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Abstra
t
Studying obje
ts de�ned by algebrai
 equations has been an a
tive resear
h area for along time. The reason for the interest is the wide variety of appli
ations, whi
h appear inmathemati
al modeling and physi
s. Modeling algebrai
 obje
ts is an essential ingredientof free-form surfa
e visualization and numeri
al simulations. Thus modeling algorithms arefrequently used in CAD-systems, manufa
turing, roboti
s et
. Several problems in appli
a-tions are des
ribed by multivariate polynomial systems with a low dimensional solution set.In the thesis we present a method to generate bounding regions for one- or zero-dimensionalsolution sets of multivariate polynomial systems.The one-dimensional solution set of a multivariate polynomial system forms an algebrai

urve. These 
urves are de�ned as the interse
tion 
urves of algebrai
 surfa
es. Representingthese algebrai
 
urves is a fundamental problem of some geometri
 algorithms. For instan
esu
h algebrai
 
urves appear as the boundary 
urves of surfa
es 
reated by Boolean operationsor the self-interse
tion 
urves of surfa
es. Due to the importan
e of these 
urves severalalgorithms have been introdu
ed to approximate them, espe
ially for 
urves embedded inlower dimensional spa
es. We formulate in the thesis a new geometri
al method, whi
happroximates one-dimensional algebrai
 sets. The algorithm generates a set of quadrati
regions, the so 
alled �fat ar
s� , whi
h en
loses the algebrai
 
urve within a user spe
i�edtoleran
e. We des
ribe di�erent methods, how to generate these bounding regions, and westudy their behavior. Then we 
ombine the fat ar
 generation with the standard subdivisionte
hnique.The 
omputation of zero-dimensional solution sets of multivariate polynomial systemshas also several appli
ations in algebra and geometry. Therefore various methods exist to�nd or to isolate the roots of polynomial systems. They use symboli
, numeri
 or 
ombinedte
hniques in order to �nd the solutions. In the end of the thesis we generalize the de�nitionof fat ar
s to the 
on
ept of fat spheres. We introdu
e an iterative domain redu
tion methodbased on fat sphere generation. This method generates sequen
es of bounding regions, whi
h
onverge with order three to the single roots of a multivariate polynomial system.



Zusammenfassung
Analyse und Bearbeitung von Objekten aus der reellen algebrais
hen Geometrie sind seitlangem ein bedeutendes Fors
hungsfeld. Ein Grund dafür sind ihre vielfältigen Anwendungen,wel
he unter anderem in der mathematis
hen Modellierung und Physik auftreten. Methodenzur Modellierung algebrais
her Objekte sind für die Darstellung von Freiform�ä
hen und nu-meris
hen Simulationen von essentieller Bedeutung. Dementspre
hend �nden diese MethodenAnwendung in CAD-Systemen, in der industriellen Fertigung, der Robotik, et
. Viele Prob-leme werden dabei in Form multivariater polynomieller Systeme mit niedrigdimensionalerLösungsmenge dargestellt. In dieser Arbeit präsentieren wir eine Methode zur Erstellung von�bounding regions� für ein- und nulldimensionale Lösungsmengen multivariater polynomiellerSysteme.Die eindimensionale Lösungsmenge eines multivariaten polynomiellen Systems bildet einealgebrais
he Kurve. Diese Kurven können als S
hnittkurven algebrais
her Flä
hen betra
htetwerden. Die Darstellung dieser algebrais
hen Kurven ist ein fundamentales Problem der algo-rithmis
hen Geometrie. Sol
he Kurven entstehen zum Beispiel als Randkurven von Flä
henbei Anwendung booles
her Operationen oder als Selbsts
hnitte von Flä
hen. Aufgrund ihrergroÿen Bedeutung existieren bereits viele Algorithmen zur Approximation algebrais
her Kur-ven, speziell Kurven eingebettet in niedrigdimensionale Räume. Wir formulieren in dieser Ar-beit eine neue geometris
he Methode, die eindimensionale, algebrais
he Mengen approximiert.Der Algorithmus erzeugt Regionen zweiten Grades, sogenannte �fat ar
s� , die die algebrais
heKurve unter Berü
ksi
htigung einer vorgegebenen Toleranz abde
ken. Wir bes
hreiben ver-s
hiedene Methoden diese �bounding regions� zu erzeugen und analysieren deren Verhalten.Weiters vereinen wir die �fat ar
� Erzeugung mit der Subdivisionsmethode.In der Algebra und in der Geometrie hat das Au�nden nulldimensionaler Lösungsmengenmultivariater polynomieller Systeme zahlrei
he Anwendungen. Daher existieren viele Meth-oden sol
he Lösungen polynomieller Systeme zu �nden oder zu isolieren. Diese Methodenverwenden symbolis
he, numeris
he oder kombinierte Te
hniken zum Au�nden der Lösun-gen. Am Ende dieser Arbeit verallgemeinern wir die De�nition der �fat ar
s� zum Konzeptder �fat spheres� . Wir führen eine iterative Gebietunterteilungsmethode ein, die auf �fatspheres� basiert. Diese Methode erzeugt �bounding regions�, die in dritter Ordnung gegen dieeinfa
hen Wurzeln multivariater polynomieller Systeme konvergieren.



Összefoglalás
Az algebrai felületek és görbék vizsgálata már husszú ideje igen aktív kutatási terület. En-nek oka, hogy a matematikai modellezés és a �zika területén számos alkalmazásuk ismert. Azalgebrai objektumok modellezése fontos összetev®je a felületek megjelenítésének és bizonyosnumerikus szimulá
ióknak. Ennek megfelel®en gyakran találkozhatunk különböz® modellez®algoritmusokkal CAD-rendszerekben, gyártási folyamatok során, a robotikában stb. A gyako-rlatban számos probléma írható le olyan többváltozós polinomrendszerek segítségével, melyekmegoldástere ala
sony dimenziós. A következ®kben egy olyan módszert ismertetünk, amelytöbbváltozós polinomrendszerek egy- vagy nulldimenziós megoldáshalmazát közelíti úgyn-evezett határoló területek (bounding regions) segítségével.Egy többváltozós polinom-egyenletrendszer egydimenziós megoldáshalmaza algebrai gör-bét határoz meg. Az ilyen görbék mint algebrai felületek metszésgörbéi állnak el®. Néhánygeometriai algoritmusnak alapvet® épít®köve ezen görbék leírása. Ilyen görbék például aBool-féle m¶veletek segítségével el®állított felületek határgörbéi vagy önátmetsz® felületekmetszésgörbéi is. Fontosságuknak köszönhet®en ilyen görbék közelítésére számos algoritmusismert, különösen ala
sony dimenzós terekbe ágyazott görbére. A disszertá
ióban egy olyanúj geometriai módszert mutatunk be, amely segítségével egydimenziós algebrai sokaságokatközelíthetünk. Az új algoritmus kvadratikus határoló területeket, úgynevezett �vastagítottíveket� (fat ar
s) számol, melyek magukba foglalják az algebrai görbét, mindamellett át-mér®jük nem halad meg egy el®re megadott hibahatárt. A disszertá
ióban több különböz®módszert is ismertetünk a vastagított ívek számolására, és vizsgáljuk ezek különböz® tulajdon-ságait is. Végül kombináljuk a határoló területek számolását az algebrai görbék felosztásával.Többváltozós polinomrendszerek nulldimenziós megoldáshalmazának kiszámítása az alge-bra és a geometria számos alkalmazásásában fontos szerepet játszik. Ezért több különböz®módszer is ismert polinom-egyenletrendszerek gyökeinek kiszámításásra és szétválasztására.Ezek az algoritmusok szimbólikus, numerikus vagy vegyes megoldási te
hnikákat alkalmaz-nak a megoldások keresésekor. A disszertá
ió utolsó fejezetében általánosítjuk a vastagítottívek de�ní
ióját, és bevezetjük a vastagított gömb fogalmát. Bemutatunk egy olyan iter-atív algoritmust, mely vastagított gömböket használ a gyököket közelít® határoló területek
sökkentésére. Ez a módszer régiók olyan sorozatával közelíti az egyes megoldásokat, amelyharmadrendben konvergál a többváltozós egyenletrendszer egyszeres gyökeihez.
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Chapter 1Introdu
tion1.1 Polynomial SolversSolving multivariate polynomial systems is a key problem in algebra and geometry. It hasseveral appli
ations, therefore various methods exist to 
ompute the solution sets of polyno-mial systems. These methods are using symboli
, numeri
 or 
ombined te
hniques in orderto �nd the solutions.Representing algebrai
 
urves is a fundamental problem of geometri
 
omputing. Im-pli
itly de�ned algebrai
 
urves 
an be des
ribed as the interse
tion 
urves of algebrai
 sur-fa
es. Computation of su
h a surfa
e-surfa
e interse
tion is a basi
 operation in geometri
modeling.Interse
ting low degree impli
itly de�ned surfa
es has attra
ted a lot of interest in theliterature. Quadrati
 surfa
es are the simplest 
urved surfa
es, therefore they are frequentlyused in 
omputational geometry. The interse
tion 
omputation of su
h surfa
es has beendis
ussed thoroughly in [8, 11, 40, 45, 46℄.Several di�erent methods have been developed for 
omputing the interse
tion of algebrai
surfa
es (see [19, 31, 39℄). Many of them are symboli
-numeri
 algorithms. The most widelyused numeri
 methods are the latti
e evaluation, tra
ing and subdivision-based methods.Latti
e evaluation te
hniques generate a set of low dimensional sub-problems. The solu-tions of these sub-problems are interpolated to approximate the general solution. Mar
hingor tra
ing methods generate point sequen
es along the 
onne
ted 
omponents of the 
urve.They ne
essarily use some topologi
al information to �nd starting, turning and singularpoints [3, 10, 16, 22℄.Subdivision algorithms de
ompose the problem into several sub-problems, and sort theseproblems a

ording to the 
urve topology [2, 25℄. The de
omposition terminates if suitableapproximating primitives 
an be generated for ea
h sub-problem [29℄. In order to 
onstru
tthese approximating primitives several lo
al approximation te
hniques 
an be applied, su
has interpolation, bounding region generation or least-squares approximation.Real root �nding is 
onsidered as a di�
ult task. It is an important problem, thereforeseveral methods were developed to solve it. A general overview about the multivariate root�nding algorithms is given in [13, 38℄. The solvers des
ribed in the literature are using eitheralgebrai
 or geometri
 tools. 1



1 Introdu
tionAlgebrai
 approa
hes, su
h as Gröbner-basis te
hnique [5℄, resultant based methods or
ontinuous fra
tions methods assure exa
t and e�
ient solution algorithms. These algorithmsfrequently provide more information about the solutions than it is needed in the appli
ations.It is often unne
essary to 
ompute all solutions. For instan
e, CAD-systems usually requireinformation only about real solutions, whi
h lie in a 
ertain domain. Moreover these symboli
methods are not really suitable for numeri
al 
omputations. An algebrai
 solver, whi
h isusing the Gröbner-basis te
hnique, was developed for instan
e by Rouillier [33℄ for bi-variatepolynomial systems. Busé et al. 
onsidered resultant based methods in [6, 7℄. In [14℄ analgebrai
 method is des
ribed, whi
h is using Sturm-Habi
ht sequen
es.Homotopy solvers 
ompute a family of root-�nding problems. The method transforms asimple problem to the original one in several steps, and 
omputes the roots of ea
h inter-mediate problem. The 
omputed sequen
e of roots 
onverges to the solutions of the originalroot-�nding problem. However su
h 
omputations usually require ine�
ient memory andtime. Polynomial solvers based on homotopy methods are des
ribed in [24, 28℄.In order to develop robust approximation algorithms a great leap forward was to useBernstein-Bézier polynomials. The stability of this representation form allows to developalgorithms for approximating algebrai
 sets given in higher dimensional spa
e. The �rst gen-eral numeri
al algorithms using polynomials given in BB-form were developed by Sherbrookeand Patrikalakis [39℄. These are subdivision methods for �nding zero dimensional solutionsets of multivariate polynomial equations.Subdivision algorithms are based on the �divide and 
onquer� paradigm. They 
omputein a 
ertain domain (usually in an axis-aligned box), and provide information only aboutreal-roots. If we are interested in 
ertain properties of a root, like multipli
ity, then further
omputations are ne
essary. Subdivision algorithms de
ompose the problem into several sub-problems. The de
omposition terminates if suitable bounding primitives 
an be generatedin ea
h sub-problem [29℄. In order to 
onstru
t these approximating primitives several lo
aldomain redu
tion strategies 
an be applied. The �rst subdivision solvers were developed bySederberg et al. for bivariate Bézier-polynomials. They are using 
lipping and subdivisionte
hniques [35, 36℄. Later on a family of algorithms was invented, whi
h is using proje
tionte
hniques [39℄. The most re
ently developed solvers are published by Mourrain et al. [13℄and Elber et al. [12℄.1.2 OutlineIn the thesis we present a method to bound one- or zero-dimensional solution sets of multi-variate polynomial systems. In order to approximate the solution of su
h polynomial systemswe put the emphasis on the geometri
al properties of them. We develop numeri
 algorithmsbased on a new bounding region generation method and the standard subdivision te
hnique.We introdu
e an algorithm, whi
h generates a set of quadrati
 bounding regions for impli
-itly de�ned algebrai
 
urves. Later these regions are generalized to bound impli
itly de�nedsurfa
es. Computing the interse
tion of these bounding regions leads to a te
hnique, whi
hgenerates bounding domains around the real roots of multivariate polynomial systems.In the next 
hapter we des
ribe a method, whi
h generates bounding regions for impli
itlyde�ned planar 
urves. This method is using spe
ial bounding primitives, the so 
alled �fatar
s� . The 
onstru
tion of fat ar
s was introdu
ed by Sederberg [37℄ to approximate planarparametri
 Bézier 
urves. We generalize this de�nition in order to bound impli
itly de�ned2



1.2 Outline
urves. We present several di�erent te
hniques to generate fat ar
s in R
2. After dis
ussingthe main steps and the properties of these te
hniques we 
ompare them. Then we 
ombinethe lo
al fat ar
 generation with iterative subdivision. In the end of the 
hapter we presentseveral examples and show an appli
ation.In Chapter 3 we present an algorithm, whi
h generates bounding regions for impli
itlyde�ned algebrai
 spa
e 
urves. The method is the generalization of the fat ar
 generationte
hnique from Chapter 2. We analyze the properties of the 
urve approximation method inthe three-dimensional 
ase, and 
ombine it with subdivision te
hnique. Finally we presentsome examples and appli
ations of the method.The three-dimensional fat ar
 generation te
hnique 
an also be generalized to impli
itlyde�ned algebrai
 
urves represented in the n-dimensional spa
e. In the fourth 
hapter wepresent an algorithm, whi
h generates fat ar
s to bound one-dimensional algebrai
 sets in

R
n. We des
ribe also the general properties of the te
hnique.In Chapter 5 we introdu
e fat spheres as multidimensional bounding regions for impli
-itly de�ned algebrai
 obje
ts. Then we des
ribe a lo
al domain redu
tion strategy to boundinterse
tion points of algebrai
 obje
ts. We 
ombine this lo
al algorithm with iterative subdi-vision. This hybrid algorithm 
an be applied for approximating the real roots of multivariatepolynomial systems. In the end of the 
hapter we present several two- and three-dimensionalexamples.Finally we summarize the results of the thesis in Chapter 6.

3
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Chapter 2Fat Ar
s for Impli
itly De�ned PlanarCurvesThe approximation of impli
itly de�ned 
urves is one of the fundamental problems in 
om-putational geometry. In this 
hapter we present two te
hniques, whi
h generate boundingregions for impli
itly de�ned 
urves. Both methods are the generalization of an approxima-tion te
hnique for planar parametri
 
urves using spe
ial bounding primitives. After dis
ussedthe main steps and the properties of the algorithms, we 
ompare them. In the end of the
hapter we present several examples and show an appli
ation.2.1 Fat Ar
s in 2DIn this se
tion �rst we give a short overview of the related work on planar 
urve approxima-tion. Then we introdu
e fat ar
s, whi
h are spe
ial type of bounding primitive for planarparametri
 
urves. In order to generalize the de�nition of these primitives to impli
itly de-�ned 
urves, we des
ribe the planar algebrai
 
urves as the zero level set of polynomials inBernstein-Bézier tensor produ
t form.2.1.1 Bounding Region GenerationBounding regions, whi
h en
lose segments of planar 
urves, are frequently needed for variousgeometri
 
omputations, e.g., for solving the interse
tion problem between two planar 
urves.Axis-aligned bounding boxes (min-max boxes), whi
h 
an easily be generated both for planarparametri
 
urves and for impli
itly de�ned 
urves, are one of the simplest instan
es. Otheruseful primitives in
lude fat lines (bounding strips, see e.g. [4℄), the 
onvex polygons obtainedas a 
onvex hull of the 
ontrol polygons or fat ar
s [37℄.The performan
e of a bounding region depends on the approximation order. For a bound-ing primitive with approximation order k the number of primitives needed to bound a 
urvewith a given toleran
e ε grows like k
√

1/ε. Consequently, the use of geometri
 primitives withhigher approximation order may provide 
omputational advantages. Bounding boxes haveonly approximation order k = 1, while both the 
onvex hull of 
ontrol polygons and fat linesprovide approximation order 2, and fat ar
s even have approximation order 3.Clearly, it is possible to de�ne bounding regions with an even higher approximation order.Fat ar
s seem to be parti
ularly useful sin
e they provide a reasonable trade-o� between5



2 Fat Ar
s for Impli
itly De�ned Planar Curvesgeometri
 �exibility and the 
omputational simpli
ity of elementary geometri
 operations.For instan
e, the 
omputation of the interse
tion of two 
ir
ular ar
s requires solely thesolution of quadrati
 equations, while this be
omes far more 
ompli
ated for higher orderobje
ts.Various methods have been des
ribed in the literature for generating an ar
 spline 
urvewhi
h approximates a given parametri
 
urve with a pres
ribed toleran
e, see e.g. [48℄ formany related referen
es. The use of ar
 splines for geometri
 design appli
ations 
an be tra
edba
k to a 
lassi
al VTO report of Sabin [34℄. Mar
iniak and Putz dealt with the minimizationof the number of ar
s to approximate a 
urve under a give toleran
e [27℄. Later Qiu et al.improved their method [32℄. In a number of papers, Meek and Walton applied ar
 splines toapproximate parametri
 
urves [42, 43, 44℄ Yong used ar
 splines for quadrati
 Bézier 
urveapproximation [49℄. Fei
htinger et al. 
ompared various biar
 interpolation s
hemes [41℄.Held and Eibl approximated with biar
s simple planar polygons either for symmetri
 andasymmetri
 toleran
e bounds [18℄.2.1.2 Fat Ar
s for Planar Parametri
 CurvesThe 
onstru
tion of fat ar
s was introdu
ed by Sederberg [37℄. He developed a methodto approximate planar parametri
 Bézier 
urves. His method generates a set of boundingregions, ea
h 
onsisting of an approximating 
ir
ular ar
s with some �nite thi
kness.The approximating ar
 � the so 
alled median ar
 � is usually de�ned by three points fromthe parametri
 
urve. These interpolation points 
an be 
hosen in various ways [26, 37℄, forinstan
e as the two endpoints of the 
urve segment and the interse
tion point of the bise
torof the endpoints and the 
urve segment. Of 
ourse, any other approximating ar
 generationte
hnique 
an be used for median ar
 generation.The next step of the method is to measure the distan
e between the 
urve and the medianar
. Frequently an upper bound is used to estimate the distan
e. An o�set of the median ar

an be de�ned with this distan
e bound. The boundaries of the o�set are 
on
entri
 ar
s,whose radii are the sum and the di�eren
e of the median ar
 radius and the distan
e bound.This o�set is a part of an annulus, and it de�nes a bounding region for the original 
urvesegment.PSfrag repla
ements p1

p3

p2

r(t)

R

bise
tor
̺Figure 2.1: Fat ar
 generation for planar parametri
 
urve.Sin
e the approximation order of 
ir
ular ar
s is equal to three, the o�set distan
e behavesas O(h3), where h is the length of the given 
urve segment. So the method is simple, and it6



2.1 Fat Ar
s in 2Dhas a relatively high 
onvergen
e rate.All existing algorithms for fat ar
 generation deal ex
lusively with parametri
 
urves. Ouraim is to apply this method to impli
itly de�ned 
urves. Although the steps of the algorithmare more 
ompli
ated in the impli
it 
ase, the expe
ted 
onvergen
e rate is the same as forthe parametri
 
urves. So we implemented di�erent approximation and distan
e boundingte
hniques to get a fast and a

urate 
omputational method.2.1.3 Regular Planar Algebrai
 CurvesIn order to 
onstru
t fat ar
s for planar algebrai
 
urves, we assume that the bivariate polyno-mial f de�ning the 
urve is given by its tensor-produ
t Bernstein-Bézier (BB) representationwith respe
t to the re
tangular domain Ω0 = [α1, β1]× [α2, β2].
f(x, y) =

m∑

i=0

n∑

j=0

dijB
1
i,m(x)B2

j,n(y), (2.1)with 
ertain 
oe�
ients dij ∈ R, where
Bk

i,n(t) =

(
n

i

)(
t− αk

βk − αk

)i( βk − t

βk − αk

)n−i

, t ∈ [αk, βk]. (2.2)The 
urve is given as the zero set of the bivariate polynomial
C(f,Ω0) = {(x, y) : f(x, y) = 0} ∩ Ω0. (2.3)Clearly, the 
urve may be an empty point set, or it may 
onsist of more than one 
urvesegment. In order to 
ontrol the behavior of the 
urve in the 
omputational domain we usethe following de�nition.De�nition 2.1. A point p of an algebrai
 
urve C(f,Ω) is 
alled singular in the domain

Ω ⊆ Ω0, if the gradient ve
tor ∇f(p) is zero (and 
alled regular otherwise). A 
urve segmentis regular, if any point of the segment is regular.A regular 
urve 
onsists of one or more single bran
hes of the 
urve without any self-interse
tion or loops.Observation 2.2. A general lower bound 
an be given for the gradient length in any point
(x, y) of a domain Ω with using the BB-representation of the polynomial f . The tensor�produ
t BB-representation of the square of the gradient length is

(
∂f(x, y)

∂x

)2

+

(
∂f(x, y)

∂y

)2

=
2m∑

i=0

2n∑

j=0

hijB
2m
i (x)B2n

j (y). (2.4)It 
an be found using the di�erentiation, produ
t and degree elevation formulas of BB-polynomials (see [19℄). This representation provides us a general lower bound for the gradientlength
‖∇f(x)‖ ≥

√

max{0,min
i,j

hij} = G. (2.5)If G is non-zero, then the gradient does not vanish in the domain Ω. This implies also, thatthe 
urve C(f,Ω) is regular in the domain Ω. 7



2 Fat Ar
s for Impli
itly De�ned Planar Curves2.2 Fat Ar
 Generation with Parametri
 Ar
sIn this se
tion we des
ribe a fat ar
 generation method for impli
itly de�ned 
urves. Thealgorithm is based on a te
hnique, whi
h is similar to the original 
onstru
tion for planarparametri
 
urves. It generates interpolating 
ir
ular ar
s as median ar
s, and 
omputes fatar
 thi
kness with the help of one-sided Hausdor� distan
e.2.2.1 Topologi
al CriterionIn order to generate fat ar
s with interpolation te
hnique, we need to dete
t domains 
on-taining only one segment of the impli
itly de�ned 
urve. Various 
riteria have been dis
ussedin the literature for isolating a single segment of an algebrai
 
urve. For instan
e, di�erenttypes of dis
riminating 
urve families have been used in [47℄. These dis
riminating fam-ilies are parti
ularly useful in 
ombination with algorithms that tra
e the algebrai
 
urvesegments.We are interested in a 
riterion whi
h guarantees that the sub-domain Ω ⊆ Ω0 
ontains aregular single 
urve segment with exa
tly two transversal interse
tions with the boundaries.Empty domains, whi
h do not 
ontain any points of the 
urve, should be also dete
ted.In order to �nd su
h domains we analyze the sign 
hanges of the BB-
oe�
ients in therepresentation.Observation 2.3. If a polynomial is represented by only negative or only positiveBB-
oe�
ients in a sub-domain Ω, then none of the points in the domain belongs to thezero set of the polynomial.This observation follows from the 
onvex hull property of BB-polynomials. A fun
tionwith only positive or negative 
oe�
ients 
an be bounded away from zero by the 
oe�
ientwhi
h has the smallest absolute value.We would like to generate fat ar
s for 
urve segments, whi
h 
onsist of a single ar
,are regular and do not form loops in the domain. The following Lemma 2.4 gives su�
ient
onditions to dete
t domains with single segment of a regular algebrai
 
urve.Lemma 2.4. Consider a regular algebrai
 
urve segment de�ned by the polynomial in theform (2.1) over a domain Ω. We say that the 
oe�
ients exhibit a 
orner event, if
• the 
oe�
ient at one of the 
orners is equal to zero and
• the �rst non-zero 
oe�
ients along the two neighboring boundaries have a di�erent sign.We say that the the 
oe�
ients exhibit an edge event, if
• the 
ontrol polygon along one of the domain boundaries has exa
tly one sign 
hangefrom plus to minus or vi
e versa.If the number of the 
orner and edge events is equal to two in Ω, then the domain 
ontains asingle 
urve segment, whi
h is 
onne
ted, and whi
h interse
ts the boundaries of the domainin exa
tly two points.Proof. For the proof it su�
es to observe that ea
h event guarantees that the impli
itlyde�ned 
urve 
rosses the boundaries of the domain in exa
tly one point. Sin
e we supposedthat the 
urve is regular, no self-interse
tions or loops appears in the domain.8



2.2 Fat Ar
 Generation with Parametri
 Ar
sThe 
onditions of Lemma 2.4 are su�
ient, but not ne
essary. For example, the lemmaex
ludes the 
ase of a single ar
, whi
h 
rosses twi
e the same segment of the domain bound-ary. However, in some 
ases the 
onditions of Lemma 2.4 are also ne
essary in the asymptoti
sense. The following lemma des
ribes su
h a spe
ial 
ase. It supposes that the 
oordinates ofthe gradient ve
tor are not vanishing in any point of the algebrai
 
urve in the 
omputationaldomain (the 
urve is regular in both 
oordinate dire
tions).Lemma 2.5. Consider an algebrai
 
urve segment de�ned by the polynomial f over adomain Ω0. We suppose that there exists G > 0, su
h that if (x, y) ∈ Ω0 satis�es f(x, y) = 0,then the partial derivatives satisfy
min{

∣
∣fx(x, y)

∣
∣ ,
∣
∣fy(x, y)

∣
∣} ≥ G. (2.6)Under these 
onditions after a 
ertain number of su

essive subdivisions of Ω0 ea
h sub-domain satis�es either the 
ondition of Lemma 2.4 or the 
onditions of Observation 2.3.This implies that all sub-domains are dete
ted as a domain with single 
urve segment or anempty domain.Proof. We supposed that there exists G > 0 whi
h is a lower bound for the partial derivativesalong the 
urve. Therefore the BB-
oe�
ients in the representation of fx and fy 
an bebounded away from zero if we 
ompute in a su�
iently small sub-domain of Ω 
lose to thealgebrai
 
urve. Thus the restri
tion of fx and fy to a domain boundary (x=
onstant or

y=
onstant) has only positive or only negative 
ontrol points in the BB-representation. Itmeans that f has a sequen
e of 
ontrol points restri
ted to ea
h domain boundary, whi
h ismonotone in
reasing or de
reasing.If the �rst and last 
ontrol points have the same sign along a 
ertain domain boundary,then all 
ontrol points have the same sign. In this 
ase a

ording to Lemma 2.4 no evento

urs along the domain boundary. If the �rst and last 
ontrol points have di�erent sign,then exa
tly one sign 
hange o

urs along the 
ontrol polygon. It means that an edge evento

urs. If one of the end 
ontrol point is zero, it gives a 
orner event.Ea
h 
ontrol polygon is monotone in
reasing or de
reasing along the domain boundaries,and they are 
onne
ted in the 
orners of the domain. Therefore the sum of the number of
orner and edge events has to be even. If this event number is zero, then Observation 2.3is satis�ed. It is be
ause all 
oe�
ients are stri
tly positive or negative along the domainboundary, and the partial derivatives are also bounded away from zero. If the 
orner andedge event number is equal to two, then the 
onditions of Lemma 2.4 are satis�ed. In the 
asewhen the number of 
orner and edge event is more than two the domain 
ontains more thanone 
urve segment. They are not interse
ting ea
h other sin
e the gradient is not vanishing.Therefore these segments are separated via subdivision in to di�erent domains.Remark 2.6. The 
onditions of Lemma 2.5 are ne
essary in a sense, that after a 
ertainnumber of subdivisions all domains satisfy either the 
ondition of Lemma 2.4 or the 
ondi-tions of Observation 2.3. The following example demonstrates the topology dete
tion, if the
onditions of Lemma 2.5 are not satis�ed. Suppose that our algebrai
 
urve is de�ned by thepolynomial
f(x, y) = y −

(

x− 1

3

)2

, (x, y) ∈ Ω = [0, 1]2.9



2 Fat Ar
s for Impli
itly De�ned Planar CurvesAlong the domain boundary, whi
h is de�ned by y = 0, the point x = 1
3 is a point ofthe algebrai
 
urve. We study the domains around the point (13 , 0) generated by adaptivesubdivision. Ea
h su
h domain has a boundary along y = 0, whi
h 
an be represented bythe interval x ∈ [a, b]. The fun
tion restri
ted to this segment of the domain boundary is

f(x, 0) = g(x) = −
(

x− 1

3

)2

, x ∈ [a, b].The adaptive subdivision implies that a and b are rational numbers in the form k
2n ≤ 1, where

k, n ∈ Z. Thus 1
3 ∈ (a, b) moreover

g(a) < 0, g(b) < 0 and g

(
1

3

)

= 0.Therefore the 
ontrol polygon of g has always at least two sign 
hanges, or it has a 
ontrolpoint equal to zero, whi
h is not the end point of the 
ontrol sequen
e. This implies thatneither the 
ondition of Observation 2.3 nor the 
onditions of Lemma 2.4 
an be ful�lled forany sub-domains generated around the 
urve point (13 , 0).Remark 2.7. Suppose that the points of the algebrai
 
urve, whi
h have tangent ve
torparallel to a 
oordinate axes, are not on the grid lines of the adaptive subdivision. Then aftera 
ertain number of subdivisions all sub-domains are dete
ted as a domain with single 
urvesegment or as an empty domain.2.2.2 Lo
al AlgorithmWe present here a lo
al algorithm, whi
h generates fat ar
 in domains 
onsisting a singlesegment of the 
urve. It assumes that the 
onditions of Lemma 2.4 are satis�ed. Later onwe will des
ribe a global algorithm, whi
h dete
ts the domains, where the lo
al algorithm isappli
able. The lo
al algorithm �summarized in Algorithm 1 � is based on the 
orrespondingte
hniques in the parametri
 
ase. It generates median ar
 in a parametri
 form with inter-polation te
hnique (see later in Se
tion 2.2.3) and uses the estimated Hausdor� distan
e (inSe
tion 2.2.4).The algorithm is su

essful, if it �nds the median ar
, and the fat ar
 thi
kness is smallerthan the pres
ribed toleran
e ε. Then the algorithm returns with a fat ar
, whi
h boundsthe 
urve segment.It may happen, that there are no fat ar
 boundaries, or only one of the bounding ar
s
an be generated (e.g. when the distan
e bound of the median ar
 and the impli
itly de�ned
urve is greater then the radius of the meridian 
ir
le, or one of the bounding ar
s does notinterse
t the 
omputational domain). The lo
al algorithm fails if no fat ar
 is generated andreturns with the empty set.Fig.2.2 presents three examples of fat ar
s whi
h have been generated with the help ofAlgorithm 1.2.2.3 Median Ar
 Generation with InterpolationThis approximation te
hnique is based on the 
orresponding te
hniques in the parametri

ase. Therefore we have to ensure that the algebrai
 
urve has a single segment in the10



2.2 Fat Ar
 Generation with Parametri
 Ar
sAlgorithm 1 FatAr
Lo
al_2d1 (f,Ω, ε)Require: The 
onditions of Lemma 2.4 are satis�ed.1: pend = {p1,p2} ← approximate end points of the impli
itly de�ned 
urve2: pmid = {p3} ← approximate inner point of the impli
itly de�ned 
urve3: if #pend = 2 and #pmid = 1 then4: S ← 
ir
le through p1,p2,p3 {median 
ir
le}5: ̺← upper bound of HDΩ(S ∩ Ω, C ∪ ∂Ω) {see Lemma 2.8}6: if ̺ 6 ε and ̺ 6 radius of S then7: S̺ ← o�set ring of S with distan
e ̺ {fat 
ir
le}8: S+,S− ← inner and outer 
ir
le of ∂S̺9: if there is no sign 
hange of f along S+ ∩ Ω or S− ∩ Ω then10: return Ω ∩ S̺ {fat ar
 has been found}11: end if12: end if13: end if14: return ∅ {no fat ar
 has been found}
Figure 2.2: Examples for fat ar
 generation with the help of algorithm FatAr
Lo
al_2d1. Thered 
urves are the impli
itly de�ned 
urves. The median 
ir
les are shown in green.
omputational domain. We use Lemma 2.4 to dete
t su
h 
urve segments. In order to
onstru
t the median ar
 we approximate three points of the impli
itly de�ned 
urve. Twoof them are the interse
tion points of the 
urve with the domain boundary, while the thirdpoint is the interse
tion point of the bise
tor of the �rst two approximation points.From Lemma 2.4 we know also, that in the 
ase of a 
orner event the 
orner of the 
om-putational domain is a point of the 
urve. In the 
ase of an edge event the 
orresponding edge
ontains an interse
tion of the 
urve with the boundary of the domain. It is approximatedthen, su
h that we 
onsider the restri
tion of f to the edge, and generate its best L2 approxi-mation by a quadrati
 polynomial q∗. This polynomial additionally interpolates the values of

f at the two end points of the edge. The root of q∗ then de�nes the approximate interse
tionof the impli
itly de�ned 
urve with the edge. If no simultaneous 
orner event o

urs at theend points of the edge, then there is exa
tly one root of q∗, sin
e the BB-
oe�
ients of fpossess exa
tly one sign 
hange from plus to minus or vi
e versa.After generating the �rst two points we restri
t the fun
tion f to the interse
tion oftheir bise
tor with the domain. Again we generate its best L2 approximation by a quadrati
polynomial q∗, whi
h additionally interpolates the values of f at the two end points. The11



2 Fat Ar
s for Impli
itly De�ned Planar Curvesroot of q∗ then de�nes the approximate interse
tion of the 
urve with the bise
tor.We use the linear parameterization of the line segments, the two edges and the bise
tor
L = {(lx(t), ly(t)), t ∈ [t0, t1]}.The general formulation of the quadrati
 approximation is

q∗ = min
q∈Q

∥
∥
∥f

L
− q
∥
∥
∥
L2(L)

, (2.7)where Q denotes the set of the suitable quadrati
 polynomials along L. The root of q∗ isthe approximate interse
tion point of the 
urve with the line segment L. The median ar
generation is su

essful if we �nd all three approximating points p1,p2 and p3 in Ω (seeFig.2.3).PSfrag repla
ements
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Figure 2.3: Median ar
 generation.2.2.4 Distan
e of Parametri
 and Impli
itly De�ned CurvesWe want to bound the distan
e between the median ar
 and the 
urve using a result from[1℄. The impli
itly de�ned 
urve is given as the zero set of the bivariate polynomial C inthe domain Ω = [0, 1]2. On one hand, we 
onsider the median ar
 as a parametri
 
urve
s : t 7→ s(t) with parameter domain t ∈ [0, 1], whi
h tra
es the point set

S = {s(t) : t ∈ [0, 1]}, (2.8)where we assume that S ⊂ [0, 1]2. On the other hand, in order to avoid 
ertain te
hni
aldi�
ulties, we 
onsider the set
C∗ = C ∪ ∂Ω, (2.9)whi
h is obtained by adding the boundary of the domain to the 
urve C. The one-sidedHausdor� distan
e of C∗ and S is de�ned asHDΩ(S, C∗) = sup

t∈[0,1]
inf
x∈C∗

‖x− s(t)‖. (2.10)We re
all the following result from [1℄ 12



2.2 Fat Ar
 Generation with Parametri
 Ar
sTheorem 2.8 (Aigner-Jüttler). If there exist positive 
onstants G, η su
h that
∀x ∈ Ω : G ≤ ‖(∇f)(x)‖ and ∀t ∈ [0, 1] : |(f ◦ s)(t)| ≤ η (2.11)hold, then the one-sided Hausdor� distan
e is bounded byHDΩ(S, C∗) ≤

η

G
. (2.12)Consequently, the parametri
 
urve is 
ontained in ̺-neighborhood of C∗, where ̺ = η/G.However, it should be noted that this distan
e bound does not guarantee that the impli
itlyde�ned 
urve is also 
ontained in an ̺-neighborhood of the parametri
 
urve. The algorithmpresented here uses an additional test to guarantee this property. Nevertheless, in all 
om-puted examples the above distan
e bound provided a safe and 
onservative estimate for theHausdor� distan
e of the impli
itly de�ned and the parametri
 
urve.Evaluation of the Constants. In order to �nd the 
onstants G and η in Theorem 2.8,we represent the median ar
 as a quadrati
 rational Bézier 
urve,

s(t) =
2∑

i=0

si
w̃iB

2
i (t)

∑2
j=0 w̃jB2

j (t)
, t ∈ [0, 1]. (2.13)Sin
e it is a 
ir
ular ar
 but not a whole 
ir
le, its weight satisfy

w̃0 = w̃2 = 1 and − 1 < w̃1 ≤ 1. (2.14)The 
omposition f ◦ s is a rational fun
tion of degree 2(m+ n) whi
h 
an be represented inrational BB-form with 
ertain 
oe�
ients di and weights wi. The weights are 
omputed withthe evaluation of the (m+ n)th power of the denominator in (2.13).
∣
∣(f ◦ s)(t)

∣
∣ =

∑2m+2n
i=0 diwiB

2n+2m
i (t)

∑2m+2n
j=0 wjB

2m+2n
j (t)

=
sn(t)

sd(t)
. (2.15)To �nd a suitable upper bound for the 
omposition, �rst we 
onsider with the denominator

sd(t) =
2m+2n∑

j=0

wjB
2m+2n
j (t) =

(
2∑

i=0

w̃iB
2
i (t)

)n+m

.Be
ause of (2.14) there exists λ, 0 < λ ≤ 2 su
h that w̃1 = λ− 1. It means, that
(

2∑

i=0

w̃iB
2
i (t)

)n+m

=
(
(2t− 1)2 + 2λt(1 − t)

)n+m
.Sin
e t ∈ [0, 1] and λ ∈ (0, 2]

0 <

(
λ

2

)n+m

≤ sd(t) ≤ 1, ∀t ∈ [0, 1].Therefore an upper bound η 
an be given as
∣
∣(f ◦ s)(t)

∣
∣ ≤

∥
∥sn
∥
∥BB

(
w̃1 + 1

2

)n+m = η. (2.16)In order to �nd the se
ond 
onstant G, we use the same lower bound that we generatedfor 
ertifying the regularity of the 
urve in the domain (see (2.5)).13



2 Fat Ar
s for Impli
itly De�ned Planar Curves
Figure 2.4: Left: The graph of f1. Right: Fat ar
s for k = 0.5, 0.75, 1.0.
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Figure 2.5: Dependen
y between the fat ar
 diameter and the domain diameter.2.2.5 Convergen
e RateWe 
on�rm the approximation order of the fat ar
 generation algorithm (Algorithm 1) bynumeri
al examples. It is also possible to prove the 
ubi
 approximation order of the method,but it is long and very te
hni
al.Consider the three bivariate polynomials
f1(x) = x41 + x31x

2
2 + 2x21x2 − 6x1x2 + x42 − 8x22 − 12x2

f2(x) = −x31 − x21x2 + x1x2 − x32 + x22 − 2x2
f3(x) = −4x31 − 5x21 + 2x2

(2.17)with the domains (in global 
oordinates)
Ωk = [−10−k, 10−k]× [−10−k, 10−k], k ∈ R. (2.18)In the 
ase of the �rst polynomial Fig.2.4 shows the result of the fat ar
 
onstru
tions forseveral values of k. The impli
itly de�ned 
urve is the red one, the median ar
 denoted withgreen, and the fat ar
s are represented with bla
k.Fig.2.5 visualizes the relation between the width of the fat ar
 and the size of the domaindiameter for the three polynomials in (2.17). For su�
iently large values of k the slopes ofthe three 
urves in the doubly-logarithmi
 plot are all three, thus 
on�rming the expe
tedapproximation order. 14



2.3 Fat Ar
 Generation with Impli
itly De�ned Ar
sAlgorithm 2 GenerateFatAr
s1(f,Ω0, ε)1: if min dij > 0 or max dij < 0 then2: return ∅ {the domain is empty}3: end if4: if f satis�es the 
onditions of Lemma 2.4 then5: F ← FatAr
Lo
al_2d1(f,Ω, ε) {single fat ar
 generation}6: if F 6= ∅ then7: return F {... has been su

essful}8: end if9: end if10: if diameter of Ω > ε then11: subdivide the domain into 4 sub-domains Ω1, . . . ,Ω4 {quadse
tion}12: return ⋃4
i=1GenerateFatAr
s1(f,Ωi, ε) {re
ursive 
all}13: end if14: return Ω {
urrent domain is small enough}2.2.6 Global AlgorithmThe algorithm, GenerateFatAr
s1 (see Algorithm 2), 
ombines the fat ar
 generation forsingle 
urve segments with re
ursive subdivision. First it analyzes the signs of the Bernstein�Bézier 
oe�
ients with respe
t to the 
urrent domain. If no sign 
hange is present, then the
urrent domain does not 
ontain any 
omponents of the impli
itly de�ned 
urve a

ordingto Observation 2.3. Otherwise it 
he
ks the 
onditions of Lemma 2.4, and tries to apply thelo
al fat ar
 generation (Algorithm 1) for domains with single 
urve segments. If the lo
alalgorithm fails, then the algorithm either subdivides the 
urrent domain into four squares orreturns the entire domain, if its diameter is already below the user-de�ned threshold ε.Note that the algorithm may return domains whi
h do not 
ontain any segments of theimpli
itly de�ned 
urve ("false positive domains"). This 
an be avoid in the 
ase when thepartial derivatives are bounded away from zero and the user spe
i�ed threshold ε is smallenough (see in Lemma 2.5). However, it is always guaranteed, that the algorithm returnswith a set of regions whi
h 
ontains the whole algebrai
 
urve.2.3 Fat Ar
 Generation with Impli
itly De�ned Ar
sIn this se
tion we des
ribe lo
al fat ar
 generation te
hnique using impli
itly de�ned ar
s.We show di�erent te
hniques to generate approximating 
ir
ular ar
s in impli
it form. Thenwe also des
ribe how to estimate the distan
e of impli
itly de�ned planar 
urves. In the endwe present a global algorithm using hierar
hi
al subdivision for generating bounding regionsfor planar algebrai
 
urves.2.3.1 Lo
al AlgorithmAs an alternative we 
onsider a lo
al algorithm for generating fat ar
s using impli
itlyde�ned ar
s. It is summarized in Algorithm 3. This algorithm generates an approximatequadrati
 polynomial s with 
ir
ular zero 
ontour, and uses the BB-norm to estimate the15



2 Fat Ar
s for Impli
itly De�ned Planar CurvesAlgorithm 3 FatAr
Lo
al_2d2 (f,Ω, ε)Require: The gradient does not vanish in Ω.1: f̂ = lf modi�ed polynomial and its spe
ial quadrati
 approximation s2: if l exists then3: S ← zero 
ontour of s {median 
ir
le}4: d← ‖f̂ − s‖ΩBB5: G← lower bound for ‖∇f̂‖ {see (2.5)}6: if G exists and ̺ = d
G 6 ε then7: S+,S− ← zero 
ontour of s+ d and s− d {fat 
ir
le boundaries}8: F(s, ̺,Ω) = {x : ∃x0,

∣
∣x− x0

∣
∣ ≤ ̺, s(x0) = 0} ∩ Ω {fat ar
}9: return Cd {fat ar
 has been found}10: end if11: end if12: return ∅ {no fat ar
 has been found}fat ar
 thi
kness (Algorithm 3). For generating the approximate quadrati
 polynomial wewill present two di�erent methods in the next se
tions. The �rst one is using least-squareste
hnique. The se
ond one is operating with the modi�ed Taylor expansion of the originalpolynomial f . Both methods are 
omputing quadrati
 approximating polynomial for a mod-i�ed polynomial f̂ , whi
h is the original polynomial f multiplied with a linear polynomial

l. This additional linear term guarantees the existen
e of the approximating polynomial andits 
onvergen
e rate.This fat ar
 generation te
hnique only assumes that we have a regular 
urve segment inthe domain. Therefore no other topologi
al information is ne
essary for the fat ar
 generation.The algorithm su

eeds if it �nds the median ar
, and the fat ar
 thi
kness is smaller thanthe pres
ribed toleran
e ε. Then the output is the interse
tion of a fat ar
 and the domain
Ω, whi
h 
ontains the 
urve. It 
an also happen like in Algorithm 1, that there are no fatar
 boundaries, or only one of the bounding ar
s 
an be generated. Then the lo
al algorithmfails and returns the empty set.Fig.2.6 presents �ve lo
al fat ar
 generation examples with di�erent median ar
 anddistan
e estimation te
hnique. In the �rst row the �gures are generated with the help ofAlgorithm 1 using parametri
 median ar
s and 
omputing an upper bound for the one-sidedHausdor� distan
e. In the lower rows Algorithm 3 is used generating impli
itly de�nedmedian ar
s in four di�erent ways and using the distan
e estimation for impli
itly de�ned
urves (see Se
tion 2.3.5). The se
ond, third and the fourth rows 
ontain the results of theleast-squares te
hnique. In the se
ond row we applied least square approximation with linearnormalization, while in the next two rows quadrati
 normalization. The last row presentsthe outputs from the algorithm, whi
h uses modi�ed quadrati
 Taylor expansion to generatemedian ar
s. However, even if the distan
e estimation te
hnique seems to be weaker in the
ase of Algorithm 3, it provides the 
ubi
 approximation order as we will see later.2.3.2 Median Ar
 Generation with Least-Squares ApproximationLeast-squares approximation is a standard te
hnique for �nding an approximating polyno-mial. In order to generate a quadrati
 polynomial with 
ir
ular zero level set we are sear
hing16
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s

Figure 2.6: Comparison of the lo
al fat ar
 generation te
hniques. In the �rst row the fatar
s are generated by FatAr
Lo
al_2d1, in the other rows the algorithm FatAr
Lo
al_2d2 isused. Three rows in the middle are showing results of least-squares approximation with di�erentnormalization te
hniques. In the se
ond row we used linear normalization 
ondition (see in(2.20)). In the next two rows the quadrati
 
onditions (2.21) and (2.22) are used. In the lastrow the outputs from Taylor expansion modi�
ation are shown (see in Se
tion 2.3.3). The red
urves are the impli
itly de�ned 
urves. The median ar
s are shown in green.for a polynomial in the form
s(x, y) = a(x2 + y2) + bx+ cy + d.17



2 Fat Ar
s for Impli
itly De�ned Planar CurvesTo provide the 
ubi
 
onvergen
e rate for the approximation, we modify the original fun
tionusing a linear term
f̂(x, y) = l(x, y)f(x, y) = (l0 + l1x+ l2y)f(x, y).The optimization problem 
an be formed as follows

min
(a,b,c,d,l0,l1,l2)

∫∫

Ω

∥
∥
∥f̂ − s

∥
∥
∥

2
dxdy. (2.19)In order get a unique solution we have to normalize the minimization problem. Herewe present three di�erent strategies. The �rst normalization te
hnique is using a linear
ondition. It is a natural 
ondition in the sense that the modi�ed polynomial f̂ keeps theoriginal fun
tion value in the 
enter (cx, cy) of the 
omputational domain Ω

l0 + l1c
x + l2c

y = 1. (2.20)Another possible 
hoi
e for normalization is to 
ontrol the gradient length of the approxi-mating polynomial s. Su
h 
ondition determines two possible solutions for s(x, y). The onewith smaller value in (2.19) 
an be used as an approximating polynomial. A natural 
hoi
eof the quadrati
 normalization 
ondition is
∥
∥∇s

∥
∥2

(cx,cy)
= 1. (2.21)Another possibility is to use a quadrati
 normalization 
ondition whi
h approximates betterthe se
ondary shape of the original impli
itly de�ned 
urve. Namely we 
an suppose forinstan
e

∥
∥∇s

∥
∥2

(cx,cy)
=
∥
∥∇f

∥
∥2

(cx,cy)
. (2.22)A few examples are shown in Fig.2.6 for the result of the di�erent least-square approx-imation methods. The three rows in the middle 
ontain the result of the three di�erentnormalization te
hniques. They are shown in the same order as we des
ribed them here.2.3.3 Median Ar
 Generation Using Taylor ExpansionIn this te
hnique we also reformulate the approximation problem in the 
omputational domain

Ω. The given polynomial f will be multiplied by a linear term l

f̂ = lf = (u+ l1(x− cx) + l2(y − cy))f(x, y), (2.23)where c = (cx, cy) denotes the 
enter point of Ω. Obviously the zero level set of the polynomial
f̂ will 
ontain ea
h point of the zero level set of f . We 
hoose the linear fun
tion l su
h thatthe Hessian of f̂ at the 
enter of the domain is a s
alar multiple of the identity matrix.

H(f̂)(c) =
(

λ 0
0 λ

)

, λ ∈ R. (2.24)If su
h f̂ 
an be found, then the quadrati
 Taylor expansion of f̂ about c has a spe
ial form.More pre
isely, this polynomial has always 
ir
ular zero 
ontour. In order to �nd f̂ we need18



2.3 Fat Ar
 Generation with Impli
itly De�ned Ar
sto solve a linear system for u, l1 and l2. The 
ondition (2.24) leads to the following systemof equations in the 
enter of the domain
f̂xx(c)− f̂yy(c) = 0

f̂xy(c) = 0. (2.25)If the system has full rank, we have a solution set with one degree of freedom. Therefore wehandle the 
onstant term of l, u as a parameter of the solution set.Lemma 2.9. Given a bivariate polynomial f over the domain Ω. We suppose that thegradient of f does not vanish in the 
enter c of Ω
∥
∥∇f(c)

∥
∥ 6= 0.Then for any value of u 6= 0 and u ∈ R there exists a unique solution for l.Proof. The Hessian matrix of f̂ 
an be expressed with the help of f and l

H(f̂)(c) = ∇l(c)∇f(c)T +∇f(c)∇l(c)T + l(c)H(f)(c) =
= ∇l(c)∇f(c)T +∇f(c)∇l(c)T + uH(f)(c). (2.26)In the 
enter of the domain the equation system (2.25) 
an be written as

Al =

(

fx(c) −fy(c)
fy(c) fx(c)

)(

l1
l2

)

= −u
(

1
2 (fxx(c)− fyy(c))

fxy(c)

)

. (2.27)We supposed that the gradient ve
tor does not vanish in c. Therefore the determinantof A is not zero. Then there exist l1 and l2, whi
h satisfy (2.27). It implies, that l 
anbe 
omputed for any non-zero value of u uniquely. For an arbitrary u 6= 0 the solution is
(l1, l2) = (0, 0) if and only if the Hessian of f already ful�lls the 
ondition (2.24). In this 
asethe polynomial l is the 
onstant fun
tion

l ≡ u. (2.28)With the 
onditions (2.25) for a �xed value of u 6= 0 the polynomial l 
an be 
omputeduniquely a

ording to Lemma 2.9. Therefore we 
an 
ompute then f̂ uniquely for any u 6= 0.We introdu
e the fun
tion G, whi
h assign to a fun
tion f , a value of u and the 
enter point
c of a domain Ω the asso
iated f̂ fun
tion a

ording to the 
onstru
tion in Lemma 2.9

G(f, u, c) = f̂ = lf. (2.29)Observation 2.10. The 
hoi
e of the parameter value u has no e�e
t on the zero 
ontourof the 
omputed new polynomial f̂ . It is just a 
onstant multiplier of the linear polynomial
l in the solution. Therefore it 
an be 
hosen arbitrarily.The quadrati
 Taylor expansion of f̂ about c will have the following form, sin
e the
ondition (2.24) is satis�ed
s(x, y) = T 2

f̂(c)
(x, y) = f̂(c) + f̂x(c)(x − cx) + f̂y(c)(y − cy) +

1

2
f̂xx

(
(x− cx)2 + (y − cy)2

)
. (2.30)It is a bivariate quadrati
 polynomial with a 
ir
ular zero 
ontour. Therefore the algebrai

urve s = 0 will be 
hosen as median ar
 to approximate the 
urve f = 0 in Ω. Later on theerror of the approximation is estimated by a distan
e bound for the impli
itly de�ned 
urves

s = 0 and f̂ = 0. 19



2 Fat Ar
s for Impli
itly De�ned Planar Curves2.3.4 Conne
tion with the Os
ulating Cir
lesWe analyze here the properties of the median ar
s generated by the Taylor expansion modi-�
ation te
hnique.Lemma 2.11. Consider a fun
tion f , whi
h de�nes an algebrai
 
urve in Ω0 ⊂ R
2

C(f,Ω0) = {x : f(x) = 0} ∩ Ω0.We assume that the point p ∈ Ω0 is on the algebrai
 
urve p ∈ C. Suppose that Ω is asub-domain of Ω0 and it has the 
enter point p. We 
ompute f̂ = G(f, u,p). Then the ar
,de�ned by the zero set of the quadrati
 Taylor expansion s = T 2
p(f̂), is the os
ulating 
ir
leof C(f,Ω0) in the point p.Proof. The fun
tion f̂ de�nes the following algebrai
 
urve

Ĉ(f̂ ,Ω0) = {x : f̂(x) = 0} ∩ Ω0.We know from the 
omputational method generates f̂ , that the algebrai
 
urves C and Ĉsatisfy
C ⊆ Ĉ.If we 
onsider only a small regular segment of C and Ĉ whi
h is 
ontained by Ω ⊂ Ω0, thenboth of them represent the same single ar
 of the algebrai
 
urve with the point p on it.The 
ir
le de�ned by the zero set of the quadrati
 Taylor expansion s = T 2

f̂(p)
is

S(s,Ω) = {x : s(x) = 0} ∩ Ω.We would like to show that S has a se
ond order 
onta
t with the algebrai
 
urve C in thepoint p. This is su�
ient in order to prove that S is the os
ulating 
ir
le of C, sin
e theos
ulating 
ir
le is unique and S is a 
ir
ular ar
. A

ording to the de�nition of S, it has ase
ond order 
onta
t with Ĉ in the point p. As we already noti
ed Ĉ = C in the neighborhoodof p, therefore S has a se
ond order 
onta
t with C in the point p.Remark 2.12. We 
an 
ompute the 
urvature of C in the point p. For an impli
itly de�ned
urve it is 
omputed from the �rst and se
ond partial derivatives of the fun
tion with thehelp of the formula (see for instan
e in [15℄)
κ(f,p) =

∇f(p)⊥H(f)(p)
(
∇f(p)⊥

)T
∥
∥∇f(p)

∥
∥3

,where
∇f(p)⊥ = (−fy(p), fx(p)).We know, that
κ(f,p) = κ(f̂ ,p) = κ(s,p).Thus

κ(f,p) =
∇f(p)⊥H(f)(p)

(
∇f(p)⊥

)T
∥
∥∇f(p)

∥
∥3

=20
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s
=
∇f̂(p)⊥H(f)(p)

(

∇f̂(p)⊥
)T

∥
∥
∥∇f̂(p)

∥
∥
∥

3 =(2.24) λ
∥
∥
∥∇f̂(p)

∥
∥
∥

2 =
p∈C

λ
∥
∥l(p)∇f(p)

∥
∥2

.Therefore λ = f̂xx(p) satis�es
λ = u2κ(f,p)

∥
∥∇f(p)

∥
∥2for an arbitrary u 6= 0 in a point p, where f(p) = 0.2.3.5 Distan
e of Impli
itly De�ned CurvesIf we generate fat ar
s for impli
itly de�ned 
urve segments, the distan
e measuring be
omesmore 
ompli
ated. The reason is the representation of the 
urve. Nevertheless, the approxi-mating 
urve 
an be represented either in parametri
 or in impli
it form. In order to measurethe distan
e of two impli
itly de�ned 
urves we 
onsider the norm ∥

∥.
∥
∥ΩBB over the domain Ω,whi
h is the maximum absolute value of the 
oe�
ients in the BB-representation. We de�nea distan
e bound of the polynomial f and the approximating polynomial s for all points inthe domain

ε =
∥
∥f − s

∥
∥ΩBB . (2.31)Due to the 
onvex hull property

∣
∣f(x)− s(x)

∣
∣ ≤ ε, ∀x ∈ Ω.This means that

s(x)− ε ≤ f(x) ≤ s(x) + ε, ∀x ∈ Ω.A region 
an be de�ned in Ω by the approximating polynomial and the distan
e bound
D(s, ε,Ω) = {x : |s(x)| ≤ ε} ∩ Ω.This is a bounding region for the zero level set of the polynomial f in Ω

Z(f) ⊆ D(s, ε) ⊆ Ω.It is a fat region de�ned by the median 
urve s = 0, whi
h 
ontains the impli
itly de�ned
urve f = 0.In order to bound the thi
kness of this fat region D(s, ε) in the domain Ω we have tobound the gradient length of f from below. Suppose that G is a positive 
onstant, whi
hful�lls in any point x of Ω, that
∥
∥∇f(x)

∥
∥ ≥ G.Then the distan
e of the point sets s = ±ε from s = 0 is bounded by

̺ =
ε

G
. (2.32)Thus the fat ar
 
an be de�ned as the point set

F(s, ̺,Ω) = {x : ∃x0, s(x0) = 0, |x− x0| ≤ ̺} ∩ Ω.21



2 Fat Ar
s for Impli
itly De�ned Planar Curves2.3.6 Convergen
e RateSin
e the approximation order of 
urves by segments of 
ir
ular ar
s is three (see [37℄), thesame result is anti
ipated for the results produ
ed by lo
al fat ar
 generation algorithm. Herewe 
on�rm the 
ubi
 
onvergen
e rate of the method, whi
h generates fat ar
s by modifyingthe Taylor expansion of the polynomial (see (2.3.3)). We de�ned f̂ = lf for any point cof the domain Ω, where c is always the 
enter of the 
orresponding sub-domain Ω ⊆ Ω0.The approximating ar
 s = 0 is given by the quadrati
 Taylor expansion of f̂ about c. Thedistan
e bound has been generated with the help of the BB-norm and a lower bound for thegradient length.In order to prove the 
onvergen
e rate of the method �rst we have to show, that f̂depends 
ontinuously on the points of Ω0. It means, that the 
omputed polynomial f̂ depends
ontinuously on the sub-domain Ω.Lemma 2.13. If the gradient of f does not vanish in the domain Ω0, then f̂ depends 
on-tinuously on the points of the domain.Proof. We have to show that the 
omputed l = u+ l1(x− cx) + l2(y − cy) linear polynomialdepends 
ontinuously on the point c = (cx, cy). We 
ompute the 
oe�
ient ve
tor (l1, l2),su
h that it satis�es (2.27) for a �xed value of u. The entries of the matrix in (2.27) depends
ontinuously on (cx, cy) sin
e f is a polynomial. Therefore the dire
tion of the solution ve
tordepends also 
ontinuously on the point. Sin
e we know that u 6= 0 is �xed, then also l depends
ontinuously on the point (cx, cy).The next 
orollary follows from Lemma 2.11 and Lemma 2.13. If we use the Taylor ex-pansion modi�
ation te
hnique des
ribed in Se
tion 2.3.3, then we 
an establish the followingresult about the behavior of the generated median 
ir
les.Corollary 2.14. Suppose we have a nested sequen
e of sub-domains (Ωi)i=1,2,3... ⊂ Ω0

Ωi+1 ⊂ Ωi,whi
h have de
reasing diameters δi, su
h that
lim
i→∞

δi = 0,and ci denotes the 
enter point of Ωi. Consider a fun
tion f , whi
h de�nes an algebrai
 
urvein Ω0 ⊂ R
2

C(f,Ω0) = {x : f(x) = 0} ∩ Ω0.Suppose that there exists a point p, whi
h satis�es f(p) = 0 and for all i : p ∈ Ωi. We
ompute f̂i = G(f, u, ci). The median ar
 is de�ned by the zero set of the quadrati
 Taylorexpansion si = T 2
ci
(f̂i) about ci. Then the sequen
e of 
omputed median 
ir
les si(x, y) = 0
onverges to a limit 
ir
le, whi
h is the os
ulating 
ir
le of C in the point p.In order to 
ertify the 
onvergen
e rate of the fat ar
 generation method using Taylorexpansion modi�
ation we 
onsider the behavior of the gradient of the new polynomials

f̂ = G(f, u, c). The following lemma (Lemma 2.15) ensures, that any f̂ has also a non-vanishing gradient, if we are 
omputing 
lose to the algebrai
 
urve in a su�
iently smallsub-domain of the original 
omputational domain Ω0.22



2.3 Fat Ar
 Generation with Impli
itly De�ned Ar
sLemma 2.15. Suppose that there exists G in Ω0 for the polynomial f su
h that
∀x ∈ Ω0,

∥
∥∇f(x)

∥
∥ ≥ G > 0. (2.33)We 
hoose an arbitrary but �xed value of u 6= 0. Then there exists ε su
h that, if f̂ = G(f, u, c)is 
omputed in a domain Ω ⊂ Ω0 whi
h has a diameter δΩ < ε, and there is a point p ∈ Ωwhi
h ful�lls f(p) = 0, then for any x ∈ Ω a general positive bound Ĝ 
an be given as

∥
∥
∥∇f̂(x)

∥
∥
∥ ≥ Ĝ > 0.Proof. If x ∈ Ω ⊂ Ω0 then

∇f̂(x) = f(x)∇l(x) + l(x)∇f(x).A

ording to the triangular inequality
∥
∥
∥∇f̂(x)

∥
∥
∥ ≥

∥
∥l(x)∇f(x)

∥
∥ −

∥
∥f(x)∇l(x)

∥
∥ =

∣
∣l(x)

∣
∣
∥
∥∇f(x)

∥
∥ −

∣
∣f(x)

∣
∣
∥
∥∇l(x)

∥
∥ . (2.34)Sin
e we know that there exists a point p ∈ Ω su
h that f(p) = 0, and (2.33) is satis�ed,then

∣
∣f(x)

∣
∣ ≤ ε

G
, (2.35)where ε is an upper bound of the diameter of Ω.We 
an suppose that there exists H 6= 0 su
h that

∀x ∈ Ω0,

√

1

4
(fxx(x)− fyy(x))2 + fxy(x)2 ≤ H,sin
e f is a polynomial. If the linear system formulated as

Al =

(
fx(c) −fy(c)
fy(c) fx(c)

)(
l1
l2

)

= −u
(

1
2 (fxx(c) − fyy(c))

fxy(c)

)

,then
∥
∥Al

∥
∥ ≤ |u|H.Sin
e

∥
∥Al

∥
∥ =

√

(f2
x + f2

y )(l
2
1 + l22) ≥ G

∥
∥∇l(x)

∥
∥we obtain that

∥
∥∇l(x)

∥
∥ ≤ |u|H

G
. (2.36)From (2.35) and (2.36) it follows that

∣
∣f(x)

∣
∣
∥
∥∇l(x)

∥
∥ ≤ ε

∣
∣u
∣
∣H

G2
. (2.37)Suppose that

ε <

√
2G

H
, (2.38)23



2 Fat Ar
s for Impli
itly De�ned Planar Curvesthen a positive lower bound 
an be given for ∣∣l(x)∣∣
∣
∣l(x)

∣
∣ ≥

∣
∣u
∣
∣−

∣
∣l1
∣
∣+
∣
∣l2
∣
∣

2
ε ≥

∣
∣u
∣
∣−

∥
∥∇l(x)

∥
∥

√
2

ε ≥
∣
∣u
∣
∣− ε

∣
∣u
∣
∣H√
2G

> 0.Therefore it implies that
∣
∣l(x)

∣
∣
∥
∥∇f(x)

∥
∥ ≥

∣
∣u
∣
∣G− ε

∣
∣u
∣
∣H√
2

> 0. (2.39)So from (2.37) and (2.39) follows that
∥
∥
∥∇f̂(x)

∥
∥
∥ ≥

∣
∣u
∣
∣G− ε

∣
∣u
∣
∣H√
2
− ε

∣
∣u
∣
∣H

G2
.If we would like to 
hoose ε, su
h that ∥∥∥∇f̂(x)∥∥∥ has a positive lower bound, then

∣
∣u
∣
∣G− ε

∣
∣u
∣
∣H√
2
− ε

∣
∣u
∣
∣H

G2
> 0,whi
h means that √

2G3

H
(√

2 +G2
) > ε. (2.40)In this 
ase also (2.38) is satis�ed

ε <

√
2G

H

G2

(√
2 +G2

) <

√
2G

HTherefore for any domain Ω with the diameter δΩ < ε ful�lls (2.40)
∥
∥
∥∇f̂(x)

∥
∥
∥ > 0.Corollary 2.16. A

ording to Observation 2.10 we 
an 
hoose u = 1 and we suppose that

ε =
1

2

√
2G3

H
(√

2 +G2
) .Thus for any domain Ω, whi
h has the diameter

δΩ <
1

2

√
2G3

H
(√

2 +G2
) ,and 
ontains a point of the 
urve f = 0, it is true that

∥
∥
∥∇f̂(x)

∥
∥
∥ ≥ G− G

2
= Ĝ > 0.Both bounds, ε and Ĝ, are independent of the 
hoi
e of Ω (if Ω is small and 
ontains somepoints of the 
urve). They only depend on f , Ω0 and u.24



2.3 Fat Ar
 Generation with Impli
itly De�ned Ar
sCorollary 2.17. We 
onsider a polynomial f , whi
h ful�lls the 
ondition (2.33) on a domain
Ω ⊂ Ω0. We 
ompute f̂ = G(f, u,Ω), and the median ar
 is de�ned by the zero set of thequadrati
 Taylor expansion s = T 2

c (f̂) about the 
enter point c of Ω. If Ω has a su�
ientlysmall diameter and 
ontains a point p satisfying f(p) = 0, then s is non-
onstant.Now we will show that the fat ar
 thi
kness is su�
iently small 
ompared with the diam-eter of the 
omputational domain. The following lemma shows, how the 
omputed fat ar
thi
kness behaves for a given fun
tion f in a 
ertain domain.Lemma 2.18. Given a bivariate polynomial f de�ned over the domain
Ω0 = [α1, β1]× [α2, β2]. We suppose that there exists a non-negative lower bound Gsu
h that

∥
∥∇f

∥
∥ ≥ G > 0.For any sub-domain Ω ⊂ Ω0, whi
h has a su�
iently small diameter and 
ontains a segmentof the algebrai
 
urve f = 0, there exists a 
onstant C ∈ R not depending on Ω su
h that

̺ < Cδ3Ω, (2.41)where ̺ is the 
orresponding fat ar
 thi
kness 
omputed like in (2.32).Proof. We denote by sΩ the quadrati
 Taylor expansion of f̂Ω about the 
enter c of thedomain Ω, then
∥
∥
∥f̂Ω − sΩ

∥
∥
∥
∞

<
1

6
max

v∈S1,x∈Ω

∣
∣
∣
∣
∣

d3f̂Ω
dv3

(x)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

∗

δ3Ω.Re
all from Lemma 2.13 that f̂Ω depends 
ontinuously on the points of the 
omputationaldomain Ω0. Therefore for all f̂Ω a general upper bound C1 
an be given for (∗). The fat ar
thi
kness is de�ned by
̺ =

∥
∥
∥f̂Ω − sΩ

∥
∥
∥BB

‖∇f̂Ω‖
.We know from Corollary 2.16 that for a 
ertain u there exists a general lower bound

0 < Ĝ ≤ ‖∇f̂Ω‖for any sub-domain Ω ⊂ Ω0, whi
h has a su�
iently small diameter. Be
ause of the normequivalen
es there exists a 
onstant C2 su
h that
̺ ≤

C2

∥
∥
∥f̂Ω − sΩ

∥
∥
∥
∞

Ĝ
≤ 1

6

C1C2δ
3

Ĝ
.In order to bound ̺, we 
hoose

C =
1

6

C1C2

Ĝ
,and arrive at

̺ ≤ Cδ3Ω.25



2 Fat Ar
s for Impli
itly De�ned Planar CurvesAlgorithm 4 GenerateFatAr
s2(f,Ω, ε)1: if min dij > 0 or max dij < 0 then2: return ∅ {the domain is empty}3: end if4: if ∀x ∈ Ω
∥
∥∇f(x)

∥
∥ > 0 then5: A ← FatAr
Lo
al_2d2(f,Ω, ε) {single fat ar
 generation}6: if A 6= ∅ then7: return A {... has been su

essful}8: end if9: end if10: if diameter of Ω > ε then11: subdivide the domain into 4 sub-domains Ω1, . . . ,Ω4 {quadse
tion}12: return ⋃4

i=1GenerateFatAr
s2(f,Ωi, ε) {re
ursive 
all}13: end if14: return Ω {
urrent domain is small enough}Similarly the 
ubi
 
onvergen
e 
an be proven for any fat region generated as the thi
kenedneighborhood of the zero lo
us of the quadrati
 Taylor expansion of a polynomial. Even ifthis te
hnique is more general, we should not forget, that the fat regions are bounded bythe o�set 
urves of the median 
urve. These boundary 
urves should not have 
usp or self-interse
tions. This is not guaranteed if we use a general bi-quadrati
 algebrai
 
urve as themedian 
urve. To avoid su
h 
riti
al 
ases and also to simplify the 
omputations we restri
tedourselves to use 
ir
ular ar
s as median 
urves.2.3.7 Global AlgorithmThe algorithm GenerateFatAr
s2 (see Algorithm 4) 
ombines the fat ar
 generation forsingle 
urve segments with re
ursive subdivision. First it analyzes the signs of the Bernstein�Bézier 
oe�
ients with respe
t to the 
urrent domain. If no sign 
hanges are present, then the
urrent domain does not 
ontain any 
omponents of the impli
itly de�ned 
urve. Otherwisethe algorithm tries to apply the fat ar
 generation for a single 
urve segment. If this is notsu

essful, then the algorithm either subdivides the 
urrent domain into four squares, orreturns the entire domain if its diameter is already below the user-de�ned threshold ε.2.4 Comparison of the MethodsIn the former se
tions (Se
tion 2.2 and Se
tion 2.3) we des
ribed and analyzed various algo-rithms to generate fat ar
s for impli
itly de�ned 
urves. These te
hniques are using di�erentapproximating ar
 generation and distan
e estimation methods. Here we 
ompare these fatar
 generation te
hniques.2.4.1 Comparison of Fat Ar
 GenerationMedian Ar
 Generation. The �rst step of the fat ar
 generation method is to generatean approximating ar
, the median ar
. This ar
 
an be represented either in parametri
26



2.4 Comparison of the Methods(rational BB) or in impli
it form. We des
ribed an approximate interpolation method forgenerating a parametri
 approximating ar
 s(t) for a polynomial f in Se
tion 2.2.3. It is
lear that a list of median 
ir
les generated for a nested list of 
omputational domains,whi
h 
onverge to a point of the impli
itly de�ned 
urve p, 
onverges to the os
ulating
ir
le of the impli
itly de�ned 
urve in the point p. The same was proven for the median
ir
les in the 
ase of the Taylor expansion modi�
ation te
hnique (Corollary 2.14). It is avery important property of both methods, if we would like to develop te
hniques with 
ubi

onvergen
e. The os
ulating 
ir
le is the only 
ir
le with se
ond order 
onta
t in a 
ertainpoint of a planar 
urve. Therefore we 
an establish in advan
e for instan
e, that the fatar
 generation te
hnique using least-squares approximation with the quadrati
 normalization
ondition (2.21) 
annot have 
ubi
 
onvergen
e rate. It is be
ause the radius of the median ar
is �xed via the normalization 
ondition, a list of median ar
s generated under the 
onditionsof Corollary 2.14 not ne
essarily 
onverge to an os
ulating 
ir
le of the algebrai
 
urve.Distan
e Bounding. In order to 
ompute the fat ar
 thi
kness for parametri
 medianar
, we use a bound given by Theorem 2.8. It is an upper bound of the one-sided Hausdor�distan
e. This bound is given by the ratio of an upper bound of the fun
tion value along theapproximating ar
 and a lower bound of the gradient length in the 
omputational domain
Ω. These bounds 
an be 
omputed with the help of the 
onvex hull property of the BB-polynomials (des
ribed in Se
tion 2.2.4). On the other hand if we generate the median ar
in impli
it form s(x, y) = 0 (see various methods in Se
tion 2.3.2 and Se
tion 2.3.3), then wehave to measure the distan
e of impli
itly de�ned 
urves. We des
ribed how to bound thisdistan
e in Se
tion 2.3.5. This bounding te
hnique is also using the 
onvex hull property ofthe BB-polynomials. The bound is the ratio of the BB-norm of the polynomial (f − s) in the
omputational domain Ω and the lower bound of the gradient length of f in Ω.The lower bound of the gradient length is 
omputed with the same method by bothte
hniques, so it is su�
ient to 
ompare the nominator of the distan
e bounds. We observedthat both methods generate median ar
s whi
h 
onverge to the os
ulating 
ir
le under the
onditions of Corollary 2.14. It means that for the polynomial f on a su�
iently small
omputational domain Ω ⊂ Ω0 the median ar
s generated by the two di�erent te
hniques are
lose to ea
h other. Therefore we 
ompare here the fat ar
 thi
kness generated for the samemedian ar
 S. Suppose that s(x, y) represents the median ar
 in impli
it form

S(s,Ω) = {(x, y) : s(x, y) = 0} ∩ Ω.We also suppose that we know the parametri
 representation of the ar
 S and it is denotedby s(t), t ∈ [0, 1]. Then we 
an established that
(f ◦ s)(t) = (f − s)(x(t), y(t)),and it implies that

max
t∈[0,1]

∣
∣(f ◦ s)(t)

∣
∣ ≤ max

(x,y)∈Ω

∣
∣(f − s)(x, y)

∣
∣ .So the parametri
 fat ar
 generation estimates the fun
tion value of f along a 
urve on the
omputational domain, while the impli
itly de�ned fat ar
 generation 
omputes a bound de-pending on the whole domain Ω. Therefore usually the distan
e estimated by the parametri
representation is smaller than in the 
ase of the impli
itly de�ned median ar
s. This heuristi
result will be 
on�rmed also in the next se
tion, where we analyze the 
onvergen
e rate ofall the des
ribed methods via an example. 27
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Figure 2.7: Comparison of relation between the fat ar
 diameter and the domain diameter for�ve di�erent fat ar
 generation methods. The red line P shows the results from the parametri
approximation. The results of least-square approximations are shown by the green line notedby L, Q1 and Q2. The result of the Taylor expansion modi�
ation is represented by the line T(blue).2.4.2 Comparison of Convergen
e RateWe 
ompare here the 
onvergen
e rate of all des
ribed fat ar
 generation methods via anexample. However, we just proved the rate of 
onvergen
e of the Taylor expansion modi�-
ation, we would like to show through this numeri
al example the behavior of all formerlydes
ribed te
hniques.We 
onsider the polynomial
f(x, y) = −3x+ 6x2 − 2x3 + y + y2,on the domains (in global 
oordinates)

Ωk = [−10−k, 10−k]× [−10−k, 10−k], k ∈ R. (2.42)We visualize for the �ve di�erent fat ar
 generation strategies the relation between thewidth of the generated fat ar
s and the size of the domain diameter in Fig.2.7. For the values of
k = 1, 1.25, . . . 5 we show the negative logarithm of the asso
iated fat ar
 diameter in a doubly-logarithmi
 plot. The expe
ted approximation order is three. In this example it is 
on�rmedfor all of the strategies. The line denoted by P shows the results from the parametri
approximation, it pretends to have a better approximating 
onstant then the other te
hniqueswith 
ubi
 
onvergen
e rate. However, the least-square approximation with linear 
ondition(L), the least-square approximation with quadrati
 normalization 
ondition, denoted in thepi
ture by Q1 and Q2 and the Taylor expansion modi�
ation T also shows 
ubi
 
onvergen
erate. The least-squares approximation with the linear and quadrati
 normalization 
onditionsshow only a slight di�eren
e in the output. 28



2.5 Examples and Appli
ationsubdivision
?return fat ar
 ?subdivision ?return ∅ ?return ∅
?return fat ar
 ?return fat ar
 ?return ∅ ?return fat ar


Figure 2.8: Example 2.19: The de
ision tree of algorithm GenerateFatAr
s.2.5 Examples and Appli
ation2.5.1 ExamplesWe illustrate the performan
e of both algorithms Algorithm 2 and Algorithm 4 by examples.Example 2.19. The �rst example (see Fig.2.8) visualizes the entire algorithm. We apply thealgorithm to a bivariate polynomial of degree (1, 4), whi
h has only one ar
 in the region ofinterest, and 
hoose a relatively large toleran
e ε. The �rst 
all of the algorithm produ
es foursub-domains whi
h are then analyzed independently. The �rst domain 
ontains an ar
 whi
h
an be approximated by a single fat ar
. The se
ond domain produ
es other four sub-domains,while the third and the fourth domains do not 
ontain any points of the impli
itly de�ned
urve. Finally, analyzing the four se
ond-generation sub-domains leads to three additionalfat ar
s and one empty domain. The output is generated by 
olle
ting all sub-domains in theleafs of the subdivision tree.Example 2.20. We 
onsider a polynomial f of degree (6,9) with randomly generated BB
oe�
ients in [−1, 1]. Fig.2.9 (a) shows the surfa
e and the impli
itly de�ned 
urve segmentsin the unit square. Fig.2.9 (b) and (
) demonstrate the behavior of the algorithm for di�erenttoleran
es ε. The upper row shows the entire domain, while the lower row shows a zoomedview of the lower left 
orner of the domain. In the 
ase of ε = 0.1, whi
h is shown in (b), somedomains are returned as bounding regions, sin
e FatAr
Lo
al_2d1 fails and the diameter ofthe sub-domains are smaller than ε. For the smaller value of ε = 0.01, the fat ar
 generationsu

eeded in all generated sub-domains. 29
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(a) (b) (
)Figure 2.9: Example 2.20: Fat ar
 generation for di�erent toleran
es. The graph of f and theimpli
itly de�ned 
urve (a), and The fat ar
s (top) and a zoomed view (bottom) for ε = 0.1 (b)and for ε = 0.01 (
).In the next three examples we 
ompare fat ar
s with (re
ursively generated) boundingboxes. In the latter 
ase we also a

epted sub-domains as bounding primitives in the fat ar
generation, if their diameter were less than the pres
ribed toleran
e.Example 2.21. We approximate an impli
itly de�ned 
urve, see Fig.2.10, by fat ar
s (a)and by bounding domains (b). Clearly, the use of fat ar
s leads to a mu
h smaller numberof bounding geometri
 primitives. This be
omes even more dramati
 for smaller toleran
es.Figure (
) shows the relation between the number of generated primitives (fat ar
s or boxes)and the toleran
e ε =
√
2/2k.Example 2.22. This example is based on an impli
itly de�ned 
urve whi
h possesses a singu-lar point (see Fig.2.11). In this situation, the fat ar
 generation will fail for any domain whi
h
ontains the singular point, sin
e no positive lower bound on ‖∇f‖ exists. Consequently, thealgorithm always returns a domain 
ontaining this point. Still, the results generated by ourmethod (left) 
ompare favorably with the use of bounding boxes (right).Example 2.23. Here we approximated an impli
itly de�ned 
urve f = 0, where f has thepolynomial order (9, 8). Our domain of interest is the unit square Ω0 = [0, 1] × [0, 1]. The�gures (a) and (b) in Fig.2.12 are generated with the two di�erent fat ar
 
onstru
tions.The �rst one with the usage of the lo
al Algorithm FatAr
Lo
al_2d1, the se
ond with thelo
al Algorithm FatAr
Lo
al_2d2. The toleran
e bound is 10−2, whi
h is relatively small
ompared with the size of the starting domain. In order to rea
h this pre
ision the number ofthe bounding domains is 36 in the �rst 
ase and 46 in the se
ond one. It is mu
h fewer thanin the 
ase of bounding boxes, where we need 685 boxes to give a su�
ient approximation.30
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(a) (b)
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)Figure 2.10: Example 2.21: Comparison of fat ar
s a) and bounding domains b). The relationbetween toleran
e and number of bounding primitives 
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Figure 2.11: Example 2.22: Fat ar
s (left) and bounding boxes (right) for an impli
itly de�ned
urve with a singular point, where ε =
√
2/25.
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(a) (b) (
)Figure 2.12: Example 2.23: Comparison of FatAr
Lo
al_2d1 (a) FatAr
Lo
al_2d2 (b) andbounding box generation (
). In the lower right 
orner of ea
h output the generated boundingprimitives are shown from the gray region of the 
omputational domain.2.5.2 Appli
ation: Surfa
e-Surfa
e Interse
tionsThe 
omputation of surfa
e-surfa
e interse
tions is a potential appli
ation of bounding regiongeneration methods. Here we generate fat ar
s to bound the interse
tion 
urve of an impli
-itly de�ned and a parametri
 surfa
e. In pra
ti
e this is the so 
alled �mixed� interse
tionproblem. It is one of the most frequently en
ountered 
ases [23℄. A good survey on this topi
is given in [30, 31℄.Consider an impli
itly de�ned surfa
e h(x, y, z) = 0 and a parametri
 surfa
e pat
h
r(ξ1, ξ2) with domain Ω = [0, 1]2. Then the impli
itly de�ned 
urve f = h ◦ r = 0 des
ribesthe interse
tion 
urve in the domain of the parametri
 surfa
e pat
h.Using Algorithm GenerateFatAr
s, one 
an 
onstru
t a 
olle
tion of fat ar
s with maxi-mum width ε in Ω. The region des
ribed by them 
orresponds to a 
ertain subset (a strip)on the parametri
 surfa
e pat
h.Re
all that the 
oe�
ients of the �rst fundamental form are de�ned as

gij(ξ1, ξ2) =
∂

∂ξi
r(ξ1, ξ2) ·

∂

∂ξj
r(ξ1, ξ2). (2.43)In order to relate the thi
kness of the bounding fat ar
s to the thi
kness of the 
orrespondingstrip on the parametri
 surfa
e, we present the following observation.Lemma 2.24. Consider a single fat ar
 with width 2̺ in the parameter domain of a para-metri
 surfa
e Ω. Then there exists a 
onstant C depending only on the parametri
 surfa
e,su
h that the width of the 
orresponding fat region on the parametri
 surfa
e pat
h is boundedby

2̺
√
C.32



2.5 Examples and Appli
ationProof. We denote the matrix of �rst fundamental form 
orresponding to a point (ξ1, ξ2) ofthe parametri
 surfa
e with
G(ξ1, ξ2) =

(
g11(ξ1, ξ2) g12(ξ1, ξ2)
g12(ξ1, ξ2) g22(ξ1, ξ2)

)

.The length L of a 
urve on the surfa
e whi
h 
orresponds to any straight line segment in theparameter domain Ω

(ξ1(t), ξ2(t)) = (ξ01 , ξ
0
2) + t(η1, η2), t ∈ [a, b],where

η21 + η22 = 1is
L =

∫ b

a

√

g11(ξ1, ξ2)η
2
1 + 2g12(ξ1, ξ2)η1η2 + g22(ξ1, ξ2)η

2
2 dt. (2.44)In order to �nd an upper bound for L we are looking for the extremal values of the quadrati
form

g11(ξ1, ξ2)η
2
1 + 2g12(ξ1, ξ2)η1η2 + g22(ξ1, ξ2)η

2
2 = (η1, η2)G(ξ1, ξ2)(η1, η2)

Twith the assumption
η21 + η22 = 1.Using the method of Lagrange multipliers it is easy to show, that for any pair of (ξ1, ξ2) theeigenvalues of G(ξ1, ξ2) are real. They 
an be 
omputed as

λ1,2(ξ1, ξ2) =
g11(ξ1, ξ2) + g22(ξ1, ξ2)±

√

(g11(ξ1, ξ2)− g22(ξ1, ξ2))
2 + 4g12(ξ1, ξ2)2

2
. (2.45)If λ(ξ1, ξ2) = max{

∣
∣λ1(ξ1, ξ2)

∣
∣ ,
∣
∣λ2(ξ1, ξ2)

∣
∣} then

∣
∣(η1, η2) ·G(ξ1, ξ2) · (η1, η2)T∣∣ ≤ λ(ξ1, ξ2)for any ve
tor, whi
h ful�lls η21 + η22 = 1.This observation 
an now be applied to the lines whi
h pass through the 
enter of the fatar
 (o1, o2)

(ξ1(t), ξ2(t)) = (o1, o2) + t(η1, η2), t ∈ [r − ̺, r + ̺], (2.46)where r is the radius of the median ar
 and ̺ is the fat ar
 radius. Sin
e we assume, that theparametri
 fun
tion 
ontinuously di�erentiable, then λ(ξ1, ξ2) is also 
ontinuous in Ω, whi
his a 
ompa
t domain. Therefore there exists a 
onstant su
h that
0 ≤ λ(ξ1, ξ2) ≤ C.Thus for any line segment (2.46) the integral in (2.44) 
an be bounded by the general bound

L ≤ 2̺
√
C.Example 2.25. We 
onsider the interse
tion of a 
ubi
 impli
itly de�ned surfa
e with abiquadrati
 surfa
e pat
h. Fig.2.13, upper row, shows the interse
ting surfa
es and theimpli
itly de�ned interse
tion 
urve in the parameter domain. The lower row shows theregions on the surfa
e whi
h 
orrespond to fat ar
s in the parameter domain for three di�erentvalues of the toleran
e ε. 33
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ε = 0.1 ε = 0.01 ε = 0.001Figure 2.13: Example 2.25: Interse
tion of a 
ubi
 impli
it and a biquadrati
 parametri
surfa
e, represented by fat ar
s in the parameter domain. The number of fat ar
s grows from 10for ε = 0.1 to 25 for ε = 0.01. For the smaller two toleran
es, we also zoomed into a segment ofthe surfa
e pat
h.
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Chapter 3Fat Ar
s for 3D Impli
it Algebrai
CurvesImpli
itly de�ned algebrai
 spa
e 
urves are de�ned by the interse
tion 
urve of algebrai
surfa
es. Su
h 
urves frequently arise in geometri
 modeling. Various methods have beendeveloped for approximating or parameterizing them, and for analyzing their topology. Inthis 
hapter we present an algorithm, whi
h generates bounding regions for algebrai
 spa
e
urves. The method is the generalization of the fat ar
 generation method for planar algebrai

urves.3.1 Fat Ar
s in 3DHere we summarize �rst the related results in algebrai
 
urve approximation. Then we intro-du
e the de�nition of fat ar
s in R
3. In the end of the se
tion we will state the approximationproblem of algebrai
 spa
e 
urves given by Bernstein�Bézier polynomials.3.1.1 Approximating 3D Algebrai
 CurvesComputation of surfa
e-surfa
e interse
tions is a fundamental operation in geometri
 mod-eling. It is important for evaluating set operations, for 
omputing boundary 
urves and
losely related to self-interse
tion problems. A survey of the topi
 is given by Patrikalakisand Maekawa [30℄.Interse
ting low degree algebrai
 surfa
es has attra
ted a lot of interest in the literature.Quadrati
 surfa
es are the simplest 
urved surfa
es, therefore they are frequently used in
omputational geometry. The interse
tion 
omputation of su
h surfa
es has been dis
ussedthoroughly in [8, 11, 40, 45, 46℄.Several di�erent methods have been developed for 
omputing the interse
tion of algebrai
surfa
es (see [19, 31, 39℄). Many of them are symboli
-numeri
 algorithms. The most widelyused numeri
 methods are the latti
e evaluation, tra
ing and subdivision-based methods.The latti
e evaluation te
hniques 
ompute a set of low dimensional sub-problems. Then thesolution of these sub-problems is interpolated to approximate the general solution. Mar
hingor tra
ing methods generate point sequen
es along the 
onne
ted 
omponents of the 
urve.They ne
essarily use some topologi
al information to �nd starting, turning and singularpoints [3, 22℄. Subdivision algorithms are based on the "divide and 
onquer" paradigm. They35



3 Fat Ar
s for 3D Impli
it Algebrai
 Curvesde
ompose the problem into several sub-problems, and sort these problems a

ording to the
urve topology [2, 25℄. The de
omposition terminates if suitable approximating primitives 
anbe generated in ea
h sub-problems [29℄. In order to 
onstru
t these approximating primitivesseveral lo
al approximation te
hniques 
an be applied, su
h as interpolation, bounding regiongeneration, least-squares approximation or Newton-type methods [12℄.Several di�erent methods have been developed for 
omputing the interse
tion of generalalgebrai
 surfa
es. Many of them are symboli
-numeri
 algorithms. For instan
e, tra
ingmethods and subdivision-based methods are widely used in pra
ti
e. These algorithms iden-tify �rst the topology of the 
urve [2, 25℄. Then they generate parametri
 spa
e 
urves, whi
happroximate the impli
itly de�ned spa
e 
urve [20℄.3.1.2 De�nition of 3D Fat Ar
sWe present in this 
hapter an algorithm, whi
h approximates algebrai
 spa
e 
urves witha set of bounding regions. The bounding primitives are the generalization of the planarfat ar
s (see in Se
tion 2.1.2) in 3D spa
e. The algorithm dete
ts regular algebrai
 
urvesegments, and approximates them with 
ir
ular ar
s. Then the method bounds the distan
eof the approximating ar
 and the algebrai
 
urve segment. Ea
h bounding region is a tubularneighborhood of the approximating ar
s with a 
ertain radius, whi
h is the appropriate errorbound. Su
h a bounding primitive is bounded by a segment of a torus and two spheri
al 
aps(see Fig.3.1 (b)).De�nition 3.1. A fat ar
 is de�ned R
3 by- a segment of a 
ir
ular ar
 (median ar
) S ⊂ Ω ⊂ R

3.- and a distan
e ̺ ∈ R.Then the fat ar
 is the point set
F(S, ̺) = {(x, y, z) : ∃(x0, y0, z0) ∈ S,

√

(x− x0)2 + (y − y0)2 + (z − z0)2 ≤ ̺}.The median ar
 
an be represented in two di�erent ways. We 
an use the parametri
 form,sin
e 
ir
ular ar
s 
an be parametrized exa
tly by rational Bernstein-Bézier-polynomials. Itprovides the 
omputational advantages of BB-representation form, su
h as the 
onvex hullproperty. It is also possible, to de�ne the median ar
 in an algebrai
 form. A 
ir
ular ar
always 
an be given as the zero set of two spheri
al equations. Representing it with thesespe
ial quadrati
 equations is advantageous be
ause of the simple interse
tion and o�set
omputations.3.1.3 3d Algebrai
 CurvesIn order to 
onstru
t fat ar
s for algebrai
 spa
e 
urves, we shall use the properties of the de�n-ing polynomials. We assume that these de�ning polynomials are given in the Bernstein-Béziertensor produ
t form with respe
t to an axis aligned box Ω0 = [α1, β1]× [α2, β2]× [α3, β3]

f(x, y, z) =
l∑

i=0

m∑

j=0

n∑

k=0

dijkB
1
i,l(x)B

2
j,m(y)B3

k,n(z), (3.1)36



3.2 Approximation of Regular Curve Segments

(a) (b)Figure 3.1: Fat ar
 in R
3. The interse
tion 
urve (red) approximated by a 
ir
ular ar
 (blue)(see �gure (a)). Figure (b) shows the δ neighborhood of the median ar
, whi
h is the fat ar
(yellow).with 
ertain 
oe�
ients dijk ∈ R. The basis fun
tions Bj

i,n are de�ned like in Chapter 2 (2.2).For su
h fun
tions f : R3 → R, let us denote the de�ned algebrai
 surfa
e in the domain Ω0with
Z(f,Ω0) = {(x, y, z) : f(x, y, z) = 0} ∩Ω0.The algebrai
 
urve is given as the interse
tion of the zero sets of two polynomials f and g

C(f, g,Ω0) = Z(f,Ω0) ∩ Z(g,Ω0) = {x : f(x) = 0, g(x) = 0} ∩ Ω0 (3.2)with respe
t to the domain Ω0. Clearly, the 
urve may be an empty point set, or it may
onsist of more than one segment. In order to generate fat ar
s, later we 
onsider di�erentsegments of the 
urve C(f, g,Ω) in di�erent sub-domains of the original domain Ω ⊆ Ω0. Allthese sub-domains are axis-aligned boxes as well.3.2 Approximation of Regular Curve SegmentsIn order to generate fat ar
s for 3d algebrai
 
urves we present �rst a lo
al approximationalgorithm, whi
h generates fat ar
s only for regular segments of a spa
e 
urve. Later on wewill 
ombine this lo
al bounding region generation with subdivision te
hnique.3.2.1 Regularity CriterionAs in Se
tion 2.2.1 �rst we identify the empty sub-domains of the 
omputational domain. It isobvious, that Observation 2.3 in Chapter 2 is true in general for multivariate BB-polynomials.Observation 3.2. Suppose, that an algebrai
 
urve is represented by two BB-polynomialin the domain Ω ⊂ R
3. If one of the polynomials has only negative or only positive BB-
oe�
ients over the domain, then none of the points in Ω belongs to the algebrai
 
urve.37



3 Fat Ar
s for 3D Impli
it Algebrai
 CurvesIn order to approximate algebrai
 spa
e 
urves, we shall dete
t domains, whi
h 
ontainonly regular segments of the 
urve. Su
h domains do not 
ontain loops or self-interse
tionsof the 
urve. Therefore we state following the de�nitions similarly like in the 
ase of planaralgebrai
 
urves (see in De�nition 2.1).De�nition 3.3. A point p of an interse
tion 
urve C(f, g,Ω) ⊂ R
3 of two algebrai
 surfa
es

f = 0 and g = 0 is 
alled regular, if the ve
tors ∇f(p) and ∇g(p) are linearly independent(and 
alled singular otherwise). An algebrai
 
urve segment is regular on Ω ⊂ R
3, if ea
hpoint of the segment is regular in the domain.De�nition 3.4. A point p of an interse
tion 
urve C(f, g,Ω) ⊂ R

3 of two algebrai
 sur-fa
es is 
alled u-regular (u 
an be equal x, y or z), if the u 
oordinate of the tangent ve
tor
∇f(p)×∇g(p) is not equal to zero. An algebrai
 
urve segment is u-regular in the domain
Ω ⊂ R

3, if ea
h point of the segment is u-regular in Ω.The relation in between these de�nitions is formulated in the following lemma.Lemma 3.5. If an algebrai
 
urve segment in Ω ⊂ R
3 is x, y or z-regular (regular at least inone 
oordinate), then the 
urve segment is regular in the domain. Moreover it is not a loopand no self-interse
tion o

urs in the domain.Proof. If we know, that one of the 
oordinates of the tangent ve
tor does not vanish in Ω,then the tangent ve
tor does not vanish either in the domain. So the 
urve is regular. Itmeans, that no self-interse
tion o

urs in the domain. The regularity in one 
oordinate alsoex
ludes the situation, that the tangent ve
tor of the algebrai
 
urve returns to the sameposition if we tra
e the 
urve. The 
urve 
an not form loops in the domain.Control of 
oordinate regularity. In order to 
ertify domains 
ontaining regular alge-brai
 
urve segments, we use the 
onvex hull property of the Bernstein polynomials. We givehere a su�
ient 
ondition for dete
ting su
h domains. Namely it is su�
ient to show, thatthere exists a bound for one of the 
oordinate of the ve
tor t = ∇f×∇g in the domain, whi
hbounds the 
oordinate fun
tion away from zero. Sin
e we 
ompute with BB-polynomials we
an represent ea
h 
oordinate of ve
tor t = (t1, t2, t3) in a BB tensor produ
t form as

tu =

l∑

i=0

m∑

j=0

n∑

k=0

tuijkB
1
i,l(x)B

2
j,m(y)B3

k,n(z),where the 
oe�
ients tuijk 
an be 
omputed from the 
oe�
ient of f and g, and u = 1, 2 or
3. For a 
ertain u we denote with mu the minimum and with Mu the maximum of tuijk. If
muMu > 0 then

∣
∣tu
∣
∣ ≥ min{

∣
∣mu

∣
∣ ,
∣
∣Mu

∣
∣} = T u > 0. (3.3)If su
h T u exists for u = 1, 2 or 3, it ensures us that the 
urve is regular at least in one
oordinate in Ω.3.2.2 Lo
al AlgorithmWe des
ribe here an algorithm (Algorithm 5) to approximate regular algebrai
 
urve seg-ments. It is a lo
al fat ar
 generation method in 
ertain sub-domains of the original domain38



3.2 Approximation of Regular Curve SegmentsAlgorithm 5 FatAr
Lo
al_3d (f, g,Ω, ε)Require: The 
urve is regular at least in one 
oordinate in Ω.1: f̂ , ĝ modi�ed and orthogonalized polynomials {see (3.18)}2: p, q ← T 2
c (f̂), T

2
c (ĝ) spheri
al approximations3: if p, q exist then4: P ← zero 
ontour of p5: Q ← zero 
ontour of q6: S ← P ∩Q {median 
ir
le}7: if S 6= ∅ then8: G← lower bound for ‖∇f̂‖ and ‖∇ĝ‖9: K ← upper bound for |∇f̂ · ∇ĝ|10: if 0 < G and 0 < G2 −K then11: ̺← upper bound of HDΩ(S, C(f̂ , ĝ,Ω)) {see Lemma 3.15}12: if ̺ 6 ε then13: F = {x : ∃y ∈ S,

∣
∣x− y

∣
∣ ≤ ̺} ∩ Ω {fat ar
}14: return F {fat ar
 has been found}15: end if16: end if17: end if18: end if19: return ∅ {no fat ar
 has been found}

Ω0. Later on we will des
ribe a global algorithm, whi
h dete
ts the domains, where the lo
alalgorithm is appli
able. This algorithm is based on the fat ar
 generation te
hnique, whatwe introdu
ed in Se
tion 2.3 for the planar algebrai
 
urves.The lo
al algorithm assumes that the 
urve is regular at least in one 
oordinate in orderto approximate a regular algebrai
 segment whi
h is not a loop.We have generalized the median ar
 generation te
hniques from Se
tion 2.3.2 andSe
tion 2.3.3. These algorithms generate the median ar
 in algebrai
 form, as the inter-se
tion of two impli
itly de�ned spheres. The interse
ting spheres are 
hosen from a familyof spheres, whi
h approximate 
ertain 
ombinations of the original polynomials. Later on, ifwe would like to represent the output in parametri
 form, it is easy to des
ribe the 
ir
ularar
s as rational quadrati
 
urves.The distan
e estimation method generalizes and 
ombines the approa
hes in Se
tion 2.3.5and Se
tion 2.2.4. It bounds the BB-distan
e in between ea
h polynomials and the asso
iatedquadrati
 approximations. Then an upper bound is generated for the one sided Hausdor�-distan
e of the median ar
 and the algebrai
 spa
e 
urve. This bound is used then as thethi
kness of the fat ar
.The algorithm is su

essful, if the median ar
 is found and the fat ar
 thi
kness 
an be
omputed and it is smaller than the pres
ribed toleran
e ε. Then the algorithm returns witha fat ar
, whi
h bounds the 
urve segment in the appropriate domain. If the lo
al algorithmfails then the algorithm returns the empty set.Fig.3.2 presents three examples of fat ar
s whi
h have been generated with the help ofAlgorithm 5. A

ording to the median ar
 generation te
hnique we 
an see di�erent resultsfor the same algebrai
 
urve segment in ea
h 
olumn of the �gure. The used median ar
39



3 Fat Ar
s for 3D Impli
it Algebrai
 Curvesgeneration te
hniques are des
ribed in Se
tion 3.3. The distan
e estimation te
hnique isdes
ribed in Se
tion 4.4.3.3 Median Ar
 GenerationImpli
itly de�ned spa
es 
urves are given as the interse
tion 
urve of two impli
itly de�nedsurfa
es. In order to approximate algebrai
 
urve segments, we generate impli
itly de�nedar
s in R
3. These algebrai
 ar
s the so 
alled median ar
s 
an be given as the interse
tion
urve of two impli
itly de�ned spheres. In order to generate the de�ning spheres of the medianar
, we 
an 
hoose di�erent strategies. Several �tting te
hniques, for instan
e least-squares�tting, are used in geometri
 
omputing. In this se
tion we generalize the approximationte
hniques from Se
tion 2.3.3.3.1 Median Ar
 Generation with Least-Squares ApproximationSimilarly to Se
tion 2.3.2 we 
an use least-squares approximation to �nd approximating poly-nomials. In order to generate a quadrati
 polynomial with spheri
al zero level set, we aresear
hing for a polynomial in the form

si(x, y, z) = ai(x
2 + y2 + z2) + bix+ ciy + diz + ei.We modify the original fun
tions using a linear term

f̂(x, y, z) = l(x, y, z) f(x, y, z) = (l0 + l1x+ l2y + l3z) f(x, y, z),

ĝ(x, y, z) = k(x, y, z) g(x, y, z) = (k0 + k1x+ k2y + k3z) g(x, y, z).The approximation problems 
an be formed as the following optimization problems
minvf∈R9

∫∫

Ω

∥
∥
∥f̂ − s1

∥
∥
∥

2
dxdydz, (3.4)

minvg∈R9

∫∫

Ω

∥
∥ĝ − s2

∥
∥2 dxdydz. (3.5)where

vf = (a1, b1, c1, d1, e1, l0, l1, l2, l3),

vg = (a2, b2, c2, d2, e2, k0, k1, k2, k3).In order get a unique solution, we have to normalize both minimization problems. Here wepresent three di�erent strategies. The �rst normalization te
hnique is using a linear 
ondition.It is a natural 
ondition in the sense that the modi�ed polynomial f̂ or ĝ keeps the originalfun
tion value in the 
enter of the 
omputational domain Ω. For instan
e for the �rst problem(3.4) the 
ondition 
an be formulated as
l0 + l1c

x + l2c
y + l3c

z = 1, (3.6)where c = (cx, cy, cz) denotes the 
enter of the domain. Another possible 
hoi
e for nor-malization is to 
ontrol the gradient length of the approximating polynomials si. Su
h a
ondition determine two possible solutions for si(x, y, z). The one with smaller value in (3.4)40



3.3 Median Ar
 Generation

Figure 3.2: Examples for fat ar
 generation with the help of algorithm FatAr
Lo
al_3d. Weused four di�erent median ar
 generation methods on three examples. In the �rst three rowswe show fat ar
s generated by least squares approximation with linear normalization and leastsquares approximation with two di�erent quadrati
 normalization ((3.7) and (3.8)). In the lastrow we 
an see the fat ar
s generated by Taylor expansion modi�
ation.
41



3 Fat Ar
s for 3D Impli
it Algebrai
 Curvesor (3.5) 
an be used as an approximating polynomial. A natural 
hoi
e of the quadrati
normalization 
ondition is
∥
∥∇si(c)

∥
∥ = 1. (3.7)Another possibility is to use a quadrati
 normalization 
ondition whi
h approximates betterthe se
ondary shape of the original impli
itly de�ned 
urve. Namely we 
an suppose forinstan
e

∥
∥∇s1(c)

∥
∥ =

∥
∥∇f(c)

∥
∥ , (3.8)

∥
∥∇s2(c)

∥
∥ =

∥
∥∇g(c)

∥
∥ .We 
ompare the di�erent least-square approximation methods via an example in the
onvergen
e rate analysis in Se
tion 3.5.4.3.3.2 Median Ar
 Generation Using Taylor ExpansionThe algebrai
 spa
e 
urve is given by the zero sets of two polynomials f and g in the domain

Ω ⊂ R
3. In order to generate the median 
urve, we reformulate the approximation problem.More pre
isely, we try to �nd a 
ertain 
ombination of the given polynomials f and g, thatpossesses a spe
ial Hessian matrix in the 
enter point c = (cx, cy, cz) of the sub-domain Ω.Su
h a new polynomial h 
an be de�ned as the 
ombination

h = kf + lg, (3.9)where k and l are linear polynomials and (x, y, z) ∈ Ω

k(x, y, z) = u+ k1(x− cx) + k2(y − cy) + k3(z − cz)
l(x, y, z) = v + l1(x− cx) + l2(y − cy) + l3(z − cz),

(x, y, z) ∈ Ω.The zero level set of the polynomial h
Z(h,Ω) = {x : h(x) = 0} ∩ Ωis a surfa
e, whi
h 
ontains the algebrai
 
urve de�ned by f and g

C(f, g,Ω) ⊆ Z(h,Ω).We 
hoose the 
oe�
ients of k and l su
h that the Hessian of h is a s
alar multiple of theidentity matrix in the 
enter of the domain c.
H(h)(c) =





λ 0 0
0 λ 0
0 0 λ



 , λ ∈ R. (3.10)If su
h an h 
an be 
omputed, then the zero level set of the quadrati
 Taylor expansion of
h about c is a sphere. In order to �nd h, we solve a linear system with eight variables (the
oe�
ients of k and l) and �ve equations, that 
an be dedu
ted from (3.10)

hxx(c)− hyy(c) = 0

hyy(c) − hzz(c) = 0

hxy(c) = 0 (3.11)
hyz(c) = 0

hxz(c) = 0.42



3.3 Median Ar
 GenerationIf the system has full rank, then the solution set in the spa
e of 
oe�
ients of k and l isthree-dimensional. Therefore we 
hoose two 
oe�
ients as parameters in advan
e. Morepre
isely, we suppose that the values of the 
onstant terms of the polynomials k and l arearbitrary but �xed (u, v) ∈ R
2 and di�erent from zero (u 6= 0 and v 6= 0).Lemma 3.6. Given two polynomials f and g over the domain Ω ⊂ R

3. We suppose that inthe 
enter of the domain
∥
∥∇f(c)×∇g(c)

∥
∥ 6= 0. (3.12)Then for any pair of (u, v) ∈ R

2, where u 6= 0 and v 6= 0, there exists an exa
tly one-dimensional family of non-trivial polynomials, k and l, su
h that h = kf + lg satis�es (3.11).Proof. The Hessian matrix of h 
an be expressed with the help of f, g, k and l as
H(h)(c) = ∇k(c)∇f(c)T +∇f(c)∇k(c)T + uH(f)(c)

+∇l(c)∇g(c)T +∇g(c)∇l(c)T + vH(g)(c). (3.13)For any values of the parameters u and v, the system (3.11) 
an be reformulated as
Ak =










fx(c) −fy(c) 0 gx(c) −gy(c) 0

0 fy(c) −fz(c) 0 gy(c) −gz(c)
fy(c) fx(c) 0 gy(c) gx(c) 0

0 fz(c) fy(c) 0 gz(c) gy(c)

fz(c) 0 fx(c) gz(c) 0 gx(c)






















k1
k2
k3
l1
l2
l3













= b, (3.14)
where the ve
tor of 
onstants is

b = −u










1
2(fxx(c) − fyy(c))
1
2(fyy(c) − fzz(c))

fxy(c)
fyz(c)
fxz(c)










− v










1
2(gxx(c)− gyy(c))
1
2(gyy(c)− gzz(c))

gxy(c)
gyz(c)
gxz(c)










.In order to be 
ertain that the system (3.14) has a one-parameter family solution system, wehave to show, that the matrix A has rank 5. Therefore we analyze the 5 × 5 sub-matri
esof A. We denote with Ai the matrix, whi
h we get from A by deleting ith 
olumn. Thedeterminants of the matri
es A4,5,6 are
det(A4) = −fx(c)

∥
∥∇f(c)×∇g(c)

∥
∥2 ,

det(A5) = fy(c)
∥
∥∇f(c)×∇g(c)

∥
∥2 ,

det(A6) = −fz(c)
∥
∥∇f(c)×∇g(c)

∥
∥2 .We know that ∥∥∇f(c)×∇g(c)∥∥ 6= 0. This observation also implies, that one of the 
oor-dinates of ∇f(c): fx(c), fy(c) or fz(c) is non-zero. It means, that one of the determinantsof A4,A5 or A6 is not zero. So A always has full rank 5. Thus the solution of the system

Ak = b exists, and it is a one dimensional subspa
e in R
6.43



3 Fat Ar
s for 3D Impli
it Algebrai
 CurvesA

ording to Lemma 3.6, for any pair of (u, v) where u 6= 0 and v 6= 0, there exists aone-parameter family of polynomials k and l, su
h that kf + lg satis�es (3.11). From thisfamily of polynomials we always 
hoose the one, whi
h minimizes the l2 norm
∥
∥k
∥
∥
2
→ min subje
t to Ak = b, (3.15)where k = (k1, k2, k3, l1, l2, l3) is the 
ommon 
oe�
ient ve
tor of k and l. This guaranteesthat the solution behaves numeri
ally well during the 
omputations. With the additional
ondition (3.15) the polynomials k and l 
an be 
omputed uniquely for ea
h pair of (u, v).Moreover the result depends 
ontinuously on the points of the domain. We introdu
e thefun
tion G, whi
h assigns to a fun
tion f and g, a value of (u, v) and the 
enter point c of adomain Ω the asso
iated fun
tion a

ording to the 
onstru
tion in Lemma 3.6 and the formerassumption (3.15)

G(f, g, (u, v), c) = h = kf + lg. (3.16)Remark 3.7. Suppose that the right hand side of the system (3.14) i.e. the ve
tor b,vanishes for a 
ertain pair of (u, v). In this 
ase the solution set of (3.14) is a line, whi
hpasses through the origin. Then the linear 
ombination uf + vg ful�lls the 
ondition (3.11).A

ording to (3.15) we always 
hoose the solution of the system (3.14), whi
h has the smallestlength. In this spe
ial 
ase both k and l are 
onstants.The polynomial h = G(f, g, (u, v), c) ful�lls the spe
ial 
ondition for the Hessian (3.11).Thus the quadrati
 Taylor expansion of h about c has a spheri
al zero level set.
s(x) = T 2

c (h
∗)(x) = (3.17)

= h(c) +∇h(c)T (x− c) +
1

2
hxx(c)(x − c)T (x− c) ∀x ∈ Ω.If we 
ompute two polynomials for two di�erent pairs of parameter (u, v) 6= (u′, v′)

f̂ = G(f, g, (u, v), c) and ĝ = G(f, g, (u′, v′), c), su
h that u, v, u′, v′ 6= 0, (3.18)then their quadrati
 Taylor expansions about c 
an be denoted by
p = T 2

c f̂ and q = T 2
c ĝ.These two polynomials de�ne the algebrai
 set

S(p, q,Ω) = {x : p(x) = 0, q(x) = 0} ∩ Ω.If this algebrai
 set is not empty, then it forms a 
ir
ular ar
. This ar
 
an be used as anapproximating 
ir
ular ar
 of the 
urve C(f, g,Ω). Later on the error of the approximationis estimated by a distan
e bound of the algebrai
 
urves C(f̂ , ĝ,Ω) and S(p, q,Ω).Orthogonal pair of fun
tions We 
ompute a pair of polynomials for two di�erent pairsof parameter (u, v) 6= (u′, v′)

f̂ = G(f, g, (u, v), c) and ĝ = G(f, g, (u′, v′), c).44



3.3 Median Ar
 GenerationIn order to get e�
ient distan
e bound for the algebrai
 
urve and the median ar
, we preferto generate su
h a pair of fun
tions f∗, g∗, whi
h has the property
∇f∗(c) ⊥ ∇g∗(c). (3.19)in the 
enter of the domain. If F and G are de�ned as

F = f̂
∥
∥∇ĝ(c)

∥
∥ + ĝ

∥
∥
∥∇f̂(c)

∥
∥
∥ (3.20)

G = f̂
∥
∥∇ĝ(c)

∥
∥ − ĝ

∥
∥
∥∇f̂(c)

∥
∥
∥ ,then the following polynomials satisfy (3.19)

f∗ =
F

∥
∥∇F (c)

∥
∥
, g∗ =

G
∥
∥∇G(c)

∥
∥
. (3.21)Thus we introdu
e the fun
tion O, whi
h assigns to the polynomials f̂ and ĝ and the 
enterpoint c of a domain Ω. It generates a pair of fun
tions

(f∗, g∗) = O(f̂ , ĝ, c), (3.22)whi
h is 
omputed with applying the orthogonalization steps (3.20) and (3.21).The fun
tions f̂ and ĝ are linearly independent sin
e we 
omputed them as the sum andthe di�eren
e of two linearly independent non-zero fun
tions.Remark 3.8. Any linear 
ombination of hi = T (f, g, (ui, vi), c), 
omputed for the parametervalues (ui, vi), ful�lls the property of fun
tions with spe
ial Hessians (3.11). So if
ĥ =

n∑

i=1

cihi, ci ∈ R,then ĥ also ful�lls the 
ondition of spe
ial Hessian (see (3.11)). Thus T 2
c (ĥ)(x) = 0 de�nes asphere in R

3.A

ording to this remark, also the 
ondition of spe
ial Hessians (3.11) is satis�ed by f∗and g∗. So we de�ne the following approximating polynomials as
p = T 2

c (f
∗)

q = T 2
c (g

∗).From the 
onstru
tion of f∗ and g∗ it is 
lear, that the ve
tors ∇p(c) and ∇q(c) are alsoindependent and perpendi
ular to ea
h other. Sin
e f̂ and ĝ satisfy (3.11), the equations
p = 0 and q = 0 are equations of a spheres. The median ar
 S is de�ned by the interse
tion
urve of the zero set of the polynomials p and q in the domain.

S(p, q,Ω) = {x : p(x) = 0, q(x) = 0} ∩ Ω.If it is the empty set, then no median ar
 is generated.45



3 Fat Ar
s for 3D Impli
it Algebrai
 Curves3.3.3 Conne
tion with the Os
ulating Cir
leIn this se
tion we suppose, that the 
enter of the 
omputational domain Ω is a point of thealgebrai
 
urve C de�ned by the polynomials f and g. If the 
enter point is denoted by c,then
f(c) = g(c) = 0. (3.23)This spe
ial 
ase plays an important role during the 
omputations, sin
e later we would liketo approximate the 
urve in su
h sub-domains of the original domain, whi
h tightly en
losethe algebrai
 
urve.For an arbitrary pair of parameters we 
ompute a new polynomial as the 
ombination of

f and g as de�ned in Se
tion 3.3.2
h = G(f, g, (u, v), c).Consider the quadrati
 polynomial

s = T 2
c (h).A

ording to the assumption (3.23) the 
enter of the domain is a point of the zero set of hand s.

h(c) = s(c) = uf(c) + vg(c) = 0. (3.24)Then the quadrati
 approximating polynomial s has the following form
s(x) = ∇h(c)T (x− c) + λ(x− c)T (x− c), (3.25)where the gradient is

∇h(c) = u∇f(c) + v∇g(c), (3.26)and the Hessian-matrix has the form
H(h)(c) = λI3,as in (3.10).Observation 3.9. Suppose, that λ 6= 0, then the zero set of s 
an be written in the form

〈

x−
(

c+
1

λ
∇h(c)

)

,x−
(

c+
1

λ
∇h(c)

)〉

=

∥
∥∇h(c)

∥
∥2

λ2
.Therefore the radius of the sphere s = 0 
an be 
omputed as

r =

∥
∥∇h(c)

∥
∥

λ
.Observation 3.10. The zero set of s de�ned in (3.25) depends only on the ratio of the 
hosenparameters u and v. Therefore the sphere family, 
omputed for di�erent values of (u, v), is aone-parametri
 surfa
e family. It 
an be parametrized by the ratio of u and v. This followsfrom the 
omputational method of k and l and from the spe
ial form of the sphere equations(see in (3.25)). Fig.3.3 (a) visualizes several members of su
h a sphere family for di�erentvalues of the ratio u/v. 46



3.3 Median Ar
 Generation

(a) (b) (
)Figure 3.3: Sphere family 
omputed with Taylor expansion modi�
ation (b) about a point onthe algebrai
 
urve (a) and its interse
tion with the normal plane of the 
urve (
). The thin,bla
k 
urve is the algebrai
 
urve. The red 
ir
le is the os
ulating 
ir
le.Remark 3.11. In the 
omputations we 
hose the two parameter pairs (u, v) and (u′, v′)usually as (1, 2) and (2, 1) or (1, 5) and (5, 1). Both 
hoi
es generated similar results in ourexamples, sin
e the generated median ar
s 
onverge to the same limit 
ir
le, the os
ulating
ir
le. Therefore if u, v, u′, v′ 6= 0 and u/v 6= u′/v′, then (u, v) and (u′, v′) are good initial
hoi
es for parameters. It is not possible to improve the general behavior of the algorithmby the 
hoi
e of these parameters.Lemma 3.12. We assume that (3.23) is satis�ed in the point c. Then for ea
h sphereequation, 
omputed for 
ertain (u, v) ∈ R
2, u, v 6= 0, the 
enter of the sphere s = 0 lies inthe normal plane of the algebrai
 
urve in the point c. Moreover the inverse of the radius ofthe sphere is exa
tly the normal 
urvature κn of the tangent dire
tion ∇f(c)×∇g(c) of thesurfa
e G(f, g, (u, v), c) in the point c.Proof. Suppose that in a 
ertain neighborhood of the point c the algebrai
 
urve 
an beparametrized with ar
 length parametrization. It is not a restri
tion, sin
e we are 
omputingonly with regular segment of the algebrai
 
urve. The parametrization is denoted by

p(t), where p(t0) = c.This 
urve is a 
urve on the surfa
e h = 0 a

ording to the de�nition, therefore it satis�es
dih(p(t))

dti
= 0,for any i.If we 
ompute the �rst derivative in the point c:

dh(p(t))

dt
t=t0

= 〈∇h(c),p′(t0)〉 = 0.Thus the tangent ve
tor of the algebrai
 
urve is parallel with the 
ross produ
t of thegradients ∇f(c) and ∇g(c). In (3.26) we observed, that
∇h(c) = u∇f(c) + v∇g(c).47



3 Fat Ar
s for 3D Impli
it Algebrai
 CurvesSin
e s is the quadrati
 Taylor expansion of h about c, we obtain that
〈∇s(c),p′(t0)〉 = 0.This implies, that for any value of the parameters (u, v) the gradient of the asso
iated sphereis in the normal plane of the algebrai
 
urve in the point c.The se
ond derivative in the point c is

d2h(p(t))

dt2
t=t0

= 〈∇h(c),p′′(t0)〉+ p′(t0)H(h)(c)p′(t0) =

= 〈∇h(c),p′′(t0)〉+ λ〈p′(t0),p
′(t0)〉 = 0.Sin
e we used the ar
 length parametrization

〈∇h(c),p′′(t0)〉 − λ = 0.The polynomial s is the quadrati
 Taylor expansion of h about c, therefore also
〈∇s(c),p′′(t0)〉 = λ.If we expand the s
alar produ
t:

∥
∥∇s(c)

∥
∥
∥
∥p′′(t0)

∥
∥ cosϕ = −λ,where ϕ denotes the angle of the surfa
e normal ∇h(c) and the normal dire
tion of thealgebrai
 
urve in c. A

ording to the Theorem of Meusnier and Observation 3.9 we �nallyarrive at

κ cosϕ = κn =
λ

∥
∥∇s(c)

∥
∥
=

1

r
,whi
h proves the lemma.As an example Fig.3.3 (b) shows the interse
tion of the sphere family and the normalplane of the algebrai
 
urve. Ea
h sphere of the family interse
ts this plane in a great 
ir
le.These 
ir
les interse
t ea
h other in two points on the normal of the algebrai
 spa
e 
urve.Corollary 3.13. The fun
tions f and g de�ne an algebrai
 
urve C(f, g,Ω) in Ω ⊂ R

3. Weassume that the point c ∈ Ω lies on the algebrai
 
urve c ∈ C(f, g,Ω). We 
ompute thefun
tion family h(u, v) = G(f, g, (u, v), c) with spe
ial Hessian for f and g in the point c.The quadrati
 Taylor expansion for any (u, v) pair u, v 6= 0 has a spheri
al zero level set. Theinterse
tion of this sphere family is a 
ir
le, whi
h is the os
ulating 
ir
le of C(f, g,Ω) in thepoint c.Proof. In ea
h point of a 
urve on a surfa
e the os
ulating 
ir
le is the normal se
tion of the
urvature sphere of the surfa
e [21℄. In Lemma 3.12 we observed that this 
urvature spherefor any h(u, v) = 0 surfa
e is the zero set of the quadrati
 Taylor expansion. These sphereshave the same interse
tion 
urve with the os
ulating plane of C(f, g,Ω) in the point c, whi
his exa
tly the os
ulating 
ir
le. 48



3.4 Distan
e Estimate3.4 Distan
e EstimateIn this se
tion we des
ribe a method to estimate the distan
e of two algebrai
 spa
e 
urves.In order to get a distan
e bound, we 
ombine a distan
e bound of parametri
 and algebrai

urves and a distan
e estimation strategy between algebrai
 surfa
es.3.4.1 Distan
e of Impli
itly De�ned Surfa
esFirst we generalize the distan
e estimation te
hnique from Chapter 2.3.5 for algebrai
 sur-fa
es. In order to measure the distan
e of algebrai
 surfa
es, we 
onsider the BB-norm overthe domain Ω ⊂ R
3: ∥∥.∥∥ΩBB , whi
h is the maximum absolute value of the 
oe�
ients in theBB-representation. With the help of the norm, a distan
e bound 
an be de�ned between anarbitrary polynomial f and an approximating polynomial p for all point in the domain

ε =
∥
∥f − p

∥
∥ΩBB . (3.27)Due to the 
onvex hull property

∣
∣f(x)− p(x)

∣
∣ ≤ ε, ∀x ∈ Ω.This implies that

p(x)− ε ≤ f(x) ≤ p(x) + ε, ∀x ∈ Ω. (3.28)A region 
an be de�ned in Ω by the approximating polynomial and the distan
e bound
D(p, ε) = {x : |p(x)| ≤ ε} ∩ Ω.The algebrai
 surfa
e de�ned by f is the point set
Z(f,Ω) = {x : f(x) = 0} ∩Ω.The region D is a bounding region for the zero level set of the polynomial f in Ω

Z(f,Ω) ⊆ D(p, ε) ⊆ Ω.3.4.2 Distan
e of Algebrai
 and Parametri
 Spa
e CurvesIn order to bound the distan
e of algebrai
 spa
e 
urves, we re
all a former result from [20℄.In the paper a te
hnique is des
ribed to bound the distan
e of parametri
 and algebrai
 spa
e
urves.We assume that the a 
urve segment r(t) is de�ned with the parameter domain t ∈ [0, 1]in Ω ⊂ R
3. The 
urve tra
es the point set

R = {r(t) : t ∈ [0, 1]}.The algebrai
 
urve C(f, g,Ω) is de�ned by the interse
tion 
urve of f and g on the sub-domain Ω. In order to avoid 
ertain te
hni
al di�
ulties, we bound the distan
e between thepoint set R and
C∗ = C ∪ ∂Ω,49



3 Fat Ar
s for 3D Impli
it Algebrai
 Curveswhere ∂Ω denotes the boundary of the domain. The one-sided Hausdor�-distan
e is de�nedas HDΩ(R, C∗) = sup
t∈[0,1]

inf
x∈C∗

‖x− r(t)‖. (3.29)In order to bound this distan
e we use the following result form [20℄.Theorem 3.14 (Jüttler�Chalmovianský). Consider a 
urve segment r(t) : t → Ω, whi
htra
es the point set R. The fun
tions f and g de�ne the algebrai
 
urve C(f, g,Ω) in Ω. Weassume that positive 
onstants G and K exist, su
h that
G ≤

∥
∥∇f

∥
∥ and G ≤

∥
∥∇g

∥
∥ ,and

∣
∣∇f · ∇g

∣
∣ ≤ K.If h denotes the fun
tion √f2 + g2, then

∥
∥∇h

∥
∥ ≤

√

G2 −K ∀x ∈ Ω.Moreover if there exists a positive 
onstant M , that f(r(t))2 + g(r(t))2 ≤M2, then the one-sided Hausdor�-distan
e is bounded byHDΩ(R, C∗) ≤
M√

G2 −K
. (3.30)3.4.3 Distan
e of Algebrai
 Spa
e CurvesIf we would like to estimate the distan
e of algebrai
 spa
e 
urve we 
an measure �rst thedistan
e of the de�ning algebrai
 surfa
es. Suppose that an algebrai
 
urve C(f, g,Ω) isde�ned by the polynomials f and g in the domain Ω. An approximating spa
e 
urve S isgiven by two approximating algebrai
 surfa
es p = 0 and q = 0 as

S(p, q,Ω) = {x : p(x) = 0, q(x) = 0} ∩ Ω.The polynomial p approximates f , as q is an approximating polynomial of g. We estimatethe distan
e between the algebrai
 surfa
es and the approximating surfa
es pairwise usingthe te
hnique from Se
tion 3.4.1.
ε1 =

∥
∥f − p

∥
∥ΩBB , ε2 =

∥
∥g − q

∥
∥ΩBB .For all points x ∈ S(p, q,Ω) it is satis�ed that

∣
∣f(x)

∣
∣ ≤ ε1 and ∣

∣g(x)
∣
∣ ≤ ε2 (3.31)a

ording to the de�nition p(x) = 0 and q(x) = 0.Corollary 3.15. Consider two algebrai
 
urves C(f, g,Ω) and S(p, q,Ω), de�ned by the poly-nomials f, g and p, q in the domain Ω ⊂ R

3. We denote by ε1 and ε2 the norms
ε1 =

∥
∥f − p

∥
∥ΩBB and ε2 =

∥
∥g − q

∥
∥ΩBB .50



3.4 Distan
e EstimateWe assume that the positive 
onstants G and K exist, su
h that
G ≤

∥
∥∇f

∥
∥ and G ≤

∥
∥∇g

∥
∥ ,and

∣
∣∇f · ∇g

∣
∣ ≤ K.If G > 0 and G2 −K > 0, then for all points x ∈ S exists a point y ∈ C su
h that

∥
∥x− y

∥
∥ ≤

√

ε21 + ε22
G2 −K

. (3.32)Proof. A

ording to (3.31) for all x ∈ S(p, q,Ω)
∣
∣f(x)

∣
∣ ≤ ε1 and ∣

∣g(x)
∣
∣ ≤ ε2.Therefore

√

f(x)2 + g(x)2 ≤
√

ε21 + ε22.Then Theorem 3.14 
an be applied to bound the distan
e of C and S with the help of the
onstants G,K and
M =

√

ε21 + ε22.Corollary 3.15 gives us an upper bound of the distan
e between two algebrai
 spa
e 
urves:
̺ =

√

ε21 + ε22
G2 −K

. (3.33)So the bounding fat region 
an be de�ned as the point set
F(p, q, ̺,Ω) = {x : ∃x0 : p(x0) = 0, q(x0) = 0, |x− x0| ≤ ̺} ∩ Ω.Evaluation of the Constants The de�ning polynomials of the algebrai
 
urves f, g and

p, q are given in the BB-tensor produ
t form. In order to �nd the 
onstants in Corollary 3.15,we use the 
onvex hull property of these polynomials.The BB-norm of a polynomial is the maximum of the absolute values of the 
oe�
ients.Suppose that the di�eren
e polynomials are represented in the form
f − p =

l∑

i=0

m∑

j=0

n∑

k=0

aijkB
l
i(x)B

m
j (y)Bn

k (z)and
g − q =

l̂∑

i=0

m̂∑

j=0

n̂∑

k=0

bijkB
l̂
i(x)B

m̂
j (y)Bn̂

k (z).Then the norms 
an be evaluated as
ε1 =

∥
∥f − p

∥
∥ΩBB = max

i,j,k

∣
∣aijk

∣
∣51



3 Fat Ar
s for 3D Impli
it Algebrai
 Curvesand
ε2 =

∥
∥g − q

∥
∥ΩBB = max

i,j,k

∣
∣bijk

∣
∣ .The 
onstant G is a lower bound of the gradient length of both fun
tions f and g. We
an represent the square of the gradient length in a BB-tensor produ
t form

f2
x + f2

y + f2
z =

2l∑

i=0

2m∑

j=0

2n∑

k=0

cfijkB
l
i(x)B

m
j (y)Bn

k (z)

g2x + g2y + g2z =

2l̂∑

i=0

2m̂∑

j=0

2n̂∑

k=0

cgijkB
l̂
i(x)B

m̂
j (y)Bn̂

k (z).Then a suitable lower bound is
G =

√

min{min
i,j,k

cfijk,min
i,j,k

cgijk},if the minimum is positive.The value of K 
an also be given with the help of the 
onvex hull property of BB-polynomials. The representation of ∇f · ∇g 
an be 
omputed as
fxgx + fygy + fzgz =

l+l̂∑

i=0

m+m̂∑

j=0

n+n̂∑

k=0

dijkB
l+l̂
i (x)Bm+m̂

j (y)Bn+n̂
k (z).Then a suitable upper bound is

K = max
i,j,k

∣
∣dijk

∣
∣ .3.5 Convergen
eSin
e we generate quadrati
 approximating 
urves, we expe
t that the fat ar
 generationalgorithm has 
ubi
 
onvergen
e rate. We analyze in this se
tion the 
onvergen
e rate ofthe method and 
ertify the third order 
onvergen
e of the fat ar
s in Lemma 3.21. Then wedemonstrate the behavior of the bounding regions through some examples.3.5.1 Continuity of Taylor Expansion Modi�
ationThe lo
al fat ar
 generation te
hnique �rst approximates the interse
tion 
urve of two alge-brai
 surfa
es de�ned by the polynomials f and g by a 
ir
ular ar
. This ar
 is de�ned as theinterse
tion 
urve of two spheres. These spheres are given as the zero level set of the poly-nomials p and q. The polynomials are the quadrati
 Taylor expansion of 
ertain polynomialswith a spe
ial Hessian (see Se
tion 3.3.2) about the 
enter point c of the sub-domain Ω ⊆ Ω0.The polynomials with spe
ial Hessian are 
omputed as the 
ombination of the polynomials

f and g in the form h = kf + lg = G(f, g, (u, v), c) for 
ertain pair (u, v) 6= (0, 0), where theterms k and l are linear polynomials.In order to prove the 
onvergen
e of the generated ar
s, we have to show, that the
omputed polynomials depend 
ontinuously on the points of Ω0 for a �xed 
hoi
e of (u, v). Itmeans, that the polynomial G(f, g, (u, v), c) depends 
ontinuously on the 
hoi
e of the point
c. 52



3.5 Convergen
eLemma 3.16. Given two polynomials f, g over the domain Ω ⊆ Ω0. We suppose that forany point c ∈ Ω0 ∥
∥∇f(c)×∇g(c)

∥
∥ 6= 0. (3.34)For an arbitrary but �xed pair of u and v ∈ R \ {0} we 
ompute the polynomial

h = G(f, g, (u, v), c)with a spe
ial Hessian (see Lemma 3.6) under the 
ondition (3.15). Then h depends 
ontin-uously on the points of the domain Ω0.Proof. We have to show that the 
omputed linear fa
tors k and l depend 
ontinuously onthe point c. We 
omputed the 
oe�
ient ve
tor k = (k1, k2, k3, l1, l2, l3), su
h that it satis�esthe linear system Ak = b in (3.14) and minimizes the l2-norm of the ve
tor k (see (3.15)).If (3.34) is true, then A has full rank in any point c ∈ Ω0 (see proof of Lemma 3.6). For afull rank matrix the ve
tor, whi
h satis�es (3.14) and (3.15), 
an be 
omputed as
k = AT(AAT)−1

︸ ︷︷ ︸

A†

b.The matrix A† is the so 
alled Moore-Penrose generalized inverse of A (see [9℄). Sin
e fand g are polynomials, the entries of the matrix A and the ve
tor b depend 
ontinuously onthe point c. Therefore the ve
tor k also depends 
ontinuously on the point c. The values of
u 6= 0 and v 6= 0 are �xed real numbers. So all 
oe�
ients u, v, ki, i = 1 . . . 3 and li, i = 1 . . . 3depend 
ontinuously on c. Therefore also kf + lg depends 
ontinuously on the point c.The next 
orollary follows from Lemma 3.13 and Lemma 3.16. If we modify the Taylorexpansion as it is des
ribed in Se
tion 3.3.2, then we 
an establish the result 
onsidering thebehavior of a sequen
e of the generated median 
ir
les.Corollary 3.17. Suppose we have a nested sequen
e of sub-domains (Ωi)i=1,2,3... ⊂ Ω0

Ωi+1 ⊂ Ωi,whi
h have de
reasing diameters δi, su
h that
lim
i→∞

δi = 0,and ci denotes the 
enter point of Ωi. Consider a pair of fun
tions f and g, whi
h de�nesan algebrai
 
urve in Ω0 ⊂ R
3

C(f, g,Ω0) = {x : f(x) = 0, g(x) = 0} ∩ Ω0.Suppose that there exists a point p, whi
h satis�es f(p) = g(p) = 0, not an in�e
tion pointof C(f, g,Ω0) and p ∈ Ωi for all i. We 
ompute
f̂i = G(f, g, (u, v), ci) and ĝi = G(f, g, (u′, v′), ci)for �xed values of u, v, u′, v′ 6= 0. We 
onsider the 
ir
les de�ned by the zero set of thequadrati
 Taylor expansions

pi = T 2
ci
f̂i and qi = T 2

ci
ĝi.Then the sequen
e of these 
ir
les 
onverges to a limit 
ir
le, whi
h is the os
ulating 
ir
le of

C(f, g,Ω0) in the point p. 53



3 Fat Ar
s for 3D Impli
it Algebrai
 CurvesCorollary 3.18. For all c ∈ Ω0 if we 
ompute f̂ = G(f, g, (u, v), c) = kf + lg, then the normof the 
ommon 
oe�
ient ve
tor k 
an be bounded by a 
onstant
∥
∥k
∥
∥ < L,whi
h depends only on f, g,Ω0 and on the 
hoi
e of (u, v).3.5.2 General Lower Bound for the Gradient LengthThe following lemma (Lemma 3.19) ensures, that G(f, g, (u, v), c) has also a non-vanishinggradient if we 
ompute fat ar
s in su�
iently small sub-domains, whi
h en
lose the algebrai

urve.Lemma 3.19. Suppose that there exists G > 0 in Ω0 for the polynomials f and g su
h that

∀x ∈ Ω0,
∥
∥∇f(x)

∥
∥ ≥ G and ∥

∥∇g(x)
∥
∥ ≥ G. (3.35)Consider a domain Ω ⊂ Ω0, whi
h has a diameter δΩ < ε, and there is a point p ∈ Ω su
hthat for all i = 1, . . . n− 1,

f(p) = g(p) = 0.The parameters u 6= 0 and v 6= 0 are arbitrary but �xed. We 
ompute h = G(f, g, (u, v), c). If
ε is su�
iently small, then there exists Ĝ > 0 
onstant, su
h that for any x ∈ Ω

∥
∥∇h(x)

∥
∥ ≥ Ĝ > 0.Proof. If x ∈ Ω ⊆ Ω0 then

∇h(x) = f(x)∇k(x) + k(x)∇f(x) + g(x)∇l(x) + l(x)∇g(x),where k and l are 
omputed as des
ribed in Se
tion 3.3.2. A

ording to the triangle inequality
∥
∥∇h(x)

∥
∥ ≥

∥
∥k(x)∇f(x) + l(x)∇g(x)

∥
∥ −

∥
∥f(x)∇k(x) + g(x)∇l(x)

∥
∥ ≥ (3.36)

≥
∥
∥k(x)∇f(x) + l(x)∇g(x)

∥
∥ −

∣
∣f(x)

∣
∣
∥
∥∇k(x)

∥
∥ −

∣
∣g(x)

∣
∣
∥
∥∇l(x)

∥
∥ .Sin
e we know that there exists a point p ∈ Ω su
h that f(p) = g(p) = 0, we obtain

∣
∣f(x)

∣
∣ ≤ ε

G
and ∣

∣g(x)
∣
∣ ≤ ε

G
, (3.37)where ε is an upper bound of the diameter of Ω. In Corollary 3.18 we also observed, thatthere exists L > 0 su
h that

∥
∥k
∥
∥ ≤ L.Sin
e kT = (∇kT,∇lT),

∥
∥∇k(x)

∥
∥ ≤ L and ∥

∥∇l(x)
∥
∥ ≤ L.We 
an also bound the value of the linear polynomials k and l on a su�
iently small sub-domain Ω. Suppose that the diameter of Ω is smaller than ε. If x ∈ Ω, then

∣
∣k(x)

∣
∣ =

∣
∣u+ k1(x− cx) + k2(y − cy) + k3(z − cz)

∣
∣ >

∣
∣u
∣
∣− ε

2

√
3L, (3.38)

∣
∣l(x)

∣
∣ =

∣
∣v + l1(x− cx) + l2(y − cy) + l3(z − cz)

∣
∣ >

∣
∣v
∣
∣− ε

2

√
3L,54



3.5 Convergen
ewhere c = (cx, cy, cz) denotes the 
enter of Ω. Sin
e u and v non-zero, if
ε <

min {u, v}√
3L

, (3.39)then ∣∣k(x)∣∣ ≥ u/2 and ∣∣l(x)∣∣ ≥ v/2.We supposed that ∇f(x) and ∇g(x) are linearly independent in any point of Ω0. If (3.39)is satis�ed for an Ω ⊆ Ω0, then there exists a general bound G̃ depending on u, v and G, su
hthat
∥
∥k(x)∇f(x) + l(x)∇g(x)

∥
∥ ≥ G̃ > 0, ∀x ∈ Ω.Therefore for all x ∈ Ω

∥
∥∇h(x)

∥
∥ ≥ G̃−

∥
∥f(x)∇k(x)

∥
∥ −

∥
∥g(x)∇l(x)

∥
∥ ≥(3.15)

≥ G̃− L
∣
∣f(x)

∣
∣− L

∣
∣g(x)

∣
∣ .Sin
e we know that there exists a point p ∈ Ω su
h that f(p) = g(p) = 0,

∥
∥∇h(x)

∥
∥ ≥ G̃− 2εL

G
.Suppose that

ε = min

{

G̃G

2L
,

u√
3L

,
v√
3L

}

. (3.40)If the diameter of Ω, denoted by δΩ, satis�es
δΩ <

ε

2
,then

∥
∥∇h(x)

∥
∥ ≥ G̃

2
= Ĝ > 0.Corollary 3.20. Suppose that the 
onditions of Lemma 3.19 are ful�lled for a 
ertain pair ofpolynomials f and g on the domain Ω0. If h = G(f, g, (u, v), c) is 
omputed in a su�
ientlysmall sub-domain Ω ⊂ Ω0 for an arbitrary pair of parameters u, v 6= 0, then s = T 2

c (h) 6≡ 0.3.5.3 Convergen
e of Taylor Expansion Modi�
ationNow we have to show that the fat ar
 thi
kness is su�
iently small 
ompared with thediameter of the 
omputational domain. The following lemma shows, how the 
omputed fatar
 thi
kness behaves as the size of the domain tends to zero.Lemma 3.21. Given two polynomials f, g de�ned over the domain
Ω0 = [α1, β1]× [α2, β2]× [α3, β3] ⊂ R

3. We suppose that the 
onditions of Lemma 3.19are satis�ed. We 
ompute a pair polynomials with spe
ial Hessian and apply the orthogonal-ization fun
tion (see (3.22))
(f̂ , ĝ) = O

(
G(f, g, (u, v), c), G(f, g, (u′, v′), c), c

)55



3 Fat Ar
s for 3D Impli
it Algebrai
 Curvesin the 
enter point c of a sub-domain Ω ⊂ Ω0. If the diameter δΩ of the sub-domain Ω issu�
iently small, then there exists a 
onstant C ∈ R su
h that
̺ ≤ Cδ3Ω, (3.41)where ̺ is the 
orresponding fat ar
 thi
kness 
omputed as in (3.33).Proof. Sin
e the 
onditions of Lemma 3.19 are satis�ed, we know that there exists Ĝ su
hthat

min{‖∇f̂‖, ‖∇ĝ‖} ≥ Ĝ,for any su�
iently small sub-domain Ω, whi
h en
loses the 
urve. We denote by p and q thequadrati
 Taylor expansion of f̂ and ĝ about the 
enter c of the domain Ω. Then
∥
∥
∥f̂ − p

∥
∥
∥
∞

=
∥
∥
∥f̂ − T 2

c (f̂)
∥
∥
∥
∞

<
1

6
max

v∈S1,x∈Ω

∣
∣
∣
∣
∣

d3f̂

dv3
(x)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

∗

δ3Ωand
∥
∥ĝ − q

∥
∥
∞

=
∥
∥ĝ − T 2

c (ĝ)
∥
∥
∞

<
1

6
max

v∈S1,x∈Ω

∣
∣
∣
∣

d3ĝ

dv3
(x)

∣
∣
∣
∣

︸ ︷︷ ︸

∗∗

δ3Ω.Re
all from Lemma 3.16 that G depends 
ontinuously on the points of the 
omputationaldomain Ω0 for ea
h pair of (u, v), where u 6= 0 and v 6= 0. Therefore also f̂ and ĝ depend
ontinuously on the points of the 
omputational domain Ω0. Thus for all f̂ a general upperbound C1 
an be given for (∗) and for all ĝ a general upper bound C2 
an be given for (∗∗).The fat ar
 thi
kness is de�ned by̺
Ω =

√

ε21 + ε22
G2

Ω −KΩ
,where

ε1 =
∥
∥
∥f̂ − p

∥
∥
∥BB and ε2 =

∥
∥ĝ − q

∥
∥BBBe
ause of the norm equivalen
es there exist C3 and C4, su
h that

ε1 ≤ C3

∥
∥
∥f̂ − p

∥
∥
∥
∞

and ε2 ≤ C4

∥
∥ĝ − q

∥
∥
∞
.So we observe, that

√

ε21 + ε22 ≤
1

6

√

(C1C3)2 + (C2C4)2

︸ ︷︷ ︸

M

δ3Ω.We assumed that Ĝ < GΩ is a general lower bound for ∥∥∥∇f̂∥∥∥ and ∥∥∇ĝ∥∥ independentof the 
hoi
e of the sub-domain Ω, if it is su�
iently small. Sin
e we also applied theorthogonalization step to the polynomials f̂ and ĝ,
∣
∣
∣∇f̂(c) · ∇ĝ(c)

∣
∣
∣ = 0 (3.42)56



3.5 Convergen
ein the 
enter point c of a domain Ω. If the diameter of the sub-domain Ω is su�
iently small,then there exists K > 0, whi
h does not depend on Ω and ea
h x ∈ Ω satis�es
∣
∣
∣∇f̂(x) · ∇ĝ(x)

∣
∣
∣ ≤ K.A

ording to (3.42) if the diameter of the sub-domain is su�
iently small, then the generalbound K satis�es K < Ĝ2. Thus this implies, that

̺Ω ≤
M δ3Ω

√

Ĝ2
Ω −KΩ

≤ M δ3Ω
√

Ĝ2 −K
≤ Cδ3Ω.

3.5.4 Comparison of Convergen
e RateWe 
on�rm here the approximation order of the lo
al fat ar
 generation algorithm(Algorithm 5) by numeri
al examples. We generate fat ar
s for single algebrai
 spa
e 
urvesegments in di�erent domains. We show, how the fat ar
 diameter behaves, if we redu
e thesize of the 
omputational domain.The domains are the axis aligned boxes in the global 
oordinate system:
Ωk = [−10−k, 10−k]3, k ∈ R. (3.43)Fig.3.4 shows the result of the fat ar
 
onstru
tions with using the Taylor expansionmodi�
ation in three di�erent Ωk for the pair of polynomials

f1(x, y, z) = x− yz

g1(x, y, z) = x2 + y2 + (z − 1)2 − 1.In the �rst �gure on the top is the impli
itly de�ned 
urve shown in red. The other �guresvisualize the generated fat ar
s for k = 1, 1.5, and 2.We 
onsider two pairs of polynomials in the domains Ωk, 1 ≤ k ≤ 8.25:
f2(x, y, z) = x+ z2 − yz2,

g2(x, y, z) = x2 − 4y + y2 − z + 0.5z2.and
f3(x, y, z) = 0.04x − x2 + x3 + 0.44y − 0.4xy + x2y − 1.4y2 +

xy2 + y3 + 0.04z + x2z − 0.4yz + y2z − z2 + xz2 + yz2 + z3,

g3(x, y, z) = x− x2 + xy + y2 + yz + 0.25z2.In Fig.3.5 we visualize the relation between the width of the generated fat ar
s and the size ofthe domain diameter for the fat ar
 generation strategies with di�erent median ar
 generationte
hniques. In the left the results for the polynomials f2 and g2 are shown for the values of
k = 1, 1.25 . . . 6. In the right side the test polynomials were f3 and g3, and the outputs are57
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Figure 3.4: Above: The zero set of f1 and g1 with the interse
tion 
urve for k = 0. Below: Fatar
s for k = 1, 1.5, 2
omputed for the values k = 2, 2.25 . . . 7. We show the negative logarithm of the asso
iatedfat ar
 diameter in a doubly-logarithmi
 plot. The expe
ted approximation order is three. Inthe examples it is 
on�rmed for the Taylor expansion modi�
ation. The lines denoted by Lshow the result of least-squares approximation with linear 
ondition (see 
ondition in (3.6)).The least-square approximations with quadrati
 normalization 
onditions (3.7) and (3.8),denoted in the �gures by Q1 and Q2. However, these least-squares approximation strategiesgave nearly the same results. By the Taylor expansion modi�
ations we used two di�erent
(u, v) parameter pairs. The line denoted by T1 shows the result by the 
hoi
e

(u, v) = (1, 2), (u′, v′) = (2, 1),and T2 shows the output by the parameter pair
(u, v) = (1, 5), (u′, v′) = (5, 1).However, here the outputs for the two strategies show nearly the same results again.3.6 Fat Ar
 Generation for Algebrai
 Spa
e CurvesSubdivision is a frequently used te
hnique and it is often 
ombined with lo
al approximationmethods. Su
h hybrid algorithms subdivide the 
omputational domain in order to separateregions where the topology of the 
urve 
an be des
ribed easily. The lo
al 
urve approxima-tion te
hniques 
an be applied in the sub-domains, where the topology of the 
urve has beensu

essfully analyzed. The regions with unknown 
urve behavior 
an be made smaller andsmaller with subdivision. 58



3.6 Fat Ar
 Generation for Algebrai
 Spa
e Curves

0 1 2 3 4 5 6 7
0

5

10

15

PSfrag repla
ements
k

− log d

T1T2

LQ1Q2

1

3

1 2 3 4 5 6 7 8
0

5

10

15

20
PSfrag repla
ements

k

− log d

T1T2

L

Q1

Q2

1

3

Figure 3.5: Comparison of relation between the fat ar
 diameter and the domain diameter for�ve median ar
 generation strategies. The negative logarithm of the asso
iated fat ar
 diameterare shown in a doubly-logarithmi
 plot, in the left side for the polynomials f2 and g2, in theright side for f3 and g3. The red lines, denoted by T 1 and T 2, show the results from theTaylor expansion modi�
ation by di�erent parameter values. The lines denoted in the pi
tureby Q1 (bla
k) and Q2 (green) show the output of least-square approximation with quadrati
normalization 
onditions ((3.7) and (3.8)). The result of least-square approximation with linear
ondition is denoted by L. The lines, denoted by T 1 and T 2 overlap ea
h other as well as theones denoted by L and Q23.6.1 Global AlgorithmThe algorithm GenerateFatAr
s (see Algorithm 6) generate fat ar
s for general algebrai
spa
e 
urves. It 
ombines the fat ar
 generation for single 
urve segments with re
ursivesubdivision.First it analyzes the Bernstein�Bézier 
oe�
ients of the polynomials with respe
t to the
urrent sub-domain. If no sign 
hange is present for one or both of the polynomials, thenthe 
urrent domain does not 
ontain any 
omponents of the algebrai
 
urve. Otherwise thealgorithm tries to apply the fat ar
 generation for the algebrai
 
urve segment. If this is notsu

essful, then the algorithm either subdivides the 
urrent domain into eight sub-domains,or returns the entire domain, if its diameter is already below the user-de�ned threshold ε.Note that the algorithm may return domains whi
h do not 
ontain any segments of theimpli
itly de�ned 
urve (�false positive boxes�). However, it is guaranteed that the methodreturns a 
olle
tion of bounding regions, whi
h 
ontains the impli
itly de�ned 
urve.3.6.2 ExamplesExample 3.22. The impli
itly de�ned 
urve is des
ribed by the equation system
y2 + 2x− 1 = 0,

z + x2 − 0.4 = 0.It is represented in the unit box Ω = [0, 1]3. The �rst �gure of Fig.3.6 shows the generatedmedian ar
s, the se
ond presents the generated fat ar
s within the 
omputational domains.The toleran
e was set to ε = 0.05. The number of generated fat ar
s is �ve. In the furtherexamples we do not visualize the whole fat ar
s, only the median ar
s and bounding boxes,59



3 Fat Ar
s for 3D Impli
it Algebrai
 CurvesAlgorithm 6 GenerateFatAr
s(f, g,Ω, ε)1: if Obs.3.2 true for f and g then2: return ∅ {the sub-domain is empty}3: end if4: if the 
urve is regular in Ω at least in one 
oordinate then5: A ← FatAr
Lo
al_3d(f, g,Ω, ε) {single fat ar
 generation}6: if A 6= ∅ then7: return A {... has been su

essful}8: end if9: end if10: if diameter of Ω > ε then11: subdivide the domain into 8 sub-domains Ω1, . . . ,Ω8 {subdivision}12: return ⋃8
i=1GenerateFatAr
s(f,Ωi, ε) {re
ursive 
all}13: end if14: return Ω {
urrent domain is small enough}

Figure 3.6: Median ar
s and fat ar
s for impli
itly de�ned spa
e 
urve.sin
e the fat ar
 shows only a slight di�eren
e 
ompared to the thi
kened median ar
 byrelatively small toleran
e.Example 3.23. In this example we approximate the interse
tion 
urve of quadri
 surfa
es.We apply the algorithm GenerateAr
s for three di�erent interse
tions of four di�erent pairs ofquadri
 surfa
es. The outputs are represented in Fig. 3.7. The numbers of used approximatingprimitives are given in Tab. 3.1 for ea
h interse
tion 
urve. If the 
urve has a singular point(here in 1.(b), 2.(
), 3.(b) and 4.(
)), then the algorithm returns not only fat ar
s but alsosub-domains as abounding regions. All the examples are represented in the unit 
ube [0, 1]3.The interse
tion 
urves are approximated within the toleran
e ε = 0.01. In example 1.(b)we approximate an algebrai
 
urve, whi
h has a singular point (the tangent ve
tor vanishes).This 
urve is the so 
alled Viviani 
urve, whi
h is de�ned by the interse
tion of a sphere anda 
ylinder, whi
h is tou
hing the sphere. Sin
e the fat ar
 generation is not possible in adomain where the 
urve has singular point, the approximating algorithm uses not only fatar
s but also a few sub-domains to bound the spa
e 
urve. In Fig.3.8 we show the result of60
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1.(a) 1.(b)-singular 1.(
)
2.(a) 2.(b) 2.(
)-singular
3.(a) 3.(b)-singular 3.(
)
4.(a) 4.(b) 4.(
)-singularFigure 3.7: Approximation of the interse
tion 
urves of quadri
 surfa
es.61



3 Fat Ar
s for 3D Impli
it Algebrai
 CurvesTable 3.1: Approximating interse
tion 
urve of quadri
 surfa
es. The number of used approxi-mating primitives are given for the examples shown in Fig. 3.7.Quadri
 Surfa
es Position (see Fig. 3.7) Number of Ar
s Number of Boxes1. sphere + 
ylinder (a) 80 0(b)-singular 104 248(
) 52 02. ellipsoid +hyperboloid of onesheet (a) 80 0(b) 76 0(
)-singular 96 763. rotationalparaboloid +hyperboli
 paraboloid (a) 60 0(b)-singular 108 156(
) 50 04. hyperboloid of twosheets + ellipti

ylinder (a) 80 0(b) 80 0(
)-singular 88 612the fat ar
 generation algorithm in 
omparison with bounding box generation for the 
urveby di�erent toleran
e bounds ε = 0.1, 0.01 and ε = 0.001. In the �rst row of the �gure theoutput of the fat ar
 generation method is visualized. The median ar
s of the generated fatar
s are shown in red and the boxes, whi
h are used themselves as bounding primitives, areshown as gray 
ubes. In the se
ond row the results of bounding box generation algorithmare shown (gray 
ubes) for the same toleran
es. The numbers of used bounding primitivesare shown in Table 3.2.Example 3.24. In this example we approximate the isophotes of surfa
es for di�erent lightdire
tions. Isophotes are 
urves on a surfa
e, where all points are exposed with equal lightintensity from a given light sour
e. An isophote of an impli
itly de�ned surfa
e f = 0 for a�xed dire
tion ve
tor d and angle ϕ tra
es the point set
I(f,d, ϕ) = {p : f(p) = 0, 〈d,∇f(p)〉 = cos(ϕ)‖∇f(p)‖},if we suppose that the dire
tion ve
tor is a unit ve
tor. In order to des
ribe an isophote fora given d and ϕ, we used the algebrai
 equation system

f = 0,

(fxd
x + fyd

y + fzd
z)2 − cos2 ϕ

(
f2
x + f2

y + f2
z

)
= 0,where d = (dx, dy, dz). These two equations allo
ate the points of the isophotes, whi
h belongto the dire
tion d and the angles ϕ and (π − ϕ). We approximate some isophotes of threedi�erent impli
itly de�ned surfa
es

S1 = {(x, y, z) : xy − z + 0.5 = 0},
S2 = {(x, y, z) : x2 + 2y2 + 2z2 − 1 = 0},
S3 = {(x, y, z) : x3 + 0.5y3 + z − 0.5 = 0},62



3.6 Fat Ar
 Generation for Algebrai
 Spa
e CurvesTable 3.2: Approximating interse
tion 
urve with singular point. The numbers of used approx-imating primitives are given for the examples shown in Fig. 3.8.
ε

Number of Primitives Number of BoxesNum. of Ar
s Num. of Boxes
0.1 68 56 284
0.01 104 248 2840
0.001 212 1592 26411

Fat ar
 generation

Bounding boxes

ε = 0.1 ε = 0.01Figure 3.8: Fat ar
 generation for the Viviani 
urve. In the �rst row the outputs of the fat ar
generation method are shown for three di�erent toleran
e bounds. In the se
ond row the resultof the bounding box generation is shown for the same toleran
e bounds as in the �rst row.63



3 Fat Ar
s for 3D Impli
it Algebrai
 CurvesTable 3.3: Number of used approximating primitives in the isophote approximations (see ex-ample in Fig.3.9.
S1

(0, 0,−1) (−1, 1,−4) (−2, 0,−3)
cosϕ Num. of Ar
s cosϕ Num. of Ar
s cosϕ Num. of Ar
s
0.8 66 0.7 19 0.5 15

0.85 44 0.8 25 0.65 18

0.9 48 0.88 56 0.8 28

0.95 32 0.95 54 0.9 22

0.99 28 0.99 26 0.97 31

S2

(0,−1, 0) (−1, 0,−1) (−1,−2,−1)
cosϕ Num. of Ar
s cosϕ Num. of Ar
s cosϕ Num. of Ar
s
0.4 112 0.2 152 0.4 152

0.6 96 0.3 132 0.6 106

0.8 128 0.6 104 0.7 82

0.9 104 0.8 52 0.8 80

0.99 80 0.9 80 0.9 80

S3

(−1,−1,−1) (−1, 1, 0) (0,−1,−1)
cosϕ Num. of Ar
s cosϕ Num. of Ar
s cosϕ Num. of Ar
s
0.6 28 0.2 35 0.3 16

0.7 32 0.4 52 0.4 32

0.75 58 0.52 75 0.5 44

0.8 107 0.7 80 0.7 70

0.85 120 0.82 58 0.99 79with the help of the fatar
 generation algorithm. For all the surfa
es we 
ompute isophotes forthree di�erent light dire
tions (see Fig. 3.9). In Tab. 3.3 we show the number of used approx-imating ar
s for ea
h isophote, along with the light dire
tions and angles. We approximatedthe isphotes in the domain [−1, 1]3 within the toleran
e ε = 0.05.
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Figure 3.9: Approximation of isophotes for di�erent light dire
tions.
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Chapter 4Fat Ar
s for Impli
itly De�nedAlgebrai
 CurvesIn this 
hapter we present an algorithm, whi
h generalizes the fat ar
 generation method tobound one-dimensional algebrai
 sets. We 
onsider algebrai
 systems 
onsist of n−1 linearlyindependent polynomials, whi
h de�ne one dimensional algebrai
 set (a set of 
urves) in R
n.4.1 Generalized Fat Ar
sWe summarize in this se
tion �rst the related results in approximation of one-dimensionalalgebrai
 sets. Then we introdu
e the de�nition of fat ar
s in R

n. In the end of the se
tion wewill state the approximation problem, su
h that one-dimensional algebrai
 sets are de�nedby polynomials represented in Bernstein�Bézier form.4.1.1 Approximation of Algebrai
 Spa
e CurvesRe
ently the interest for higher dimensional algebrai
 obje
ts has been in
reased in resear
h.The reason is the wide variety of appli
ations, whi
h appear in pra
ti
e or in physi
s, for in-stan
e the des
ription of physi
al �elds with several free variables, movements or deformationof surfa
es and volumes. Some of these problems are formulated with the help of multivariatepolynomial systems. In parti
ular we 
onsider su
h systems, whi
h have one dimensional setof solutions.The �rst numeri
al approa
hes were formulated to approximate the solution set of uni-variate and bivariate polynomials. However, even in the univariate 
ase these 
omputationsare very unstable for higher degree. In order to develop robust approximation algorithms agreat leap forward was to use Bernstein-Bézier polynomials. The stability of this representa-tion form allows to generalize the approximation algorithms for algebrai
 sets given in higherdimensional spa
e. The �rst general numeri
al algorithms, whi
h 
omputed with polynomialsgiven in BB-form, were developed by Sherbrooke and Patrikalakis [39℄. These are subdivisionmethods for �nding zero dimensional solution set of multivariate polynomial equations. Amore sophisti
ated algorithm was presented by Elber and Kim in [12℄. It uses multivari-ate Newton-Raphson method 
ombined with subdivision, in order to redu
e the number ofsubdivision steps during the 
omputations. Moreover this method 
an be applied to under-determined systems, where the set of solutions has arbitrary many dimensions, although it67



4 Fat Ar
s for Impli
itly De�ned Algebrai
 Curvesrequires to 
ompute some topologi
al information about the solution set. The method of El-ber and Kim has the additional advantage, that it 
an be extended to dete
t semi algebrai
sets.4.1.2 De�nition of Generalized Fat Ar
sWe would like to bound impli
itly de�ned algebrai
 
urves in R
n with a set of regions. Wegeneralize the fat ar
 
onstru
tion, whi
h we de�ned formerly in two- (Se
tion 2.1.2) andthree-dimensional spa
e (Se
tion 3.1.2). Generally a fat ar
 is a bounding region, whi
h is atubular neighborhood with a 
ertain radius of an approximating ar
.De�nition 4.1. A fat ar
 is de�ned in R

n by- a segment of a 
ir
ular ar
 (median ar
) S ⊂ Ω ⊂ R
n.- and a distan
e ̺ ∈ R.The fat ar
 is the point set

F(S, ̺) = {x : ∃x0 ∈ S,
∥
∥x− x0

∥
∥
2
≤ ̺}.As we saw in Se
tion 2.1.2 in the two-dimensional 
ase, the fat ar
 is a bounding region,whi
h 
onsists of a part of an annulus and two 
ir
ular disks. In the three-dimensional 
ase(see Se
tion 3.1.2) it is bounded by a segment of a torus and two spheri
al 
aps. Generallywe 
an say that in the n-dimensional spa
e a fat ar
 is a thi
kened 
ir
ular ar
, whi
h isbounded by a toroidal part and two spheri
al 
ups in the end.The median ar
 
an be represented as the zero set of spheres. This algebrai
 representationform is advantageous, sin
e it simpli�es the 
omputation of the interse
tion of spheres.4.1.3 Algebrai
 Spa
e CurvesSin
e the visualization of higher dimensional spa
e 
urves is di�
ult, and the number ofrequired 
omputational steps 
limbs fast with the raise of the dimension, the 
hoi
e of therepresentation plays an important role. The most widely used representations of polynomialsin geometri
 
omputing are the monomial, Lagrange, Hermite, B-Spline and Bézier forms.In order to 
onstru
t fat ar
s for algebrai
 
urves, we shall use the properties of the de�ningpolynomials. It is the most advantageous option, if the polynomials are given in the Bernstein-Bézier tensor produ
t form. It provides the 
onvex-hull property, the de Castejau-algorithm,degree manipulation formulas et
. Therefore we suppose that the input polynomials arede�ned in the form

f(x) =
l∑

k=0

dkBk,l(x), (4.1)with respe
t to an axis aligned domain
Ω0 = ×n

i=1[αi, βi] ⊂ R
n.The 
oordinates of the ve
tor l = (li)ni=1 denote the maximal degree of the basis polynomialsin ea
h variables xi. The ve
tor of indexes k is

k = (ki)ni=1, su
h that ki ∈ {0, . . . li}.68



4.2 Approximation of Regular Curve SegmentsThe 
oe�
ients are given as dk ∈ R, and the fun
tions are
Bk,l(x) =

n∏

i=1

Bi
ki,li(x

i),where Bj
i,n is de�ned as (2.2). For su
h fun
tions f : Rn → R, let us denote the zero level setwith

Z(f,Ω0) = {x : f(x) = 0} ∩Ω0.An algebrai
 
urve is given as the interse
tion of the zero sets of the polynomials
F = {f1, . . . , fn−1}

C(F,Ω0) =
n−1⋂

i=1

Z(fi,Ω0) = {x : ∀i = 1, . . . n− 1, fi(x) = 0} ∩ Ω0 (4.2)with respe
t to the domain Ω0. Clearly, the 
urve may be the empty set, or it may 
onsistof higher dimensional segments.4.2 Approximation of Regular Curve SegmentsIn order to generate fat ar
s for algebrai
 
urves in R
n, we present a lo
al algorithm, whi
hgenerates fat ar
s only for regular segments of the 
urve. In this se
tion �rst we des
ribe thegeneral de�nition of regular and 
oordinate-regular 
urve segments. Then we present a lo
alalgorithm to generate fat ar
s, and we analyze the behavior of this algorithm. Later on wewill 
ombine this lo
al bounding region generation with a subdivision te
hnique.4.2.1 Regularity CriterionIn order to bound an algebrai
 
urve, we analyze the behavior of the 
urve in the 
ompu-tational domain. We identify �rst empty sub-domains of the 
omputational domain as inSe
tion 2.2.1 and Se
tion 3.2.1. It is obvious, that Observation 3.2 is true in general for mul-tivariate polynomials in BB-representation. Therefore we 
an apply it in general for dete
tingthe domains without any segment of the algebrai
 
urve.In the two and three dimensional 
ases we used 
ertain regularity 
riteria to �nd singlesegments of the algebrai
 
urve. For the veri�
ation of su
h 
riteria we used the 
onvex hullproperty of the Bernstein polynomials. Here we state similar 
onditions as in the 
ase of twoand three dimensional algebrai
 
urves. Therefore we use the de�nitions:De�nition 4.2. A point p ∈ Ω of an algebrai
 
urve C(F,Ω) ⊂ R

n de�ned by the thepolynomial system F = {f1, . . . , fn−1} is 
alled regular, if the Ja
obian-matrix
J(F )(p) = (∇f1(p), . . .∇fn−1(p))has full rank (and 
alled singular otherwise). An algebrai
 
urve segment is regular on Ω ⊂

R
n, if ea
h point of the segment is regular in the domain.69



4 Fat Ar
s for Impli
itly De�ned Algebrai
 CurvesDe�nition 4.3. Suppose that an algebrai
 
urve is de�ned by the polynomial system
F = {f1, . . . , fn−1}. In any point p of the interse
tion 
urve C(F,Ω) ⊂ R

n we de�ne thesub-matri
es of the Ja
obian J(F )(p) as
Ji(F )(p) =

(
(∇f1(p)j)j 6=i, . . . (∇fn−1(p)

j)j 6=i

)
,whi
h are the (n−1)× (n−1) matri
es, we get from J(F )(p) with deleting the ith row. Thena point p of the algebrai
 
urve C(F,Ω) ⊂ R

n is 
alled i-regular for i ∈ {1, . . . n}, if
det(Ji(F )(p)) 6= 0,and 
alled i-singular otherwise. An algebrai
 
urve segment is i-regular in the domain Ω ⊂ R

n,if ea
h point of the segment is i-regular in Ω.Lemma 4.4. If there exists i, su
h that the algebrai
 
urve segment is i-regular (regular atleast in one 
oordinate) in the sub-domain Ω ⊂ R
n, then the 
urve segment is regular on Ω.Moreover it is not a loop.Proof. If the algebrai
 
urve is i-regular in a point p, then

det(Ji(F )(p)) 6= 0.Thus Ji(F ), whi
h is the sub-matrix of J(F ) has full rank: n− 1. Therefore also the matrix
J(F ) has at least rank n− 1. Sin
e J(F ) ∈ R

n×(n−1), it implies that J(F ) has full rank.The tangent ve
tor of the 
urve C(F,Ω) in a point p is the unit ve
tor, whi
h is per-pendi
ular to the sub-spa
e span by gradient ve
tors ∇fi(p), i = 1, . . . n − 1. If the 
urveis i-regular on a sub-domain Ω, then the ith 
oordinate of the tangent ve
tor is not zero inany point of Ω. Therefore the regularity in the ith 
oordinate ex
ludes the situation, that thetangent ve
tor returns to the same position if we tra
e the 
urve. So we 
annot have loopsin the domain.Control of 
oordinate regularity. In order to identify domains with i-regular 
urvesegments, we use the 
onvex hull property of the de�ning polynomials. We give here asu�
ient 
ondition for dete
ting su
h domains. Namely it is su�
ient to show, that thereexists a positive lower bound for the absolute value of one of the determinants Ji(F )(x) in thedomain Ω, whi
h bounds the value of the determinant away from zero. Sin
e we 
ompute withBB-polynomials we 
an represent the 
oordinates of the gradient ve
tor of the polynomial
f ∈ F in BB-tensor produ
t form using the notation of Se
tion 4.1.3

∇f j(x) =

l−ej∑

k

(dk − dk−ej )Bk−ej ,l−ej(x),where dk are the 
oe�
ients of f ∈ F and
ej = (0, . . . 1

⌣
j

, . . . 0).Thus the determinant of ea
h Ji(F ) matrix 
an be also given in a BB-tensor produ
t form.If we denote by mi the minimum and by Mi the maximum 
oe�
ient of detJi(F ), then for
Mimi > 0

∣
∣detJi(F )

∣
∣ ≥ min{

∣
∣Mi

∣
∣ ,
∣
∣mi

∣
∣} > 0.70



4.3 Median Ar
 GenerationIf su
h mi and Mi exist for an i, it implies that the 
urve is regular with respe
t to the ith
oordinate in Ω.However, one has to be 
areful to apply this regularity 
he
k, be
ause it is 
omputationallyexpensive. Suppose that ea
h polynomial has the same degree bound L = max{l1, l2, . . . ln},then the 
ost of 
omputation for one determinant is O(n3Ln+1). In 
omparison, the 
ost ofthe de Casteljau algorithm for a polynomial in one 
oordinate dire
tion is O(Ln+1) su
h as amultipli
ation of two polynomials. To �nd empty domains has less 
omputational 
ost. It is
omparable with the size of our input polynomials, it needs O(Ln) steps for ea
h polynomials,so to �nd an empty domain 
osts O(nLn).4.2.2 Lo
al AlgorithmWe present here an algorithm (Algorithm 7), whi
h is the generalization of the lo
al fat ar
generation for two and three dimensional regular 
urve segments. It generates boundingregions in sub-domains, where the n-dimensional 
urve is regular with respe
t to at least one
oordinate. Later on this lo
al method will be 
ombined with subdivision te
hnique like thetwo and three-dimensional lo
al fat ar
 generation methods (Algorithm 3 and 5).In order to dete
t sub-domains with regular algebrai
 
urve segments, we use the approa
hdes
ribed in Se
tion 4.2.1.The fat ar
 generation is similar to the low dimensional 
ases des
ribed in Se
tion 2.3.1and Se
tion 3.2.2. First we 
ompute the median ar
. Therefore we generalize the ar
generation te
hnique, whi
h is 
omputing polynomials with spe
ial Taylor expansions (seeSe
tion 2.3.3, Se
tion 3.3.2). This method 
omputes the median ar
 in algebrai
 form, as thezero set of spe
ial quadrati
 equations, whi
h are simply equations of spheres.The distan
e estimation method generalizes the approa
h from Se
tion 4.4. It boundsthe BB-distan
e in between ea
h polynomial and the asso
iated quadrati
 Taylor expansion.Then an upper bound is generated for the one-sided Hausdor� distan
e of the median ar
and the algebrai
 spa
e 
urve.The algorithm is su

essful, if the median ar
 is found, the fat ar
 thi
kness 
an be
omputed, and it is smaller than the pres
ribed toleran
e ε. Then the algorithm returns a fatar
, whi
h bounds the 
urve segment in the appropriate sub-domain. If the lo
al algorithmfails then it returns the empty set.4.3 Median Ar
 GenerationThe lo
al algorithm generates �rst an approximating ar
 (median ar
) for the impli
itlyde�ned 
urve. The median ar
 generation methods for two- and three-dimensional 
urves
an be found in Se
tion 2.2.3, 2.3.2, 2.3.3 and Se
tion 3.3. In Se
tion 2.2.3 we des
ribeda method, whi
h generates parametri
 approximation of impli
itly de�ned 
urves. All theother methods, we presented, generate approximating ar
 in impli
it form. These methods
an be generalized to higher dimensional 
urves. However, we generalize in this se
tion onlythe strategy, whi
h modi�es the Taylor expansion of the polynomials.4.3.1 Median Ar
 Generation Using Taylor ExpansionWe suppose that the polynomial system F = {f1, f2, . . . , fn−1} des
ribes a one dimensionalalgebrai
 set in R
n. Let us denote the algebrai
 variety of the system in the sub-domain Ω71



4 Fat Ar
s for Impli
itly De�ned Algebrai
 CurvesAlgorithm 7 FatAr
Lo
al_nd (F,Ω, ε)Require: The 
urve is regular with respe
t to at least one 
oordinate in Ω.1: f̂i modi�ed polynomials2: pi ← T 2
c (f̂i) spheri
al approximations3: if pi 6= 0 then4: Pi ← zero 
ontour of pi5: S ← ⋂n−1

i=1 Pi {median 
ir
le}6: if S 6= ∅ then7: G← ∀i ∈ {1, . . . , n− 1}, 0 < G ≤ ‖∇f̂i‖8: K ← upper bound for |∇f̂i · ∇f̂j|9: if 0 < G and 0 < G2 −
(
n−1
2

)
K then10: ̺← upper bound of HDΩ(S, C(f̂i,Ω)) {see Lemma 4.18}11: if ̺ 6 ε then12: F = {x : ∃y ∈ S,

∣
∣x− y

∣
∣ ≤ ̺} ∩Ω {fat ar
}13: return F {fat ar
 has been found}14: end if15: end if16: end if17: end if18: return ∅ {no fat ar
 has been found}by

C(F,Ω) = {x : ∀f ∈ F, f(x) = 0} ∩ Ω.We further assume that this 
urve segment is regular at least in one 
oordinate in the sub-domain Ω. In order to generalize the median ar
 generation method from Se
tion 2.3.3 andSe
tion 3.3.2, we reformulate the polynomial system F . We 
ompute an algebrai
 system F̂with n− 1 new polynomials, su
h that for all f̂ ∈ F̂

∀f̂ ∈ F̂ , C(F,Ω) ⊂ Z(f̂ ,Ω) = {x : f̂(x) = 0} ∩ Ω.Moreover ea
h new polynomial f̂ ∈ F̂ has to satisfy the 
ondition
H(f̂)(c) =






λ · · · 0... . . . ...
0 · · · λ




 = λ In×n, λ ∈ R, (4.3)where c denotes the 
enter of the sub-domain Ω. The quadrati
 Taylor expansion of f̂ about c

p(x) = T 2
c (f̂) = f̂(c) +

n∑

i=1

∂f̂(c)

∂xi
(xi − ci) +

λ

2

n∑

i=1

(xi − ci)2possesses a spheri
al zero 
ontour p(x) = 0.De�nition 4.5. A polynomial f is 
alled a polynomial with spe
ial Hessian in the point c,if the Hessian matrix of f in the point c is equal to a matrix λIn×n, where λ ∈ R.72



4.3 Median Ar
 GenerationA polynomial f̂ with spe
ial Hessian in the point c satis�es the equations
∂2f̂(c)

∂xi∂xi
− ∂2f̂(c)

∂xi+1∂xi+1
= 0, i = 1, . . . n− 1and

∂2f̂(c)

∂xi∂xj
= 0, 1 ≤ i < j ≤ n. (4.4)We 
ompute the polynomial f̂ ∈ F̂ as 
ertain 
ombination of the original polynomials fi ∈ F .In order to provide su�
iently many degrees of freedom in the system (4.4), we 
onsiderpolynomial multipliers in the 
ombinations. On the other hand we restri
t ourselves to linearmultipliers. So ea
h polynomial with spe
ial Hessian is 
omputed as

f̂(x) =
∑

j∈J

kj(x)fj(x), (4.5)where J ⊆ {1, . . . , n − 1}. The linear multipliers are given for ea
h j ∈ J as
kj(x) = uj +

n∑

i=1

kij(x
i − ci), kij , uj ∈ R, (4.6)where c = (ci)ni=1 denotes the 
enter point of the sub-domain Ω. The 
oe�
ients of kj 
anbe 
omputed by solving a linear system. In order to avoid that the system (4.4) be
omesoverdetermined, the number of unknowns in the multipliers has to be greater than equal asthe number of equations.In the former 
hapters for n = 2, 3 we used all polynomials fi in the 
omputation ofthe new polynomials. For n = 2 this was obvious, sin
e we had only one polynomial, andwe used a single linear polynomial as a multiplier, whi
h has three 
oe�
ients. The system
hara
terizing the spe
ial Hessian matrix has two equations. If we �x the 
onstant termof the linear multiplier, we arrive at a non-homogeneous system, whi
h has full rank under
ertain 
onditions (see Lemma 2.9). Thus the system has a unique solution.In three dimensions, the system (4.4) has �ve equations. If we use the 
ombination ofboth input polynomials and �x the 
onstant terms of the linear multipliers, we have six freevariables. So the system is under-determined. We observed, that our equation system in(3.11) has a full rank, if the 
ondition of Lemma 3.6 for the gradients is satis�ed. In order to
ompute the multipliers kj uniquely, we 
hose from the solution spa
e of the 
oe�
ients theshortest solution ve
tor (3.15). This minimization problem always has a unique solution.In the n-dimensional 
ase a polynomial f̂ de�ned as in (4.5) 
an be found by solving ahomogeneous system with n(n+1)

2 − 1 equations. To avoid that the system (4.4) be
omesoverdetermined, the number of equations should not ex
eed the number of variables. In the
n-dimensional spa
e a linear polynomial has n+1 
oe�
ients. In order to obtain non-trivialsolution, we always 
hoose the 
onstant term uj of the linear multipliers kj as arbitrary but�xed parameter values for all j. Thus the equation system redu
es to a non-homogeneousone, where ea
h linear multiplier provides n free variables. By this assumption, if the trivialsolution satis�es the system (4.4), it implies that a 
ertain linear 
ombination of the originalpolynomials also satisfy (4.3). 73



4 Fat Ar
s for Impli
itly De�ned Algebrai
 CurvesObservation 4.6. Let NJ denote the number of the elements of the index set J ⊆ {1, . . . , n}.In order to avoid that the system (4.4) is overdetermined for an arbitrary but �xed parameterve
tor u = (uj)j∈J,
n(n+ 1)

2
− 1− n ·NJ ≤ 0should be satis�ed. This implies that

⌈
n+ 1

2

⌉

≤ NJ. (4.7)If a new polynomial f̂ is 
omputed as
f̂(x) =

∑

j∈J

kj(x)fj(x), (4.8)and c is the 
enter of the 
omputational domain Ω, then
H(f̂)(c) =

∑

j∈J

∇kj(c)∇fj(c)T +∇fj(c)∇kj(c)T + kj(c)H(fj)(c).Sin
e we know that the value kj(c) = uj are arbitrary but �xed, the system (4.4) 
an bewritten as
AJ k = bJ, (4.9)where k 
onsists of the 
oe�
ient ve
tors of the polynomials kj for j ∈ J

kT =
(
(k1j , . . . k

n
j )

T
j∈J

)
.The rows of the system are the equations derived from (4.4) by substituting (4.5) and (4.6).The ve
tor bJ ∈ R

n(n+1)/2−1 
onsists of the 
oordinates






−
∑

j∈J

uj

(
∂2fj(c)

∂xi∂xi
− ∂2fj+1(c)

∂xi+1∂xi+1

)

, for all 1 ≤ i ≤ n− 1

−
∑

j∈J

uj
∂2fj(c)

∂xk∂xl
, for all 1 ≤ k ≤ n, k + 1 ≤ l ≤ n

(4.10)depending on the order of the equations in (4.4). All entries of the matrix AJ are equal tozero or to
±∂fj(c)

∂xi
, for 
ertain 1 ≤ i ≤ n− 1, j ∈ J. (4.11)In the next se
tion, in Se
tion 4.3.2, we 
onsider in details the stru
ture and the solvabilityof su
h systems. In Lemma 4.10 we show, that a polynomial f̂ with spe
ial Hessian in the
enter point c of a sub-domain Ω 
an always be 
omputed, if the gradient ve
tors ∇fi(c) arelinearly independent and f̂ is the 
ombination of all polynomials in F

f̂(x) =
n−1∑

i=1

ki(x)fi(x), (4.12)74



4.3 Median Ar
 GenerationTable 4.1: Constru
tion of new polynomials with spe
ial Hessian.dimension num. of equ. num. of 
oe�. dim. of sol.sys.
n 1

2n(n+ 1)− 1 n(n− 1) 1
2 (n− 1)(n− 2)

2 2 2 0
3 5 6 1
4 9 12 3
5 14 20 6
6 20 30 10

100 5049 9900 4851
1000 500499 999000 498501i.e. if J = {1, . . . , n − 1}. Therefore we denote the linear system (4.9) for the index set

J = {1, . . . , n− 1} by
A := AJ and b := bJ.In order to �nd the 
oe�
ients of ki we solve the non-homogeneous system

Ak = b,with an (n(n − 1)/2) × (n(n − 1)) matrix whi
h has full rank (see Lemma 4.10). We showin Table 4.1 the behavior of this linear system for di�erent value of the dimension n. It isobvious, that the number of 
oe�
ients and the dimension of the solution system in
reasesdrasti
ally if we in
rease the dimension n. However, in low dimensional 
ases, like n = 2, 3,the size of the linear system is still small.The solution of system (4.4) for three- or higher dimensional problems has an at least onedimensional solution spa
e. However, we need only one set of 
oe�
ients, whi
h de�nes themultipliers ki. Therefore we 
ompute the solution ve
tor k, whi
h has the smallest l2 norm
∥
∥k
∥
∥
2
→ min subje
t to Ak = b. (4.13)Therefore the multipliers ki obtained by the 
onstru
tion are unique for ea
h parameterve
tor u. So we 
an introdu
e fun
tion G, whose value depends on the set of polynomials

F = {f1, . . . , fn−1}, a value of u and the 
enter point c of a domain Ω. The asso
iated valueof the fun
tion is given as the solution of the minimization problem (4.13)
G(F,u, c) =

n−1∑

i=1

kifi. (4.14)Remark 4.7. If the right hand side of the system (4.9), ve
tor b, vanishes for a 
ertainparameter ve
tor u, then the solution set of (4.9) is a subspa
e of Rn(n−1). It implies thatalso the trivial solution is a solution of the system. Therefore the linear 
ombination of fi ∈ Fful�lls the 
ondition (4.4). A

ording to (4.13) we always 
hoose the solution of the system(4.9) whi
h has the smallest length. So in this spe
ial 
ase all kj are 
onstants.The polynomial f̂ = G(F,u, c) is a polynomial with spe
ial Hessian in the point c. Thusthe quadrati
 Taylor expansion of f̂ about c has a spheri
al zero level set. We 
ompute75



4 Fat Ar
s for Impli
itly De�ned Algebrai
 Curves
n−1 polynomials F̂ = {f̂1, . . . , f̂n−1} for di�erent parameter ve
tors ui, i = 1, . . . n−1. Thequadrati
 Taylor expansion of ea
h polynomial f̂i ∈ F̂ about c, denoted by

pi = T 2
c f̂i,has a spheri
al zero level set. If P = {p1, . . . , pn−1}, then these quadrati
 polynomials de�nethe algebrai
 set

S(P,Ω) = {x : ∀pi ∈ P, pi(x) = 0} ∩ Ω.If this algebrai
 set is one dimensional, then it forms a 
ir
ular ar
. Later we show inSe
tion 4.5.2, that asymptoti
ally this ar
 exists. The ar
 
an be used as an approximating
ir
ular ar
 of the 
urve C(F,Ω). We estimate the error of this approximation by boundingthe distan
e of the algebrai
 sets C(F̂ ,Ω) and S(P,Ω).4.3.2 Computing Polynomials with Spe
ial HessianIn order to 
ompute a polynomial with spe
ial Hessian, one has to solve a linear systems(4.9) whi
h is derived from (4.4) with substituting (4.5) and (4.6). To des
ribe the matrix ofsu
h linear system, we introdu
e the following operator A : Rn → R
(n(n+1)/2−1)×n, su
h that

A(v) =
(

A1

A2

)

,where A1 is the (n − 1)× n dimensional matrix
A1 =








v1 −v2 0 . . . 0
0 v2 −v3 0 . . . 0

0
. . . 0

0 . . . 0 vn−1 −vn






and the matrix A2 is n(n−1)

2 × n dimensional
A2 =























v2 v1 0 . . . 0
v3 0 v1 0 . . . 0... . . .
vn 0 . . . 0 v1

0 v3 v2 0 . . . 0
0 v4 0 v2 . . . 0... . . .
0 vn 0 . . . 0 v2. . .
0

. . . 0 vn vn−1























.

A

ording to the de�nition of A the sub-matri
es of AJ 
an be given as the 
on
atenation ofthe matri
es
AJ = (A(∇fj(c)))j∈J.76



4.3 Median Ar
 GenerationLemma 4.8. If v ∈ R
n is not the null-ve
tor, then

rank(A(v)) = n.Proof. The ve
tor v = (vi)ni=1 is not the null-ve
tor, thus there exists a 
oordinate vj 6= 0.A

ording to the de�nition of the operator A the following n× n sub-matrix 
an be sele
tedfrom A(v) for j < n

Sj =















vj 0 . . . v1 . . . 0
0 vj v2. . . ...

vj −vj+1

vj+1 vj... . . . 0
0 . . . vn−1 0 vj















.

If j = n, then
Sn =










vn 0 . . . v1

0 vn v2. . . ...
vn vn−1

vn−1 −vn










.Therefore we observe, that
det(Sj) =

{
(vj)n−2

(
(vj)2 + (vj+1)2

)
, if j < n

(vn)n−2
(
−(vn−1)2 − (vn)2

)
, if j = nSin
e we supposed that vj is non-zero

det(Sj) 6= 0.Thus A(v) always has a non-singular n × n sub-matrix. Sin
e A(v) is a matrix with n
olumns we arrive at
rank(A(v)) = n.Lemma 4.8 guarantees, that A(v) is a matrix with full rank if v 6= 0.Remark 4.9. Ea
h 
oordinate of the ve
tor A(v)u 
an be given as

viui − vi+1ui+1 for 
ertain 1 ≤ i ≤ n− 1or as
vkul + vluk for 
ertain 1 ≤ k ≤ n− 1, k + 1 ≤ l ≤ n.Sin
e these 
oordinates are symmetri
 in v and u it implies that

A(v)u = A(u)v.77



4 Fat Ar
s for Impli
itly De�ned Algebrai
 CurvesTherefore we 
an establish that, if we multiply it by the ve
tor u ∈ R
n

A(v)u = 0 i� v = 0 or u = 0.Now we de�ne an operator B, whi
h 
ombines the image matri
es of the operator A fora 
ertain set of ve
tors. If vi ∈ R
n for i = 1, . . . , k, then

B : Rn×k → R
(n(n+1)/2−1)×nk, B(v1, . . . ,vk) = (A(v1)|A(v2)| . . . |A(vk)) .The de�nition of A and B implies, that the matrix of the system (4.9) 
an be given as

AJ = (A(∇fj(c)))j∈J = B((∇fj(c))j∈J).Theorem 4.10. Suppose that the ve
tors vi ∈ R
n for i = 1, . . . , k are linearly independent.Then

dim (Ker(B(v1, . . . ,vk))) ≥
(
k

2

)

.Proof. A ve
tor u ∈ R
nk is the element of the kernel of the matrix B(v1, . . . ,vk) if

B(v1, . . . ,vk)u = 0.We 
onsider the set of ve
tors N
N =







(0, . . . , 0
︸ ︷︷ ︸

n(j−1)

,vT
i , 0, . . . , 0
︸ ︷︷ ︸

n(i−j−1)

,−vT
j , 0, . . . , 0
︸ ︷︷ ︸

n(j−i)

)T : 1 ≤ j < i ≤ k







.These ve
tors are linearly independent, sin
e any linear 
ombinations of them forms a ve
tor,whi
h is a 
ertain linear 
ombination of the ve
tors vi in between the (j − 1)n + 1-th and
jn-th 
oordinates. Moreover a

ording to Remark 4.9 for any u ∈ N

B(v1, . . . ,vk)u = A(vi)(vj) +A(vj)(−vi) = A(vi)(vj)−A(vj)(vi) = 0.Sin
e the set of ve
tors N 
onsists of (k2) elements, it implies that
dim (Ker(B(v1, . . . ,vk))) ≥

(
k

2

)

.Corollary 4.11. The matrix of the system (4.9) for an index set J is as
AJ = B((∇fj(c))j∈J).If ∇fj(c) are linearly independent for j ∈ J, then the rank of AJ 
an be bounded by

rank(AJ) ≤ n ·NJ −
(
NJ

2

)

,where NJ the size of the index set J. 78



4.3 Median Ar
 GenerationObservation 4.12. Given a set of (n− 1) polynomials F = {fi}n−1
i=1 in a 
ertain domain Ω.We 
hoose an index set J ⊆ {1, . . . , n − 1} whi
h spe
i�es the set of polynomials {fj}j∈J.Suppose that the gradient ve
tors ∇fj(c) are linearly independent for j ∈ J in the 
enterpoint c of Ω. In order to 
ompute a polynomial with spe
ial Hessian in the point c, we needto solve the linear system (4.9). If J ⊂ {1, . . . , n − 1}, then the rank of the system matrix issmaller than the number of rows (the matrix does not have full rank).We 
ompute a new polynomial with spe
ial Hessian by solving the linear system (4.9).The right-hand side of the system bJ is 
omputed as the 
ombination of the parametervalues u = (uj)j∈J and the se
ond derivatives of the polynomials evaluated in the 
enter ofthe 
omputational domain (see (4.10)). If the system matrix AJ has full rank and there aremore variables than equations, it guarantees that for any 
hoi
e of u = (uj)j∈J the linearsystem has a solution. A

ording to Observation 4.12 AJ has full rank if the new polynomial

f̂ is 
omputed for the index set J = {1, . . . , n− 1}, i.e. as the 
ombination of all polynomialsin F .Note that Corollary 4.11 only implies for the index set J = {1, . . . , n− 1}, that
rank(AJ) ≤

n(n+ 1)

2
− 1.Therefore we still have to prove, that for J = {1, . . . , n− 1}

rank(AJ) ≥
n(n+ 1)

2
− 1.Lemma 4.13. Given a set of linearly independent ve
tors {vi}n−1

i=1 ∈ R
n, then

rank(B(v1, . . . ,vn−1)) =
n(n+ 1)

2
− 1.Proof. We des
ribe here how to prove that the rows of the matrix B(v1, . . . ,vn−1) are linearlyindependent for n = 3. Analogously the same 
an be proven for higher dimensional 
ases.If n = 3 the matrix B(v1,v2) is de�ned by the ve
tors v1,v2 ∈ R

3, whi
h are both notthe zero ve
tors. The matrix is
B(v1,v2) = (A(v1)|A(v2)) =









v11 −v21 0 v12 −v22 0
0 v21 −v31 0 v22 −v32
v21 v11 0 v22 v12 0
v31 0 v11 v32 0 v12
0 v31 v21 0 0 v22









,where vT
i = (v1i , v

2
i , v

3
i ). Sin
e v1,v2 ∈ R

3 are linearly independent there exists only one unitve
tor m ∈ R
3, whi
h is perpendi
ular to both ve
tors v1 and v2. We assume, that there isa ve
tor uT = (u1, u2, u3, u4, u5) 6= 0, whi
h satis�es

uTB(v1,v2) = 0,i.e. the rows of the matrix are linearly dependent. Let us denote by B the matrix, whi
h wederive from B(v1,v2) by 
hanging the order of the 
olumns
B =









v11 v12 −v21 −v22 0 0
0 0 v21 v22 −v31 −v32
v21 v22 v11 v12 0 0
v31 v32 0 0 v11 v12
0 0 v31 v32 v21 v22









.79



4 Fat Ar
s for Impli
itly De�ned Algebrai
 CurvesIf the �rst two 
oordinates of uTB are zero, then the equations
u1 = c1m

1,

u3 = c1m
2, (4.15)

u4 = c1m
3,have to be satis�ed for a 
ertain c1 ∈ R, where m = (m1,m2,m3). If the third and the fourth
oordinates of uTB are zero then

u2 − u1 = c2m
2,

u3 = c2m
1, (4.16)

u5 = c2m
3,and if the last two 
oordinates are zero, then

−u2 = c3m
3,

u4 = c3m
1, (4.17)

u5 = c3m
2,have to be satis�ed for 
ertain c2, c3 ∈ R. The se
ond and the third equation of ea
h system(4.15), (4.16) and (4.17) imply for all i, j ∈ {1, 2, 3} that

cjm
i = cim

j .If we add the �rst three equations from (4.15), (4.16) and (4.17), then we obtain that
c1m

1 + c2m
2 + c3m

3 = 0. (4.18)Suppose that ci 6= 0, then we substitute ea
h mj for (cj/ci)mi where i 6= j in (4.18), whi
hresults that
mi(c

2
1 + c22 + c23) = 0.Therefore mi has to be zero. This implies, that for all i = 1, 2, 3 either ci is zero or mi is zero.Therefore we 
an derive from (4.15), (4.16) and (4.17), that all 
oordinates of the ve
tor uare zero. It is in 
ontradi
tion with our assumption, that u 6= 0. Thus the rows of B andalso the rows of B(v1,v2) are linearly independent. Sin
e the number of rows in B(v1,v2) isless than the number of 
olumns, the rank of the matrix is equal to the number of rows

rank(B(v1,v2)) =
3(3 + 1)

2
− 1 = 5.This lemma implies, that the matrix of the linear system (4.9)

AJ = B((∇fj(c))j∈J)for J = {1, . . . , n− 1} has the rank
rank(AJ) =

n(n+ 1)

2
− 1,if we suppose that the gradient ve
tors of the original polynomial system F are linearlyindependent in the 
enter of the 
omputational domain.80



4.3 Median Ar
 Generation4.3.3 Orthogonalization of the Polynomial SystemIn order to get e�
ient error bound for the algebrai
 
urves C(F̂ ,Ω) and S(P,Ω), we re-de�nethe set of polynomials F̂ . We use the linear 
ombinations of them to keep the spe
ial formof ea
h polynomials.Remark 4.14. If ea
h f̂i ∈ F̂ ful�lls the property of fun
tions with spe
ial Hessians (4.4),then any linear 
ombination of them̂
h =

∑

f̂i∈F̂

cif̂i, ci ∈ R,also ful�lls the 
ondition of spe
ial Hessian (see (4.4)). Thus T 2
c (ĥ)(x) = 0 de�nes a spherein R

n.Therefore a new set of polynomials 
an be generated F ∗, su
h that
∀i, j = 1, . . . n− 1, i 6= j, ∇f∗

i (c) ⊥ ∇f∗
j (c). (4.19)in the 
enter of the domain. This new system 
an be dedu
ed with the help of theGram-S
hmidt orthogonalization of the ve
tors ∇f̂i(c). If the ve
tors ∇f̂i(c) are linearlyindependent, then we 
an 
ompute n− 1 ve
tors vi, whi
h are pairwise orthogonal, and ea
hnew ve
tor is the linear 
ombination of ∇f̂i(c)

vi =

n−1∑

i=1

µi∇f̂i(c), µi ∈ R.If we 
ompute the linear 
ombination of the polynomials f̂i with the same 
oe�
ients
f∗
i =

n−1∑

i=1

µif̂i,then they also ful�ll the 
ondition of spe
ial Hessians a

ording to Remark 4.14. Moreover(4.19) is satis�ed for ea
h pair of polynomials. Thus we introdu
e the fun
tion O, whi
hassigns to the polynomials f̂i and the 
enter point c of a domain Ω. It generates a set ofpolynomials
F ∗ = O(F̂ , c) = {f∗

i : i = 1, . . . n− 1} (4.20)as it is des
ribed above.4.3.4 Conne
tion with the Os
ulating Cir
leNow we 
onsider the 
ase, where the 
enter of the 
omputational domain Ω is a point of thealgebrai
 
urve C de�ned by the polynomials fi, i = 1, . . . n−1. If the 
enter point is denotedby c, then
∀i ∈ {1, . . . n− 1}, fi(c) = 0. (4.21)As we saw it in the three dimensional 
ase, this spe
ial 
ase plays an important role duringthe 
omputations. 81



4 Fat Ar
s for Impli
itly De�ned Algebrai
 CurvesA new set of polynomials F̂ is 
omputed as the 
ombination of fi using a the strategyfrom Se
tion 4.3.1. The quadrati
 approximation of ea
h polynomial is
si = T 2

c (f̂i).If (4.21) is satis�ed, then the quadrati
 approximating polynomial si has the following form
si(x) = ∇f̂i(c)T (x− c) + λi(x− c)T (x− c), (4.22)where

H(f̂i)(c) = λiI
n,like in (4.3). So we 
an represent the zero set of ea
h si in the form

〈

x−
(

c+
1

λ
∇f̂i(c)

)

,x−
(

c+
1

λ
∇f̂i(c)

)〉

=

∥
∥
∥∇f̂i(c)

∥
∥
∥

2

λ2
i

,as we already observed in the three-dimensional 
ase. The radius of the sphere si = 0 hasthe length
r =

∥
∥∇h(c)

∥
∥

λ
.Lemma 4.15. Suppose we have a system of polynomials F = {fi, i = 1, . . . n − 1} and

J = {1, . . . n− 1}. The polynomial system de�nes an algebrai
 
urve in the domain Ω

C(F,Ω) = {x, ∀i fi(x) = 0} ∩ Ω.For any polynomial f̂ is 
omputed as
f̂ = G(FJ,u, c).The sphere de�ned as the zero set of the polynomial

s = T 2
c (f̂)has at least se
ond order 
onta
t with the algebrai
 
urve C. Moreover the interse
tion 
urve ofthe a�ne subspa
e de�ned by the tangent and the normal dire
tion of the 
urve (the os
ulatingplane) in the point c and the sphere is the os
ulating 
ir
le of the 
urve in the point c.Proof. In this proof we use similar reasoning as in the three-dimensional 
ase in Lemma 3.12.Suppose that in a 
ertain neighborhood of the point c the algebrai
 
urve 
an be parametrizedwith ar
 length parametrization. It is not a restri
tion, sin
e we are 
omputing only withregular segment of the algebrai
 
urve. The parametrization is denoted by

p(t), where p(t0) = c.This 
urve is a 
urve on the surfa
e f̂ = 0 a

ording to the de�nition, therefore it satis�es
dif̂(p(t))

dti
= 0,82



4.4 Distan
e Estimatefor any i. Sin
e s is the quadrati
 Taylor expansion of f̂ about c, therefore
〈∇s(c),p′(t0)〉 = 0and

ds(p(t))

dt
=

d2s(p(t))

dt2
= 0. (4.23)Moreover if the se
ond derivative vanishes, then

〈∇s(c),p′′(t0)〉 = λ.Sin
e we parameterized the 
urve p(t) with ar
 length parametrization, therefore
〈∇s(c), κn(t0)〉 = λ,where n(t0) denotes the unit normal ve
tor of the 
urve in the point c. Thus the orthogonalproje
tion of the radius of the sphere starting from the 
urve point c to the normal of the
urve has a �xed length 〈∇s(c)

λ
,n(t0)

〉

=
1

κ
.It is exa
tly the radius of the os
ulating 
ir
le of the 
urve at the point c. We know, that theinterse
tion of a sphere and a two dimensional a�ne sub-spa
e is a 
ir
le. The radius of su
ha 
ir
le has the same length as the orthogonal proje
tion of the radius of the sphere startingfrom a point of the 
ir
le into the a�ne sub-spa
e. The tangent and normal dire
tions ofthe interse
tion 
ir
le of the sphere with the os
ulating plane are the same as the os
ulating
ir
le of the 
urve, therefore the se
ond statement of the lemma is 
on�rmed.4.4 Distan
e EstimateIn this se
tion we des
ribe a method to estimate the distan
e of two algebrai
 spa
e 
urves.Sin
e the 
urves are de�ned as the interse
tion of algebrai
 surfa
es, the method is based onthe distan
e estimation of the impli
itly de�ned surfa
es. First we generalize the distan
eestimation te
hnique from Se
tion 3.4.2 for impli
itly de�ned and parametri
 
urves. In orderto get a su�
ient distan
e estimation for algebrai
 spa
e 
urves, we use pairwise distan
eestimation between the de�ning algebrai
 surfa
es.4.4.1 Distan
e of Algebrai
 and Parametri
 Spa
e CurvesIn order to bound the distan
e of algebrai
 spa
e 
urves, we generalize the result from [20℄,whi
h we used in the three dimensional 
ase to bound the distan
e of parametri
 and impli
itlyde�ned spa
e 
urves.We assume that the a 
urve segment r(t) is de�ned with the parameter domain t ∈ [0, 1]in Ω ⊂ R

n. The 
urve tra
es the point set
R = {r(t) : t ∈ [0, 1]}.The algebrai
 
urve C(F,Ω) is de�ned by the zero set of F = {fi, i = 1, . . . n − 1} in thesub-domain Ω. In order to avoid 
ertain te
hni
al di�
ulties, we bound the distan
e betweenthe point set R and
C∗ = C(F,Ω) ∪ ∂Ω,83



4 Fat Ar
s for Impli
itly De�ned Algebrai
 Curveswhere ∂Ω denotes the boundary of the domain. The one-sided Hausdor�-distan
e is de�nedas HDΩ(R, C∗) = sup
t∈[0,1]

inf
x∈C∗

‖x− r(t)‖. (4.24)Lemma 4.16. Consider the fun
tion h =
√
∑n−1

i=1 f2
i de�ned by the polynomials fi ∈ F . Weassume that positive 
onstants G and K exist, su
h that

G ≤
∥
∥∇fi

∥
∥ i = 1, . . . n− 1and

∣
∣∇fi · ∇fj

∣
∣ ≤ K i 6= j, i, j = 1, . . . n− 1,then the length of the gradient is bounded by

∥
∥∇h

∥
∥2 ≥ G2 −

(
n− 1

2

)

K ∀x ∈ Ω.Proof. Sin
e
∇h =

∑n−1
i=1 fi∇fi

√
∑n−1

i=1 f2
i

,we obtain
∥
∥∇h

∥
∥2 =

1
∑n−1

i=1 f2
i

(
n−1∑

i=1

f2
i

∥
∥∇fi

∥
∥2

)

+
1

∑n−1
i=1 f2

i




∑

1≤i<j≤n−1

2fifj∇fi · ∇fj



 ≥

≥
∣
∣
∣
∣
∣

1
∑n−1

i=1 f2
i

(
n−1∑

i=1

f2
i

∥
∥∇fi

∥
∥2

) ∣
∣
∣
∣
∣
−

∑

1≤i<j≤n−1

∣
∣
∣
∣
∣

2fifj
∑n−1

i=1 f2
i

∣
∣
∣
∣
∣

︸ ︷︷ ︸

≤1

∣
∣∇fi · ∇fj

∣
∣

︸ ︷︷ ︸

≤K

≥

≥ G2 −
(
n− 1

2

)

K.Theorem 4.17. Consider a 
urve segment r(t) : t→ Ω, whi
h tra
es the point set R. Thepolynomials fi ∈ F de�ne the algebrai
 
urve C(F,Ω). We assume that positive 
onstants Gand K exist, su
h that
G ≤

∥
∥∇fi

∥
∥ i = 1, . . . n− 1and

∣
∣∇fi · ∇fj

∣
∣ ≤ K i 6= j, i, j = 1, . . . n− 1.If G2 −

(
n−1
2

)
K > 0 and h =

√
∑n−1

i=1 f2
i , then

∀x ∈ Ω
∥
∥∇h

∥
∥ ≥

√

G2 −
(
n− 1

2

)

K.84



4.4 Distan
e EstimateMoreover if there exists a positive 
onstant M , that ∑n−1
i=1 fi(r(t))

2 ≤M2, then the one-sidedHausdor�-distan
e is bounded byHDΩ(R, C∗) ≤
M

√

G2 −
(n−1

2

)
K

. (4.25)Proof. We 
ompute a modi�ed polynomial f̂i = G(Fi,ui, c) with respe
t to the domain Ω asthe 
ombination of polynomials Fi. Suppose that p is a point from the parametri
 
urve r(t).Let us de�ne the fun
tion h =
√
∑n

i=1 f̂
2
i . We 
onsider the integral 
urves de�ned in Ω bythe ve
tor �eld −h/∥∥∇h∥∥. From Lemma 4.16 we know, that the integral 
urves are regularin all inner points of Ω. We assume, that the integral 
urves u(s) are parametrized by ar
length. A

ording to the mean value theorem there exists s0

h(u(s)) = h(u(0)) + s∇h(u(s0)) · u̇(s0) =

= h(u(0)) − s
∥
∥∇h(u(s0))

∥
∥ ≤M − s

√

G2 −
(
n− 1

2

)

K.Sin
e h(x) ≥ 0, then s ∈ [0, s∗], where s∗ = M
√

G2−(n−1

2
)K

. For a point y the fun
tion h(y) = 0if y ∈ C. Sin
e the integral 
urves are regular there exists a limit
lim
s→s∗

u(s) = y,su
h that y ∈ C. Sin
e we supposed that u(s) is ar
 length parametrized for all p from theparametri
 
urve r(t), there exists y ∈ C su
h that
∥
∥u(0)− u(s∗)

∥
∥ =

∥
∥p− y

∥
∥ ≤ s∗ =

M
√

G2 −
(n−1

2

)
K

.The same reasoning is applied in [20℄ to bound the distan
e of planar 
urves.4.4.2 Distan
e of Algebrai
 Spa
e CurvesIf we would like to estimate the distan
e of algebrai
 spa
e 
urve, we 
an measure �rst thedistan
e of the de�ning algebrai
 surfa
es. Suppose that an algebrai
 
urve C is de�ned bythe polynomials fi ∈ F in the domain Ω

C(F,Ω) = {x : ∀i = 1, . . . , n− 1, fi(x) = 0} ∩ Ω.An approximating spa
e 
urve S is given by the zero set of approximating algebrai
 surfa
es
pi ∈ P

S(P,Ω) = {x : ∀i = 1, . . . , n− 1, pi(x) = 0} ∩ Ω.The polynomial pi approximates fi.We estimate the distan
e between the algebrai
 surfa
es and the approximating surfa
espairwise. We 
onsider the BB-norm, whi
h is the maximum absolute value of the 
oe�
ientsin the BB-representation. With the help of the norm, a distan
e bound 
an be de�ned85



4 Fat Ar
s for Impli
itly De�ned Algebrai
 Curvesbetween an arbitrary polynomial fi and an approximating polynomial pi in the domain Ω aswe observed in Se
tion 3.4.1
εi =

∥
∥fi − pi

∥
∥ΩBB . (4.26)Due to the 
onvex hull property

∣
∣fi(x)− pi(x)

∣
∣ ≤ εi, ∀x ∈ Ω.Lemma 4.18. Consider two algebrai
 
urves C(F,Ω) and S(P,Ω), de�ned by the polynomials

fi ∈ F and pi ∈ P in the domain Ω ⊂ R
n. We denote by εi the norm

εi =
∥
∥fi − pi

∥
∥ΩBB i = 1, . . . n− 1.Assume, that the 
onstants G and K are exist su
h that

0 < G ≤
∥
∥∇fi

∥
∥ i = 1, . . . n− 1and

∣
∣∇fi · ∇fj

∣
∣ ≤ K i 6= j, i, j = 1, . . . n− 1.If G2 −

(n−1
2

)
K > 0, then for all points x ∈ S exists a point y ∈ C su
h that

∥
∥x− y

∥
∥ ≤

√
∑n−1

i=1 ε2i
G2 −

(
n−1
2

)
K

= ̺. (4.27)Proof. It is the 
onsequen
e of Theorem 4.17 and (4.26).Lemma 4.18 gives us an upper bound of the distan
e between two algebrai
 spa
e 
urves.So the bounding fat region 
an be de�ned as the point set
F(P, ̺,Ω) = {x : ∃x0 ∀i = 1, . . . n− 1, pi(x0) = 0, |x− x0| ≤ ̺} ∩Ω.The de�ning polynomials of the algebrai
 
urves fi and pi are given in the BB-tensorprodu
t form. In order to �nd the 
onstants in Lemma 4.18, we use the 
onvex hull propertyof these polynomials.4.5 Convergen
e and Global AlgorithmSin
e we generate quadrati
 approximating 
urves, we expe
t that the fat ar
 generationalgorithm has 
ubi
 
onvergen
e rate. We analyze in this se
tion the 
onvergen
e rate of themethod, and 
ertify the third order 
onvergen
e of the fat ar
s in Lemma 4.24. Then we
ombine the lo
al fat ar
 generation with subdivision.4.5.1 Continuity of Taylor Expansion Modi�
ationThe lo
al fat ar
 generation te
hnique approximates the interse
tion 
urve of algebrai
 sur-fa
es in the domain Ω ⊆ Ω0 ⊂ R

n by a 
ir
ular ar
. This ar
 is de�ned as the interse
tionof spheres, whi
h are given as the zero set of the quadrati
 Taylor expansion of polynomi-als with spe
ial Hessian. In order to prove that these ar
s 
onverge to a limit position inthe sub-domains, we have to show, that the 
omputed spheres depend 
ontinuously on thepoints of Ω0 for a �xed 
hoi
e of the parameter ve
tor u. This means, that the polynomial
f̂ = G(F,u, c) depends 
ontinuously on the 
hoi
e of the point c.86



4.5 Convergen
e and Global AlgorithmLemma 4.19. Given the set of polynomials F = {fi : i = 1, . . . n − 1} over the domain
Ω ⊆ Ω0. We suppose that for any point c ∈ Ω0 the ve
tor set {∇fi(c) : fi ∈ F} is linearlyindependent. For an arbitrary but �xed ve
tor of parameters u, where ui ∈ R \ {0}, we
ompute the polynomial

f̂ = G(F,u, c)with a spe
ial Hessian under the 
ondition (4.13). Then f̂ depends 
ontinuously on the pointsof the domain Ω0.Proof. We have to show that the 
omputed linear fa
tors li depend 
ontinuously on the point
c. We 
omputed the 
oe�
ient ve
tor k = (k11 , k

2
2 , . . . , k

n
1 , . . . k

n
n−1), su
h that it satis�es thelinear system Ak = b in (4.9) and minimizes the l2-norm of the ve
tor k. If the ve
tor set

{∇fi(c) : fi ∈ F} is linearly independent for any c, then A has full rank (see Corollary 4.11and Theorem 4.13). In this situation the ve
tor, whi
h satis�es (4.9) and (4.13), 
an be
omputed as
k = AT(AAT)−1

︸ ︷︷ ︸

A†

b.The matrix A† is the so 
alled Moore-Penrose generalized inverse of A (see [9℄). Sin
e fiis a polynomial the entries of the matrix A and the ve
tor b depend 
ontinuously on thepoint c. Therefore the ve
tor l also depends 
ontinuously on the point c. The values of
ui 6= 0 are �xed real numbers. So all 
oe�
ients ui, kji i = 1 . . . n− 1 and j = 1, . . . n depend
ontinuously on c. Therefore also f̂ depends 
ontinuously on the point c.If we modify the Taylor expansion, then we 
an establish the following result 
onsideringthe behavior of a sequen
e of the generated median 
ir
les.Corollary 4.20. Suppose we have a nested sequen
e of sub-domains (Ωi)i=1,2,3... ⊂ Ω0 ⊂ R

n

Ωi+1 ⊂ Ωi,whi
h have de
reasing diameters δi, su
h that
lim
i→∞

δi = 0,and ci denotes the 
enter point of Ωi. Consider a set of n− 1 polynomials F , whi
h de�nesan algebrai
 
urve in R
n

C(F,Ω0) = {x : ∀f ∈ F, f(x) = 0} ∩Ω0.Suppose that there exists a point p ∈ Ωi for all i, whi
h satis�es
fj(p) = 0, ∀j = 1, . . . n− 1,and it is not an in�e
tion point of the 
urve C(F,Ω0). We 
ompute the set of n − 1 newpolynomials F̂i for ea
h ci, su
h that ea
h f̂ i

j ∈ F̂i is 
omputed as f̂ i
j = G(F,uj , ci) fordi�erent but �xed ve
tors of parameters uj, where ukj 6= 0. We 
onsider the 
ir
le de�ned bythe set of polynomials Si, where ea
h sij ∈ Si de�ned as the quadrati
 Taylor expansion of a

f̂ i
j ∈ F̂i. Then the sequen
e of these 
ir
les 
onverges to a limit 
ir
le, whi
h is the os
ulating
ir
le of the 
urve C(F,Ω0) in the point p. 87



4 Fat Ar
s for Impli
itly De�ned Algebrai
 CurvesThe next 
orollary follows from the fa
t that in the limit position,the zero sets of allquadrati
 polynomials interse
t the os
ulating plane of the 
urve at the point p in the os
u-lating 
ir
le of the 
urve.Corollary 4.21. Given a set of polynomials F = {fi : i = 1, . . . n − 1} in the domain Ω0.Suppose we 
onstru
t the polynomial f̂ , su
h that
f̂ = G(F,u, c) =

n−1∑

i=1

kififor an arbitrary but �xed parameter ve
tor u, where ui 6= 0. For all c ∈ Ω0 the norm of the
ommon 
oe�
ient ve
tor of ki, k = (k11 , k
2
1 , . . . , k

n
n−1) 
an be bounded by a 
onstant

∥
∥k
∥
∥
2
< L,whi
h depends only on F,Ω0 and the 
hoi
e of u.4.5.2 General Lower Bound for the Gradient LengthThe following lemma (Lemma 3.19) ensures, that G(F,u, c) has also a non-vanishing gradientif we 
ompute fat ar
s in su�
iently small sub-domains, whi
h en
lose the algebrai
 
urve.Lemma 4.22. Suppose that there exists G in Ω0 for the polynomials fi ∈ F su
h that for all

i = 1, . . . n− 1
∀x ∈ Ω0,

∥
∥∇fi(x)

∥
∥ ≥ G > 0. (4.28)Consider a domain Ω ⊂ Ω0, whi
h has a diameter δΩ < ε. Suppose that there is a point

p ∈ Ω su
h that for all i = 1, . . . n − 1, fi(p) = 0. The ve
tor of parameters u is arbitrarybut �xed, su
h that ui 6= 0. We 
ompute f̂ = G(F,u, c). If ε is su�
iently small, then thereexists Ĝ > 0 
onstant, su
h that for any x ∈ Ω

∥
∥
∥∇f̂(x)

∥
∥
∥ ≥ Ĝ > 0.Proof. If x ∈ Ω ⊆ Ω0 then

∇f̂(x) =
n−1∑

i=1

ki(x)fi(x),

ki are 
omputed as des
ribed in Se
tion 4.3.1. A

ording to the triangle inequality
∥
∥
∥∇f̂(x)

∥
∥
∥ ≥

∥
∥
∥
∥
∥

n−1∑

i=1

ki(x)∇fi(x)
∥
∥
∥
∥
∥
−
∥
∥
∥
∥
∥

n−1∑

i=1

∇ki(x)fi(x)
∥
∥
∥
∥
∥
≥
∥
∥
∥
∥
∥

n−1∑

i=1

ki(x)∇fi(x)
∥
∥
∥
∥
∥
−

n−1∑

i=1

∣
∣fi(x)

∣
∣
∥
∥∇ki(x)

∥
∥ .(4.29)Sin
e we know that there exists a point p ∈ Ω su
h that fi(p) = 0 , then

∀i = 1, . . . , n− 1,
∣
∣fi(x)

∣
∣ ≤ ε

G
, (4.30)where ε is an upper bound of the diameter of Ω. In Corollary 4.5.2 we also observed, thatthere exists L > 0

∣
∣k
∣
∣ ≤ L,88



4.5 Convergen
e and Global Algorithmwhi
h only depends on F,Ω0 and the 
hoi
e of u. Therefore also
∀i = 1, . . . , n− 1,

∥
∥∇ki(x)

∥
∥ ≤ L.We 
an bound the value of the linear polynomials li on a su�
iently small sub-domain Ω.Suppose that the diameter of Ω is smaller than ε. If x ∈ Ω, then for all i = 1, . . . , n− 1

∣
∣ki(x)

∣
∣ =

∣
∣
∣
∣
∣
∣

ui +

n∑

j=1

kji (x
j − cj)

∣
∣
∣
∣
∣
∣

>
∣
∣ui
∣
∣− ε

2

√
nLwhere c = (cj)nj=1 denotes the 
enter of Ω. Sin
e ui are non-zero, if

ε <
mini=1,...n−1{ui}√

nL
, (4.31)then ∣∣ki(x)∣∣ ≥ ui/2.We supposed that ∇fi(x) are linearly independent in any point of Ω0. If (4.31) is satis�edfor an Ω ⊆ Ω0, then there exists a general bound G̃ depending on u and G, su
h that

∥
∥
∥
∥
∥

n−1∑

i=1

ki(x)∇fi(x)
∥
∥
∥
∥
∥
≥ G̃ > 0, ∀x ∈ Ω.Therefore for all x ∈ Ω

∥
∥
∥∇f̂(x)

∥
∥
∥ ≥ G̃−

n−1∑

i=1

∥
∥fi(x)∇ki(x)

∥
∥ ≥(4.13) G̃− L

n−1∑

i=1

∣
∣fi(x)

∣
∣ .Sin
e we know that there exists a point p ∈ Ω su
h that f(p) = g(p) = 0, then be
ause of(4.30)

∥
∥
∥∇f̂(x)

∥
∥
∥ ≥ G̃− (n − 1)εL

G
.Suppose that

ε = min

{

G̃G

(n− 1)L
,

u1√
nL

, . . .
un−1

√
nL

}

. (4.32)If the diameter of Ω denoted by δΩ satis�es
δΩ <

ε

2
,then

∥
∥
∥∇f̂(x)

∥
∥
∥ ≥ G̃

2
= Ĝ > 0.Corollary 4.23. Suppose that the 
onditions of Lemma 4.22 are satis�ed for a set of polyno-mials F in the domain Ω0. If f̂ = G(F,u, c) is 
omputed in a su�
iently small sub-domain

Ω of Ω0, then T 2
c (f̂) 6≡ 0. 89



4 Fat Ar
s for Impli
itly De�ned Algebrai
 Curves4.5.3 Convergen
e of Taylor Expansion Modi�
ationNow we have to show that the fat ar
 thi
kness is su�
iently small 
ompared with thediameter of the 
omputational domain. The following lemma shows, how the 
omputed fatar
 thi
kness behaves as the size of the domain tends to zero.Lemma 4.24. Given a set of polynomials F de�ned over the domain Ω0 ⊂ R
n. We supposethat the 
onditions of Lemma 4.22 are satis�ed. We 
ompute a set of polynomials F̂ withspe
ial Hessian for arbitrary but �xed ve
tors of parameters ui and apply the orthogonalizationfun
tion

F̂ = O ({G(F,ui, c) : i = 1 . . . n− 1}, c) ,in the 
enter point c of the sub-domain Ω ⊂ Ω0. If the sub-domain Ω has a su�
iently smalldiameter δΩ, then there exists a 
onstant C ∈ R, whi
h does not depend on the 
hoi
e of Ωand satis�es
̺ ≤ Cδ3Ω, (4.33)where ̺ is the 
orresponding fat ar
 thi
kness 
omputed as in (4.27).Proof. Sin
e the 
onditions of Lemma 4.22 are satis�ed, we know that for all f̂i ∈ F̂ thereexists Ĝ su
h that
‖∇f̂i‖ ≥ Ĝ,for any su�
iently small sub-domain Ω, whi
h en
loses the 
urve. We denote by pi thequadrati
 Taylor expansion of f̂i ∈ F̂ about the 
enter c of the domain Ω. Then

∥
∥
∥f̂i − pi

∥
∥
∥
∞

=
∥
∥
∥f̂i − T 2

c (f̂i)
∥
∥
∥
∞

<
1

6
max

v∈S1,x∈Ω

∣
∣
∣
∣
∣

d3f̂i
dv3

(x)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

∗

δ3Ω.Re
all from Lemma 4.19 that G depends 
ontinuously on the points of the 
omputationaldomain Ω0 for ea
h ui, where ui 6= 0. Therefore also f̂i depend 
ontinuously on the pointsof the 
omputational domain Ω0. Thus for all f̂i a general upper bound Ci 
an be given for
(∗).The fat ar
 thi
kness is de�ned by

̺Ω =

√
∑n−1

i=1 ε2i
G2

Ω −
(n−1

2

)
KΩ

,where
εi =

∥
∥
∥f̂i − pi

∥
∥
∥BB .Be
ause of the norm equivalen
es there exist Di, su
h that

εi ≤ Di

∥
∥
∥f̂i − pi

∥
∥
∥
∞
.So we observe, that

√
√
√
√

n−1∑

i=1

ε2i ≤
1

6

√
√
√
√

n−1∑

i=1

(CiDi)2

︸ ︷︷ ︸

M

δ3Ω.90



4.5 Convergen
e and Global AlgorithmWe assumed that Ĝ < GΩ is a general lower bound for ea
h ∥∥∥∇f̂i∥∥∥ independent ofthe 
hoi
e of the sub-domain Ω. Sin
e we also applied the orthogonalization step to thepolynomials f̂i for any i 6= j ∣
∣
∣∇f̂i(c) · ∇f̂j(c)

∣
∣
∣ = 0in the 
enter point c of a domain Ω. If the diameter of a sub-domain Ω is su�
iently small,then there exists K > 0, whi
h does not depend on Ω and ea
h x ∈ Ω satis�es

∣
∣
∣∇f̂i(x) · ∇f̂j(x)

∣
∣
∣ ≤ Kfor any i 6= j. If the diameter of the sub-domains is su�
iently small, then the general bound

K satis�es (n−1
2

)
K < Ĝ2. Thus this implies that

̺Ω ≤
M δ3Ω

√

Ĝ2
Ω −

(n−1
2

)
KΩ

≤ M δ3Ω
√

Ĝ2 −
(n−1

2

)
K
≤ Cδ3Ω.

4.5.4 Global AlgorithmSubdivision is a frequently used te
hnique, and it is often 
ombined with lo
al approximationmethods. Su
h hybrid algorithms subdivide the 
omputational domain in order to separateregions where the lo
al 
urve approximation te
hniques 
an be applied. The regions withunknown 
urve behavior 
an be made smaller and smaller with subdivision.The lo
al algorithm FatAr
Lo
al_nd (see Algorithm 7) generates fat ar
s for regularalgebrai
 spa
e 
urves. As we saw in the two and three-dimensional 
ase, this lo
al method
an be 
ombined with re
ursive subdivision.First the Bernstein�Bézier 
oe�
ients of the polynomials are analyzed with respe
t tothe 
omputational domain. If no sign 
hanges are present for one or both of the polynomials,then the 
urrent domain does not 
ontain any 
omponents of the algebrai
 
urve. Otherwisethe fat ar
 generation te
hnique 
an be applied. If it is not su

essful, then the algorithmeither subdivides the 
urrent domain into sub-domains, or returns the entire domain, if itsdiameter is already below the user-de�ned threshold ε. It is guaranteed that during thepro
ess no region will be eliminated, whi
h 
ontains the impli
itly de�ned 
urve. However,it may happen, that the output 
ontains domains without any segments of the impli
itlyde�ned 
urve (�false positive boxes�).
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Chapter 5Fat Spheres for Solving MultivariatePolynomial SystemsSolving multivariate polynomial systems has several appli
ations in algebra and geometry.Therefore various methods exist to �nd or to isolate the roots of polynomial systems. Theyare using symboli
, numeri
 or 
ombined te
hniques in order to �nd solutions. In this 
hapter�rst we give a brief summary on the topi
. We dis
uss the main 
lasses of solvers and theexisting results. Then we introdu
e fat spheres, whi
h are multidimensional bounding regionsfor impli
itly de�ned algebrai
 obje
ts. With the help of fat spheres we des
ribe a lo
aldomain redu
tion strategy, whi
h bounds the interse
tion of algebrai
 obje
ts. We 
ombinethis lo
al algorithm with iterative subdivision. This hybrid algorithm 
an be applied forapproximating the solution of multivariate polynomial systems.5.1 Fat Ar
s and Fat SpheresIn this se
tion we summarize the related work in solving multivariate polynomial systems.First we des
ribe the di�erent families of solvers. Then we de�ne the fat spheres. Finally weformulate the root �nding problem with polynomials represented in Bernstein-Bézier form.5.1.1 Real Root Finding AlgorithmsReal root �nding is 
onsidered as a di�
ult task. A general overview about the multivariateroot �nding algorithms is given in [13, 38℄. The solvers, des
ribed in the literature, are usingeither algebrai
 or geometri
 tools.Algebrai
 approa
hes, su
h as the Gröbner-basis te
hnique [5℄, resultant based methodsor 
ontinuous fra
tions methods assure exa
t and e�
ient solution algorithms. These algo-rithms frequently provide more information about the solutions than we need. It is oftenunne
essary to 
ompute all solutions. For instan
e CAD-systems usually require informationonly about real solutions, whi
h lie in a 
ertain domain. Moreover these symboli
 methodsare not really suitable for numeri
al 
omputations.An algebrai
 solver, whi
h is using the Gröbner-basis te
hnique, was developed for in-stan
e by Rouillier [33℄ for bi-variate polynomial systems. Busé et al. 
onsidered resultant93



5 Fat Spheres for Solving Multivariate Polynomial Systemsbased methods in [6, 7℄. In [14℄ an algebrai
 method is des
ribed, whi
h is using Sturm-Habi
ht sequen
es.Homotopy solvers 
ompute a family of root-�nding problems. The method transforms asimple problem to the original one in several steps, and 
ompute the roots of ea
h intermediateproblem. The 
omputed sequen
e of roots 
onverges to the solutions of the original root-�nding problem. However, su
h 
omputations are usually require ine�
ient memory andtime.Polynomial solvers based on homotopy methods 
an be found in [24, 28℄.Subdivision algorithms are based on the �divide and 
onquer� paradigm. They 
omputein a 
ertain domain (usually in an axis-aligned box) and provide information only about realroots. If we are interested in 
ertain properties of a root, like multipli
ity, then further 
om-putations are ne
essary. These algorithms de
ompose the problem into several sub-problems.The de
omposition terminates if suitable approximating primitives 
an be generated in ea
hsub-problem [29℄. In order to 
onstru
t these approximating primitives, several lo
al do-main redu
tion strategies 
an be applied. These redu
tion methods are usually based oninterpolation, bounding region generation or least-squares approximation.The �rst subdivision solvers were developed by Sederberg et al. for bivariate polynomialsrepresented in Bernstein-Bézier tensor produ
t form. They are using 
lipping and subdivisionte
hniques [35, 36℄. Later on a family of algorithms were invented, whi
h is using proje
tionte
hniques [39℄. The most re
ently developed solvers are published by Mourrain et al. [13℄and Elber et al. [12℄.5.1.2 De�nition of Fat Ar
s and Fat SpheresWe present in this 
hapter an algorithm, whi
h 
ombines iterative domain redu
tion witha subdivision te
hnique to solve multivariate polynomial systems. The domain redu
tionstrategy is based on bounding region generation. In Chapter 4 we generated fat ar
s asbounding regions for n-dimensional algebrai
 
urves. These bounding regions 
onsist of aone-dimensional approximating primitive (a 
ir
ular ar
) and a 
ertain neighborhood of this
urve. In this 
hapter we 
onsider bounding regions, whi
h are generated as a thi
kenedneighborhood of a multi-dimensional obje
t. The multi-dimensional obje
t approximatesa part of an algebrai
 surfa
e, and it is de�ned as a segment of a sphere. The thi
kenedneighborhood of the sphere-segment 
ontains ea
h point of the algebrai
 surfa
e. Thereforeit is a bounding region for the pat
h of the algebrai
 surfa
e. So we extend the de�nition offat ar
s (see in De�nition 4.1) to the 
on
ept of fat spheres.De�nition 5.1. A fat sphere is de�ned in R
n by- a pat
h of an arbitrary dimensional sphere (median sphere) S ⊂ Ω ⊂ R

n,- and a distan
e ̺ ∈ R.Then the fat region is the point set
F(S, ̺) = {x : ∃x0 ∈ S,

∥
∥x− x0

∥
∥
2
≤ ̺}.94



5.2 Bounding Region GenerationThe fat spheres with one-dimensional median sphere are the standard fat ar
 in R
n (seein De�nition 4.1). In this 
ase the median sphere is a 
ir
ular ar
.A multi-dimensional median sphere S 
an always be de�ned as an algebrai
 set. It is theinterse
tion of impli
itly de�ned spheres, ea
h possessing the form

pi = ai〈x,x〉 + 〈bi,x〉+ ci = 0, ai, ci ∈ R, bi ∈ R
n.The median spheri
al pat
h is de�ned algebrai
ally as a whole sphere restri
ted to an axis-aligned domain

S = {x : ∀i, pi(x) = 0} ∩ Ω.Median spheres 
an also be represented in parametri
 form with the help of rational fun
-tions. It is an advantageous property of ar
s and spheres, that they possess exa
t parametri
and impli
it representation form. The impli
it representation provide us a simple way to rep-resent the o�set of the spheres and to 
ompute the interse
tion of them, while the parametri
form simpli�es the visualization.5.1.3 Multivariate Polynomial SystemsIn order to 
ompute e�
iently the real roots of a polynomial system with subdivision te
h-nique, we assume that the polynomials are given in tensor-produ
t Bernstein-Bézier(BB)form (see (4.1)), with respe
t to the axis-aligned domain
Ω0 = ×n

i=1[αi, βi] ⊂ R
n.For su
h a polynomial f : Rn → R, let us denote the zero level set with respe
t to the domain

Ω0 as
Z(f,Ω0) = {x : f(x) = 0} ∩Ω0.The solution set of a polynomial system F = {f1, . . . , fn} is the interse
tion of the zero setof the polynomials
R(F,Ω0) =

n⋂

i=1

Z(fi,Ω0) (5.1)with respe
t to the domain Ω0. If the system of polynomials is zero-dimensional, then thisalgebrai
 set 
onsists of distin
t points or it is the empty set.5.2 Bounding Region GenerationIn order to generate fat spheres for solving polynomial systems, we present �rst a lo
al domainredu
tion strategy. This lo
al algorithm is applied in the sub-domains of the 
omputationaldomain Ω0. In ea
h sub-domain the zero set of the polynomial system is bounded by inter-se
ting fat spheres. Later on we will 
ombine this lo
al domain redu
tion strategy with asubdivision te
hnique. 95



5 Fat Spheres for Solving Multivariate Polynomial SystemsAlgorithm 8 DomainRedu
tion (F,Ω)Require: Ea
h polynomial has sign 
hange in its BB-
oe�
ients in Ω.1: f̂i modi�ed polynomials with spheri
al quadrati
 Taylor expansion pi2: Si = {x : pi(x) = 0} ∩ Ω {median spheres}3: εi =
∥
∥
∥f̂i − pi

∥
∥
∥BB4: P±

i = {x : ∀i, pi(x) = ±εi} ∩Ω← boundaries of fat spheres5: C ← extremal points of fat sphere interse
tion6: if C 6= ∅ then7: M← min-max box around the points C {new bounding domain}8: return M9: end if10: return ∅ {no bounding domain has been found}5.2.1 Lo
al AlgorithmIn order to bound the zero set of a polynomial system, �rst we dete
t the empty sub-domainsin the 
omputational domain and eliminate them. Therefore we analyze the sign 
hangesof the BB-
oe�
ients in the representation of the polynomials. If one of the polynomialshas only negative or only positive BB-
oe�
ients over the sub-domain, then no point of thesub-domain belongs to the solution set of the polynomial system (see Observation 3.2). Su
hsub-domains 
an be negle
ted during further 
omputations.In order to bound the zero set of the polynomials F = {f1, . . . , fn}, we generate fat spheresas bounding regions. First we 
ompute a new system of polynomials with modi�ed Taylorexpansion. The te
hnique, we des
ribed in Se
tion 4.3.1, provide us a method to 
omputepolynomials f̂i, whi
h has spe
ial Hessian matrix in the 
enter point of the sub-domain. Theset of modi�ed polynomials F̂ = {f̂1, . . . , f̂n} has a zero set, whi
h 
ontains the solution setof the polynomials F
Z(F,Ω) ⊆ Z(F̂ ,Ω)in the sub-domain Ω. The quadrati
 Taylor expansion of the modi�ed polynomials about the
enter point c of Ω

pi = T 2
c (fi)has a zero level set, whi
h is a part of a sphere. Ea
h sphere is used as a median sphere togenerate a fat sphere Fi. Su
h a fat sphere is the thi
kened neighborhood of the median sphere

pi = 0, and it 
ontains the zero set of f̂i in the sub-domain Ω. If all the fat spheres interse
tin Ω, then a min-max box is 
onstru
ted around this interse
tion (see details Se
tion 5.2.3).The lo
al algorithm returns this min-max box as a bounding region of the zero set of thepolynomials fi ∈ F .If the fat spheres have no interse
tion, then the sub-domain Ω does not 
ontain any pointof Z(F̂ ,Ω), so as no point of Z(F,Ω). This implies, that no solution of the polynomial systemlies in the sub-domain Ω. Thus su
h a sub-domain with non-interse
ting fat spheres 
an benegle
ted in the further 
omputations.The two-dimensional real root �nding algorithm approximates the solution of two bivari-ate polynomials. In this low dimensional 
ase the de�nition of fat spheres 
oin
ides with the
on
ept of fat ar
s. The median sphere is always a 
ir
ular ar
. In ea
h sub-domain, whi
h is96



5.2 Bounding Region Generationnot dete
ted as a region without any root inside, the lo
al algorithm generates two fat ar
s.These are the bounding regions of the two di�erent algebrai
 
urves. Fig.5.1 presents someexamples of these fat ar
s and the bounding box around their interse
tion. Ea
h �gure hasbeen generated with the help of Algorithm 8. In the se
ond �gure one 
an see, that the fatar
s interse
t ea
h other, however the polynomials have no solution point in the sub-domain.Su
h �false positive regions� 
an be eliminated if we apply the domain redu
tion iteratively.In the three-dimensional spa
e the domain redu
tion algorithm bounds the interse
tionof three algebrai
 surfa
es. The fat spheres are generated as thi
kened three dimensionalspheres. Fig.5.2 presents some examples generated with the help of Algorithm 8.

Figure 5.1: Examples for fat ar
 interse
tion with the help of algorithm DomainRedu
tion. Thered 
urves are the impli
itly de�ned 
urves. The median 
ir
les are shown in green. The grayregions represent the generated bounding regions: the min-max boxes around the interse
tionsof fat ar
s.

Figure 5.2: Examples for fat sphere interse
tion generated by the algorithm DomainRedu
tionin three-dimensional spa
e. The boundary pat
hes of the three fat spheres are represented inred, green and blue. The gray regions represent the generated bounding regions: the min-maxboxes around the interse
tions of fat spheres.In the next se
tions we 
onsider the most important steps of the lo
al algorithm. Wewill �rst des
ribe the fat sphere generation te
hnique. Then we will show how to generatemin-max box around the interse
tion of fat spheres.97



5 Fat Spheres for Solving Multivariate Polynomial Systems5.2.2 Fat Sphere GenerationWe approximate the zero set of the polynomials F = {f1, . . . , fn} in the sub-domain Ω ⊂ R
n.The geometri
 interpretation of this problem is to �nd the interse
tion points of algebrai
hyper-surfa
es in the sub-domain Ω. A

ording to this approa
h we generate fat spheresas bounding regions for ea
h algebrai
 surfa
e. Due to the de�nition of fat spheres �rst we
ompute an approximating sphere segment, the median sphere, for ea
h algebrai
 surfa
e.Then we bound the distan
e of the approximating sphere and the algebrai
 surfa
e.With 
ombining the polynomials f ∈ F we 
ompute a polynomial f̂ , whi
h has a spe
ialHessian matrix in the 
enter point c of the sub-domain Ω,

H(f̂)(c) =






λ · · · 0... . . . ...
0 · · · λ




 = λ In×n, λ ∈ R. (5.2)We apply the same te
hnique as in the fat ar
 generation method (see Se
tion 4.3.1). We
ompute a polynomial f̂ as the 
ombination of the polynomials fi ∈ F with respe
t to theindex set i ∈ J ⊆ {1, . . . , n} as

f̂ =
∑

i∈J

kifi (5.3)multiplying with the linear polynomials ki de�ned as in (4.6). The new polynomial has tosatisfy (5.2). The 
oe�
ients of ki 
an be 
omputed by solving a linear system. In order toavoid to have only the trivial solution for the 
oe�
ient of the multipliers ki, we 
hoose the
onstant term of the multipliers arbitrary but �xed, non-zero parameter values. Then thenumber of the free 
oe�
ients in the multipliers has to be more than the number of equationsin the linear system (see (4.9)). So we avoid to have an overdetermined system.A

ording to the observations on the solvability of this system in Se
tion 4.3.1 we 
onsideronly the 
ases, when the 
ombination (5.3) involves n−1 or n polynomials. In these 
ases thepolynomials ki exist, and they are non-zero linear polynomials. We des
ribe the behavior ofthe linear system in Table 5.1 similarly to the 
ase of fat ar
s in Table 4.1. If we 
ombine allpolynomials (not only n− 1 ones), then the solution spa
e of ki has an even higher numberof dimension. However, a

ording to our experien
es, using all polynomials gives betterapproximations and speeds up the shrinking of the bounding regions.The solution spa
e of the 
oe�
ients of ki is at least one-dimensional for the 
ombinationof n − 1 and n polynomials too. However, we need only one 
olle
tion of 
oe�
ients, whi
hde�nes the multipliers ki. Therefore we 
ompute the solution ve
tor of 
oe�
ients, whi
h hasthe minimal l2-norm (as for fat ar
s (4.13)).A modi�ed polynomial with spe
ial Hessian matrix has spe
ial quadrati
 Taylor expansion
p = T 2

c f̂ . This quadrati
 polynomial de�nes the algebrai
 set
S = {x : p(x) = 0},whi
h 
an be used as median sphere. We estimate the error of the approximation by boundingthe di�eren
e of the polynomials f̂ and p. With the help of the BB-norm the distan
e bound
an be given as
ε =

∥
∥
∥f̂ − p

∥
∥
∥

ΩBB . (5.4)98



5.2 Bounding Region GenerationTable 5.1: Comparison of strategies to 
onstru
t polynomials with spe
ial Hessian for di�erentnumber of variables. The table shows the number of 
oe�
ients and the dimension of theirsolution spa
e in the 
onstru
tion of a new fun
tion f̂ . For ea
h number of dimension n, the�rst row shows the results if we 
ombine n − 1 polynomials, the se
ond one if we 
ombine npolynomials.dimension num. of equ. num. of multipliers num. of 
oe�. dim. of sol. sys.
3 5

2 6 1
3 9 4

4 9
3 12 3
4 16 7

5 14
4 20 10
5 25 11

6 20
5 30 10
6 36 16

100 5049
99 9900 4851
100 10000 4951Due to the 
onvex hull property

∣
∣
∣f̂(x) − p(x)

∣
∣
∣ ≤ ε, ∀x ∈ Ω,whi
h implies that

p(x)− ε ≤ f̂(x) ≤ p(x) + ε, ∀x ∈ Ω. (5.5)A fat sphere as bounding region 
an be de�ned in Ω for f̂ = 0 as
F(p, ε,Ω) = {x : |p(x)| ≤ ε} ∩ Ω.The boundaries of this region are the o�sets of the median sphere p = 0. This fat sphere isbounding the zero level set of f .In the two-dimensional 
ase the fat sphere generation is the same as the fat ar
 generation.The zero level set of polynomials and their approximations are given as impli
itly de�ned
urves in R

2. In the three-dimensional spa
e we have two di�erent strategies to generatemodi�ed polynomials. We 
an use either two or all three polynomials from F to generate anew polynomial f̂ . Then a fat sphere is de�ned as a thi
kened region of a three-dimensionalspheri
al pat
h.5.2.3 Min-max Box of the Interse
tion of Fat SpheresWe 
ompute a set of polynomials with modi�ed Taylor expansion F̂ = {f̂1, . . . , f̂n}. The setof modi�ed polynomials has the same or a larger solution set as F
Z(F,Ω) ⊆ Z(F̂ ,Ω).Ea
h polynomial has a spe
ial quadrati
 Taylor expansion pi = T 2

c f̂i about the 
enter of thesub-domain Ω. These quadrati
 polynomials de�ne the algebrai
 sets
Si = {x : pi(x) = 0},99



5 Fat Spheres for Solving Multivariate Polynomial Systemswhi
h 
an be used as median spheres. We bound the distan
e of the polynomials pairwise
εi =

∥
∥
∥f̂i − pi

∥
∥
∥

ΩBB . (5.6)In order to bound the zero set of the polynomials F̂ , we 
onsider the interse
tion of thegenerated fat spheres. Ea
h fat sphere
Fi(pi, εi,Ω) = {x : |pi(x)| ≤ εi} ∩ Ωbounds the zero level set of the polynomial f̂i in the sub-domain Ω. If the interse
tion of fatspheres is not empty,

I =

n⋂

i=1

Fi(pi, εi,Ω) 6= ∅,then it 
ontains the zero set of the polynomials f̂i in the sub-domain Ω.Observation 5.2. If the interse
tion is empty
I =

n⋂

i=1

Fi(pi, εi,Ω) = ∅,then it implies, that the interse
tion of the zero sets Zi = {x : f̂i(x) = 0} is also empty
n⋂

i=1

Zi ∩Ω = ∅.Thus the domain Ω has no 
ommon point with the zero set of the polynomial system F̂and also with the zero set of F . These sub-domains 
an be negle
ted during the further
omputations.Now we 
onsider the 
ase
I =

n⋂

i=1

Fi(pi, εi,Ω) 6= ∅.The region I is a �
urved polytope�, whi
h is bounded by spheri
al pat
hes and linear sub-spa
es. The spheri
al pat
hes are a part of the boundary surfa
es of the fat spheres. Thepair of bounding spheres of the fat sphere Fi(pi, ε,Ω) 
an be des
ribed as the point set
Pi = {x : pi(x) = ±εi} ∩Ω.The segments of linear subspa
es, whi
h bound the fat sphere interse
tion, are a part of theboundaries of the sub-domain Ω.An example for two-dimensional fat ar
 interse
tion is shown in Fig.5.3. Ea
h fat ar
 isthe interse
tion of the 
omputational domain and an annulus. The interse
tion of two fatar
s is bounded by a 
urved polygon. The boundaries of the polygon are 
ir
ular ar
s andline segments.In general the interse
tion of fat spheres is a 
urved polytope. It is not pra
ti
al to useit as 
omputational domain in further domain redu
tions. In order to redu
e iteratively the100



5.2 Bounding Region Generation

(a) (b)Figure 5.3: Extremal points of fat ar
 interse
tion. The fat ar
s are represented by theirbounding ar
s (bla
k) and the median ar
s (green). In �gure (a) the fat sphere 
orner points aremarked by yellow dots and the fat sphere extreme points (fat sphere 1-extrema) by pink ones.The important fat sphere extrema from the fat sphere extrema are marked by red dots in �gure(b). The bounding region of the fat ar
 interse
tion is the min-max box generated around theimportant fat sphere extrema (gray re
tangle).bounding regions, the output of the domain region has to be an axis-aligned box. Thereforewe 
ompute the min-max box, whi
h bounds the fat sphere interse
tion I . This box 
an be
omputed exa
tly, by �nding the extremal points of the fat sphere interse
tion. For instan
ein Fig.5.3 (b) the extremal points of the fat ar
 interse
tion are marked by red dots. Fourof these extrema are the interse
tion points of the fat ar
 boundaries, while another one isan extremal point of a boundary ar
. In order to �nd the extremal points of the fat sphereinterse
tion in general, we use the following de�nitions.De�nition 5.3. Given a system of polynomials F̂ in the sub-domain Ω = ×n
i=1[αi, βi]. Forea
h polynomial f̂i ∈ F̂ we 
an 
ompute the fat sphere

Fi(pi, εi,Ω),where pi is the quadrati
 Taylor expansion of f̂i about the 
enter point of the sub-domain Ω.The fat sphere Fi(pi, εi,Ω) bounds f̂i = 0 in Ω. The ith boundary pair of the domain Ω isde�ned as
∂Ωi = {x : xi = αi ∨ xi = βi}.The boundary points of the fat sphere Fi are 
ontained in the set

Pi = {x : pi(x) = εi ∨ pi(x) = −εi}.Let NS denote the number of the elements of an index set S ⊆ {1, . . . , n}. A point x ∈ Ω is
alled(i) fat sphere 
orner point if I, J ⊂ {1, . . . , n}, NI = k, NJ = n− k :

x ∈ X =
⋂

i∈I

∂Ωi

⋂

j∈J

Pj101



5 Fat Spheres for Solving Multivariate Polynomial Systems(ii) fat sphere m-extreme point if I, J ⊂ {1, . . . , n}, NI = k, NJ < n− k

x ∈ Y =
⋂

i∈I

∂Ωi

⋂

j∈J

Pj,where Y is an m-dimensional algebrai
 obje
t, and there exists n − k − m di�erentindexes l ∈ {1, . . . , n} \ I, su
h that
∑

j∈J

(
∂pj
∂xl

)2

= 0.All 
orner points x of the sub-domain Ω are fat sphere 
orner points for k = n

x ∈
n⋂

i=1

∂Ωi ⊂ X .All interse
tion points x of the fat sphere boundaries, whi
h lie in the interior of the domain
Ω are in the point set

x ∈
n⋂

j=1

Pi ⊂ X ,These points are fat sphere 
orner points with k = 0.Observation 5.4. A fat sphere m-extreme point is always an extreme point of an m-dimensional obje
t de�ned by the interse
tion of spheri
al pat
hes and linear subspa
es.A fat sphere m-extreme point is a point on the obje
t, where the tangent spa
e (the linearsubspa
e spanned by the gradient ve
tors of the interse
ting algebrai
 surfa
es) in the point isperpendi
ular to n−k−m 
oordinate dire
tions. For instan
e the fat sphere (n−1)-extremepoints are the extremal points of the fat sphere boundary pat
hes de�ned by the equations
pi = ±εi.Observation 5.5. All fat sphere 
orner points and fat sphere extreme points are de�ned byan equation system with n equation in n variables, where all equations are linear or quadrati
ones. The quadrati
 equations are the equations of spheres. Therefore ea
h fat sphere 
ornerpoint and fat sphere extreme point 
an be 
omputed as the solution of an equation system
onsists of n− 1 linear equations and a single quadrati
 equation.De�nition 5.6. We 
all a fat sphere 
orner point or a fat sphere extreme point x an importantfat sphere extrema, if it satis�es for all i ∈ {1, . . . , n}

−εi ≤ pi(x) ≤ εi,thus the point x ∈ I belongs to the interse
tion of the fat spheres.Observation 5.7. De�nition 5.3 and Observation 5.5 imply, that all important fat sphereextrema 
an be 
omputed by solving a �nite number of algebrai
 systems, where ea
h system
onsists n− 1 linear and one linear or quadrati
 equations, and at most 2n inequality tests.Lemma 5.8. The min-max box around the region I =
⋂n

i=1 Fi(pi, εi,Ω) 6= ∅, whi
h is the fatsphere interse
tion in the sub-domain Ω, is the min-max box around the important fat sphereextrema. 102



5.3 Convergen
e Rate for Single RootsProof. The min-max box around I is the min-max box around the extremal points of theregion. Sin
e the fat sphere interse
tion is bounded by spheri
al pat
hes and segments oflinear sub-spa
es, any extremal point is either the 
orner point of the region, or the lo
alminimum/maximum point of the spheri
al pat
h or its boundaries. All 
orner points of theinterse
tion I are 
ontained in the point set of fat sphere 
orner points. All lo
al extremalpoints of I are fat spherem-extreme points. Moreover only the points of I ful�ll the 
onditionfor the important fat sphere extrema.Fig.5.3 (b) shows a two-dimensional fat ar
 interse
tion, where the fat sphere 
orner pointsand the fat sphere extreme points are marked by red and blue dots. The red ones denote theimportant fat sphere extrema.The min-max box of the fat sphere interse
tion is an axis-aligned box. It 
ontains allpoints of the sub-domain Ω, whi
h 
an lie in the zero set of F . Therefore it 
an be used as aredu
ed bounding region of the zero set of F in the sub-domain Ω.5.3 Convergen
e Rate for Single RootsWe bound the zero sets of polynomials with the help of quadrati
 polynomial equations.Therefore we expe
t that the rate of 
onvergen
e of the sequen
e of bounding regions is equalto three. These expe
tation is 
on�rmed in Theorem 5.14 in the end of this se
tion. If weassume, that the polynomials F possess a single root q in a domain, then the gradient ve
torsof the polynomials are linearly independent in the point q. Thus the impli
itly de�ned hyper-surfa
es, de�ned by the zero set of the polynomials, interse
t ea
h other transversely at theroot. Moreover there exists a domain Ω0 around the root q, su
h that for any point x ∈ Ω0holds
det(J(F )(x)) 6= 0. (5.7)Namely the gradient ve
tors ∇f1(x),∇f2(x), . . .∇fn(x) are linearly independent for all x ∈

Ω0. Therefore we suppose that any point of the initial domain Ω0 ful�lls (5.7).The fat sphere generation algorithm 
omputes �rst a set of modi�ed polynomials F̂ . Ea
hpoint of Ω0 ful�lls (5.7), so the gradient ve
tors ∇fi(x) do not vanish. In Se
tion 4.5.2 wehave shown, that ea
h modi�ed polynomial has a positive lower bound on the gradient length,if we 
ompute in a su�
iently small sub-domain of Ω0. Therefore also the quadrati
 Taylorexpansions of the modi�ed polynomials are non-zero polynomials. The following lemmashows, that the gradient ve
tors of the modi�ed polynomials are linearly independent in asu�
iently small sub-domain of Ω0.Lemma 5.9. Suppose that the gradient ve
tors ∇f1(x),∇f2(x), . . .∇fn(x) of the polynomials
fi ∈ F are linearly independent for all x ∈ Ω0. Consider a sub-domain Ω ⊆ Ω0, whi
h has adiameter δΩ < ε. We 
ompute the set of modi�ed polynomials F̂ in the sub-domain Ω for thearbitrary but �xed ve
tors of 
onstants ui, whi
h are linearly independent. If ε is su�
ientlysmall, then for all x ∈ Ω

det(J(F̂ )(x)) 6= 0.Proof. The gradient ve
tors of fi are linearly independent in any point of Ω0, therefore thereexists a 
onstant K > 0, su
h that all x ∈ Ω0 satisfy
∣
∣det(J(F )(x))

∣
∣ ≥ K > 0.103



5 Fat Spheres for Solving Multivariate Polynomial SystemsWe 
ompute the set of polynomials F̂c with spe
ial Hessian in a 
ertain point c ∈ Ω0 for the�xed ve
tors of 
onstants ui. Then the gradient ve
tors of f̂i ∈ F̂c in the point c 
an beexpressed as
∇f̂i(c) =

n∑

j=1

uji∇fi(c).The ve
tors of 
onstants ui de�ne the matrix U = (u1, . . . ,un). Sin
e the ve
tors ui arelinearly independent, the determinant of U is a positive 
onstant U
∣
∣det(U)

∣
∣ = U > 0.Therefore the determinant of the Ja
obian of F̂c in the point c satis�es

∣
∣
∣det(J(F̂c)(c))

∣
∣
∣ =

∣
∣det(UT · J(F )(c))

∣
∣ =

∣
∣det(U)

∣
∣ ·
∣
∣det(J(F )(c))

∣
∣ ≥ UK > 0.Suppose that Ω ⊆ Ω0 is a sub-domain with the 
enter point c. The set of new polynomials
omputed in a point c is F̂c. Then there exists εc > 0, su
h that if the diameter δΩ of thesub-domain Ω is smaller than εc, for all x ∈ Ω

∣
∣
∣det(J(F̂c)(x))

∣
∣
∣ > 0.In Lemma 4.19 we have shown, that for �xed ve
tors of 
onstants ui the system of polynomials

F̂c depends 
ontinuously on the point c. Thus there exists a general bound ε > 0, su
h thatfor any sub-domain Ω ⊆ Ω0, whi
h has the diameter δΩ < ε, any x ∈ Ω satis�es
∣
∣
∣det(J(F̂ )(x))

∣
∣
∣ > 0,where F̂ is the set of polynomials with spe
ial Hessian in the 
enter of the sub-domain Ω.Corollary 5.10. The median spheres are the zero set of the quadrati
 Taylor expansions of

f̂i about the 
enter of the sub-domain Ω

pi = T 2
c (f̂i)(x).If the diameter of Ω is su�
iently small, then for all x ∈ Ω

det(J(p1, . . . pn)(x)) 6= 0.Proof. The 
onstru
tion of pi implies that
∣
∣
∣det(J(f̂1, . . . , f̂n)(c))

∣
∣
∣ =

∣
∣det(J(p1, . . . , pn)(c))

∣
∣ .The polynomials f̂i depend 
ontinuously on the point c, so as their quadrati
 Taylor expan-sions pi. A

ording to the proof of Lemma 5.9 there exists a general bound ε > 0, su
h thatif the diameter δΩ of the sub-domain Ω is smaller than ε, then any x ∈ Ω satis�es

∣
∣det(J(p1, . . . , pn)(x))

∣
∣ > 0.104



5.3 Convergen
e Rate for Single RootsWe 
omputed the fat sphere boundaries as 
on
entri
 spheres to the median sphere pi = 0.These spheres are de�ned by the equations
pi = ±εi,where εi is 
omputed as

εi =
∥
∥
∥f̂i − pi

∥
∥
∥

ΩBB .Lemma 5.11. We 
ompute a polynomial f̂i with spe
ial Hessian in the 
enter point of thesub-domain Ω. Let εi denote the bound
εi =

∥
∥
∥f̂i − T 2

c (f̂i)
∥
∥
∥

ΩBB .Then it satis�es
εi ≤ Cdiam(Ω)3.Proof. The sub-domain Ω is an axis-aligned box. Sin
e all norms are equivalent on �nitedimensional ve
tor spa
es, there exists a 
onstant C1, su
h that

εi =
∥
∥
∥f̂i − pi

∥
∥
∥

ΩBB ≤ C1

∥
∥
∥f̂i − pi

∥
∥
∥

Ω

∞
,and C1 does not depend on Ω. If the 
enter point of Ω is denoted by c, then

∥
∥
∥f̂i − pi

∥
∥
∥

Ω

∞
=
∥
∥
∥f̂i − T 2

c (f̂i)
∥
∥
∥

Ω

∞
<

1

6
max

v∈S1,x∈Ω

∣
∣
∣
∣
∣

d3f̂i
dv3

(x)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

∗

diam(Ω)3.Re
all from Lemma 4.19 that f̂i depends 
ontinuously on the points of the 
omputationaldomain Ω0 for ea
h parameter ve
tor of u, where uj 6= 0. Thus for all Ω a global upperbound C2 
an be given for (∗). Therefore we observe, that
εi ≤

1

6
C1C2diam(Ω)3 ≤ Cdiam(Ω)3.In order to measure the longest diameter of the interse
tion of fat spheres we give ageneral lower bound on the gradient of a 
ertain fun
tion. This result is similar to the onein Lemma 4.16.Lemma 5.12. Consider the fun
tion and h =

√
∑n

i=1 q
2
i de�ned by the polynomials qi ∈ Q.We assume that the Ja
obian matrix is not singular in any x ∈ Ω

det(J(Q)(x)) 6= 0.For all x ∈ Ω, whi
h do not satisfy qi(x) = 0 for i = 1, . . . n, there exists a positive 
onstant
LΩ su
h that

∥
∥∇h(x)

∥
∥2 ≥ LΩ > 0.105



5 Fat Spheres for Solving Multivariate Polynomial SystemsProof. Sin
e
∇h(x) =

∑n
i=1 qi∇qi

√
∑n

i=1 q
2
i

,we obtain
∥
∥∇h(x)

∥
∥2 =

〈∑n
i=1 qi∇qi

√
∑n

i=1 q
2
i

,

∑n
i=1 qi∇qi

√
∑n

i=1 q
2
i

〉

=

=
q(x)
∥
∥q(x)

∥
∥

T

J(Q)(x)J(Q)(x)T
q(x)
∥
∥q(x)

∥
∥
≥ min

‖v‖=1
vTGram(∇q1(x), . . .∇qn(x))v,where q(x)T = (q1(x), . . . , qn(x)). We assumed, that J(Q)(x) is not singular, therefore

Gram(∇q1(x), . . .∇qn(x)) is also non-singular. Moreover it is symmetri
. Thus for all x ∈ Ω

∥
∥∇h(x)

∥
∥2 ≥ λ(x) > 0,where λ(x) is the minimal eigenvalue of the Gram matrix. Sin
e the Gram matrix is notsingular, and it depends 
ontinuously on the points of Ω, there exists a positive lower bound

LΩ depends on Ω, su
h that
λ(x) ≥ LΩ > 0.Lemma 5.13. Consider a domain Ω0. In ea
h point c ∈ Ω0 is given a set of polynomials

Qc. Ea
h polynomial pi ∈ Qc depends 
ontinuously on the point c. We assume that for all
c there exists a sub-domain Ωc ⊆ Ω0, where c is the 
enter point of the sub-domain and theJa
obian matrix of the polynomial system Qc is not singular in any x ∈ Ωc. Consider thefun
tion

hc =

√
√
√
√

n∑

i=1

q2ide�ned by the polynomials qi ∈ Qc. For all x from the sub-domain Ωc, whi
h do not satisfy
qi(x) = 0 for i = 1, . . . n, there exists a general positive 
onstant L su
h that

∥
∥∇hc(x)

∥
∥2 ≥ L > 0.Proof. Ea
h polynomial qi ∈ Qc depends 
ontinuously on the 
hoi
e of the point c. A
-
ording to Lemma 5.12 there exists a lower bound of ∥∥∇hc(x)∥∥2 for all x ∈ Ωc, whi
hbounds the minimal eigenvalue of the Gram matrix of qi ∈ Qc. Therefore for all Ωc, where

det(J(Qc)(x)) 6= 0, there exists a general positive lower bound L, su
h that any x ∈ Ωcsatis�es
∥
∥∇h(x)

∥
∥2 ≥ L > 0,if x does not satisfy qi(x) = 0 for all qi ∈ Ωc.Theorem 5.14. Suppose that the gradient ve
tors of the polynomials fi ∈ F are linearlyindependent for all points x ∈ Ω0. Consider a sub-domain Ω ⊆ Ω0, whi
h is su�
iently smalland 
ontains a single root q of the polynomials fi. We 
ompute the set of polynomials F̂with spe
ial Hessian in the 
enter point of the domain Ω for the arbitrary but �xed ve
tors of106



5.3 Convergen
e Rate for Single Roots
onstants ui, whi
h are linearly independent. If we apply the domain shrinking step of the fatsphere generation algorithm on the sub-domain Ω, then there exists a 
onstant C, su
h thatthe generated bounding region Ω∗ satis�es
diam(Ω∗) ≤ Cdiam(Ω)3.Proof. Suppose that Ω is a sub-domain of Ω0, whi
h 
ontains a single root q. We 
omputethe set of polynomials F̂ with spe
ial Hessian in the 
enter point c of Ω. The median spheresare de�ned as the zero set of the quadrati
 Taylor expansion of the polynomials f̂i ∈ F̂ aboutthe point c

pi(x) = T 2
c (f̂i)(x).We denote with εi the distan
e bound of f̂i and pi 
omputed in the BB-norm in Ω. A fatsphere is de�ned by the point set

Fi(pi, εi,Ω) = {x :
∣
∣pi(x)

∣
∣ ≤ εi} ∩ Ω.Let us denote the fat sphere interse
tion as I =

⋂n
i=1Fi. Ea
h fat sphere bounds the hyper-surfa
e f̂i = 0, thus the single root q ∈ Ω is 
ontained in the fat sphere interse
tion

q ∈ I ∩ Ω.We de�ne the fun
tion
h(x) =

√
√
√
√

n∑

i=1

q2i ,where qi(x) = pi(x) − pi(q). We 
onsider the integral 
urves de�ned by the ve
tor �eld
−∇h/

∥
∥∇h

∥
∥ in Ω. If Ω has a su�
iently small diameter, a

ording to Corollary 5.10 all

x ∈ Ω satisfy
det(J(p1, . . . pn)(x)) 6= 0.Sin
e ∇pi(x) = ∇qi(x), for all x ∈ Ω

det(J(q1, . . . qn)(x)) 6= 0. (5.8)Together with Lemma 5.12 this implies that the integral 
urves are regular in the inner pointsof Ω \ {q}.Suppose that x is an arbitrary point of the fat sphere interse
tion I 
omputed in asu�
iently small domain Ω. Su
h a point x ∈ I ∩ Ω ful�lls for all i = 1, . . . n

∣
∣pi(x)

∣
∣ ≤ εi.We 
onsider the integral 
urve u(s) with the starting point u(0) = x ∈ I , whi
h is regularon Ω \ {q}. We assume, that the 
urve is parametrized by ar
 length. Su
h an the integral
urve has a unique limit, if the 
omputational domain is su�
iently small. Sin
e h(x) ≥ 0and the tangent ve
tors of the 
urve u(s) always point to the dire
tion of steepest de
ent on

h, there exists a parameter value s∗ su
h that for s < s∗

lim
s→s∗

u(s) = q.107



5 Fat Spheres for Solving Multivariate Polynomial SystemsA

ording to the mean value theorem there exists ξ ∈ (0, s∗) su
h that
h(u(s∗))− h(u(0))

s∗
= ∇h(u(ξ)) · u̇(ξ) = −

∥
∥∇h(u(ξ))

∥
∥ .Sin
e h(u(s∗)) = 0

s∗ =
h(u(0))

∥
∥∇h(u(ξ))

∥
∥

=
h(x)

∥
∥∇h(u(ξ))

∥
∥
≤
√

2
∑n

i=1 ε
2
i

LΩ
.We supposed that u(s) is ar
 length parametrized, therefore x ∈ I satis�es

∥
∥x− q

∥
∥ =

∥
∥u(0)− u(s∗)

∥
∥ ≤

√

2
∑n

i=1 ε
2
i

LΩ
.Thus any point of I is 
loser to q than √2

∑n
i=1

ε2i
LΩ

. So the min-max box Ω∗ ⊂ Ω, whi
h
ontains I , has a diameter
diam(Ω∗) ≤ 2

√

2n
∑n

i=1 ε
2
i

LΩ
.In Lemma 4.19 we have shown, that the system of polynomials F̂ depends 
ontinuouslyon the 
hoi
e of the domain Ω. Therefore also ea
h pi and qi depend 
ontinuously on the
hoi
e of Ω. The lower bound LΩ of ∥∥∇h(x)∥∥2 bounds the minimal eigenvalue of the Grammatrix of qi. A

ording to Lemma 5.12 there exists a general positive lower bound L, su
hthat any x ∈ Ω satis�es

∥
∥∇h(x)

∥
∥2 ≥ L > 0.We have also shown in Lemma 5.11 that there exists a 
onstant D, whi
h does not dependon the 
hoi
e of Ω, su
h that

εi ≤ Ddiam(Ω)3.Therefore the diameter of the min-max box Ω∗ satis�es
diam(Ω∗) ≤ 2

√

2n
∑n

i=1 ε
2
i

L
≤ 2
√
2Dn√
L

diam(Ω)3 = Cdiam(Ω)3,where C does not depend on the 
hoi
e of Ω.5.4 Iterative Domain Redu
tion AlgorithmIn this se
tion we present a subdivision algorithm 
ombined with the lo
al domain redu
tionstrategy Algorithm 8. It is an iterative domain redu
tion, whi
h redu
es the bounding regionseither by subdivision or by bounding fat sphere interse
tion.108



5.4 Iterative Domain Redu
tion AlgorithmAlgorithm 9 GenerateBoundingBoxes(F,Ω, ε)1: A ← DomainRedu
tion(F,Ω) {domain redu
tion}2: if 2 · diam(A) ≤ diam(Ω) then3: if diam(A) > ε then4: GenerateBoundingBoxes(F,A, ε) {re
ursive 
all}5: else6: B = B ∪A7: end if8: else9: if diameter of Ω > ε then10: subdivide the domain Ω to Ωi {subdivision}11: GenerateBoundingBoxes(F,Ωi, ε) {re
ursive 
all}12: else13: B = B ∪Ω14: end if15: end if16: return B5.4.1 AlgorithmThe global root approximation algorithm (Algorithm 9) is an iterative domain redu
tion,whi
h bounds the roots of a multivariate polynomial system F within a pres
ribed toleran
ebound ε. The algorithm 
omputes a set of axis-aligned boxes with the help of hierar
hi
alsubdivision and fat sphere interse
tion. Ea
h root of the system is approximated via a nestedsequen
e of domains, whi
h have de
reasing diameters. The algorithm redu
es the domains,until ea
h list of nested domains has an element with su�
iently small diameter. Then thealgorithm returns the last element of the lists.Ea
h domain is analyzed, until it is dete
ted as an empty region or it has a su�-
iently small diameter. We dete
t empty domains via the 
onvex hull property (see inObservation 3.2). A sub-domain is also empty, if the lo
al algorithm generates fat spheres,whi
h do not interse
t. Then the algorithm does not analyze these domains any further. Nev-ertheless, it 
an happen that a domain without root is 
omputed with small diameter, but itis not dete
ted as an empty region. Thus the output 
an also 
ontain empty sub-domains.It is also important to separate the real roots of polynomials to di�erent bounding do-mains. In some 
ases we 
an 
ertify weather a domain in the output 
ontains only one singleroot, although this is not always possible. If two real roots have smaller distan
e than the tol-eran
e ε, they may have 
ommon bounding region in the output of the algorithm. Therefore
learly the number of bounding regions in the output is not ne
essarily equal to the numberof real roots of the polynomial system.Choi
e of Polynomial Combinations and Constants. As we des
ribed already inSe
tion 5.2.2 we 
ompute polynomials with spe
ial Hessian as the 
ombination of n − 1 or
n di�erent polynomials from the original set of polynomials F . If we only 
ombine n − 1polynomials from F , then we 
an 
hoose the set of polynomials in the 
onstru
tion of ea
hnew polynomial f̂i di�erently. However, we approximate the zero set of all polynomials in F ,109



5 Fat Spheres for Solving Multivariate Polynomial Systemsso we have to use all polynomials at least on
e in the 
omputation of f̂i. Otherwise we onlyapproximate the solution set of 
ertain subset of F . This problem does not appear if we useall the polynomials in F to 
ompute f̂i. A

ording to our experiments, this strategy redu
esthe size of the bounding domains faster, although we have to handle larger linear systems to�nd polynomials with spe
ial Hessian.In order to 
ompute ea
h new polynomial f̂i, we have to 
hoose an arbitrary but �xedve
tor of 
onstants ui. These ve
tors of 
onstants are 
hosen a priori and they are kept �xedduring ea
h subdivision and domain redu
tion step. We have seen in Lemma 5.9, that the
hoi
e of the ve
tors ui is important. These ve
tors have to be linearly independent in orderto provide the third order 
onvergen
e of the bounding regions for single roots.5.4.2 ExamplesWe present here several examples, whi
h show the behavior of the root-�nding algorithmGenerateBoundingBoxes for polynomial systems in two or three variables.Interse
tion Points of Impli
itly De�ned Planar CurvesExample 5.15. First we present a two-dimensional example to show the behavior of theroot-�nding algorithm. The two impli
itly de�ned 
urves are de�ned by the polynomialswith bi-degree (9, 8) and (6, 9). They are represented in the unit box. The interse
tionpoints of the 
urves are approximated within the toleran
e ε = 10−4. The 
urves have �veinterse
tion points in the domain. After three subdivision steps all roots are separated intodi�erent sub-domains. Then four or �ve domain redu
tion steps are made in order to a
hievethe pres
ribed a

ura
y around ea
h interse
tion point. The output is represented in Fig.5.4.In the left one 
an see the domains, generated during the domain redu
tion steps (either withsubdivision or with the help of fat ar
 interse
tion). They are shown in di�erent shades ofgray. In the right the 
enter point of ea
h bounding domain from the output is marked as ared dot.Example 5.16. This example appears in the paper of Elber et al. [17℄. They present astrategy to approximate the interse
tion points of impli
itly de�ned 
urves. Their algorithmpurge away empty domains and identify domains with single solution more e�
iently thanthe subdivision method. We 
ompare here the fat ar
 generation with the simple subdivisionvia this example.The two bi-
ubi
 
urves are the re�e
tion of ea
h other along the x = y line (see Fig.5.5).They interse
t ea
h other along the re�e
tion line in �ve di�erent points and also in two otherpoints in the domain. We represented the 
urves in the unit square [0, 1]2, and approximatethe roots using di�erent toleran
es. In Table 5.2 we 
ompare the total number of boundingdomains in the output. The fat ar
 generation method returns for small toleran
e a numberof bounding domains, whi
h is equal to the number of the interse
tion points, while the sub-division method returns a large number of bounding boxes. The algorithm, whi
h generatesfat ar
s, eliminates e�
iently the empty sub-domains. Moreover it speeds up the 
onvergen
eand uses less subdivision steps. In Fig.5.5 we show the output of the fat ar
 generation andthe subdivision algorithms. The interse
tion points of the 
urves are marked by bla
k 
rosses,while the generated bounding domains are represented by their 
enter points marked by reddots. In the �rst of row of the �gure we represent the outputs of the fat ar
 generation, whilein the se
ond row the outputs of simple subdivision method are shown.110



5.4 Iterative Domain Redu
tion Algorithm

Figure 5.4: Approximation of the interse
tion points of impli
itly de�ned 
urves given by thezero level set of polynomials with bi-degree (9, 8) and (6, 9). In the left: domains generatedduring the domain redu
tion steps, in the right: the 
enter points of the bounding domains aremarked as red dots.

Table 5.2: Approximating interse
tion of impli
itly de�ned 
urves. The number of used bound-ing regions for the seven interse
tion points of the 
urves in Fig. 5.5.Algorithm ε = 0.1 ε = 0.01 ε = 0.001 ε = 0.0001Fat Ar
s 15 14 7 7Subdivision 22 40 68 71
111



5 Fat Spheres for Solving Multivariate Polynomial Systems
Fat ar
 generation

ε = 0.1 ε = 0.01 ε = 0.001Bounding box generation

ε = 0.1 ε = 0.01 ε = 0.001Figure 5.5: Comparison of root approximation, 
omputed with fat ar
 generation and subdivi-sion. In the �rst row we present the outputs of the fat ar
 generation, while in the se
ond row theoutputs of simple subdivision method is shown for di�erent toleran
es. The interse
tion pointsof the 
urves are marked by bla
k 
rosses, while the generated bounding domains are representedby their 
enter points marked by red dots.
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5.4 Iterative Domain Redu
tion AlgorithmExample 5.17. Example 5.16 indi
ates that the fat ar
 generation algorithm separates thedi�erent roots well. Therefore we present an example, where the roots of the polynomials are
hanging from two single roots to one double root with the translation of one of the 
urves.The 
urves are represented by the zero set of
f(x, y) = −(0.95 + 10−k) + 0.2x+ 0.4y + x2 + y2,

g(x, y) = −0.48 + 0.2x+ 0.1y + xy.We set the toleran
e to ε = 10−8 and 
ompute the approximation in the unit box for the valueof k = 2, 5 and k = 10. The distan
e of the exa
t roots (denoted by δ) is given in the �rstrow of Table 5.3 for ea
h value of k. On the top of the table we show the results obtained byfat ar
 generation, while in the bottom the outputs of simple subdivision method are shown.In ea
h 
olumn the diameters of the bounding domains are given, whi
h were generated stepby step during the approximation methods. The bounding regions are redu
ed until theirdiameter is smaller than the toleran
e or at most up to eight steps. In the last 
olumn weshow the redu
tion of the bounding regions for one double root. Finally we present a �gure,where the bounding domains are shown in the 
ase of k = 2, 5 and for the double root. Theshrinking regions are represented in di�erent shades of gray (see Fig.5.6).Interse
tion Points of Impli
itly De�ned Algebrai
 Surfa
esExample 5.18. This example 
orresponds to the two-dimensional one in Example 5.16. It
ompares simple subdivision method with the fat sphere interse
tion in a three-dimensionalroot-�nding problem. The problem is given by the equation system
0.4(x2 + y2 + z2)− 0.88(x + y + z)− 4xyz + 1.452 = 0,

104(x3 + y3 + z3)− 141(x2 + y2 + z2) + 61.875(x + y + z)− 27.978125 = 0,

x2 + y2 + z2 + 0.4(x + y + z)− 1.58 = 0,with respe
t to the unit 
ube. The system has six di�erent roots in the 
omputational domain.These roots are situated pairwise relatively 
lose to ea
h other. If we approximate su
h rootswith simple subdivision, usually the root separation pro
ess is slow, and it uses high numberof bounding domains in the output. A

ording to our experiments in Example 5.16, we expe
tthat the fat sphere generation method uses less subdivision steps and few bounding regionsin the output. In Table 5.4 we 
ompare the total number of 
omputed bounding domains.The fat sphere generation method returns for small toleran
e a number of bounding domains,whi
h is equal to the number of the roots. Moreover it uses less subdivision steps (see in
olumns #l). While the subdivision method returns a large number of bounding boxes. InFig.5.7 we show the output of the fat sphere generation and the subdivision algorithm. Thegenerated bounding domains are represented by their 
enter point marked by red dots. Inthe �rst row we present the outputs of the fat sphere generation, while in the se
ond row theoutputs of simple subdivision method are shown.Example 5.19. We 
an approximate the ordinary singular points of an impli
itly de�nedsurfa
e with the help of the fat sphere generation. In this example we present two di�erent113



5 Fat Spheres for Solving Multivariate Polynomial SystemsTable 5.3: Approximating interse
tion points of impli
itly de�ned 
urves, whi
h are translatedin three steps (k = 2, 5, 10) from two single roots to one double root. We represent here thediameters of bounding boxes in ea
h step of the bounding region generation. In the 
ases of twosingle roots we marked the level of domain redu
tion, where the algorithms separate the roots.The distan
e of the two roots is given in the �rst row of the table (δ).
k = 2 (δ = 1.41 10−1) k = 5 (δ = 4.47 10−3) k = 10 (δ = 1.41 10−5) Double root

Fatar
gener
ation root separation 0.707 0.707 0.707

0.707 0.707 9.65 10−2 9.64 10−2 0.164
0.128 0.151 1.55 10−2 1.49 10−2 2.35 10−2

1.85 10−3 3.00 10−3 4.57 10−3 9.11 10−4 1.28 10−3

5.49 10−9 2.35 10−8 root separation 1.97 10−5 1.62 10−5

2.28 10−3 2.28 10−3 root separation 2.30 10−8

3.34 10−7 3.34 10−7 9.86 10−6 9.86 10−6

1.05 10−18 1.05 10−18 8.48 10−12 8.48 10−12

Subdivision
root separation 0.707 0.707 0.707

0.707 0.707 0.353 0.353 0.353
0.353 0.353 0.176 0.176 0.176
0.176 0.176 8.88 10−2 8.88 10−2 8.88 10−2

8.88 10−2 8.88 10−2 4.41 10−2 4.41 10−2 4.41 10−2

4.41 10−2 4.41 10−2 root separation 2.20 10−2 2.20 10−2

2.20 10−2 2.20 10−2 2.20 10−2 2.20 10−2 1.10 10−2 1.10 10−2

1.10 10−2 1.10 10−2 1.10 10−2 1.10 10−2 5.52 10−3 5.52 10−3Fat ar
 generation
Bounding box generation

Figure 5.6: Redu
tion of bounding boxes in the 
ase of k = 2, 5 and for the double root. Inthe �rst row we used the fat ar
 generation method, while in the se
ond row simple subdivision.114



5.4 Iterative Domain Redu
tion Algorithm
Table 5.4: Approximating interse
tion of impli
itly de�ned surfa
es. We present the number ofused bounding regions and the number of domain redu
tion steps (denoted by #l). This numbershows the maximal depth of the domain redu
tion or subdivision tree, whi
h is traversed by thealgorithm during the root approximation.Algorithm ε = 0.1 #l ε = 0.01 #l ε = 0.001 #lFat Spheres 42 2 6 5 6 5Subdivision 78 5 78 8 66 11

Fat sphere generation
ε = 0.1 ε = 0.01 ε = 0.001Bounding box generation
ε = 0.1 ε = 0.01 ε = 0.001Figure 5.7: Comparison of approximate roots 
omputed with fat sphere generation and subdi-vision. In the �rst row we represent the outputs of the fat sphere generation, while in the se
ondrow the outputs of simple subdivision method are shown for di�erent toleran
es.
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5 Fat Spheres for Solving Multivariate Polynomial Systemsalgebrai
 surfa
es given by an impli
it equation f(x, y, z) = 0 with ordinary singularities.These singularities 
an be found by 
omputing the zero set of the partial derivatives
fx = 0, fy = 0, fz = 0.A singular point of the surfa
e also satisfy the equation of the surfa
e.In Fig.5.8 the dots mark the approximate solution points of the system of partial deriva-tives. The red ones are the solutions, whi
h lie 
lose to the impli
itly de�ned surfa
es f = 0.The �rst surfa
e in the �gure is 
alled Cayley-
ubi
. It has four ordinary singularities, whi
hare 
omputed in the unit 
ube as the solution of the system
−250xz + 175x + 125.5z − 87.85 = 0,

250yz − 75y − 124.95z + 37.485 = 0,

−125x2 + 125y2 + 125.5x − 124.95y + 50z − 25.275495 = 0.The se
ond surfa
e is the Ding-dong surfa
e, whi
h has one ordinary singularity. It is 
om-puted in the unit 
ube as the solution of the system
18x− 9.06 = 0,

18y − 8.994 = 0,

81z2 − 100.08z + 29.9136 = 0.The toleran
e during the 
omputations was set to 0.01 in both examples.
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tion Algorithm

Figure 5.8: Ordinary singularities on impli
itly de�ned surfa
es.
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Chapter 6Con
lusionWe presented a new family of algorithms to approximate impli
itly de�ned algebrai
 
urvesand real roots of polynomial systems. These methods are based on the geometri
al propertiesof polynomial systems.In order to generate lo
al bounding regions, we presented fat ar
s, whi
h are the tubularneighborhood of 
ir
ular ar
s. First we presented several te
hniques to generate these bound-ing regions for planar 
urves. One of these te
hniques 
omputes polynomials with modi�edTaylor expansion. This method has several advantageous properties, therefore we generalizedit to approximate algebrai
 
urves embedded into the three- and n-dimensional spa
e. Thefat ar
s, generated by this te
hnique, have a 
lose 
onne
tion to the os
ulating 
ir
le of thealgebrai
 
urve. The 
ubi
 
onvergen
e order is 
on�rmed for these bounding regions in thethesis. The lo
al fat ar
 generation 
ombined with iterative subdivision leads to a hybridalgorithm, whi
h generates bounding regions to impli
itly de�ned algebrai
 
urves. We pre-sented several examples and appli
ations of the algorithm to approximate impli
itly de�nedalgebrai
 
urves in two- and three-dimensional spa
e.Based on the de�nition of fat ar
s we introdu
ed fat spheres as bounding regions foralgebrai
 obje
ts. These regions 
an also be generated using polynomials with modi�ed Taylorexpansion. Interse
ting these bounding regions leads us to a lo
al domain redu
tion strategy,whi
h bounds the interse
tion points of algebrai
 surfa
es. We 
ombined this strategy withiterative subdivision in order to approximate real roots of multivariate polynomial systems.This hybrid algorithm generates sequen
es of bounding regions, whi
h 
onverge with orderthree to the single roots of a multivariate polynomial system.The stru
ture of these algorithms 
arries two main messages. First of all, that analyzinggeometri
 properties of algebrai
 obje
ts leads to stable te
hniques on real algebrai
 set ap-proximation. This stability is 
erti�ed by the Bernstein-Bézier polynomials. In addition fatar
 and sphere 
omputations are advantageous. Although they require extra 
omputationaltime 
ompared with other bounding primitives, the generated bounding regions 
onvergefaster. Computing with quadrati
 bounding regions provides faster termination of the algo-rithm and redu
es the depth of the subdivision tree.
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