have common bounding region in the output of the algorithm. Therefore
clearly the number of bounding regions in the output is not necessarily equal to the number
of real roots of the polynomial system.

Choice of Polynomial Combinations and Constants. As we described already in
Section 5.2.2 we compute polynomials with special Hessian as the combination of n — 1 or
n different polynomials from the original set of polynomials F. If we only combine n — 1
polynomials from F', then we can choose the set of polynomials in the construction of each
new polynomial fz differently. However, we approximate the zero set of all polynomials in F,
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so we have to use all polynomials at least once in the computation of f; Otherwise we only
approximate the solution set of certain subset of F'. This problem does not appear if we use
all the polynomials in F' to compute f; According to our experiments, this strategy reduces
the size of the bounding domains faster, although we have to handle larger linear systems to
find polynomials with special Hessian.

In order to compute each new polynomial fi, we have to choose an arbitrary but fixed
vector of constants u;. These vectors of constants are chosen a priori and they are kept fixed
during each subdivision and domain reduction step. We have seen in Lemma 5.9, that the
choice of the vectors u; is important. These vectors have to be linearly independent in order
to provide the third order convergence of the bounding regions for single roots.

5.4.2 Examples

We present here several examples, which show the behavior of the root-finding algorithm
GenerateBoundingBoxes for polynomial systems in two or three variables.

Intersection Points of Implicitly Defined Planar Curves

Example 5.15. First we present a two-dimensional example to show the behavior of the
root-finding algorithm. The two implicitly defined curves are defined by the polynomials
with bi-degree (9,8) and (6,9). They are represented in the unit box. The intersection
points of the curves are approximated within the tolerance ¢ = 10~%. The curves have five
intersection points in the domain. After three subdivision steps all roots are separated into
different sub-domains. Then four or five domain reduction steps are made in order to achieve
the prescribed accuracy around each intersection point. The output is represented in Fig.5.4.
In the left one can see the domains, generated during the domain reduction steps (either with
subdivision or with the help of fat arc intersection). They are shown in different shades of
gray. In the right the center point of each bounding domain from the output is marked as a
red dot.

Example 5.16. This example appears in the paper of Elber et al. [17]. They present a
strategy to approximate the intersection points of implicitly defined curves. Their algorithm
purge away empty domains and identify domains with single solution more efficiently than
the subdivision method. We compare here the fat arc generation with the simple subdivision
via this example.

The two bi-cubic curves are the reflection of each other along the x = y line (see Fig.5.5).
They intersect each other along the reflection line in five different points and also in two other
points in the domain. We represented the curves in the unit square [0, 1]2, and approximate
the roots using different tolerances. In Table 5.2 we compare the total number of bounding
domains in the output. The fat arc generation method returns for small tolerance a number
of bounding domains, which is equal to the number of the intersection points, while the sub-
division method returns a large number of bounding boxes. The algorithm, which generates
fat arcs, eliminates efficiently the empty sub-domains. Moreover it speeds up the convergence
and uses less subdivision steps. In Fig.5.5 we show the output of the fat arc generation and
the subdivision algorithms. The intersection points of the curves are marked by black crosses,
while the generated bounding domains are represented by their center points marked by red
dots. In the first of row of the figure we represent the outputs of the fat arc generation, while
in the second row the outputs of simple subdivision method are shown.
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Figure 5.4: Approximation of the intersection points of implicitly defined curves given by the
zero level set of polynomials with bi-degree (9,8) and (6,9). In the left: domains generated
during the domain reduction steps, in the right: the center points of the bounding domains are
marked as red dots.

Table 5.2: Approximating intersection of implicitly defined curves. The number of used bound-
ing regions for the seven intersection points of the curves in Fig. 5.5.

Algorithm | e =0.1 | e=0.01 | e =0.001 | €= 0.0001
Fat Arcs 15 14 7 7
Subdivision 22 40 68 71
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Fat arc generation

e=0.1 e =10.01 e =0.001

Bounding box generation

e=0.1 e =10.01 e =0.001

Figure 5.5: Comparison of root approximation, computed with fat arc generation and subdivi-
sion. In the first row we present the outputs of the fat arc generation, while in the second row the
outputs of simple subdivision method is shown for different tolerances. The intersection points
of the curves are marked by black crosses, while the generated bounding domains are represented
by their center points marked by red dots.
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Example 5.17. Example 5.16 indicates that the fat arc generation algorithm separates the
different roots well. Therefore we present an example, where the roots of the polynomials are
changing from two single roots to one double root with the translation of one of the curves.
The curves are represented by the zero set of

f(z,y) = —(0.95+ 10"“) +0.22 4 0.4y + 22 + 32,

g(z,y) = —0.48 + 0.2z + 0.1y + zy.

We set the tolerance to e = 10~® and compute the approximation in the unit box for the value
of k = 2,5 and k = 10. The distance of the exact roots (denoted by ¢) is given in the first
row of Table 5.3 for each value of k. On the top of the table we show the results obtained by
fat arc generation, while in the bottom the outputs of simple subdivision method are shown.
In each column the diameters of the bounding domains are given, which were generated step
by step during the approximation methods. The bounding regions are reduced until their
diameter is smaller than the tolerance or at most up to eight steps. In the last column we
show the reduction of the bounding regions for one double root. Finally we present a figure,
where the bounding domains are shown in the case of k = 2,5 and for the double root. The
shrinking regions are represented in different shades of gray (see Fig.5.6).

Intersection Points of Implicitly Defined Algebraic Surfaces

Example 5.18. This example corresponds to the two-dimensional one in Example 5.16. It
compares simple subdivision method with the fat sphere intersection in a three-dimensional
root-finding problem. The problem is given by the equation system

0.4(z° + 12 + 2%) — 0.88(x +y + 2) — dayz + 1.452 = 0,
104(x3 + 93 + 23) — 141(2? + y? + 22) + 61.875(z + y + 2) — 27.978125 0,
4y’ + 22404 +y+2)—158 = 0,

with respect to the unit cube. The system has six different roots in the computational domain.
These roots are situated pairwise relatively close to each other. If we approximate such roots
with simple subdivision, usually the root separation process is slow, and it uses high number
of bounding domains in the output. According to our experiments in Example 5.16, we expect
that the fat sphere generation method uses less subdivision steps and few bounding regions
in the output. In Table 5.4 we compare the total number of computed bounding domains.
The fat sphere generation method returns for small tolerance a number of bounding domains,
which is equal to the number of the roots. Moreover it uses less subdivision steps (see in
columns #1). While the subdivision method returns a large number of bounding boxes. In
Fig.5.7 we show the output of the fat sphere generation and the subdivision algorithm. The
generated bounding domains are represented by their center point marked by red dots. In
the first row we present the outputs of the fat sphere generation, while in the second row the
outputs of simple subdivision method are shown.

Example 5.19. We can approximate the ordinary singular points of an implicitly defined
surface with the help of the fat sphere generation. In this example we present two different
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Table 5.3: Approximating intersection points of implicitly defined curves, which are translated
in three steps (k = 2,5,10) from two single roots to one double root. We represent here the
diameters of bounding boxes in each step of the bounding region generation. In the cases of two
single roots we marked the level of domain reduction, where the algorithms separate the roots.
The distance of the two roots is given in the first row of the table (¢).

k=2 (0=141101Y k=5 (0=447103) [ k=10 (6 =1.4110"7) || Double root
- root separation 0.707 0.707 0.707
2 0.707 0.707 9.6510~2 9.6410~2 0.164
g 0.128 0.151 1.551072 1.491072 2.351072
211851073 | 3.001073 4.571073 9.111074 1.281073
Zo 5491079 | 2.351078 root separation 1.97107° 1.621075
& 2.28107% | 2281073 root separation 2.301078
= 3.341077 | 3.341077 || 9.8610°° | 9.8610°°
1.0510718 | 1.0510~!® || 8.4810712 | 8.4810 12
root separation 0.707 0.707 0.707
B} 0.707 0.707 0.353 0.353 0.353
3| 0.353 0.353 0.176 0.176 0.176
2 0.176 0.176 8.881072 8.881072 8.881072
E 8.881072 | 8.881072 4411072 4411072 4.411072
G| 4411072 | 4.411072 root separation 2.201072 2.201072
2201072 | 2.201072 2201072 | 2.201072 1.101072 1.101072
1.101072 | 1.101072 1.101072 | 1.101072 5.521073 5.521073

Fat arc generation

Bounding box generation

Figure 5.6: Reduction of bounding boxes in the case of £k = 2,5 and for the double root. In
the first row we used the fat arc generation method, while in the second row simple subdivision.
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Table 5.4: Approximating intersection of implicitly defined surfaces. We present the number of
used bounding regions and the number of domain reduction steps (denoted by #1). This number
shows the maximal depth of the domain reduction or subdivision tree, which is traversed by the
algorithm during the root approximation.

Algorithm | e=0.1 | #1 || e =0.01 | #1 || e =0.001 | #I
Fat Spheres 42 2 6 5 6 5
Subdivision 78 5 78 8 66 11

e=0.1 e =10.01 e =0.001
> g > g > g
e=0.1 e =10.01 e =0.001

Figure 5.7: Comparison of approximate roots computed with fat sphere generation and subdi-
vision. In the first row we represent the outputs of the fat sphere generation, while in the second
row the outputs of simple subdivision method are shown for different tolerances.
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algebraic surfaces given by an implicit equation f(z,y,z) = 0 with ordinary singularities.
These singularities can be found by computing the zero set of the partial derivatives

f:z::Oa fy:O, fZZO.

A singular point of the surface also satisfy the equation of the surface.

In Fig.5.8 the dots mark the approximate solution points of the system of partial deriva-
tives. The red ones are the solutions, which lie close to the implicitly defined surfaces f = 0.
The first surface in the figure is called Cayley-cubic. It has four ordinary singularities, which
are computed in the unit cube as the solution of the system

—250xz + 175z + 125.52 — 87.85 = 0,
250yz — 75y — 124.952 4+ 37.485 = 0,
—12522 + 125y% + 125.52 — 124.95y + 50z — 25.275495 =

The second surface is the Ding-dong surface, which has one ordinary singularity. It is com-
puted in the unit cube as the solution of the system

182 —9.06 = 0,
18y —8.994 = 0,
8122 — 100.08z +29.9136 =

The tolerance during the computations was set to 0.01 in both examples.
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Figure 5.8: Ordinary singularities on implicitly defined surfaces.
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Chapter 6

Conclusion

We presented a new family of algorithms to approximate implicitly defined algebraic curves
and real roots of polynomial systems. These methods are based on the geometrical properties
of polynomial systems.

In order to generate local bounding regions, we presented fat arcs, which are the tubular
neighborhood of circular arcs. First we presented several techniques to generate these bound-
ing regions for planar curves. One of these techniques computes polynomials with modified
Taylor expansion. This method has several advantageous properties, therefore we generalized
it to approximate algebraic curves embedded into the three- and n-dimensional space. The
fat arcs, generated by this technique, have a close connection to the osculating circle of the
algebraic curve. The cubic convergence order is confirmed for these bounding regions in the
thesis. The local fat arc generation combined with iterative subdivision leads to a hybrid
algorithm, which generates bounding regions to implicitly defined algebraic curves. We pre-
sented several examples and applications of the algorithm to approximate implicitly defined
algebraic curves in two- and three-dimensional space.

Based on the definition of fat arcs we introduced fat spheres as bounding regions for
algebraic objects. These regions can also be generated using polynomials with modified Taylor
expansion. Intersecting these bounding regions leads us to a local domain reduction strategy,
which bounds the intersection points of algebraic surfaces. We combined this strategy with
iterative subdivision in order to approximate real roots of multivariate polynomial systems.
This hybrid algorithm generates sequences of bounding regions, which converge with order
three to the single roots of a multivariate polynomial system.

The structure of these algorithms carries two main messages. First of all, that analyzing
geometric properties of algebraic objects leads to stable techniques on real algebraic set ap-
proximation. This stability is certified by the Bernstein-Bézier polynomials. In addition fat
arc and sphere computations are advantageous. Although they require extra computational
time compared with other bounding primitives, the generated bounding regions converge
faster. Computing with quadratic bounding regions provides faster termination of the algo-
rithm and reduces the depth of the subdivision tree.
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