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Abstrat
Studying objets de�ned by algebrai equations has been an ative researh area for along time. The reason for the interest is the wide variety of appliations, whih appear inmathematial modeling and physis. Modeling algebrai objets is an essential ingredientof free-form surfae visualization and numerial simulations. Thus modeling algorithms arefrequently used in CAD-systems, manufaturing, robotis et. Several problems in applia-tions are desribed by multivariate polynomial systems with a low dimensional solution set.In the thesis we present a method to generate bounding regions for one- or zero-dimensionalsolution sets of multivariate polynomial systems.The one-dimensional solution set of a multivariate polynomial system forms an algebraiurve. These urves are de�ned as the intersetion urves of algebrai surfaes. Representingthese algebrai urves is a fundamental problem of some geometri algorithms. For instanesuh algebrai urves appear as the boundary urves of surfaes reated by Boolean operationsor the self-intersetion urves of surfaes. Due to the importane of these urves severalalgorithms have been introdued to approximate them, espeially for urves embedded inlower dimensional spaes. We formulate in the thesis a new geometrial method, whihapproximates one-dimensional algebrai sets. The algorithm generates a set of quadratiregions, the so alled �fat ars� , whih enloses the algebrai urve within a user spei�edtolerane. We desribe di�erent methods, how to generate these bounding regions, and westudy their behavior. Then we ombine the fat ar generation with the standard subdivisiontehnique.The omputation of zero-dimensional solution sets of multivariate polynomial systemshas also several appliations in algebra and geometry. Therefore various methods exist to�nd or to isolate the roots of polynomial systems. They use symboli, numeri or ombinedtehniques in order to �nd the solutions. In the end of the thesis we generalize the de�nitionof fat ars to the onept of fat spheres. We introdue an iterative domain redution methodbased on fat sphere generation. This method generates sequenes of bounding regions, whihonverge with order three to the single roots of a multivariate polynomial system.



Zusammenfassung
Analyse und Bearbeitung von Objekten aus der reellen algebraishen Geometrie sind seitlangem ein bedeutendes Forshungsfeld. Ein Grund dafür sind ihre vielfältigen Anwendungen,welhe unter anderem in der mathematishen Modellierung und Physik auftreten. Methodenzur Modellierung algebraisher Objekte sind für die Darstellung von Freiform�ähen und nu-merishen Simulationen von essentieller Bedeutung. Dementsprehend �nden diese MethodenAnwendung in CAD-Systemen, in der industriellen Fertigung, der Robotik, et. Viele Prob-leme werden dabei in Form multivariater polynomieller Systeme mit niedrigdimensionalerLösungsmenge dargestellt. In dieser Arbeit präsentieren wir eine Methode zur Erstellung von�bounding regions� für ein- und nulldimensionale Lösungsmengen multivariater polynomiellerSysteme.Die eindimensionale Lösungsmenge eines multivariaten polynomiellen Systems bildet einealgebraishe Kurve. Diese Kurven können als Shnittkurven algebraisher Flähen betrahtetwerden. Die Darstellung dieser algebraishen Kurven ist ein fundamentales Problem der algo-rithmishen Geometrie. Solhe Kurven entstehen zum Beispiel als Randkurven von Flähenbei Anwendung boolesher Operationen oder als Selbstshnitte von Flähen. Aufgrund ihrergroÿen Bedeutung existieren bereits viele Algorithmen zur Approximation algebraisher Kur-ven, speziell Kurven eingebettet in niedrigdimensionale Räume. Wir formulieren in dieser Ar-beit eine neue geometrishe Methode, die eindimensionale, algebraishe Mengen approximiert.Der Algorithmus erzeugt Regionen zweiten Grades, sogenannte �fat ars� , die die algebraisheKurve unter Berüksihtigung einer vorgegebenen Toleranz abdeken. Wir beshreiben ver-shiedene Methoden diese �bounding regions� zu erzeugen und analysieren deren Verhalten.Weiters vereinen wir die �fat ar� Erzeugung mit der Subdivisionsmethode.In der Algebra und in der Geometrie hat das Au�nden nulldimensionaler Lösungsmengenmultivariater polynomieller Systeme zahlreihe Anwendungen. Daher existieren viele Meth-oden solhe Lösungen polynomieller Systeme zu �nden oder zu isolieren. Diese Methodenverwenden symbolishe, numerishe oder kombinierte Tehniken zum Au�nden der Lösun-gen. Am Ende dieser Arbeit verallgemeinern wir die De�nition der �fat ars� zum Konzeptder �fat spheres� . Wir führen eine iterative Gebietunterteilungsmethode ein, die auf �fatspheres� basiert. Diese Methode erzeugt �bounding regions�, die in dritter Ordnung gegen dieeinfahen Wurzeln multivariater polynomieller Systeme konvergieren.



Összefoglalás
Az algebrai felületek és görbék vizsgálata már husszú ideje igen aktív kutatási terület. En-nek oka, hogy a matematikai modellezés és a �zika területén számos alkalmazásuk ismert. Azalgebrai objektumok modellezése fontos összetev®je a felületek megjelenítésének és bizonyosnumerikus szimuláióknak. Ennek megfelel®en gyakran találkozhatunk különböz® modellez®algoritmusokkal CAD-rendszerekben, gyártási folyamatok során, a robotikában stb. A gyako-rlatban számos probléma írható le olyan többváltozós polinomrendszerek segítségével, melyekmegoldástere alasony dimenziós. A következ®kben egy olyan módszert ismertetünk, amelytöbbváltozós polinomrendszerek egy- vagy nulldimenziós megoldáshalmazát közelíti úgyn-evezett határoló területek (bounding regions) segítségével.Egy többváltozós polinom-egyenletrendszer egydimenziós megoldáshalmaza algebrai gör-bét határoz meg. Az ilyen görbék mint algebrai felületek metszésgörbéi állnak el®. Néhánygeometriai algoritmusnak alapvet® épít®köve ezen görbék leírása. Ilyen görbék például aBool-féle m¶veletek segítségével el®állított felületek határgörbéi vagy önátmetsz® felületekmetszésgörbéi is. Fontosságuknak köszönhet®en ilyen görbék közelítésére számos algoritmusismert, különösen alasony dimenzós terekbe ágyazott görbére. A disszertáióban egy olyanúj geometriai módszert mutatunk be, amely segítségével egydimenziós algebrai sokaságokatközelíthetünk. Az új algoritmus kvadratikus határoló területeket, úgynevezett �vastagítottíveket� (fat ars) számol, melyek magukba foglalják az algebrai görbét, mindamellett át-mér®jük nem halad meg egy el®re megadott hibahatárt. A disszertáióban több különböz®módszert is ismertetünk a vastagított ívek számolására, és vizsgáljuk ezek különböz® tulajdon-ságait is. Végül kombináljuk a határoló területek számolását az algebrai görbék felosztásával.Többváltozós polinomrendszerek nulldimenziós megoldáshalmazának kiszámítása az alge-bra és a geometria számos alkalmazásásában fontos szerepet játszik. Ezért több különböz®módszer is ismert polinom-egyenletrendszerek gyökeinek kiszámításásra és szétválasztására.Ezek az algoritmusok szimbólikus, numerikus vagy vegyes megoldási tehnikákat alkalmaz-nak a megoldások keresésekor. A disszertáió utolsó fejezetében általánosítjuk a vastagítottívek de�níióját, és bevezetjük a vastagított gömb fogalmát. Bemutatunk egy olyan iter-atív algoritmust, mely vastagított gömböket használ a gyököket közelít® határoló területeksökkentésére. Ez a módszer régiók olyan sorozatával közelíti az egyes megoldásokat, amelyharmadrendben konvergál a többváltozós egyenletrendszer egyszeres gyökeihez.
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Chapter 1Introdution1.1 Polynomial SolversSolving multivariate polynomial systems is a key problem in algebra and geometry. It hasseveral appliations, therefore various methods exist to ompute the solution sets of polyno-mial systems. These methods are using symboli, numeri or ombined tehniques in orderto �nd the solutions.Representing algebrai urves is a fundamental problem of geometri omputing. Im-pliitly de�ned algebrai urves an be desribed as the intersetion urves of algebrai sur-faes. Computation of suh a surfae-surfae intersetion is a basi operation in geometrimodeling.Interseting low degree impliitly de�ned surfaes has attrated a lot of interest in theliterature. Quadrati surfaes are the simplest urved surfaes, therefore they are frequentlyused in omputational geometry. The intersetion omputation of suh surfaes has beendisussed thoroughly in [8, 11, 40, 45, 46℄.Several di�erent methods have been developed for omputing the intersetion of algebraisurfaes (see [19, 31, 39℄). Many of them are symboli-numeri algorithms. The most widelyused numeri methods are the lattie evaluation, traing and subdivision-based methods.Lattie evaluation tehniques generate a set of low dimensional sub-problems. The solu-tions of these sub-problems are interpolated to approximate the general solution. Marhingor traing methods generate point sequenes along the onneted omponents of the urve.They neessarily use some topologial information to �nd starting, turning and singularpoints [3, 10, 16, 22℄.Subdivision algorithms deompose the problem into several sub-problems, and sort theseproblems aording to the urve topology [2, 25℄. The deomposition terminates if suitableapproximating primitives an be generated for eah sub-problem [29℄. In order to onstrutthese approximating primitives several loal approximation tehniques an be applied, suhas interpolation, bounding region generation or least-squares approximation.Real root �nding is onsidered as a di�ult task. It is an important problem, thereforeseveral methods were developed to solve it. A general overview about the multivariate root�nding algorithms is given in [13, 38℄. The solvers desribed in the literature are using eitheralgebrai or geometri tools. 1



1 IntrodutionAlgebrai approahes, suh as Gröbner-basis tehnique [5℄, resultant based methods orontinuous frations methods assure exat and e�ient solution algorithms. These algorithmsfrequently provide more information about the solutions than it is needed in the appliations.It is often unneessary to ompute all solutions. For instane, CAD-systems usually requireinformation only about real solutions, whih lie in a ertain domain. Moreover these symbolimethods are not really suitable for numerial omputations. An algebrai solver, whih isusing the Gröbner-basis tehnique, was developed for instane by Rouillier [33℄ for bi-variatepolynomial systems. Busé et al. onsidered resultant based methods in [6, 7℄. In [14℄ analgebrai method is desribed, whih is using Sturm-Habiht sequenes.Homotopy solvers ompute a family of root-�nding problems. The method transforms asimple problem to the original one in several steps, and omputes the roots of eah inter-mediate problem. The omputed sequene of roots onverges to the solutions of the originalroot-�nding problem. However suh omputations usually require ine�ient memory andtime. Polynomial solvers based on homotopy methods are desribed in [24, 28℄.In order to develop robust approximation algorithms a great leap forward was to useBernstein-Bézier polynomials. The stability of this representation form allows to developalgorithms for approximating algebrai sets given in higher dimensional spae. The �rst gen-eral numerial algorithms using polynomials given in BB-form were developed by Sherbrookeand Patrikalakis [39℄. These are subdivision methods for �nding zero dimensional solutionsets of multivariate polynomial equations.Subdivision algorithms are based on the �divide and onquer� paradigm. They omputein a ertain domain (usually in an axis-aligned box), and provide information only aboutreal-roots. If we are interested in ertain properties of a root, like multipliity, then furtheromputations are neessary. Subdivision algorithms deompose the problem into several sub-problems. The deomposition terminates if suitable bounding primitives an be generatedin eah sub-problem [29℄. In order to onstrut these approximating primitives several loaldomain redution strategies an be applied. The �rst subdivision solvers were developed bySederberg et al. for bivariate Bézier-polynomials. They are using lipping and subdivisiontehniques [35, 36℄. Later on a family of algorithms was invented, whih is using projetiontehniques [39℄. The most reently developed solvers are published by Mourrain et al. [13℄and Elber et al. [12℄.1.2 OutlineIn the thesis we present a method to bound one- or zero-dimensional solution sets of multi-variate polynomial systems. In order to approximate the solution of suh polynomial systemswe put the emphasis on the geometrial properties of them. We develop numeri algorithmsbased on a new bounding region generation method and the standard subdivision tehnique.We introdue an algorithm, whih generates a set of quadrati bounding regions for impli-itly de�ned algebrai urves. Later these regions are generalized to bound impliitly de�nedsurfaes. Computing the intersetion of these bounding regions leads to a tehnique, whihgenerates bounding domains around the real roots of multivariate polynomial systems.In the next hapter we desribe a method, whih generates bounding regions for impliitlyde�ned planar urves. This method is using speial bounding primitives, the so alled �fatars� . The onstrution of fat ars was introdued by Sederberg [37℄ to approximate planarparametri Bézier urves. We generalize this de�nition in order to bound impliitly de�ned2



1.2 Outlineurves. We present several di�erent tehniques to generate fat ars in R
2. After disussingthe main steps and the properties of these tehniques we ompare them. Then we ombinethe loal fat ar generation with iterative subdivision. In the end of the hapter we presentseveral examples and show an appliation.In Chapter 3 we present an algorithm, whih generates bounding regions for impliitlyde�ned algebrai spae urves. The method is the generalization of the fat ar generationtehnique from Chapter 2. We analyze the properties of the urve approximation method inthe three-dimensional ase, and ombine it with subdivision tehnique. Finally we presentsome examples and appliations of the method.The three-dimensional fat ar generation tehnique an also be generalized to impliitlyde�ned algebrai urves represented in the n-dimensional spae. In the fourth hapter wepresent an algorithm, whih generates fat ars to bound one-dimensional algebrai sets in

R
n. We desribe also the general properties of the tehnique.In Chapter 5 we introdue fat spheres as multidimensional bounding regions for impli-itly de�ned algebrai objets. Then we desribe a loal domain redution strategy to boundintersetion points of algebrai objets. We ombine this loal algorithm with iterative subdi-vision. This hybrid algorithm an be applied for approximating the real roots of multivariatepolynomial systems. In the end of the hapter we present several two- and three-dimensionalexamples.Finally we summarize the results of the thesis in Chapter 6.
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Chapter 2Fat Ars for Impliitly De�ned PlanarCurvesThe approximation of impliitly de�ned urves is one of the fundamental problems in om-putational geometry. In this hapter we present two tehniques, whih generate boundingregions for impliitly de�ned urves. Both methods are the generalization of an approxima-tion tehnique for planar parametri urves using speial bounding primitives. After disussedthe main steps and the properties of the algorithms, we ompare them. In the end of thehapter we present several examples and show an appliation.2.1 Fat Ars in 2DIn this setion �rst we give a short overview of the related work on planar urve approxima-tion. Then we introdue fat ars, whih are speial type of bounding primitive for planarparametri urves. In order to generalize the de�nition of these primitives to impliitly de-�ned urves, we desribe the planar algebrai urves as the zero level set of polynomials inBernstein-Bézier tensor produt form.2.1.1 Bounding Region GenerationBounding regions, whih enlose segments of planar urves, are frequently needed for variousgeometri omputations, e.g., for solving the intersetion problem between two planar urves.Axis-aligned bounding boxes (min-max boxes), whih an easily be generated both for planarparametri urves and for impliitly de�ned urves, are one of the simplest instanes. Otheruseful primitives inlude fat lines (bounding strips, see e.g. [4℄), the onvex polygons obtainedas a onvex hull of the ontrol polygons or fat ars [37℄.The performane of a bounding region depends on the approximation order. For a bound-ing primitive with approximation order k the number of primitives needed to bound a urvewith a given tolerane ε grows like k
√

1/ε. Consequently, the use of geometri primitives withhigher approximation order may provide omputational advantages. Bounding boxes haveonly approximation order k = 1, while both the onvex hull of ontrol polygons and fat linesprovide approximation order 2, and fat ars even have approximation order 3.Clearly, it is possible to de�ne bounding regions with an even higher approximation order.Fat ars seem to be partiularly useful sine they provide a reasonable trade-o� between5



2 Fat Ars for Impliitly De�ned Planar Curvesgeometri �exibility and the omputational simpliity of elementary geometri operations.For instane, the omputation of the intersetion of two irular ars requires solely thesolution of quadrati equations, while this beomes far more ompliated for higher orderobjets.Various methods have been desribed in the literature for generating an ar spline urvewhih approximates a given parametri urve with a presribed tolerane, see e.g. [48℄ formany related referenes. The use of ar splines for geometri design appliations an be traedbak to a lassial VTO report of Sabin [34℄. Mariniak and Putz dealt with the minimizationof the number of ars to approximate a urve under a give tolerane [27℄. Later Qiu et al.improved their method [32℄. In a number of papers, Meek and Walton applied ar splines toapproximate parametri urves [42, 43, 44℄ Yong used ar splines for quadrati Bézier urveapproximation [49℄. Feihtinger et al. ompared various biar interpolation shemes [41℄.Held and Eibl approximated with biars simple planar polygons either for symmetri andasymmetri tolerane bounds [18℄.2.1.2 Fat Ars for Planar Parametri CurvesThe onstrution of fat ars was introdued by Sederberg [37℄. He developed a methodto approximate planar parametri Bézier urves. His method generates a set of boundingregions, eah onsisting of an approximating irular ars with some �nite thikness.The approximating ar � the so alled median ar � is usually de�ned by three points fromthe parametri urve. These interpolation points an be hosen in various ways [26, 37℄, forinstane as the two endpoints of the urve segment and the intersetion point of the bisetorof the endpoints and the urve segment. Of ourse, any other approximating ar generationtehnique an be used for median ar generation.The next step of the method is to measure the distane between the urve and the medianar. Frequently an upper bound is used to estimate the distane. An o�set of the median aran be de�ned with this distane bound. The boundaries of the o�set are onentri ars,whose radii are the sum and the di�erene of the median ar radius and the distane bound.This o�set is a part of an annulus, and it de�nes a bounding region for the original urvesegment.PSfrag replaements p1
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̺Figure 2.1: Fat ar generation for planar parametri urve.Sine the approximation order of irular ars is equal to three, the o�set distane behavesas O(h3), where h is the length of the given urve segment. So the method is simple, and it6



2.1 Fat Ars in 2Dhas a relatively high onvergene rate.All existing algorithms for fat ar generation deal exlusively with parametri urves. Ouraim is to apply this method to impliitly de�ned urves. Although the steps of the algorithmare more ompliated in the impliit ase, the expeted onvergene rate is the same as forthe parametri urves. So we implemented di�erent approximation and distane boundingtehniques to get a fast and aurate omputational method.2.1.3 Regular Planar Algebrai CurvesIn order to onstrut fat ars for planar algebrai urves, we assume that the bivariate polyno-mial f de�ning the urve is given by its tensor-produt Bernstein-Bézier (BB) representationwith respet to the retangular domain Ω0 = [α1, β1]× [α2, β2].
f(x, y) =
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, t ∈ [αk, βk]. (2.2)The urve is given as the zero set of the bivariate polynomial
C(f,Ω0) = {(x, y) : f(x, y) = 0} ∩ Ω0. (2.3)Clearly, the urve may be an empty point set, or it may onsist of more than one urvesegment. In order to ontrol the behavior of the urve in the omputational domain we usethe following de�nition.De�nition 2.1. A point p of an algebrai urve C(f,Ω) is alled singular in the domain

Ω ⊆ Ω0, if the gradient vetor ∇f(p) is zero (and alled regular otherwise). A urve segmentis regular, if any point of the segment is regular.A regular urve onsists of one or more single branhes of the urve without any self-intersetion or loops.Observation 2.2. A general lower bound an be given for the gradient length in any point
(x, y) of a domain Ω with using the BB-representation of the polynomial f . The tensor�produt BB-representation of the square of the gradient length is
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j (y). (2.4)It an be found using the di�erentiation, produt and degree elevation formulas of BB-polynomials (see [19℄). This representation provides us a general lower bound for the gradientlength
‖∇f(x)‖ ≥

√
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i,j

hij} = G. (2.5)If G is non-zero, then the gradient does not vanish in the domain Ω. This implies also, thatthe urve C(f,Ω) is regular in the domain Ω. 7



2 Fat Ars for Impliitly De�ned Planar Curves2.2 Fat Ar Generation with Parametri ArsIn this setion we desribe a fat ar generation method for impliitly de�ned urves. Thealgorithm is based on a tehnique, whih is similar to the original onstrution for planarparametri urves. It generates interpolating irular ars as median ars, and omputes fatar thikness with the help of one-sided Hausdor� distane.2.2.1 Topologial CriterionIn order to generate fat ars with interpolation tehnique, we need to detet domains on-taining only one segment of the impliitly de�ned urve. Various riteria have been disussedin the literature for isolating a single segment of an algebrai urve. For instane, di�erenttypes of disriminating urve families have been used in [47℄. These disriminating fam-ilies are partiularly useful in ombination with algorithms that trae the algebrai urvesegments.We are interested in a riterion whih guarantees that the sub-domain Ω ⊆ Ω0 ontains aregular single urve segment with exatly two transversal intersetions with the boundaries.Empty domains, whih do not ontain any points of the urve, should be also deteted.In order to �nd suh domains we analyze the sign hanges of the BB-oe�ients in therepresentation.Observation 2.3. If a polynomial is represented by only negative or only positiveBB-oe�ients in a sub-domain Ω, then none of the points in the domain belongs to thezero set of the polynomial.This observation follows from the onvex hull property of BB-polynomials. A funtionwith only positive or negative oe�ients an be bounded away from zero by the oe�ientwhih has the smallest absolute value.We would like to generate fat ars for urve segments, whih onsist of a single ar,are regular and do not form loops in the domain. The following Lemma 2.4 gives su�ientonditions to detet domains with single segment of a regular algebrai urve.Lemma 2.4. Consider a regular algebrai urve segment de�ned by the polynomial in theform (2.1) over a domain Ω. We say that the oe�ients exhibit a orner event, if
• the oe�ient at one of the orners is equal to zero and
• the �rst non-zero oe�ients along the two neighboring boundaries have a di�erent sign.We say that the the oe�ients exhibit an edge event, if
• the ontrol polygon along one of the domain boundaries has exatly one sign hangefrom plus to minus or vie versa.If the number of the orner and edge events is equal to two in Ω, then the domain ontains asingle urve segment, whih is onneted, and whih intersets the boundaries of the domainin exatly two points.Proof. For the proof it su�es to observe that eah event guarantees that the impliitlyde�ned urve rosses the boundaries of the domain in exatly one point. Sine we supposedthat the urve is regular, no self-intersetions or loops appears in the domain.8



2.2 Fat Ar Generation with Parametri ArsThe onditions of Lemma 2.4 are su�ient, but not neessary. For example, the lemmaexludes the ase of a single ar, whih rosses twie the same segment of the domain bound-ary. However, in some ases the onditions of Lemma 2.4 are also neessary in the asymptotisense. The following lemma desribes suh a speial ase. It supposes that the oordinates ofthe gradient vetor are not vanishing in any point of the algebrai urve in the omputationaldomain (the urve is regular in both oordinate diretions).Lemma 2.5. Consider an algebrai urve segment de�ned by the polynomial f over adomain Ω0. We suppose that there exists G > 0, suh that if (x, y) ∈ Ω0 satis�es f(x, y) = 0,then the partial derivatives satisfy
min{

∣
∣fx(x, y)

∣
∣ ,
∣
∣fy(x, y)

∣
∣} ≥ G. (2.6)Under these onditions after a ertain number of suessive subdivisions of Ω0 eah sub-domain satis�es either the ondition of Lemma 2.4 or the onditions of Observation 2.3.This implies that all sub-domains are deteted as a domain with single urve segment or anempty domain.Proof. We supposed that there exists G > 0 whih is a lower bound for the partial derivativesalong the urve. Therefore the BB-oe�ients in the representation of fx and fy an bebounded away from zero if we ompute in a su�iently small sub-domain of Ω lose to thealgebrai urve. Thus the restrition of fx and fy to a domain boundary (x=onstant or

y=onstant) has only positive or only negative ontrol points in the BB-representation. Itmeans that f has a sequene of ontrol points restrited to eah domain boundary, whih ismonotone inreasing or dereasing.If the �rst and last ontrol points have the same sign along a ertain domain boundary,then all ontrol points have the same sign. In this ase aording to Lemma 2.4 no eventours along the domain boundary. If the �rst and last ontrol points have di�erent sign,then exatly one sign hange ours along the ontrol polygon. It means that an edge eventours. If one of the end ontrol point is zero, it gives a orner event.Eah ontrol polygon is monotone inreasing or dereasing along the domain boundaries,and they are onneted in the orners of the domain. Therefore the sum of the number oforner and edge events has to be even. If this event number is zero, then Observation 2.3is satis�ed. It is beause all oe�ients are stritly positive or negative along the domainboundary, and the partial derivatives are also bounded away from zero. If the orner andedge event number is equal to two, then the onditions of Lemma 2.4 are satis�ed. In the asewhen the number of orner and edge event is more than two the domain ontains more thanone urve segment. They are not interseting eah other sine the gradient is not vanishing.Therefore these segments are separated via subdivision in to di�erent domains.Remark 2.6. The onditions of Lemma 2.5 are neessary in a sense, that after a ertainnumber of subdivisions all domains satisfy either the ondition of Lemma 2.4 or the ondi-tions of Observation 2.3. The following example demonstrates the topology detetion, if theonditions of Lemma 2.5 are not satis�ed. Suppose that our algebrai urve is de�ned by thepolynomial
f(x, y) = y −

(

x− 1

3

)2

, (x, y) ∈ Ω = [0, 1]2.9



2 Fat Ars for Impliitly De�ned Planar CurvesAlong the domain boundary, whih is de�ned by y = 0, the point x = 1
3 is a point ofthe algebrai urve. We study the domains around the point (13 , 0) generated by adaptivesubdivision. Eah suh domain has a boundary along y = 0, whih an be represented bythe interval x ∈ [a, b]. The funtion restrited to this segment of the domain boundary is

f(x, 0) = g(x) = −
(

x− 1

3

)2

, x ∈ [a, b].The adaptive subdivision implies that a and b are rational numbers in the form k
2n ≤ 1, where

k, n ∈ Z. Thus 1
3 ∈ (a, b) moreover

g(a) < 0, g(b) < 0 and g

(
1

3

)

= 0.Therefore the ontrol polygon of g has always at least two sign hanges, or it has a ontrolpoint equal to zero, whih is not the end point of the ontrol sequene. This implies thatneither the ondition of Observation 2.3 nor the onditions of Lemma 2.4 an be ful�lled forany sub-domains generated around the urve point (13 , 0).Remark 2.7. Suppose that the points of the algebrai urve, whih have tangent vetorparallel to a oordinate axes, are not on the grid lines of the adaptive subdivision. Then aftera ertain number of subdivisions all sub-domains are deteted as a domain with single urvesegment or as an empty domain.2.2.2 Loal AlgorithmWe present here a loal algorithm, whih generates fat ar in domains onsisting a singlesegment of the urve. It assumes that the onditions of Lemma 2.4 are satis�ed. Later onwe will desribe a global algorithm, whih detets the domains, where the loal algorithm isappliable. The loal algorithm �summarized in Algorithm 1 � is based on the orrespondingtehniques in the parametri ase. It generates median ar in a parametri form with inter-polation tehnique (see later in Setion 2.2.3) and uses the estimated Hausdor� distane (inSetion 2.2.4).The algorithm is suessful, if it �nds the median ar, and the fat ar thikness is smallerthan the presribed tolerane ε. Then the algorithm returns with a fat ar, whih boundsthe urve segment.It may happen, that there are no fat ar boundaries, or only one of the bounding arsan be generated (e.g. when the distane bound of the median ar and the impliitly de�nedurve is greater then the radius of the meridian irle, or one of the bounding ars does notinterset the omputational domain). The loal algorithm fails if no fat ar is generated andreturns with the empty set.Fig.2.2 presents three examples of fat ars whih have been generated with the help ofAlgorithm 1.2.2.3 Median Ar Generation with InterpolationThis approximation tehnique is based on the orresponding tehniques in the parametriase. Therefore we have to ensure that the algebrai urve has a single segment in the10



2.2 Fat Ar Generation with Parametri ArsAlgorithm 1 FatArLoal_2d1 (f,Ω, ε)Require: The onditions of Lemma 2.4 are satis�ed.1: pend = {p1,p2} ← approximate end points of the impliitly de�ned urve2: pmid = {p3} ← approximate inner point of the impliitly de�ned urve3: if #pend = 2 and #pmid = 1 then4: S ← irle through p1,p2,p3 {median irle}5: ̺← upper bound of HDΩ(S ∩ Ω, C ∪ ∂Ω) {see Lemma 2.8}6: if ̺ 6 ε and ̺ 6 radius of S then7: S̺ ← o�set ring of S with distane ̺ {fat irle}8: S+,S− ← inner and outer irle of ∂S̺9: if there is no sign hange of f along S+ ∩ Ω or S− ∩ Ω then10: return Ω ∩ S̺ {fat ar has been found}11: end if12: end if13: end if14: return ∅ {no fat ar has been found}
Figure 2.2: Examples for fat ar generation with the help of algorithm FatArLoal_2d1. Thered urves are the impliitly de�ned urves. The median irles are shown in green.omputational domain. We use Lemma 2.4 to detet suh urve segments. In order toonstrut the median ar we approximate three points of the impliitly de�ned urve. Twoof them are the intersetion points of the urve with the domain boundary, while the thirdpoint is the intersetion point of the bisetor of the �rst two approximation points.From Lemma 2.4 we know also, that in the ase of a orner event the orner of the om-putational domain is a point of the urve. In the ase of an edge event the orresponding edgeontains an intersetion of the urve with the boundary of the domain. It is approximatedthen, suh that we onsider the restrition of f to the edge, and generate its best L2 approxi-mation by a quadrati polynomial q∗. This polynomial additionally interpolates the values of

f at the two end points of the edge. The root of q∗ then de�nes the approximate intersetionof the impliitly de�ned urve with the edge. If no simultaneous orner event ours at theend points of the edge, then there is exatly one root of q∗, sine the BB-oe�ients of fpossess exatly one sign hange from plus to minus or vie versa.After generating the �rst two points we restrit the funtion f to the intersetion oftheir bisetor with the domain. Again we generate its best L2 approximation by a quadratipolynomial q∗, whih additionally interpolates the values of f at the two end points. The11



2 Fat Ars for Impliitly De�ned Planar Curvesroot of q∗ then de�nes the approximate intersetion of the urve with the bisetor.We use the linear parameterization of the line segments, the two edges and the bisetor
L = {(lx(t), ly(t)), t ∈ [t0, t1]}.The general formulation of the quadrati approximation is

q∗ = min
q∈Q

∥
∥
∥f

L
− q
∥
∥
∥
L2(L)

, (2.7)where Q denotes the set of the suitable quadrati polynomials along L. The root of q∗ isthe approximate intersetion point of the urve with the line segment L. The median argeneration is suessful if we �nd all three approximating points p1,p2 and p3 in Ω (seeFig.2.3).PSfrag replaements
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Figure 2.3: Median ar generation.2.2.4 Distane of Parametri and Impliitly De�ned CurvesWe want to bound the distane between the median ar and the urve using a result from[1℄. The impliitly de�ned urve is given as the zero set of the bivariate polynomial C inthe domain Ω = [0, 1]2. On one hand, we onsider the median ar as a parametri urve
s : t 7→ s(t) with parameter domain t ∈ [0, 1], whih traes the point set

S = {s(t) : t ∈ [0, 1]}, (2.8)where we assume that S ⊂ [0, 1]2. On the other hand, in order to avoid ertain tehnialdi�ulties, we onsider the set
C∗ = C ∪ ∂Ω, (2.9)whih is obtained by adding the boundary of the domain to the urve C. The one-sidedHausdor� distane of C∗ and S is de�ned asHDΩ(S, C∗) = sup

t∈[0,1]
inf
x∈C∗

‖x− s(t)‖. (2.10)We reall the following result from [1℄ 12



2.2 Fat Ar Generation with Parametri ArsTheorem 2.8 (Aigner-Jüttler). If there exist positive onstants G, η suh that
∀x ∈ Ω : G ≤ ‖(∇f)(x)‖ and ∀t ∈ [0, 1] : |(f ◦ s)(t)| ≤ η (2.11)hold, then the one-sided Hausdor� distane is bounded byHDΩ(S, C∗) ≤

η

G
. (2.12)Consequently, the parametri urve is ontained in ̺-neighborhood of C∗, where ̺ = η/G.However, it should be noted that this distane bound does not guarantee that the impliitlyde�ned urve is also ontained in an ̺-neighborhood of the parametri urve. The algorithmpresented here uses an additional test to guarantee this property. Nevertheless, in all om-puted examples the above distane bound provided a safe and onservative estimate for theHausdor� distane of the impliitly de�ned and the parametri urve.Evaluation of the Constants. In order to �nd the onstants G and η in Theorem 2.8,we represent the median ar as a quadrati rational Bézier urve,

s(t) =
2∑

i=0

si
w̃iB

2
i (t)

∑2
j=0 w̃jB2

j (t)
, t ∈ [0, 1]. (2.13)Sine it is a irular ar but not a whole irle, its weight satisfy

w̃0 = w̃2 = 1 and − 1 < w̃1 ≤ 1. (2.14)The omposition f ◦ s is a rational funtion of degree 2(m+ n) whih an be represented inrational BB-form with ertain oe�ients di and weights wi. The weights are omputed withthe evaluation of the (m+ n)th power of the denominator in (2.13).
∣
∣(f ◦ s)(t)

∣
∣ =

∑2m+2n
i=0 diwiB

2n+2m
i (t)

∑2m+2n
j=0 wjB

2m+2n
j (t)

=
sn(t)

sd(t)
. (2.15)To �nd a suitable upper bound for the omposition, �rst we onsider with the denominator

sd(t) =
2m+2n∑

j=0

wjB
2m+2n
j (t) =

(
2∑

i=0

w̃iB
2
i (t)

)n+m

.Beause of (2.14) there exists λ, 0 < λ ≤ 2 suh that w̃1 = λ− 1. It means, that
(

2∑

i=0

w̃iB
2
i (t)

)n+m

=
(
(2t− 1)2 + 2λt(1 − t)

)n+m
.Sine t ∈ [0, 1] and λ ∈ (0, 2]

0 <

(
λ

2

)n+m

≤ sd(t) ≤ 1, ∀t ∈ [0, 1].Therefore an upper bound η an be given as
∣
∣(f ◦ s)(t)

∣
∣ ≤

∥
∥sn
∥
∥BB

(
w̃1 + 1

2

)n+m = η. (2.16)In order to �nd the seond onstant G, we use the same lower bound that we generatedfor ertifying the regularity of the urve in the domain (see (2.5)).13



2 Fat Ars for Impliitly De�ned Planar Curves
Figure 2.4: Left: The graph of f1. Right: Fat ars for k = 0.5, 0.75, 1.0.
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Figure 2.5: Dependeny between the fat ar diameter and the domain diameter.2.2.5 Convergene RateWe on�rm the approximation order of the fat ar generation algorithm (Algorithm 1) bynumerial examples. It is also possible to prove the ubi approximation order of the method,but it is long and very tehnial.Consider the three bivariate polynomials
f1(x) = x41 + x31x

2
2 + 2x21x2 − 6x1x2 + x42 − 8x22 − 12x2

f2(x) = −x31 − x21x2 + x1x2 − x32 + x22 − 2x2
f3(x) = −4x31 − 5x21 + 2x2

(2.17)with the domains (in global oordinates)
Ωk = [−10−k, 10−k]× [−10−k, 10−k], k ∈ R. (2.18)In the ase of the �rst polynomial Fig.2.4 shows the result of the fat ar onstrutions forseveral values of k. The impliitly de�ned urve is the red one, the median ar denoted withgreen, and the fat ars are represented with blak.Fig.2.5 visualizes the relation between the width of the fat ar and the size of the domaindiameter for the three polynomials in (2.17). For su�iently large values of k the slopes ofthe three urves in the doubly-logarithmi plot are all three, thus on�rming the expetedapproximation order. 14



2.3 Fat Ar Generation with Impliitly De�ned ArsAlgorithm 2 GenerateFatArs1(f,Ω0, ε)1: if min dij > 0 or max dij < 0 then2: return ∅ {the domain is empty}3: end if4: if f satis�es the onditions of Lemma 2.4 then5: F ← FatArLoal_2d1(f,Ω, ε) {single fat ar generation}6: if F 6= ∅ then7: return F {... has been suessful}8: end if9: end if10: if diameter of Ω > ε then11: subdivide the domain into 4 sub-domains Ω1, . . . ,Ω4 {quadsetion}12: return ⋃4
i=1GenerateFatArs1(f,Ωi, ε) {reursive all}13: end if14: return Ω {urrent domain is small enough}2.2.6 Global AlgorithmThe algorithm, GenerateFatArs1 (see Algorithm 2), ombines the fat ar generation forsingle urve segments with reursive subdivision. First it analyzes the signs of the Bernstein�Bézier oe�ients with respet to the urrent domain. If no sign hange is present, then theurrent domain does not ontain any omponents of the impliitly de�ned urve aordingto Observation 2.3. Otherwise it heks the onditions of Lemma 2.4, and tries to apply theloal fat ar generation (Algorithm 1) for domains with single urve segments. If the loalalgorithm fails, then the algorithm either subdivides the urrent domain into four squares orreturns the entire domain, if its diameter is already below the user-de�ned threshold ε.Note that the algorithm may return domains whih do not ontain any segments of theimpliitly de�ned urve ("false positive domains"). This an be avoid in the ase when thepartial derivatives are bounded away from zero and the user spei�ed threshold ε is smallenough (see in Lemma 2.5). However, it is always guaranteed, that the algorithm returnswith a set of regions whih ontains the whole algebrai urve.2.3 Fat Ar Generation with Impliitly De�ned ArsIn this setion we desribe loal fat ar generation tehnique using impliitly de�ned ars.We show di�erent tehniques to generate approximating irular ars in impliit form. Thenwe also desribe how to estimate the distane of impliitly de�ned planar urves. In the endwe present a global algorithm using hierarhial subdivision for generating bounding regionsfor planar algebrai urves.2.3.1 Loal AlgorithmAs an alternative we onsider a loal algorithm for generating fat ars using impliitlyde�ned ars. It is summarized in Algorithm 3. This algorithm generates an approximatequadrati polynomial s with irular zero ontour, and uses the BB-norm to estimate the15



2 Fat Ars for Impliitly De�ned Planar CurvesAlgorithm 3 FatArLoal_2d2 (f,Ω, ε)Require: The gradient does not vanish in Ω.1: f̂ = lf modi�ed polynomial and its speial quadrati approximation s2: if l exists then3: S ← zero ontour of s {median irle}4: d← ‖f̂ − s‖ΩBB5: G← lower bound for ‖∇f̂‖ {see (2.5)}6: if G exists and ̺ = d
G 6 ε then7: S+,S− ← zero ontour of s+ d and s− d {fat irle boundaries}8: F(s, ̺,Ω) = {x : ∃x0,

∣
∣x− x0

∣
∣ ≤ ̺, s(x0) = 0} ∩ Ω {fat ar}9: return Cd {fat ar has been found}10: end if11: end if12: return ∅ {no fat ar has been found}fat ar thikness (Algorithm 3). For generating the approximate quadrati polynomial wewill present two di�erent methods in the next setions. The �rst one is using least-squarestehnique. The seond one is operating with the modi�ed Taylor expansion of the originalpolynomial f . Both methods are omputing quadrati approximating polynomial for a mod-i�ed polynomial f̂ , whih is the original polynomial f multiplied with a linear polynomial

l. This additional linear term guarantees the existene of the approximating polynomial andits onvergene rate.This fat ar generation tehnique only assumes that we have a regular urve segment inthe domain. Therefore no other topologial information is neessary for the fat ar generation.The algorithm sueeds if it �nds the median ar, and the fat ar thikness is smaller thanthe presribed tolerane ε. Then the output is the intersetion of a fat ar and the domain
Ω, whih ontains the urve. It an also happen like in Algorithm 1, that there are no fatar boundaries, or only one of the bounding ars an be generated. Then the loal algorithmfails and returns the empty set.Fig.2.6 presents �ve loal fat ar generation examples with di�erent median ar anddistane estimation tehnique. In the �rst row the �gures are generated with the help ofAlgorithm 1 using parametri median ars and omputing an upper bound for the one-sidedHausdor� distane. In the lower rows Algorithm 3 is used generating impliitly de�nedmedian ars in four di�erent ways and using the distane estimation for impliitly de�nedurves (see Setion 2.3.5). The seond, third and the fourth rows ontain the results of theleast-squares tehnique. In the seond row we applied least square approximation with linearnormalization, while in the next two rows quadrati normalization. The last row presentsthe outputs from the algorithm, whih uses modi�ed quadrati Taylor expansion to generatemedian ars. However, even if the distane estimation tehnique seems to be weaker in thease of Algorithm 3, it provides the ubi approximation order as we will see later.2.3.2 Median Ar Generation with Least-Squares ApproximationLeast-squares approximation is a standard tehnique for �nding an approximating polyno-mial. In order to generate a quadrati polynomial with irular zero level set we are searhing16



2.3 Fat Ar Generation with Impliitly De�ned Ars

Figure 2.6: Comparison of the loal fat ar generation tehniques. In the �rst row the fatars are generated by FatArLoal_2d1, in the other rows the algorithm FatArLoal_2d2 isused. Three rows in the middle are showing results of least-squares approximation with di�erentnormalization tehniques. In the seond row we used linear normalization ondition (see in(2.20)). In the next two rows the quadrati onditions (2.21) and (2.22) are used. In the lastrow the outputs from Taylor expansion modi�ation are shown (see in Setion 2.3.3). The redurves are the impliitly de�ned urves. The median ars are shown in green.for a polynomial in the form
s(x, y) = a(x2 + y2) + bx+ cy + d.17



2 Fat Ars for Impliitly De�ned Planar CurvesTo provide the ubi onvergene rate for the approximation, we modify the original funtionusing a linear term
f̂(x, y) = l(x, y)f(x, y) = (l0 + l1x+ l2y)f(x, y).The optimization problem an be formed as follows

min
(a,b,c,d,l0,l1,l2)

∫∫

Ω

∥
∥
∥f̂ − s

∥
∥
∥

2
dxdy. (2.19)In order get a unique solution we have to normalize the minimization problem. Herewe present three di�erent strategies. The �rst normalization tehnique is using a linearondition. It is a natural ondition in the sense that the modi�ed polynomial f̂ keeps theoriginal funtion value in the enter (cx, cy) of the omputational domain Ω

l0 + l1c
x + l2c

y = 1. (2.20)Another possible hoie for normalization is to ontrol the gradient length of the approxi-mating polynomial s. Suh ondition determines two possible solutions for s(x, y). The onewith smaller value in (2.19) an be used as an approximating polynomial. A natural hoieof the quadrati normalization ondition is
∥
∥∇s

∥
∥2

(cx,cy)
= 1. (2.21)Another possibility is to use a quadrati normalization ondition whih approximates betterthe seondary shape of the original impliitly de�ned urve. Namely we an suppose forinstane

∥
∥∇s

∥
∥2

(cx,cy)
=
∥
∥∇f

∥
∥2

(cx,cy)
. (2.22)A few examples are shown in Fig.2.6 for the result of the di�erent least-square approx-imation methods. The three rows in the middle ontain the result of the three di�erentnormalization tehniques. They are shown in the same order as we desribed them here.2.3.3 Median Ar Generation Using Taylor ExpansionIn this tehnique we also reformulate the approximation problem in the omputational domain

Ω. The given polynomial f will be multiplied by a linear term l

f̂ = lf = (u+ l1(x− cx) + l2(y − cy))f(x, y), (2.23)where c = (cx, cy) denotes the enter point of Ω. Obviously the zero level set of the polynomial
f̂ will ontain eah point of the zero level set of f . We hoose the linear funtion l suh thatthe Hessian of f̂ at the enter of the domain is a salar multiple of the identity matrix.

H(f̂)(c) =
(

λ 0
0 λ

)

, λ ∈ R. (2.24)If suh f̂ an be found, then the quadrati Taylor expansion of f̂ about c has a speial form.More preisely, this polynomial has always irular zero ontour. In order to �nd f̂ we need18



2.3 Fat Ar Generation with Impliitly De�ned Arsto solve a linear system for u, l1 and l2. The ondition (2.24) leads to the following systemof equations in the enter of the domain
f̂xx(c)− f̂yy(c) = 0

f̂xy(c) = 0. (2.25)If the system has full rank, we have a solution set with one degree of freedom. Therefore wehandle the onstant term of l, u as a parameter of the solution set.Lemma 2.9. Given a bivariate polynomial f over the domain Ω. We suppose that thegradient of f does not vanish in the enter c of Ω
∥
∥∇f(c)

∥
∥ 6= 0.Then for any value of u 6= 0 and u ∈ R there exists a unique solution for l.Proof. The Hessian matrix of f̂ an be expressed with the help of f and l

H(f̂)(c) = ∇l(c)∇f(c)T +∇f(c)∇l(c)T + l(c)H(f)(c) =
= ∇l(c)∇f(c)T +∇f(c)∇l(c)T + uH(f)(c). (2.26)In the enter of the domain the equation system (2.25) an be written as

Al =

(

fx(c) −fy(c)
fy(c) fx(c)

)(

l1
l2

)

= −u
(

1
2 (fxx(c)− fyy(c))

fxy(c)

)

. (2.27)We supposed that the gradient vetor does not vanish in c. Therefore the determinantof A is not zero. Then there exist l1 and l2, whih satisfy (2.27). It implies, that l anbe omputed for any non-zero value of u uniquely. For an arbitrary u 6= 0 the solution is
(l1, l2) = (0, 0) if and only if the Hessian of f already ful�lls the ondition (2.24). In this asethe polynomial l is the onstant funtion

l ≡ u. (2.28)With the onditions (2.25) for a �xed value of u 6= 0 the polynomial l an be omputeduniquely aording to Lemma 2.9. Therefore we an ompute then f̂ uniquely for any u 6= 0.We introdue the funtion G, whih assign to a funtion f , a value of u and the enter point
c of a domain Ω the assoiated f̂ funtion aording to the onstrution in Lemma 2.9

G(f, u, c) = f̂ = lf. (2.29)Observation 2.10. The hoie of the parameter value u has no e�et on the zero ontourof the omputed new polynomial f̂ . It is just a onstant multiplier of the linear polynomial
l in the solution. Therefore it an be hosen arbitrarily.The quadrati Taylor expansion of f̂ about c will have the following form, sine theondition (2.24) is satis�ed
s(x, y) = T 2

f̂(c)
(x, y) = f̂(c) + f̂x(c)(x − cx) + f̂y(c)(y − cy) +

1

2
f̂xx

(
(x− cx)2 + (y − cy)2

)
. (2.30)It is a bivariate quadrati polynomial with a irular zero ontour. Therefore the algebraiurve s = 0 will be hosen as median ar to approximate the urve f = 0 in Ω. Later on theerror of the approximation is estimated by a distane bound for the impliitly de�ned urves

s = 0 and f̂ = 0. 19



2 Fat Ars for Impliitly De�ned Planar Curves2.3.4 Connetion with the Osulating CirlesWe analyze here the properties of the median ars generated by the Taylor expansion modi-�ation tehnique.Lemma 2.11. Consider a funtion f , whih de�nes an algebrai urve in Ω0 ⊂ R
2

C(f,Ω0) = {x : f(x) = 0} ∩ Ω0.We assume that the point p ∈ Ω0 is on the algebrai urve p ∈ C. Suppose that Ω is asub-domain of Ω0 and it has the enter point p. We ompute f̂ = G(f, u,p). Then the ar,de�ned by the zero set of the quadrati Taylor expansion s = T 2
p(f̂), is the osulating irleof C(f,Ω0) in the point p.Proof. The funtion f̂ de�nes the following algebrai urve

Ĉ(f̂ ,Ω0) = {x : f̂(x) = 0} ∩ Ω0.We know from the omputational method generates f̂ , that the algebrai urves C and Ĉsatisfy
C ⊆ Ĉ.If we onsider only a small regular segment of C and Ĉ whih is ontained by Ω ⊂ Ω0, thenboth of them represent the same single ar of the algebrai urve with the point p on it.The irle de�ned by the zero set of the quadrati Taylor expansion s = T 2

f̂(p)
is

S(s,Ω) = {x : s(x) = 0} ∩ Ω.We would like to show that S has a seond order ontat with the algebrai urve C in thepoint p. This is su�ient in order to prove that S is the osulating irle of C, sine theosulating irle is unique and S is a irular ar. Aording to the de�nition of S, it has aseond order ontat with Ĉ in the point p. As we already notied Ĉ = C in the neighborhoodof p, therefore S has a seond order ontat with C in the point p.Remark 2.12. We an ompute the urvature of C in the point p. For an impliitly de�nedurve it is omputed from the �rst and seond partial derivatives of the funtion with thehelp of the formula (see for instane in [15℄)
κ(f,p) =

∇f(p)⊥H(f)(p)
(
∇f(p)⊥

)T
∥
∥∇f(p)

∥
∥3

,where
∇f(p)⊥ = (−fy(p), fx(p)).We know, that
κ(f,p) = κ(f̂ ,p) = κ(s,p).Thus

κ(f,p) =
∇f(p)⊥H(f)(p)

(
∇f(p)⊥

)T
∥
∥∇f(p)

∥
∥3

=20



2.3 Fat Ar Generation with Impliitly De�ned Ars
=
∇f̂(p)⊥H(f)(p)

(

∇f̂(p)⊥
)T

∥
∥
∥∇f̂(p)

∥
∥
∥

3 =(2.24) λ
∥
∥
∥∇f̂(p)

∥
∥
∥

2 =
p∈C

λ
∥
∥l(p)∇f(p)

∥
∥2

.Therefore λ = f̂xx(p) satis�es
λ = u2κ(f,p)

∥
∥∇f(p)

∥
∥2for an arbitrary u 6= 0 in a point p, where f(p) = 0.2.3.5 Distane of Impliitly De�ned CurvesIf we generate fat ars for impliitly de�ned urve segments, the distane measuring beomesmore ompliated. The reason is the representation of the urve. Nevertheless, the approxi-mating urve an be represented either in parametri or in impliit form. In order to measurethe distane of two impliitly de�ned urves we onsider the norm ∥

∥.
∥
∥ΩBB over the domain Ω,whih is the maximum absolute value of the oe�ients in the BB-representation. We de�nea distane bound of the polynomial f and the approximating polynomial s for all points inthe domain

ε =
∥
∥f − s

∥
∥ΩBB . (2.31)Due to the onvex hull property

∣
∣f(x)− s(x)

∣
∣ ≤ ε, ∀x ∈ Ω.This means that

s(x)− ε ≤ f(x) ≤ s(x) + ε, ∀x ∈ Ω.A region an be de�ned in Ω by the approximating polynomial and the distane bound
D(s, ε,Ω) = {x : |s(x)| ≤ ε} ∩ Ω.This is a bounding region for the zero level set of the polynomial f in Ω

Z(f) ⊆ D(s, ε) ⊆ Ω.It is a fat region de�ned by the median urve s = 0, whih ontains the impliitly de�nedurve f = 0.In order to bound the thikness of this fat region D(s, ε) in the domain Ω we have tobound the gradient length of f from below. Suppose that G is a positive onstant, whihful�lls in any point x of Ω, that
∥
∥∇f(x)

∥
∥ ≥ G.Then the distane of the point sets s = ±ε from s = 0 is bounded by

̺ =
ε

G
. (2.32)Thus the fat ar an be de�ned as the point set

F(s, ̺,Ω) = {x : ∃x0, s(x0) = 0, |x− x0| ≤ ̺} ∩ Ω.21



2 Fat Ars for Impliitly De�ned Planar Curves2.3.6 Convergene RateSine the approximation order of urves by segments of irular ars is three (see [37℄), thesame result is antiipated for the results produed by loal fat ar generation algorithm. Herewe on�rm the ubi onvergene rate of the method, whih generates fat ars by modifyingthe Taylor expansion of the polynomial (see (2.3.3)). We de�ned f̂ = lf for any point cof the domain Ω, where c is always the enter of the orresponding sub-domain Ω ⊆ Ω0.The approximating ar s = 0 is given by the quadrati Taylor expansion of f̂ about c. Thedistane bound has been generated with the help of the BB-norm and a lower bound for thegradient length.In order to prove the onvergene rate of the method �rst we have to show, that f̂depends ontinuously on the points of Ω0. It means, that the omputed polynomial f̂ dependsontinuously on the sub-domain Ω.Lemma 2.13. If the gradient of f does not vanish in the domain Ω0, then f̂ depends on-tinuously on the points of the domain.Proof. We have to show that the omputed l = u+ l1(x− cx) + l2(y − cy) linear polynomialdepends ontinuously on the point c = (cx, cy). We ompute the oe�ient vetor (l1, l2),suh that it satis�es (2.27) for a �xed value of u. The entries of the matrix in (2.27) dependsontinuously on (cx, cy) sine f is a polynomial. Therefore the diretion of the solution vetordepends also ontinuously on the point. Sine we know that u 6= 0 is �xed, then also l dependsontinuously on the point (cx, cy).The next orollary follows from Lemma 2.11 and Lemma 2.13. If we use the Taylor ex-pansion modi�ation tehnique desribed in Setion 2.3.3, then we an establish the followingresult about the behavior of the generated median irles.Corollary 2.14. Suppose we have a nested sequene of sub-domains (Ωi)i=1,2,3... ⊂ Ω0

Ωi+1 ⊂ Ωi,whih have dereasing diameters δi, suh that
lim
i→∞

δi = 0,and ci denotes the enter point of Ωi. Consider a funtion f , whih de�nes an algebrai urvein Ω0 ⊂ R
2

C(f,Ω0) = {x : f(x) = 0} ∩ Ω0.Suppose that there exists a point p, whih satis�es f(p) = 0 and for all i : p ∈ Ωi. Weompute f̂i = G(f, u, ci). The median ar is de�ned by the zero set of the quadrati Taylorexpansion si = T 2
ci
(f̂i) about ci. Then the sequene of omputed median irles si(x, y) = 0onverges to a limit irle, whih is the osulating irle of C in the point p.In order to ertify the onvergene rate of the fat ar generation method using Taylorexpansion modi�ation we onsider the behavior of the gradient of the new polynomials

f̂ = G(f, u, c). The following lemma (Lemma 2.15) ensures, that any f̂ has also a non-vanishing gradient, if we are omputing lose to the algebrai urve in a su�iently smallsub-domain of the original omputational domain Ω0.22



2.3 Fat Ar Generation with Impliitly De�ned ArsLemma 2.15. Suppose that there exists G in Ω0 for the polynomial f suh that
∀x ∈ Ω0,

∥
∥∇f(x)

∥
∥ ≥ G > 0. (2.33)We hoose an arbitrary but �xed value of u 6= 0. Then there exists ε suh that, if f̂ = G(f, u, c)is omputed in a domain Ω ⊂ Ω0 whih has a diameter δΩ < ε, and there is a point p ∈ Ωwhih ful�lls f(p) = 0, then for any x ∈ Ω a general positive bound Ĝ an be given as

∥
∥
∥∇f̂(x)

∥
∥
∥ ≥ Ĝ > 0.Proof. If x ∈ Ω ⊂ Ω0 then

∇f̂(x) = f(x)∇l(x) + l(x)∇f(x).Aording to the triangular inequality
∥
∥
∥∇f̂(x)

∥
∥
∥ ≥

∥
∥l(x)∇f(x)

∥
∥ −

∥
∥f(x)∇l(x)

∥
∥ =

∣
∣l(x)

∣
∣
∥
∥∇f(x)

∥
∥ −

∣
∣f(x)

∣
∣
∥
∥∇l(x)

∥
∥ . (2.34)Sine we know that there exists a point p ∈ Ω suh that f(p) = 0, and (2.33) is satis�ed,then

∣
∣f(x)

∣
∣ ≤ ε

G
, (2.35)where ε is an upper bound of the diameter of Ω.We an suppose that there exists H 6= 0 suh that

∀x ∈ Ω0,

√

1

4
(fxx(x)− fyy(x))2 + fxy(x)2 ≤ H,sine f is a polynomial. If the linear system formulated as

Al =

(
fx(c) −fy(c)
fy(c) fx(c)

)(
l1
l2

)

= −u
(

1
2 (fxx(c) − fyy(c))

fxy(c)

)

,then
∥
∥Al

∥
∥ ≤ |u|H.Sine

∥
∥Al

∥
∥ =

√

(f2
x + f2

y )(l
2
1 + l22) ≥ G

∥
∥∇l(x)

∥
∥we obtain that

∥
∥∇l(x)

∥
∥ ≤ |u|H

G
. (2.36)From (2.35) and (2.36) it follows that

∣
∣f(x)

∣
∣
∥
∥∇l(x)

∥
∥ ≤ ε

∣
∣u
∣
∣H

G2
. (2.37)Suppose that

ε <

√
2G

H
, (2.38)23



2 Fat Ars for Impliitly De�ned Planar Curvesthen a positive lower bound an be given for ∣∣l(x)∣∣
∣
∣l(x)

∣
∣ ≥

∣
∣u
∣
∣−

∣
∣l1
∣
∣+
∣
∣l2
∣
∣

2
ε ≥

∣
∣u
∣
∣−

∥
∥∇l(x)

∥
∥

√
2

ε ≥
∣
∣u
∣
∣− ε

∣
∣u
∣
∣H√
2G

> 0.Therefore it implies that
∣
∣l(x)

∣
∣
∥
∥∇f(x)

∥
∥ ≥

∣
∣u
∣
∣G− ε

∣
∣u
∣
∣H√
2

> 0. (2.39)So from (2.37) and (2.39) follows that
∥
∥
∥∇f̂(x)

∥
∥
∥ ≥

∣
∣u
∣
∣G− ε

∣
∣u
∣
∣H√
2
− ε

∣
∣u
∣
∣H

G2
.If we would like to hoose ε, suh that ∥∥∥∇f̂(x)∥∥∥ has a positive lower bound, then

∣
∣u
∣
∣G− ε

∣
∣u
∣
∣H√
2
− ε

∣
∣u
∣
∣H

G2
> 0,whih means that √

2G3

H
(√

2 +G2
) > ε. (2.40)In this ase also (2.38) is satis�ed

ε <

√
2G

H

G2

(√
2 +G2

) <

√
2G

HTherefore for any domain Ω with the diameter δΩ < ε ful�lls (2.40)
∥
∥
∥∇f̂(x)

∥
∥
∥ > 0.Corollary 2.16. Aording to Observation 2.10 we an hoose u = 1 and we suppose that

ε =
1

2

√
2G3

H
(√

2 +G2
) .Thus for any domain Ω, whih has the diameter

δΩ <
1

2

√
2G3

H
(√

2 +G2
) ,and ontains a point of the urve f = 0, it is true that

∥
∥
∥∇f̂(x)

∥
∥
∥ ≥ G− G

2
= Ĝ > 0.Both bounds, ε and Ĝ, are independent of the hoie of Ω (if Ω is small and ontains somepoints of the urve). They only depend on f , Ω0 and u.24



2.3 Fat Ar Generation with Impliitly De�ned ArsCorollary 2.17. We onsider a polynomial f , whih ful�lls the ondition (2.33) on a domain
Ω ⊂ Ω0. We ompute f̂ = G(f, u,Ω), and the median ar is de�ned by the zero set of thequadrati Taylor expansion s = T 2

c (f̂) about the enter point c of Ω. If Ω has a su�ientlysmall diameter and ontains a point p satisfying f(p) = 0, then s is non-onstant.Now we will show that the fat ar thikness is su�iently small ompared with the diam-eter of the omputational domain. The following lemma shows, how the omputed fat arthikness behaves for a given funtion f in a ertain domain.Lemma 2.18. Given a bivariate polynomial f de�ned over the domain
Ω0 = [α1, β1]× [α2, β2]. We suppose that there exists a non-negative lower bound Gsuh that

∥
∥∇f

∥
∥ ≥ G > 0.For any sub-domain Ω ⊂ Ω0, whih has a su�iently small diameter and ontains a segmentof the algebrai urve f = 0, there exists a onstant C ∈ R not depending on Ω suh that

̺ < Cδ3Ω, (2.41)where ̺ is the orresponding fat ar thikness omputed like in (2.32).Proof. We denote by sΩ the quadrati Taylor expansion of f̂Ω about the enter c of thedomain Ω, then
∥
∥
∥f̂Ω − sΩ

∥
∥
∥
∞

<
1

6
max

v∈S1,x∈Ω

∣
∣
∣
∣
∣

d3f̂Ω
dv3

(x)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

∗

δ3Ω.Reall from Lemma 2.13 that f̂Ω depends ontinuously on the points of the omputationaldomain Ω0. Therefore for all f̂Ω a general upper bound C1 an be given for (∗). The fat arthikness is de�ned by
̺ =

∥
∥
∥f̂Ω − sΩ

∥
∥
∥BB

‖∇f̂Ω‖
.We know from Corollary 2.16 that for a ertain u there exists a general lower bound

0 < Ĝ ≤ ‖∇f̂Ω‖for any sub-domain Ω ⊂ Ω0, whih has a su�iently small diameter. Beause of the normequivalenes there exists a onstant C2 suh that
̺ ≤

C2

∥
∥
∥f̂Ω − sΩ

∥
∥
∥
∞

Ĝ
≤ 1

6

C1C2δ
3

Ĝ
.In order to bound ̺, we hoose

C =
1

6

C1C2

Ĝ
,and arrive at

̺ ≤ Cδ3Ω.25



2 Fat Ars for Impliitly De�ned Planar CurvesAlgorithm 4 GenerateFatArs2(f,Ω, ε)1: if min dij > 0 or max dij < 0 then2: return ∅ {the domain is empty}3: end if4: if ∀x ∈ Ω
∥
∥∇f(x)

∥
∥ > 0 then5: A ← FatArLoal_2d2(f,Ω, ε) {single fat ar generation}6: if A 6= ∅ then7: return A {... has been suessful}8: end if9: end if10: if diameter of Ω > ε then11: subdivide the domain into 4 sub-domains Ω1, . . . ,Ω4 {quadsetion}12: return ⋃4

i=1GenerateFatArs2(f,Ωi, ε) {reursive all}13: end if14: return Ω {urrent domain is small enough}Similarly the ubi onvergene an be proven for any fat region generated as the thikenedneighborhood of the zero lous of the quadrati Taylor expansion of a polynomial. Even ifthis tehnique is more general, we should not forget, that the fat regions are bounded bythe o�set urves of the median urve. These boundary urves should not have usp or self-intersetions. This is not guaranteed if we use a general bi-quadrati algebrai urve as themedian urve. To avoid suh ritial ases and also to simplify the omputations we restritedourselves to use irular ars as median urves.2.3.7 Global AlgorithmThe algorithm GenerateFatArs2 (see Algorithm 4) ombines the fat ar generation forsingle urve segments with reursive subdivision. First it analyzes the signs of the Bernstein�Bézier oe�ients with respet to the urrent domain. If no sign hanges are present, then theurrent domain does not ontain any omponents of the impliitly de�ned urve. Otherwisethe algorithm tries to apply the fat ar generation for a single urve segment. If this is notsuessful, then the algorithm either subdivides the urrent domain into four squares, orreturns the entire domain if its diameter is already below the user-de�ned threshold ε.2.4 Comparison of the MethodsIn the former setions (Setion 2.2 and Setion 2.3) we desribed and analyzed various algo-rithms to generate fat ars for impliitly de�ned urves. These tehniques are using di�erentapproximating ar generation and distane estimation methods. Here we ompare these fatar generation tehniques.2.4.1 Comparison of Fat Ar GenerationMedian Ar Generation. The �rst step of the fat ar generation method is to generatean approximating ar, the median ar. This ar an be represented either in parametri26



2.4 Comparison of the Methods(rational BB) or in impliit form. We desribed an approximate interpolation method forgenerating a parametri approximating ar s(t) for a polynomial f in Setion 2.2.3. It islear that a list of median irles generated for a nested list of omputational domains,whih onverge to a point of the impliitly de�ned urve p, onverges to the osulatingirle of the impliitly de�ned urve in the point p. The same was proven for the medianirles in the ase of the Taylor expansion modi�ation tehnique (Corollary 2.14). It is avery important property of both methods, if we would like to develop tehniques with ubionvergene. The osulating irle is the only irle with seond order ontat in a ertainpoint of a planar urve. Therefore we an establish in advane for instane, that the fatar generation tehnique using least-squares approximation with the quadrati normalizationondition (2.21) annot have ubi onvergene rate. It is beause the radius of the median aris �xed via the normalization ondition, a list of median ars generated under the onditionsof Corollary 2.14 not neessarily onverge to an osulating irle of the algebrai urve.Distane Bounding. In order to ompute the fat ar thikness for parametri medianar, we use a bound given by Theorem 2.8. It is an upper bound of the one-sided Hausdor�distane. This bound is given by the ratio of an upper bound of the funtion value along theapproximating ar and a lower bound of the gradient length in the omputational domain
Ω. These bounds an be omputed with the help of the onvex hull property of the BB-polynomials (desribed in Setion 2.2.4). On the other hand if we generate the median arin impliit form s(x, y) = 0 (see various methods in Setion 2.3.2 and Setion 2.3.3), then wehave to measure the distane of impliitly de�ned urves. We desribed how to bound thisdistane in Setion 2.3.5. This bounding tehnique is also using the onvex hull property ofthe BB-polynomials. The bound is the ratio of the BB-norm of the polynomial (f − s) in theomputational domain Ω and the lower bound of the gradient length of f in Ω.The lower bound of the gradient length is omputed with the same method by bothtehniques, so it is su�ient to ompare the nominator of the distane bounds. We observedthat both methods generate median ars whih onverge to the osulating irle under theonditions of Corollary 2.14. It means that for the polynomial f on a su�iently smallomputational domain Ω ⊂ Ω0 the median ars generated by the two di�erent tehniques arelose to eah other. Therefore we ompare here the fat ar thikness generated for the samemedian ar S. Suppose that s(x, y) represents the median ar in impliit form

S(s,Ω) = {(x, y) : s(x, y) = 0} ∩ Ω.We also suppose that we know the parametri representation of the ar S and it is denotedby s(t), t ∈ [0, 1]. Then we an established that
(f ◦ s)(t) = (f − s)(x(t), y(t)),and it implies that

max
t∈[0,1]

∣
∣(f ◦ s)(t)

∣
∣ ≤ max

(x,y)∈Ω

∣
∣(f − s)(x, y)

∣
∣ .So the parametri fat ar generation estimates the funtion value of f along a urve on theomputational domain, while the impliitly de�ned fat ar generation omputes a bound de-pending on the whole domain Ω. Therefore usually the distane estimated by the parametrirepresentation is smaller than in the ase of the impliitly de�ned median ars. This heuristiresult will be on�rmed also in the next setion, where we analyze the onvergene rate ofall the desribed methods via an example. 27



2 Fat Ars for Impliitly De�ned Planar Curves
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Figure 2.7: Comparison of relation between the fat ar diameter and the domain diameter for�ve di�erent fat ar generation methods. The red line P shows the results from the parametriapproximation. The results of least-square approximations are shown by the green line notedby L, Q1 and Q2. The result of the Taylor expansion modi�ation is represented by the line T(blue).2.4.2 Comparison of Convergene RateWe ompare here the onvergene rate of all desribed fat ar generation methods via anexample. However, we just proved the rate of onvergene of the Taylor expansion modi�-ation, we would like to show through this numerial example the behavior of all formerlydesribed tehniques.We onsider the polynomial
f(x, y) = −3x+ 6x2 − 2x3 + y + y2,on the domains (in global oordinates)

Ωk = [−10−k, 10−k]× [−10−k, 10−k], k ∈ R. (2.42)We visualize for the �ve di�erent fat ar generation strategies the relation between thewidth of the generated fat ars and the size of the domain diameter in Fig.2.7. For the values of
k = 1, 1.25, . . . 5 we show the negative logarithm of the assoiated fat ar diameter in a doubly-logarithmi plot. The expeted approximation order is three. In this example it is on�rmedfor all of the strategies. The line denoted by P shows the results from the parametriapproximation, it pretends to have a better approximating onstant then the other tehniqueswith ubi onvergene rate. However, the least-square approximation with linear ondition(L), the least-square approximation with quadrati normalization ondition, denoted in thepiture by Q1 and Q2 and the Taylor expansion modi�ation T also shows ubi onvergenerate. The least-squares approximation with the linear and quadrati normalization onditionsshow only a slight di�erene in the output. 28



2.5 Examples and Appliationsubdivision
?return fat ar ?subdivision ?return ∅ ?return ∅
?return fat ar ?return fat ar ?return ∅ ?return fat ar

Figure 2.8: Example 2.19: The deision tree of algorithm GenerateFatArs.2.5 Examples and Appliation2.5.1 ExamplesWe illustrate the performane of both algorithms Algorithm 2 and Algorithm 4 by examples.Example 2.19. The �rst example (see Fig.2.8) visualizes the entire algorithm. We apply thealgorithm to a bivariate polynomial of degree (1, 4), whih has only one ar in the region ofinterest, and hoose a relatively large tolerane ε. The �rst all of the algorithm produes foursub-domains whih are then analyzed independently. The �rst domain ontains an ar whihan be approximated by a single fat ar. The seond domain produes other four sub-domains,while the third and the fourth domains do not ontain any points of the impliitly de�nedurve. Finally, analyzing the four seond-generation sub-domains leads to three additionalfat ars and one empty domain. The output is generated by olleting all sub-domains in theleafs of the subdivision tree.Example 2.20. We onsider a polynomial f of degree (6,9) with randomly generated BBoe�ients in [−1, 1]. Fig.2.9 (a) shows the surfae and the impliitly de�ned urve segmentsin the unit square. Fig.2.9 (b) and () demonstrate the behavior of the algorithm for di�erenttoleranes ε. The upper row shows the entire domain, while the lower row shows a zoomedview of the lower left orner of the domain. In the ase of ε = 0.1, whih is shown in (b), somedomains are returned as bounding regions, sine FatArLoal_2d1 fails and the diameter ofthe sub-domains are smaller than ε. For the smaller value of ε = 0.01, the fat ar generationsueeded in all generated sub-domains. 29



2 Fat Ars for Impliitly De�ned Planar Curves

(a) (b) ()Figure 2.9: Example 2.20: Fat ar generation for di�erent toleranes. The graph of f and theimpliitly de�ned urve (a), and The fat ars (top) and a zoomed view (bottom) for ε = 0.1 (b)and for ε = 0.01 ().In the next three examples we ompare fat ars with (reursively generated) boundingboxes. In the latter ase we also aepted sub-domains as bounding primitives in the fat argeneration, if their diameter were less than the presribed tolerane.Example 2.21. We approximate an impliitly de�ned urve, see Fig.2.10, by fat ars (a)and by bounding domains (b). Clearly, the use of fat ars leads to a muh smaller numberof bounding geometri primitives. This beomes even more dramati for smaller toleranes.Figure () shows the relation between the number of generated primitives (fat ars or boxes)and the tolerane ε =
√
2/2k.Example 2.22. This example is based on an impliitly de�ned urve whih possesses a singu-lar point (see Fig.2.11). In this situation, the fat ar generation will fail for any domain whihontains the singular point, sine no positive lower bound on ‖∇f‖ exists. Consequently, thealgorithm always returns a domain ontaining this point. Still, the results generated by ourmethod (left) ompare favorably with the use of bounding boxes (right).Example 2.23. Here we approximated an impliitly de�ned urve f = 0, where f has thepolynomial order (9, 8). Our domain of interest is the unit square Ω0 = [0, 1] × [0, 1]. The�gures (a) and (b) in Fig.2.12 are generated with the two di�erent fat ar onstrutions.The �rst one with the usage of the loal Algorithm FatArLoal_2d1, the seond with theloal Algorithm FatArLoal_2d2. The tolerane bound is 10−2, whih is relatively smallompared with the size of the starting domain. In order to reah this preision the number ofthe bounding domains is 36 in the �rst ase and 46 in the seond one. It is muh fewer thanin the ase of bounding boxes, where we need 685 boxes to give a su�ient approximation.30



2.5 Examples and Appliation
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Figure 2.11: Example 2.22: Fat ars (left) and bounding boxes (right) for an impliitly de�nedurve with a singular point, where ε =
√
2/25.
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2 Fat Ars for Impliitly De�ned Planar Curves

(a) (b) ()Figure 2.12: Example 2.23: Comparison of FatArLoal_2d1 (a) FatArLoal_2d2 (b) andbounding box generation (). In the lower right orner of eah output the generated boundingprimitives are shown from the gray region of the omputational domain.2.5.2 Appliation: Surfae-Surfae IntersetionsThe omputation of surfae-surfae intersetions is a potential appliation of bounding regiongeneration methods. Here we generate fat ars to bound the intersetion urve of an impli-itly de�ned and a parametri surfae. In pratie this is the so alled �mixed� intersetionproblem. It is one of the most frequently enountered ases [23℄. A good survey on this topiis given in [30, 31℄.Consider an impliitly de�ned surfae h(x, y, z) = 0 and a parametri surfae path
r(ξ1, ξ2) with domain Ω = [0, 1]2. Then the impliitly de�ned urve f = h ◦ r = 0 desribesthe intersetion urve in the domain of the parametri surfae path.Using Algorithm GenerateFatArs, one an onstrut a olletion of fat ars with maxi-mum width ε in Ω. The region desribed by them orresponds to a ertain subset (a strip)on the parametri surfae path.Reall that the oe�ients of the �rst fundamental form are de�ned as

gij(ξ1, ξ2) =
∂

∂ξi
r(ξ1, ξ2) ·

∂

∂ξj
r(ξ1, ξ2). (2.43)In order to relate the thikness of the bounding fat ars to the thikness of the orrespondingstrip on the parametri surfae, we present the following observation.Lemma 2.24. Consider a single fat ar with width 2̺ in the parameter domain of a para-metri surfae Ω. Then there exists a onstant C depending only on the parametri surfae,suh that the width of the orresponding fat region on the parametri surfae path is boundedby

2̺
√
C.32



2.5 Examples and AppliationProof. We denote the matrix of �rst fundamental form orresponding to a point (ξ1, ξ2) ofthe parametri surfae with
G(ξ1, ξ2) =

(
g11(ξ1, ξ2) g12(ξ1, ξ2)
g12(ξ1, ξ2) g22(ξ1, ξ2)

)

.The length L of a urve on the surfae whih orresponds to any straight line segment in theparameter domain Ω

(ξ1(t), ξ2(t)) = (ξ01 , ξ
0
2) + t(η1, η2), t ∈ [a, b],where

η21 + η22 = 1is
L =

∫ b

a

√

g11(ξ1, ξ2)η
2
1 + 2g12(ξ1, ξ2)η1η2 + g22(ξ1, ξ2)η

2
2 dt. (2.44)In order to �nd an upper bound for L we are looking for the extremal values of the quadratiform

g11(ξ1, ξ2)η
2
1 + 2g12(ξ1, ξ2)η1η2 + g22(ξ1, ξ2)η

2
2 = (η1, η2)G(ξ1, ξ2)(η1, η2)

Twith the assumption
η21 + η22 = 1.Using the method of Lagrange multipliers it is easy to show, that for any pair of (ξ1, ξ2) theeigenvalues of G(ξ1, ξ2) are real. They an be omputed as

λ1,2(ξ1, ξ2) =
g11(ξ1, ξ2) + g22(ξ1, ξ2)±

√

(g11(ξ1, ξ2)− g22(ξ1, ξ2))
2 + 4g12(ξ1, ξ2)2

2
. (2.45)If λ(ξ1, ξ2) = max{

∣
∣λ1(ξ1, ξ2)

∣
∣ ,
∣
∣λ2(ξ1, ξ2)

∣
∣} then

∣
∣(η1, η2) ·G(ξ1, ξ2) · (η1, η2)T∣∣ ≤ λ(ξ1, ξ2)for any vetor, whih ful�lls η21 + η22 = 1.This observation an now be applied to the lines whih pass through the enter of the fatar (o1, o2)

(ξ1(t), ξ2(t)) = (o1, o2) + t(η1, η2), t ∈ [r − ̺, r + ̺], (2.46)where r is the radius of the median ar and ̺ is the fat ar radius. Sine we assume, that theparametri funtion ontinuously di�erentiable, then λ(ξ1, ξ2) is also ontinuous in Ω, whihis a ompat domain. Therefore there exists a onstant suh that
0 ≤ λ(ξ1, ξ2) ≤ C.Thus for any line segment (2.46) the integral in (2.44) an be bounded by the general bound

L ≤ 2̺
√
C.Example 2.25. We onsider the intersetion of a ubi impliitly de�ned surfae with abiquadrati surfae path. Fig.2.13, upper row, shows the interseting surfaes and theimpliitly de�ned intersetion urve in the parameter domain. The lower row shows theregions on the surfae whih orrespond to fat ars in the parameter domain for three di�erentvalues of the tolerane ε. 33



2 Fat Ars for Impliitly De�ned Planar Curves

ε = 0.1 ε = 0.01 ε = 0.001Figure 2.13: Example 2.25: Intersetion of a ubi impliit and a biquadrati parametrisurfae, represented by fat ars in the parameter domain. The number of fat ars grows from 10for ε = 0.1 to 25 for ε = 0.01. For the smaller two toleranes, we also zoomed into a segment ofthe surfae path.
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Chapter 3Fat Ars for 3D Impliit AlgebraiCurvesImpliitly de�ned algebrai spae urves are de�ned by the intersetion urve of algebraisurfaes. Suh urves frequently arise in geometri modeling. Various methods have beendeveloped for approximating or parameterizing them, and for analyzing their topology. Inthis hapter we present an algorithm, whih generates bounding regions for algebrai spaeurves. The method is the generalization of the fat ar generation method for planar algebraiurves.3.1 Fat Ars in 3DHere we summarize �rst the related results in algebrai urve approximation. Then we intro-due the de�nition of fat ars in R
3. In the end of the setion we will state the approximationproblem of algebrai spae urves given by Bernstein�Bézier polynomials.3.1.1 Approximating 3D Algebrai CurvesComputation of surfae-surfae intersetions is a fundamental operation in geometri mod-eling. It is important for evaluating set operations, for omputing boundary urves andlosely related to self-intersetion problems. A survey of the topi is given by Patrikalakisand Maekawa [30℄.Interseting low degree algebrai surfaes has attrated a lot of interest in the literature.Quadrati surfaes are the simplest urved surfaes, therefore they are frequently used inomputational geometry. The intersetion omputation of suh surfaes has been disussedthoroughly in [8, 11, 40, 45, 46℄.Several di�erent methods have been developed for omputing the intersetion of algebraisurfaes (see [19, 31, 39℄). Many of them are symboli-numeri algorithms. The most widelyused numeri methods are the lattie evaluation, traing and subdivision-based methods.The lattie evaluation tehniques ompute a set of low dimensional sub-problems. Then thesolution of these sub-problems is interpolated to approximate the general solution. Marhingor traing methods generate point sequenes along the onneted omponents of the urve.They neessarily use some topologial information to �nd starting, turning and singularpoints [3, 22℄. Subdivision algorithms are based on the "divide and onquer" paradigm. They35



3 Fat Ars for 3D Impliit Algebrai Curvesdeompose the problem into several sub-problems, and sort these problems aording to theurve topology [2, 25℄. The deomposition terminates if suitable approximating primitives anbe generated in eah sub-problems [29℄. In order to onstrut these approximating primitivesseveral loal approximation tehniques an be applied, suh as interpolation, bounding regiongeneration, least-squares approximation or Newton-type methods [12℄.Several di�erent methods have been developed for omputing the intersetion of generalalgebrai surfaes. Many of them are symboli-numeri algorithms. For instane, traingmethods and subdivision-based methods are widely used in pratie. These algorithms iden-tify �rst the topology of the urve [2, 25℄. Then they generate parametri spae urves, whihapproximate the impliitly de�ned spae urve [20℄.3.1.2 De�nition of 3D Fat ArsWe present in this hapter an algorithm, whih approximates algebrai spae urves witha set of bounding regions. The bounding primitives are the generalization of the planarfat ars (see in Setion 2.1.2) in 3D spae. The algorithm detets regular algebrai urvesegments, and approximates them with irular ars. Then the method bounds the distaneof the approximating ar and the algebrai urve segment. Eah bounding region is a tubularneighborhood of the approximating ars with a ertain radius, whih is the appropriate errorbound. Suh a bounding primitive is bounded by a segment of a torus and two spherial aps(see Fig.3.1 (b)).De�nition 3.1. A fat ar is de�ned R
3 by- a segment of a irular ar (median ar) S ⊂ Ω ⊂ R

3.- and a distane ̺ ∈ R.Then the fat ar is the point set
F(S, ̺) = {(x, y, z) : ∃(x0, y0, z0) ∈ S,

√

(x− x0)2 + (y − y0)2 + (z − z0)2 ≤ ̺}.The median ar an be represented in two di�erent ways. We an use the parametri form,sine irular ars an be parametrized exatly by rational Bernstein-Bézier-polynomials. Itprovides the omputational advantages of BB-representation form, suh as the onvex hullproperty. It is also possible, to de�ne the median ar in an algebrai form. A irular aralways an be given as the zero set of two spherial equations. Representing it with thesespeial quadrati equations is advantageous beause of the simple intersetion and o�setomputations.3.1.3 3d Algebrai CurvesIn order to onstrut fat ars for algebrai spae urves, we shall use the properties of the de�n-ing polynomials. We assume that these de�ning polynomials are given in the Bernstein-Béziertensor produt form with respet to an axis aligned box Ω0 = [α1, β1]× [α2, β2]× [α3, β3]

f(x, y, z) =
l∑

i=0

m∑

j=0

n∑

k=0

dijkB
1
i,l(x)B

2
j,m(y)B3

k,n(z), (3.1)36



3.2 Approximation of Regular Curve Segments

(a) (b)Figure 3.1: Fat ar in R
3. The intersetion urve (red) approximated by a irular ar (blue)(see �gure (a)). Figure (b) shows the δ neighborhood of the median ar, whih is the fat ar(yellow).with ertain oe�ients dijk ∈ R. The basis funtions Bj

i,n are de�ned like in Chapter 2 (2.2).For suh funtions f : R3 → R, let us denote the de�ned algebrai surfae in the domain Ω0with
Z(f,Ω0) = {(x, y, z) : f(x, y, z) = 0} ∩Ω0.The algebrai urve is given as the intersetion of the zero sets of two polynomials f and g

C(f, g,Ω0) = Z(f,Ω0) ∩ Z(g,Ω0) = {x : f(x) = 0, g(x) = 0} ∩ Ω0 (3.2)with respet to the domain Ω0. Clearly, the urve may be an empty point set, or it mayonsist of more than one segment. In order to generate fat ars, later we onsider di�erentsegments of the urve C(f, g,Ω) in di�erent sub-domains of the original domain Ω ⊆ Ω0. Allthese sub-domains are axis-aligned boxes as well.3.2 Approximation of Regular Curve SegmentsIn order to generate fat ars for 3d algebrai urves we present �rst a loal approximationalgorithm, whih generates fat ars only for regular segments of a spae urve. Later on wewill ombine this loal bounding region generation with subdivision tehnique.3.2.1 Regularity CriterionAs in Setion 2.2.1 �rst we identify the empty sub-domains of the omputational domain. It isobvious, that Observation 2.3 in Chapter 2 is true in general for multivariate BB-polynomials.Observation 3.2. Suppose, that an algebrai urve is represented by two BB-polynomialin the domain Ω ⊂ R
3. If one of the polynomials has only negative or only positive BB-oe�ients over the domain, then none of the points in Ω belongs to the algebrai urve.37



3 Fat Ars for 3D Impliit Algebrai CurvesIn order to approximate algebrai spae urves, we shall detet domains, whih ontainonly regular segments of the urve. Suh domains do not ontain loops or self-intersetionsof the urve. Therefore we state following the de�nitions similarly like in the ase of planaralgebrai urves (see in De�nition 2.1).De�nition 3.3. A point p of an intersetion urve C(f, g,Ω) ⊂ R
3 of two algebrai surfaes

f = 0 and g = 0 is alled regular, if the vetors ∇f(p) and ∇g(p) are linearly independent(and alled singular otherwise). An algebrai urve segment is regular on Ω ⊂ R
3, if eahpoint of the segment is regular in the domain.De�nition 3.4. A point p of an intersetion urve C(f, g,Ω) ⊂ R

3 of two algebrai sur-faes is alled u-regular (u an be equal x, y or z), if the u oordinate of the tangent vetor
∇f(p)×∇g(p) is not equal to zero. An algebrai urve segment is u-regular in the domain
Ω ⊂ R

3, if eah point of the segment is u-regular in Ω.The relation in between these de�nitions is formulated in the following lemma.Lemma 3.5. If an algebrai urve segment in Ω ⊂ R
3 is x, y or z-regular (regular at least inone oordinate), then the urve segment is regular in the domain. Moreover it is not a loopand no self-intersetion ours in the domain.Proof. If we know, that one of the oordinates of the tangent vetor does not vanish in Ω,then the tangent vetor does not vanish either in the domain. So the urve is regular. Itmeans, that no self-intersetion ours in the domain. The regularity in one oordinate alsoexludes the situation, that the tangent vetor of the algebrai urve returns to the sameposition if we trae the urve. The urve an not form loops in the domain.Control of oordinate regularity. In order to ertify domains ontaining regular alge-brai urve segments, we use the onvex hull property of the Bernstein polynomials. We givehere a su�ient ondition for deteting suh domains. Namely it is su�ient to show, thatthere exists a bound for one of the oordinate of the vetor t = ∇f×∇g in the domain, whihbounds the oordinate funtion away from zero. Sine we ompute with BB-polynomials wean represent eah oordinate of vetor t = (t1, t2, t3) in a BB tensor produt form as

tu =

l∑

i=0

m∑

j=0

n∑

k=0

tuijkB
1
i,l(x)B

2
j,m(y)B3

k,n(z),where the oe�ients tuijk an be omputed from the oe�ient of f and g, and u = 1, 2 or
3. For a ertain u we denote with mu the minimum and with Mu the maximum of tuijk. If
muMu > 0 then

∣
∣tu
∣
∣ ≥ min{

∣
∣mu

∣
∣ ,
∣
∣Mu

∣
∣} = T u > 0. (3.3)If suh T u exists for u = 1, 2 or 3, it ensures us that the urve is regular at least in oneoordinate in Ω.3.2.2 Loal AlgorithmWe desribe here an algorithm (Algorithm 5) to approximate regular algebrai urve seg-ments. It is a loal fat ar generation method in ertain sub-domains of the original domain38



3.2 Approximation of Regular Curve SegmentsAlgorithm 5 FatArLoal_3d (f, g,Ω, ε)Require: The urve is regular at least in one oordinate in Ω.1: f̂ , ĝ modi�ed and orthogonalized polynomials {see (3.18)}2: p, q ← T 2
c (f̂), T

2
c (ĝ) spherial approximations3: if p, q exist then4: P ← zero ontour of p5: Q ← zero ontour of q6: S ← P ∩Q {median irle}7: if S 6= ∅ then8: G← lower bound for ‖∇f̂‖ and ‖∇ĝ‖9: K ← upper bound for |∇f̂ · ∇ĝ|10: if 0 < G and 0 < G2 −K then11: ̺← upper bound of HDΩ(S, C(f̂ , ĝ,Ω)) {see Lemma 3.15}12: if ̺ 6 ε then13: F = {x : ∃y ∈ S,

∣
∣x− y

∣
∣ ≤ ̺} ∩ Ω {fat ar}14: return F {fat ar has been found}15: end if16: end if17: end if18: end if19: return ∅ {no fat ar has been found}

Ω0. Later on we will desribe a global algorithm, whih detets the domains, where the loalalgorithm is appliable. This algorithm is based on the fat ar generation tehnique, whatwe introdued in Setion 2.3 for the planar algebrai urves.The loal algorithm assumes that the urve is regular at least in one oordinate in orderto approximate a regular algebrai segment whih is not a loop.We have generalized the median ar generation tehniques from Setion 2.3.2 andSetion 2.3.3. These algorithms generate the median ar in algebrai form, as the inter-setion of two impliitly de�ned spheres. The interseting spheres are hosen from a familyof spheres, whih approximate ertain ombinations of the original polynomials. Later on, ifwe would like to represent the output in parametri form, it is easy to desribe the irularars as rational quadrati urves.The distane estimation method generalizes and ombines the approahes in Setion 2.3.5and Setion 2.2.4. It bounds the BB-distane in between eah polynomials and the assoiatedquadrati approximations. Then an upper bound is generated for the one sided Hausdor�-distane of the median ar and the algebrai spae urve. This bound is used then as thethikness of the fat ar.The algorithm is suessful, if the median ar is found and the fat ar thikness an beomputed and it is smaller than the presribed tolerane ε. Then the algorithm returns witha fat ar, whih bounds the urve segment in the appropriate domain. If the loal algorithmfails then the algorithm returns the empty set.Fig.3.2 presents three examples of fat ars whih have been generated with the help ofAlgorithm 5. Aording to the median ar generation tehnique we an see di�erent resultsfor the same algebrai urve segment in eah olumn of the �gure. The used median ar39



3 Fat Ars for 3D Impliit Algebrai Curvesgeneration tehniques are desribed in Setion 3.3. The distane estimation tehnique isdesribed in Setion 4.4.3.3 Median Ar GenerationImpliitly de�ned spaes urves are given as the intersetion urve of two impliitly de�nedsurfaes. In order to approximate algebrai urve segments, we generate impliitly de�nedars in R
3. These algebrai ars the so alled median ars an be given as the intersetionurve of two impliitly de�ned spheres. In order to generate the de�ning spheres of the medianar, we an hoose di�erent strategies. Several �tting tehniques, for instane least-squares�tting, are used in geometri omputing. In this setion we generalize the approximationtehniques from Setion 2.3.3.3.1 Median Ar Generation with Least-Squares ApproximationSimilarly to Setion 2.3.2 we an use least-squares approximation to �nd approximating poly-nomials. In order to generate a quadrati polynomial with spherial zero level set, we aresearhing for a polynomial in the form

si(x, y, z) = ai(x
2 + y2 + z2) + bix+ ciy + diz + ei.We modify the original funtions using a linear term

f̂(x, y, z) = l(x, y, z) f(x, y, z) = (l0 + l1x+ l2y + l3z) f(x, y, z),

ĝ(x, y, z) = k(x, y, z) g(x, y, z) = (k0 + k1x+ k2y + k3z) g(x, y, z).The approximation problems an be formed as the following optimization problems
minvf∈R9

∫∫

Ω

∥
∥
∥f̂ − s1

∥
∥
∥

2
dxdydz, (3.4)

minvg∈R9

∫∫

Ω

∥
∥ĝ − s2

∥
∥2 dxdydz. (3.5)where

vf = (a1, b1, c1, d1, e1, l0, l1, l2, l3),

vg = (a2, b2, c2, d2, e2, k0, k1, k2, k3).In order get a unique solution, we have to normalize both minimization problems. Here wepresent three di�erent strategies. The �rst normalization tehnique is using a linear ondition.It is a natural ondition in the sense that the modi�ed polynomial f̂ or ĝ keeps the originalfuntion value in the enter of the omputational domain Ω. For instane for the �rst problem(3.4) the ondition an be formulated as
l0 + l1c

x + l2c
y + l3c

z = 1, (3.6)where c = (cx, cy, cz) denotes the enter of the domain. Another possible hoie for nor-malization is to ontrol the gradient length of the approximating polynomials si. Suh aondition determine two possible solutions for si(x, y, z). The one with smaller value in (3.4)40



3.3 Median Ar Generation

Figure 3.2: Examples for fat ar generation with the help of algorithm FatArLoal_3d. Weused four di�erent median ar generation methods on three examples. In the �rst three rowswe show fat ars generated by least squares approximation with linear normalization and leastsquares approximation with two di�erent quadrati normalization ((3.7) and (3.8)). In the lastrow we an see the fat ars generated by Taylor expansion modi�ation.
41



3 Fat Ars for 3D Impliit Algebrai Curvesor (3.5) an be used as an approximating polynomial. A natural hoie of the quadratinormalization ondition is
∥
∥∇si(c)

∥
∥ = 1. (3.7)Another possibility is to use a quadrati normalization ondition whih approximates betterthe seondary shape of the original impliitly de�ned urve. Namely we an suppose forinstane

∥
∥∇s1(c)

∥
∥ =

∥
∥∇f(c)

∥
∥ , (3.8)

∥
∥∇s2(c)

∥
∥ =

∥
∥∇g(c)

∥
∥ .We ompare the di�erent least-square approximation methods via an example in theonvergene rate analysis in Setion 3.5.4.3.3.2 Median Ar Generation Using Taylor ExpansionThe algebrai spae urve is given by the zero sets of two polynomials f and g in the domain

Ω ⊂ R
3. In order to generate the median urve, we reformulate the approximation problem.More preisely, we try to �nd a ertain ombination of the given polynomials f and g, thatpossesses a speial Hessian matrix in the enter point c = (cx, cy, cz) of the sub-domain Ω.Suh a new polynomial h an be de�ned as the ombination

h = kf + lg, (3.9)where k and l are linear polynomials and (x, y, z) ∈ Ω

k(x, y, z) = u+ k1(x− cx) + k2(y − cy) + k3(z − cz)
l(x, y, z) = v + l1(x− cx) + l2(y − cy) + l3(z − cz),

(x, y, z) ∈ Ω.The zero level set of the polynomial h
Z(h,Ω) = {x : h(x) = 0} ∩ Ωis a surfae, whih ontains the algebrai urve de�ned by f and g

C(f, g,Ω) ⊆ Z(h,Ω).We hoose the oe�ients of k and l suh that the Hessian of h is a salar multiple of theidentity matrix in the enter of the domain c.
H(h)(c) =





λ 0 0
0 λ 0
0 0 λ



 , λ ∈ R. (3.10)If suh an h an be omputed, then the zero level set of the quadrati Taylor expansion of
h about c is a sphere. In order to �nd h, we solve a linear system with eight variables (theoe�ients of k and l) and �ve equations, that an be deduted from (3.10)

hxx(c)− hyy(c) = 0

hyy(c) − hzz(c) = 0

hxy(c) = 0 (3.11)
hyz(c) = 0

hxz(c) = 0.42



3.3 Median Ar GenerationIf the system has full rank, then the solution set in the spae of oe�ients of k and l isthree-dimensional. Therefore we hoose two oe�ients as parameters in advane. Morepreisely, we suppose that the values of the onstant terms of the polynomials k and l arearbitrary but �xed (u, v) ∈ R
2 and di�erent from zero (u 6= 0 and v 6= 0).Lemma 3.6. Given two polynomials f and g over the domain Ω ⊂ R

3. We suppose that inthe enter of the domain
∥
∥∇f(c)×∇g(c)

∥
∥ 6= 0. (3.12)Then for any pair of (u, v) ∈ R

2, where u 6= 0 and v 6= 0, there exists an exatly one-dimensional family of non-trivial polynomials, k and l, suh that h = kf + lg satis�es (3.11).Proof. The Hessian matrix of h an be expressed with the help of f, g, k and l as
H(h)(c) = ∇k(c)∇f(c)T +∇f(c)∇k(c)T + uH(f)(c)

+∇l(c)∇g(c)T +∇g(c)∇l(c)T + vH(g)(c). (3.13)For any values of the parameters u and v, the system (3.11) an be reformulated as
Ak =










fx(c) −fy(c) 0 gx(c) −gy(c) 0

0 fy(c) −fz(c) 0 gy(c) −gz(c)
fy(c) fx(c) 0 gy(c) gx(c) 0

0 fz(c) fy(c) 0 gz(c) gy(c)

fz(c) 0 fx(c) gz(c) 0 gx(c)






















k1
k2
k3
l1
l2
l3













= b, (3.14)
where the vetor of onstants is

b = −u










1
2(fxx(c) − fyy(c))
1
2(fyy(c) − fzz(c))

fxy(c)
fyz(c)
fxz(c)










− v










1
2(gxx(c)− gyy(c))
1
2(gyy(c)− gzz(c))

gxy(c)
gyz(c)
gxz(c)










.In order to be ertain that the system (3.14) has a one-parameter family solution system, wehave to show, that the matrix A has rank 5. Therefore we analyze the 5 × 5 sub-matriesof A. We denote with Ai the matrix, whih we get from A by deleting ith olumn. Thedeterminants of the matries A4,5,6 are
det(A4) = −fx(c)

∥
∥∇f(c)×∇g(c)

∥
∥2 ,

det(A5) = fy(c)
∥
∥∇f(c)×∇g(c)

∥
∥2 ,

det(A6) = −fz(c)
∥
∥∇f(c)×∇g(c)

∥
∥2 .We know that ∥∥∇f(c)×∇g(c)∥∥ 6= 0. This observation also implies, that one of the oor-dinates of ∇f(c): fx(c), fy(c) or fz(c) is non-zero. It means, that one of the determinantsof A4,A5 or A6 is not zero. So A always has full rank 5. Thus the solution of the system

Ak = b exists, and it is a one dimensional subspae in R
6.43



3 Fat Ars for 3D Impliit Algebrai CurvesAording to Lemma 3.6, for any pair of (u, v) where u 6= 0 and v 6= 0, there exists aone-parameter family of polynomials k and l, suh that kf + lg satis�es (3.11). From thisfamily of polynomials we always hoose the one, whih minimizes the l2 norm
∥
∥k
∥
∥
2
→ min subjet to Ak = b, (3.15)where k = (k1, k2, k3, l1, l2, l3) is the ommon oe�ient vetor of k and l. This guaranteesthat the solution behaves numerially well during the omputations. With the additionalondition (3.15) the polynomials k and l an be omputed uniquely for eah pair of (u, v).Moreover the result depends ontinuously on the points of the domain. We introdue thefuntion G, whih assigns to a funtion f and g, a value of (u, v) and the enter point c of adomain Ω the assoiated funtion aording to the onstrution in Lemma 3.6 and the formerassumption (3.15)

G(f, g, (u, v), c) = h = kf + lg. (3.16)Remark 3.7. Suppose that the right hand side of the system (3.14) i.e. the vetor b,vanishes for a ertain pair of (u, v). In this ase the solution set of (3.14) is a line, whihpasses through the origin. Then the linear ombination uf + vg ful�lls the ondition (3.11).Aording to (3.15) we always hoose the solution of the system (3.14), whih has the smallestlength. In this speial ase both k and l are onstants.The polynomial h = G(f, g, (u, v), c) ful�lls the speial ondition for the Hessian (3.11).Thus the quadrati Taylor expansion of h about c has a spherial zero level set.
s(x) = T 2

c (h
∗)(x) = (3.17)

= h(c) +∇h(c)T (x− c) +
1

2
hxx(c)(x − c)T (x− c) ∀x ∈ Ω.If we ompute two polynomials for two di�erent pairs of parameter (u, v) 6= (u′, v′)

f̂ = G(f, g, (u, v), c) and ĝ = G(f, g, (u′, v′), c), suh that u, v, u′, v′ 6= 0, (3.18)then their quadrati Taylor expansions about c an be denoted by
p = T 2

c f̂ and q = T 2
c ĝ.These two polynomials de�ne the algebrai set

S(p, q,Ω) = {x : p(x) = 0, q(x) = 0} ∩ Ω.If this algebrai set is not empty, then it forms a irular ar. This ar an be used as anapproximating irular ar of the urve C(f, g,Ω). Later on the error of the approximationis estimated by a distane bound of the algebrai urves C(f̂ , ĝ,Ω) and S(p, q,Ω).Orthogonal pair of funtions We ompute a pair of polynomials for two di�erent pairsof parameter (u, v) 6= (u′, v′)

f̂ = G(f, g, (u, v), c) and ĝ = G(f, g, (u′, v′), c).44



3.3 Median Ar GenerationIn order to get e�ient distane bound for the algebrai urve and the median ar, we preferto generate suh a pair of funtions f∗, g∗, whih has the property
∇f∗(c) ⊥ ∇g∗(c). (3.19)in the enter of the domain. If F and G are de�ned as

F = f̂
∥
∥∇ĝ(c)

∥
∥ + ĝ

∥
∥
∥∇f̂(c)

∥
∥
∥ (3.20)

G = f̂
∥
∥∇ĝ(c)

∥
∥ − ĝ

∥
∥
∥∇f̂(c)

∥
∥
∥ ,then the following polynomials satisfy (3.19)

f∗ =
F

∥
∥∇F (c)

∥
∥
, g∗ =

G
∥
∥∇G(c)

∥
∥
. (3.21)Thus we introdue the funtion O, whih assigns to the polynomials f̂ and ĝ and the enterpoint c of a domain Ω. It generates a pair of funtions

(f∗, g∗) = O(f̂ , ĝ, c), (3.22)whih is omputed with applying the orthogonalization steps (3.20) and (3.21).The funtions f̂ and ĝ are linearly independent sine we omputed them as the sum andthe di�erene of two linearly independent non-zero funtions.Remark 3.8. Any linear ombination of hi = T (f, g, (ui, vi), c), omputed for the parametervalues (ui, vi), ful�lls the property of funtions with speial Hessians (3.11). So if
ĥ =

n∑

i=1

cihi, ci ∈ R,then ĥ also ful�lls the ondition of speial Hessian (see (3.11)). Thus T 2
c (ĥ)(x) = 0 de�nes asphere in R

3.Aording to this remark, also the ondition of speial Hessians (3.11) is satis�ed by f∗and g∗. So we de�ne the following approximating polynomials as
p = T 2

c (f
∗)

q = T 2
c (g

∗).From the onstrution of f∗ and g∗ it is lear, that the vetors ∇p(c) and ∇q(c) are alsoindependent and perpendiular to eah other. Sine f̂ and ĝ satisfy (3.11), the equations
p = 0 and q = 0 are equations of a spheres. The median ar S is de�ned by the intersetionurve of the zero set of the polynomials p and q in the domain.

S(p, q,Ω) = {x : p(x) = 0, q(x) = 0} ∩ Ω.If it is the empty set, then no median ar is generated.45



3 Fat Ars for 3D Impliit Algebrai Curves3.3.3 Connetion with the Osulating CirleIn this setion we suppose, that the enter of the omputational domain Ω is a point of thealgebrai urve C de�ned by the polynomials f and g. If the enter point is denoted by c,then
f(c) = g(c) = 0. (3.23)This speial ase plays an important role during the omputations, sine later we would liketo approximate the urve in suh sub-domains of the original domain, whih tightly enlosethe algebrai urve.For an arbitrary pair of parameters we ompute a new polynomial as the ombination of

f and g as de�ned in Setion 3.3.2
h = G(f, g, (u, v), c).Consider the quadrati polynomial

s = T 2
c (h).Aording to the assumption (3.23) the enter of the domain is a point of the zero set of hand s.

h(c) = s(c) = uf(c) + vg(c) = 0. (3.24)Then the quadrati approximating polynomial s has the following form
s(x) = ∇h(c)T (x− c) + λ(x− c)T (x− c), (3.25)where the gradient is

∇h(c) = u∇f(c) + v∇g(c), (3.26)and the Hessian-matrix has the form
H(h)(c) = λI3,as in (3.10).Observation 3.9. Suppose, that λ 6= 0, then the zero set of s an be written in the form

〈

x−
(

c+
1

λ
∇h(c)

)

,x−
(

c+
1

λ
∇h(c)

)〉

=

∥
∥∇h(c)

∥
∥2

λ2
.Therefore the radius of the sphere s = 0 an be omputed as

r =

∥
∥∇h(c)

∥
∥

λ
.Observation 3.10. The zero set of s de�ned in (3.25) depends only on the ratio of the hosenparameters u and v. Therefore the sphere family, omputed for di�erent values of (u, v), is aone-parametri surfae family. It an be parametrized by the ratio of u and v. This followsfrom the omputational method of k and l and from the speial form of the sphere equations(see in (3.25)). Fig.3.3 (a) visualizes several members of suh a sphere family for di�erentvalues of the ratio u/v. 46



3.3 Median Ar Generation

(a) (b) ()Figure 3.3: Sphere family omputed with Taylor expansion modi�ation (b) about a point onthe algebrai urve (a) and its intersetion with the normal plane of the urve (). The thin,blak urve is the algebrai urve. The red irle is the osulating irle.Remark 3.11. In the omputations we hose the two parameter pairs (u, v) and (u′, v′)usually as (1, 2) and (2, 1) or (1, 5) and (5, 1). Both hoies generated similar results in ourexamples, sine the generated median ars onverge to the same limit irle, the osulatingirle. Therefore if u, v, u′, v′ 6= 0 and u/v 6= u′/v′, then (u, v) and (u′, v′) are good initialhoies for parameters. It is not possible to improve the general behavior of the algorithmby the hoie of these parameters.Lemma 3.12. We assume that (3.23) is satis�ed in the point c. Then for eah sphereequation, omputed for ertain (u, v) ∈ R
2, u, v 6= 0, the enter of the sphere s = 0 lies inthe normal plane of the algebrai urve in the point c. Moreover the inverse of the radius ofthe sphere is exatly the normal urvature κn of the tangent diretion ∇f(c)×∇g(c) of thesurfae G(f, g, (u, v), c) in the point c.Proof. Suppose that in a ertain neighborhood of the point c the algebrai urve an beparametrized with ar length parametrization. It is not a restrition, sine we are omputingonly with regular segment of the algebrai urve. The parametrization is denoted by

p(t), where p(t0) = c.This urve is a urve on the surfae h = 0 aording to the de�nition, therefore it satis�es
dih(p(t))

dti
= 0,for any i.If we ompute the �rst derivative in the point c:

dh(p(t))

dt
t=t0

= 〈∇h(c),p′(t0)〉 = 0.Thus the tangent vetor of the algebrai urve is parallel with the ross produt of thegradients ∇f(c) and ∇g(c). In (3.26) we observed, that
∇h(c) = u∇f(c) + v∇g(c).47



3 Fat Ars for 3D Impliit Algebrai CurvesSine s is the quadrati Taylor expansion of h about c, we obtain that
〈∇s(c),p′(t0)〉 = 0.This implies, that for any value of the parameters (u, v) the gradient of the assoiated sphereis in the normal plane of the algebrai urve in the point c.The seond derivative in the point c is

d2h(p(t))

dt2
t=t0

= 〈∇h(c),p′′(t0)〉+ p′(t0)H(h)(c)p′(t0) =

= 〈∇h(c),p′′(t0)〉+ λ〈p′(t0),p
′(t0)〉 = 0.Sine we used the ar length parametrization

〈∇h(c),p′′(t0)〉 − λ = 0.The polynomial s is the quadrati Taylor expansion of h about c, therefore also
〈∇s(c),p′′(t0)〉 = λ.If we expand the salar produt:

∥
∥∇s(c)

∥
∥
∥
∥p′′(t0)

∥
∥ cosϕ = −λ,where ϕ denotes the angle of the surfae normal ∇h(c) and the normal diretion of thealgebrai urve in c. Aording to the Theorem of Meusnier and Observation 3.9 we �nallyarrive at

κ cosϕ = κn =
λ

∥
∥∇s(c)

∥
∥
=

1

r
,whih proves the lemma.As an example Fig.3.3 (b) shows the intersetion of the sphere family and the normalplane of the algebrai urve. Eah sphere of the family intersets this plane in a great irle.These irles interset eah other in two points on the normal of the algebrai spae urve.Corollary 3.13. The funtions f and g de�ne an algebrai urve C(f, g,Ω) in Ω ⊂ R

3. Weassume that the point c ∈ Ω lies on the algebrai urve c ∈ C(f, g,Ω). We ompute thefuntion family h(u, v) = G(f, g, (u, v), c) with speial Hessian for f and g in the point c.The quadrati Taylor expansion for any (u, v) pair u, v 6= 0 has a spherial zero level set. Theintersetion of this sphere family is a irle, whih is the osulating irle of C(f, g,Ω) in thepoint c.Proof. In eah point of a urve on a surfae the osulating irle is the normal setion of theurvature sphere of the surfae [21℄. In Lemma 3.12 we observed that this urvature spherefor any h(u, v) = 0 surfae is the zero set of the quadrati Taylor expansion. These sphereshave the same intersetion urve with the osulating plane of C(f, g,Ω) in the point c, whihis exatly the osulating irle. 48



3.4 Distane Estimate3.4 Distane EstimateIn this setion we desribe a method to estimate the distane of two algebrai spae urves.In order to get a distane bound, we ombine a distane bound of parametri and algebraiurves and a distane estimation strategy between algebrai surfaes.3.4.1 Distane of Impliitly De�ned SurfaesFirst we generalize the distane estimation tehnique from Chapter 2.3.5 for algebrai sur-faes. In order to measure the distane of algebrai surfaes, we onsider the BB-norm overthe domain Ω ⊂ R
3: ∥∥.∥∥ΩBB , whih is the maximum absolute value of the oe�ients in theBB-representation. With the help of the norm, a distane bound an be de�ned between anarbitrary polynomial f and an approximating polynomial p for all point in the domain

ε =
∥
∥f − p

∥
∥ΩBB . (3.27)Due to the onvex hull property

∣
∣f(x)− p(x)

∣
∣ ≤ ε, ∀x ∈ Ω.This implies that

p(x)− ε ≤ f(x) ≤ p(x) + ε, ∀x ∈ Ω. (3.28)A region an be de�ned in Ω by the approximating polynomial and the distane bound
D(p, ε) = {x : |p(x)| ≤ ε} ∩ Ω.The algebrai surfae de�ned by f is the point set
Z(f,Ω) = {x : f(x) = 0} ∩Ω.The region D is a bounding region for the zero level set of the polynomial f in Ω

Z(f,Ω) ⊆ D(p, ε) ⊆ Ω.3.4.2 Distane of Algebrai and Parametri Spae CurvesIn order to bound the distane of algebrai spae urves, we reall a former result from [20℄.In the paper a tehnique is desribed to bound the distane of parametri and algebrai spaeurves.We assume that the a urve segment r(t) is de�ned with the parameter domain t ∈ [0, 1]in Ω ⊂ R
3. The urve traes the point set

R = {r(t) : t ∈ [0, 1]}.The algebrai urve C(f, g,Ω) is de�ned by the intersetion urve of f and g on the sub-domain Ω. In order to avoid ertain tehnial di�ulties, we bound the distane between thepoint set R and
C∗ = C ∪ ∂Ω,49



3 Fat Ars for 3D Impliit Algebrai Curveswhere ∂Ω denotes the boundary of the domain. The one-sided Hausdor�-distane is de�nedas HDΩ(R, C∗) = sup
t∈[0,1]

inf
x∈C∗

‖x− r(t)‖. (3.29)In order to bound this distane we use the following result form [20℄.Theorem 3.14 (Jüttler�Chalmovianský). Consider a urve segment r(t) : t → Ω, whihtraes the point set R. The funtions f and g de�ne the algebrai urve C(f, g,Ω) in Ω. Weassume that positive onstants G and K exist, suh that
G ≤

∥
∥∇f

∥
∥ and G ≤

∥
∥∇g

∥
∥ ,and

∣
∣∇f · ∇g

∣
∣ ≤ K.If h denotes the funtion √f2 + g2, then

∥
∥∇h

∥
∥ ≤

√

G2 −K ∀x ∈ Ω.Moreover if there exists a positive onstant M , that f(r(t))2 + g(r(t))2 ≤M2, then the one-sided Hausdor�-distane is bounded byHDΩ(R, C∗) ≤
M√

G2 −K
. (3.30)3.4.3 Distane of Algebrai Spae CurvesIf we would like to estimate the distane of algebrai spae urve we an measure �rst thedistane of the de�ning algebrai surfaes. Suppose that an algebrai urve C(f, g,Ω) isde�ned by the polynomials f and g in the domain Ω. An approximating spae urve S isgiven by two approximating algebrai surfaes p = 0 and q = 0 as

S(p, q,Ω) = {x : p(x) = 0, q(x) = 0} ∩ Ω.The polynomial p approximates f , as q is an approximating polynomial of g. We estimatethe distane between the algebrai surfaes and the approximating surfaes pairwise usingthe tehnique from Setion 3.4.1.
ε1 =

∥
∥f − p

∥
∥ΩBB , ε2 =

∥
∥g − q

∥
∥ΩBB .For all points x ∈ S(p, q,Ω) it is satis�ed that

∣
∣f(x)

∣
∣ ≤ ε1 and ∣

∣g(x)
∣
∣ ≤ ε2 (3.31)aording to the de�nition p(x) = 0 and q(x) = 0.Corollary 3.15. Consider two algebrai urves C(f, g,Ω) and S(p, q,Ω), de�ned by the poly-nomials f, g and p, q in the domain Ω ⊂ R

3. We denote by ε1 and ε2 the norms
ε1 =

∥
∥f − p

∥
∥ΩBB and ε2 =

∥
∥g − q

∥
∥ΩBB .50



3.4 Distane EstimateWe assume that the positive onstants G and K exist, suh that
G ≤

∥
∥∇f

∥
∥ and G ≤

∥
∥∇g

∥
∥ ,and

∣
∣∇f · ∇g

∣
∣ ≤ K.If G > 0 and G2 −K > 0, then for all points x ∈ S exists a point y ∈ C suh that

∥
∥x− y

∥
∥ ≤

√

ε21 + ε22
G2 −K

. (3.32)Proof. Aording to (3.31) for all x ∈ S(p, q,Ω)
∣
∣f(x)

∣
∣ ≤ ε1 and ∣

∣g(x)
∣
∣ ≤ ε2.Therefore

√

f(x)2 + g(x)2 ≤
√

ε21 + ε22.Then Theorem 3.14 an be applied to bound the distane of C and S with the help of theonstants G,K and
M =

√

ε21 + ε22.Corollary 3.15 gives us an upper bound of the distane between two algebrai spae urves:
̺ =

√

ε21 + ε22
G2 −K

. (3.33)So the bounding fat region an be de�ned as the point set
F(p, q, ̺,Ω) = {x : ∃x0 : p(x0) = 0, q(x0) = 0, |x− x0| ≤ ̺} ∩ Ω.Evaluation of the Constants The de�ning polynomials of the algebrai urves f, g and

p, q are given in the BB-tensor produt form. In order to �nd the onstants in Corollary 3.15,we use the onvex hull property of these polynomials.The BB-norm of a polynomial is the maximum of the absolute values of the oe�ients.Suppose that the di�erene polynomials are represented in the form
f − p =

l∑

i=0

m∑

j=0

n∑

k=0

aijkB
l
i(x)B

m
j (y)Bn

k (z)and
g − q =

l̂∑

i=0

m̂∑

j=0

n̂∑

k=0

bijkB
l̂
i(x)B

m̂
j (y)Bn̂

k (z).Then the norms an be evaluated as
ε1 =

∥
∥f − p

∥
∥ΩBB = max

i,j,k

∣
∣aijk

∣
∣51



3 Fat Ars for 3D Impliit Algebrai Curvesand
ε2 =

∥
∥g − q

∥
∥ΩBB = max

i,j,k

∣
∣bijk

∣
∣ .The onstant G is a lower bound of the gradient length of both funtions f and g. Wean represent the square of the gradient length in a BB-tensor produt form

f2
x + f2

y + f2
z =

2l∑

i=0

2m∑

j=0

2n∑

k=0

cfijkB
l
i(x)B

m
j (y)Bn

k (z)

g2x + g2y + g2z =

2l̂∑

i=0

2m̂∑

j=0

2n̂∑

k=0

cgijkB
l̂
i(x)B

m̂
j (y)Bn̂

k (z).Then a suitable lower bound is
G =

√

min{min
i,j,k

cfijk,min
i,j,k

cgijk},if the minimum is positive.The value of K an also be given with the help of the onvex hull property of BB-polynomials. The representation of ∇f · ∇g an be omputed as
fxgx + fygy + fzgz =

l+l̂∑

i=0

m+m̂∑

j=0

n+n̂∑

k=0

dijkB
l+l̂
i (x)Bm+m̂

j (y)Bn+n̂
k (z).Then a suitable upper bound is

K = max
i,j,k

∣
∣dijk

∣
∣ .3.5 ConvergeneSine we generate quadrati approximating urves, we expet that the fat ar generationalgorithm has ubi onvergene rate. We analyze in this setion the onvergene rate ofthe method and ertify the third order onvergene of the fat ars in Lemma 3.21. Then wedemonstrate the behavior of the bounding regions through some examples.3.5.1 Continuity of Taylor Expansion Modi�ationThe loal fat ar generation tehnique �rst approximates the intersetion urve of two alge-brai surfaes de�ned by the polynomials f and g by a irular ar. This ar is de�ned as theintersetion urve of two spheres. These spheres are given as the zero level set of the poly-nomials p and q. The polynomials are the quadrati Taylor expansion of ertain polynomialswith a speial Hessian (see Setion 3.3.2) about the enter point c of the sub-domain Ω ⊆ Ω0.The polynomials with speial Hessian are omputed as the ombination of the polynomials

f and g in the form h = kf + lg = G(f, g, (u, v), c) for ertain pair (u, v) 6= (0, 0), where theterms k and l are linear polynomials.In order to prove the onvergene of the generated ars, we have to show, that theomputed polynomials depend ontinuously on the points of Ω0 for a �xed hoie of (u, v). Itmeans, that the polynomial G(f, g, (u, v), c) depends ontinuously on the hoie of the point
c. 52



3.5 ConvergeneLemma 3.16. Given two polynomials f, g over the domain Ω ⊆ Ω0. We suppose that forany point c ∈ Ω0 ∥
∥∇f(c)×∇g(c)

∥
∥ 6= 0. (3.34)For an arbitrary but �xed pair of u and v ∈ R \ {0} we ompute the polynomial

h = G(f, g, (u, v), c)with a speial Hessian (see Lemma 3.6) under the ondition (3.15). Then h depends ontin-uously on the points of the domain Ω0.Proof. We have to show that the omputed linear fators k and l depend ontinuously onthe point c. We omputed the oe�ient vetor k = (k1, k2, k3, l1, l2, l3), suh that it satis�esthe linear system Ak = b in (3.14) and minimizes the l2-norm of the vetor k (see (3.15)).If (3.34) is true, then A has full rank in any point c ∈ Ω0 (see proof of Lemma 3.6). For afull rank matrix the vetor, whih satis�es (3.14) and (3.15), an be omputed as
k = AT(AAT)−1

︸ ︷︷ ︸

A†

b.The matrix A† is the so alled Moore-Penrose generalized inverse of A (see [9℄). Sine fand g are polynomials, the entries of the matrix A and the vetor b depend ontinuously onthe point c. Therefore the vetor k also depends ontinuously on the point c. The values of
u 6= 0 and v 6= 0 are �xed real numbers. So all oe�ients u, v, ki, i = 1 . . . 3 and li, i = 1 . . . 3depend ontinuously on c. Therefore also kf + lg depends ontinuously on the point c.The next orollary follows from Lemma 3.13 and Lemma 3.16. If we modify the Taylorexpansion as it is desribed in Setion 3.3.2, then we an establish the result onsidering thebehavior of a sequene of the generated median irles.Corollary 3.17. Suppose we have a nested sequene of sub-domains (Ωi)i=1,2,3... ⊂ Ω0

Ωi+1 ⊂ Ωi,whih have dereasing diameters δi, suh that
lim
i→∞

δi = 0,and ci denotes the enter point of Ωi. Consider a pair of funtions f and g, whih de�nesan algebrai urve in Ω0 ⊂ R
3

C(f, g,Ω0) = {x : f(x) = 0, g(x) = 0} ∩ Ω0.Suppose that there exists a point p, whih satis�es f(p) = g(p) = 0, not an in�etion pointof C(f, g,Ω0) and p ∈ Ωi for all i. We ompute
f̂i = G(f, g, (u, v), ci) and ĝi = G(f, g, (u′, v′), ci)for �xed values of u, v, u′, v′ 6= 0. We onsider the irles de�ned by the zero set of thequadrati Taylor expansions

pi = T 2
ci
f̂i and qi = T 2

ci
ĝi.Then the sequene of these irles onverges to a limit irle, whih is the osulating irle of

C(f, g,Ω0) in the point p. 53



3 Fat Ars for 3D Impliit Algebrai CurvesCorollary 3.18. For all c ∈ Ω0 if we ompute f̂ = G(f, g, (u, v), c) = kf + lg, then the normof the ommon oe�ient vetor k an be bounded by a onstant
∥
∥k
∥
∥ < L,whih depends only on f, g,Ω0 and on the hoie of (u, v).3.5.2 General Lower Bound for the Gradient LengthThe following lemma (Lemma 3.19) ensures, that G(f, g, (u, v), c) has also a non-vanishinggradient if we ompute fat ars in su�iently small sub-domains, whih enlose the algebraiurve.Lemma 3.19. Suppose that there exists G > 0 in Ω0 for the polynomials f and g suh that

∀x ∈ Ω0,
∥
∥∇f(x)

∥
∥ ≥ G and ∥

∥∇g(x)
∥
∥ ≥ G. (3.35)Consider a domain Ω ⊂ Ω0, whih has a diameter δΩ < ε, and there is a point p ∈ Ω suhthat for all i = 1, . . . n− 1,

f(p) = g(p) = 0.The parameters u 6= 0 and v 6= 0 are arbitrary but �xed. We ompute h = G(f, g, (u, v), c). If
ε is su�iently small, then there exists Ĝ > 0 onstant, suh that for any x ∈ Ω

∥
∥∇h(x)

∥
∥ ≥ Ĝ > 0.Proof. If x ∈ Ω ⊆ Ω0 then

∇h(x) = f(x)∇k(x) + k(x)∇f(x) + g(x)∇l(x) + l(x)∇g(x),where k and l are omputed as desribed in Setion 3.3.2. Aording to the triangle inequality
∥
∥∇h(x)

∥
∥ ≥

∥
∥k(x)∇f(x) + l(x)∇g(x)

∥
∥ −

∥
∥f(x)∇k(x) + g(x)∇l(x)

∥
∥ ≥ (3.36)

≥
∥
∥k(x)∇f(x) + l(x)∇g(x)

∥
∥ −

∣
∣f(x)

∣
∣
∥
∥∇k(x)

∥
∥ −

∣
∣g(x)

∣
∣
∥
∥∇l(x)

∥
∥ .Sine we know that there exists a point p ∈ Ω suh that f(p) = g(p) = 0, we obtain

∣
∣f(x)

∣
∣ ≤ ε

G
and ∣

∣g(x)
∣
∣ ≤ ε

G
, (3.37)where ε is an upper bound of the diameter of Ω. In Corollary 3.18 we also observed, thatthere exists L > 0 suh that

∥
∥k
∥
∥ ≤ L.Sine kT = (∇kT,∇lT),

∥
∥∇k(x)

∥
∥ ≤ L and ∥

∥∇l(x)
∥
∥ ≤ L.We an also bound the value of the linear polynomials k and l on a su�iently small sub-domain Ω. Suppose that the diameter of Ω is smaller than ε. If x ∈ Ω, then

∣
∣k(x)

∣
∣ =

∣
∣u+ k1(x− cx) + k2(y − cy) + k3(z − cz)

∣
∣ >

∣
∣u
∣
∣− ε

2

√
3L, (3.38)

∣
∣l(x)

∣
∣ =

∣
∣v + l1(x− cx) + l2(y − cy) + l3(z − cz)

∣
∣ >

∣
∣v
∣
∣− ε

2

√
3L,54



3.5 Convergenewhere c = (cx, cy, cz) denotes the enter of Ω. Sine u and v non-zero, if
ε <

min {u, v}√
3L

, (3.39)then ∣∣k(x)∣∣ ≥ u/2 and ∣∣l(x)∣∣ ≥ v/2.We supposed that ∇f(x) and ∇g(x) are linearly independent in any point of Ω0. If (3.39)is satis�ed for an Ω ⊆ Ω0, then there exists a general bound G̃ depending on u, v and G, suhthat
∥
∥k(x)∇f(x) + l(x)∇g(x)

∥
∥ ≥ G̃ > 0, ∀x ∈ Ω.Therefore for all x ∈ Ω

∥
∥∇h(x)

∥
∥ ≥ G̃−

∥
∥f(x)∇k(x)

∥
∥ −

∥
∥g(x)∇l(x)

∥
∥ ≥(3.15)

≥ G̃− L
∣
∣f(x)

∣
∣− L

∣
∣g(x)

∣
∣ .Sine we know that there exists a point p ∈ Ω suh that f(p) = g(p) = 0,

∥
∥∇h(x)

∥
∥ ≥ G̃− 2εL

G
.Suppose that

ε = min

{

G̃G

2L
,

u√
3L

,
v√
3L

}

. (3.40)If the diameter of Ω, denoted by δΩ, satis�es
δΩ <

ε

2
,then

∥
∥∇h(x)

∥
∥ ≥ G̃

2
= Ĝ > 0.Corollary 3.20. Suppose that the onditions of Lemma 3.19 are ful�lled for a ertain pair ofpolynomials f and g on the domain Ω0. If h = G(f, g, (u, v), c) is omputed in a su�ientlysmall sub-domain Ω ⊂ Ω0 for an arbitrary pair of parameters u, v 6= 0, then s = T 2

c (h) 6≡ 0.3.5.3 Convergene of Taylor Expansion Modi�ationNow we have to show that the fat ar thikness is su�iently small ompared with thediameter of the omputational domain. The following lemma shows, how the omputed fatar thikness behaves as the size of the domain tends to zero.Lemma 3.21. Given two polynomials f, g de�ned over the domain
Ω0 = [α1, β1]× [α2, β2]× [α3, β3] ⊂ R

3. We suppose that the onditions of Lemma 3.19are satis�ed. We ompute a pair polynomials with speial Hessian and apply the orthogonal-ization funtion (see (3.22))
(f̂ , ĝ) = O

(
G(f, g, (u, v), c), G(f, g, (u′, v′), c), c

)55



3 Fat Ars for 3D Impliit Algebrai Curvesin the enter point c of a sub-domain Ω ⊂ Ω0. If the diameter δΩ of the sub-domain Ω issu�iently small, then there exists a onstant C ∈ R suh that
̺ ≤ Cδ3Ω, (3.41)where ̺ is the orresponding fat ar thikness omputed as in (3.33).Proof. Sine the onditions of Lemma 3.19 are satis�ed, we know that there exists Ĝ suhthat

min{‖∇f̂‖, ‖∇ĝ‖} ≥ Ĝ,for any su�iently small sub-domain Ω, whih enloses the urve. We denote by p and q thequadrati Taylor expansion of f̂ and ĝ about the enter c of the domain Ω. Then
∥
∥
∥f̂ − p

∥
∥
∥
∞

=
∥
∥
∥f̂ − T 2

c (f̂)
∥
∥
∥
∞

<
1

6
max

v∈S1,x∈Ω

∣
∣
∣
∣
∣

d3f̂

dv3
(x)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

∗

δ3Ωand
∥
∥ĝ − q

∥
∥
∞

=
∥
∥ĝ − T 2

c (ĝ)
∥
∥
∞

<
1

6
max

v∈S1,x∈Ω

∣
∣
∣
∣

d3ĝ

dv3
(x)

∣
∣
∣
∣

︸ ︷︷ ︸

∗∗

δ3Ω.Reall from Lemma 3.16 that G depends ontinuously on the points of the omputationaldomain Ω0 for eah pair of (u, v), where u 6= 0 and v 6= 0. Therefore also f̂ and ĝ dependontinuously on the points of the omputational domain Ω0. Thus for all f̂ a general upperbound C1 an be given for (∗) and for all ĝ a general upper bound C2 an be given for (∗∗).The fat ar thikness is de�ned by̺
Ω =

√

ε21 + ε22
G2

Ω −KΩ
,where

ε1 =
∥
∥
∥f̂ − p

∥
∥
∥BB and ε2 =

∥
∥ĝ − q

∥
∥BBBeause of the norm equivalenes there exist C3 and C4, suh that

ε1 ≤ C3

∥
∥
∥f̂ − p

∥
∥
∥
∞

and ε2 ≤ C4

∥
∥ĝ − q

∥
∥
∞
.So we observe, that

√

ε21 + ε22 ≤
1

6

√

(C1C3)2 + (C2C4)2

︸ ︷︷ ︸

M

δ3Ω.We assumed that Ĝ < GΩ is a general lower bound for ∥∥∥∇f̂∥∥∥ and ∥∥∇ĝ∥∥ independentof the hoie of the sub-domain Ω, if it is su�iently small. Sine we also applied theorthogonalization step to the polynomials f̂ and ĝ,
∣
∣
∣∇f̂(c) · ∇ĝ(c)

∣
∣
∣ = 0 (3.42)56



3.5 Convergenein the enter point c of a domain Ω. If the diameter of the sub-domain Ω is su�iently small,then there exists K > 0, whih does not depend on Ω and eah x ∈ Ω satis�es
∣
∣
∣∇f̂(x) · ∇ĝ(x)

∣
∣
∣ ≤ K.Aording to (3.42) if the diameter of the sub-domain is su�iently small, then the generalbound K satis�es K < Ĝ2. Thus this implies, that

̺Ω ≤
M δ3Ω

√

Ĝ2
Ω −KΩ

≤ M δ3Ω
√

Ĝ2 −K
≤ Cδ3Ω.

3.5.4 Comparison of Convergene RateWe on�rm here the approximation order of the loal fat ar generation algorithm(Algorithm 5) by numerial examples. We generate fat ars for single algebrai spae urvesegments in di�erent domains. We show, how the fat ar diameter behaves, if we redue thesize of the omputational domain.The domains are the axis aligned boxes in the global oordinate system:
Ωk = [−10−k, 10−k]3, k ∈ R. (3.43)Fig.3.4 shows the result of the fat ar onstrutions with using the Taylor expansionmodi�ation in three di�erent Ωk for the pair of polynomials

f1(x, y, z) = x− yz

g1(x, y, z) = x2 + y2 + (z − 1)2 − 1.In the �rst �gure on the top is the impliitly de�ned urve shown in red. The other �guresvisualize the generated fat ars for k = 1, 1.5, and 2.We onsider two pairs of polynomials in the domains Ωk, 1 ≤ k ≤ 8.25:
f2(x, y, z) = x+ z2 − yz2,

g2(x, y, z) = x2 − 4y + y2 − z + 0.5z2.and
f3(x, y, z) = 0.04x − x2 + x3 + 0.44y − 0.4xy + x2y − 1.4y2 +

xy2 + y3 + 0.04z + x2z − 0.4yz + y2z − z2 + xz2 + yz2 + z3,

g3(x, y, z) = x− x2 + xy + y2 + yz + 0.25z2.In Fig.3.5 we visualize the relation between the width of the generated fat ars and the size ofthe domain diameter for the fat ar generation strategies with di�erent median ar generationtehniques. In the left the results for the polynomials f2 and g2 are shown for the values of
k = 1, 1.25 . . . 6. In the right side the test polynomials were f3 and g3, and the outputs are57



3 Fat Ars for 3D Impliit Algebrai Curves

Figure 3.4: Above: The zero set of f1 and g1 with the intersetion urve for k = 0. Below: Fatars for k = 1, 1.5, 2omputed for the values k = 2, 2.25 . . . 7. We show the negative logarithm of the assoiatedfat ar diameter in a doubly-logarithmi plot. The expeted approximation order is three. Inthe examples it is on�rmed for the Taylor expansion modi�ation. The lines denoted by Lshow the result of least-squares approximation with linear ondition (see ondition in (3.6)).The least-square approximations with quadrati normalization onditions (3.7) and (3.8),denoted in the �gures by Q1 and Q2. However, these least-squares approximation strategiesgave nearly the same results. By the Taylor expansion modi�ations we used two di�erent
(u, v) parameter pairs. The line denoted by T1 shows the result by the hoie

(u, v) = (1, 2), (u′, v′) = (2, 1),and T2 shows the output by the parameter pair
(u, v) = (1, 5), (u′, v′) = (5, 1).However, here the outputs for the two strategies show nearly the same results again.3.6 Fat Ar Generation for Algebrai Spae CurvesSubdivision is a frequently used tehnique and it is often ombined with loal approximationmethods. Suh hybrid algorithms subdivide the omputational domain in order to separateregions where the topology of the urve an be desribed easily. The loal urve approxima-tion tehniques an be applied in the sub-domains, where the topology of the urve has beensuessfully analyzed. The regions with unknown urve behavior an be made smaller andsmaller with subdivision. 58



3.6 Fat Ar Generation for Algebrai Spae Curves
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Figure 3.5: Comparison of relation between the fat ar diameter and the domain diameter for�ve median ar generation strategies. The negative logarithm of the assoiated fat ar diameterare shown in a doubly-logarithmi plot, in the left side for the polynomials f2 and g2, in theright side for f3 and g3. The red lines, denoted by T 1 and T 2, show the results from theTaylor expansion modi�ation by di�erent parameter values. The lines denoted in the pitureby Q1 (blak) and Q2 (green) show the output of least-square approximation with quadratinormalization onditions ((3.7) and (3.8)). The result of least-square approximation with linearondition is denoted by L. The lines, denoted by T 1 and T 2 overlap eah other as well as theones denoted by L and Q23.6.1 Global AlgorithmThe algorithm GenerateFatArs (see Algorithm 6) generate fat ars for general algebraispae urves. It ombines the fat ar generation for single urve segments with reursivesubdivision.First it analyzes the Bernstein�Bézier oe�ients of the polynomials with respet to theurrent sub-domain. If no sign hange is present for one or both of the polynomials, thenthe urrent domain does not ontain any omponents of the algebrai urve. Otherwise thealgorithm tries to apply the fat ar generation for the algebrai urve segment. If this is notsuessful, then the algorithm either subdivides the urrent domain into eight sub-domains,or returns the entire domain, if its diameter is already below the user-de�ned threshold ε.Note that the algorithm may return domains whih do not ontain any segments of theimpliitly de�ned urve (�false positive boxes�). However, it is guaranteed that the methodreturns a olletion of bounding regions, whih ontains the impliitly de�ned urve.3.6.2 ExamplesExample 3.22. The impliitly de�ned urve is desribed by the equation system
y2 + 2x− 1 = 0,

z + x2 − 0.4 = 0.It is represented in the unit box Ω = [0, 1]3. The �rst �gure of Fig.3.6 shows the generatedmedian ars, the seond presents the generated fat ars within the omputational domains.The tolerane was set to ε = 0.05. The number of generated fat ars is �ve. In the furtherexamples we do not visualize the whole fat ars, only the median ars and bounding boxes,59



3 Fat Ars for 3D Impliit Algebrai CurvesAlgorithm 6 GenerateFatArs(f, g,Ω, ε)1: if Obs.3.2 true for f and g then2: return ∅ {the sub-domain is empty}3: end if4: if the urve is regular in Ω at least in one oordinate then5: A ← FatArLoal_3d(f, g,Ω, ε) {single fat ar generation}6: if A 6= ∅ then7: return A {... has been suessful}8: end if9: end if10: if diameter of Ω > ε then11: subdivide the domain into 8 sub-domains Ω1, . . . ,Ω8 {subdivision}12: return ⋃8
i=1GenerateFatArs(f,Ωi, ε) {reursive all}13: end if14: return Ω {urrent domain is small enough}

Figure 3.6: Median ars and fat ars for impliitly de�ned spae urve.sine the fat ar shows only a slight di�erene ompared to the thikened median ar byrelatively small tolerane.Example 3.23. In this example we approximate the intersetion urve of quadri surfaes.We apply the algorithm GenerateArs for three di�erent intersetions of four di�erent pairs ofquadri surfaes. The outputs are represented in Fig. 3.7. The numbers of used approximatingprimitives are given in Tab. 3.1 for eah intersetion urve. If the urve has a singular point(here in 1.(b), 2.(), 3.(b) and 4.()), then the algorithm returns not only fat ars but alsosub-domains as abounding regions. All the examples are represented in the unit ube [0, 1]3.The intersetion urves are approximated within the tolerane ε = 0.01. In example 1.(b)we approximate an algebrai urve, whih has a singular point (the tangent vetor vanishes).This urve is the so alled Viviani urve, whih is de�ned by the intersetion of a sphere anda ylinder, whih is touhing the sphere. Sine the fat ar generation is not possible in adomain where the urve has singular point, the approximating algorithm uses not only fatars but also a few sub-domains to bound the spae urve. In Fig.3.8 we show the result of60



3.6 Fat Ar Generation for Algebrai Spae Curves

1.(a) 1.(b)-singular 1.()
2.(a) 2.(b) 2.()-singular
3.(a) 3.(b)-singular 3.()
4.(a) 4.(b) 4.()-singularFigure 3.7: Approximation of the intersetion urves of quadri surfaes.61



3 Fat Ars for 3D Impliit Algebrai CurvesTable 3.1: Approximating intersetion urve of quadri surfaes. The number of used approxi-mating primitives are given for the examples shown in Fig. 3.7.Quadri Surfaes Position (see Fig. 3.7) Number of Ars Number of Boxes1. sphere + ylinder (a) 80 0(b)-singular 104 248() 52 02. ellipsoid +hyperboloid of onesheet (a) 80 0(b) 76 0()-singular 96 763. rotationalparaboloid +hyperboli paraboloid (a) 60 0(b)-singular 108 156() 50 04. hyperboloid of twosheets + elliptiylinder (a) 80 0(b) 80 0()-singular 88 612the fat ar generation algorithm in omparison with bounding box generation for the urveby di�erent tolerane bounds ε = 0.1, 0.01 and ε = 0.001. In the �rst row of the �gure theoutput of the fat ar generation method is visualized. The median ars of the generated fatars are shown in red and the boxes, whih are used themselves as bounding primitives, areshown as gray ubes. In the seond row the results of bounding box generation algorithmare shown (gray ubes) for the same toleranes. The numbers of used bounding primitivesare shown in Table 3.2.Example 3.24. In this example we approximate the isophotes of surfaes for di�erent lightdiretions. Isophotes are urves on a surfae, where all points are exposed with equal lightintensity from a given light soure. An isophote of an impliitly de�ned surfae f = 0 for a�xed diretion vetor d and angle ϕ traes the point set
I(f,d, ϕ) = {p : f(p) = 0, 〈d,∇f(p)〉 = cos(ϕ)‖∇f(p)‖},if we suppose that the diretion vetor is a unit vetor. In order to desribe an isophote fora given d and ϕ, we used the algebrai equation system

f = 0,

(fxd
x + fyd

y + fzd
z)2 − cos2 ϕ

(
f2
x + f2

y + f2
z

)
= 0,where d = (dx, dy, dz). These two equations alloate the points of the isophotes, whih belongto the diretion d and the angles ϕ and (π − ϕ). We approximate some isophotes of threedi�erent impliitly de�ned surfaes

S1 = {(x, y, z) : xy − z + 0.5 = 0},
S2 = {(x, y, z) : x2 + 2y2 + 2z2 − 1 = 0},
S3 = {(x, y, z) : x3 + 0.5y3 + z − 0.5 = 0},62



3.6 Fat Ar Generation for Algebrai Spae CurvesTable 3.2: Approximating intersetion urve with singular point. The numbers of used approx-imating primitives are given for the examples shown in Fig. 3.8.
ε

Number of Primitives Number of BoxesNum. of Ars Num. of Boxes
0.1 68 56 284
0.01 104 248 2840
0.001 212 1592 26411

Fat ar generation

Bounding boxes

ε = 0.1 ε = 0.01Figure 3.8: Fat ar generation for the Viviani urve. In the �rst row the outputs of the fat argeneration method are shown for three di�erent tolerane bounds. In the seond row the resultof the bounding box generation is shown for the same tolerane bounds as in the �rst row.63



3 Fat Ars for 3D Impliit Algebrai CurvesTable 3.3: Number of used approximating primitives in the isophote approximations (see ex-ample in Fig.3.9.
S1

(0, 0,−1) (−1, 1,−4) (−2, 0,−3)
cosϕ Num. of Ars cosϕ Num. of Ars cosϕ Num. of Ars
0.8 66 0.7 19 0.5 15

0.85 44 0.8 25 0.65 18

0.9 48 0.88 56 0.8 28

0.95 32 0.95 54 0.9 22

0.99 28 0.99 26 0.97 31

S2

(0,−1, 0) (−1, 0,−1) (−1,−2,−1)
cosϕ Num. of Ars cosϕ Num. of Ars cosϕ Num. of Ars
0.4 112 0.2 152 0.4 152

0.6 96 0.3 132 0.6 106

0.8 128 0.6 104 0.7 82

0.9 104 0.8 52 0.8 80

0.99 80 0.9 80 0.9 80

S3

(−1,−1,−1) (−1, 1, 0) (0,−1,−1)
cosϕ Num. of Ars cosϕ Num. of Ars cosϕ Num. of Ars
0.6 28 0.2 35 0.3 16

0.7 32 0.4 52 0.4 32

0.75 58 0.52 75 0.5 44

0.8 107 0.7 80 0.7 70

0.85 120 0.82 58 0.99 79with the help of the fatar generation algorithm. For all the surfaes we ompute isophotes forthree di�erent light diretions (see Fig. 3.9). In Tab. 3.3 we show the number of used approx-imating ars for eah isophote, along with the light diretions and angles. We approximatedthe isphotes in the domain [−1, 1]3 within the tolerane ε = 0.05.
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3.6 Fat Ar Generation for Algebrai Spae Curves

Figure 3.9: Approximation of isophotes for di�erent light diretions.
65



3 Fat Ars for 3D Impliit Algebrai Curves
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Chapter 4Fat Ars for Impliitly De�nedAlgebrai CurvesIn this hapter we present an algorithm, whih generalizes the fat ar generation method tobound one-dimensional algebrai sets. We onsider algebrai systems onsist of n−1 linearlyindependent polynomials, whih de�ne one dimensional algebrai set (a set of urves) in R
n.4.1 Generalized Fat ArsWe summarize in this setion �rst the related results in approximation of one-dimensionalalgebrai sets. Then we introdue the de�nition of fat ars in R

n. In the end of the setion wewill state the approximation problem, suh that one-dimensional algebrai sets are de�nedby polynomials represented in Bernstein�Bézier form.4.1.1 Approximation of Algebrai Spae CurvesReently the interest for higher dimensional algebrai objets has been inreased in researh.The reason is the wide variety of appliations, whih appear in pratie or in physis, for in-stane the desription of physial �elds with several free variables, movements or deformationof surfaes and volumes. Some of these problems are formulated with the help of multivariatepolynomial systems. In partiular we onsider suh systems, whih have one dimensional setof solutions.The �rst numerial approahes were formulated to approximate the solution set of uni-variate and bivariate polynomials. However, even in the univariate ase these omputationsare very unstable for higher degree. In order to develop robust approximation algorithms agreat leap forward was to use Bernstein-Bézier polynomials. The stability of this representa-tion form allows to generalize the approximation algorithms for algebrai sets given in higherdimensional spae. The �rst general numerial algorithms, whih omputed with polynomialsgiven in BB-form, were developed by Sherbrooke and Patrikalakis [39℄. These are subdivisionmethods for �nding zero dimensional solution set of multivariate polynomial equations. Amore sophistiated algorithm was presented by Elber and Kim in [12℄. It uses multivari-ate Newton-Raphson method ombined with subdivision, in order to redue the number ofsubdivision steps during the omputations. Moreover this method an be applied to under-determined systems, where the set of solutions has arbitrary many dimensions, although it67



4 Fat Ars for Impliitly De�ned Algebrai Curvesrequires to ompute some topologial information about the solution set. The method of El-ber and Kim has the additional advantage, that it an be extended to detet semi algebraisets.4.1.2 De�nition of Generalized Fat ArsWe would like to bound impliitly de�ned algebrai urves in R
n with a set of regions. Wegeneralize the fat ar onstrution, whih we de�ned formerly in two- (Setion 2.1.2) andthree-dimensional spae (Setion 3.1.2). Generally a fat ar is a bounding region, whih is atubular neighborhood with a ertain radius of an approximating ar.De�nition 4.1. A fat ar is de�ned in R

n by- a segment of a irular ar (median ar) S ⊂ Ω ⊂ R
n.- and a distane ̺ ∈ R.The fat ar is the point set

F(S, ̺) = {x : ∃x0 ∈ S,
∥
∥x− x0

∥
∥
2
≤ ̺}.As we saw in Setion 2.1.2 in the two-dimensional ase, the fat ar is a bounding region,whih onsists of a part of an annulus and two irular disks. In the three-dimensional ase(see Setion 3.1.2) it is bounded by a segment of a torus and two spherial aps. Generallywe an say that in the n-dimensional spae a fat ar is a thikened irular ar, whih isbounded by a toroidal part and two spherial ups in the end.The median ar an be represented as the zero set of spheres. This algebrai representationform is advantageous, sine it simpli�es the omputation of the intersetion of spheres.4.1.3 Algebrai Spae CurvesSine the visualization of higher dimensional spae urves is di�ult, and the number ofrequired omputational steps limbs fast with the raise of the dimension, the hoie of therepresentation plays an important role. The most widely used representations of polynomialsin geometri omputing are the monomial, Lagrange, Hermite, B-Spline and Bézier forms.In order to onstrut fat ars for algebrai urves, we shall use the properties of the de�ningpolynomials. It is the most advantageous option, if the polynomials are given in the Bernstein-Bézier tensor produt form. It provides the onvex-hull property, the de Castejau-algorithm,degree manipulation formulas et. Therefore we suppose that the input polynomials arede�ned in the form

f(x) =
l∑

k=0

dkBk,l(x), (4.1)with respet to an axis aligned domain
Ω0 = ×n

i=1[αi, βi] ⊂ R
n.The oordinates of the vetor l = (li)ni=1 denote the maximal degree of the basis polynomialsin eah variables xi. The vetor of indexes k is

k = (ki)ni=1, suh that ki ∈ {0, . . . li}.68



4.2 Approximation of Regular Curve SegmentsThe oe�ients are given as dk ∈ R, and the funtions are
Bk,l(x) =

n∏

i=1

Bi
ki,li(x

i),where Bj
i,n is de�ned as (2.2). For suh funtions f : Rn → R, let us denote the zero level setwith

Z(f,Ω0) = {x : f(x) = 0} ∩Ω0.An algebrai urve is given as the intersetion of the zero sets of the polynomials
F = {f1, . . . , fn−1}

C(F,Ω0) =
n−1⋂

i=1

Z(fi,Ω0) = {x : ∀i = 1, . . . n− 1, fi(x) = 0} ∩ Ω0 (4.2)with respet to the domain Ω0. Clearly, the urve may be the empty set, or it may onsistof higher dimensional segments.4.2 Approximation of Regular Curve SegmentsIn order to generate fat ars for algebrai urves in R
n, we present a loal algorithm, whihgenerates fat ars only for regular segments of the urve. In this setion �rst we desribe thegeneral de�nition of regular and oordinate-regular urve segments. Then we present a loalalgorithm to generate fat ars, and we analyze the behavior of this algorithm. Later on wewill ombine this loal bounding region generation with a subdivision tehnique.4.2.1 Regularity CriterionIn order to bound an algebrai urve, we analyze the behavior of the urve in the ompu-tational domain. We identify �rst empty sub-domains of the omputational domain as inSetion 2.2.1 and Setion 3.2.1. It is obvious, that Observation 3.2 is true in general for mul-tivariate polynomials in BB-representation. Therefore we an apply it in general for detetingthe domains without any segment of the algebrai urve.In the two and three dimensional ases we used ertain regularity riteria to �nd singlesegments of the algebrai urve. For the veri�ation of suh riteria we used the onvex hullproperty of the Bernstein polynomials. Here we state similar onditions as in the ase of twoand three dimensional algebrai urves. Therefore we use the de�nitions:De�nition 4.2. A point p ∈ Ω of an algebrai urve C(F,Ω) ⊂ R

n de�ned by the thepolynomial system F = {f1, . . . , fn−1} is alled regular, if the Jaobian-matrix
J(F )(p) = (∇f1(p), . . .∇fn−1(p))has full rank (and alled singular otherwise). An algebrai urve segment is regular on Ω ⊂

R
n, if eah point of the segment is regular in the domain.69



4 Fat Ars for Impliitly De�ned Algebrai CurvesDe�nition 4.3. Suppose that an algebrai urve is de�ned by the polynomial system
F = {f1, . . . , fn−1}. In any point p of the intersetion urve C(F,Ω) ⊂ R

n we de�ne thesub-matries of the Jaobian J(F )(p) as
Ji(F )(p) =

(
(∇f1(p)j)j 6=i, . . . (∇fn−1(p)

j)j 6=i

)
,whih are the (n−1)× (n−1) matries, we get from J(F )(p) with deleting the ith row. Thena point p of the algebrai urve C(F,Ω) ⊂ R

n is alled i-regular for i ∈ {1, . . . n}, if
det(Ji(F )(p)) 6= 0,and alled i-singular otherwise. An algebrai urve segment is i-regular in the domain Ω ⊂ R

n,if eah point of the segment is i-regular in Ω.Lemma 4.4. If there exists i, suh that the algebrai urve segment is i-regular (regular atleast in one oordinate) in the sub-domain Ω ⊂ R
n, then the urve segment is regular on Ω.Moreover it is not a loop.Proof. If the algebrai urve is i-regular in a point p, then

det(Ji(F )(p)) 6= 0.Thus Ji(F ), whih is the sub-matrix of J(F ) has full rank: n− 1. Therefore also the matrix
J(F ) has at least rank n− 1. Sine J(F ) ∈ R

n×(n−1), it implies that J(F ) has full rank.The tangent vetor of the urve C(F,Ω) in a point p is the unit vetor, whih is per-pendiular to the sub-spae span by gradient vetors ∇fi(p), i = 1, . . . n − 1. If the urveis i-regular on a sub-domain Ω, then the ith oordinate of the tangent vetor is not zero inany point of Ω. Therefore the regularity in the ith oordinate exludes the situation, that thetangent vetor returns to the same position if we trae the urve. So we annot have loopsin the domain.Control of oordinate regularity. In order to identify domains with i-regular urvesegments, we use the onvex hull property of the de�ning polynomials. We give here asu�ient ondition for deteting suh domains. Namely it is su�ient to show, that thereexists a positive lower bound for the absolute value of one of the determinants Ji(F )(x) in thedomain Ω, whih bounds the value of the determinant away from zero. Sine we ompute withBB-polynomials we an represent the oordinates of the gradient vetor of the polynomial
f ∈ F in BB-tensor produt form using the notation of Setion 4.1.3

∇f j(x) =

l−ej∑

k

(dk − dk−ej )Bk−ej ,l−ej(x),where dk are the oe�ients of f ∈ F and
ej = (0, . . . 1

⌣
j

, . . . 0).Thus the determinant of eah Ji(F ) matrix an be also given in a BB-tensor produt form.If we denote by mi the minimum and by Mi the maximum oe�ient of detJi(F ), then for
Mimi > 0

∣
∣detJi(F )

∣
∣ ≥ min{

∣
∣Mi

∣
∣ ,
∣
∣mi

∣
∣} > 0.70



4.3 Median Ar GenerationIf suh mi and Mi exist for an i, it implies that the urve is regular with respet to the ithoordinate in Ω.However, one has to be areful to apply this regularity hek, beause it is omputationallyexpensive. Suppose that eah polynomial has the same degree bound L = max{l1, l2, . . . ln},then the ost of omputation for one determinant is O(n3Ln+1). In omparison, the ost ofthe de Casteljau algorithm for a polynomial in one oordinate diretion is O(Ln+1) suh as amultipliation of two polynomials. To �nd empty domains has less omputational ost. It isomparable with the size of our input polynomials, it needs O(Ln) steps for eah polynomials,so to �nd an empty domain osts O(nLn).4.2.2 Loal AlgorithmWe present here an algorithm (Algorithm 7), whih is the generalization of the loal fat argeneration for two and three dimensional regular urve segments. It generates boundingregions in sub-domains, where the n-dimensional urve is regular with respet to at least oneoordinate. Later on this loal method will be ombined with subdivision tehnique like thetwo and three-dimensional loal fat ar generation methods (Algorithm 3 and 5).In order to detet sub-domains with regular algebrai urve segments, we use the approahdesribed in Setion 4.2.1.The fat ar generation is similar to the low dimensional ases desribed in Setion 2.3.1and Setion 3.2.2. First we ompute the median ar. Therefore we generalize the argeneration tehnique, whih is omputing polynomials with speial Taylor expansions (seeSetion 2.3.3, Setion 3.3.2). This method omputes the median ar in algebrai form, as thezero set of speial quadrati equations, whih are simply equations of spheres.The distane estimation method generalizes the approah from Setion 4.4. It boundsthe BB-distane in between eah polynomial and the assoiated quadrati Taylor expansion.Then an upper bound is generated for the one-sided Hausdor� distane of the median arand the algebrai spae urve.The algorithm is suessful, if the median ar is found, the fat ar thikness an beomputed, and it is smaller than the presribed tolerane ε. Then the algorithm returns a fatar, whih bounds the urve segment in the appropriate sub-domain. If the loal algorithmfails then it returns the empty set.4.3 Median Ar GenerationThe loal algorithm generates �rst an approximating ar (median ar) for the impliitlyde�ned urve. The median ar generation methods for two- and three-dimensional urvesan be found in Setion 2.2.3, 2.3.2, 2.3.3 and Setion 3.3. In Setion 2.2.3 we desribeda method, whih generates parametri approximation of impliitly de�ned urves. All theother methods, we presented, generate approximating ar in impliit form. These methodsan be generalized to higher dimensional urves. However, we generalize in this setion onlythe strategy, whih modi�es the Taylor expansion of the polynomials.4.3.1 Median Ar Generation Using Taylor ExpansionWe suppose that the polynomial system F = {f1, f2, . . . , fn−1} desribes a one dimensionalalgebrai set in R
n. Let us denote the algebrai variety of the system in the sub-domain Ω71



4 Fat Ars for Impliitly De�ned Algebrai CurvesAlgorithm 7 FatArLoal_nd (F,Ω, ε)Require: The urve is regular with respet to at least one oordinate in Ω.1: f̂i modi�ed polynomials2: pi ← T 2
c (f̂i) spherial approximations3: if pi 6= 0 then4: Pi ← zero ontour of pi5: S ← ⋂n−1

i=1 Pi {median irle}6: if S 6= ∅ then7: G← ∀i ∈ {1, . . . , n− 1}, 0 < G ≤ ‖∇f̂i‖8: K ← upper bound for |∇f̂i · ∇f̂j|9: if 0 < G and 0 < G2 −
(
n−1
2

)
K then10: ̺← upper bound of HDΩ(S, C(f̂i,Ω)) {see Lemma 4.18}11: if ̺ 6 ε then12: F = {x : ∃y ∈ S,

∣
∣x− y

∣
∣ ≤ ̺} ∩Ω {fat ar}13: return F {fat ar has been found}14: end if15: end if16: end if17: end if18: return ∅ {no fat ar has been found}by

C(F,Ω) = {x : ∀f ∈ F, f(x) = 0} ∩ Ω.We further assume that this urve segment is regular at least in one oordinate in the sub-domain Ω. In order to generalize the median ar generation method from Setion 2.3.3 andSetion 3.3.2, we reformulate the polynomial system F . We ompute an algebrai system F̂with n− 1 new polynomials, suh that for all f̂ ∈ F̂

∀f̂ ∈ F̂ , C(F,Ω) ⊂ Z(f̂ ,Ω) = {x : f̂(x) = 0} ∩ Ω.Moreover eah new polynomial f̂ ∈ F̂ has to satisfy the ondition
H(f̂)(c) =






λ · · · 0... . . . ...
0 · · · λ




 = λ In×n, λ ∈ R, (4.3)where c denotes the enter of the sub-domain Ω. The quadrati Taylor expansion of f̂ about c

p(x) = T 2
c (f̂) = f̂(c) +

n∑

i=1

∂f̂(c)

∂xi
(xi − ci) +

λ

2

n∑

i=1

(xi − ci)2possesses a spherial zero ontour p(x) = 0.De�nition 4.5. A polynomial f is alled a polynomial with speial Hessian in the point c,if the Hessian matrix of f in the point c is equal to a matrix λIn×n, where λ ∈ R.72



4.3 Median Ar GenerationA polynomial f̂ with speial Hessian in the point c satis�es the equations
∂2f̂(c)

∂xi∂xi
− ∂2f̂(c)

∂xi+1∂xi+1
= 0, i = 1, . . . n− 1and

∂2f̂(c)

∂xi∂xj
= 0, 1 ≤ i < j ≤ n. (4.4)We ompute the polynomial f̂ ∈ F̂ as ertain ombination of the original polynomials fi ∈ F .In order to provide su�iently many degrees of freedom in the system (4.4), we onsiderpolynomial multipliers in the ombinations. On the other hand we restrit ourselves to linearmultipliers. So eah polynomial with speial Hessian is omputed as

f̂(x) =
∑

j∈J

kj(x)fj(x), (4.5)where J ⊆ {1, . . . , n − 1}. The linear multipliers are given for eah j ∈ J as
kj(x) = uj +

n∑

i=1

kij(x
i − ci), kij , uj ∈ R, (4.6)where c = (ci)ni=1 denotes the enter point of the sub-domain Ω. The oe�ients of kj anbe omputed by solving a linear system. In order to avoid that the system (4.4) beomesoverdetermined, the number of unknowns in the multipliers has to be greater than equal asthe number of equations.In the former hapters for n = 2, 3 we used all polynomials fi in the omputation ofthe new polynomials. For n = 2 this was obvious, sine we had only one polynomial, andwe used a single linear polynomial as a multiplier, whih has three oe�ients. The systemharaterizing the speial Hessian matrix has two equations. If we �x the onstant termof the linear multiplier, we arrive at a non-homogeneous system, whih has full rank underertain onditions (see Lemma 2.9). Thus the system has a unique solution.In three dimensions, the system (4.4) has �ve equations. If we use the ombination ofboth input polynomials and �x the onstant terms of the linear multipliers, we have six freevariables. So the system is under-determined. We observed, that our equation system in(3.11) has a full rank, if the ondition of Lemma 3.6 for the gradients is satis�ed. In order toompute the multipliers kj uniquely, we hose from the solution spae of the oe�ients theshortest solution vetor (3.15). This minimization problem always has a unique solution.In the n-dimensional ase a polynomial f̂ de�ned as in (4.5) an be found by solving ahomogeneous system with n(n+1)

2 − 1 equations. To avoid that the system (4.4) beomesoverdetermined, the number of equations should not exeed the number of variables. In the
n-dimensional spae a linear polynomial has n+1 oe�ients. In order to obtain non-trivialsolution, we always hoose the onstant term uj of the linear multipliers kj as arbitrary but�xed parameter values for all j. Thus the equation system redues to a non-homogeneousone, where eah linear multiplier provides n free variables. By this assumption, if the trivialsolution satis�es the system (4.4), it implies that a ertain linear ombination of the originalpolynomials also satisfy (4.3). 73



4 Fat Ars for Impliitly De�ned Algebrai CurvesObservation 4.6. Let NJ denote the number of the elements of the index set J ⊆ {1, . . . , n}.In order to avoid that the system (4.4) is overdetermined for an arbitrary but �xed parametervetor u = (uj)j∈J,
n(n+ 1)

2
− 1− n ·NJ ≤ 0should be satis�ed. This implies that

⌈
n+ 1

2

⌉

≤ NJ. (4.7)If a new polynomial f̂ is omputed as
f̂(x) =

∑

j∈J

kj(x)fj(x), (4.8)and c is the enter of the omputational domain Ω, then
H(f̂)(c) =

∑

j∈J

∇kj(c)∇fj(c)T +∇fj(c)∇kj(c)T + kj(c)H(fj)(c).Sine we know that the value kj(c) = uj are arbitrary but �xed, the system (4.4) an bewritten as
AJ k = bJ, (4.9)where k onsists of the oe�ient vetors of the polynomials kj for j ∈ J

kT =
(
(k1j , . . . k

n
j )

T
j∈J

)
.The rows of the system are the equations derived from (4.4) by substituting (4.5) and (4.6).The vetor bJ ∈ R

n(n+1)/2−1 onsists of the oordinates






−
∑

j∈J

uj

(
∂2fj(c)

∂xi∂xi
− ∂2fj+1(c)

∂xi+1∂xi+1

)

, for all 1 ≤ i ≤ n− 1

−
∑

j∈J

uj
∂2fj(c)

∂xk∂xl
, for all 1 ≤ k ≤ n, k + 1 ≤ l ≤ n

(4.10)depending on the order of the equations in (4.4). All entries of the matrix AJ are equal tozero or to
±∂fj(c)

∂xi
, for ertain 1 ≤ i ≤ n− 1, j ∈ J. (4.11)In the next setion, in Setion 4.3.2, we onsider in details the struture and the solvabilityof suh systems. In Lemma 4.10 we show, that a polynomial f̂ with speial Hessian in theenter point c of a sub-domain Ω an always be omputed, if the gradient vetors ∇fi(c) arelinearly independent and f̂ is the ombination of all polynomials in F

f̂(x) =
n−1∑

i=1

ki(x)fi(x), (4.12)74



4.3 Median Ar GenerationTable 4.1: Constrution of new polynomials with speial Hessian.dimension num. of equ. num. of oe�. dim. of sol.sys.
n 1

2n(n+ 1)− 1 n(n− 1) 1
2 (n− 1)(n− 2)

2 2 2 0
3 5 6 1
4 9 12 3
5 14 20 6
6 20 30 10

100 5049 9900 4851
1000 500499 999000 498501i.e. if J = {1, . . . , n − 1}. Therefore we denote the linear system (4.9) for the index set

J = {1, . . . , n− 1} by
A := AJ and b := bJ.In order to �nd the oe�ients of ki we solve the non-homogeneous system

Ak = b,with an (n(n − 1)/2) × (n(n − 1)) matrix whih has full rank (see Lemma 4.10). We showin Table 4.1 the behavior of this linear system for di�erent value of the dimension n. It isobvious, that the number of oe�ients and the dimension of the solution system inreasesdrastially if we inrease the dimension n. However, in low dimensional ases, like n = 2, 3,the size of the linear system is still small.The solution of system (4.4) for three- or higher dimensional problems has an at least onedimensional solution spae. However, we need only one set of oe�ients, whih de�nes themultipliers ki. Therefore we ompute the solution vetor k, whih has the smallest l2 norm
∥
∥k
∥
∥
2
→ min subjet to Ak = b. (4.13)Therefore the multipliers ki obtained by the onstrution are unique for eah parametervetor u. So we an introdue funtion G, whose value depends on the set of polynomials

F = {f1, . . . , fn−1}, a value of u and the enter point c of a domain Ω. The assoiated valueof the funtion is given as the solution of the minimization problem (4.13)
G(F,u, c) =

n−1∑

i=1

kifi. (4.14)Remark 4.7. If the right hand side of the system (4.9), vetor b, vanishes for a ertainparameter vetor u, then the solution set of (4.9) is a subspae of Rn(n−1). It implies thatalso the trivial solution is a solution of the system. Therefore the linear ombination of fi ∈ Fful�lls the ondition (4.4). Aording to (4.13) we always hoose the solution of the system(4.9) whih has the smallest length. So in this speial ase all kj are onstants.The polynomial f̂ = G(F,u, c) is a polynomial with speial Hessian in the point c. Thusthe quadrati Taylor expansion of f̂ about c has a spherial zero level set. We ompute75



4 Fat Ars for Impliitly De�ned Algebrai Curves
n−1 polynomials F̂ = {f̂1, . . . , f̂n−1} for di�erent parameter vetors ui, i = 1, . . . n−1. Thequadrati Taylor expansion of eah polynomial f̂i ∈ F̂ about c, denoted by

pi = T 2
c f̂i,has a spherial zero level set. If P = {p1, . . . , pn−1}, then these quadrati polynomials de�nethe algebrai set

S(P,Ω) = {x : ∀pi ∈ P, pi(x) = 0} ∩ Ω.If this algebrai set is one dimensional, then it forms a irular ar. Later we show inSetion 4.5.2, that asymptotially this ar exists. The ar an be used as an approximatingirular ar of the urve C(F,Ω). We estimate the error of this approximation by boundingthe distane of the algebrai sets C(F̂ ,Ω) and S(P,Ω).4.3.2 Computing Polynomials with Speial HessianIn order to ompute a polynomial with speial Hessian, one has to solve a linear systems(4.9) whih is derived from (4.4) with substituting (4.5) and (4.6). To desribe the matrix ofsuh linear system, we introdue the following operator A : Rn → R
(n(n+1)/2−1)×n, suh that

A(v) =
(

A1

A2

)

,where A1 is the (n − 1)× n dimensional matrix
A1 =








v1 −v2 0 . . . 0
0 v2 −v3 0 . . . 0

0
. . . 0

0 . . . 0 vn−1 −vn






and the matrix A2 is n(n−1)

2 × n dimensional
A2 =























v2 v1 0 . . . 0
v3 0 v1 0 . . . 0... . . .
vn 0 . . . 0 v1

0 v3 v2 0 . . . 0
0 v4 0 v2 . . . 0... . . .
0 vn 0 . . . 0 v2. . .
0

. . . 0 vn vn−1























.

Aording to the de�nition of A the sub-matries of AJ an be given as the onatenation ofthe matries
AJ = (A(∇fj(c)))j∈J.76



4.3 Median Ar GenerationLemma 4.8. If v ∈ R
n is not the null-vetor, then

rank(A(v)) = n.Proof. The vetor v = (vi)ni=1 is not the null-vetor, thus there exists a oordinate vj 6= 0.Aording to the de�nition of the operator A the following n× n sub-matrix an be seletedfrom A(v) for j < n

Sj =















vj 0 . . . v1 . . . 0
0 vj v2. . . ...

vj −vj+1

vj+1 vj... . . . 0
0 . . . vn−1 0 vj















.

If j = n, then
Sn =










vn 0 . . . v1

0 vn v2. . . ...
vn vn−1

vn−1 −vn










.Therefore we observe, that
det(Sj) =

{
(vj)n−2

(
(vj)2 + (vj+1)2

)
, if j < n

(vn)n−2
(
−(vn−1)2 − (vn)2

)
, if j = nSine we supposed that vj is non-zero

det(Sj) 6= 0.Thus A(v) always has a non-singular n × n sub-matrix. Sine A(v) is a matrix with nolumns we arrive at
rank(A(v)) = n.Lemma 4.8 guarantees, that A(v) is a matrix with full rank if v 6= 0.Remark 4.9. Eah oordinate of the vetor A(v)u an be given as

viui − vi+1ui+1 for ertain 1 ≤ i ≤ n− 1or as
vkul + vluk for ertain 1 ≤ k ≤ n− 1, k + 1 ≤ l ≤ n.Sine these oordinates are symmetri in v and u it implies that

A(v)u = A(u)v.77



4 Fat Ars for Impliitly De�ned Algebrai CurvesTherefore we an establish that, if we multiply it by the vetor u ∈ R
n

A(v)u = 0 i� v = 0 or u = 0.Now we de�ne an operator B, whih ombines the image matries of the operator A fora ertain set of vetors. If vi ∈ R
n for i = 1, . . . , k, then

B : Rn×k → R
(n(n+1)/2−1)×nk, B(v1, . . . ,vk) = (A(v1)|A(v2)| . . . |A(vk)) .The de�nition of A and B implies, that the matrix of the system (4.9) an be given as

AJ = (A(∇fj(c)))j∈J = B((∇fj(c))j∈J).Theorem 4.10. Suppose that the vetors vi ∈ R
n for i = 1, . . . , k are linearly independent.Then

dim (Ker(B(v1, . . . ,vk))) ≥
(
k

2

)

.Proof. A vetor u ∈ R
nk is the element of the kernel of the matrix B(v1, . . . ,vk) if

B(v1, . . . ,vk)u = 0.We onsider the set of vetors N
N =







(0, . . . , 0
︸ ︷︷ ︸

n(j−1)

,vT
i , 0, . . . , 0
︸ ︷︷ ︸

n(i−j−1)

,−vT
j , 0, . . . , 0
︸ ︷︷ ︸

n(j−i)

)T : 1 ≤ j < i ≤ k







.These vetors are linearly independent, sine any linear ombinations of them forms a vetor,whih is a ertain linear ombination of the vetors vi in between the (j − 1)n + 1-th and
jn-th oordinates. Moreover aording to Remark 4.9 for any u ∈ N

B(v1, . . . ,vk)u = A(vi)(vj) +A(vj)(−vi) = A(vi)(vj)−A(vj)(vi) = 0.Sine the set of vetors N onsists of (k2) elements, it implies that
dim (Ker(B(v1, . . . ,vk))) ≥

(
k

2

)

.Corollary 4.11. The matrix of the system (4.9) for an index set J is as
AJ = B((∇fj(c))j∈J).If ∇fj(c) are linearly independent for j ∈ J, then the rank of AJ an be bounded by

rank(AJ) ≤ n ·NJ −
(
NJ

2

)

,where NJ the size of the index set J. 78



4.3 Median Ar GenerationObservation 4.12. Given a set of (n− 1) polynomials F = {fi}n−1
i=1 in a ertain domain Ω.We hoose an index set J ⊆ {1, . . . , n − 1} whih spei�es the set of polynomials {fj}j∈J.Suppose that the gradient vetors ∇fj(c) are linearly independent for j ∈ J in the enterpoint c of Ω. In order to ompute a polynomial with speial Hessian in the point c, we needto solve the linear system (4.9). If J ⊂ {1, . . . , n − 1}, then the rank of the system matrix issmaller than the number of rows (the matrix does not have full rank).We ompute a new polynomial with speial Hessian by solving the linear system (4.9).The right-hand side of the system bJ is omputed as the ombination of the parametervalues u = (uj)j∈J and the seond derivatives of the polynomials evaluated in the enter ofthe omputational domain (see (4.10)). If the system matrix AJ has full rank and there aremore variables than equations, it guarantees that for any hoie of u = (uj)j∈J the linearsystem has a solution. Aording to Observation 4.12 AJ has full rank if the new polynomial

f̂ is omputed for the index set J = {1, . . . , n− 1}, i.e. as the ombination of all polynomialsin F .Note that Corollary 4.11 only implies for the index set J = {1, . . . , n− 1}, that
rank(AJ) ≤

n(n+ 1)

2
− 1.Therefore we still have to prove, that for J = {1, . . . , n− 1}

rank(AJ) ≥
n(n+ 1)

2
− 1.Lemma 4.13. Given a set of linearly independent vetors {vi}n−1

i=1 ∈ R
n, then

rank(B(v1, . . . ,vn−1)) =
n(n+ 1)

2
− 1.Proof. We desribe here how to prove that the rows of the matrix B(v1, . . . ,vn−1) are linearlyindependent for n = 3. Analogously the same an be proven for higher dimensional ases.If n = 3 the matrix B(v1,v2) is de�ned by the vetors v1,v2 ∈ R

3, whih are both notthe zero vetors. The matrix is
B(v1,v2) = (A(v1)|A(v2)) =









v11 −v21 0 v12 −v22 0
0 v21 −v31 0 v22 −v32
v21 v11 0 v22 v12 0
v31 0 v11 v32 0 v12
0 v31 v21 0 0 v22









,where vT
i = (v1i , v

2
i , v

3
i ). Sine v1,v2 ∈ R

3 are linearly independent there exists only one unitvetor m ∈ R
3, whih is perpendiular to both vetors v1 and v2. We assume, that there isa vetor uT = (u1, u2, u3, u4, u5) 6= 0, whih satis�es

uTB(v1,v2) = 0,i.e. the rows of the matrix are linearly dependent. Let us denote by B the matrix, whih wederive from B(v1,v2) by hanging the order of the olumns
B =









v11 v12 −v21 −v22 0 0
0 0 v21 v22 −v31 −v32
v21 v22 v11 v12 0 0
v31 v32 0 0 v11 v12
0 0 v31 v32 v21 v22









.79



4 Fat Ars for Impliitly De�ned Algebrai CurvesIf the �rst two oordinates of uTB are zero, then the equations
u1 = c1m

1,

u3 = c1m
2, (4.15)

u4 = c1m
3,have to be satis�ed for a ertain c1 ∈ R, where m = (m1,m2,m3). If the third and the fourthoordinates of uTB are zero then

u2 − u1 = c2m
2,

u3 = c2m
1, (4.16)

u5 = c2m
3,and if the last two oordinates are zero, then

−u2 = c3m
3,

u4 = c3m
1, (4.17)

u5 = c3m
2,have to be satis�ed for ertain c2, c3 ∈ R. The seond and the third equation of eah system(4.15), (4.16) and (4.17) imply for all i, j ∈ {1, 2, 3} that

cjm
i = cim

j .If we add the �rst three equations from (4.15), (4.16) and (4.17), then we obtain that
c1m

1 + c2m
2 + c3m

3 = 0. (4.18)Suppose that ci 6= 0, then we substitute eah mj for (cj/ci)mi where i 6= j in (4.18), whihresults that
mi(c

2
1 + c22 + c23) = 0.Therefore mi has to be zero. This implies, that for all i = 1, 2, 3 either ci is zero or mi is zero.Therefore we an derive from (4.15), (4.16) and (4.17), that all oordinates of the vetor uare zero. It is in ontradition with our assumption, that u 6= 0. Thus the rows of B andalso the rows of B(v1,v2) are linearly independent. Sine the number of rows in B(v1,v2) isless than the number of olumns, the rank of the matrix is equal to the number of rows

rank(B(v1,v2)) =
3(3 + 1)

2
− 1 = 5.This lemma implies, that the matrix of the linear system (4.9)

AJ = B((∇fj(c))j∈J)for J = {1, . . . , n− 1} has the rank
rank(AJ) =

n(n+ 1)

2
− 1,if we suppose that the gradient vetors of the original polynomial system F are linearlyindependent in the enter of the omputational domain.80



4.3 Median Ar Generation4.3.3 Orthogonalization of the Polynomial SystemIn order to get e�ient error bound for the algebrai urves C(F̂ ,Ω) and S(P,Ω), we re-de�nethe set of polynomials F̂ . We use the linear ombinations of them to keep the speial formof eah polynomials.Remark 4.14. If eah f̂i ∈ F̂ ful�lls the property of funtions with speial Hessians (4.4),then any linear ombination of them̂
h =

∑

f̂i∈F̂

cif̂i, ci ∈ R,also ful�lls the ondition of speial Hessian (see (4.4)). Thus T 2
c (ĥ)(x) = 0 de�nes a spherein R

n.Therefore a new set of polynomials an be generated F ∗, suh that
∀i, j = 1, . . . n− 1, i 6= j, ∇f∗

i (c) ⊥ ∇f∗
j (c). (4.19)in the enter of the domain. This new system an be dedued with the help of theGram-Shmidt orthogonalization of the vetors ∇f̂i(c). If the vetors ∇f̂i(c) are linearlyindependent, then we an ompute n− 1 vetors vi, whih are pairwise orthogonal, and eahnew vetor is the linear ombination of ∇f̂i(c)

vi =

n−1∑

i=1

µi∇f̂i(c), µi ∈ R.If we ompute the linear ombination of the polynomials f̂i with the same oe�ients
f∗
i =

n−1∑

i=1

µif̂i,then they also ful�ll the ondition of speial Hessians aording to Remark 4.14. Moreover(4.19) is satis�ed for eah pair of polynomials. Thus we introdue the funtion O, whihassigns to the polynomials f̂i and the enter point c of a domain Ω. It generates a set ofpolynomials
F ∗ = O(F̂ , c) = {f∗

i : i = 1, . . . n− 1} (4.20)as it is desribed above.4.3.4 Connetion with the Osulating CirleNow we onsider the ase, where the enter of the omputational domain Ω is a point of thealgebrai urve C de�ned by the polynomials fi, i = 1, . . . n−1. If the enter point is denotedby c, then
∀i ∈ {1, . . . n− 1}, fi(c) = 0. (4.21)As we saw it in the three dimensional ase, this speial ase plays an important role duringthe omputations. 81



4 Fat Ars for Impliitly De�ned Algebrai CurvesA new set of polynomials F̂ is omputed as the ombination of fi using a the strategyfrom Setion 4.3.1. The quadrati approximation of eah polynomial is
si = T 2

c (f̂i).If (4.21) is satis�ed, then the quadrati approximating polynomial si has the following form
si(x) = ∇f̂i(c)T (x− c) + λi(x− c)T (x− c), (4.22)where

H(f̂i)(c) = λiI
n,like in (4.3). So we an represent the zero set of eah si in the form

〈

x−
(

c+
1

λ
∇f̂i(c)

)

,x−
(

c+
1

λ
∇f̂i(c)

)〉

=

∥
∥
∥∇f̂i(c)

∥
∥
∥

2

λ2
i

,as we already observed in the three-dimensional ase. The radius of the sphere si = 0 hasthe length
r =

∥
∥∇h(c)

∥
∥

λ
.Lemma 4.15. Suppose we have a system of polynomials F = {fi, i = 1, . . . n − 1} and

J = {1, . . . n− 1}. The polynomial system de�nes an algebrai urve in the domain Ω

C(F,Ω) = {x, ∀i fi(x) = 0} ∩ Ω.For any polynomial f̂ is omputed as
f̂ = G(FJ,u, c).The sphere de�ned as the zero set of the polynomial

s = T 2
c (f̂)has at least seond order ontat with the algebrai urve C. Moreover the intersetion urve ofthe a�ne subspae de�ned by the tangent and the normal diretion of the urve (the osulatingplane) in the point c and the sphere is the osulating irle of the urve in the point c.Proof. In this proof we use similar reasoning as in the three-dimensional ase in Lemma 3.12.Suppose that in a ertain neighborhood of the point c the algebrai urve an be parametrizedwith ar length parametrization. It is not a restrition, sine we are omputing only withregular segment of the algebrai urve. The parametrization is denoted by

p(t), where p(t0) = c.This urve is a urve on the surfae f̂ = 0 aording to the de�nition, therefore it satis�es
dif̂(p(t))

dti
= 0,82



4.4 Distane Estimatefor any i. Sine s is the quadrati Taylor expansion of f̂ about c, therefore
〈∇s(c),p′(t0)〉 = 0and

ds(p(t))

dt
=

d2s(p(t))

dt2
= 0. (4.23)Moreover if the seond derivative vanishes, then

〈∇s(c),p′′(t0)〉 = λ.Sine we parameterized the urve p(t) with ar length parametrization, therefore
〈∇s(c), κn(t0)〉 = λ,where n(t0) denotes the unit normal vetor of the urve in the point c. Thus the orthogonalprojetion of the radius of the sphere starting from the urve point c to the normal of theurve has a �xed length 〈∇s(c)

λ
,n(t0)

〉

=
1

κ
.It is exatly the radius of the osulating irle of the urve at the point c. We know, that theintersetion of a sphere and a two dimensional a�ne sub-spae is a irle. The radius of suha irle has the same length as the orthogonal projetion of the radius of the sphere startingfrom a point of the irle into the a�ne sub-spae. The tangent and normal diretions ofthe intersetion irle of the sphere with the osulating plane are the same as the osulatingirle of the urve, therefore the seond statement of the lemma is on�rmed.4.4 Distane EstimateIn this setion we desribe a method to estimate the distane of two algebrai spae urves.Sine the urves are de�ned as the intersetion of algebrai surfaes, the method is based onthe distane estimation of the impliitly de�ned surfaes. First we generalize the distaneestimation tehnique from Setion 3.4.2 for impliitly de�ned and parametri urves. In orderto get a su�ient distane estimation for algebrai spae urves, we use pairwise distaneestimation between the de�ning algebrai surfaes.4.4.1 Distane of Algebrai and Parametri Spae CurvesIn order to bound the distane of algebrai spae urves, we generalize the result from [20℄,whih we used in the three dimensional ase to bound the distane of parametri and impliitlyde�ned spae urves.We assume that the a urve segment r(t) is de�ned with the parameter domain t ∈ [0, 1]in Ω ⊂ R

n. The urve traes the point set
R = {r(t) : t ∈ [0, 1]}.The algebrai urve C(F,Ω) is de�ned by the zero set of F = {fi, i = 1, . . . n − 1} in thesub-domain Ω. In order to avoid ertain tehnial di�ulties, we bound the distane betweenthe point set R and
C∗ = C(F,Ω) ∪ ∂Ω,83



4 Fat Ars for Impliitly De�ned Algebrai Curveswhere ∂Ω denotes the boundary of the domain. The one-sided Hausdor�-distane is de�nedas HDΩ(R, C∗) = sup
t∈[0,1]

inf
x∈C∗

‖x− r(t)‖. (4.24)Lemma 4.16. Consider the funtion h =
√
∑n−1

i=1 f2
i de�ned by the polynomials fi ∈ F . Weassume that positive onstants G and K exist, suh that

G ≤
∥
∥∇fi

∥
∥ i = 1, . . . n− 1and

∣
∣∇fi · ∇fj

∣
∣ ≤ K i 6= j, i, j = 1, . . . n− 1,then the length of the gradient is bounded by

∥
∥∇h

∥
∥2 ≥ G2 −

(
n− 1

2

)

K ∀x ∈ Ω.Proof. Sine
∇h =

∑n−1
i=1 fi∇fi

√
∑n−1

i=1 f2
i

,we obtain
∥
∥∇h

∥
∥2 =

1
∑n−1

i=1 f2
i

(
n−1∑

i=1

f2
i

∥
∥∇fi

∥
∥2

)

+
1

∑n−1
i=1 f2

i




∑

1≤i<j≤n−1

2fifj∇fi · ∇fj



 ≥

≥
∣
∣
∣
∣
∣

1
∑n−1

i=1 f2
i

(
n−1∑

i=1

f2
i

∥
∥∇fi

∥
∥2

) ∣
∣
∣
∣
∣
−

∑

1≤i<j≤n−1

∣
∣
∣
∣
∣

2fifj
∑n−1

i=1 f2
i

∣
∣
∣
∣
∣

︸ ︷︷ ︸

≤1

∣
∣∇fi · ∇fj

∣
∣

︸ ︷︷ ︸

≤K

≥

≥ G2 −
(
n− 1

2

)

K.Theorem 4.17. Consider a urve segment r(t) : t→ Ω, whih traes the point set R. Thepolynomials fi ∈ F de�ne the algebrai urve C(F,Ω). We assume that positive onstants Gand K exist, suh that
G ≤

∥
∥∇fi

∥
∥ i = 1, . . . n− 1and

∣
∣∇fi · ∇fj

∣
∣ ≤ K i 6= j, i, j = 1, . . . n− 1.If G2 −

(
n−1
2

)
K > 0 and h =

√
∑n−1

i=1 f2
i , then

∀x ∈ Ω
∥
∥∇h

∥
∥ ≥

√

G2 −
(
n− 1

2

)

K.84



4.4 Distane EstimateMoreover if there exists a positive onstant M , that ∑n−1
i=1 fi(r(t))

2 ≤M2, then the one-sidedHausdor�-distane is bounded byHDΩ(R, C∗) ≤
M

√

G2 −
(n−1

2

)
K

. (4.25)Proof. We ompute a modi�ed polynomial f̂i = G(Fi,ui, c) with respet to the domain Ω asthe ombination of polynomials Fi. Suppose that p is a point from the parametri urve r(t).Let us de�ne the funtion h =
√
∑n

i=1 f̂
2
i . We onsider the integral urves de�ned in Ω bythe vetor �eld −h/∥∥∇h∥∥. From Lemma 4.16 we know, that the integral urves are regularin all inner points of Ω. We assume, that the integral urves u(s) are parametrized by arlength. Aording to the mean value theorem there exists s0

h(u(s)) = h(u(0)) + s∇h(u(s0)) · u̇(s0) =

= h(u(0)) − s
∥
∥∇h(u(s0))

∥
∥ ≤M − s

√

G2 −
(
n− 1

2

)

K.Sine h(x) ≥ 0, then s ∈ [0, s∗], where s∗ = M
√

G2−(n−1

2
)K

. For a point y the funtion h(y) = 0if y ∈ C. Sine the integral urves are regular there exists a limit
lim
s→s∗

u(s) = y,suh that y ∈ C. Sine we supposed that u(s) is ar length parametrized for all p from theparametri urve r(t), there exists y ∈ C suh that
∥
∥u(0)− u(s∗)

∥
∥ =

∥
∥p− y

∥
∥ ≤ s∗ =

M
√

G2 −
(n−1

2

)
K

.The same reasoning is applied in [20℄ to bound the distane of planar urves.4.4.2 Distane of Algebrai Spae CurvesIf we would like to estimate the distane of algebrai spae urve, we an measure �rst thedistane of the de�ning algebrai surfaes. Suppose that an algebrai urve C is de�ned bythe polynomials fi ∈ F in the domain Ω

C(F,Ω) = {x : ∀i = 1, . . . , n− 1, fi(x) = 0} ∩ Ω.An approximating spae urve S is given by the zero set of approximating algebrai surfaes
pi ∈ P

S(P,Ω) = {x : ∀i = 1, . . . , n− 1, pi(x) = 0} ∩ Ω.The polynomial pi approximates fi.We estimate the distane between the algebrai surfaes and the approximating surfaespairwise. We onsider the BB-norm, whih is the maximum absolute value of the oe�ientsin the BB-representation. With the help of the norm, a distane bound an be de�ned85



4 Fat Ars for Impliitly De�ned Algebrai Curvesbetween an arbitrary polynomial fi and an approximating polynomial pi in the domain Ω aswe observed in Setion 3.4.1
εi =

∥
∥fi − pi

∥
∥ΩBB . (4.26)Due to the onvex hull property

∣
∣fi(x)− pi(x)

∣
∣ ≤ εi, ∀x ∈ Ω.Lemma 4.18. Consider two algebrai urves C(F,Ω) and S(P,Ω), de�ned by the polynomials

fi ∈ F and pi ∈ P in the domain Ω ⊂ R
n. We denote by εi the norm

εi =
∥
∥fi − pi

∥
∥ΩBB i = 1, . . . n− 1.Assume, that the onstants G and K are exist suh that

0 < G ≤
∥
∥∇fi

∥
∥ i = 1, . . . n− 1and

∣
∣∇fi · ∇fj

∣
∣ ≤ K i 6= j, i, j = 1, . . . n− 1.If G2 −

(n−1
2

)
K > 0, then for all points x ∈ S exists a point y ∈ C suh that

∥
∥x− y

∥
∥ ≤

√
∑n−1

i=1 ε2i
G2 −

(
n−1
2

)
K

= ̺. (4.27)Proof. It is the onsequene of Theorem 4.17 and (4.26).Lemma 4.18 gives us an upper bound of the distane between two algebrai spae urves.So the bounding fat region an be de�ned as the point set
F(P, ̺,Ω) = {x : ∃x0 ∀i = 1, . . . n− 1, pi(x0) = 0, |x− x0| ≤ ̺} ∩Ω.The de�ning polynomials of the algebrai urves fi and pi are given in the BB-tensorprodut form. In order to �nd the onstants in Lemma 4.18, we use the onvex hull propertyof these polynomials.4.5 Convergene and Global AlgorithmSine we generate quadrati approximating urves, we expet that the fat ar generationalgorithm has ubi onvergene rate. We analyze in this setion the onvergene rate of themethod, and ertify the third order onvergene of the fat ars in Lemma 4.24. Then weombine the loal fat ar generation with subdivision.4.5.1 Continuity of Taylor Expansion Modi�ationThe loal fat ar generation tehnique approximates the intersetion urve of algebrai sur-faes in the domain Ω ⊆ Ω0 ⊂ R

n by a irular ar. This ar is de�ned as the intersetionof spheres, whih are given as the zero set of the quadrati Taylor expansion of polynomi-als with speial Hessian. In order to prove that these ars onverge to a limit position inthe sub-domains, we have to show, that the omputed spheres depend ontinuously on thepoints of Ω0 for a �xed hoie of the parameter vetor u. This means, that the polynomial
f̂ = G(F,u, c) depends ontinuously on the hoie of the point c.86



4.5 Convergene and Global AlgorithmLemma 4.19. Given the set of polynomials F = {fi : i = 1, . . . n − 1} over the domain
Ω ⊆ Ω0. We suppose that for any point c ∈ Ω0 the vetor set {∇fi(c) : fi ∈ F} is linearlyindependent. For an arbitrary but �xed vetor of parameters u, where ui ∈ R \ {0}, weompute the polynomial

f̂ = G(F,u, c)with a speial Hessian under the ondition (4.13). Then f̂ depends ontinuously on the pointsof the domain Ω0.Proof. We have to show that the omputed linear fators li depend ontinuously on the point
c. We omputed the oe�ient vetor k = (k11 , k

2
2 , . . . , k

n
1 , . . . k

n
n−1), suh that it satis�es thelinear system Ak = b in (4.9) and minimizes the l2-norm of the vetor k. If the vetor set

{∇fi(c) : fi ∈ F} is linearly independent for any c, then A has full rank (see Corollary 4.11and Theorem 4.13). In this situation the vetor, whih satis�es (4.9) and (4.13), an beomputed as
k = AT(AAT)−1

︸ ︷︷ ︸

A†

b.The matrix A† is the so alled Moore-Penrose generalized inverse of A (see [9℄). Sine fiis a polynomial the entries of the matrix A and the vetor b depend ontinuously on thepoint c. Therefore the vetor l also depends ontinuously on the point c. The values of
ui 6= 0 are �xed real numbers. So all oe�ients ui, kji i = 1 . . . n− 1 and j = 1, . . . n dependontinuously on c. Therefore also f̂ depends ontinuously on the point c.If we modify the Taylor expansion, then we an establish the following result onsideringthe behavior of a sequene of the generated median irles.Corollary 4.20. Suppose we have a nested sequene of sub-domains (Ωi)i=1,2,3... ⊂ Ω0 ⊂ R

n

Ωi+1 ⊂ Ωi,whih have dereasing diameters δi, suh that
lim
i→∞

δi = 0,and ci denotes the enter point of Ωi. Consider a set of n− 1 polynomials F , whih de�nesan algebrai urve in R
n

C(F,Ω0) = {x : ∀f ∈ F, f(x) = 0} ∩Ω0.Suppose that there exists a point p ∈ Ωi for all i, whih satis�es
fj(p) = 0, ∀j = 1, . . . n− 1,and it is not an in�etion point of the urve C(F,Ω0). We ompute the set of n − 1 newpolynomials F̂i for eah ci, suh that eah f̂ i

j ∈ F̂i is omputed as f̂ i
j = G(F,uj , ci) fordi�erent but �xed vetors of parameters uj, where ukj 6= 0. We onsider the irle de�ned bythe set of polynomials Si, where eah sij ∈ Si de�ned as the quadrati Taylor expansion of a

f̂ i
j ∈ F̂i. Then the sequene of these irles onverges to a limit irle, whih is the osulatingirle of the urve C(F,Ω0) in the point p. 87



4 Fat Ars for Impliitly De�ned Algebrai CurvesThe next orollary follows from the fat that in the limit position,the zero sets of allquadrati polynomials interset the osulating plane of the urve at the point p in the osu-lating irle of the urve.Corollary 4.21. Given a set of polynomials F = {fi : i = 1, . . . n − 1} in the domain Ω0.Suppose we onstrut the polynomial f̂ , suh that
f̂ = G(F,u, c) =

n−1∑

i=1

kififor an arbitrary but �xed parameter vetor u, where ui 6= 0. For all c ∈ Ω0 the norm of theommon oe�ient vetor of ki, k = (k11 , k
2
1 , . . . , k

n
n−1) an be bounded by a onstant

∥
∥k
∥
∥
2
< L,whih depends only on F,Ω0 and the hoie of u.4.5.2 General Lower Bound for the Gradient LengthThe following lemma (Lemma 3.19) ensures, that G(F,u, c) has also a non-vanishing gradientif we ompute fat ars in su�iently small sub-domains, whih enlose the algebrai urve.Lemma 4.22. Suppose that there exists G in Ω0 for the polynomials fi ∈ F suh that for all

i = 1, . . . n− 1
∀x ∈ Ω0,

∥
∥∇fi(x)

∥
∥ ≥ G > 0. (4.28)Consider a domain Ω ⊂ Ω0, whih has a diameter δΩ < ε. Suppose that there is a point

p ∈ Ω suh that for all i = 1, . . . n − 1, fi(p) = 0. The vetor of parameters u is arbitrarybut �xed, suh that ui 6= 0. We ompute f̂ = G(F,u, c). If ε is su�iently small, then thereexists Ĝ > 0 onstant, suh that for any x ∈ Ω

∥
∥
∥∇f̂(x)

∥
∥
∥ ≥ Ĝ > 0.Proof. If x ∈ Ω ⊆ Ω0 then

∇f̂(x) =
n−1∑

i=1

ki(x)fi(x),

ki are omputed as desribed in Setion 4.3.1. Aording to the triangle inequality
∥
∥
∥∇f̂(x)

∥
∥
∥ ≥

∥
∥
∥
∥
∥

n−1∑

i=1

ki(x)∇fi(x)
∥
∥
∥
∥
∥
−
∥
∥
∥
∥
∥

n−1∑

i=1

∇ki(x)fi(x)
∥
∥
∥
∥
∥
≥
∥
∥
∥
∥
∥

n−1∑

i=1

ki(x)∇fi(x)
∥
∥
∥
∥
∥
−

n−1∑

i=1

∣
∣fi(x)

∣
∣
∥
∥∇ki(x)

∥
∥ .(4.29)Sine we know that there exists a point p ∈ Ω suh that fi(p) = 0 , then

∀i = 1, . . . , n− 1,
∣
∣fi(x)

∣
∣ ≤ ε

G
, (4.30)where ε is an upper bound of the diameter of Ω. In Corollary 4.5.2 we also observed, thatthere exists L > 0

∣
∣k
∣
∣ ≤ L,88



4.5 Convergene and Global Algorithmwhih only depends on F,Ω0 and the hoie of u. Therefore also
∀i = 1, . . . , n− 1,

∥
∥∇ki(x)

∥
∥ ≤ L.We an bound the value of the linear polynomials li on a su�iently small sub-domain Ω.Suppose that the diameter of Ω is smaller than ε. If x ∈ Ω, then for all i = 1, . . . , n− 1

∣
∣ki(x)

∣
∣ =

∣
∣
∣
∣
∣
∣

ui +

n∑

j=1

kji (x
j − cj)

∣
∣
∣
∣
∣
∣

>
∣
∣ui
∣
∣− ε

2

√
nLwhere c = (cj)nj=1 denotes the enter of Ω. Sine ui are non-zero, if

ε <
mini=1,...n−1{ui}√

nL
, (4.31)then ∣∣ki(x)∣∣ ≥ ui/2.We supposed that ∇fi(x) are linearly independent in any point of Ω0. If (4.31) is satis�edfor an Ω ⊆ Ω0, then there exists a general bound G̃ depending on u and G, suh that

∥
∥
∥
∥
∥

n−1∑

i=1

ki(x)∇fi(x)
∥
∥
∥
∥
∥
≥ G̃ > 0, ∀x ∈ Ω.Therefore for all x ∈ Ω

∥
∥
∥∇f̂(x)

∥
∥
∥ ≥ G̃−

n−1∑

i=1

∥
∥fi(x)∇ki(x)

∥
∥ ≥(4.13) G̃− L

n−1∑

i=1

∣
∣fi(x)

∣
∣ .Sine we know that there exists a point p ∈ Ω suh that f(p) = g(p) = 0, then beause of(4.30)

∥
∥
∥∇f̂(x)

∥
∥
∥ ≥ G̃− (n − 1)εL

G
.Suppose that

ε = min

{

G̃G

(n− 1)L
,

u1√
nL

, . . .
un−1

√
nL

}

. (4.32)If the diameter of Ω denoted by δΩ satis�es
δΩ <

ε

2
,then

∥
∥
∥∇f̂(x)

∥
∥
∥ ≥ G̃

2
= Ĝ > 0.Corollary 4.23. Suppose that the onditions of Lemma 4.22 are satis�ed for a set of polyno-mials F in the domain Ω0. If f̂ = G(F,u, c) is omputed in a su�iently small sub-domain

Ω of Ω0, then T 2
c (f̂) 6≡ 0. 89



4 Fat Ars for Impliitly De�ned Algebrai Curves4.5.3 Convergene of Taylor Expansion Modi�ationNow we have to show that the fat ar thikness is su�iently small ompared with thediameter of the omputational domain. The following lemma shows, how the omputed fatar thikness behaves as the size of the domain tends to zero.Lemma 4.24. Given a set of polynomials F de�ned over the domain Ω0 ⊂ R
n. We supposethat the onditions of Lemma 4.22 are satis�ed. We ompute a set of polynomials F̂ withspeial Hessian for arbitrary but �xed vetors of parameters ui and apply the orthogonalizationfuntion

F̂ = O ({G(F,ui, c) : i = 1 . . . n− 1}, c) ,in the enter point c of the sub-domain Ω ⊂ Ω0. If the sub-domain Ω has a su�iently smalldiameter δΩ, then there exists a onstant C ∈ R, whih does not depend on the hoie of Ωand satis�es
̺ ≤ Cδ3Ω, (4.33)where ̺ is the orresponding fat ar thikness omputed as in (4.27).Proof. Sine the onditions of Lemma 4.22 are satis�ed, we know that for all f̂i ∈ F̂ thereexists Ĝ suh that
‖∇f̂i‖ ≥ Ĝ,for any su�iently small sub-domain Ω, whih enloses the urve. We denote by pi thequadrati Taylor expansion of f̂i ∈ F̂ about the enter c of the domain Ω. Then

∥
∥
∥f̂i − pi

∥
∥
∥
∞

=
∥
∥
∥f̂i − T 2

c (f̂i)
∥
∥
∥
∞

<
1

6
max

v∈S1,x∈Ω

∣
∣
∣
∣
∣

d3f̂i
dv3

(x)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

∗

δ3Ω.Reall from Lemma 4.19 that G depends ontinuously on the points of the omputationaldomain Ω0 for eah ui, where ui 6= 0. Therefore also f̂i depend ontinuously on the pointsof the omputational domain Ω0. Thus for all f̂i a general upper bound Ci an be given for
(∗).The fat ar thikness is de�ned by

̺Ω =

√
∑n−1

i=1 ε2i
G2

Ω −
(n−1

2

)
KΩ

,where
εi =

∥
∥
∥f̂i − pi

∥
∥
∥BB .Beause of the norm equivalenes there exist Di, suh that

εi ≤ Di

∥
∥
∥f̂i − pi

∥
∥
∥
∞
.So we observe, that

√
√
√
√

n−1∑

i=1

ε2i ≤
1

6

√
√
√
√

n−1∑

i=1

(CiDi)2

︸ ︷︷ ︸

M

δ3Ω.90



4.5 Convergene and Global AlgorithmWe assumed that Ĝ < GΩ is a general lower bound for eah ∥∥∥∇f̂i∥∥∥ independent ofthe hoie of the sub-domain Ω. Sine we also applied the orthogonalization step to thepolynomials f̂i for any i 6= j ∣
∣
∣∇f̂i(c) · ∇f̂j(c)

∣
∣
∣ = 0in the enter point c of a domain Ω. If the diameter of a sub-domain Ω is su�iently small,then there exists K > 0, whih does not depend on Ω and eah x ∈ Ω satis�es

∣
∣
∣∇f̂i(x) · ∇f̂j(x)

∣
∣
∣ ≤ Kfor any i 6= j. If the diameter of the sub-domains is su�iently small, then the general bound

K satis�es (n−1
2

)
K < Ĝ2. Thus this implies that

̺Ω ≤
M δ3Ω

√

Ĝ2
Ω −

(n−1
2

)
KΩ

≤ M δ3Ω
√

Ĝ2 −
(n−1

2

)
K
≤ Cδ3Ω.

4.5.4 Global AlgorithmSubdivision is a frequently used tehnique, and it is often ombined with loal approximationmethods. Suh hybrid algorithms subdivide the omputational domain in order to separateregions where the loal urve approximation tehniques an be applied. The regions withunknown urve behavior an be made smaller and smaller with subdivision.The loal algorithm FatArLoal_nd (see Algorithm 7) generates fat ars for regularalgebrai spae urves. As we saw in the two and three-dimensional ase, this loal methodan be ombined with reursive subdivision.First the Bernstein�Bézier oe�ients of the polynomials are analyzed with respet tothe omputational domain. If no sign hanges are present for one or both of the polynomials,then the urrent domain does not ontain any omponents of the algebrai urve. Otherwisethe fat ar generation tehnique an be applied. If it is not suessful, then the algorithmeither subdivides the urrent domain into sub-domains, or returns the entire domain, if itsdiameter is already below the user-de�ned threshold ε. It is guaranteed that during theproess no region will be eliminated, whih ontains the impliitly de�ned urve. However,it may happen, that the output ontains domains without any segments of the impliitlyde�ned urve (�false positive boxes�).
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Chapter 5Fat Spheres for Solving MultivariatePolynomial SystemsSolving multivariate polynomial systems has several appliations in algebra and geometry.Therefore various methods exist to �nd or to isolate the roots of polynomial systems. Theyare using symboli, numeri or ombined tehniques in order to �nd solutions. In this hapter�rst we give a brief summary on the topi. We disuss the main lasses of solvers and theexisting results. Then we introdue fat spheres, whih are multidimensional bounding regionsfor impliitly de�ned algebrai objets. With the help of fat spheres we desribe a loaldomain redution strategy, whih bounds the intersetion of algebrai objets. We ombinethis loal algorithm with iterative subdivision. This hybrid algorithm an be applied forapproximating the solution of multivariate polynomial systems.5.1 Fat Ars and Fat SpheresIn this setion we summarize the related work in solving multivariate polynomial systems.First we desribe the di�erent families of solvers. Then we de�ne the fat spheres. Finally weformulate the root �nding problem with polynomials represented in Bernstein-Bézier form.5.1.1 Real Root Finding AlgorithmsReal root �nding is onsidered as a di�ult task. A general overview about the multivariateroot �nding algorithms is given in [13, 38℄. The solvers, desribed in the literature, are usingeither algebrai or geometri tools.Algebrai approahes, suh as the Gröbner-basis tehnique [5℄, resultant based methodsor ontinuous frations methods assure exat and e�ient solution algorithms. These algo-rithms frequently provide more information about the solutions than we need. It is oftenunneessary to ompute all solutions. For instane CAD-systems usually require informationonly about real solutions, whih lie in a ertain domain. Moreover these symboli methodsare not really suitable for numerial omputations.An algebrai solver, whih is using the Gröbner-basis tehnique, was developed for in-stane by Rouillier [33℄ for bi-variate polynomial systems. Busé et al. onsidered resultant93



5 Fat Spheres for Solving Multivariate Polynomial Systemsbased methods in [6, 7℄. In [14℄ an algebrai method is desribed, whih is using Sturm-Habiht sequenes.Homotopy solvers ompute a family of root-�nding problems. The method transforms asimple problem to the original one in several steps, and ompute the roots of eah intermediateproblem. The omputed sequene of roots onverges to the solutions of the original root-�nding problem. However, suh omputations are usually require ine�ient memory andtime.Polynomial solvers based on homotopy methods an be found in [24, 28℄.Subdivision algorithms are based on the �divide and onquer� paradigm. They omputein a ertain domain (usually in an axis-aligned box) and provide information only about realroots. If we are interested in ertain properties of a root, like multipliity, then further om-putations are neessary. These algorithms deompose the problem into several sub-problems.The deomposition terminates if suitable approximating primitives an be generated in eahsub-problem [29℄. In order to onstrut these approximating primitives, several loal do-main redution strategies an be applied. These redution methods are usually based oninterpolation, bounding region generation or least-squares approximation.The �rst subdivision solvers were developed by Sederberg et al. for bivariate polynomialsrepresented in Bernstein-Bézier tensor produt form. They are using lipping and subdivisiontehniques [35, 36℄. Later on a family of algorithms were invented, whih is using projetiontehniques [39℄. The most reently developed solvers are published by Mourrain et al. [13℄and Elber et al. [12℄.5.1.2 De�nition of Fat Ars and Fat SpheresWe present in this hapter an algorithm, whih ombines iterative domain redution witha subdivision tehnique to solve multivariate polynomial systems. The domain redutionstrategy is based on bounding region generation. In Chapter 4 we generated fat ars asbounding regions for n-dimensional algebrai urves. These bounding regions onsist of aone-dimensional approximating primitive (a irular ar) and a ertain neighborhood of thisurve. In this hapter we onsider bounding regions, whih are generated as a thikenedneighborhood of a multi-dimensional objet. The multi-dimensional objet approximatesa part of an algebrai surfae, and it is de�ned as a segment of a sphere. The thikenedneighborhood of the sphere-segment ontains eah point of the algebrai surfae. Thereforeit is a bounding region for the path of the algebrai surfae. So we extend the de�nition offat ars (see in De�nition 4.1) to the onept of fat spheres.De�nition 5.1. A fat sphere is de�ned in R
n by- a path of an arbitrary dimensional sphere (median sphere) S ⊂ Ω ⊂ R

n,- and a distane ̺ ∈ R.Then the fat region is the point set
F(S, ̺) = {x : ∃x0 ∈ S,

∥
∥x− x0

∥
∥
2
≤ ̺}.94



5.2 Bounding Region GenerationThe fat spheres with one-dimensional median sphere are the standard fat ar in R
n (seein De�nition 4.1). In this ase the median sphere is a irular ar.A multi-dimensional median sphere S an always be de�ned as an algebrai set. It is theintersetion of impliitly de�ned spheres, eah possessing the form

pi = ai〈x,x〉 + 〈bi,x〉+ ci = 0, ai, ci ∈ R, bi ∈ R
n.The median spherial path is de�ned algebraially as a whole sphere restrited to an axis-aligned domain

S = {x : ∀i, pi(x) = 0} ∩ Ω.Median spheres an also be represented in parametri form with the help of rational fun-tions. It is an advantageous property of ars and spheres, that they possess exat parametriand impliit representation form. The impliit representation provide us a simple way to rep-resent the o�set of the spheres and to ompute the intersetion of them, while the parametriform simpli�es the visualization.5.1.3 Multivariate Polynomial SystemsIn order to ompute e�iently the real roots of a polynomial system with subdivision teh-nique, we assume that the polynomials are given in tensor-produt Bernstein-Bézier(BB)form (see (4.1)), with respet to the axis-aligned domain
Ω0 = ×n

i=1[αi, βi] ⊂ R
n.For suh a polynomial f : Rn → R, let us denote the zero level set with respet to the domain

Ω0 as
Z(f,Ω0) = {x : f(x) = 0} ∩Ω0.The solution set of a polynomial system F = {f1, . . . , fn} is the intersetion of the zero setof the polynomials
R(F,Ω0) =

n⋂

i=1

Z(fi,Ω0) (5.1)with respet to the domain Ω0. If the system of polynomials is zero-dimensional, then thisalgebrai set onsists of distint points or it is the empty set.5.2 Bounding Region GenerationIn order to generate fat spheres for solving polynomial systems, we present �rst a loal domainredution strategy. This loal algorithm is applied in the sub-domains of the omputationaldomain Ω0. In eah sub-domain the zero set of the polynomial system is bounded by inter-seting fat spheres. Later on we will ombine this loal domain redution strategy with asubdivision tehnique. 95



5 Fat Spheres for Solving Multivariate Polynomial SystemsAlgorithm 8 DomainRedution (F,Ω)Require: Eah polynomial has sign hange in its BB-oe�ients in Ω.1: f̂i modi�ed polynomials with spherial quadrati Taylor expansion pi2: Si = {x : pi(x) = 0} ∩ Ω {median spheres}3: εi =
∥
∥
∥f̂i − pi

∥
∥
∥BB4: P±

i = {x : ∀i, pi(x) = ±εi} ∩Ω← boundaries of fat spheres5: C ← extremal points of fat sphere intersetion6: if C 6= ∅ then7: M← min-max box around the points C {new bounding domain}8: return M9: end if10: return ∅ {no bounding domain has been found}5.2.1 Loal AlgorithmIn order to bound the zero set of a polynomial system, �rst we detet the empty sub-domainsin the omputational domain and eliminate them. Therefore we analyze the sign hangesof the BB-oe�ients in the representation of the polynomials. If one of the polynomialshas only negative or only positive BB-oe�ients over the sub-domain, then no point of thesub-domain belongs to the solution set of the polynomial system (see Observation 3.2). Suhsub-domains an be negleted during further omputations.In order to bound the zero set of the polynomials F = {f1, . . . , fn}, we generate fat spheresas bounding regions. First we ompute a new system of polynomials with modi�ed Taylorexpansion. The tehnique, we desribed in Setion 4.3.1, provide us a method to omputepolynomials f̂i, whih has speial Hessian matrix in the enter point of the sub-domain. Theset of modi�ed polynomials F̂ = {f̂1, . . . , f̂n} has a zero set, whih ontains the solution setof the polynomials F
Z(F,Ω) ⊆ Z(F̂ ,Ω)in the sub-domain Ω. The quadrati Taylor expansion of the modi�ed polynomials about theenter point c of Ω

pi = T 2
c (fi)has a zero level set, whih is a part of a sphere. Eah sphere is used as a median sphere togenerate a fat sphere Fi. Suh a fat sphere is the thikened neighborhood of the median sphere

pi = 0, and it ontains the zero set of f̂i in the sub-domain Ω. If all the fat spheres intersetin Ω, then a min-max box is onstruted around this intersetion (see details Setion 5.2.3).The loal algorithm returns this min-max box as a bounding region of the zero set of thepolynomials fi ∈ F .If the fat spheres have no intersetion, then the sub-domain Ω does not ontain any pointof Z(F̂ ,Ω), so as no point of Z(F,Ω). This implies, that no solution of the polynomial systemlies in the sub-domain Ω. Thus suh a sub-domain with non-interseting fat spheres an benegleted in the further omputations.The two-dimensional real root �nding algorithm approximates the solution of two bivari-ate polynomials. In this low dimensional ase the de�nition of fat spheres oinides with theonept of fat ars. The median sphere is always a irular ar. In eah sub-domain, whih is96



5.2 Bounding Region Generationnot deteted as a region without any root inside, the loal algorithm generates two fat ars.These are the bounding regions of the two di�erent algebrai urves. Fig.5.1 presents someexamples of these fat ars and the bounding box around their intersetion. Eah �gure hasbeen generated with the help of Algorithm 8. In the seond �gure one an see, that the fatars interset eah other, however the polynomials have no solution point in the sub-domain.Suh �false positive regions� an be eliminated if we apply the domain redution iteratively.In the three-dimensional spae the domain redution algorithm bounds the intersetionof three algebrai surfaes. The fat spheres are generated as thikened three dimensionalspheres. Fig.5.2 presents some examples generated with the help of Algorithm 8.

Figure 5.1: Examples for fat ar intersetion with the help of algorithm DomainRedution. Thered urves are the impliitly de�ned urves. The median irles are shown in green. The grayregions represent the generated bounding regions: the min-max boxes around the intersetionsof fat ars.

Figure 5.2: Examples for fat sphere intersetion generated by the algorithm DomainRedutionin three-dimensional spae. The boundary pathes of the three fat spheres are represented inred, green and blue. The gray regions represent the generated bounding regions: the min-maxboxes around the intersetions of fat spheres.In the next setions we onsider the most important steps of the loal algorithm. Wewill �rst desribe the fat sphere generation tehnique. Then we will show how to generatemin-max box around the intersetion of fat spheres.97



5 Fat Spheres for Solving Multivariate Polynomial Systems5.2.2 Fat Sphere GenerationWe approximate the zero set of the polynomials F = {f1, . . . , fn} in the sub-domain Ω ⊂ R
n.The geometri interpretation of this problem is to �nd the intersetion points of algebraihyper-surfaes in the sub-domain Ω. Aording to this approah we generate fat spheresas bounding regions for eah algebrai surfae. Due to the de�nition of fat spheres �rst weompute an approximating sphere segment, the median sphere, for eah algebrai surfae.Then we bound the distane of the approximating sphere and the algebrai surfae.With ombining the polynomials f ∈ F we ompute a polynomial f̂ , whih has a speialHessian matrix in the enter point c of the sub-domain Ω,

H(f̂)(c) =






λ · · · 0... . . . ...
0 · · · λ




 = λ In×n, λ ∈ R. (5.2)We apply the same tehnique as in the fat ar generation method (see Setion 4.3.1). Weompute a polynomial f̂ as the ombination of the polynomials fi ∈ F with respet to theindex set i ∈ J ⊆ {1, . . . , n} as

f̂ =
∑

i∈J

kifi (5.3)multiplying with the linear polynomials ki de�ned as in (4.6). The new polynomial has tosatisfy (5.2). The oe�ients of ki an be omputed by solving a linear system. In order toavoid to have only the trivial solution for the oe�ient of the multipliers ki, we hoose theonstant term of the multipliers arbitrary but �xed, non-zero parameter values. Then thenumber of the free oe�ients in the multipliers has to be more than the number of equationsin the linear system (see (4.9)). So we avoid to have an overdetermined system.Aording to the observations on the solvability of this system in Setion 4.3.1 we onsideronly the ases, when the ombination (5.3) involves n−1 or n polynomials. In these ases thepolynomials ki exist, and they are non-zero linear polynomials. We desribe the behavior ofthe linear system in Table 5.1 similarly to the ase of fat ars in Table 4.1. If we ombine allpolynomials (not only n− 1 ones), then the solution spae of ki has an even higher numberof dimension. However, aording to our experienes, using all polynomials gives betterapproximations and speeds up the shrinking of the bounding regions.The solution spae of the oe�ients of ki is at least one-dimensional for the ombinationof n − 1 and n polynomials too. However, we need only one olletion of oe�ients, whihde�nes the multipliers ki. Therefore we ompute the solution vetor of oe�ients, whih hasthe minimal l2-norm (as for fat ars (4.13)).A modi�ed polynomial with speial Hessian matrix has speial quadrati Taylor expansion
p = T 2

c f̂ . This quadrati polynomial de�nes the algebrai set
S = {x : p(x) = 0},whih an be used as median sphere. We estimate the error of the approximation by boundingthe di�erene of the polynomials f̂ and p. With the help of the BB-norm the distane boundan be given as
ε =

∥
∥
∥f̂ − p

∥
∥
∥

ΩBB . (5.4)98



5.2 Bounding Region GenerationTable 5.1: Comparison of strategies to onstrut polynomials with speial Hessian for di�erentnumber of variables. The table shows the number of oe�ients and the dimension of theirsolution spae in the onstrution of a new funtion f̂ . For eah number of dimension n, the�rst row shows the results if we ombine n − 1 polynomials, the seond one if we ombine npolynomials.dimension num. of equ. num. of multipliers num. of oe�. dim. of sol. sys.
3 5

2 6 1
3 9 4

4 9
3 12 3
4 16 7

5 14
4 20 10
5 25 11

6 20
5 30 10
6 36 16

100 5049
99 9900 4851
100 10000 4951Due to the onvex hull property

∣
∣
∣f̂(x) − p(x)

∣
∣
∣ ≤ ε, ∀x ∈ Ω,whih implies that

p(x)− ε ≤ f̂(x) ≤ p(x) + ε, ∀x ∈ Ω. (5.5)A fat sphere as bounding region an be de�ned in Ω for f̂ = 0 as
F(p, ε,Ω) = {x : |p(x)| ≤ ε} ∩ Ω.The boundaries of this region are the o�sets of the median sphere p = 0. This fat sphere isbounding the zero level set of f .In the two-dimensional ase the fat sphere generation is the same as the fat ar generation.The zero level set of polynomials and their approximations are given as impliitly de�nedurves in R

2. In the three-dimensional spae we have two di�erent strategies to generatemodi�ed polynomials. We an use either two or all three polynomials from F to generate anew polynomial f̂ . Then a fat sphere is de�ned as a thikened region of a three-dimensionalspherial path.5.2.3 Min-max Box of the Intersetion of Fat SpheresWe ompute a set of polynomials with modi�ed Taylor expansion F̂ = {f̂1, . . . , f̂n}. The setof modi�ed polynomials has the same or a larger solution set as F
Z(F,Ω) ⊆ Z(F̂ ,Ω).Eah polynomial has a speial quadrati Taylor expansion pi = T 2

c f̂i about the enter of thesub-domain Ω. These quadrati polynomials de�ne the algebrai sets
Si = {x : pi(x) = 0},99



5 Fat Spheres for Solving Multivariate Polynomial Systemswhih an be used as median spheres. We bound the distane of the polynomials pairwise
εi =

∥
∥
∥f̂i − pi

∥
∥
∥

ΩBB . (5.6)In order to bound the zero set of the polynomials F̂ , we onsider the intersetion of thegenerated fat spheres. Eah fat sphere
Fi(pi, εi,Ω) = {x : |pi(x)| ≤ εi} ∩ Ωbounds the zero level set of the polynomial f̂i in the sub-domain Ω. If the intersetion of fatspheres is not empty,

I =

n⋂

i=1

Fi(pi, εi,Ω) 6= ∅,then it ontains the zero set of the polynomials f̂i in the sub-domain Ω.Observation 5.2. If the intersetion is empty
I =

n⋂

i=1

Fi(pi, εi,Ω) = ∅,then it implies, that the intersetion of the zero sets Zi = {x : f̂i(x) = 0} is also empty
n⋂

i=1

Zi ∩Ω = ∅.Thus the domain Ω has no ommon point with the zero set of the polynomial system F̂and also with the zero set of F . These sub-domains an be negleted during the furtheromputations.Now we onsider the ase
I =

n⋂

i=1

Fi(pi, εi,Ω) 6= ∅.The region I is a �urved polytope�, whih is bounded by spherial pathes and linear sub-spaes. The spherial pathes are a part of the boundary surfaes of the fat spheres. Thepair of bounding spheres of the fat sphere Fi(pi, ε,Ω) an be desribed as the point set
Pi = {x : pi(x) = ±εi} ∩Ω.The segments of linear subspaes, whih bound the fat sphere intersetion, are a part of theboundaries of the sub-domain Ω.An example for two-dimensional fat ar intersetion is shown in Fig.5.3. Eah fat ar isthe intersetion of the omputational domain and an annulus. The intersetion of two fatars is bounded by a urved polygon. The boundaries of the polygon are irular ars andline segments.In general the intersetion of fat spheres is a urved polytope. It is not pratial to useit as omputational domain in further domain redutions. In order to redue iteratively the100



5.2 Bounding Region Generation

(a) (b)Figure 5.3: Extremal points of fat ar intersetion. The fat ars are represented by theirbounding ars (blak) and the median ars (green). In �gure (a) the fat sphere orner points aremarked by yellow dots and the fat sphere extreme points (fat sphere 1-extrema) by pink ones.The important fat sphere extrema from the fat sphere extrema are marked by red dots in �gure(b). The bounding region of the fat ar intersetion is the min-max box generated around theimportant fat sphere extrema (gray retangle).bounding regions, the output of the domain region has to be an axis-aligned box. Thereforewe ompute the min-max box, whih bounds the fat sphere intersetion I . This box an beomputed exatly, by �nding the extremal points of the fat sphere intersetion. For instanein Fig.5.3 (b) the extremal points of the fat ar intersetion are marked by red dots. Fourof these extrema are the intersetion points of the fat ar boundaries, while another one isan extremal point of a boundary ar. In order to �nd the extremal points of the fat sphereintersetion in general, we use the following de�nitions.De�nition 5.3. Given a system of polynomials F̂ in the sub-domain Ω = ×n
i=1[αi, βi]. Foreah polynomial f̂i ∈ F̂ we an ompute the fat sphere

Fi(pi, εi,Ω),where pi is the quadrati Taylor expansion of f̂i about the enter point of the sub-domain Ω.The fat sphere Fi(pi, εi,Ω) bounds f̂i = 0 in Ω. The ith boundary pair of the domain Ω isde�ned as
∂Ωi = {x : xi = αi ∨ xi = βi}.The boundary points of the fat sphere Fi are ontained in the set

Pi = {x : pi(x) = εi ∨ pi(x) = −εi}.Let NS denote the number of the elements of an index set S ⊆ {1, . . . , n}. A point x ∈ Ω isalled(i) fat sphere orner point if I, J ⊂ {1, . . . , n}, NI = k, NJ = n− k :

x ∈ X =
⋂

i∈I

∂Ωi

⋂

j∈J

Pj101



5 Fat Spheres for Solving Multivariate Polynomial Systems(ii) fat sphere m-extreme point if I, J ⊂ {1, . . . , n}, NI = k, NJ < n− k

x ∈ Y =
⋂

i∈I

∂Ωi

⋂

j∈J

Pj,where Y is an m-dimensional algebrai objet, and there exists n − k − m di�erentindexes l ∈ {1, . . . , n} \ I, suh that
∑

j∈J

(
∂pj
∂xl

)2

= 0.All orner points x of the sub-domain Ω are fat sphere orner points for k = n

x ∈
n⋂

i=1

∂Ωi ⊂ X .All intersetion points x of the fat sphere boundaries, whih lie in the interior of the domain
Ω are in the point set

x ∈
n⋂

j=1

Pi ⊂ X ,These points are fat sphere orner points with k = 0.Observation 5.4. A fat sphere m-extreme point is always an extreme point of an m-dimensional objet de�ned by the intersetion of spherial pathes and linear subspaes.A fat sphere m-extreme point is a point on the objet, where the tangent spae (the linearsubspae spanned by the gradient vetors of the interseting algebrai surfaes) in the point isperpendiular to n−k−m oordinate diretions. For instane the fat sphere (n−1)-extremepoints are the extremal points of the fat sphere boundary pathes de�ned by the equations
pi = ±εi.Observation 5.5. All fat sphere orner points and fat sphere extreme points are de�ned byan equation system with n equation in n variables, where all equations are linear or quadrationes. The quadrati equations are the equations of spheres. Therefore eah fat sphere ornerpoint and fat sphere extreme point an be omputed as the solution of an equation systemonsists of n− 1 linear equations and a single quadrati equation.De�nition 5.6. We all a fat sphere orner point or a fat sphere extreme point x an importantfat sphere extrema, if it satis�es for all i ∈ {1, . . . , n}

−εi ≤ pi(x) ≤ εi,thus the point x ∈ I belongs to the intersetion of the fat spheres.Observation 5.7. De�nition 5.3 and Observation 5.5 imply, that all important fat sphereextrema an be omputed by solving a �nite number of algebrai systems, where eah systemonsists n− 1 linear and one linear or quadrati equations, and at most 2n inequality tests.Lemma 5.8. The min-max box around the region I =
⋂n

i=1 Fi(pi, εi,Ω) 6= ∅, whih is the fatsphere intersetion in the sub-domain Ω, is the min-max box around the important fat sphereextrema. 102



5.3 Convergene Rate for Single RootsProof. The min-max box around I is the min-max box around the extremal points of theregion. Sine the fat sphere intersetion is bounded by spherial pathes and segments oflinear sub-spaes, any extremal point is either the orner point of the region, or the loalminimum/maximum point of the spherial path or its boundaries. All orner points of theintersetion I are ontained in the point set of fat sphere orner points. All loal extremalpoints of I are fat spherem-extreme points. Moreover only the points of I ful�ll the onditionfor the important fat sphere extrema.Fig.5.3 (b) shows a two-dimensional fat ar intersetion, where the fat sphere orner pointsand the fat sphere extreme points are marked by red and blue dots. The red ones denote theimportant fat sphere extrema.The min-max box of the fat sphere intersetion is an axis-aligned box. It ontains allpoints of the sub-domain Ω, whih an lie in the zero set of F . Therefore it an be used as aredued bounding region of the zero set of F in the sub-domain Ω.5.3 Convergene Rate for Single RootsWe bound the zero sets of polynomials with the help of quadrati polynomial equations.Therefore we expet that the rate of onvergene of the sequene of bounding regions is equalto three. These expetation is on�rmed in Theorem 5.14 in the end of this setion. If weassume, that the polynomials F possess a single root q in a domain, then the gradient vetorsof the polynomials are linearly independent in the point q. Thus the impliitly de�ned hyper-surfaes, de�ned by the zero set of the polynomials, interset eah other transversely at theroot. Moreover there exists a domain Ω0 around the root q, suh that for any point x ∈ Ω0holds
det(J(F )(x)) 6= 0. (5.7)Namely the gradient vetors ∇f1(x),∇f2(x), . . .∇fn(x) are linearly independent for all x ∈

Ω0. Therefore we suppose that any point of the initial domain Ω0 ful�lls (5.7).The fat sphere generation algorithm omputes �rst a set of modi�ed polynomials F̂ . Eahpoint of Ω0 ful�lls (5.7), so the gradient vetors ∇fi(x) do not vanish. In Setion 4.5.2 wehave shown, that eah modi�ed polynomial has a positive lower bound on the gradient length,if we ompute in a su�iently small sub-domain of Ω0. Therefore also the quadrati Taylorexpansions of the modi�ed polynomials are non-zero polynomials. The following lemmashows, that the gradient vetors of the modi�ed polynomials are linearly independent in asu�iently small sub-domain of Ω0.Lemma 5.9. Suppose that the gradient vetors ∇f1(x),∇f2(x), . . .∇fn(x) of the polynomials
fi ∈ F are linearly independent for all x ∈ Ω0. Consider a sub-domain Ω ⊆ Ω0, whih has adiameter δΩ < ε. We ompute the set of modi�ed polynomials F̂ in the sub-domain Ω for thearbitrary but �xed vetors of onstants ui, whih are linearly independent. If ε is su�ientlysmall, then for all x ∈ Ω

det(J(F̂ )(x)) 6= 0.Proof. The gradient vetors of fi are linearly independent in any point of Ω0, therefore thereexists a onstant K > 0, suh that all x ∈ Ω0 satisfy
∣
∣det(J(F )(x))

∣
∣ ≥ K > 0.103



5 Fat Spheres for Solving Multivariate Polynomial SystemsWe ompute the set of polynomials F̂c with speial Hessian in a ertain point c ∈ Ω0 for the�xed vetors of onstants ui. Then the gradient vetors of f̂i ∈ F̂c in the point c an beexpressed as
∇f̂i(c) =

n∑

j=1

uji∇fi(c).The vetors of onstants ui de�ne the matrix U = (u1, . . . ,un). Sine the vetors ui arelinearly independent, the determinant of U is a positive onstant U
∣
∣det(U)

∣
∣ = U > 0.Therefore the determinant of the Jaobian of F̂c in the point c satis�es

∣
∣
∣det(J(F̂c)(c))

∣
∣
∣ =

∣
∣det(UT · J(F )(c))

∣
∣ =

∣
∣det(U)

∣
∣ ·
∣
∣det(J(F )(c))

∣
∣ ≥ UK > 0.Suppose that Ω ⊆ Ω0 is a sub-domain with the enter point c. The set of new polynomialsomputed in a point c is F̂c. Then there exists εc > 0, suh that if the diameter δΩ of thesub-domain Ω is smaller than εc, for all x ∈ Ω

∣
∣
∣det(J(F̂c)(x))

∣
∣
∣ > 0.In Lemma 4.19 we have shown, that for �xed vetors of onstants ui the system of polynomials

F̂c depends ontinuously on the point c. Thus there exists a general bound ε > 0, suh thatfor any sub-domain Ω ⊆ Ω0, whih has the diameter δΩ < ε, any x ∈ Ω satis�es
∣
∣
∣det(J(F̂ )(x))

∣
∣
∣ > 0,where F̂ is the set of polynomials with speial Hessian in the enter of the sub-domain Ω.Corollary 5.10. The median spheres are the zero set of the quadrati Taylor expansions of

f̂i about the enter of the sub-domain Ω

pi = T 2
c (f̂i)(x).If the diameter of Ω is su�iently small, then for all x ∈ Ω

det(J(p1, . . . pn)(x)) 6= 0.Proof. The onstrution of pi implies that
∣
∣
∣det(J(f̂1, . . . , f̂n)(c))

∣
∣
∣ =

∣
∣det(J(p1, . . . , pn)(c))

∣
∣ .The polynomials f̂i depend ontinuously on the point c, so as their quadrati Taylor expan-sions pi. Aording to the proof of Lemma 5.9 there exists a general bound ε > 0, suh thatif the diameter δΩ of the sub-domain Ω is smaller than ε, then any x ∈ Ω satis�es

∣
∣det(J(p1, . . . , pn)(x))

∣
∣ > 0.104



5.3 Convergene Rate for Single RootsWe omputed the fat sphere boundaries as onentri spheres to the median sphere pi = 0.These spheres are de�ned by the equations
pi = ±εi,where εi is omputed as

εi =
∥
∥
∥f̂i − pi

∥
∥
∥

ΩBB .Lemma 5.11. We ompute a polynomial f̂i with speial Hessian in the enter point of thesub-domain Ω. Let εi denote the bound
εi =

∥
∥
∥f̂i − T 2

c (f̂i)
∥
∥
∥

ΩBB .Then it satis�es
εi ≤ Cdiam(Ω)3.Proof. The sub-domain Ω is an axis-aligned box. Sine all norms are equivalent on �nitedimensional vetor spaes, there exists a onstant C1, suh that

εi =
∥
∥
∥f̂i − pi

∥
∥
∥

ΩBB ≤ C1

∥
∥
∥f̂i − pi

∥
∥
∥

Ω

∞
,and C1 does not depend on Ω. If the enter point of Ω is denoted by c, then

∥
∥
∥f̂i − pi

∥
∥
∥

Ω

∞
=
∥
∥
∥f̂i − T 2

c (f̂i)
∥
∥
∥

Ω

∞
<

1

6
max

v∈S1,x∈Ω

∣
∣
∣
∣
∣

d3f̂i
dv3

(x)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

∗

diam(Ω)3.Reall from Lemma 4.19 that f̂i depends ontinuously on the points of the omputationaldomain Ω0 for eah parameter vetor of u, where uj 6= 0. Thus for all Ω a global upperbound C2 an be given for (∗). Therefore we observe, that
εi ≤

1

6
C1C2diam(Ω)3 ≤ Cdiam(Ω)3.In order to measure the longest diameter of the intersetion of fat spheres we give ageneral lower bound on the gradient of a ertain funtion. This result is similar to the onein Lemma 4.16.Lemma 5.12. Consider the funtion and h =

√
∑n

i=1 q
2
i de�ned by the polynomials qi ∈ Q.We assume that the Jaobian matrix is not singular in any x ∈ Ω

det(J(Q)(x)) 6= 0.For all x ∈ Ω, whih do not satisfy qi(x) = 0 for i = 1, . . . n, there exists a positive onstant
LΩ suh that

∥
∥∇h(x)

∥
∥2 ≥ LΩ > 0.105



5 Fat Spheres for Solving Multivariate Polynomial SystemsProof. Sine
∇h(x) =

∑n
i=1 qi∇qi

√
∑n

i=1 q
2
i

,we obtain
∥
∥∇h(x)

∥
∥2 =

〈∑n
i=1 qi∇qi

√
∑n

i=1 q
2
i

,

∑n
i=1 qi∇qi

√
∑n

i=1 q
2
i

〉

=

=
q(x)
∥
∥q(x)

∥
∥

T

J(Q)(x)J(Q)(x)T
q(x)
∥
∥q(x)

∥
∥
≥ min

‖v‖=1
vTGram(∇q1(x), . . .∇qn(x))v,where q(x)T = (q1(x), . . . , qn(x)). We assumed, that J(Q)(x) is not singular, therefore

Gram(∇q1(x), . . .∇qn(x)) is also non-singular. Moreover it is symmetri. Thus for all x ∈ Ω

∥
∥∇h(x)

∥
∥2 ≥ λ(x) > 0,where λ(x) is the minimal eigenvalue of the Gram matrix. Sine the Gram matrix is notsingular, and it depends ontinuously on the points of Ω, there exists a positive lower bound

LΩ depends on Ω, suh that
λ(x) ≥ LΩ > 0.Lemma 5.13. Consider a domain Ω0. In eah point c ∈ Ω0 is given a set of polynomials

Qc. Eah polynomial pi ∈ Qc depends ontinuously on the point c. We assume that for all
c there exists a sub-domain Ωc ⊆ Ω0, where c is the enter point of the sub-domain and theJaobian matrix of the polynomial system Qc is not singular in any x ∈ Ωc. Consider thefuntion

hc =

√
√
√
√

n∑

i=1

q2ide�ned by the polynomials qi ∈ Qc. For all x from the sub-domain Ωc, whih do not satisfy
qi(x) = 0 for i = 1, . . . n, there exists a general positive onstant L suh that

∥
∥∇hc(x)

∥
∥2 ≥ L > 0.Proof. Eah polynomial qi ∈ Qc depends ontinuously on the hoie of the point c. A-ording to Lemma 5.12 there exists a lower bound of ∥∥∇hc(x)∥∥2 for all x ∈ Ωc, whihbounds the minimal eigenvalue of the Gram matrix of qi ∈ Qc. Therefore for all Ωc, where

det(J(Qc)(x)) 6= 0, there exists a general positive lower bound L, suh that any x ∈ Ωcsatis�es
∥
∥∇h(x)

∥
∥2 ≥ L > 0,if x does not satisfy qi(x) = 0 for all qi ∈ Ωc.Theorem 5.14. Suppose that the gradient vetors of the polynomials fi ∈ F are linearlyindependent for all points x ∈ Ω0. Consider a sub-domain Ω ⊆ Ω0, whih is su�iently smalland ontains a single root q of the polynomials fi. We ompute the set of polynomials F̂with speial Hessian in the enter point of the domain Ω for the arbitrary but �xed vetors of106



5.3 Convergene Rate for Single Rootsonstants ui, whih are linearly independent. If we apply the domain shrinking step of the fatsphere generation algorithm on the sub-domain Ω, then there exists a onstant C, suh thatthe generated bounding region Ω∗ satis�es
diam(Ω∗) ≤ Cdiam(Ω)3.Proof. Suppose that Ω is a sub-domain of Ω0, whih ontains a single root q. We omputethe set of polynomials F̂ with speial Hessian in the enter point c of Ω. The median spheresare de�ned as the zero set of the quadrati Taylor expansion of the polynomials f̂i ∈ F̂ aboutthe point c

pi(x) = T 2
c (f̂i)(x).We denote with εi the distane bound of f̂i and pi omputed in the BB-norm in Ω. A fatsphere is de�ned by the point set

Fi(pi, εi,Ω) = {x :
∣
∣pi(x)

∣
∣ ≤ εi} ∩ Ω.Let us denote the fat sphere intersetion as I =

⋂n
i=1Fi. Eah fat sphere bounds the hyper-surfae f̂i = 0, thus the single root q ∈ Ω is ontained in the fat sphere intersetion

q ∈ I ∩ Ω.We de�ne the funtion
h(x) =

√
√
√
√

n∑

i=1

q2i ,where qi(x) = pi(x) − pi(q). We onsider the integral urves de�ned by the vetor �eld
−∇h/

∥
∥∇h

∥
∥ in Ω. If Ω has a su�iently small diameter, aording to Corollary 5.10 all

x ∈ Ω satisfy
det(J(p1, . . . pn)(x)) 6= 0.Sine ∇pi(x) = ∇qi(x), for all x ∈ Ω

det(J(q1, . . . qn)(x)) 6= 0. (5.8)Together with Lemma 5.12 this implies that the integral urves are regular in the inner pointsof Ω \ {q}.Suppose that x is an arbitrary point of the fat sphere intersetion I omputed in asu�iently small domain Ω. Suh a point x ∈ I ∩ Ω ful�lls for all i = 1, . . . n

∣
∣pi(x)

∣
∣ ≤ εi.We onsider the integral urve u(s) with the starting point u(0) = x ∈ I , whih is regularon Ω \ {q}. We assume, that the urve is parametrized by ar length. Suh an the integralurve has a unique limit, if the omputational domain is su�iently small. Sine h(x) ≥ 0and the tangent vetors of the urve u(s) always point to the diretion of steepest deent on

h, there exists a parameter value s∗ suh that for s < s∗

lim
s→s∗

u(s) = q.107



5 Fat Spheres for Solving Multivariate Polynomial SystemsAording to the mean value theorem there exists ξ ∈ (0, s∗) suh that
h(u(s∗))− h(u(0))

s∗
= ∇h(u(ξ)) · u̇(ξ) = −

∥
∥∇h(u(ξ))

∥
∥ .Sine h(u(s∗)) = 0

s∗ =
h(u(0))

∥
∥∇h(u(ξ))

∥
∥

=
h(x)

∥
∥∇h(u(ξ))

∥
∥
≤
√

2
∑n

i=1 ε
2
i

LΩ
.We supposed that u(s) is ar length parametrized, therefore x ∈ I satis�es

∥
∥x− q

∥
∥ =

∥
∥u(0)− u(s∗)

∥
∥ ≤

√

2
∑n

i=1 ε
2
i

LΩ
.Thus any point of I is loser to q than √2

∑n
i=1

ε2i
LΩ

. So the min-max box Ω∗ ⊂ Ω, whihontains I , has a diameter
diam(Ω∗) ≤ 2

√

2n
∑n

i=1 ε
2
i

LΩ
.In Lemma 4.19 we have shown, that the system of polynomials F̂ depends ontinuouslyon the hoie of the domain Ω. Therefore also eah pi and qi depend ontinuously on thehoie of Ω. The lower bound LΩ of ∥∥∇h(x)∥∥2 bounds the minimal eigenvalue of the Grammatrix of qi. Aording to Lemma 5.12 there exists a general positive lower bound L, suhthat any x ∈ Ω satis�es

∥
∥∇h(x)

∥
∥2 ≥ L > 0.We have also shown in Lemma 5.11 that there exists a onstant D, whih does not dependon the hoie of Ω, suh that

εi ≤ Ddiam(Ω)3.Therefore the diameter of the min-max box Ω∗ satis�es
diam(Ω∗) ≤ 2

√

2n
∑n

i=1 ε
2
i

L
≤ 2
√
2Dn√
L

diam(Ω)3 = Cdiam(Ω)3,where C does not depend on the hoie of Ω.5.4 Iterative Domain Redution AlgorithmIn this setion we present a subdivision algorithm ombined with the loal domain redutionstrategy Algorithm 8. It is an iterative domain redution, whih redues the bounding regionseither by subdivision or by bounding fat sphere intersetion.108



5.4 Iterative Domain Redution AlgorithmAlgorithm 9 GenerateBoundingBoxes(F,Ω, ε)1: A ← DomainRedution(F,Ω) {domain redution}2: if 2 · diam(A) ≤ diam(Ω) then3: if diam(A) > ε then4: GenerateBoundingBoxes(F,A, ε) {reursive all}5: else6: B = B ∪A7: end if8: else9: if diameter of Ω > ε then10: subdivide the domain Ω to Ωi {subdivision}11: GenerateBoundingBoxes(F,Ωi, ε) {reursive all}12: else13: B = B ∪Ω14: end if15: end if16: return B5.4.1 AlgorithmThe global root approximation algorithm (Algorithm 9) is an iterative domain redution,whih bounds the roots of a multivariate polynomial system F within a presribed toleranebound ε. The algorithm omputes a set of axis-aligned boxes with the help of hierarhialsubdivision and fat sphere intersetion. Eah root of the system is approximated via a nestedsequene of domains, whih have dereasing diameters. The algorithm redues the domains,until eah list of nested domains has an element with su�iently small diameter. Then thealgorithm returns the last element of the lists.Eah domain is analyzed, until it is deteted as an empty region or it has a su�-iently small diameter. We detet empty domains via the onvex hull property (see inObservation 3.2). A sub-domain is also empty, if the loal algorithm generates fat spheres,whih do not interset. Then the algorithm does not analyze these domains any further. Nev-ertheless, it an happen that a domain without root is omputed with small diameter, but itis not deteted as an empty region. Thus the output an also ontain empty sub-domains.It is also important to separate the real roots of polynomials to di�erent bounding do-mains. In some ases we an ertify weather a domain in the output ontains only one singleroot, although this is not always possible. If two real roots have smaller distane than the tol-erane ε, they may have ommon bounding region in the output of the algorithm. Thereforelearly the number of bounding regions in the output is not neessarily equal to the numberof real roots of the polynomial system.Choie of Polynomial Combinations and Constants. As we desribed already inSetion 5.2.2 we ompute polynomials with speial Hessian as the ombination of n − 1 or
n di�erent polynomials from the original set of polynomials F . If we only ombine n − 1polynomials from F , then we an hoose the set of polynomials in the onstrution of eahnew polynomial f̂i di�erently. However, we approximate the zero set of all polynomials in F ,109



5 Fat Spheres for Solving Multivariate Polynomial Systemsso we have to use all polynomials at least one in the omputation of f̂i. Otherwise we onlyapproximate the solution set of ertain subset of F . This problem does not appear if we useall the polynomials in F to ompute f̂i. Aording to our experiments, this strategy reduesthe size of the bounding domains faster, although we have to handle larger linear systems to�nd polynomials with speial Hessian.In order to ompute eah new polynomial f̂i, we have to hoose an arbitrary but �xedvetor of onstants ui. These vetors of onstants are hosen a priori and they are kept �xedduring eah subdivision and domain redution step. We have seen in Lemma 5.9, that thehoie of the vetors ui is important. These vetors have to be linearly independent in orderto provide the third order onvergene of the bounding regions for single roots.5.4.2 ExamplesWe present here several examples, whih show the behavior of the root-�nding algorithmGenerateBoundingBoxes for polynomial systems in two or three variables.Intersetion Points of Impliitly De�ned Planar CurvesExample 5.15. First we present a two-dimensional example to show the behavior of theroot-�nding algorithm. The two impliitly de�ned urves are de�ned by the polynomialswith bi-degree (9, 8) and (6, 9). They are represented in the unit box. The intersetionpoints of the urves are approximated within the tolerane ε = 10−4. The urves have �veintersetion points in the domain. After three subdivision steps all roots are separated intodi�erent sub-domains. Then four or �ve domain redution steps are made in order to ahievethe presribed auray around eah intersetion point. The output is represented in Fig.5.4.In the left one an see the domains, generated during the domain redution steps (either withsubdivision or with the help of fat ar intersetion). They are shown in di�erent shades ofgray. In the right the enter point of eah bounding domain from the output is marked as ared dot.Example 5.16. This example appears in the paper of Elber et al. [17℄. They present astrategy to approximate the intersetion points of impliitly de�ned urves. Their algorithmpurge away empty domains and identify domains with single solution more e�iently thanthe subdivision method. We ompare here the fat ar generation with the simple subdivisionvia this example.The two bi-ubi urves are the re�etion of eah other along the x = y line (see Fig.5.5).They interset eah other along the re�etion line in �ve di�erent points and also in two otherpoints in the domain. We represented the urves in the unit square [0, 1]2, and approximatethe roots using di�erent toleranes. In Table 5.2 we ompare the total number of boundingdomains in the output. The fat ar generation method returns for small tolerane a numberof bounding domains, whih is equal to the number of the intersetion points, while the sub-division method returns a large number of bounding boxes. The algorithm, whih generatesfat ars, eliminates e�iently the empty sub-domains. Moreover it speeds up the onvergeneand uses less subdivision steps. In Fig.5.5 we show the output of the fat ar generation andthe subdivision algorithms. The intersetion points of the urves are marked by blak rosses,while the generated bounding domains are represented by their enter points marked by reddots. In the �rst of row of the �gure we represent the outputs of the fat ar generation, whilein the seond row the outputs of simple subdivision method are shown.110



5.4 Iterative Domain Redution Algorithm

Figure 5.4: Approximation of the intersetion points of impliitly de�ned urves given by thezero level set of polynomials with bi-degree (9, 8) and (6, 9). In the left: domains generatedduring the domain redution steps, in the right: the enter points of the bounding domains aremarked as red dots.

Table 5.2: Approximating intersetion of impliitly de�ned urves. The number of used bound-ing regions for the seven intersetion points of the urves in Fig. 5.5.Algorithm ε = 0.1 ε = 0.01 ε = 0.001 ε = 0.0001Fat Ars 15 14 7 7Subdivision 22 40 68 71
111



5 Fat Spheres for Solving Multivariate Polynomial Systems
Fat ar generation

ε = 0.1 ε = 0.01 ε = 0.001Bounding box generation

ε = 0.1 ε = 0.01 ε = 0.001Figure 5.5: Comparison of root approximation, omputed with fat ar generation and subdivi-sion. In the �rst row we present the outputs of the fat ar generation, while in the seond row theoutputs of simple subdivision method is shown for di�erent toleranes. The intersetion pointsof the urves are marked by blak rosses, while the generated bounding domains are representedby their enter points marked by red dots.
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5.4 Iterative Domain Redution AlgorithmExample 5.17. Example 5.16 indiates that the fat ar generation algorithm separates thedi�erent roots well. Therefore we present an example, where the roots of the polynomials arehanging from two single roots to one double root with the translation of one of the urves.The urves are represented by the zero set of
f(x, y) = −(0.95 + 10−k) + 0.2x+ 0.4y + x2 + y2,

g(x, y) = −0.48 + 0.2x+ 0.1y + xy.We set the tolerane to ε = 10−8 and ompute the approximation in the unit box for the valueof k = 2, 5 and k = 10. The distane of the exat roots (denoted by δ) is given in the �rstrow of Table 5.3 for eah value of k. On the top of the table we show the results obtained byfat ar generation, while in the bottom the outputs of simple subdivision method are shown.In eah olumn the diameters of the bounding domains are given, whih were generated stepby step during the approximation methods. The bounding regions are redued until theirdiameter is smaller than the tolerane or at most up to eight steps. In the last olumn weshow the redution of the bounding regions for one double root. Finally we present a �gure,where the bounding domains are shown in the ase of k = 2, 5 and for the double root. Theshrinking regions are represented in di�erent shades of gray (see Fig.5.6).Intersetion Points of Impliitly De�ned Algebrai SurfaesExample 5.18. This example orresponds to the two-dimensional one in Example 5.16. Itompares simple subdivision method with the fat sphere intersetion in a three-dimensionalroot-�nding problem. The problem is given by the equation system
0.4(x2 + y2 + z2)− 0.88(x + y + z)− 4xyz + 1.452 = 0,

104(x3 + y3 + z3)− 141(x2 + y2 + z2) + 61.875(x + y + z)− 27.978125 = 0,

x2 + y2 + z2 + 0.4(x + y + z)− 1.58 = 0,with respet to the unit ube. The system has six di�erent roots in the omputational domain.These roots are situated pairwise relatively lose to eah other. If we approximate suh rootswith simple subdivision, usually the root separation proess is slow, and it uses high numberof bounding domains in the output. Aording to our experiments in Example 5.16, we expetthat the fat sphere generation method uses less subdivision steps and few bounding regionsin the output. In Table 5.4 we ompare the total number of omputed bounding domains.The fat sphere generation method returns for small tolerane a number of bounding domains,whih is equal to the number of the roots. Moreover it uses less subdivision steps (see inolumns #l). While the subdivision method returns a large number of bounding boxes. InFig.5.7 we show the output of the fat sphere generation and the subdivision algorithm. Thegenerated bounding domains are represented by their enter point marked by red dots. Inthe �rst row we present the outputs of the fat sphere generation, while in the seond row theoutputs of simple subdivision method are shown.Example 5.19. We an approximate the ordinary singular points of an impliitly de�nedsurfae with the help of the fat sphere generation. In this example we present two di�erent113



5 Fat Spheres for Solving Multivariate Polynomial SystemsTable 5.3: Approximating intersetion points of impliitly de�ned urves, whih are translatedin three steps (k = 2, 5, 10) from two single roots to one double root. We represent here thediameters of bounding boxes in eah step of the bounding region generation. In the ases of twosingle roots we marked the level of domain redution, where the algorithms separate the roots.The distane of the two roots is given in the �rst row of the table (δ).
k = 2 (δ = 1.41 10−1) k = 5 (δ = 4.47 10−3) k = 10 (δ = 1.41 10−5) Double root

Fatargener
ation root separation 0.707 0.707 0.707

0.707 0.707 9.65 10−2 9.64 10−2 0.164
0.128 0.151 1.55 10−2 1.49 10−2 2.35 10−2

1.85 10−3 3.00 10−3 4.57 10−3 9.11 10−4 1.28 10−3

5.49 10−9 2.35 10−8 root separation 1.97 10−5 1.62 10−5

2.28 10−3 2.28 10−3 root separation 2.30 10−8

3.34 10−7 3.34 10−7 9.86 10−6 9.86 10−6

1.05 10−18 1.05 10−18 8.48 10−12 8.48 10−12

Subdivision
root separation 0.707 0.707 0.707

0.707 0.707 0.353 0.353 0.353
0.353 0.353 0.176 0.176 0.176
0.176 0.176 8.88 10−2 8.88 10−2 8.88 10−2

8.88 10−2 8.88 10−2 4.41 10−2 4.41 10−2 4.41 10−2

4.41 10−2 4.41 10−2 root separation 2.20 10−2 2.20 10−2

2.20 10−2 2.20 10−2 2.20 10−2 2.20 10−2 1.10 10−2 1.10 10−2

1.10 10−2 1.10 10−2 1.10 10−2 1.10 10−2 5.52 10−3 5.52 10−3Fat ar generation
Bounding box generation

Figure 5.6: Redution of bounding boxes in the ase of k = 2, 5 and for the double root. Inthe �rst row we used the fat ar generation method, while in the seond row simple subdivision.114



5.4 Iterative Domain Redution Algorithm
Table 5.4: Approximating intersetion of impliitly de�ned surfaes. We present the number ofused bounding regions and the number of domain redution steps (denoted by #l). This numbershows the maximal depth of the domain redution or subdivision tree, whih is traversed by thealgorithm during the root approximation.Algorithm ε = 0.1 #l ε = 0.01 #l ε = 0.001 #lFat Spheres 42 2 6 5 6 5Subdivision 78 5 78 8 66 11

Fat sphere generation
ε = 0.1 ε = 0.01 ε = 0.001Bounding box generation
ε = 0.1 ε = 0.01 ε = 0.001Figure 5.7: Comparison of approximate roots omputed with fat sphere generation and subdi-vision. In the �rst row we represent the outputs of the fat sphere generation, while in the seondrow the outputs of simple subdivision method are shown for di�erent toleranes.
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5 Fat Spheres for Solving Multivariate Polynomial Systemsalgebrai surfaes given by an impliit equation f(x, y, z) = 0 with ordinary singularities.These singularities an be found by omputing the zero set of the partial derivatives
fx = 0, fy = 0, fz = 0.A singular point of the surfae also satisfy the equation of the surfae.In Fig.5.8 the dots mark the approximate solution points of the system of partial deriva-tives. The red ones are the solutions, whih lie lose to the impliitly de�ned surfaes f = 0.The �rst surfae in the �gure is alled Cayley-ubi. It has four ordinary singularities, whihare omputed in the unit ube as the solution of the system
−250xz + 175x + 125.5z − 87.85 = 0,

250yz − 75y − 124.95z + 37.485 = 0,

−125x2 + 125y2 + 125.5x − 124.95y + 50z − 25.275495 = 0.The seond surfae is the Ding-dong surfae, whih has one ordinary singularity. It is om-puted in the unit ube as the solution of the system
18x− 9.06 = 0,

18y − 8.994 = 0,

81z2 − 100.08z + 29.9136 = 0.The tolerane during the omputations was set to 0.01 in both examples.
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5.4 Iterative Domain Redution Algorithm

Figure 5.8: Ordinary singularities on impliitly de�ned surfaes.
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Chapter 6ConlusionWe presented a new family of algorithms to approximate impliitly de�ned algebrai urvesand real roots of polynomial systems. These methods are based on the geometrial propertiesof polynomial systems.In order to generate loal bounding regions, we presented fat ars, whih are the tubularneighborhood of irular ars. First we presented several tehniques to generate these bound-ing regions for planar urves. One of these tehniques omputes polynomials with modi�edTaylor expansion. This method has several advantageous properties, therefore we generalizedit to approximate algebrai urves embedded into the three- and n-dimensional spae. Thefat ars, generated by this tehnique, have a lose onnetion to the osulating irle of thealgebrai urve. The ubi onvergene order is on�rmed for these bounding regions in thethesis. The loal fat ar generation ombined with iterative subdivision leads to a hybridalgorithm, whih generates bounding regions to impliitly de�ned algebrai urves. We pre-sented several examples and appliations of the algorithm to approximate impliitly de�nedalgebrai urves in two- and three-dimensional spae.Based on the de�nition of fat ars we introdued fat spheres as bounding regions foralgebrai objets. These regions an also be generated using polynomials with modi�ed Taylorexpansion. Interseting these bounding regions leads us to a loal domain redution strategy,whih bounds the intersetion points of algebrai surfaes. We ombined this strategy withiterative subdivision in order to approximate real roots of multivariate polynomial systems.This hybrid algorithm generates sequenes of bounding regions, whih onverge with orderthree to the single roots of a multivariate polynomial system.The struture of these algorithms arries two main messages. First of all, that analyzinggeometri properties of algebrai objets leads to stable tehniques on real algebrai set ap-proximation. This stability is erti�ed by the Bernstein-Bézier polynomials. In addition fatar and sphere omputations are advantageous. Although they require extra omputationaltime ompared with other bounding primitives, the generated bounding regions onvergefaster. Computing with quadrati bounding regions provides faster termination of the algo-rithm and redues the depth of the subdivision tree.
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