
UNIVERSITÄT LINZ
JOHANNES KEPLER JKU

Technisch-Naturwissenschaftliche

Fakultät

Symbolic-Numeric Algorithms for
Plane Algebraic Curves

DISSERTATION

zur Erlangung des akademischen Grades

Doktorin

im Doktoratsstudium der

Technischen Wissenschaften

Eingereicht von:

M.Sc. Mădălina Hodorog

Angefertigt am:

Doctoral Program “Computational Mathematics”

Johann Radon Institute for Computational and Applied Mathematics

Reasearch Institute for Symbolic Computation

Beurteilung:

A. Univ. Prof. Dr. Josef Schicho (Betreuung)

Prof. Dr. Bernard Mourrain

Linz, Oktober, 2011

Johannes Kepler University Linz
Doctoral Program “Computational Mathematics”

Johann Radon Institute for Computational and Applied Mathematics
Austrian Academy of Sciences

Research Institute for Symbolic Computation Linz

Symbolic-Numeric Algorithms for
Plane Algebraic Curves

Doctoral Thesis

M.Sc. Mădălina Hodorog

Advised by
A. Univ. Prof. Dr. Josef Schicho

Prof. Dr. Bernard Mourrain

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe.

Linz, Oktober 2011 ...

Mădălina Hodorog

The author was funded by:

• the Upper Austrian Government (1/10/2007-30/09/2008),

• the Austrian Science Fund (FWF): W1214-N15, project DK9 (1/10/2008-present).

ii

Zusammenfassung

In der Computeralgebra ist das Problem der Berechnung der topologischen Invarianten,
d.h. Delta-Invariante und Geschlecht, einer ebenen komplexen algebraischen Kurve, gut
verstanden, wenn die Kurve durch ein Polynom mit exakten Daten (d.h. ganzen Zahlen
und rationalen Zahlen) definiert ist. Eine Herausforderung ist, dieses Problem zu lösen,
wenn die Koeffizienten inexakte Daten sind (d.h. numerischen Werten).
In dieser Disseration behandeln wir das algebraische Problem der Berechnung der topologis-
chen Invarianten einer ebenen komplexen algebraischen Kurve definiert durch ein Polynom
mit sowohl exakten als auch inexakten Daten. Zu den inexakten Daten assoziieren wir eine
positive reelle Zahl, welche Toleranz oder Rauschen genannt wird und die Größenordnung
des Fehlers in den Koeffizienten angibt. Wir haben es mit einem schlecht gestellten Prob-
lem zu tun, was bedeutet, dass winzige Änderungen in den Eingangsdaten die Lösung des
Problems dramatisch verändern.
Zur Behandlung dieses schlecht gestellten Problems stellen wir eine Regularisierungsmeth-
ode vor, welche die Invariante einer ebenen komplexen algebraischen Kurve schätzt. Unsere
Regularisierungsmethode besteht aus einer Menge von symbolisch-numerischen Algorith-
men, die strukturelle Informationen über die zu analysierende Kurve extrahiert, und aus
einer Parameterwahlregel, in Abhängigkeit von der Größenordnung des Rauschens. Wir
entwerfen zunächst zur Berechnung der Invarianten einer ebenen komplexen algebraischen
Kurve symbolisch-numerische Algorithmen um damit

• die Verschlingung für jede Singularität der Kurve durch numerisches Lösen von Gle-
ichungen zu berechnen;

• das Alexander-Polynom jeder Verschlingung durch das Benützen von Algorithmen
aus der algorithmischen Geometrie (z.B. eine adaptierte Version des Bentley-Ottmann
Algorithmus) und durch Verwenden von kombinatorischen Objekten aus der Knoten-
theorie zu berechnen;

• eine Formel für die Delta-Invariante und für das Geschlecht der Kurve abzuleiten.

Im weiteren beweisen wir, dass die symbolisch-numerischen Algorithmen zusammen mit
der Parameterwahlregel Näherungslösungen berechnen, die die Konvergenzeigenschaft für
gestört Daten erfüllen.
Die entworfenen symbolisch-numerischen Algorithmen sind in einem neuen Software-Paket,
welches wir Genom3ck nennen, implementiert. Diese Software wurde mit dem freien alge-
braischen geometrischen System Axel und mit dem freien Computeralgebrasystem Math-
emagix entwickelt. Für unsere Zwecke bieten diese beide Systeme sowohl moderne graphis-
che Möglichkeiten als auch algebraische und geometrische Methoden für die Manipulation

iv

algebraischer Kurven und Flächen, welche durch Polynome mit genauen und ungenauen
Daten definiert sind. Das Software-Paket Genom3ck berechnet nicht nur das Geschlecht
einer ebenen komplexen algebraischen Kurve, sondern berechnet auch andere nützliche In-
formationen, wie zum Beispiel die Singularitäten der Kurve in der projektiven Ebene und
den topologischen Typ jeder Singularität.
Schlüsselwörter: Ebene Kurvensingularität, Näherungslösungen, schlecht gestelltes Prob-
lem, Regularisierungsmethode, symbolisch-numerische Algorithmen, Verschlingung einer
Singularität, Alexander-Polynom, Delta-Invariante, Geschlecht.

Abstract

In computer algebra, the problem of computing topological invariants (i.e. delta-invariant,
genus) of a plane complex algebraic curve is well-understood if the coefficients of the defining
polynomial of the curve are exact data (i.e. integer numbers or rational numbers). The
challenge is to handle this problem if the coefficients are inexact (i.e. numerical values).
In this thesis, we approach the algebraic problem of computing invariants of a plane complex
algebraic curve defined by a polynomial with both exact and inexact data. For the inexact
data, we associate a positive real number called tolerance or noise, which measures the
error level in the coefficients. We deal with an ill-posed problem in the sense that, tiny
changes in the input data lead to dramatic modifications in the output solution.
For handling the ill-posedness of the problem we present a regularization method, which
estimates the invariants of a plane complex algebraic curve. Our regularization method
consists of a set of symbolic-numeric algorithms that extract structural information on the
input curve, and of a parameter choice rule, i.e. a function in the noise level. We first
design the following symbolic-numeric algorithms for computing the invariants of a plane
complex algebraic curve:

• we compute the link of each singularity of the curve by numerical equation solving;

• we compute the Alexander polynomial of each link by using algorithms from compu-
tational geometry (i.e. an adapted version of the Bentley-Ottmann algorithm) and
combinatorial objects from knot theory;

• we derive a formula for the delta-invariant and for the genus.

We then prove that the symbolic-numeric algorithms together with the parameter choice
rule compute approximate solutions, which satisfy the convergence for noisy data property.
Moreover, we perform several numerical experiments, which support the validity for the
convergence statement.
We implement the designed symbolic-numeric algorithms in a new software package called
Genom3ck, developed using the Axel free algebraic geometric modeler and the Mathemagix
free computer algebra system. For our purpose, both of these systems provide modern
graphical capabilities, and algebraic and geometric tools for manipulating algebraic curves
and surfaces defined by polynomials with both exact and inexact data. Together with its
main functionality to compute the genus, the package Genom3ck computes also other type
of information on a plane complex algebraic curve, such as the singularities of the curve in
the projective plane and the topological type of each singularity.
Keywords: Plane curve singularity, approximate solutions, ill-posed problem, regular-

vi

ization, symbolic-numeric algorithms, link of a singularity, Alexander polynomial, delta-
invariant, genus.

To the memory of my grandparents,
Elena and Ionel Hodorog

viii

Acknowledgements

A lot of people influenced and contributed to the realization of this thesis, which is the
result of many years of study and research, hard work and ambition.

I would like to especially thank my advisor Josef Schicho for giving me the chance to be part
of the Doctoral Program “Computational Mathematics” in the frame of DK9 and to be a
member of the Symbolic Computation Group at RICAM. His valuable guidance contributed
to the development of this thesis. I thank Josef for always finding the time to answer my
questions and for paving my way in the field of computational algebraic geometry.

I would like to thank Bernard Mourrain for hosting my research visits to his research group
at INRIA Sophia-Antipolis and for agreeing to be the second examiner of this thesis. His
significant advice led to the advance of this thesis. I thank Bernard for teaching me various
implementation issues concerning computer algebra systems and for being an example in
combining advanced programming techniques with pure mathematics.

I would like to thank Peter Paule for setting up a well-organized and friendly environment in
the Doctoral Program “Computational Mathematics”. I thank Peter for his useful lectures
on “Analytical combinatorics” and on “Algorithmic combinatorics”.

I would like to thank Bruno Buchberger for his support to found the Research Institute
e-Austria Timişoara. This led to a valuable connection between RISC and West University
of Timişoara, which allowed me to continue my research in Linz. I thank Bruno for his
creative comments on this work during the DK Seminar Meetings at Strobl.

I thank Tudor Jebelean for his help during my first year of PhD studies at RISC and for
encouraging my application to the “Doctoral Program: Computational Mathematics”.

I especially thank Adrian Crăciun. I learnt the basics of research from him. I thank Adi
for spending the extra time in teaching me the art of writing a good research paper, for the
long training hours in mathematical logic, and for supporting my research activity.

I would like to thank Viorel Negru and Dana Petcu from the West University of Timişoara,
who supported my study and my research activity.

I want to thank Dan Bates and Chris Peterson for hosting my research visit to Colorado
State University, Fort Collins. I thank Dan for initiating me in the field of numerical
algebraic computation and for making my visit faraway from home a pleasant experience.
I thank Chris for his interesting lecture on homology. His great teaching ability raised my
interest in this intricate field.

I want to thank my colleagues from the “Doctoral Program: Computational Mathemat-
ics”, especially to Szilvia Béla, Ismael Bleyer, Clemens Hofreither, Lam Xuan Chau Ngo,

x

Veronika Pillwein, Clemens Raab and Stefan Takacs, for their helpful discussions and for
the friendly atmosphere they created. Many thanks to Gabriela Hahn, for the exemplary
organization in handling the administrative formalities.

I thank my colleagues from the Symbolic Computation Group, at RICAM, especially to
Gábor Hegedüs, Anja Korporal, Niels Lubbes, David Sevilla González, Georg Regensburger
for their constant help. Special thanks to the secretaries and the system administrators.

I thank the colleagues from RISC. I thank Johannes Middeke for his practical suggestions
concerning the creation of knot pictures in Latex. Most of the knot pictures from this thesis
were produced using his suggestions! I thank Ralf Hemmecke for the lecture concerning the
revision version control, which I extensively used for my work. Many thanks to Mădălina
Eraşcu for being a valuable friend. Special thanks to Laura Kovács and Harald Wutzel for
helping me in my first year in Linz.

I thank the members of the Galaad team from INRIA Sophia-Antipolis, especially to An-
gelos Mantzaflaris and Elias Tsigaridas. Many thanks to Julien Wintz for always replying
my long emails concerning the Axel system and for initiating me in the Axel system.

I want to especially thank my friends, who encouraged me during the years. I thank Ioana
Cismaş and Ioana Ban (former Goţia), for spending so many hours on solving mathematical
problems and programming tasks during the undergraduate studies. Many thanks to Oana
Medveşan for hosting my staying in Nice during my visits to INRIA Sophia-Antipolis and
for never being tired to have another philosophical discussion. Other friends who constantly
supported me are Alina Lupuţ and Aurelia Lupuţ. Many thanks to Carmen Puzovic (former
Marin), who encouraged my mathematical abilities since high-school.

I am particularly grateful to my family for their constant support and for their visits to Linz,
which I was always looking forward to. I thank my parents Gabriela and Doru Hodorog for
their advice during the years. I also thank my aunt Loredana and my cousin Andrada for
their warmness. Many thanks to Ioana Voina, Dorina, Petre and Cătălin Arapu for their
hospitality. I want to specially thank my brother Bogdan Hodorog and his wife Luana for
always looking out for me, for guiding my steps throughout the years and for hosting my
many visits to Timişoara. My brother also influenced part of my analytical thinking and
he introduced me to the basics of programming. I owe him my first compiled program in
Pascal!

I would like to express my gratitude to Maria and Thomas Langer for showing me part
of the Austrian way and culture and for making my staying in Linz a pleasant home-like
experience.
Last but not least I want to especially thank my boyfriend Andreas Langer for his constant
understanding and support, for his optimism, for always encouraging me and for his useful
suggestions and hints on this thesis.

Contents

Eidesstatliche Erklärung i

Zusammenfassung iii

Abstract v

Acknowledgements ix

1 Introduction 1
1.1 Motivation and Description of the Problem 1
1.2 Setting the Framework . 4

1.2.1 Contemporary Algebraic Geometry 4
1.2.2 Knot Theory and its Evolution . 4
1.2.3 Computational Geometry . 6
1.2.4 Recent Progress in Approximate Algebraic Computation 7
1.2.5 Development of Mathematical Software Packages and Libraries . . . 8

1.3 Strategy for Solving the Problem . 9
1.4 Contributions of the Thesis . 10
1.5 Structure of the Thesis . 13

2 Plane Complex Algebraic Curves 17
2.1 Preliminaries on Affine and Projective Plane Complex Algebraic Curves . . 17

2.1.1 A Brief Historical Background . 17
2.1.2 Definitions and Examples . 26

2.2 Singularities of Plane Complex Algebraic Curves 30
2.2.1 Definitions and Examples . 30
2.2.2 Applications of Singularities . 38

2.3 Topology of Plane Complex Algebraic Curves 42
2.3.1 Preliminaries . 42
2.3.2 Topological Properties of Plane Complex Algebraic Curves 54
2.3.3 Singularities and Knot Theory . 56

2.4 Invariants of Plane Complex Algebraic Curves 80

xii Contents

2.4.1 Preliminaries . 80
2.4.2 Link of a Singularity . 81
2.4.3 Alexander Polynomial of a Singularity 83
2.4.4 Delta-Invariant of a Singularity . 91
2.4.5 Genus of a Plane Complex Algebraic Curve 93
2.4.6 More Invariants: Milnor Number, Euler Characteristic 94

2.5 Approximate Invariants of Plane Complex Algebraic Curves 96

3 Symbolic-Numeric Algorithms for Plane Algebraic Curves 99
3.1 Algorithm for Computing the Approximate Singularities 99

3.1.1 Description of the Algorithm . 99
3.1.2 Applications of the Algorithm . 102

3.2 Algorithm for Computing the Approximate Link of a Singularity 102
3.2.1 Description of the Algorithm . 102
3.2.2 Applications of the Algorithm . 107

3.3 Algorithm for Computing the Approximate Alexander Polynomial 108
3.3.1 Sweep-Line Algorithms from Computational Geometry 108
3.3.2 Combinatorial Algorithms from Knot Theory 132
3.3.3 Description of the Main Algorithm 141
3.3.4 Applications of the Main Algorithm 144

3.4 Algorithm for Computing the Approximate Delta-Invariant 145
3.4.1 Description of the Algorithm . 145
3.4.2 Applications of the Algorithm . 146

3.5 Algorithm for Computing the Approximate Local Topological Type 146
3.6 Algorithm for Computing the Approximate Genus 147

3.6.1 Description of the Algorithm . 147
3.6.2 Applications of the Algorithm . 147

3.7 Algorithms for Computing Knot Theory Properties 148

4 Convergence Analysis of the Symbolic-Numeric Algorithms 155
4.1 Basic Notations . 156
4.2 Basic Results . 156
4.3 Definitions . 156
4.4 Convergence Results . 158

5 Software: The GENOM3CK library 167
5.1 Description of the Library . 167

5.1.1 Main Functionality of the Library 167
5.1.2 Short History of the Library . 169
5.1.3 Interface of the Library . 172

5.2 Implementation of the Library . 173
5.2.1 Design of the Library . 173
5.2.2 Dependencies of the Library . 182

5.3 Usage of the Library . 184

Contents xiii

5.3.1 Instructions for the User . 184
5.3.2 Instructions for the Developer . 186

5.4 Test Experiments . 186
5.4.1 Examples for the Computation of Approximate Invariants 186
5.4.2 Examples for the Convergence Property 192

6 Conclusions and Future Work 199

Bibliography 202

List of Notations 211

List of Figures 215

List of Tables 223

Index 224

Curriculum Vitae 227

Chapter 1
Introduction

1.1 Motivation and Description of the Problem

In several situations from polynomial algebra, the input data (i.e. the coefficients) of the
algebraic problems to be solved are only imperfectly known. More precisely, the problems
are defined in terms of polynomials with coefficients of limited accuracy, this means that
the coefficients are either exact data (i.e. integer or rational numbers) or inexact data
(i.e. numerical values). In the latter case, the coefficients are associated with a small error
(also called noise or tolerance), caused for instance either by measurements, rounding off or
perturbations. These problems defined in terms of polynomials with coefficients of limited
accuracy (or rather their problem specifications) are ill-posed algebraic problems in the
sense of Hadamard. An ill-posed problem is a problem that does not fulfill Hadamard’s
definition of well-posedness: (i) for all data, a solution exists; (ii) for all data the solution
is unique; (iii) the solution depends continuously on the data.
In the literature, an ill-posed problem usually refers to a problem that does not verify the
third condition (iii) of well-posedness in Hadamard’s definition. In the case of an ill-posed
algebraic problem, small perturbations in the coefficients of the polynomials produce dra-
matic changes in the solution. This is the case in classical algebraic problems from computer
algebra such as: the computation of the greatest common divisor of polynomials, the com-
putation of the singularities of a plane algebraic curve, the factorization of polynomials,
root computation of polynomials, Gröbner bases computation, genus computation, etc.
For our purpose, we concentrate on two specific algebraic problems from computer alge-
bra: the analysis of singularities and the computation of topological invariants (i.e. delta-
invariant, genus) of a plane complex algebraic curve. We mention that these problems are
well-understood if the coefficients of the defining polynomial of the curve are exact data.
The challenge is to handle these problems if the coefficients are inexact. In this thesis,
we approach the algebraic problem of computing topological invariants of a plane complex
algebraic curve defined by a squarefree bivariate complex polynomial with both exact and
inexact data. We recall that for the inexact data we associate a positive real number called
tolerance or noise, which measures the error level in the coefficients of the defining poly-
nomial of the input curve. By computing the topological invariants of a plane complex
algebraic curve we also analyse the local topology of its singularities. We mention that the
algebraic problem of computing topological invariants of a plane complex algebraic curve
defined by a squarefree polynomial is an ill-posed problem in the sense that tiny changes
in the coefficients of the defining polynomial of the input curve produce dramatic changes

2 Chapter 1. Introduction

in the output solution. To deal with the ill-posedness of our problem, in general we ba-
sically construct symbolic-numeric methods that approximate solutions to the considered
ill-posed problem, solutions that are stable under tiny changes of the input. In particular,
in the case of our problem, we apply the following strategy: instead of analysing directly
the singularities of the input plane complex algebraic curve (either by Puisseaux expansion
or by resolution as described in [Sendra and Winkler, 1991]), we intersect the input curve
having a singularity in the origin with a small sphere centered in the origin and we analyse
this intersection.
At this point, we give some reasons, which support the need for studying topological invari-
ants of a plane complex algebraic curve. For the purpose of this thesis, we mention that
the topological invariants of a plane complex algebraic curve refer to those properties that
are unchanged under continuous deformation (i.e. homeomorphism). Roughly speaking,
we mention that a plane complex algebraic curve is a subset of the 2-dimensional complex
plane. Since the 2-dimensional complex plane is isomorphic to the 4-dimensional real space,
we identify a plane complex algebraic curve with a 2-dimensional object (i.e. a surface) in
the 4-dimensional real space. Thus we can associate to a plane complex algebraic curve,
its corresponding surface. An important topological invariant of a plane complex algebraic
curve is its genus, i.e. the number of holes in the corresponding associated surface. For
instance, a coffee mug and a doughnut are topologically equivalent objects up to homeo-
morphism since they both have one hole (i.e. their genus equals one), as seen in Figure 1.1.

Figure 1.1: In topology, a doughnut and a coffee mug are equivalent objects, they both
have one hole (i.e. their genus is 1). Pictures generated from Youtube.

The genus computation problem is a classical subject in computer algebra. Presently, sev-
eral symbolic algorithms are available for computing the genus computation, see the books
of [Gutierrez et al., 2002] [Hess, 2004], [Sendra and Winkler, 1997] for more information.
There exist also good implementations for these algorithms in several packages (or li-
braries) of some well-known computer algebra systems such as: Maple [Geddes et al., 2008],
Magma [Bosma et al., 1997], Singular [Greuel and Pfister, 2002], and the system Axiom
[Jenks and Sutor, 1992]. We shortly list these packages, for more information see the pa-
pers of [Greuel and Pfister, 2002], [Haché, 1994], [Hess, 2004], [Hoeij, 2000], and the paper
of [Mnuk and Winkler, 1996]:

• algcurves package developed at Florida State University, by Mark van Hoeij, written
in Maple;

• CASA (Computer algebra system for algebraic geometry) package developed at the
Research Institute for Symbolic Computation, Hagenberg Austria and written in
Maple;

• GHS (Gaundry, Hess, Smart) attack package developed at Berlin Institute of Tech-
nology and written in Magma;

1.1. Motivation and Description of the Problem 3

• normal.lib package developed at Kaiserslautern University and written in Singular;

• PAFF (Package for algebraic function fields in one variable) package developed at
INRIA-Roquencort, by Gaétan Haché, written in Axiom.

However, these symbolic algorithms for genus computation have some disadvantages, and
these are:

• for exact input data (i.e. integer numbers or rational numbers) of moderate size, they
become too expensive (in terms of time and memory required for the computation)
since they use exact arithmetic. In this case, we would obtain a crash during the
running time of the algorithm.

• for inexact input data (i.e. numerical values, that is real values with noise in them)
they are practically unusable. In this case, we would obtain an error message, since
these symbolic algorithms do not allow the insertion of input data with noise in them.

In addition, there are situations when computing with numerical coefficients is preferable,
for instance when the coefficients are obtained by measurements. Thus, there arises the need
to develop numeric algorithms for genus computation, numeric algorithms that are using
floating point arithmetic to speed up the computation process and to handle inexact input
data. In this thesis, we propose a symbolic-numeric algorithm for computing the genus
(and other topological invariants such as the delta-invariant, the Alexander polynomial)
of a plane complex algebraic curve defined by a squarefree polynomial with both exact
and inexact coefficients. This algorithm makes use of the advantages of both symbolic
and numeric methods and it is mainly based on combinatorial techniques from knot theory
see [Adams, 2004], [Livingston, 1993], techniques that allow us to successfully analyse the
singularities of the plane complex algebraic curve. Previous research and results have
successfully shown that the local topology of the singularities of a plane complex algebraic
curve is mainly determined by their links, see [Milnor, 1968]. Moreover, the algebraic
link can be uniquely identified by its corresponding Alexander polynomial, as shown in
[Yamamoto, 1984]. From the Alexander polynomial, we can derive a formula for the delta-
invariant of each singularity of the plane complex algebraic curve and a formula for the genus
of the curve. It follows that for solving the problem of computing topological invariants
of a plane complex algebraic curve, we need to solve problems in different mathematical
areas such as: the intersection of algebraic surfaces (by using notions from real algebraic
geometry), the topology (shape) recognition of algebraic curves (by employing techniques
from computational geometry), the computation of knot invariants (by using methods from
knot theory).
A natural question arises: why are we interested in computing the genus of a plane com-
plex algebraic curve? We first add that given a plane complex algebraic curve defined by
a squarefree complex polynomial, the implicit representation of the curve consists of the
defining polynomial equation attached to the curve. Basically, the implicit representation
of a curve requires to solve a polynomial equation to find the points of the curve. Such a
representation has the advantage that it offers an easy and a practical method to decide
whether a point lies on the curve or not. From the literature, we know that if the genus of a
plane algebraic curve is zero, then the curve has a rational parametric representation. The
rational parametric representation of a curve consists of a pair of univariate rational func-
tions, which except for finitely many exceptions, represent all the points on the curve. We
mention that for practical applications, the rational representation of a plane algebraic curve
is desirable instead of the implicit representation of the curve, since plane algebraic curves
defined by their rational parametrization are easier to display on a computer. Moreover,
without going into details we add that the rational parametrization of curves is highly used

4 Chapter 1. Introduction

in application domains such as geometric modeling or computer aided geometric design.
It is thus essential to compute the genus of a plane algebraic curve to decide whether the
curve admits a rational parametric representation, and in the affirmative case to compute
such a rational parametric representation.

1.2 Setting the Framework

As mentioned in Section 1.1, solving the algebraic problem of computing topological in-
variants of a plane complex algebraic curve requires solving several problems from different
domains of mathematics and computer science such as: algebraic geometry, computational
geometry, knot theory, approximate algebraic computation. These domains have encoun-
tered major achievements and changes over the years, which contributed to the advance
of research and technology and which contributed to the development of this thesis. In
this section, we give an overview containing the basic facts about these domains, which are
important for the purpose of this thesis. We mention that this overview is by no means
exhaustive.

1.2.1 Contemporary Algebraic Geometry

It is important to specify that as objects of study, we place the algebraic curves in the broad
and the intricate field of algebraic geometry. We make some brief notes concerning this field
of research to give the reader a “rough” idea on the “general purpose” of algebraic geometry.
The fundamental objects of study in algebraic geometry are the algebraic varieties. We give
an informal definition of these objects by mentioning that an algebraic variety is defined
to be the set of points in the n-dimensional complex space (or in the n-dimensional real
space) satisfying a system of polynomial equations. Thus, an algebraic variety is the set
of solutions of a system of polynomial equations. Basically, algebraic geometry deals with
the problem of analysing the solution sets of systems of polynomial equations. The main
directions of research in algebraic geometry are concerned with two main topics:

• the identification of general properties of algebraic varieties.

• and the classification of algebraic varieties.

An important characteristic of an algebraic variety is its dimension. Informally, the dimen-
sion of an algebraic variety represents the number of coordinates needed to specify a point,
i.e. the number of degrees of freedom of movement in the space. Formally, the dimension of
an algebraic variety X is said to be d if d is the largest integer such that there is a strictly
increasing chain X0 ⊂ X1 ⊂ ... ⊂ Xd of closed irreducible subsets of X. It follows that
the dimension of an algebraic variety is defined to be the length of the longest chain of
irreducible closed subsets minus one. Moreover, we distinguish between affine and projec-
tive algebraic varieties. In the literature, other types of algebraic varieties are additionally
defined. In this setting, it is useful to note that a plane algebraic curve is an algebraic
variety of dimension one. For more information on the study of algebraic varieties in alge-
braic geometry, the reader can consult [Fulton, 1989]. For our purpose, algebraic geometry
provides efficient tools for studying plane algebraic curves.

1.2.2 Knot Theory and its Evolution

Knot theory, which dates back to the late 19th century, gained increased attention in the
last two decades of the 20th century together with its potential applications in physics,

1.2. Setting the Framework 5

chemistry, biology or mathematics. Still, most of the problems in knot theory are open
problems. Roughly speaking, knot theory is a branch of topology that is involved in the
study of three-dimensional manifolds, i.e. in the study of the ways in which knotted copies
of a circle can be embedded in the 3-dimensional Euclidean space. We base our overview
concerning knot theory on the book of [Adams, 2004].
The study of knots dates back to the 1800s, when Gauss basically started to study these
topological objects from a pure mathematical point of view. In 1877, J. C. Maxwell, William
Thompson (also known as Lord Kelvin) and P. Tait produced the first knot tables. In
addition, Lord Kelvin’s theory “that all matter is made of ether and atoms are knots in the
ether” made it interesting for the mathematical society to study knots in more details. Later
on, in 1900, Poincarè formalised the modern theory of topology, which led to a significant
progress in the field of knot theory. We mention some significant achievements in this
direction:

• In 1928, Alexander described a method for associating to each knot a polynomial, i.e.
an invariant for knots. He based his method on purely combinatorial aspects (without
using any algebraic techniques). Basically, the method depends only on the study of
the diagram of the knot. We mention that the diagram of a knot is a special type
of projection of the knot in the 2-dimensional Euclidean plane. However, Alexander
polynomial is not a complete invariant for knots, as it distinguishes only the knots of
8 crossings or fewer.

• In 1932, K. Reidemeister published the first book “Knotentheorie” about knots, which
was considered a big achievement for the field of knot theory.

• In 1984, Jones described a method for associating a new polynomial to each knot,
i.e. another invariant for knots. Jones polynomial basically distinguishes all knots of
10 or fewer crossings, and it also distinguishes a knot from its mirror image. Still,
it is not a complete invariant for knots, as it does not distinguish all knots (i.e. the
mutant knots). Moreover, in 1984, Yamamoto showed that the Alexander polyno-
mial is a complete invariant for a special type of knots called algebraic knots, see
[Yamamoto, 1984]. This means that different algebraic knots have different Alexan-
der polynomials. As we will see in the next chapters, this result is of outermost
importance for our study.

• In 1985, Hoste, Ocneanu, Millett, Freyd, Lickorish, and Yetter introduced the HOM-
FLY polynomial as an invariant for knots. We add that the HOMFLY polynomial was
independently introduced also by Prztycki and Traczyk in 1987. Still, the HOMFLY
polynomial is not a complete invariant for knots, since it also does not distinguish
the mutant knots. We mention that at present there exist no complete invariant for
knots, this subject representing one of the open problems in the challenging field of
knot theory.

We end this section by noting that at present, knot theory is still a dynamic branch of topol-
ogy. It has concrete applications in the study of enzymes acting on DNA (deoxyribonucleic
acid) strands, which basically represent the substance of the living matter. The connection
between the study of DNA strands and knot theory is that DNA is tangled up in knots.
Note that DNA strands are long and thin molecules found inside the nucleus of a cell. DNA
must be topologically manipulated in order for vital process to take place, which means
that DNA must first unpack itself so that it can interact with enzymes. By thinking of
DNA as a knot, we can use knot theory to estimate how hard DNA is to unknot. For more
information on this deep connection, the reader should consult [Crick and Watson, 1953]
and [Cozzarelli and Wasserman, 1986].

6 Chapter 1. Introduction

1.2.3 Computational Geometry

Computational geometry is a branch of computer science, that deals with algorithms ex-
pressed in terms of geometric objects. The intricate and the fascinating domain of com-
putational geometry experienced excessive interest starting with the middle of the 1970s.
Recently, computational geometry has known an increasing success due to its different
applications in domains such as computer graphics, robotics, computer aided geometric de-
sign, geographic information systems, scientific visualization. The domain of computational
geometry basically studies flat or straight geometric objects (such as line segments, planes,
polygons, polyhedra) or simple straight geometric objects such as circles. We add that
computational geometry handles mainly geometric objects in the 2-dimensional Euclidean
plane, and a more restrictive class of such objects in the 3-dimensional Euclidean space. In
addition, this area of study is focused mainly on the discrete nature than on the continuous
nature of geometric objects.
For our purpose, we handle a rather classical problem from computational geometry and
that is the problem of computing all the intersection points among a set of given edges (i.e.
line segments) in the 2-dimensional Euclidean plane. In our study, this set of given edges
represents the projection of a set of edges from the 3-dimensional space, which are part of
a 3-dimensional graph data structure. We add that a 3-dimensional graph data structure is
given as a set of vertices (points) in the 3-dimensional Euclidean space together with their
Euclidean coordinates, and a set of edges connecting them. For solving the problem of
computing all the intersection points among the edges of the projection of a 3-dimensional
graph data structure, we design an adapted version of the Bentley-Ottmann algorithm
from [Berg et al., 2008]. We mention that the Bentley-Ottmann algorithm is an essential
tool in computational geometry, which solves the fundamental problem of computing the
intersection points of a set of edges in the 2-dimensional Euclidean plane. Furthermore,
the Bentley-Ottmann algorithm uses the sweep line technique for solving this problem.
Based on [Berg et al., 2008], we include a list containing other fundamental problems from
computational geometry:

• The problem of computing the planar convex hull of a set of points: given a set
of points in the 2-dimensional Euclidean plane, find the smallest convex polygon
containing all the points, which represents the planar convex hull of the given set of
points.

• The polygon triangulation problem: given a polygon in the 2-dimensional Euclidean
plane, partition its interior into triangles.

• The problem of computing the Voronoi diagram of a set of points: given a set of
points including the point p, decompose the space into regions (cells) around each
point such that all the points in the region around the point p are closer to p than
any other point in the given set.

• The problem of computing the Delaunay triangulation of a set of points: given a set of
points, the Delaunay triangulation is the triangulation of the convex hull determined
by the given set of points such that the collection of edges in this triangulation satisfy
the property that for each edge e in the triangulation, we can find a circumcircle
containing the endpoints of e but not containing any other points. The Delaunay
triangulation and the Voronoi diagram in the 2-dimensional Euclidean plane are dual
to each other.

• 1-dimensional searching problem: given a set of points on the real line, find all the
points in a given interval, which is called a 1-dimensional query rectangle.

1.2. Setting the Framework 7

For details on the main geometric algorithms developed for solving these fundamental
computational geometry problems, the reader is advised to consult the detailed book of
[Berg et al., 2008] on computational geometry. We point out that most of the computa-
tional geometry algorithms rely on the following algorithmic techniques: (i) the incremental
technique, (ii) the sweep line technique, (iii) and the divide and conquer technique.

1.2.4 Recent Progress in Approximate Algebraic Computation

The field of approximate commutative algebra (also called numerical polynomial algebra)
handles ill-posed algebraic problems by employing different methods to design robust and
efficient algorithms to solve these problems [Corless et al., 2003], [Stetter, 2004]. In this
subsection, we give a survey on these methods. We mention that this survey is by no means
exhaustive. We mention that this chapter is part of the paper [Hodorog and Schicho,].
A first technique in handling ill-posedness of algebraic problems is to develop numerical
algorithms that compute solutions to ill-posed problems. These solutions are computed in
such a way that they are stable under small changes of the input data. In the literature,
this type of technique is called a regularization method. In [Zeng, 2003], [Zeng, 2009b],
[Zeng, 2009a] [Zeng, 2005], [Zeng and Dayton, 2004] the authors introduce methods based
on regularizing principles for designing algorithms in numerical polynomial algebra for solv-
ing ill-posed algebraic problems. These methods are basically using matrix computations
(i.e. singular value decomposition method) and the Newton iteration method. The authors
employ these methods to compute: the approximate irreducible factorization of univariate
and multivariate polynomials, the approximate greatest common divisor of univariate and
multivariate polynomials, the approximate rank of a matrix, the approximate kernel of a
matrix and more, see [Zeng, 2009b] for details.
A second way of solving ill-posed algebraic problems is to look for minimal perturbations in
the coefficients representing the input data of the problem such that the obtained perturbed
data satisfy the desired property. By using this strategy, in [Shuhong et al., 2008] and in
[Kaltofen et al., 2007], the authors design a method for computing the approximate greatest
common divisors of univariate polynomials. The main idea is to reduce the problem of
computing the greatest common divisor of polynomials to the problem of approximating
the low rank of a Sylvester matrix. The method basically uses structured least norm
algorithms applied on matrices with Sylvester structure.
In different situations from geometric computing, one has to handle with geometric algo-
rithms. The geometric algorithms usually imply numerical computations and combinatorial
algorithms, but also algebraic computations. Hence, the geometric algorithms are ill-posed,
since small numerical errors in input lead to huge modifications in the output. For instance,
the zero test is an ill-posed problem, intensively used in geometric algorithms. A useful tool
in handling ill-posedness in geometric problems is the exact geometric paradigm developed
by [Li et al., 2004], which is based on three main ingredients: constructive zero bounds, ap-
proximate expression evaluation and numerical filters. Consequently, the exact geometric
computation paradigm handles the non-robustness in geometric computations.
Another method to solve ill-posed algebraic problems is the homotopy continuation method.
This numerical method is used in the field of numerical algebraic geometry to compute
the solution set to a system of polynomial equations. Other applications of the homo-
topy continuation method in the field of numerical algebraic geometry are: the com-
putation of all isolated solutions of a polynomial system, the numerical irreducible de-
composition of an algebraic set, the numerical computation of the geometric genus of
any one-dimensional irreducible component of an algebraic set, see [Bates et al., 2011]
and [Sommese and Wampler, 2005] for details. We notice that the method described in

8 Chapter 1. Introduction

[Bates et al., 2011] is computing the numerical genus of a plane complex algebraic curve.
We mention that the genus is a global topological invariant of a plane complex algebraic
curve.
At present, in the literature, another method for computing the genus of a plane complex
algebraic curve is reported in [Pérez-Dı́az et al., 2010]. The authors approach the problem
of computing an approximate parametrization of an affine plane complex algebraic curve
with ordinary singularities. The idea of the algorithm for solving this problem is to introduce
the notion of cluster for the approximate singularities and to work with linear systems of
curves. Hence, the algorithm computes the genus of an affine plane complex algebraic curve
with ordinary singularities. Even though this method is rather restrictive (i.e. it applies
only to plane algebraic curves with ordinary singularities that are computed in the affine
plane), it still offers a robust and stable solution to the ill-posed problem of computing the
genus of a plane complex algebraic curve.

1.2.5 Development of Mathematical Software Packages and Li-
braries

The invention and the evolution of computers throughout the years have contributed
tremendously to the development of science and of technology and to important advances
in different fields of mathematics. In this thesis, by a mathematical software package (or
library) we mean a software (or computer program), which is mainly developed and used
for computing with geometric, symbolic and numeric objects and data. In the last years, a
wide variety of mathematical software packages and libraries were developed in the mathe-
matical research community. These packages and libraries have different purposes and they
handle different areas of mathematics such as algebraic geometry, algebra, computational
geometry, knot theory, combinatorics. For our purpose, we present the main mathemati-
cal software packages and libraries essential for the topic of this thesis, i.e. for developing
symbolic-numeric algorithms for plane complex algebraic curves:

• Maple [Geddes et al., 2008] computer algebra system: this system was originally de-
veloped at the University of Waterloo, Canada in the 1980s. The system includes a
wide varieties of tools for symbolic manipulation, numeric computation, visualization
and programming and it presents a friendly user interface. The system is oriented
for offering both extensive support for mathematical and engineering education but
also for performing applied research such as financial modeling, high-performance
computing, operations research.

• Mathematica [Wolfram, 2000] computer algebra system: the system was released in
1988 and it offers tools for symbolic computation, numerical computation, statistics,
visualization. The system is used in science, engineering and various fields of mathe-
matics.

• Singular [Greuel and Pfister, 2002] computer algebra system: this system was de-
veloped starting in 1984. Singular is an open source computer algebra system for
polynomial computations, which concentrates mostly on computations in commuta-
tive and noncommutative algebra, algebraic geometry and singularity theory. The
system is written in the C programming language and it is mainly developed at the
University of Kaiserslautern, Germany.

• CoCoA (Computations in Commutative Algebra) [CoCoATeam, 1996] computer al-
gebra system: as its name states it, this system is mainly handling computations in
commutative algebra. The system performs operations on multivariate polynomial

1.3. Strategy for Solving the Problem 9

rings and on different data related to them such as modules, ideals, rational functions
and matrices. The system is written in the C programming language, it is open source
and it was originally developed starting in 1987.

• CGAL [Cgal Project Members, 1997]. The name of this package stands for Com-
putational Geometry Algorithms Library. This is an open source library and it was
developed starting in 1995. The library offers efficient data structures and algorithms
in the vast domain of geometry. We mention some of the fundamental data struc-
tures and algorithms included in CGAL: triangulations, Voronoi diagrams, polygons,
arrangements of curves and their applications, mesh generation, geometry processing,
convex hulls algorithms, shape analysis, fitting, search structures, interpolation. The
library is written in the C++ programming language and it is used both in academia
and in industry in different fields such as medical modeling, geographic information
systems, computational topology and computer vision.

• GMP (GNU Multiprecision Library) [Foundation, 2000] library: this is an open source
library for arbitrary precision arithmetic, which was originally released in 1991. The
library basically operates on signed integers, rational numbers, and floating points
numbers and it is written in the C programming language.

• MPFR [Hanrot et al., 2005] library: this is a free library for multiple-precision floating-
point computations with correct rounding. The library is written in the C program-
ming language and it was released in 1991. We add that the MPFR library is based
on the GMP library. We mention that CGAL and Mathemagix computer algebra
system are both using the MPFR library.

• Mathemagix [van der Hoeven et al., 2002] computer algebra system: this is a free
computer algebra system, written in the C++ programming language and released in
2000. The system offers various tools for algebraic computations, symbolic computa-
tions, and numeric computations.

• Bertini [Bates et al., 2006] system: this is a free software for numerical algebraic ge-
ometry, designed mainly for solving systems of polynomial equations by using the
homotopy continuation method. The system is written in the C programming lan-
guage and it was originally developed around 2006.

1.3 Strategy for Solving the Problem

We recall that in this thesis we deal with the algebraic problem of computing topological
invariants of a plane complex algebraic curve defined by a squarefree polynomial with both
exact (i.e. integers or rationals) and inexact data (i.e. numerical values given together with
some noise). We handle an ill-posed algebraic problem, i.e. small changes in the input data
produce huge changes in the output solution. We solve the ill-posed algebraic problem of
computing topological invariants of a plane complex algebraic curve by designing numerical
methods that compute approximate solutions to ill-posed algebraic problems, approximate
solutions that are stable under small changes in the input data. In particular, we intersect
the input plane complex algebraic curve with a singularity in the origin with a small sphere
centered in the origin and we analyse this intersection. This intersection basically allows
us to analyse the local topology of the input plane complex algebraic curve around its
singularity.
In order to solve the algebraic problem of computing topological invariants (i.e. delta-
invariant, genus) of a plane complex algebraic curve, we first need to design the symbolic-
numeric algorithms for computing the topological invariants of a plane complex algebraic

10 Chapter 1. Introduction

curve and its singularities. In order to design these symbolic-numeric algorithms for com-
puting the topological invariants of a plane complex algebraic curve, we need to solve the
following interdependent subproblems:

1.Plane complex algebraic curve

compute numerically

��
2.Singularities

compute symbolically

��

3.Each singularity in origin
compute

numerically
// 4.Algebraic Link

algorithmcompute by a numeric/symbolic

��

6.δ-invariant 5.Alexander Polynomial
symbolically

computeoo

compute symbolically

��
7.GENUS

and that is: (i) we compute the singularities of the input plane complex algebraic curve;
(ii) we translate each computed singularity in the origin; (iii) we compute the link for each
translated singularity depending on an input parameter ε; (iv) we compute the Alexander
polynomial for each singularity from the link of the singularity; (v) we derive a formula
for the delta-invariant of each singularity from the Alexander polynomial; (vi) we compute
the genus from the delta-invariants of all the singularities. (vii) in addition, we can derive
formulas for the Milnor number of each singularity and for the Euler characteristic of the
Riemann surface attached to the resolution of singularities of the input plane complex
algebraic curve.
We make the important observation that the development of the symbolic-numeric algo-
rithms for computing topological invariants of a plane complex algebraic curve is only one
step in solving the algebraic problem of computing topological invariants of a plane complex
algebraic curve defined by a squarefree polynomial with both exact and inexact coefficients.
We will give a detailed description concerning the complete solution of the considered al-
gebraic problem in the next section.

1.4 Contributions of the Thesis

We mention that the results from this thesis are based on the papers [Hodorog et al., 2010a],
[Hodorog and Schicho, 2011b], [Hodorog et al., 2010b], [Hodorog and Schicho, 2011a] and
[Hodorog et al., 2011], [Hodorog and Schicho,]. Moreover, we base this study also on the
technical reports [Hodorog and Schicho, 2010a] and [Hodorog and Schicho, 2010b].
In computer algebra, the problem of computing topological invariants of a plane complex

1.4. Contributions of the Thesis 11

algebraic curve is well-understood if the coefficients of the defining polynomial of the input
curve are exact data (i.e. integer numbers or rational numbers). The challenge is to handle
this problem if the coefficients of the input polynomial are inexact data, i.e. real numbers
with given noise in them, noise that measures the error level in the coefficients.
In this thesis, we treat the algebraic problem of computing topological invariants (i.e. delta-
invariant, genus) of a plane complex algebraic curve defined by a squarefree polynomial with
coefficients of limited accuracy, i.e. the coefficients are both exact (i.e. integer numbers
or rational numbers) and inexact data (i.e. numerical values). For the inexact values, we
associate a positive real number called tolerance (or noise), which measures the error level
in the coefficients of the defining polynomial of the curve. This problem is ill-posed in the
sense that tiny changes in the coefficients of the defining polynomial of the input curve cause
huge changes in the output solution of the problem. We employ a regularization method
based on [Engl et al., 1996, Tikhonov and Arsenin, 1977] to handle the ill-posedness of the
problem. This regularization method allows us to construct approximate solutions to the
considered ill-posed problem, solutions that are stable under small changes in the initial
data.
Our regularization method consists of the following two components:

(i) a set of symbolic-numeric algorithms (called also approximate algorithms). These al-
gorithms take as input the defining squarefree polynomial of the input plane complex
algebraic curve, a positive real number called the input parameter (or the regulariza-
tion parameter), and a subset of the 3-dimensional Euclidean space. We mention that
the coefficients of the defining polynomial of the input curve are both exact and inex-
act data. Moreover, the inexact data is associated with a positive real number called
noise level. These symbolic-numeric algorithms return as output the approximate
topological invariants of the input plane complex algebraic curve and its singularities.
We add that the computation of the approximate topological invariants of the curve
depends on the regularization parameter.

(ii) a parameter choice rule for the regularization parameter. This parameter choice rule
is basically a function in the noise level associated to the coefficients of the defining
polynomial of the input curve. It is essential for the parameter choice rule to satisfy
the following property called convergence for noisy data: as the noise level in the coeffi-
cients of the defining polynomial of the input curve decreases to zero, the approximate
solutions computed by the symbolic-numeric algorithms together with the parameter
choice rule converge to the exact solution of the considered problem. The convergence
for noisy data property basically states that if the regularization parameter is chosen
according to a specific rule (i.e. the parameter choice rule), then as the noise level
decreases to zero, the approximate solutions computed by the symbolic-numeric algo-
rithms together with the regularization parameter tend to the exact solution of the
original ill-posed algebraic problem.

Remark 1. We make an important observation concerning the terminology used in this
thesis. The name of “symbolic-numeric algorithms” is derived from the fact that the de-
veloped algorithms use both symbolic methods (e.g. Sturm-Habicht sequences to compute
the greatest common divisors of polynomials, Bareiss algorithm to compute the determi-
nant of polynomials matrices from [van der Hoeven et al., 2002]) and numeric methods (e.g.
subdivision from [Mourrain and Pavone, 2009]). Furthermore, since the input information
processed by the symbolic-numeric algorithms is represented by both exact and inexact
data, we sometimes refer to these algorithms as the approximate algorithms. Finally, by
computing the approximate topological invariants of a plane complex algebraic curve and
by proving the existence of a parameter choice rule satisfying the convergence for noisy

12 Chapter 1. Introduction

data property, we basically estimate the topological invariants of a plane complex algebraic
curve defined by a squarefree polynomial with both exact and inexact data.

For designing the regularization method for computing the approximate topological invari-
ants of a plane complex algebraic curve, we proceed in the following way:

(1) We develop the symbolic-numeric algorithms for computing the approximate topological
invariants of a plane complex algebraic curve defined by a squarefree complex bivariate
polynomial with exact and inexact data. For computing the approximate topological
invariants of a plane complex algebraic curve, we proceed as follows:

• Firstly, we compute the set of numerical singularities of the input curve in the
projective real plane by subdivision methods from [Mourrain and Pavone, 2009],
see Chapter 3, Section 3.1. Alternatively, we extend the subdivision methods to
compute the numerical singularities of the input curve in the projective complex
plane. We can also use the homotopy method from [Sommese and Wampler, 2005]
to compute the set of numerical singularities of the input curve in the projective
complex plane.

• Secondly, based on [Milnor, 1968], we compute the approximate link of each nu-
merical singularity of the input curve by intersecting the curve with a small sphere
centered in the singularity, see Chapter 3, Section 3.2. We consider the radius
of this sphere to be the regularization parameter for the problem. We compute
the approximate link of each numerical singularity as a 3-dimensional graph data
structure by using subdivision methods from [Liang et al., 2008]. We mention
that a 3-dimensional graph data structure is a set of vertices in R3 together with
their Euclidean coordinates and a set of edges connecting them. Alternatively, we
can use the homotopy continuation method from [Sommese and Wampler, 2005]
to compute the 3-dimensional graph data structure representing the approximate
link of each numerical singularity of the input curve. Basically, the computation
of the approximate link of each numerical singularity allows us to analyse the local
topology of each singularity of the input curve.

• Thirdly, we compute the approximate Alexander polynomial of the approximate
link of each singularity, see Chapter 3, Section 3.3. For computing the approximate
Alexander polynomial we use adapted algorithms from computational geometry
[Berg et al., 2008] (i.e. an adapted version of the Bentley-Ottmann algorithm)
and combinatorial objects from knot theory [Cimasoni, 2004, Livingston, 1993].
We mention that as shown in [Yamamoto, 1984] the Alexander polynomial is a
complete invariant for links of singularities, i.e. different links of singularities
have different Alexander polynomials. We mention that a symbolic algorithm for
computing the Alexander polynomial of the singularity of a plane algebraic curve
defined by a squarefree polynomial with exact coefficients (i.e. there is no noise
in the input data) is reported and implemented in the computer algebra system
Singular [Greuel and Pfister, 2002].

• Finally, from the approximate Alexander polynomial we derive formulas for the ap-
proximate delta-invariant of each numerical singularity, see Chapter 3, Section 3.4
for details. From the approximate delta-invariants of all the singularities of the
input curve we derive a formula for the approximate genus of the input curve,
see Chapter 3, Section 3.6. We make the observation that we compute the ap-
proximate genus of a plane complex algebraic curve independently of the type
of singularity of the input plane complex algebraic curve (i.e. ordinary or non-
ordinary singularity). In the case of a plane algebraic curve defined by a squarefree

1.5. Structure of the Thesis 13

polynomial with exact coefficients (i.e. there is no noise in the input data), the
formula for the genus is derived depending on the type of the singularity of the
curve (i.e. ordinary or nonordinary), see [Sendra et al., 2008] for more details.

• As applications, we add that by computing the approximate Alexander polynomial
of each numerical link of a plane curve singularity we estimate the approximate
local topological type of the plane curve singularity, see Chapter 3, Section 3.5.
In addition, from the approximate Alexander polynomial we derive a formula for
the approximate Milnor number of each singularity of the input plane complex
algebraic curve. Moreover, from the approximate genus of the input curve we
compute the approximate Euler characteristic of the Riemann surface attached
to the resolution of singularities of the input plane complex algebraic curve, see
Chapter 3, Subsection 3.6.2. Furthermore, in Chapter 3, Section 3.7, we compute
the following knot theory properties attached to the approximate link of each
singularity of the input curve: (i) the genus of the link; (ii) the unknotting number
of the link; (iii) the determinant of the link; (iv) the number of knot components
in the link; (v) the linking numbers of all the knot components in the link. In
addition, we decide whether the approximate link is colorable or not.

(2) We implement the symbolic-numeric algorithms for computing the approximate topo-
logical invariants of a plane complex algebraic curve defined by a squarefree polynomial
with exact and inexact data in a new software package called GENOM3CK (GENus
cOMputation of plane Complex algebraiC Curves using Knot theory), see Chapter 5.
For the implementation of this package we use the Mathemagix free computer alge-
bra system [van der Hoeven et al., 2002] and the Axel free algebraic geometric modeler
[Wintz et al., 2006]. For our purpose, both of these systems provide tools for algebraic
computation, tools for exact and approximate computation, tools for geometric mod-
eling and tools for modern 3-dimensional visualization of geometric objects. As the
Mathemagix and the Axel systems, GENOM3CK is a free software released under the
GNU General Public License.

(3) We proof the existence of a parameter choice rule for the regularization parameter of the
problem, parameter choice rule that satisfies the convergence for noisy data property, see
Chapter 4. For constructing the proof we use notions and principles from topology and
from real algebraic geometry. We add that by proving the convergence for noisy data of
the designed symbolic-numeric algorithms that computes the approximate topological
invariants of a plane complex algebraic curve, we basically estimate the topological
invariants of this curve.

(4) We perform several test experiments with the package GENOM3CK, test experiments
that support the convergence for noisy data property.

1.5 Structure of the Thesis

We organize this thesis as follows:

(1) In Chapter 2 we include the fundamental mathematical notions required for our study
concerning the symbolic-numeric algorithms for plane complex algebraic curves. We
divide this chapter into five main parts:

• In Section 2.1 we give a short historical background concerning the plane algebraic
curves, emphasizing on the applications of these algebraic objects to the real world
problems. In addition, we define the affine and the projective plane algebraic

14 Chapter 1. Introduction

curves defined over an algebraically closed field (e.g. the complex numbers) and
we include several examples for a better understanding of the presented notions.

• In Section 2.2, we define the singularities of affine and of projective plane algebraic
curves defined over an algebraically closed field (e.g. the complex numbers) and we
include several examples. Moreover, we present some applications of singularities
in various areas such as catastrophe theory.

• In Section 2.3, we discuss the topology of plane complex algebraic curves. We
mention that the notions introduced in this part refer only to plane complex alge-
braic curves. First of all, we introduce some preliminaries notions from the broad
field of topology. We then discuss the global topology of plane complex algebraic
curves (including the notion of the genus of a plane complex algebraic curve) and
the local topology of a plane complex algebraic curve around its singular points.
We emphasize that the study of the local topology of a plane complex algebraic
curve around its singularities can be identify by studying the link of the singular-
ity. We define in detail the notion of a link of a plane curve singularity and we
include several examples.

• In Section 2.4, we introduce the topological invariants of a plane complex algebraic
curve: the link of each singularity of the plane complex algebraic curve, the Alexan-
der polynomial of the link of each singularity of the curve, the delta-invariant of
each singularity of the curve, the genus of the curve, the Milnor number of each
singularity, the Euler characteristic of the Riemann surface attached to the reso-
lution of singularities of the plane complex algebraic curve. We discuss in details
each of these invariants of a plane complex algebraic curve.

• In Section 2.5, we define the key notions studied in this thesis, i.e. the approximate
topological invariants of a plane complex algebraic curve. We explain what exactly
do we mean by an approximate topological invariant of a plane complex algebraic
curve. We study the following approximate topological invariants of a plane com-
plex algebraic curve: the approximate link of each singularity of the plane complex
algebraic curve, the approximate Alexander polynomial of each approximate link,
the approximate delta-invariant of each singularity, the approximate genus of the
curve, the approximate Milnor number of each singularity, the approximate Euler
characteristic of the Riemann surface attached to the resolution of singularities of
the input curve.

(2) Chapter 3 contains the main symbolic-numeric algorithms that we developed in order
to compute the approximate topological invariants of a plane complex algebraic curve,
approximate invariants that we defined in Chapter 2. We basically design the following
symbolic-numeric algorithms for a plane complex algebraic curve:

• In Section 3.1, an algorithm for computing the real singularities of the input plane
complex algebraic curve in the projective real plane. This algorithm basically uses
subdivision methods from [Mourrain and Pavone, 2009]. Furthermore, based on
the same subdivision methods we present an extended algorithm for computing the
complex singularities of the input plane complex algebraic curve in the projective
complex plane.

• In Section 3.2, an algorithm for computing the approximate link of each singularity
of the input plane complex algebraic curve. This algorithm depends on a positive
real number (called regularization parameter), which basically represent the radius
of a small sphere centered around the singularity. We compute the approximate
link of each singularity as the stereographic projection of the intersection of this

1.5. Structure of the Thesis 15

sphere with the input curve. We mention that the approximate link of a singu-
larity is a smooth and closed space algebraic curve, defined as the intersection of
two algebraic surfaces in the 3-dimensional real space. We basically compute the
approximate link as a 3-dimensional graph data structure, by using subdivision
methods from [Liang et al., 2008]. We mention that a 3-dimensional graph data
structure is given as a set of points (vertices) in the 3-dimensional space together
with their Euclidean coordinates, and a set of edges connecting them.

• In Section 3.3, an algorithm for computing the approximate Alexander polynomial
of each approximate link. This algorithm depends also on the input regulariza-
tion parameter. For computing the approximate Alexander polynomial we use
algorithms from computational geometry (i.e. an adapted version of the Bentley-
Ottmann algorithm) and combinatorial objects from knot theory (i.e the diagram
of the approximate link, which is a special kind of projection of the approximate
link in the 2-dimensional real plane).

• In Section 3.4, an algorithm for computing the approximate delta-invariant of
each singularity of the input curve. This algorithm depends also on the input
regularization parameter. We derive a formula for the approximate delta-invariant
of each singularity based on the degree and on the number of variables of the
approximate Alexander polynomial of the approximate link of the singularity.

• In Section 3.5, an algorithm for computing the approximate local topological type
of each singularity of the input curve. This algorithm depends as well on the input
regularization parameter. We define the approximate topological type of the sin-
gularity Q of the input curve as the pair containing the value for the approximate
link of the singularity Q, the value for the approximate Alexander polynomial of
the approximate link of Q, and the value of the approximate delta-invariant of the
singularity Q.

• In Section 3.6, an algorithm for computing the approximate genus of the input
plane complex algebraic curve. This algorithm depends on the input regularization
parameter. We derive a formula for the approximate genus based on the degree
of the input curve and of the values of the approximate delta-invariants of all the
singularities of the input plane complex algebraic curve.

• In Subsection 3.3.4, an algorithm for computing the approximate Milnor number of
each singularity of the input curve. Similar to the other algorithms, this algorithm
depends also on the input regularization parameter. We derive a formula for
computing the approximate Milnor number based on the degree and on the number
of variables of the approximate Alexander polynomial of the approximate link of
the singularity.

• In Subsection 3.6.2, an algorithm for computing the approximate Euler character-
istic of the Riemann surface attached to the resolution of singularities of the input
plane complex algebraic curve. This algorithm depends on the input regulariza-
tion parameter. We compute the value for the approximate Euler characteristic
based on the value of the approximate genus of the input curve.

• In Section 3.7, an algorithm for computing the following various properties from
knot theory for the approximate link of each singularity of the input plane complex
algebraic curve: the genus of the approximate link, the unknotting number of the
approximate link, the determinant of the approximate link, the number of knot
components of the approximate link, the sequence of linking numbers for all the
knot components of the approximate link. We also decide whether the approximate
link is colorable or not.

16 Chapter 1. Introduction

(3) In Chapter 4 we introduce regularization principles used in the field of approximate
algebraic computation. We explain the way in which we apply these regularization prin-
ciples to the considered algebraic problem of computing invariants of a plane complex
algebraic curves defined by a squarefree polynomial with exact and inexact data. We
recall that for the inexact data we associate a positive real number called noise, which
measures the error level in the coefficients. We recall that the symbolic-numeric algo-
rithms designed in Chapter 3 depend on an input parameter called regularization pa-
rameter, which is a positive real number. We show that the designed symbolic-numeric
algorithms designed in Chapter 3 compute approximate solutions to the considered al-
gebraic problem, approximate solutions that satisfy the following property (called con-
vergence property for noisy data): as the noise level in the coefficients of the defining
polynomial of the input curve tends to zero and the regularization parameter is chosen
according to a specific rule (called a parameter choice rule), the approximate solutions
computed by the designed symbolic-numeric algorithms tend to the exact solutions of
the considered problem. Thus instead of computing exact solutions to the considered
algebraic problem, we compute approximate solutions satisfying the convergence for
noisy data property.

(4) In Chapter 5 we discuss the implementation issues. We present in details the new
software package GENOM3CK (Symbolic numeric techniques for GENus cOMputation
of plane Complex algebraiC Curves using Knot theory). GENOM3CK is an open source
library, which contains the implementation of the symbolic-numeric algorithms designed
in Chapter 3. We organize this chapter in four parts:

• In Section 5.1, we describe the main functionalities of the library, we include a
short history concerning the development of the library and we present the main
interface of the library.

• In Section 5.2, we present the main systems on which the library was built on and
we present the main dependencies of the library

• In Section 5.3, we describe in details a set of instructions for guiding both the
interested user and the experienced developer in using the library.

• In Section 5.4, we include a large set of test experiments performed with the library.
A first set of experiments shows the computation of the approximate invariants of
a plane complex algebraic curve, performed with the symbolic-numeric algorithms
from Chapter 3. A second set of experiments represents the evidence for the
convergence for noisy data property of the symbolic-numeric algorithms, property
that we proved in Chapter 3.

(5) In Chapter 6 we include the conclusions concerning the work presented in this thesis
and we discuss the future directions of research.

Chapter 2
Plane Complex Algebraic Curves

2.1 Preliminaries on Affine and Projective Plane Com-
plex Algebraic Curves

In this section we introduce and we define the main objects of our research, i.e. the affine
and the projective plane complex algebraic curves. We first give a short outline concerning
the historical evolution of plane algebraic curves and then we introduce several definitions
and examples concerning plane algebraic curves defined over an algebraically closed field
(e.g. the complex numbers).

2.1.1 A Brief Historical Background

In this subsection we make a summary on the historical facts concerning plane algebraic
curves. For this purpose, we mainly follow the book of [Brieskorn and Knorrer, 1986].
We recall that plane algebraic curves are the fundamental objects of study in the field of
algebraic geometry, which increasingly developed in the past and in the present century
and which is still encountering recent valuable developments. In this subsection we give
a short overview of the origin of plane algebraic curves and we indicate some of the main
reasons for which mathematicians began the study of these mathematical objects. As a
rough general remark, we mention that the primary reasons for the origin of plane algebraic
curves are: the development of mathematical problems, the mathematical constructions,
or the applications in other fields such as astronomy, technology, architecture, etc. In the
following we present the main classes of plane algebraic curves by shortly discussing their
origin and by depicting their main applications into the real world.
The first class of basic plane algebraic curves are the circle and the line. These objects
were known by Greeks such as Thales (600 B.C.) or Euclid (300 B.C.) and they were
defined as loci of points having certain distance properties to given points. For instance,
the circle is defined as the locus of points situated at the same distance from a given point
called the center of the circle. Moreover the distance from any point and the center is
called the radius of the circle. As applications, the circle and the line were mainly used
for land measurements or for building constructions. Even though it was not until 1637
that R. Descartes introduced the use of Cartesian coordinates for describing the plane
algebraic curves, for the sake of completion in our overview we will also introduce the
implicit equations using Cartesian coordinates of the discussed plane algebraic curves. Thus,

18 Chapter 2. Plane Complex Algebraic Curves

we remember that the implicit equation of the circle centered in the point of Cartesian
coordinates (a, b) and of radius r is (x− a)2 + (y − b)2 = r2, whereas the implicit equation
of the line through two points of Cartesian coordinates (x1, y1) and (x2, y2) is given by
(y1 − y2)x+ (x2 − x1)y + x1y2 − x2y1 = 0. In Figure 2.1 we visualize a circle and a line in
the 2-dimensional Euclidean plane.

In[29]:= Show@GraphicsArray@

Block@8$DisplayFunction = Identity<, ImplicitPlot@Conic@#, 8x, y<D ã 0, 8x, -2, 2<,

Epilog Ø 8Red, PointSize@.03D, Point êü #<D & êü 8pts1, pts2, pts3<

D

DD

Conic-conic intersection

In[30]:= Solve@8a1 x^2 + 2 b1 x y + c1 y^2 + 2 d1 x + 2 f1 y + g1 ã 0,

a2 x^2 + 2 b2 x y + c2 y^2 + 2 d2 x + 2 f2 y + g2 ã 0<, 8x, y<D êê Timing

In[33]:= Expand@Hy - y1L Hx2 - x1L - Hy2 - y1L Hx - x1L D

Out[33]= -x1 y + x2 y + x y1 - x2 y1 - x y2 + x1 y2

In[28]:= Show@GraphicsArray@

Block@8$DisplayFunction = Identity<, 8

ImplicitPlot@y^2 ã 2 x - 1, 8x, -5, 5<, PlotStyle Ø Red, Ticks Ø NoneD,

ImplicitPlot@y^2 == x^2 - 1, 8x, -2, 2<, PlotStyle Ø Red, Ticks Ø NoneD,

ImplicitPlot@16 y2 ã -12 x^2 + 8 x - 1, 8x, -5, 5<, PlotStyle Ø Red, Ticks Ø NoneD

<DDD

Out[28]= Ü GraphicsArray Ü

In[27]:= Show@GraphicsArray@

Block@8$DisplayFunction = Identity<, 8

ImplicitPlot@x^2 + y^2 - 2 x ã 0, 8x, -5, 5<, PlotStyle Ø Red, Ticks Ø NoneD,

Graphics@8RGBColor@1, 0, 0D, Line@880, 0<, 82, 1<<D <, Axes Ø True, Ticks Ø None D

<DDD

Out[27]= Ü GraphicsArray Ü

In[12]:= ? Graphics

Graphics@primitives, optionsD represents a two-dimensional graphical image.More…

ConicSection.nb 6

Figure 2.1: Example of a circle and a line. From left to right: (1) the circle given by
(x−1)2+(y−0)2+1 = 0; (2) the line given by y = x/2. Pictures produced with Mathematica,
see [Wolfram, 2000] for more information.

The second class of fundamental plane algebraic curves are the conic sections, which were
generated by Greeks as intersections of cones with planes. These conic sections are: the
hyperbola, the parabola and the ellipse. In Figure 2.2 we visualize the intersection of the
cone with equation x2 + y2− z2 = 0 and of the plane with equation 3x+ 2y− 2 = 0, where
we notice that the intersection is a hyperbola.

Figure 2.2: Generation of the hyperbola by intersecting the cone C given by x2+y2−z2 = 0
with the plane P given by 3x + 2y − 2 = 0. From left to right: (1) the intersection of the
cone (in yellow) with the plane (in green); (2) the hyperbola (in black) defined by the
intersection C ∩ P . Pictures produced with Surfex, see [Holzer and Labs, 2008] for more
information.

In Figure 2.3 we visualize the intersection of the cone with equation x2 +y2−z2 = 0 and of
the plane with equation x− z− 2 = 0, where we notice that the intersection is a parabola.
In Figure 2.4 we visualize the intersection of the cone with equation x2 + y2 − z2 = 0 and
of the plane with equation x− y + 4z + 4 = 0, where we notice that the intersection is an
ellipse.
In today’s notation, the conic sections, which are quadratic curves, are represented by the
following equation:

y2 = px+ qx2. (2.1)

2.1. Affine and Projective Plane Complex Algebraic Curves 19

Figure 2.3: Generation of the parabola by intersecting the cone C given by x2 +y2−z2 = 0
with the plane P given by x− z− 2 = 0. From left to right: (1) the intersection of the cone
(in yellow) with the plane (in blue); (2) the parabola (in black) defined by the intersection
C ∩ P . Pictures produced with Surfex, see [Holzer and Labs, 2008] for more information.

Figure 2.4: Generation of the ellipse by intersecting the cone C given by x2 + y2 − z2 = 0
with the plane P given by 3x − y + 4z + 4 = 0. From left to right: (1) the intersection
of the cone (in yellow) with the plane (in pink); (2) the ellipse (in black) defined by the
intersection C ∩ P . Pictures produced with Surfex, see [Holzer and Labs, 2008] for more
information.

20 Chapter 2. Plane Complex Algebraic Curves

Depending on the values of the parameters p and q in Equation (2.1), we obtain the following
particular conic sections:

• if q = 0, then we get the parabola;

• if q > 0, then we obtain the hyperbola;

• and if q < 0, then we acquire the ellipse.

As a remark, we add that the circle is also a quadratic curve, being in this way included in
the class of conic sections. In Figure 2.5 we include some examples of conic sections.

In[29]:= Show@GraphicsArray@

Block@8$DisplayFunction = Identity<, ImplicitPlot@Conic@#, 8x, y<D ã 0, 8x, -2, 2<,

Epilog Ø 8Red, PointSize@.03D, Point êü #<D & êü 8pts1, pts2, pts3<

D

DD

Conic-conic intersection

In[30]:= Solve@8a1 x^2 + 2 b1 x y + c1 y^2 + 2 d1 x + 2 f1 y + g1 ã 0,

a2 x^2 + 2 b2 x y + c2 y^2 + 2 d2 x + 2 f2 y + g2 ã 0<, 8x, y<D êê Timing

In[33]:= Expand@Hy - y1L Hx2 - x1L - Hy2 - y1L Hx - x1L D

Out[33]= -x1 y + x2 y + x y1 - x2 y1 - x y2 + x1 y2

In[28]:= Show@GraphicsArray@

Block@8$DisplayFunction = Identity<, 8

ImplicitPlot@y^2 ã 2 x - 1, 8x, -5, 5<, PlotStyle Ø Red, Ticks Ø NoneD,

ImplicitPlot@y^2 == x^2 - 1, 8x, -2, 2<, PlotStyle Ø Red, Ticks Ø NoneD,

ImplicitPlot@16 y2 ã -12 x^2 + 8 x - 1, 8x, -5, 5<, PlotStyle Ø Red, Ticks Ø NoneD

<DDD

Out[28]= Ü GraphicsArray Ü

In[27]:= Show@GraphicsArray@

Block@8$DisplayFunction = Identity<, 8

ImplicitPlot@x^2 + y^2 - 2 x ã 0, 8x, -5, 5<, PlotStyle Ø Red, Ticks Ø NoneD,

Graphics@8RGBColor@1, 0, 0D, Line@880, 0<, 82, 1<<D <, Axes Ø True, Ticks Ø None D

<DDD

Out[27]= Ü GraphicsArray Ü

In[12]:= ? Graphics

Graphics@primitives, optionsD represents a two-dimensional graphical image.More…

ConicSection.nb 6

Figure 2.5: Example of conic sections. From left to right: (1) the parabola given by y2 =
2x−1; (2) the hyperbola given by y2 = x2−1; (3) the ellipse given by 16y2 = −12x2+8x−1.
Pictures produced with Mathematica, see [Wolfram, 2000] for more information.

The Greeks used the conic sections to solve some classical problems such as the duplication
of the cube problem also known as the Delian problem. We briefly explain this problem. For
more information on the classical geometrical problems the reader is advised to consult the
fascinating book of [Beman and Smith, 2007] on this topic. Basically, the Delian problem is
formulated in the following way: given the length of an edge of a cube denoted with x, one is
asked to construct a second cube having double the volume of the initial given cube. Solving
the Delian problem reduces to solving the equation x3 − 2 = 0, i.e. finding the root of the
equation x3 − 2 = 0. In the past, finding the roots of equations was mainly performed by
geometrical constructions, which were basically suited to algebraic treatment. Furthermore,
these geometrical constructions were restricted to using only two types of instruments, i.e.
a ruler (also called a straight-edge because it did not present any markings on it) and a
compass. An important observation is that the equation x3 − 2 = 0 does not have roots
that are constructible only by ruler and by compass. This observation follows from Galois
theory, see [Gaal, 1998] for more details. It follows that one cannot construct the length 3

√
2

by ruler and compass alone, which shows in fact that the duplication of the cube problem is
unsolvable by this method. Still by using the conic sections, the Greeks successfully solved
the Delian problem, for more details see [Brieskorn and Knorrer, 1986, p. 6]. The main
idea for solving the Delian problem using the conic sections is to determine the intersection
of the two parabolas given by the following equations:{

y2 = 2x
x2 = y. (2.2)

We notice that solving the system of equations (2.2) reduces to solving the equation x4 = 2x,
from which we obtain the following solutions: x = 0 and x = 3

√
2. Therefore the Delian

problem can be solved assuming that a method for constructing parabolas does exist, and
that this method generates the whole curve and not only individual points of the curve.

2.1. Affine and Projective Plane Complex Algebraic Curves 21

The third class of plane algebraic curves are the cubic curves, such as the cissoid of Diocles
(180 B.C.). This curve has a cusp in the origin, and it is symmetric to the Ox axis. In
addition, this curve is one of the oldest example of a curve with such a singularity as the
cusp, a notion that we will define and explain in the next sections. The implicit equation
of the cissoid of Diocles in Cartesian coordinates is given by

x3 + xy2 − 2ay2 = 0. (2.3)

In addition, this curve has a vertical asymptote at x = 2a. In Figure 2.6 we include an
example of a cissoid of Diocles defined by the Equation (2.3), where we choose the parameter
a to be 1.

With@8t0 = 10<,
ParametricPlot@8

82 t^2, 2 t^3< ê H1 + t^2L,
82, 2 t<,
81 + Cos@Pi t ê t0D, Sin@Pi t ê t0D<<,

8t, -t0, t0<,
PlotRange Ø 8-3, 3<,
AspectRatio Ø Automatic,

Ticks Ø None, PlotStyle Ø 8Red, 8Dashing@80.05<D<, 8Dashing@80.05<D<<D
D

Ü Graphics Ü

ü V6

WithA8a = 1<, ContourPlotAx3 - 2 a y2 + x y2 ã 0,

8x, -2, 2<, 8y, -2, 2<, AspectRatio Ø Automatic, ContourStyle Ø RedEE

-2 -1 0 1 2

-2

-1

0

1

2

2 1EC67B6Dd01

Figure 2.6: Example of a cissoid of Diocles given by x3 − 2y2 + xy2 = 0. Picture produced
with Mathematica, see [Wolfram, 2000] for more information.

The main reason for which Diocles invented this curve is for solving the Delian problem.
We give here the basic idea for solving the Delian problem using the cissoid of Diocles. We
consider the following equation of the cissoid of Diocles, where we set the parameter a from

Equation (2.3) to be a =
1
2

:

x3 + xy2 − y2 = 0. (2.4)

Furthermore, we rewrite the Equation (2.4) in the form x3 = (1−x)y2. Then by multiplying
both sides of this equality with y, we get the equivalent equation:(

y

x

)3

=
y

1− x
. (2.5)

Next we construct the line with the equation y = 2x, which cuts the asymptote x = 1 in the
segment of length 2 and which intersects the cissoid in a point with the following property:

y

1− x
= 23. (2.6)

The Equality (2.6) represents the equation of the line passing through the point of Cartesian
coordinates (1, 0) denoted with P, and therefore of the line joining the point P to the point
of the cissoid. It follows that the length 3

√
2 can be constructed in the following way: (i) we

draw the line l joining the two points of Cartesian coordinates (2, 0) and (1, 0). This line l
intersects the cissoid in a point Q; (ii) we draw the line m joining the origin and the point
Q. This line m intersects the asymptote x = 1 in a segment that equals the length 3

√
2. For

more information on this issue see [Beman and Smith, 2007, p.44].

22 Chapter 2. Plane Complex Algebraic Curves

We further report on more essential plane algebraic curves. The conchoids of Nicomedes
(180 B.C.) are in fact a one parameter family of curves. These curves also solve the Delian
problem. For details, the reader can check [Brieskorn and Knorrer, 1986, p. 13]. The
conchoids of Nicomedes are defined as a family of curves with two parameters a and b by
the following equation:

(x− a)2(x2 + y2) = b2x2. (2.7)

As a note we mention that this family of curves has an asymptote x = a, and the area
between either branch and the asymptote is infinite. Depending on the values of the pa-
rameters a and b in Equation (2.7), Nicomedes distinguished between the following three
different classes of curves: (1) the class of curves for 0 < a/b < 1; (2) the class of curves
for a/b = 1; (3) and the class of curves for a/b > 1. We notice that for a = 0, this family of
curves degenerates to a circle. In Figure 2.7 we observe some examples of curves belonging
to each of these three different classes of curves. In addition, for visualization purposes in
Figure 2.8 we render the conchoids of Nicomedes with the Equation (2.7) in the domain
[−1.1, 3.1]× [−2, 2] ⊂ R2.

Function@eps, PolarPlot@1 + Sec@qD ê 2, 8q, p ê 2 + eps, 3 p ê 2 - eps<DD êü 80, 10^-5<

:
-0.4 -0.2 0.2 0.4

-0.5

0.5

,
-0.4 -0.2 0.2 0.4

-0.5

0.5

>

GraphicsGrid@8With@8eps = 10^-5<, Function@a,
Show@PolarPlot@1 + a Sec@qD, Evaluate@8q, Ò@@1DD + eps, Ò@@2DD - eps<D, PlotStyle Ø

RedD & êü Partition@Range@0, 2, 1 ê 2D p, 2, 1D, PlotRange Ø 88-1, 3<, 8-2, 2<<,
Ticks Ø None, PlotLabel Ø ToExpression@"a"D ã

Ha ê. HoldPattern@Rational@x__DD ß InlineFraction@xDLDD êü 80, 1 ê 2, 1, 3 ê 2, 2<
D<, ImageSize Ø

400D

a ! 0 a ! 1 ê2 a ! 1 a ! 3 ê2 a ! 2

GraphicsGrid@
Partition@With@8eps = 10^-5<, Function@a, Show@PolarPlot@1 + a Sec@qD, Evaluate@

8q, Ò@@1DD + eps, Ò@@2DD - eps<D, PlotStyle Ø RedD & êü
Partition@Range@0, 2, 1 ê 2D p, 2, 1D, PlotRange Ø 88-1, 3<, 8-2, 2<<,

Ticks Ø None, PlotLabel Ø ToExpression@"a"D ã

Ha ê. HoldPattern@Rational@x__DD ß InlineFraction@xDLDD êü
80, .005, .1, 1 ê 4, 1 ê 2, 3 ê 4, 1, 1.1, 3 ê 2, 2<

D, 4, 4, 81, 1<, 8<D, ImageSize Ø 400D

Part::take : Cannot take positions 2 through -2 in 8RowBox@81, ê, 4<D<. à

Part::take : Cannot take positions 2 through -2 in 8RowBox@81, ê, 4<D<. à

Part::take : Cannot take positions 2 through -2 in 8RowBox@81, ê, 2<D<. à

General::stop : Further output of Part::take will be suppressed during this calculation. à

a ! 0 a ! 0.005 a ! 0.1 a ! 1 ê4

a ! 1 ê2 a ! 3 ê4 a ! 1 a ! 1.1

a ! 3 ê2 a ! 2

853E3EC0d01 3

Figure 2.7: Example of representatives from the family of curves with Equation (2.7),
defining the conchoids of Nicomedes. From left to right: (1) representative for a/b = 1/2;
(2) representative for a/b = 1; (3) representative for a/b = 3/2. Pictures produced with
Mathematica, see [Wolfram, 2000] for more information.

Another class of special curves are the epicycle curves, which were used by astronomers as
Ptolemy (150 B.C.) to describe the paths of the planets. We notice several examples of
epicycle curves in Figure 2.9. In particular, an epicycle is defined as the locus of a point
P on the boundary of a circle of radius r1 rolling without slipping on the outside of a
fixed circle of radius r2, see Figure 2.10 for a rough visualization of this type of generation
process.
During the Renaissance period, other types of interesting curves were found such as the
wheel curves. In fact, it was later on noticed that the wheel curves are included in the class of
epicyclic curves. A particular class of wheel curves are the cycloids, see Figure 2.11 for some
examples. More precisely, the cycloid is defined as the locus of a point on the boundary of a
circle of radius r rolling along a straight line, see Figure 2.12 for a fundamental visualization
of this type of generation process.
During the Renaissance, a huge number of literature was written concerning the cycloids
by famous mathematicians. We do not wish to insist on the long list with the names of
these famous mathematicians, for a survey see [Brieskorn and Knorrer, 1986, p.26], but we
do wish to report on two technical applications of the cycloids: (i) the cycloidal gear, which
is used in the construction of mechanical clocks and watches. We give a basic explanation
for the notion of a cycloidal gear: by a gear we mean a rotating machine with teeth, which
meshes with another rotating machine with teeth to transmit motion or to change speed

2.1. Affine and Projective Plane Complex Algebraic Curves 23

ü Implicit

<< Graphics`ImplicitPlot`

ShowAGraphicsArrayATableA

ImplicitPlotAWithA8b = 1<, -b2 x2 + H-a + xL2 Ix2 + y2M ã 0E, 8x, -3, 3<,
Ticks Ø None,

PlotLabel Ø TraditionalForm@InlineFraction@HoldForm@aD, bD ã InputForm@aDD,
DisplayFunction Ø Identity,

AspectRatio Ø Automatic,

PlotRange Ø 88-1.1, 3.1<, 8-2, 2<<,
PlotStyle Ø RedE, 8a, 0, 2, 1 ê 2<EE, GraphicsSpacing Ø -.05E

Solve::svars : Equations may not give solutions for all "solve" variables. HMore…L

a ê b = 0 a ê b = 1 ê 2 a ê b = 1 a ê b = 3 ê 2 a ê b = 2

Ü GraphicsArray Ü

ShowA
BlockA8$DisplayFunction = Identity<,

TableAImplicitPlotA-b2 x2 + H-a + xL2 Ix2 + y2M ã 0 ê. b Ø 1,

8x, -5, 5<, AspectRatio Ø Automatic, Ticks Ø None,

PlotRange Ø 88-1.1, 3.1<, 8-2, 2<<, PlotStyle Ø Hue@a ê 2DE,
8a, .1, 2, .1<EEE

Ü Graphics Ü

movie = TableAImplicitPlotAWithA8b = 1<, -b2 x2 + H-a + xL2 Ix2 + y2M ã 0E, 8x, -3, 3<,
Ticks Ø None, PlotRange Ø 88-3.1, 3.1<, 8-2, 2<<, PlotStyle Ø Red,

PlotLabel Ø TraditionalForm@InlineFraction@HoldForm@aD, bD ã PaddedForm@a, 83, 2<DDE,
8a, -2., 2, .05<E

4 853E3EC0d01

Figure 2.8: Conchoids of Nicomedes representing the family of curves with Equation (2.7),
visualized in the domain [−1.1, 3.1] × [−2, 2] ⊂ R2. Picture produced with Mathematica,
see [Wolfram, 2000] for more information.

Epicycloid
ü Author

Eric W. Weisstein

August 21, 2010

This notebook downloaded from http://mathworld.wolfram.com/notebooks/PlaneCurves/Epicycloid.nb.

For more information, see Eric's MathWorld entry http://mathworld.wolfram.com/Epicycloid.html.

For a list of Eric's math packages that may be needed to evaluate this notebook, see Mathematica Information

Center's MathSource item 4775. A list of Eric's utility packages that may be needed to evaluate this notebook

may be downloaded from MathSource item 5087.

©2010 Wolfram Research, Inc. except for portions noted otherwise

ü Initialization

<< MathWorld`Curves`

Array of n-Cusped Epicycloids

Show@GraphicsArray@Block@8$DisplayFunction = Identity<,
Table@Epicycloid@81, 1 ê n<, 80, 2 p<, Prolog Ø Red,

Epilog Ø 8Black, Circle@80, 0<, 1D<D, 8n, 4<DD
DD

Ü GraphicsArray Ü

Animation of n-Cusped Epicycloids

Show@GraphicsArray@Block@8$DisplayFunction = Identity<,
Table@EpicycloidFrames@81, 1 ê n<, Range@0, 1, 1 ê Hn + 3 + Mod@n, 2DLD 2 Pi, Prolog Ø Red,

Epilog Ø 8Black, Circle@80, 0<, 1D<D, 8n, 4<DD
DD

Ü GraphicsArray Ü

ü Movie

<< Utilities`GIF`

Figure 2.9: Examples of epicycles. Pictures produced with Mathematica, for more infor-
mation see [Wolfram, 2000].

Epicycloid
ü Author

Eric W. Weisstein

August 21, 2010

This notebook downloaded from http://mathworld.wolfram.com/notebooks/PlaneCurves/Epicycloid.nb.

For more information, see Eric's MathWorld entry http://mathworld.wolfram.com/Epicycloid.html.

For a list of Eric's math packages that may be needed to evaluate this notebook, see Mathematica Information

Center's MathSource item 4775. A list of Eric's utility packages that may be needed to evaluate this notebook

may be downloaded from MathSource item 5087.

©2010 Wolfram Research, Inc. except for portions noted otherwise

ü Initialization

<< MathWorld`Curves`

Array of n-Cusped Epicycloids

Show@GraphicsArray@Block@8$DisplayFunction = Identity<,
Table@Epicycloid@81, 1 ê n<, 80, 2 p<, Prolog Ø Red,

Epilog Ø 8Black, Circle@80, 0<, 1D<D, 8n, 4<DD
DD

Ü GraphicsArray Ü

Animation of n-Cusped Epicycloids

Show@GraphicsArray@Block@8$DisplayFunction = Identity<,
Table@EpicycloidFrames@81, 1 ê n<, Range@0, 1, 1 ê Hn + 3 + Mod@n, 2DLD 2 Pi, Prolog Ø Red,

Epilog Ø 8Black, Circle@80, 0<, 1D<D, 8n, 4<DD
DD

Ü GraphicsArray Ü

ü Movie

<< Utilities`GIF`

Figure 2.10: Generation of the epicycles from Figure 2.9. In each picture, the epicycle is
represented by the path (in red) traced out by a point P on the boundary of a circle of
radius r1 (in blue) rolling without slipping on the outside of a fixed circle (in black) of
radius r2. Pictures produced with Mathematica, see [Wolfram, 2000] for more information.

24 Chapter 2. Plane Complex Algebraic Curves

Cycloid
ü Author

Eric W. Weisstein

August 13, 2010

This notebook downloaded from http://mathworld.wolfram.com/notebooks/PlaneCurves/Cycloid.nb.

For more information, see Eric's MathWorld entry http://mathworld.wolfram.com/Cycloid.html.

For a list of Eric's math packages that may be needed to evaluate this notebook, see Mathematica Information

Center's MathSource item 4775. A list of Eric's utility packages that may be needed to evaluate this notebook

may be downloaded from MathSource item 5087.

©2010 Wolfram Research, Inc. except for portions noted otherwise

ü Initialization

<< MathWorld`Curves`

ü Definition

cycloid = a 8t - Sin@tD, 1 - Cos@tD<;

Plot

ParametricPlot@8t - Sin@tD, 1 - Cos@tD<, 8t, 0, 4 Pi<,
PlotStyle Ø Red, AspectRatio Ø Automatic, ImageSize Ø 400D

2 4 6 8 10 12

0.5

1.0

1.5

2.0

ParametricPlot@8t - Sin@tD, 1 - Cos@tD<, 8t, 0, 4 Pi<,
PlotStyle Ø Red, AspectRatio Ø Automatic, Ticks Ø None, ImageSize Ø 500D

TrochoidFrames@81, 1<, Table@x, 8x, 0, 4 Pi, 4 Pi ê 5<DD

Ü Graphics Ü

ü Movie

movie = Trochoid@81, 1<, 80, 4 Pi, 4 Pi ê 30<, ImageSize Ø 500D;

Figure 2.11: Example of a cycloid. Picture produced with Mathematica, for more informa-
tion see [Wolfram, 2000].

Cycloid
ü Author

Eric W. Weisstein

August 13, 2010

This notebook downloaded from http://mathworld.wolfram.com/notebooks/PlaneCurves/Cycloid.nb.

For more information, see Eric's MathWorld entry http://mathworld.wolfram.com/Cycloid.html.

For a list of Eric's math packages that may be needed to evaluate this notebook, see Mathematica Information

Center's MathSource item 4775. A list of Eric's utility packages that may be needed to evaluate this notebook

may be downloaded from MathSource item 5087.

©2010 Wolfram Research, Inc. except for portions noted otherwise

ü Initialization

<< MathWorld`Curves`

ü Definition

cycloid = a 8t - Sin@tD, 1 - Cos@tD<;

Plot

ParametricPlot@8t - Sin@tD, 1 - Cos@tD<, 8t, 0, 4 Pi<,
PlotStyle Ø Red, AspectRatio Ø Automatic, ImageSize Ø 400D

2 4 6 8 10 12

0.5

1.0

1.5

2.0

ParametricPlot@8t - Sin@tD, 1 - Cos@tD<, 8t, 0, 4 Pi<,
PlotStyle Ø Red, AspectRatio Ø Automatic, Ticks Ø None, ImageSize Ø 500D

TrochoidFrames@81, 1<, Table@x, 8x, 0, 4 Pi, 4 Pi ê 5<DD

Ü Graphics Ü

ü Movie

movie = Trochoid@81, 1<, 80, 4 Pi, 4 Pi ê 30<, ImageSize Ø 500D;

Figure 2.12: Cycloid (in red) generated by a circle (in blue) rolling on a straight line.
Picture produced with Mathematica, see [Wolfram, 2000].

or direction. In particular, a gear whose teeth are made up of cycloidal curves is called a
cycloidal gear, for an example see Figure 2.13; (ii) another technical application of the cy-
cloids is the trochoidal rotation reciprocator, which represents the geometrical basis for the
construction of the Wankel motor. The design of the Wankel engine is complicated enough
to be presented here and it includes several engineering terms, therefore we will omit from
our overview. For details on this issue, the reader can check [Brieskorn and Knorrer, 1986,
p. 38]. Nevertheless, we report on some practical applications of the Wankel engines by
mentioning that these types of engines were installed in different types of vehicles and
devices, such as for instance cars, aircrafts, etc.

Figure 2.13: Example of a cycloidal gear from http://www.rmhoffman.com.

Another class of important plane algebraic curves, which were generated as a result of a
technological discovery, are the Watt curves. These curves were introduced in 1784 by the
Scottish engineer J. Watt, who developed the steam engine. Nowadays, the Watt curves
are defined by the following implicit equation in Cartesian coordinates:

(x2 + y2)(x2 + y2 − a2 − b2 + c2)2 + 4a2y2(x2 + y2 − b2) = 0. (2.8)

http://www.rmhoffman.com

2.1. Affine and Projective Plane Complex Algebraic Curves 25

In Figure 2.14 we include an example of a Watt curve defined by Equation 2.8, where we set
the parameters a, b, c to have the following particular values: a = 2.1, b = 2 and c = 2.5.

Equation

Factor êü GroebnerBasis@8r^2 == b^2 - Ha Sin@tD + zL^2,
x ã r Cos@tD, y ã r Sin@tD, x^2 + y^2 ã r^2, z^2 == c^2 - a^2 Cos@tD^2<,

8x, y<, 8Cos@tD, Sin@tD, r, z<, MonomialOrder Ø EliminationOrderD

9a4 x2 + 2 a2 b2 x2 + b4 x2 - 2 a2 c2 x2 - 2 b2 c2 x2 + c4 x2 -
2 a2 x4 - 2 b2 x4 + 2 c2 x4 + x6 + a4 y2 - 2 a2 b2 y2 + b4 y2 - 2 a2 c2 y2 - 2 b2 c2 y2 +

c4 y2 - 4 b2 x2 y2 + 4 c2 x2 y2 + 3 x4 y2 + 2 a2 y4 - 2 b2 y4 + 2 c2 y4 + 3 x2 y4 + y6=

eqn = a4 x2 + 2 a2 b2 x2 + b4 x2 - 2 a2 c2 x2 - 2 b2 c2 x2 + c4 x2 -

2 a2 x4 - 2 b2 x4 + 2 c2 x4 + x6 + a4 y2 - 2 a2 b2 y2 + b4 y2 - 2 a2 c2 y2 - 2 b2 c2 y2 +

c4 y2 - 4 b2 x2 y2 + 4 c2 x2 y2 + 3 x4 y2 + 2 a2 y4 - 2 b2 y4 + 2 c2 y4 + 3 x2 y4 + y6;

ContourPlot@Evaluate@eqn ã 0 ê. 8a Ø 2.1, b Ø 2., c Ø 2.5<D, 8x, -2, 2<,
8y, -2, 2<, ContourStyle Ø Red, ContourShading Ø False, ImageSize Ø MediumD

-2 -1 0 1 2

-2

-1

0

1

2

Properties

ü Arc Length

ArcLength@Sqrt@b^2 - Ha Sin@tD + Sqrt@c^2 - a^2 Cos@tD^2DL^2D,
8t, 0, 2 p<, Assumptions -> 0 < a < cD êê Timing

:60.9922, IntegrateB b2 - c2 - a2 Cos@tD2 + a Sin@tD
2

+

c2 - a2 Cos@tD2 + a Sin@tD
2

a Cos@tD +
a2 Cos@tD Sin@tD

c2-a2 Cos@tD2

2

b2 - c2 - a2 Cos@tD2 + a Sin@tD
2

,

8t, 0, 2 p<, Assumptions Ø 0 < a < cF>

2 WebKitPlugInStream19AWGV.1

Figure 2.14: Example of a Watt curve defined by the Equation (2.8) with the parameters
a = 2.1, b = 2 and c = 2.5. Picture produced with Mathematica, see [Wolfram, 2000] for
more information.

We also report on another significant class of plane algebraic curves called the Lissajou
curves, which were first studied in 1850 by the French mathematician J. A. Lissajou, while
he was investigating different vibration problems. The Lissajou curves are a family of curves
represented by the following parametric equations:

x(t) = a sin (ωt+ δ)
y(t) = b sin t. (2.9)

The Lissajou curves have applications in physics, astronomy and other sciences. As ap-
plications in physics for instance, the Lissajou curves are the family of curves that the
oscilloscope, which represents an electronic test instrument, draws when its two inputs
(representing horizontal and vertical shifts) are connected to two oscillatory signals. We
mention that in Figure 2.15 we visualize several representatives from the Lissajou family of
curves with Equation (2.9), where we consider the parameter δ to be 0, we set the parameter
b to be 1, and we consider several different values for the parameters a and ω. From Fig-
ure 2.15, we notice that the visual forms of some Lissajou curves resemble to 3-dimensional
knots. In fact many 3-dimensional knots projects on the 2-dimensional plane as Lissajou
curves. For a precise definition of 3-dimensional knots, the reader should consult Subsec-
tion 2.3.3, where we introduce and we study in details these mathematical objects, which
actually represent one of the key and the central notion of this thesis.
We end here our overview concerning the historical background of plane algebraic curves.
We wish to emphasize that this overview only contains some illustrative classes of plane
algebraic curves and it is, by no means, exhaustive. Our main purpose in this subsection was
to include some of the main reasons for the study of plane algebraic curves and to familiarize
the reader with some fundamental examples of plane algebraic curves. Basically, we saw
that plane algebraic curves have a history of more than two thousand years, and that they
have important technical applications, which connects them to the real word. It is thus
essential to introduce a formal study of these mathematical objects in order to understand
their mathematical behaviour. We cover these aspects in details in the next sections of this
chapter.

26 Chapter 2. Plane Complex Algebraic Curves

Lissajous Curve
ü Author

Eric W. Weisstein

March 16, 2008

This notebook downloaded from http://mathworld.wolfram.com/notebooks/PlaneCurves/LissajousCurve.nb.

For more information, see Eric's MathWorld entry http://mathworld.wolfram.com/LissajousCurve.html.

For a list of Eric's math packages that may be needed to evaluate this notebook, see Mathematica Information

Center's MathSource item 4775. A list of Eric's utility packages that may be needed to evaluate this notebook

may be downloaded from MathSource item 5087.

©2008 Wolfram Research, Inc. except for portions noted otherwise

ü Code

Lissajous@a_, w_, d_: 0, opts___D :=
ParametricPlot@8a Sin@w t + dD, Sin@tD<, 8t, 0, 2 Pi Denominator@wD<,
opts, PlotStyle Ø Red, Ticks Ø None, AspectRatio Ø Automatic,
DisplayFunction Ø IdentityD

Examples

Show@GraphicsArray@88Lissajous@1, 1 ê 2D, Lissajous@1, 1 ê 3D, Lissajous@1, 1 ê 4D<,
8Lissajous@1, 2 ê 5D, Lissajous@1, 3 ê 5D, Lissajous@1, 4 ê 5D<<DD

Ü GraphicsArray Ü

MakeBoxes@label@2, 1, 0D, TraditionalFormD :=
RowBox@8RowBox@8"w", "!", "1"<D, ",", RowBox@8"d", "!", "0"<D<D

MakeBoxes@label@1, 1, Times@Rational@1, 2D, PiDD, TraditionalFormD :=
RowBox@8RowBox@8"a", "!", "b"<D, ",", " ", RowBox@8"w", "!", "1"<D,

",", RowBox@8"d", "!", RowBox@8"p", "ê", "2"<D<D<D
MakeBoxes@label@1.5, 1, Times@Rational@1, 2D, PiDD, TraditionalFormD :=
RowBox@8RowBox@8"a", "!", "b"<D, ",", " ", RowBox@8"w", "!", "1"<D,

",", RowBox@8"d", "!", RowBox@8"p", "ê", "2"<D<D<D
MakeBoxes@label@1, 2, Times@Rational@1, 2D, PiDD, TraditionalFormD :=
RowBox@8RowBox@8"w", "!", "2"<D, ",", RowBox@8"d", "!", RowBox@8"p", "ê", "2"<D<D<D

General::spell1 : Possible spelling error: new

symbol name "label" is similar to existing symbol "Label". More…

Figure 2.15: Example of representatives from the family of curves with Equation (2.9), defin-
ing the Lissajou curves. We set the parameters δ = 0 and b = 1 for all the representative.
The parameters a and ω are individually chosen as follows. First row from left to right: (1)
representative for a = 1, ω = 1/2; (2) representative for a = 1, ω = 1/3; (3) representative
for a = 1, ω = 1/4. Second row from left to right: (1) representative for a = 1, ω = 2/5;
(2) representative for a = 1, ω = 3/5; (3) representative for a = 1, ω = 4/5. Pictures
produced with Mathematica, see [Wolfram, 2000] for more information.

2.1.2 Definitions and Examples

In this subsection, we first recall several notions from algebra, which are essential for defining
the objects of our study, i.e. the plane complex algebraic curves. Then, we define the plane
complex algebraic curves, which we divide in two main classes: the class of affine plane
complex algebraic curves, and the class of projective plane complex algebraic curves. We
will handle each of this class in details, including several basic definitions and examples. In
our study, we mainly follow the books of [Fulton, 1989], [Kirwan, 1992] and [Winkler, 1996].
We define a squarefree bivariate polynomial in the following way:

Definition 1. Let K be an algebraically closed field of characteristic 0. We say that a
polynomial p(z, w) ∈ K[z, w] is squarefree if there does not exist a polynomial q(z, w) ∈
K[z, w] of positive degree such that

(
q(z, w)

)2 divides p(z, w). It follows that p(z, w) is
squarefree if we cannot write p(z, w) =

(
q(z, w)

)2
r(z, w), where q(z, w), r(z, w) ∈ K[z, w]

and q(z, w) is nonconstant.

An important reason for defining squarefree polynomials is that if p(z, w) is squarefree,
then it does not have multiple roots. In several applications from engineering and physics
a squarefree polynomial is referred to as a polynomial with no repeated factors. We define
an irreducible bivariate polynomial as follows:

Definition 2. Let K be an algebraically closed field of characteristic 0. We say that a
polynomial p(z, w) ∈ K[z, w] is irreducible if there do not exist two nonconstant polynomials
q(z, w), r(z, w) ∈ K[z, w] such that p(z, w) = q(z, w)r(z, w).

We observe that an irreducible polynomial is squarefree, but a squarefree polynomial is
not necessarily irreducible. In the literature, the problem of squarefree factorization of a
polynomial p(z, w) ∈ C[z, w] consists of determining the pairwise relatively prime squarefree

polynomials b1(z, w), ..., bs(z, w) ∈ C[z, w] such that p(z, w) =
s∏

i=1

bi(z, w)i. In addition,

2.1. Affine and Projective Plane Complex Algebraic Curves 27

the problem of factorization of a polynomial p(z, w) ∈ C[z, w] refers to decomposing the
polynomial into irreducible polynomials. We familiarize the reader with these two problems
in Example 1.

Example 1. We consider the bivariate polynomial p(z, w) = −1 + 3z − 5z2 + 7z3 − 7z4 +
5z5 − 3z6 + z7 − 2w + 4zw − 4z2w + 6z3w − 6z4w + 4z5w − 4z6w + 2z7w − w2 − zw2 +
6z2w2− 6z3w2 +6z4w2− 6z5w2 + z6w2 + z7w2− 2zw3 +4z2w3− 2z3w3 +2z4w3− 4z5w3 +
2z6w3 − z2w4 + 3z3w4 − 3z4w4 + z5w4 ∈ C[z, w] of degree 7.
The squarefree factorization of p(z, w) into squarefree polynomials is:

p(z, w) = (−1 + z)3(1 + z2 + w + zw + z2w + zw2)2, (2.10)

and the factorization of p(z, w) into irreducible polynomials is:

p(z, w) = (−1 + z)3(1 + w)2(1 + z2 + zw)2. (2.11)

We give some intuition on the importance of studying the problem of squarefree factoriza-
tion. We recall that the squarefree factorization is a relatively inexpensive and simple step,
which can be computed just by greatest common divisor operations. Moreover, it is the
first step in the problem of factorization of a polynomial and in the problem of finding the
roots of a polynomial.
We are now ready to introduce the objects of our study, i.e. the plane complex algebraic
curves. First of all, we define the affine plane complex algebraic curves as follows:

Definition 3. Let C be the field of complex numbers. We recall that C is an algebraically
closed field of characteristic 0. Let A2(C) = {(z, w) ∈ C2} be the affine complex plane, and
let p(z, w) ∈ C[z, w] be an irreducible polynomial in z and w with coefficients in C of degree
m. An (affine) plane complex algebraic curve C in A2(C) of degree m defined by p(z, w) is
the set of zeroes of the polynomial p(z, w), i.e. C = {(z, w) ∈ A2(C) | p(z, w) = 0}. The
curve C is called irreducible if it has an irreducible polynomial defining it.

Based on Definition 3, we add that curves of degree 1 are called lines, curves of degree 2 are
named conics, curves of degree 3 are known as cubics, etc. Since irreducible polynomials
are squarefree, without loss of generality we can assume that the defining polynomial of an
affine plane complex algebraic curve from Definition 3 is squarefree. The reason for consid-
ering squarefree polynomials is an useful consequence of the theorem called the Hilbert’s
Nullstellensatz [Kirwan, 1992, p. 30], which basically says that two squarefree polynomials
define the same affine plane complex algebraic curve in A2(C) if and only if they are scalar
multiples of each other.

Remark 2. For simplicity reasons, for the rest of this thesis we will denote the affine
complex plane by C2. We make an important observation referring to drawing the affine
plane complex algebraic curves. Since C2 is isomorphic with R4, we consider a plane complex
algebraic curve C ⊂ C2 as a real two-dimensional object in R4. For visualization purposes,
we cannot draw this object in R4, but we can sketch the equivalent curve in R2. If not
explicitly stated otherwise, in this thesis, we will use this convention for displaying plane
complex algebraic curves.

We point out that an affine plane complex algebraic curve in C2 is never compact, see
Example 2. Without going into details concerning notions from topology, we recall at this
point that a subset of C2 is compact if it is closed and bounded. For more details concerning
notions from topology used in this thesis, please consult Section 2.3.

28 Chapter 2. Plane Complex Algebraic Curves

Example 2. We give an example, which shows that an affine plane complex algebraic
curve is not compact. We consider the affine plane complex algebraic curve C = {(z, w) ∈
C2 | z2 + w2 = 1}, which represents the unit circle in the affine complex plane. We notice
that C is not compact, since it is not bounded. There exist two branches of C tending
to infinity, one tending in the direction i, and the other one in the direction −i. We can
compactify this curve, by adding two additional “points at infinity” in both directions.

Moreover, for different reasons such as for studying the intersection points of curves, or for
using homotopy methods [Sommese and Wampler, 2005] for curves, it is helpful to compact-
ify the affine plane complex algebraic curves by “adding points at infinity” obtaining in this
way the projective plane complex algebraic curves, which reside in the projective complex
plane. We indicate this compactification process in Example 3. Consequently, for counting
the intersection points of curves one can effectively use Bezout’s theorem [Kirwan, 1992,
p. 52], which says that two projective plane complex algebraic curves of degree m and
n intersect in exactly mn points counting multiplicities. A particular result of Bezout’s
theorem states that any two distinct lines in the projective complex plane will intersect in
exactly one point.

Example 3. We include an example, which informally indicates the compactification pro-
cess of an affine plane complex algebraic curve. We take the affine plane complex algebraic
curves C = {(z, w) ∈ C2 | z2 − w2 − 1 = 0} and respectively D = {(z, w) ∈ C2 | z = ±w},
see Figure 2.16. We observe that these curves do not intersect, but they are asymptotic as
z and w tend to infinity. We can add “points at infinity” in C2 such that the two curves
will intersect at infinity. In the same way, parallel lines will meet at infinity.

In[1]:= << Graphics`ImplicitPlot`

In[9]:= ImplicitPlot@8y^2 ã x^2 - 1, x ã y, x ã -y<,

8x, -2, 2<, 8y, -2, 2<, PlotStyle Ø 8Red, Blue, Blue<D

-2 -1 1 2

-2

-1

1

2

Out[9]= Ü Graphics Ü

In[3]:= ImplicitPlot@8x^3 - x^2 + y^2 ã 0, x + y ã 0, x - y ã 0<,

8x, -2, 2<, 8y, -2, 2<, PlotStyle Ø 8Red, Blue, Blue<D

-2 -1 1 2

-2

-1

1

2

Out[3]= Ü Graphics Ü

useImplicitPlot.nb 1

Figure 2.16: The blue curve given by z2 − w2 − 1 = 0 and the red curve given by z = ±w.
The picture represents the hyperbola z2 − w2 − 1 = 0 together with its two asymptotes
z = ±w. Picture produced with Mathematica, see [Wolfram, 2000] for more information.

To make the compactification of the affine plane complex algebraic curves more formal, we
introduce the notion of projective complex plane. We consider the projective complex plane
denoted with P2(C), in the following way:

P2(C) = {(z : w : u) | (z, w, u) ∈ C3 \ {(0, ..., 0)}},

where (z : w : u) = {(αz, αw, αu) | α ∈ C \ {0}}. We identify the affine complex plane C2

inside P2(C) as the subset of points (z : w : 1). In addition, the points (z : w : 0) form a
line at infinity. In Example 2, the unit circle in the projective complex plane will contain
two new points (1 : i : 0) and (1 : −i : 0).

2.1. Affine and Projective Plane Complex Algebraic Curves 29

We now introduce the projective plane complex algebraic curves. We consider the squarefree
polynomial p(z, w) ∈ C[z, w] of degree m with

p(z, w) = pm(z, w) + pm−1(z, w) + ...+ p0(z, w),

where pk are forms of degree k for all k ∈ {m, ..., 0}, i.e. all the terms occurring in pk are of
the same degree and degree(pk) = k. We notice that p(z, w) defines an affine plane complex
algebraic curve C as in Definition 3. We consider p(z, w, u) the homogenized polynomial of
p(z, w) in u with

p(z, w, u) = pm(z, w) + pm−1(z, w)u+ ...+ p0(z, w)um.

We recall that a polynomial p(z, w, u) is called homogeneous of degree m if

p(Λz,Λw,Λu) = Λmp(z, w, u),

for all Λ ∈ C. We now define a projective plane complex algebraic curve as follows:

Definition 4. A projective plane complex algebraic curve C̃ (corresponding to C) is the
set of zeroes of the squarefree homogeneous polynomial p(z, w, u), i.e.

C̃ = {(z : w : u) ∈ P2(C) | p(z, w, u) = 0}.

Just as in the case of affine plane complex algebraic curves, two homogeneous squarefree
polynomials p(z, w, u) and q(z, w, u) define the same projective plane complex algebraic
curves if and only if they are scalar multiples of one another. Furthermore, we define the
following notions concerning a projective plane complex algebraic curve:

Definition 5. The degree of a projective plane complex algebraic curve C̃ in P2(C) defined
by a homogeneous polynomial p(z, w, u) is the degree m of the polynomial p(z, w, u). The
projective curve C̃ is called irreducible if p(z, w, u) is irreducible, i.e. p(z, w, u) has no
nonconstant polynomial factors other than scalar multiples of itself.

Remark 3. We notice that any affine point (z, w) of C corresponds to a point (z : w : 1)
of C̃, and in addition to these points C̃ contains only finitely many points “at infinity“ with
coordinates (z : w : 0). Even though the affine and the projective curves are different,
they are closely related. From an affine plane complex algebraic curve C we can obtain a
projective plane complex algebraic curve C̃ by adding “points at infinity”. More formally, if
the squarefree polynomial p(z, w) = 0 of degree m defines an affine plane complex algebraic
curve C in C2, then we can obtain its corresponding projective plane complex algebraic
curve C̃ in P2(C) by adding appropriate powers of u to each term from p(z, w) in order to
get an homogeneous squarefree polynomial p(z, w, u) of degree m, polynomial that defines
the projective curve C̃. Conversely, if p(z, w, u) = 0 is a projective plane complex algebraic
curve in P2(C) defined by the homogeneous squarefree polynomial p(z, w, u), then we can
dehomogenize the polynomial p(z, w, u) with respect to its variables z, w and u to obtain
the affine plane complex algebraic curves defined by the polynomials p(1,

w

z
,
w

z
), p(

z

w
, 1
u

w
)

and respectively p(
z

u
,
w

u
, 1).

In this way, in this subsection we defined the two classes of affine and of projective plane
complex algebraic curves, explaining also the main connection between them. We mention
that the definitions introduced in this subsection apply in the same way to the class of plane
algebraic curves defined over any algebraically closed field. In the literature the theory of
plane algebraic curves defined over an algebraic closed field is sometimes called the theory
of plane algebraic curves.

30 Chapter 2. Plane Complex Algebraic Curves

2.2 Singularities of Plane Complex Algebraic Curves

When studying plane complex algebraic curves, we are interested in a special type of points
called singular points, or simply singularities. Informally, the singularities of a plane com-
plex algebraic curve are those points where the curve has “nasty” behaviour, such as for
instance a point of self-intersection or a “cusp”. It is useful to mention that the notion of
a “cusp” will be precisely defined in the following subsections. In this section we include
a formal study of the singularities of both affine and projective plane complex algebraic
curves.

2.2.1 Definitions and Examples

In this subsection we define the singularities of plane complex algebraic curves and we
introduce several examples for a better understanding of all the notions. We first discuss
the singularities of an affine plane complex algebraic curve C defined by the squarefree
polynomial p(z, w) ∈ C[z, w], following the textbooks [Brieskorn and Knorrer, 1986, p. 219]
and [Walker, 1978, p. 52]. We introduce the singular points of C as those points Q(a, b) of
C at which the curve has more than one tangent counting multiplicities. We take L the line
through the point Q(a, b) of direction vector (λ, µ) and we study the intersections of L and
C at Q. The lines through Q have the following parametric equation: z = a+ λt

w = b+ µt,
(2.12)

where t ∈ C, and (λ, µ) 6= (0, 0) with (λ, µ) ∈ C2. The intersections of L and C are
determined by the solutions of the system of polynomial equation:

p(z, w) = 0

z = a+ λt

w = b+ µt,

(2.13)

or equivalently by the roots of the polynomial equation:

p(a+ tλ, b+ tµ) = 0. (2.14)

We expand p(a + tλ, b + tµ) from Equation (2.14) in the Taylor series expansion around t
and we obtain the equivalent polynomial equation:(

pz(Q)λ+ pw(Q)µ
)
t+
(
pzz(Q)λ+ pzw(Q)λµ+ pww(Q)µ

)
t2 + ... = 0, (2.15)

where pz, pw, ... represent the derivatives of p. We distinguish the following cases:

(i) If in Equation (2.15) pz(Q), pw(Q) are not both zero, then every line through Q has
a single intersection with C at Q.

(ii) If in Equation (2.15) all the derivatives of p of order smaller than r vanish at Q but at
least one derivative of order r does not vanish, then every line through Q has at least
r intersections with C at Q, and exactly r such lines have more than r intersections.

2.2. Singularities of Plane Complex Algebraic Curves 31

These exceptional lines called the tangents to C at the point Q correspond to the roots
of the following equation:

pz(Q)λr +
(
r

1

)
pzr−1(Q)λr−1µ+ ...+

(
r

r

)
pwr (Q)µr = 0, (2.16)

and they are counted with multiplicities equal to the multiplicities of the roots of
Equation (2.16). In this case, Q is called a point of multiplicity r of C, or an r-fold
point. A point of multiplicity 2 or more is called a singular point. We notice that
a necessary and sufficient condition that a point Q(a, b) is singular is that p(a, b) =
pz(a, b) = pw(a, b) = 0, where pz and pw denote the partial derivatives of p(z, w) with
respect to z and w.

In this way, we introduce the following definition for the singularities of an affine plane
complex algebraic curve:

Definition 6. Let C be an affine plane complex algebraic curve of degree m defined by the
squarefree polynomial p(z, w) ∈ C[z, w]. The set of singular points (or simply singularities)
of C is defined as

Sing(C) = {(z0, w0) ∈ C2 | p(z0, w0) =
∂p

∂z
(z0, w0) =

∂p

∂w
(z0, w0) = 0}.

For any singularity, we define its multiplicity as follows:

Definition 7. Let C be an affine plane complex algebraic curve of degree m defined by
the squarefree polynomial p(z, w) ∈ C[z, w], and Q(z0, w0) ∈ Sing(C). Let r be such that

for any j + k < r, the partial derivative
∂j+kp

∂zj∂wk
vanishes at the point Q(z0, w0) ∈ C, but

at least one of the partial derivatives of order r does not vanish. Then r is the multiplicity
of C at Q. In this case, the polynomial∑

j+k=r

1
j!k!

∂rp

∂zj∂wk
(Q)(z − z0)j(w − w0)k (2.17)

factors completely in linear factors, the tangents of C at Q.

From Definition 7, we notice that the multiplicity r of C at Q is the order of the lowest
non-vanishing term in the Taylor expansion of p at Q. In addition, the tangents to C at Q
are the lines through Q that cut C with multiplicity > r at Q. Counting multiplicity, C has
exactly r tangents at Q. In particular:

1. Q is a regular point of C if r = 1.

2. Q is a singular point of C if r > 1.

3. Q is a double point of C if r = 2.

4. Q is a triple point of C if r = 3, etc.

Thus a singularity is also called a multiple point (or an r-fold point) of the (affine) plane
complex algebraic curve. Based on Definition 7, we distinguish between ordinary and
nonordinary singularities in the following way:

Definition 8. Let C be an affine plane complex algebraic curve of degree m defined by
the squarefree polynomial p(z, w) ∈ C[z, w], and Q(z0, w0) ∈ Sing(C). The singularity Q of
C is ordinary if and only if all the r linear factors from Equation (2.17) are different, i.e.
all the tangents are different. Otherwise, Q is nonordinary, i.e. some of its corresponding
tangents are repeating.

32 Chapter 2. Plane Complex Algebraic Curves

The singular points include multiple points where the curve intersects itself (i.e. double
point, triple point, quadruple point as in Figure 2.17) or different types of cusp (i.e. cusp,
ramphoid cusp as in Figure 2.18). The points of an affine plane complex algebraic curve
that are not singular are called nonsingular or regular points. An irreducible affine plane
complex algebraic curve has at most finitely many singular points (in which case it is called
a singular affine plane complex algebraic curve), and if it has none it is called nonsingular
(or smooth).

In[17]:= Show@GraphicsArray@

Block@8$DisplayFunction = Identity<, 8

8

ImplicitPlot@x^3 - x^2 + y^2 ã 0, 8x, -1, 1.5<, AxesOrigin Ø 80, 0<, Epilog Ø

8PointSize@.08D, Point@80, 0<D<, Ticks Ø None, AspectRatio Ø Automatic,

PlotStyle Ø BlackD,

ImplicitPlot@Hx^2 + y^2L^2 + 3 x^2 y - y^3 ã 0, 8x, -1, 1<, Ticks Ø None,

PlotStyle Ø Black, AspectRatio Ø Automatic,

AxesOrigin Ø 80, 0<, Epilog Ø 8PointSize@.07D, Point@80, 0<D<D,

ImplicitPlot@8x y Hy^2 - x^2L + Hx^2 + y^2L^3 ã 0<,

8x, -2, 2<, AxesOrigin Ø 80, 0<,

PlotStyle Ø Black, Ticks Ø None, AspectRatio Ø Automatic,

Epilog Ø 8PointSize@.07D, Point@80, 0<D<D

<

<DDD

Out[17]= Ü GraphicsArray Ü

Show@GraphicsArray@

Block@8$DisplayFunction = Identity<, 8

8ImplicitPlot@x^3 - y^2 ã 0, 8x, -1, 1.5<, 8y, -2, 2<,

Epilog Ø 8PointSize@.16D, Point@80.07, 0.02<D<,

PlotStyle Ø Black, Ticks Ø None, AspectRatio Ø Automatic, AxesOrigin Ø 80, 0<D,

ImplicitPlot@x^4 + x^2 y^2 - 2 x^2 y - x y^2 + y^2 ã 0, 8x, -.1, 1<, PlotStyle Ø Black,

PlotRange Ø All, Epilog Ø 8PointSize@.08D, Point@80.011, 0.018<D<,

Ticks Ø None, AspectRatio Ø Automatic, AxesOrigin Ø 80, 0<D

<

<DDD

Ü GraphicsArray Ü

picsSing.nb 5

Figure 2.17: Ordinary singularities of some plane algebraic curves. Pictures produced with
Mathematica, for more information see [Wolfram, 2000].

In[11]:= Show@GraphicsArray@

Block@8$DisplayFunction = Identity<, 8

8

ImplicitPlot@x^3 - x^2 + y^2 ã 0, 8x, -1, 1.5<, AxesOrigin Ø 80, 0<,

Epilog Ø 8PointSize@.1D, Point@80, 0<D<, Ticks Ø None, AspectRatio Ø Automatic,

PlotStyle Ø Black, PlotLabel Ø StyleForm@"",

FontFamily -> "Times", FontSlant -> "Italic"DD,

ImplicitPlot@Hx^2 + y^2L^2 + 3 x^2 y - y^3 ã 0, 8x, -1, 1<, Ticks Ø None,

PlotStyle Ø Black, PlotLabel Ø StyleForm@"",

FontFamily -> "Times", FontSlant -> "Italic"D, AspectRatio Ø Automatic,

AxesOrigin Ø 80, 0<, Epilog Ø 8PointSize@.07D, Point@80, 0<D<D,

ImplicitPlot@Hx^2 + y^2L^3 - 4 x^2 y^2 ã 0, 8x, -2, 2<,

PlotStyle Ø Black,

PlotLabel Ø StyleForm@"", FontFamily -> "Times", FontSlant -> "Italic"D,

Epilog Ø 8PointSize@.08D, Point@80, 0<D<, Ticks Ø None,

AspectRatio Ø Automatic, AxesOrigin Ø 80, 0<D

<

<DDD

Out[11]= Ü GraphicsArray Ü

In[36]:= Show@GraphicsArray@

Block@8$DisplayFunction = Identity<, 8

8ImplicitPlot@x^3 - y^2 ã 0, 8x, -1, 1.5<, 8y, -2, 2<,

Epilog Ø 8PointSize@.10D, Point@80.12, 0.0<D<,

PlotStyle Ø Black,

PlotLabel Ø StyleForm@"", FontFamily -> "Times", FontSlant -> "Italic"D,

Ticks Ø None, AspectRatio Ø Automatic, AxesOrigin Ø 80, 0<D,

ImplicitPlot@x^4 + x^2 y^2 - 2 x^2 y - x y^2 + y^2 ã 0, 8x, -1, 1<, PlotStyle Ø

Black, PlotLabel Ø StyleForm@"", FontFamily Ø "Times", FontSlant Ø "Italic"D,

PlotRange Ø All, Epilog Ø 8PointSize@.09D, Point@80.0, 0.0<D<,

Ticks Ø None, AspectRatio Ø Automatic, AxesOrigin Ø 80, 0<D,

ImplicitPlot@Hx^4 + y^4L^3 - x^2 y^2 ã 0, 8x, -3, 3<, PlotStyle Ø Black,

PlotLabel Ø StyleForm@"", FontFamily Ø "Times", FontSlant Ø "Italic"D,

PlotRange Ø All, Epilog Ø 8PointSize@.09D, Point@80.0, 0.0<D<,

Ticks Ø None, AspectRatio Ø Automatic, AxesOrigin Ø 80, 0<D

<

<DDD

Out[36]= Ü GraphicsArray Ü

picsSing.nb 4

Figure 2.18: Nonordinary singularities of some plane algebraic curves. Pictures produced
with Mathematica, see [Wolfram, 2000].

From the previous discussion and definitions, it is clear how we can compute the multiplicity
of an affine plane complex algebraic curve C at its singular point Q and how we can compute
the tangents to C at Q. From this information, we can decide the type of singularity, i.e.
ordinary or nonordinary singularity. In Example 4 and Example 5 we familiarize the reader
with these computations.

Example 4. We consider the following affine plane complex algebraic curve:

C = {(z, w) ∈ C2 | z3 − z2 + w2 = 0}.

We compute the singularities of C by solving the system of polynomial equations z3 − z2 +
w2 = 3z2−2z = 2w = 0 and we obtain Sing(C) = {(0, 0)}.We then compute the multiplicity
of C at its singularity Q(0, 0) by extracting the degree of the lowest non-vanishing term in
the Taylor expansion of p at Q. In addition, we compute the tangents to C at Q from
equating to zero the lowest non-vanishing term in the Taylor expansion of p at Q. We
compute the following Taylor series expansion of p at Q(0, 0) :

p(0 + zt, 0 + wt) = p(zt, wt) = z3t3 + (−z2 + w2)t2. (2.18)

2.2. Singularities of Plane Complex Algebraic Curves 33

We observe that the lowest non-vanishing term in the polynomial from Equation (2.18),
which is a polynomial in the indeterminate t and with coefficients z, w, has degree 2. Thus
the multiplicity of C at Q(0, 0) is 2. The tangents of C at Q(0, 0) are determined from the
following equation:

− z2 + w2 = 0. (2.19)

By replacing
z

w
→ x in Equation (2.19) and by dividing the equation with

1
w2

we obtain
the following polynomial equation in the indeterminate x :

1− x2 = 0.

We notice that the greatest common divisor of 1 − x2 and its derivative −2x is 1, and
therefore the polynomial equation 1−x2 = 0 has no multiple roots. In addition, we observe
that 1 − x2 = (1 − x)(1 + x). We obtain two distinct tangents to C at Q(0, 0) with the
defining equations z+w = 0 and respectively z−w = 0. Thus, if we think of the polynomial
q(x) = 1 − x2 as a polynomial in one complex variable x, then the equation q(x) = 0 has
exactly two complex roots x1 = 1, x2 = −1 counting multiplicity. It follows that there are
two distinct tangents to C at Q(0, 0) with the defining equations w = x1(z − 0) + 0 and
respectively w = x2(z − 0) + 0, see Figure 2.19.

In[1]:= << Graphics`ImplicitPlot`

In[9]:= ImplicitPlot@8y^2 ã x^2 - 1, x ã y, x ã -y<,

8x, -2, 2<, 8y, -2, 2<, PlotStyle Ø 8Red, Blue, Blue<D

-2 -1 1 2

-2

-1

1

2

Out[9]= Ü Graphics Ü

In[3]:= ImplicitPlot@8x^3 - x^2 + y^2 ã 0, x + y ã 0, x - y ã 0<,

8x, -2, 2<, 8y, -2, 2<, PlotStyle Ø 8Red, Blue, Blue<D

-2 -1 1 2

-2

-1

1

2

Out[3]= Ü Graphics Ü

useImplicitPlot.nb 1

Figure 2.19: Ordinary double point (or node) of the curve (in red) given by z3− z2 +w2 =
0 with two distinct tangents (in blue) z + w = 0, z − w = 0. Picture produced with
Mathematica, see [Wolfram, 2000] for more information.

Example 5. We consider the affine plane complex algebraic curve:

C = {(z, w) ∈ C2 | z3 − w2 = 0}.

We first compute the singularities of C by solving the system of polynomial equations
z3 − w2 = 3z2 = 2w = 0 and we obtain Sing(C) = {(0, 0)}. Secondly, we compute the
multiplicity of C at the singularity Q(0, 0) by extracting the degree of the lowest non-
vanishing term in the Taylor expansion of p at Q. In addition, we compute the tangents to
C at Q from equating to zero the lowest non-vanishing term in the Taylor expansion of p
at Q :

p(0 + zt, 0 + wt) = p(zt, wt) = z3t3 + (−w2)t2. (2.20)

We observe that the lowest non-vanishing term in the polynomial from Equation (2.20),
which is a polynomial in the indeterminate t and with coefficients z, w, has degree 2. Thus

34 Chapter 2. Plane Complex Algebraic Curves

the multiplicity of C at Q(0, 0) is 2. The tangents of C at Q(0, 0) are determined from the
following equation:

− w2 = 0. (2.21)

By replacing
w

z
→ x in Equation (2.21) and by dividing the equation with

1
z2

we obtain
the following polynomial equation in the indeterminate x :

−x2 = 0.

We notice that the greatest common divisor of −x2 and its derivative −2x is x 6= 1, and
therefore the equation −x2 = 0 has multiple roots x1 = x2 = 0. It follows that the two
tangents to C at Q(0, 0) are equal with the defining equation w = 0, see Figure 2.20.

In[4]:= ImplicitPlot@8x^3 - y^2 ã 0, y ã 0<, 8x, -2, 2<, 8y, -2, 2<, PlotStyle Ø 8Red, Blue<D

-2 -1 1 2

-2

-1

1

2

Out[4]= Ü Graphics Ü

In[6]:= Show@GraphicsArray@

Block@8$DisplayFunction = Identity<, 8

ImplicitPlot@8x^3 - x^2 + y^2 ã 0, x + y ã 0, x - y ã 0<, 8x, -1, 1<,

8y, -1, 1<, Ticks Ø None, PlotStyle Ø 8Red, Black, Black<, Axes Ø FalseD,

ImplicitPlot@8Hx^2 + y^2L^2 + 3 x^2 y - y^3 ã 0, y ã 0, 0.7 y - x ã 0, 0.7 y + x ã 0<,

8x, -1, 1<, 8y, -1, 1<, Ticks Ø None,

PlotStyle Ø 8Red, Black, Black, Black<, Axes Ø FalseD,

ImplicitPlot@8x y Hx^2 - y^2L + Hx^2 + y^2L^3 ã 0, x y ã 0, x^2 + x y ã 0, x x - y x ã 0<,

8x, -.5, .5<, Ticks Ø None, PlotStyle Ø 8Red, Black, Black, Black, Black<D

<DDD

Solve::svars : Equations may not give solutions for all "solve" variables. More…

Solve::svars : Equations may not give solutions for all "solve" variables. More…

Solve::svars : Equations may not give solutions for all "solve" variables. More…

General::stop : Further output of Solve::svars will be suppressed during this calculation . More…

Out[6]= Ü GraphicsArray Ü

useImplicitPlot.nb 2

Figure 2.20: Nonordinary double point (cusp) of the curve (in red) given by z3 − w2 = 0
with two equal tangents (in blue) w = 0. Picture produced with Mathematica, see
[Wolfram, 2000] for more information.

In the following examples, we present several ordinary and nonordinary singularities of some
plane complex algebraic curves. We mention that these examples are mainly taken from the
book of [Fulton, 1989]. We remind that for deciding the type of singularity, i.e. ordinary or
nonordinary, one has to compute the multiplicity and the number of corresponding tangent
lines of the singularity itself, as indicated in Example 4 and in Example 5.

Example 6. In Figure 2.21 we include the ordinary singularities of some plane complex
algebraic curves. In the indicated figure, the plane complex algebraic curves are depicted
in red, whereas the corresponding tangent lines of their singularities are rendered in black.
From left to right we observe the following plane complex algebraic curves, for which we
indicate their corresponding singularities, multiplicities and tangent lines:

• the plane complex algebraic curve defined by z3 − z2 + w2 = 0. This curve has a
singularity in the origin (0, 0). From Example 4, we computed the multiplicity m of
this singularity and the number of its corresponding tangent lines t and we obtained
m = 2 and t = 2, where the defining equations of the two tangent lines are given by
z + w = 0, z − w = 0. Thus, this singularity is an ordinary double point.

• the plane complex algebraic curve defined by (z2 + w2)2 + 3z2w − w3 = 0. This
curve has a singularity in the origin (0, 0). By a straightforward computation as in
Example 4, we obtain the multiplicity of this singularity to be m = 3 and the number
of its tangent lines to be t = 3, where the three tangent lines have the following
defining equations: w = 0, w = z/

√
3, w = −z/

√
3. We call this singularity an

ordinary triple point.

2.2. Singularities of Plane Complex Algebraic Curves 35

• the plane complex algebraic curve defined by zw(z2 − w2) + (z2 + w2)3 = 0. This
curve has a singularity in the origin (0, 0). By a straightforward computation as in
Example 4, we get the multiplicity of this singularity to be m = 4 and the number of
its tangent lines to be t = 4, where the four tangent lines have the following defining
equations: z = 0, w = 0, z +w = 0, z −w = 0. We notice that this singularity is an
ordinary quadruple point.

In[4]:= ImplicitPlot@8x^3 - y^2 ã 0, y ã 0<, 8x, -2, 2<, 8y, -2, 2<, PlotStyle Ø 8Red, Blue<D

-2 -1 1 2

-2

-1

1

2

Out[4]= Ü Graphics Ü

In[6]:= Show@GraphicsArray@

Block@8$DisplayFunction = Identity<, 8

ImplicitPlot@8x^3 - x^2 + y^2 ã 0, x + y ã 0, x - y ã 0<, 8x, -1, 1<,

8y, -1, 1<, Ticks Ø None, PlotStyle Ø 8Red, Black, Black<, Axes Ø FalseD,

ImplicitPlot@8Hx^2 + y^2L^2 + 3 x^2 y - y^3 ã 0, y ã 0, 0.7 y - x ã 0, 0.7 y + x ã 0<,

8x, -1, 1<, 8y, -1, 1<, Ticks Ø None,

PlotStyle Ø 8Red, Black, Black, Black<, Axes Ø FalseD,

ImplicitPlot@8x y Hx^2 - y^2L + Hx^2 + y^2L^3 ã 0, x y ã 0, x^2 + x y ã 0, x x - y x ã 0<,

8x, -.5, .5<, Ticks Ø None, PlotStyle Ø 8Red, Black, Black, Black, Black<D

<DDD

Solve::svars : Equations may not give solutions for all "solve" variables. More…

Solve::svars : Equations may not give solutions for all "solve" variables. More…

Solve::svars : Equations may not give solutions for all "solve" variables. More…

General::stop : Further output of Solve::svars will be suppressed during this calculation . More…

Out[6]= Ü GraphicsArray Ü

useImplicitPlot.nb 2

Figure 2.21: Ordinary singularities with their corresponding tangents lines. From left to
right: (1) ordinary double point; (2) ordinary triple point; (3) ordinary quadruple point.
Pictures produced with Mathematica, see [Wolfram, 2000] for more information.

Example 7. In Figure 2.22 we indicate the nonordinary singularities of different plane
complex algebraic curves. In the mentioned figure, the plane complex algebraic curves are
drawn in red, whereas the corresponding tangent lines of their singularities are marked in
black. From left to right we observe the following plane complex algebraic curves, for which
we indicate their corresponding singularities, multiplicities and tangent lines:

• the plane complex algebraic curve defined by z3−w2 = 0. This curve has a singularity
in the origin (0, 0). From Example 5, we computed the multiplicitym of this singularity
and the number of its corresponding tangent lines t and we obtained m = 2 and t = 1,
where the tangent line has the defining equation w = 0. Thus, this singularity is a
nonordinary double point called also a cusp.

• the plane complex algebraic curve defined by z4 + z2w2− 2z2w− zw2 +w2 = 0. This
curve has a singularity in the origin (0, 0). By a straightforward computation as in
Example 5, we obtain the multiplicity of this singularity to be m = 2 and the number
of its tangent lines to be t = 1, where the tangent line has the defining equation
w = 0. This singularity is also a nonordinary double point and it is called a ramphoid
cusp. A ramphoid cusp is a cusp of a curve, which has both branches of the curve on
the same side of the common tangent, as we can easily notice from Figure 2.22.

• the plane complex algebraic curve defined by (z4 + w4)3 − z2w2 = 0. This curve
has also a singularity in the origin (0, 0). By a straightforward computation as in
Example 5, we get the multiplicity of this singularity to be m = 4 and the number of
its tangent lines to be t = 2, where the two tangent lines have the following defining
equations: z = 0 and w = 0. We call this singularity a nonordinary quadruple point.

An important observation is that computing the singularities of an affine plane complex
algebraic curve C = {(z, w) ∈ C2 | p(z, w) = 0} ⊂ C2 defined by a squarefree polynomial
p(z, w) ∈ C[z, w] is an ill-posed problem. This means that the solution of the problem

36 Chapter 2. Plane Complex Algebraic Curves

In[7]:= Show@GraphicsArray@

Block@8$DisplayFunction = Identity<, 8

ImplicitPlot@8x^3 - y^2 ã 0, y ã 0<, 8x, -1, 1<, 8y, -1, 1<,

Ticks Ø None, PlotStyle Ø 8Red, Black, Black<, Axes Ø TrueD,

ImplicitPlot@8x^4 + x^2 y^2 - 2 x^2 y - x y^2 + y^2 ã 0, y ã 0<,

8x, -1, 1<, Ticks Ø None, PlotStyle Ø 8Red, Black<, Axes Ø TrueD,

ImplicitPlot@8Hx^4 + y^4L^3 - x^2 y^2 ã 0, y ã 0, x ã 0<,

8x, -1, 1<, Ticks Ø None, PlotStyle Ø 8Red, Black, Black<D

<DDD

ImplicitPlot ::var : Equation x ã 0 does not have a single variable other than x.

Out[7]= Ü GraphicsArray Ü

useImplicitPlot.nb 3

Figure 2.22: Nonordinary singularities with their corresponding tangents lines. From left
to right: (1) cusp; (2) ramphoid cusp; (3) nonordinary quadruple point. Pictures produced
with Mathematica, see [Wolfram, 2000] for more information.

does not depend continuously on the input data, i.e. the solution is not stable under
small changes of the input data. For a better understanding of this situation, we consider a
slightly perturbed polynomial q(z, w) of p(z, w) and the affine plane complex algebraic curve
D defined by q(z, w), i.e. D = {(z, w) ∈ C2 | q(z, w) = 0}. We identify C2 with R4 and we
intend to visualize the topology (i.e. shape) of the affine plane complex algebraic curves
C and D around their singularities. As discussed in Remark 2 on drawing techniques for
affine plane complex algebraic curves, we cannot draw these real two-dimensional objects
in R4 but we can sketch the equivalent curves in the two-dimensional plane. In Example 8
and Example 9 we illustrate the ill-posedness notion for the problem of computing the
singularities of plane complex algebraic curves.

Example 8. We consider the following affine plane complex algebraic curves:

C = {(z, w) ∈ C2 | − z3 − zw + w2 = 0} and

D = {(z, w) ∈ C2 | − z3 − zw + w2 − 0.01 = 0},

defined by the squarefree polynomial p(z, w) = −z3 − zw +w2 ∈ C[z, w] and its perturbed
squarefree version q(z, w) = −z3−zw+w2−0.01 ∈ C[z, w]. We sketch the equivalent affine
plane algebraic curves in R2 denoted with C′ and respectively with D′

, i.e.

C
′
= {(z, w) ∈ R2 | − z3 − zw + w2 = 0} and

D
′
= {(z, w) ∈ R2 | − z3 − zw + w2 − 0.01 = 0}.

We visualize the topology of C′ and D′
. We notice that the singular point (0, 0) of the red

algebraic curve C′ disappears for small perturbations of its defining polynomial obtaining
the smooth blue curve D′

, as in Figure 2.23. Thus for small changes in the input data,
we obtain huge changes in the output solution. The same situation happens in R4, but we
cannot visualize it.

Example 9. By using the same notations as in Example 8, we consider the following affine
plane complex algebraic curves:

C = {(z, w) ∈ C2 | z3 + z2 − w3 = 0} and

D = {(z, w) ∈ C2 | z3 + z2 − w3 − 0.1w2 = 0},

2.2. Singularities of Plane Complex Algebraic Curves 37

Figure 2.23: Example of ill-posedness of the singularity (0, 0) of the red inner curve given
by −z3 − zw + w2 = 0. Picture produced with Axel, see Chapter 5 for more information.

defined by the squarefree polynomial p(z, w) = z3 + z2 − w3 ∈ C[z, w] and its perturbed
squarefree version q(z, w) = z3 + z2 − w3 − 0.1w2 ∈ C[z, w]. We visualize the topology of
the equivalent affine plane algebraic curves in R2 denoted with C′ and respectively with D′

,
i.e.

C
′
= {(z, w) ∈ R2 | z3 + z2 − w3 = 0} and

D
′
= {(z, w) ∈ R2 | z3 + z2 − w3 − 0.1w2 = 0}.

In Figure 2.24 the red inner curve represents the topology of C′ , whereas the blue outer curve
represents the topology of D′

. The curves C′ and D′
have a singularity in the origin, i.e. C′

has a cusp in the origin and D′
has an ordinary double point in the origin. We notice that

the singularity of C′ changes its type under small perturbations of its defining polynomial
obtaining the singularity of D′

. The same situation happens in R4, but we cannot visualize
it.

Figure 2.24: Example of ill-posedness of the singularity (0, 0) of the red inner curve given
by z3 + z2 − w3 = 0. Picture produced with Axel, see Chapter 5 for more information.

In the previous definitions we used affine coordinates, referring to the class of singularities
of affine plane complex algebraic curves. Still, the definitions are independent of the choice
of coordinates and we can extend them for homogeneous coordinates, referring thus to the
class of singularities of projective plane complex algebraic curves as follows:

Definition 9. Let C̃ be a projective plane complex algebraic curve in P2(C) defined by
the squarefree homogeneous polynomial p(z, w, u), and let Q̃(a : b : c) be a point on the

projective curve C̃. Then Q̃ is called a simple (or regular) point if
∂p

∂z
(Q̃) 6= 0 or

∂p

∂w
(Q̃) 6= 0

or
∂p

∂u
(Q̃) 6= 0. If Q̃ is not simple, then Q̃ is called a multiple point or a singularity on C̃.

38 Chapter 2. Plane Complex Algebraic Curves

Let r be such that for all j + k + l < r the partial derivative
∂j+k+lp

∂zjwkul
vanishes at Q̃, but

at least one of the partial derivatives or order r does not vanish at Q̃. Then r is called the
multiplicity of Q̃ on C̃ or Q̃ is an r-fold point on C̃. A projective plane complex algebraic
curve with no singularities is called smooth (or nonsingular). If a projective plane complex
algebraic curve has singularities, then it is called singular.

From Euler’s formula we know that any homogeneous polynomial p(z, w, u) ∈ C[z, w, u] of
degree m satisfies the equation:

m · p(z, w, u) = z
∂p

∂z
(z, w, u) + w

∂p

∂w
(z, w, u) + u

∂p

∂u
(z, w, u).

It follows that a point Q̃(z : w : u) is a singularity of the projective plane complex algebraic
curve C̃ defined by the homogeneous polynomial p(z, w, u) of degree m if Q satisfies the

relation
∂p

∂z
(Q̃) =

∂p

∂w
(Q̃) =

∂p

∂u
(Q̃) = 0. We make the following remark concerning the

connection between the singularities of affine and projective plane complex algebraic curves:

Remark 4. We consider C̃ to be a projective plane complex algebraic curve defined by the
squarefree homogeneous polynomial p(z, w, u), and we consider Q̃(a : b : c) to be a point on
the projective curve C̃. The point Q̃ is a singularity on the projective curve C̃ depending
on whether Q(a, b) is a singularity on the affine curve C defined by p(z, w, 1). Moreover if
C̃ is nonsingular then so is C. However, the converse is not necessarily true: it may happen
that C̃ has singular points even if C is nonsingular.

2.2.2 Applications of Singularities

Singularities have applications in many different areas such as: catastrophe theory, op-
timization and control problems, wavefront propagation, etc. For more details on these
particular topics, see the detailed book of [Arnold, 2004].
In this subsection, as an example, we will shortly cover the applications of singularities
in catastrophe theory, following the books of [Arnold et al., 1985], [Arnold et al., 1998],
[Arnold, 2004], [Gilmore, 1981]. In catastrophe theory, a special type of points of a function,
which are called degenerate critical points, play an important role. In the sequel, we shortly
introduce these types of points. For this purpose, we consider the function f : Rn →
R, (x1, ..., xn) 7→ f(x1, ..., xn), and the point of local coordinates D(x1, ...xn) ∈ Rn. In
addition, we assume that the function f in the variables x1, ..., xn is infinitely differentiable,
denoted by f(x1, ..., xn) ∈ C∞(Rn). We remember that a function is said to be infinitely
differentiable (or smooth or of class C∞) if it has derivatives of all orders. First of all, we
define the gradient of the function f at the point D as follows:

(∇f)(D) =
(∂f
∂x1

(D), ...,
∂f

∂xn
(D)

)
. (2.22)

Secondly, we define the Hessian matrix of the function f at the point D denoted by Hf(D)

as the Jacobian matrix of the derivatives
∂f

∂x1
, ...,

∂f

∂xn
of the function f(x1, ..., xn) with

2.2. Singularities of Plane Complex Algebraic Curves 39

respect to the variables x1, ..., xn at the point D, i.e.:

Hf(D) =


∂f2

∂x2
1

(D)
∂f2

∂x1x2
(D) ...

∂f2

∂x1xn
(D)

...

∂f2

∂xnx1
(D)

∂f2

∂xnx2
(D) ...

∂f2

∂x2
n

(D)

 . (2.23)

Under these assumptions, we are now prepared to introduce the following types of points
for the function f :

• we say that D is a critical point for f if the gradient of f at D is identically zero,
i.e. (∇f)(D) = 0. Otherwise, we say that D is a regular point of f, i.e. D is a

regular point of f if there exists j ∈ {1, ..., n} such that
∂f

∂xj
(D) 6= 0. Furthermore,

we distinguish between the following types of critical points:

– we say that D is a non-degenerate critical point (or a Morse critical point) of f
if the gradient of f at D is identically zero, i.e. (∇f)(D) = 0, and the Hessian
of f at D is non-singular, i.e. det

(
Hf(D)

)
6= 0.

– we say that D is a degenerate critical point (or a catastrophe point or simply a
catastrophe) of f if the gradient of f at D is identically zero, i.e. (∇f)(D) = 0,
and the Hessian of f at D is singular, i.e. det

(
Hf(D)

)
= 0.

We notice that the non-degenerate and the degenerate critical points (also called catas-
trophes) are found at points where the gradient vanishes. However, a degenerate critical
point (or a catastrophe) differs from a non-degenerate critical point in the following way:
a catastrophe has a degenerate (or singular) Hessian matrix, i.e. the determinant of the
Hessian matrix vanishes.
We recall that a diffeomorphism is a smooth invertible function with smooth inverse. We
are now ready to define the notion of structural equivalence of two smooth functions at a
given point. We say that two smooth functions f1, f2 ∈ C∞ are locally structural equivalent
at a point D ∈ Rn if there exists a neighborhood V of the point D and a diffeomorphism
φ such that a change of the coordinate system for one function with this diffeomorphism
causes the two functions to be equal in V, i.e. f1, f2 ∈ C∞ are locally structural equivalent
at D ∈ Rn if there exists V a neighborhood of D and a diffeomorphism φ : Rn → Rn with
the property that (f1◦φ)(x) = f2(x), for all x ∈ V. For an intuitive illustration of this notion
see Example 10. Informally, if two smooth functions are locally structural equivalent at a
given point D, then this fact implies that the two functions have the same local topological
structure (or type) at the given point.

Example 10. This example is from [Arnold et al., 1998, p. 12]. We consider the two
smooth functions f1 : R>0 → R>0, x 7→ f1(x) = x2 and f2 : R>0 → R>0, x 7→ f2(x) = cx2,
with c 6= 0. We notice that the two functions f1, f2 are locally structural equivalent at the
non-degenerate critical point x = 0, since f1 ◦g = f2, where g is the diffeomorphism defined
by g(x) =

√
cx.

By Morse lemma [Arnold et al., 1985, p. 119] we know that a non-degenerate critical point
is stable. This means that a small perturbation of the function will not modify the local
topological structure of the function at its non-degenerate critical point. Moreover, the
Morse lemma indicates us that at the non-degenerate critical points the local topological

40 Chapter 2. Plane Complex Algebraic Curves

Table 2.1: List of A-D-E singularities from [Arnold et al., 1985]
Ak, k ≥ 1 Dk, k ≥ 4 E6 E7 E8

xk+1 + y2 x2y + yk−1 x3 + y4 x3 + xy3 x3 + y5

structure of the function is given by the quadratic part of the Taylor series expansion of
the function itself.
On the contrary, degenerate critical points are not stable. It follows that a small pertur-
bation of the function will produce a huge change in the local topological structure of the
function in its degenerate critical points. Furthermore, a higher order Taylor series expan-
sion is required for describing the local topological structure of the given function at its
non-degenerate critical points.
The main observation is that small perturbations of a given function preserve its local
topological structural at its non-degenerate critical points, but they produce changes in the
local topological structure of the function at its degenerate critical points. An important
result, i.e. the Thom splitting lemma [Gilmore, 1981, p. 9] says that for a smooth function
f with one or more degenerate critical points there exists a smooth change of coordinates
such that the function f can be split into two functions: (1) one function containing the
non-degenerate critical points of f, which represents a Morse function, i.e. a function for
which all the critical points are non-degenerate; (2) and another function containing the
degenerate critical points of f, which represents a non-Morse function. Furthermore, the
Taylor series expansion of this non-Morse function begins with at least third-degree terms.
This non-Morse function is the main topic of research in basic catastrophe theory. In
addition, according to Thom classification theorem [Gilmore, 1981], [Arnold et al., 1985,
p. 191] under a smooth change of coordinates this non-Morse function splits into two
other functions: (2.1) one function, which contains the degenerate critical point (or non-
Morse critical points or catastrophes) and which depends only on the variables of f. These
variables are in fact called the state variables. In the literature, this function is called the
catastrophe germ. For the purpose of this subsection, we do not explain the notion of a
germ in particular, but we accept it as part of our terminology; (2.2) and another function,
which indicates how the function behaves at its degenerate critical point under the most
general perturbation. This function is called the perturbation function and it depends both
on the state variables and on one or more control parameters. A slight change in the control
parameters produces a huge change in the local topological structure of the function itself.
In fact, this perturbation function indicates how the non-Morse function changes its local
structure in a neighborhood of its degenerate critical points when the control parameters
are changing.
A list of fundamental catastrophes was given by Thom in 1975. Still a complete list of
fundamental catastrophes is presented in the book of [Arnold et al., 1985, p. 246]. In this
book, the author classifies the critical points of smooth functions by introducing the notion
of equivalence class of a function germ at a critical point, which is called a singularity. We
recall here, in Table 2.1, only the A-D-E list of singularities, by indicating the catastrophe
germ of each type of singularity. From the table, we observe that the catastrophe germ
of the Ak singularity depends on one state variable x, whereas the catastrophe germs of
the Dk, E6, E7 and E8 singularities depend on two state variables x and y. The names of
the A-D-E singularities come from the Lie groups of type A, D, E since there is a close
connection between the classification of elementary catastrophes and the classification of
simple Lie algebras as indicated in [Arnold et al., 1985, p.184].
For a better understanding of the notion of catastrophe, in Figure 2.25 we illustrate an

2.2. Singularities of Plane Complex Algebraic Curves 41

example of a fold catastrophe from [Gilmore, 1981]. For this purpose, we consider the A2

singularity with the following equation of its catastrophe germ that depends on one state
variable x:

f(x) = x3.

The fold catastrophe is given by the following equation:

f(x, c) = x3 + cx,

where f(x) = x3 represents the catastrophe germ, which depends on one state variable x,
and p(x, c) = cx represents the perturbation function, which depends on one state variable
x and one control parameter c.
From Figure 2.25 we notice that for different values of the control parameter c, the function
f(x, c) changes its local structure, i.e.: (1) for c = 0, f(x, c) has a doubly degenerate critical
point at x = 0; (2) for c > 0, f(x, c) has no critical point at x = 0; (3) and for c < 0, f(x, c)
has two isolated non-degenerate critical points at x1 =

√
−c and x2 = −

√
−c. We recall

that a point is an isolated critical point if there is a neighborhood V of p such that there is
no other critical point in V \ {p}. Thus we observe that the perturbations f(x, c) = x3 + cx
of the function f(x) = x3 with a doubly degenerate critical point in x = 0 either split the
critical points in two non-degenerate critical points for c < 0 or they annihilate the critical
points completely for c > 0.

In[23]:= Show@GraphicsArray@8l@@1DD, l@@2DD, l@@3DD<D, ImageSize Ø 500D

x

fHx,cL=x3+cx, c=-200

x

fHx,cL=x3+cx, c=0

x

fHx,cL=x3+cx, c=200

Out[23]= Ü GraphicsArray Ü

In[15]:= ? Plot3D

Plot3D@f, 8x, xmin, xmax<, 8y, ymin, ymax<D generates a three-dimensional

plot of f as a function of x and y. Plot3D@8f, s<, 8x, xmin, xmax<, 8y,

ymin, ymax<D generates a three-dimensional plot in which the height of

the surface is specified by f, and the shading is specified by s.More…

In[16]:= fold@x_, y_, c_D := x^3 + y^2 + c x;

GraphicsArray@

l =

Plot3D@fold@x, y, #D, 8x, -20, 20<, 8y, -20, 20<, PlotLabel -> "c=" <> ToString@#D,

AxesLabel Ø 8"x", ""<, Ticks Ø NoneD & êü 8-200, 0, 200<, ImageSize Ø 440;

D

c=-200

8x, <

c=0

8x, <

catastrophe.nb 2

Figure 2.25: Fold catastrophe: perturbations of type f(x, c) = x3+cx of the function f(x) =
x3 with doubly degenerate critical points at x = 0 cause changes in the local topological
structure of the function f(x) itself either by splitting the degenerate critical points in two
non-degenerate critical points when c < 0 or by totally annihilating the degenerate critical
points when c > 0. Picture produced with Mathematica, see [Wolfram, 2000].

We end this subsection with making the following important remarks:

• We notice that there is a correspondence between the singularities of plane complex
algebraic curves defined in Subsection 2.2.1 and the critical points of smooth functions
defined in this subsection. If we consider the smooth function f : R2 → R, (x, y) 7→
f(x, y) with the point D(a, b) ∈ R2, then the set f−1(0) = {(x, y) ∈ R2 | f(x, y) = 0}
defines the plane algebraic curve C ⊂ R2. In addition, if f(D) = 0, the derivatives of
f with respect to x and y are both zero in the point D and f is squarefree, then the

point D(a, b) is an isolated singularity of C, i.e. f(D) =
∂f

∂x
(D) =

∂f

∂y
(D) = 0.

• Moreover we observe that a singular point is also a critical point, but the converse
statement is not necessarily true, i.e. not all the critical points are singular points.
For instance, we consider the smooth function f : R2 → R, (x, y) 7→ x3 − y2 + x2.
We notice that the function f has two non-degenerate critical points in (0, 0) and in

(−2
3
, 0) since these two points are the solutions of the system 3x2 + 2x = 2y = 0,

42 Chapter 2. Plane Complex Algebraic Curves

which is formed by the two partial derivatives of f with respect to x and y, and

(Hf)(0, 0) 6= 0, (Hf)(−2
3
, 0) 6= 0. Furthermore, we see that the set f−1(0) = {(x, y) ∈

R2 | x3 − y2 + x2 = 0} defines the plane algebraic curve C ⊂ R2. We remark that the

non-degenerate critical point (0, 0) is also a singularity for C since f(0, 0) =
∂f

∂x
(0, 0) =

∂f

∂y
(0, 0) = 0. However, the non-degenerate critical point (−2

3
, 0) is not a singularity

of C since f(−2
3
, 0) 6= 0, i.e. this point is not on the curve.

Thus we can notice that there exist clear connections between singularity theory as intro-
duced in Subsection 2.2.1 and catastrophe theory as shortly discussed in this subsection.
This is the main reason for which in this subsection we made a short survey concerning
catastrophe theory. In this thesis, we will thoroughly report on an important application
of singularity theory in algebraic geometry, for more details see Section 2.3, Section 2.4,
Section 2.5 and Chapter 3.

2.3 Topology of Plane Complex Algebraic Curves

2.3.1 Preliminaries

In this subsection, we briefly recall some fundamental aspects from the broad field of topol-
ogy following [Lee, 2000], which are needed for the purpose of this thesis. The goal of this
subsection is thus to review important concepts from topology. For a deeper introspec-
tion into the captivating field of topology, the reader is advised to consult [Jänich, 1984],
[Mumkres, 2000].
We first introduce the Euclidean spaces, since most of topology is modelled from the be-
haviour of Euclidean spaces. We define the Euclidean space in the following way:

Definition 10. The Cartesian product Rn = R × R × ... × R of n copies of the real line
is called the n-dimensional Euclidean space. Thus Rn is the set of ordered n-tuples of
real numbers. A point (or vector) in Rn is denoted by (x1, ..., xn) or simply by x. The
numbers xk, for any k ∈ {1, ..., n}, are called the components (or coordinates) of x. The
0-dimensional Euclidean space R0 is by convention the singleton {0}.

The n-dimensional Euclidean space is sometimes called Cartesian space or simply n-space.
In the following remark, we recall the main properties of the n-dimensional Euclidean space:

Remark 5. The Euclidean space Rn has the following properties:

1. Rn is an n-dimensional real vector space with the usual operations of scalar multipli-
cation and vector addition. The elements of Rn are called n-vectors.

2. The geometric properties of Rn are derived from the Euclidean dot product. We
define the dot product on Rn in the following way:

x · y =
n∑

i=1

xiyi = x1y1 + ...+ xnyn, for any x, y ∈ Rn.

It follows that (Rn, ·) is an inner space over R.

2.3. Topology of Plane Complex Algebraic Curves 43

3. In particular, we define the Euclidean norm (or length) of a vector x ∈ Rn as follows:

||x|| =
√
x · x =

√
x2

1 + ...+ x2
n, for any x ∈ Rn.

Consequently, (Rn, || · ||) is a normed space over R.

4. In particular, we define the Euclidean metric (or distance) on Rn :

d(x, y) = ||x− y|| =
√

(x1 − y1)2 + ...+ (xn − yn)2, for any x, y ∈ Rn.

In this setting, (Rn, ·) is a metric space over R.

5. The angle between two non-zero vectors x and y is determined by the following formula
cos−1(

x · y
||x|| · ||y||

).

6. Given two points x, y ∈ Rn, the line segment between them is the set {tx+ (1− t)y :
0 ≤ t ≤ 1}.

7. The notions of continuity and convergence in Euclidean spaces are defined in the usual
ways. A map f : U → V between subsets of Euclidean spaces is continuous if for
any x ∈ U and any ε > 0 there exists δ > 0 such that for all y, ||x − y|| < δ implies
||f(x) − f(y)|| < ε. We refer to this definition as the ε-δ definition for continuity of
functions.

8. A sequence (xk)k of points in Rn converges to x ∈ Rn if for any ε > 0 there exists N
such that k ≥ N implies ||xk − x|| < ε.

We next familiarize the reader with metric spaces, which are generalizations of Euclidean
spaces. It is helpful to specify that in metric spaces none of the vector space properties are
true and only the distance function is preserved. In fact for our purpose, metric spaces and
their properties represent the motivation for introducing topological spaces. We define a
metric space as follows:

Definition 11. Let M be any set. A metric on M is a function d : M ×M → R, also
called a distance function, satisfying the following three properties:

1. For all x, y ∈M, d(x, y) ≥ 0 and d(x, y) = 0⇔ x = y (positivity).

2. For all x, y ∈M, d(x, y) = d(x, y) (symmetry).

3. For all x, y, z ∈M d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

The pair (M,d) is called a metric space.

We give some simple examples of metric spaces, see Example 11.

Example 11. The following pairs are metric spaces:

1. If M is any subset of Rn, then the function d(x, y) = ||x− y|| is a metric on M called
the Euclidean metric. Thus the pair (M, || · ||) is a metric space, for any M ⊆ Rn. In
this thesis, we make the following convention: whenever we consider a subset of Rn,
we assume that the subset is being given together with the Euclidean metric.

2. If (M,d) is a metric space and X ⊂ M , then X inherits a metric by restricting d to
X ×X.

44 Chapter 2. Plane Complex Algebraic Curves

We now give some standard definitions in metric spaces:

Definition 12. Let (M,d) be a metric space with d the metric function on M .

• For any x ∈M and r > 0 the open ball of radius r around x is the set

Br(x) = {y ∈M : d(y, x) < r},

and the closed ball of radius r around x is

B̄r(x) = {y ∈M : d(x, y) ≤ r}.

• Given a subset A ⊂ M , a point x ∈ M is said to be a limit point (or accumulation
point or cluster point) of A if every open ball around x contains a point of A other
than x.

• A set A ⊂M is open if it contains an open ball around each of its points.

• A set A ⊂ M is closed if it contains all its limit points. The closure of a set A ⊂ M
consists of all the points in A plus its limit points.

• The diameter of a set A ⊂M is sup{d(x, y) : x, y ∈ A}, which may be infinite. A set
A ⊂M is said to be bounded if it has finite diameter.

The notions of continuity and convergence in metric spaces are generalizations of the Eu-
clidean definitions:

Definition 13. If (M1, d1), (M2, d2) are metric spaces, then a map f : M1 →M2 is contin-
uous if for every x ∈M1 and every ε > 0, there exists δ > 0 such that for all y, d1(x, y) < δ
implies d2

(
f(x)− f(y)

)
< ε. If (xk)k is a sequence of points in a metric space (M,d), then

it is said to converge to x ∈M, written xk → x or lim
k→∞

xk = x, if for any ε > 0 there exists

N such that k ≥ N implies d(xk, x) < ε.

We define the notion of compactness in metric spaces as follows:

Definition 14. Let (M,d) be a metric space and K ⊂ M. An open cover of K is a
collection of open subsets of M whose union contains K. A subcover is a subcollection that
is still an open cover of K. A subset of M is said to be compact if every open cover has a
finite subcover.

The following proposition is a direct consequence of Definition 14 of compacts sets:

Proposition 1. Any compact subset of a metric space is closed and bounded.

In the n-dimensional Euclidean space, the converse of Proposition 3 is true and it is called
the Heine-Borel theorem:

Theorem 1. Every closed and bounded subset of Rn is compact, i.e. every subset of Rn is
compact if and only if it is closed and bounded.

An important property of compactness is given by the following theorem:

Theorem 2. If M and N are metric spaces, f : M → N is continuous, and K ⊂ M is
compact, then f(K) is compact.

2.3. Topology of Plane Complex Algebraic Curves 45

The following lemma, called the open set criterion for continuity [Lee, 2000, p. 350], ba-
sically proves that continuous functions between metric spaces can be identified knowing
only the open sets:

Lemma 1. A map f : M1 → M2 between metric spaces is continuous if and only if the
inverse image of every open set is open, i.e. whenever U is an open subset of M2, then
f−1(U) is open in M1.

Remark 6. From Lemma 1 we deduce that a function between metric spaces is continuous
in the sense specified in the open set criterion for continuity if and only if it is continuous
in the sense specified in the ε-δ definition for continuity of functions.

Actually, Lemma 1 is the main reason for introducing topological spaces, which are abstract
spaces without distances in which continuous functions are defined. We define topological
spaces in the following way:

Definition 15. A topology on a set X is a collection T of subsets of X, called open sets,
satisfying the following properties:

1. X and ∅ are elements of T ;

2. T is closed under finite intersections, i.e. if U1, ..., Un ∈ T , then their intersection
U1 ∩ U2 ∩ ... ∩ Un ∈ T ;

3. T is closed under arbitrary unions, i.e. if {Uα}α∈A is any (finite or infinite) collection
of elements of T , then their union ∪α∈A is in T .

In addition, a pair (X, T) consisting of a set X and a topology T on X is called a topological
space. The sets of T are called open sets.

We include several examples of topological spaces, see Example 12.

Example 12. The following are topological spaces:

1. Any set X, with T = {∅, X}. This is called the trivial topology on X.

2. Any metric space (M,d), with T being equal to the collection of all open subsets of
M. This is called the metric topology on M.

In this thesis, we use the following convention: if the topology is understood from the
context, then we will omit it from the notation and simply refer to X as a topological
space. For our purpose, we work with the topological spaces indicated in Example 13.

Example 13. The following are topological spaces:

1. The real Euclidean space Rn and the complex space Cn defined as:

Rn =
{
(x1, ..., xn) | xk ∈ R for all k ∈ {1, ..., n}

}
,

Cn =
{
(z1, ..., zn) | zk ∈ C for all k ∈ {1, ..., n}

}
,

where we consider zk = xk + iyk, with xk, yk ∈ R, for all k ∈ {1, ..., n}. These spaces
are provided with the Euclidean metric denoted by ||·|| and with the topology induced
by the Euclidean metric. Moreover we observe that Cn is isomorphic to R2n.

46 Chapter 2. Plane Complex Algebraic Curves

2. The n-dimensional sphere in Rn+1, the n-dimensional open ball in Rn, and the n-
dimensional closed ball in Rn, which are all centered in the origin, have radius 1, and
they are defined as follows:

Sn
1 (~0n+1) = {(x1, ..., xn+1) | x2

1 + x2
2 + ...+ x2

n+1 = 1} ⊂ Rn+1,

Bn
1 (~0n) = {(x1, ..., xn) | x2

1 + x2
2 + ...+ x2

n+1 < 1} ⊂ Rn,

Bn
1 (~0n) = {(x1, ..., xn) | x2

1 + x2
2 + ...+ x2

n+1 ≤ 1} ⊂ Rn,

where we denote by ~0n+1 the origin vector in Rn+1 and by ~0n the origin vector in Rn.
We observe that Sn

1 (~0n+1) is a compact topological space, whereas Bn
1 (~0n), Rn and

Cn are not compact topological spaces. We make the following remark concerning
the terminology used for a n-dimensional ball in Rn : the notion of “disk” is usually
the generalization to the metric space of the ball from the Euclidean space. Still,
in the literature depending on the authors disk is sometimes used to mean ball. In
this thesis, we use the notion of a n-dimensional ball in the Euclidean space Rn. In
Figure 2.26 we include an example of a sphere in the 3-dimensional Euclidean space.
In addition, the interior of this sphere is a ball in the 3-dimensional Euclidean space.

In[3]:= << Graphics`Shapes`

In[4]:= Show@Graphics3D@Sphere@DD, Boxed -> FalseD

Out[4]= Ü Graphics3D Ü

Untitled-1 1

Figure 2.26: Example of a sphere in the 3-dimensional Euclidean space. The interior of this
sphere is a ball in the 3-dimensional Euclidean space. Picture produced with Mathematica,
see [Wolfram, 2000] for more information.

3. The n-dimensional torus constructed in the following way: we assume X1, ..., Xn

to be topological spaces and we define a basis in their Cartesian product as B ={
U1× ...×Un | Uk is open in Xk, for all k ∈ {1, ..., n}

}
. The topology generated by B

is called product topology. The space X1×...×Xn together with the product topology
is called a product space. The basis open sets of the form U1×...×Un are called product
open sets. We notice that the product topology on Rn = R× ...× R︸ ︷︷ ︸

n times

is the same as the

metric topology induced by the Euclidean distance function. Furthermore, we consider
S1 to be the unit circle in the 2-dimensional Euclidean plane, i.e. a 1-dimensional
sphere. Then the product space of n unit circles denoted by Tn = S1 × ...× S1︸ ︷︷ ︸

n times

is

called an n-dimensional torus. As an example, in Figure 2.27 we visualize a torus in
the 3-dimensional Euclidean space R3.

In the following we introduce the implicit and the parametric equations of a torus in
the 3-dimensional Euclidean space. We consider R to be the radius from the center
of the hole to the center of the torus tube, and we consider r to be the radius of the

2.3. Topology of Plane Complex Algebraic Curves 47

WriteLiveForm@"torus.m", Show@torus@3, 1D, optsDD

Phosphine:MathOzTeX:mma:torus.m

TorusPlot@1, 2D

Ü GraphicsArray Ü

WriteLiveForm@"torusr1.m", Show@torus@1, 2D, optsDD

ParametricPlot3D::ppcom :

Function SolidGeometry`Private`torusfn@81, 2<, 8SolidGeometry`Private`u$634, á27à<D

cannot be compiled; plotting will proceed with the uncompiled function.

Phosphine:MathOzTeX:mma:torusr1.m

WriteLiveForm@"torusr2.m", Show@HalfTorus@1, 2D, optsDD

ParametricPlot3D::ppcom :

Function SolidGeometry`Private`torusfn@81, 2<, 8SolidGeometry`Private`u$637, á27à<D

cannot be compiled; plotting will proceed with the uncompiled function.

Phosphine:MathOzTeX:mma:torusr2.m

10 WebKitPlugInStreambjtiur.1

Figure 2.27: Example of a torus in the 3-dimensional Euclidean space. Picture produced
with Mathematica, see [Wolfram, 2000] for more information.

tube. With these notations, the equation of a torus in R3 in Cartesian coordinates
x, y, z is the following:

(R−
√
x2 + y2)2 + z2 = r2, (2.24)

whereas the parametric equations are the following:

x = (R+ r cos v) cosu (2.25)
y = (R+ r cos v) sinu (2.26)

z = r sin v, (2.27)

where u, v ∈ [0, 2π).

Moreover, depending on the relative sizes of the two radii R and r of the torus, we
distinguish between the following types of tori in the 3-dimensional space:

• if R > r, then we obtain a ring torus;

• if R = r, then we get a horn torus;

• if R < r, then we obtain a spindle torus. In Figure 2.28 we include three examples
for each type of torus. In this thesis we make the general convention concerning
the types of tori in the 3-dimensional space: if no special explanation is given,
then by a torus we mean a ring torus.

WriteLiveForm@"torus.m", Show@torus@3, 1D, optsDD

Phosphine:MathOzTeX:mma:torus.m

TorusPlot@1, 2D

Ü GraphicsArray Ü

WriteLiveForm@"torusr1.m", Show@torus@1, 2D, optsDD

ParametricPlot3D::ppcom :

Function SolidGeometry`Private`torusfn@81, 2<, 8SolidGeometry`Private`u$634, á27à<D

cannot be compiled; plotting will proceed with the uncompiled function.

Phosphine:MathOzTeX:mma:torusr1.m

WriteLiveForm@"torusr2.m", Show@HalfTorus@1, 2D, optsDD

ParametricPlot3D::ppcom :

Function SolidGeometry`Private`torusfn@81, 2<, 8SolidGeometry`Private`u$637, á27à<D

cannot be compiled; plotting will proceed with the uncompiled function.

Phosphine:MathOzTeX:mma:torusr2.m

10 WebKitPlugInStreambjtiur.1

TorusCrossSection@1, 2, Ticks -> NoneD

Ü Graphics Ü

Horn Torus

TorusPlot@1, 1D

Ü GraphicsArray Ü

WriteLiveForm@"torush1.m", Show@torus@1, 1D, optsDD

ParametricPlot3D::ppcom :

Function SolidGeometry`Private`torusfn@81, 1<, 8SolidGeometry`Private`u$640, á27à<D

cannot be compiled; plotting will proceed with the uncompiled function.

Phosphine:MathOzTeX:mma:torush1.m

WriteLiveForm@"torush2.m", Show@HalfTorus@1, 1D, optsDD

ParametricPlot3D::ppcom :

Function SolidGeometry`Private`torusfn@81, 1<, 8SolidGeometry`Private`u$643, á27à<D

cannot be compiled; plotting will proceed with the uncompiled function.

Phosphine:MathOzTeX:mma:torush2.m

WebKitPlugInStreambjtiur.1 11

TorusCrossSection@1, 1, Ticks -> NoneD

Ü Graphics Ü

Spindle Torus

WriteLiveForm@"toruss1.m", Show@torus@1, .6D, optsDD

ParametricPlot3D::ppcom :

Function SolidGeometry`Private`torusfn@81, 0.6<, 8SolidGeometry`Private`u$649, á27à<D

cannot be compiled; plotting will proceed with the uncompiled function.

Phosphine:MathOzTeX:mma:toruss1.m

TorusPlot@1, .6D

Ü GraphicsArray Ü

WriteLiveForm@"toruss2.m", Show@HalfTorus@1, .6D, optsDD

ParametricPlot3D::ppcom :

Function SolidGeometry`Private`torusfn@81, 0.6<, 8SolidGeometry`Private`u$646, á27à<D

cannot be compiled; plotting will proceed with the uncompiled function.

Phosphine:MathOzTeX:mma:toruss2.m

12 WebKitPlugInStreambjtiur.1

Figure 2.28: Example of different types of tori in the 3-dimensional Euclidean space. From
left to right: (1) Ring torus; (2) Horn torus; (3) Spindle torus. Pictures produced with
Mathematica, see [Wolfram, 2000] for more information.

4. The n-dimensional complex projective space Pn(C), which we introduce in details in
the next paragraphs following [Kirwan, 1992, p. 36].

48 Chapter 2. Plane Complex Algebraic Curves

We define the n-dimensional complex projective space denoted by Pn(C) (or simply by Pn)
as the set of 1-dimensional complex subspaces of the complex vector space Cn+1. If n = 1,
then we obtain the complex projective line P1, and if n = 2, then we get the complex
projective plane P2.

A 1-dimensional linear subspace V of Cn+1 is spanned by any non-zero vector v ∈ V. Thus
we can define Pn as the set of equivalence classes for the equivalence relation denoted by
∼, and which is defined in the following way: z ∼ w if there exists some λ ∈ C \ {0} such
that z = λw.

Therefore we can introduce the more formal definition for Pn as follows:

Definition 16. Since any non-zero vector (z0, ..., zn) from Cn+1 is an element of Pn, we
call (z0, ..., zn) the homogeneous coordinates of z, where we use the notation z = (z0 : z1 :
... : zn) for denoting the equivalence class defined as:

(z0 : z1 : ... : zn) = (w0 : w1 : ... : wn)

if there exists some λ ∈ C \ {0} such that zj = λwj for all j ∈ {0, ..., n}. Under these
assumptions we define the n-dimensional complex projective space Pn in the following way:

Pn =
{
(z0 : z1 : ... : zn) | (z0, ..., zn) ∈ Cn+1 \ {~0n+1}

}
, (2.28)

where we denote by ~0n+1 the origin vector in Cn+1.

We notice that the definition of the n-dimensional complex projective space is the generaliza-
tion for the definition of the complex projective plane P2 as introduced in Subsection 2.1.2.
We next make Pn a topological space. We define the following function:

Π : Cn+1 \ {~0n+1} → Pn,
(z0, z1, ..., zn) 7→ (z0 : z1 : ... : zn).

(2.29)

We observe that the function Π is continuous. We give Pn the quotient topology induced
from the usual topology on Cn+1 \ {~0n+1}, i.e. we say that A ⊂ Pn is open if Π−1(A) ⊂
Cn+1 \ {~0n+1} is open.

Remark 7. We make the following important observations: (1) for X a topological space,
the function f : Pn → X is continuous if and only if the composition f ◦Π : Cn+1\{~0n+1} →
X is continuous; (2) and more generally for A ⊂ Pn, the function f : A→ X is continuous
if and only if the composition f ◦Π : Π−1(A)→ A is continuous.

We next define the subsets U0, ..., Uj ⊂ Pn, for all j ∈ {0, ..., n} as follows:

Uj = {(z0 : z1 : ... : zn) ∈ Pn | zj 6= 0} ⊂ Pn. (2.30)

We notice that for all j ∈ {0, ..., j} the following subset:

Π−1(Uj) = {(z0, ..., zn) ⊂ Cn+1 | zj 6= 0} ⊂ Cn+1 \ {~0n+1} (2.31)

is open. Thus we obtain that Uj ⊂ Pn is open. We next define the following function:

φ0 : U0 → Cn,

(z0 : z1 : ... : zn) 7→
(
z1
z0
, ...,

zn

z0

)
, (2.32)

with its inverse:

φ−1
0 : Cn → U0,

(w1, ..., wn) 7→ (1 : w1 : ... : wn). (2.33)

2.3. Topology of Plane Complex Algebraic Curves 49

By using Remark 7, we notice that the function φ0 : U0 → Cn is continuous since the
composition of φ0 with the function Π : Π−1(U0) → U0 is continuous. Using a similar
argument, we remark that the inverse φ−1

0 is also continuous because it is the composition
of Π with the following continuous function:

g : Cn → Cn+1 \ {~0n+1},
(w1, ..., wn) 7→ (1, w1, ..., wn).

(2.34)

We thus obtain that φ0 is a continuous function with a continuous inverse, which is in fact
the definition for the homeomorphism as we will introduce it later in this subsection. In
the same way, for all j ∈ {1, ..., n} there exists the following homeomorphisms:

φj : Uj → Cn,

(z0 : z1 : ... : zn) 7→
(
z0
zj
, ...,

zj−1

zj
,
zj+1

zj
, ...,

zn

zj

)
. (2.35)

We observe that the complement of Un in Pn is the following hyperplane:

{(z0 : z1 : ... : zn) ∈ Pn | zn = 0},

which can be identified with Pn−1. We remember that a hyperplane is any codimension-1
vector subspace V of a vector space W . If we assume that the dimension of V is m and
the dimension of W is n, then the codimension of V is defined as n −m. It follows that
we can construct the complex projective spaces Pn inductively: (i) P0 is the single point;
(ii) P1 is C together with the point∞, which is a copy of P0. Therefore P1 can be identified
with the Riemann sphere C ∪ {∞}, which we will discuss later in this subsection; (iii) P2

is C2 together with a line at infinity, which is a copy of P1; (iv) Pn is Cn together with a
copy of Pn−1 at infinity. We also notice that {Uj | 0 ≤ j ≤ n} is an open cover of Pn with
φj : Uj → Cn being an homeomorphism for each j ∈ {0, ..., n}.
We are now ready to make a more formal the connection between affine and projective
plane complex algebraic curves discussed in Subsection 2.2.1 in Remark 3.

Remark 8. From the previous discussion it follows that we can identify C2 with the open
subset

U = {(z : w : u) ∈ P2 | u 6= 0} ⊂ P2

via the following homeomorphism:

φ : U → C2, (z : w : u) 7→
(
z

u
,
w

u

)
with the following inverse:

φ−1 : C2 → U, (z, w) 7→ (z : w : 1).

The complement of U in P2 is the projective line defined by {(z : w : 0) ∈ P2}, which we
can identify with P1 via the following map:

h : P2 → P1, (z : w : 0) 7→ (z : w).

Therefore the projective complex plane P2 is the disjoint union of a copy of C2 and a copy
of P1. We now consider the projective curve C̃ defined by the nonconstant homogeneous
polynomial p(z, w, u) of degree m. If we identify U with C2 as described before, then the
intersection U ∩ C̃ is the affine curve C in C2 defined by the inhomogeneous polynomial
in two variables p(z, w, 1). Conversely, we consider the affine curve C in C2 defined by the
inhomogeneous polynomial q(z, w) of degreem. If we identify U with C2 as described before,
then C is the intersection U ∩ C̃, where C̃ represents the projective curve in P2 defined by
the homogeneous polynomial umq(

z

u
,
w

u
).

50 Chapter 2. Plane Complex Algebraic Curves

The main reason for introducing topological spaces is to provide a general setting for in-
troducing the notions of convergence and continuity. However, before we give the formal
definitions for these notions, we present the definition for the notion of neighbourhood in a
topological space:

Definition 17. If X is a topological space and q ∈ X, then we call a neighbourhood of q,
denoted Vq, an open set containing q. A neighbourhood of a subset K ⊂ X is an open set
containing K.

We are now prepared to define the notion of convergence in a topological space:

Definition 18. If X is a topological space and (qk)k is any sequence of points in X, then
we say that the sequence converges to q ∈ X, and q is the limit of the sequence, if for
every neighbourhood U of q there exists N such that qk ∈ U for all k ≥ N. We denote this
assertion by qk → q or by lim

k→∞
qk = q.

We introduce the notion of continuous functions between topological spaces:

Definition 19. If X and Y are topological spaces, a function f : X → Y is called contin-
uous if for every open set U ⊂ Y, f−1(U) is open in X.

From Remark 6, it follows that all the continuous functions between metric spaces are also
continuous functions between topological spaces. We next define an homeomorphism in the
following way:

Definition 20. Let X,Y be topological spaces. We say that X and Y are topologically
equivalent (or homeomorphic) if there exists a bijective function f : X → Y such that both
f and its inverse f−1 are continuous. In this case, the function f is called a homeomorphism.

We can give the following equivalent definition for an homeomorphism:

Definition 21. We consider X,Y to be two topological spaces. We say that X and Y are
homeomorphic and we denote this by f ∼= g if there exists a continuous function f : X → Y
and a continuous function g : Y → X such that f ◦ g = idY and g ◦ f = idX , where
we denote by the ◦ symbol the composition of functions, by the idY symbol the identity
function on Y, and by the idX symbol the identity function on X. This means that the
identity functions are defined as follows: idY : Y → Y, y 7→ y and idX : X → X,x 7→ x.

From Definition 21 we notice the following two important facts: (1) the functions f and
g are inverse to each other, i.e. f = g−1 and g = f−1; (2) a function is continuous if the
inverse image of an open set is open, which actually represents the lemma criterion for
continuity.
We now define the notion of homotopy, which is also important for our study:

Definition 22. Let X,Y be topological spaces, and f, g : X → Y be continuous functions.
We say that f is homotopic to g and we denote this by f ≈ g if there exists a continuous
function G : X × [0, 1]→ Y such that for all x ∈ X the following property holds: G(x, 0) =
f(x), G(x, 1) = g(x). In addition, G is called a homotopy.

We can introduce an equivalent definition for the notion of homotopy in the following way:

Definition 23. We consider X,Y to be two topological spaces. We say that X and Y
are homotopic if there exists a continuous function f : X → Y and a continuous function

2.3. Topology of Plane Complex Algebraic Curves 51

g : Y → X such that f ◦ g ≈ idY and g ◦ f ≈ idX , where we denote by the ◦ symbol the
composition of functions, by the idY symbol the identity function on Y, and by the idX

symbol the identity function on X. This means that the identity functions are defined as
follows: idY : Y → Y, y 7→ y and idX : X → X,x 7→ x.

The reason for which we introduce the notion of homotopy is that we will use it in the next
chapters of this thesis and it is closely connected to the notion of homeomorphism by the
following property: if f is a homeomorphism between two topological spaces, then f is also
a homotopy. The converse statement is not necessarily true. For instance if we consider the
two topological spaces X = {P} and Y = Rn, then we observe that X and Y are homotopic
topological spaces since for f : X → Y, P 7→ ((0, 0, ..., 0)︸ ︷︷ ︸

n times

) and g : Y → X, (y1, ...yn) 7→ P,

we obtain that g ◦ f ≈ idX and f ◦ g ≈ idY . However we observe that the two topological
spaces X and Y are not homeomorphic because there does not exist any bijection between
them since X and Y have different cardinality, i.e. |X| = 1, |Y | = ℵc = 2ℵ0 .

We now return to the notion of homeomorphism and make several important observations.
We notice that the notion of homeomorphism generates an equivalence relation. Conse-
quently, the resulting equivalence classes are called homeomorphism classes. The notion of
homeomorphism is very important in topology, as it identifies the “topological properties”
in a topological space as being those properties that are preserved by homeomorphisms.
More informally, the “topological properties” are those properties from a topological space
that remain unchanged under continuous deformations, i.e. deformations where one is not
allowed to cut objects or to glue them together.
We continue with presenting some examples of homeomorphisms.

Example 14. The following are explicit examples of homeomorphisms:

1. Any open ball in Rn is homeomorphic to any other open ball. In the same way, all
spheres in Rn+1 are homeomorphic to one another. This example shows that “size”
is not a topological property.

2. We consider the 2-dimensional sphere in R3 centered in the origin and of radius 1
defined as S2

1(0, 0, 0) = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}. We take the cube cen-
tered in the origin defined as C = {(x, y, z) ∈ R3 | max(|x|, |y|, |z|) = 1}. In addition,

we consider φ : C → S2, (x, y, z) 7→ φ(x, y, z) =
(x, y, z)√
x2 + y2 + z2

to be the function

that projects each point of the cube C onto the sphere S2. We observe that the
function φ is bijective and continuous with its inverse φ−1 : S2 → C, φ−1(x, y, z) =

(x, y, z)
max(|x|, |y|, |z|)

being a continuous function as well. This example illustrates that

“corners” are not a topological property. In Figure 2.29 we roughly depict the contin-
uous deformation of a sphere into a cube in the 3-dimensional Euclidean space, which
basically represents the homeomorphism introduced in this example.

3. We consider the following homeomorphism: φ : (0, 1) → R, x 7→ 2x− 1
x(1− x)

, which

shows that the open interval (0, 1) is homeomorphic to the real line R. We recall that
a subset S of a topological space (Rn, || · ||) is bounded if it is contained in a ball of
finite radius, i.e. if there is x ∈ Rn and r > 0 such that for all s ∈ S we have that
||x − s|| < r. We observe that the open interval (0, 1) is bounded, whereas the real
line R is not bounded and therefore “boundedness” is not a topological property.

From Example 14 we notice that “size”, “boundnedness” and “corners” are not topological
properties. In the next example we give some examples of topological properties.

52 Chapter 2. Plane Complex Algebraic Curves

From: Piggle Paule

So, I'll ask (and duck under the sofa to avoid the wrath of satan for asking again the question)

How do you make a sharp sculptie.

Say using Maya as this seems to be a very preferred choice for such things.

A Box

A Steel Girder (simple extruded shape)

A set of steps

More advance: A Chair with say 4 legs, a seat and a back

I know they can be all done as I've seen them.
Together with window frames with many straight cross beams in the frame and much much more.

As soon as I have time, I'll be happy to come back, and post tutorials for each of the objects you specifically asked about. In the mean time, here's where it all starts. I've posted this a few
times before:

From: Chosen Few

In most cases, the shape to start with is a sphere. NURBS spheres work better for sculpties in Maya than polygonal spheres, since they don't require UV mapping, and since the
exporter scripts are optimized for dealing with NURBS surfaces. 16 sections and 16 spans is usually the best way to go. You can deform the sphere into any shape you want; just
don't tear the surface or break the poles.

Alternatively, you can start with a plane, a cylinder (sans end caps), or a torus, to make other kinds of shapes. Just be sure to set the stitching type accordingly in SL, to match that of
your Maya source model. Most of the time, you'll find that spherical topology is the way to go.

In case you need a little help getting started, here's a screenshot from Maya, showing some stages of evolution of a NURBS sphere into a cylinder and then into a cuboid.

Note that each object is topologically just a sphere. But by moving and scaling rows of vertices, you can deform that sphere into all kinds of shapes.

!"#$%&'()*"'+$,-./'0,#1)2"'3'!14,5'!#-657)"/'3'8$7'&"*$,."&'9466$$%/'3'54:"'; 1775<==*$,-./34,#1)2">/"#$%&6)*">#$.=?=9*=@A@B?;=;>17.6

A'$*';? BC=BD=EB;;'BD<ED'FG

Figure 2.29: Deformation of a sphere into a cube in the 3-dimensional Euclidean space,
which represents the homeomorphism defined in Example 14. Pictures produced with
Blender, see [Foundation, 2004] for more information.

Example 15. The following represents a list of topological properties:

• the dimension;

• the existence of boundary, e.g. an open ball versus a closed ball;

• the orientability, e.g. the Möbius strip versus the sphere in the 3-dimensional space.
We recall that a surface is called orientable if a loop going around one way of the
surface can never be continuously deformed without overlapping itself to a loop going
the opposite way of the surface. In a rough sense, we can decide that a surface
is non-orientable in the following way: (i) we consider an oriented circle (called an
indicatrix) placed on a surface; (ii) we then move this indicatrix around an arbitrarily
closed path on the surface; (iii) if there exists a curve that brings the indicatrix
back with its orientation reversed then the surface is non-orientable. In Figure 2.30
we include examples of non-orientable surfaces such as the Möbius strip (or band)
and the Klein bottle. Another example of a non-orientable surface is the complex
projective plane P2(C). As examples of orientable surfaces we mention the sphere in
the 3-dimensional space, see Figure 2.26, and the torus in the 3-dimensional space,
see Figure 2.27.

-4

-2

0

2

4
-4

-2

0

2

4

-1
-0.5

0
0.5
1

-4

-2

0

2

4

Phosphine:MathOzTeX:mma:mobius.m

WriteLiveForm@"mobius.m", Show@Graphics3D@8EdgeForm@D, MobiusStrip@2, 4, 1D<D, optsDD

Phosphine:MathOzTeX:mma:mobius.m

WebKitPlugInStreamAWFfjM.1 5

Klein Bottle

ü Author

Eric W. Weisstein

May 24, 2008

This notebook downloaded from http://mathworld.wolfram.com/notebooks/Surfaces/KleinBottle.nb.

For more information, see Eric's MathWorld entry http://mathworld.wolfram.com/KleinBottle.html.

For a list of Eric's math packages that may be needed to evaluate this notebook, see Mathematica Information

Center's MathSource item 4775. A list of Eric's utility packages that may be needed to evaluate this notebook

may be downloaded from MathSource item 5087.

©2008 Wolfram Research, Inc. except for portions noted otherwise

ü Initialization

<< MathWorld`Surfaces`

Usual Embedding

klein@u_, v_D := Module@8
bx = 6 Cos@uD H1 + Sin@uDL,
by = 16 Sin@uD,
rad = 4 H1 - Cos@uD ê 2L,
X, Y, Z<,

X = If@Pi < u § 2 Pi, bx + rad Cos@v + PiD, bx + rad Cos@uD Cos@vDD;
Y = If@Pi < u § 2 Pi, by, by + rad Sin@uD Cos@vDD;
Z = rad Sin@vD;
8X, Y, Z<

D

ü V5

g = ParametricPlot3D@klein@u, vD, 8u, 0, 2 Pi<, 8v, 0, 2 Pi<,
PlotPoints Ø 848, 15<, Axes Ø False, Boxed Ø False, ViewPoint Ø 81.4, -2.6, -1.7<D

Ü Graphics3D Ü

Figure 2.30: Example of non-orientable surfaces. From left to right: (1) a Möbius strip;
(2) a Klein bottle. Pictures produced with Mathematica, see [Wolfram, 2000] for more
information.

• the connectedness, and the pathconnectedness. We say that a topological space is
connected if it cannot be written as a disjoint union of two nonempty open subsets,
i.e. there does not exist any decompositionX = U1tU2, where U1, U2 are open subsets
of X and t denotes the symbol for the disjoint union. For instance the interval [0, 1]
is connected. Moreover, we define a path in X as a continuous map ϕ : [0, 1] → X.
Then X is path connected if for any two points x1, x2 ∈ X there exists a path ϕ with
ϕ(0) = x1 and ϕ(1) = x2, i.e. X is path connected if any two points from X can

2.3. Topology of Plane Complex Algebraic Curves 53

be joined by a path. A path connected set is also connected, but the converse is not
necessarily true. Still, in the Euclidean space the notion of connectedness and path
connectedness are equivalent.

• the connectivity, e.g. simply connected versus multiply connected. We say that a
path-connected set is simply connected (or 1-connected) if any simple closed curve can
be continuously shrunk to a point in the set. If the domain is not simply connected, it
is said to be multiply connected. For example, a 2-dimensional sphere in R3 is simply
connected, while a torus in R3, the Möbius strip, the Klein bottle and the projective
complex (or real) plane are not simply connected.

• the compactedness, e.g. a 2-dimensional sphere in R3 is compact, whereas the affine
real Euclidean plane R2 is not compact.

We next define the notion of “being locally Euclidean”:

Definition 24. A subset M of some Euclidean space Rk is locally Euclidean of dimension
n if every point of M has a neighborhood in M that is topologically equivalent to a ball in
Rn.

At this point, we establish the definition of a topological manifold (or simply manifold) in
the following way:

Definition 25. An n-dimensional manifold (or n-manifold) is a subset of some Euclidean
space Rk that is locally Euclidean of dimension n.

We now introduce the notion of a differential manifold following [Jänich, 2000]. For more
information on differentiable manifolds, the reader can consult more advanced books on
differentiable geometry such as for instance [DoCarmo, 1976].
We introduce the notion of a coordinate chart and of an n-dimensional atlas as follows:

Definition 26. We define a coordinate chart and an atlas in the following way:

• If M is a n-manifold, then a homeomorphism from an open subset U ⊂M to an open
subset of Rn is called a coordinate chart (or a chart) on U.

• A collection of charts that cover the manifold M , i.e. whose union is the whole
manifold, is called an atlas. This means that an n-dimensional atlas on M is a
collection of coordinate charts {Uα,ϕα}α∈I such that (i) M is covered by the {Uα}α∈I ;
(ii) for each α, β, ϕ(Uα∩Uβ

) is open in Rn; (iii) the map ϕβϕ
−1
α : ϕ(Uα ∩ Ubeta) →

ϕβ(Uα ∩Uβ) is C∞ (or infinitely differentiable or smooth) with its inverse being also
C∞. We recall that f(x1, ..., xn) ∈ Rn is C∞ if it has derivatives of all orders.

We introduce the following definition of compatibility for two atlases:

Definition 27. Two atlases {(Uα, ϕα)}, {(Vβ , ψβ)} are compatible if their union is an atlas,
i.e. all the maps ψβϕ

−1
α are smooth.

We notice that the compatibility notion from the previous definition is an equivalence
relation and therefore we can introduce the notion of a differentiable structure on a manifold
M as follows:

Definition 28. A differentiable structure D on the manifold M is an equivalence class of
atlases.

54 Chapter 2. Plane Complex Algebraic Curves

We remember that a topological space M is said to be Hausdorff space if given any pair of
distinct points q1, q2 ∈M, there exist neighbourhoods U1 of q1 and U2 of q2 with U1∩U2 = ∅.
In addition, we say that a topological space M satisfies the second axiom of countability
if it has a countable topological basis. We define a topological basis as introduced in
[Mumkres, 2000]: if M is a set, then a basis for a topology on M is a collection B of subsets
of M (called basis elements) satisfying the following properties: (i) for each x ∈M, there is
at least one basis element B containing x; (ii) if x belongs to the intersection of two basis
elements B1 and B2, then there is a basis element B3 containing x such that B3 ⊂ B1∩B2.

We can now define a differentiable manifold as follows:

Definition 29. An n-dimensional differentiable manifold is a pair (M,D) consisting of
a Hausdorff space M that satisfies the second axiom of countability and a differentiable
structure D on M.

Remark 9. We recall the definition of the projective complex plane as introduced in
Subsection 2.1.2. If we denote the coordinates of P2(C) by [z : w : u], then P2(C) is covered
by the open sets Uz, Uw, Uu, where

Uz = {(1 :
w

z
:
u

z
) | z 6= 0},

Uw = {(z
w

: 1 :
u

w
) | w 6= 0},

Uu = {(z
u

:
w

u
: 1) | u 6= 0}.

Each of the open sets Uz, Uw, Uu is homeomorphic to C2. Thus Uz, Uw, Uu are all coordinate
charts. In fact the collection {Uz, Uw, Uz} forms an atlas, which covers P2(C) = Uz∪Uw∪Uu.

2.3.2 Topological Properties of Plane Complex Algebraic Curves

In this subsection, we briefly establish the global topological properties of projective plane
complex algebraic curves. We recall from Subsection 2.1.2, Definition 4 that a projective
plane complex algebraic curve C̃ is defined as the set of zeroes of the squarefree homogeneous
polynomial p(z, w, u), and that is C̃ = {(x : y : z) ∈ P2(C) | p(z, w, u) = 0}, where P2(C)
represents the projective complex plane.
The first result in establishing the global topology of projective plane complex algebraic
curves refers to the compactness property of the curves. In Subsection 3 we discussed the
compactification process of affine plane complex algebraic curves, process that generates
projective plane complex algebraic curves. The following theorem states that any curve in
P2(C) is compact, i.e.:

Theorem 3. ([Kirwan, 1992, p.42]) Any projective plane complex algebraic curve C̃ in the
projective complex plane P2(C) is compact.

The second important result with important consequence in determining the global topology
of projective plane complex algebraic curves concerns the connectedness property of the
curves, formulated in the following way:

Theorem 4. ([Kendig, 1977, p. 87]) Any projective plane complex algebraic curve C̃ in
the projective complex plane P2(C) is connected.

We mention that Theorem 4 basically says that it is impossible for a projective plane
complex algebraic curve in P2(C) to consist of different parts, hence all the parts of a
projective plane complex algebraic curve must touch each other.

2.3. Topology of Plane Complex Algebraic Curves 55

The third essential result, which is needed for specifying the global topology of projective
plane complex algebraic curves refers to the orientability property of the curves. We recall
that intuitively a manifold is orientable if we can specify in a consistent way a direction of
spinning in the manifold at each of its points. The orientability property of nonsingular
projective plane complex algebraic curves is stated by the following theorem:

Theorem 5. ([Kendig, 1977, p. 96]) Any nonsingular projective plane complex algebraic
curve C̃ in the projective complex plane P2(C) is orientable.

The next important results for specifying the global topology of projective plane complex
algebraic curves are related to the theory of Riemann surfaces. We mention that a Riemann
surface is defined as a 1-dimensional complex manifold. We add that a Riemann surface is
a special kind of surface on which it makes sense to introduce holomorphic functions and to
apply complex analysis. In addition, we recall that any Riemann surface is orientable. We
note that the detailed study of Riemann surfaces is not one of the main goal of this thesis.
Therefore for more information on this subject the reader can consult [Kirwan, 1992, p.
111]. However, for our purpose we do revise some essential results concerning Riemann
surfaces. We first mention that a compact surface is a surface that is also a compact
set. From [Kirwan, 1992] we know that any nonsingular projective plane complex algebraic
curve C̃ in the projective complex plane P2(C) is a compact Riemann surface. An essential
result for our study is thus the classification theorem of compact Riemann surfaces (i.e. of
compact 1-dimensional complex manifolds), classification theorem that is formulated in the
following way:

Theorem 6. ([Fischer, 2001, chap. 9]) Any compact Riemann surface is either a sphere
or a torus with g-holes (i.e. a sphere with g-handles). The number g of holes is called the
genus of the compact Riemann surface.

From the previous observations and from Theorem 6 it follows that every nonsingular pro-
jective plane complex algebraic curve C̃ in the projective complex plane P2 is topologically
either a sphere or a g-holed torus (i.e. a sphere with g-handles). The number g of holes is
called the genus of the nonsingular curve C̃, see Figure 2.31. For an irreducible singular pro-
jective plane complex algebraic curve we can associate a compact Riemann surface called
the resolution of singularities of the curve, and the genus of the singular curve is defined as
the genus of this compact Riemann surface, i.e. the genus of the resolution of singularities.
We make some necessary remarks concerning the resolution of singularities problem, which
is one of the classical problems in algebraic geometry and which is formulated in the fol-
lowing way: given V an algebraic variety, decide whether there exists a nonsingular variety
W with ϕ : W → V a birational map (i.e. a rational map with a rational inverse). For
algebraic varieties defined over a field of characteristic 0 in any dimension (and thus for
plane complex algebraic curves defined over the field of complex numbers), the resolution
of singularities problem is solved. We remark that the resolution of singularities problem is
still an open problem for algebraic varieties defined over a field of positive characteristic in
dimension at least 4. For further details concerning the resolution of singularities problem,
the interested reader can consult for instance [Hauser, 2000].
In this subsection, we thus introduced the genus of a projective plane complex algebraic
curve as a global topological invariant of the Riemann surface associated to the projective
plane complex algebraic curve. In Subsection 2.4.5 we derive a formula for the genus of a
projective plane complex algebraic curve depending on the degree of the curve and on the
set of singularities of the projective plane complex algebraic curve. We add that the genus
of a projective plane complex algebraic curve has an important role in the classification of
irreducible projective plane complex algebraic curves.

56 Chapter 2. Plane Complex Algebraic CurvesIn[3]:= << Graphics`Shapes`

In[4]:= Show@Graphics3D@Sphere@DD, Boxed -> FalseD

Out[4]= Ü Graphics3D Ü

Untitled-1 1

WriteLiveForm@"torus.m", Show@torus@3, 1D, optsDD

Phosphine:MathOzTeX:mma:torus.m

TorusPlot@1, 2D

Ü GraphicsArray Ü

WriteLiveForm@"torusr1.m", Show@torus@1, 2D, optsDD

ParametricPlot3D::ppcom :

Function SolidGeometry`Private`torusfn@81, 2<, 8SolidGeometry`Private`u$634, á27à<D

cannot be compiled; plotting will proceed with the uncompiled function.

Phosphine:MathOzTeX:mma:torusr1.m

WriteLiveForm@"torusr2.m", Show@HalfTorus@1, 2D, optsDD

ParametricPlot3D::ppcom :

Function SolidGeometry`Private`torusfn@81, 2<, 8SolidGeometry`Private`u$637, á27à<D

cannot be compiled; plotting will proceed with the uncompiled function.

Phosphine:MathOzTeX:mma:torusr2.m

10 WebKitPlugInStreambjtiur.1

Version 1

Show@Graphics3D@
Flatten@8Ò, Map@Ò 8-1, 1, 1< &, Ò, 8-2<D< &@Flatten@8Ò, Map@Ò 81, -1, 1< &, Ò, 8-2<D< &@

Flatten@8Ò, Map@Ò 81, 1, -1< &, Ò, 8-2<D< &@Join@ContourPlot3D@
Hx^2 Hx^2 ê 4 - 1L + y^2L^2 + z^2 - 1 ê 2, 8x, 0, 1.7<, 8y, 0, 1.31<, 8z, 0,
0.77<, PlotPoints Ø 85, 3<, MaxRecursion Ø 1, DisplayFunction Ø IdentityD@@

1DD, ContourPlot3D@Hx^2 Hx^2 ê 4 - 1L + y^2L^2 + z^2 - 1 ê 2,
8x, 1.7, 2.147<, 8y, 0, 1.31<, 8z, 0, 0.77<, PlotPoints Ø 85, 3<,
MaxRecursion Ø 1, DisplayFunction Ø IdentityD@@1DDDDDDDDDD,

Boxed Ø False, ViewPoint Ø 80.2, -0.4, 0.7<,
BoxRatios Ø

82.2,
1,
0.31<D êê Timing

88.76 Second, Null<

Version 2

torusImplicit@8x_, y_, z_<, R_, r_D =

Hx^2 + y^2 + z^2L^2 - 2 HR^2 + r^2L Hx^2 + y^2L + 2 HR^2 - r^2L z^2 + HR^2 - r^2L^2;

doubleTorus = Module@8f, cp, polys<,
f = Product@torusImplicit@8x + i, y, z<, 1, 1 ê 4D, 8i, -5 ê 4, 5 ê 4, 5 ê 2<D - 2;
cp = ContourPlot3D@Evaluate@fD, 8x, 0, 3<, 8y, 0, 2<, 8z, 0, 0.6<,

PlotPoints Ø 2 824, 20, 12<, MaxRecursion Ø 0, DisplayFunction Ø IdentityD;
polys = Cases@cp, _Polygon, 80, Infinity<D;
Flatten@8Ò, Map@Ò 8-1, 1, 1< &, Ò, 8-2<D<D &@
Flatten@8Ò, Map@Ò 81, -1, 1< &, Ò, 8-2<D<D &@
Flatten@8polys, Map@Ò 81, 1, -1< &, polys, 8-2<D<DDDD;

Show@Graphics3D@8EdgeForm@D, doubleTorus<D, Boxed Ø FalseD êê Timing

81.96 Second, Ü Graphics3D Ü<

2 1E8F1EF8d01
8/10/11 4:56 PMTriple Torus -- from Wolfram MathWorld

Page 1 of 1http://mathworld.wolfram.com/TripleTorus.html

Algebra

Applied Mathematics

Calculus and Analysis

Discrete Mathematics

Foundations of Mathematics

Geometry

History and Terminology

Number Theory

Probability and Statistics

Recreational Mathematics

Topology

Alphabetical Index

Interactive Entries

Random Entry

New in MathWorld

MathWorld Classroom

About MathWorld

Contribute to MathWorld

Send a Message to the Team

MathWorld Book

13,077 entries
Last updated: Tue Aug 2 2011

Geometry > Solid Geometry > Tori >

Topology > Topological Structures >

Recreational Mathematics > Mathematical Art > Mathematical Images >

MathWorld Contributors > Trott >

Triple Torus

A sphere with three handles (and three holes), i.e., a genus-3 torus.

SEE ALSO: Double Torus, Handle, Torus

CITE THIS AS:

Weisstein, Eric W. "Triple Torus." From MathWorld--A Wolfram Web Resource.

http://mathworld.wolfram.com/TripleTorus.html

Contact the MathWorld Team

© 1999-2011 Wolfram Research, Inc. | Terms of Use

SEARCH MATHWORLD

 Other Wolfram Web Resources »
Figure 2.31: Visualization for the genus of several nonsingular projective plane complex al-
gebraic curves. Every nonsingular projective plane complex algebraic curve is topologically
a torus with g-holes. The number g is called the genus of the nonsingular curve. From left
to right: (1) a sphere; (2) a torus with 1-hole; (3) a torus with 2-holes; (4) a torus with
3-holes. Pictures produced with Mathematica, see [Wolfram, 2000] for more information.

2.3.3 Singularities and Knot Theory

In this subsection we discuss the local topological properties of plane complex algebraic
curves. In particular, we introduce the notion of a link of a singularity, which is one of
the key ingredient of this thesis. For defining the link of a singularity and explaining its
relation to the local topology of plane complex algebraic curves, we need to introduce some
fundamental notions from knot theory. Therefore we divide this subsection into two main
parts: one part in which we first introduce the basic knot theory, and a second part in
which we then discuss the concept of a link of a singularity by connecting the singularity
theory with the knot theory.

Basic Knot theory

In the following paragraphs, we include a short overview concerning basic knot theory,
which turns out important for our study. We follow the basic books on knot theory of
[Adams, 2004], [Livingston, 1993], [Rolfsen, 1976] and [Kauffman, 1991].
We define a knot in the following way:

Definition 30. A knot K ⊂ R3 or K ⊂ S3 is a subset of points homeomorphic to the
circle denoted with S1. We add that the circle can be arranged as a smooth curve or as a
polygonal curve.

The simplest knot of all is just the unknotted circle, which we call the unknot or the trivial
knot, for an example see Figure 2.32.

Show@KnotData@knotD, ImageSize Ø 200D

Show@ClosedBraid@BraidWord@Link@knotDD, Style Ø TubeStyleD, ImageSize Ø 200D

Braid::bogus : 881<, 1< is not a legitimate braid!

Show::gtype : ClosedBraid is not a type of graphics. à

Show@ClosedBraid@881<, 1<, Style Ø TubeStyleD, ImageSize Ø 200D

Properties

ü Classes

KnotData@knot, "Classes"D

8Alternating, Chiral, Hyperbolic, Prime, Invertible, Nonsatellite, Nontorus<

KnotClassString@knotD

\subj8Mathematics:Topology:Knot Theory:Alternating Knots<
\subj8Mathematics:Topology:Knot Theory:Chiral Knots<
\subj8Mathematics:Topology:Knot Theory:Hyperbolic Knots<
\subj8Mathematics:Topology:Knot Theory:Prime Knots<
\subj8Mathematics:Topology:Knot Theory:Invertible Knots<
\subj8Mathematics:Topology:Knot Theory:Nonsatellite Knots<
\subj8Mathematics:Topology:Knot Theory:Nontorus Knots<

ü Properties

props = 8"AlexanderBriggsList", "AlexanderBriggsNotation", "AlternateNames",

"ArfInvariant", "BridgeIndex", "ColoringNumberSet", "ConcordanceOrder",

"ConwayNotation", "ConwayString", "ColoringNumberSet", "CrossingNumber",

"ConwayNotation", "ConwayString", "CrossingNumber", "DegreeThreeVassiliev",

"DegreeTwoVassiliev", "Determinant", "DowkerList", "DowkerNotation", "Genus",

"HyperbolicVolume", "NakanishiIndex", "Name", "OzsvathSzaboTau", "SeifertMatrix",

"Signature", "SmoothFourGenus", "StandardName", "StickNumber", "SuperbridgeIndex",

"ThurstonBennequin", "TopologicalFourGenus", "UnknottingNumber"<;

2 72494C67d01

Figure 2.32: Example of the unknot, also called the trivial knot. Picture produced with
Mathematica, see [Wolfram, 2000] for more information.

We recall that a homeomorphism is a continuous bijective function with a continuous in-
verse. We define the equivalence of two knots as follows:

2.3. Topology of Plane Complex Algebraic Curves 57

Definition 31. We say that two knots are equivalent if there exists an orientation preserv-
ing homeomorphism on R3 that maps one knot onto the other. This equivalence is called
(ambient) isotopy.

We can specify a particular knot using the following definition:

Definition 32. A knot is a continuous simple closed curve in R3.

The continuity in Definition 32 allows the existence of infinitely knotted loops called wild
knots, as seen in Figure 2.33. To eliminate the wild points in the wild knots (i.e. the point
where the small knots bunch up) we can introduce the notion of differentiability. This
eliminates the wild points, since there is no continuous way to define a tangent direction
at this point. This remedy is possible but difficult and therefore we will not describe it in
this thesis.

Figure 2.33: Example of a wild knot. Picture from [Livingston, 1993].

Alternatively, we can use polygonal curves to define knots. Since polygonal curves are finite
by nature we can thus eliminate the wild points in the wild knots. We can think of knots
as build up of straight lines and give the coordinates of the corners of these lines. More
formally we define a simple closed polygonal closed as follows:

Definition 33. Let p, q ∈ R3, p 6= q. Let [p, q] denote the segment line joining p, q. Let

(p1, ..., pn) be an ordered set with pi 6= qj , i, j ∈ {1, 2, ..., n}. Then P =
n−1⋃
i=1

[pi, pi+1]∪[pn, p1]

is a closed polygonal curve. In addition P is simple if each segment intersects exactly two
other segments only at their endpoints.

Informally, we notice that a polygonal curve is simple if each segment intersects exactly two
other segments only at their endpoints. In addition, a polygonal curve is closed if its first
vertex coincides with its last vertex. We can now introduce the definition of a knot using
a simple closed polygonal curve:

Definition 34. A knot K is a simple closed polygonal curve P in R3. The line segments
of P are called the edges of the knots, and the corners of P are called the vertices of the
knot. A knot is called tame if it has a polygonal representative.

We now introduce the notion of a link:

Definition 35. A link is a finite disjoint union of knots L = K0∪K1∪ ...∪Kn. Each knot
Kj with j ∈ {0, ..., n} is called a component of the link. The number of components of a
link is called the multiplicity of the link. A subset of the components of L embedded in the
same way is called a sublink.

58 Chapter 2. Plane Complex Algebraic Curves

Based on the former definition we make the following remarks: (1) a knot is a link with
one component; (2) the unlink (trivial link) is the union of unknots all lying in the same
plane; (3) links can be oriented (each component is assigned an orientation). An unoriented
n-component link can be assigned orientations in 2n ways.
We introduce the equivalence of links as follows:

Definition 36. We say that two links L1, L2 are equivalent if there exists an orientation-
preserving homeomorphism on R3 that maps one link onto the other. This equivalence is
called (ambient) isotopy.

We mention that the ambient isotopy introduced in the previous definition has to preserve
any orientations or labeling on the links. Without this requirement, the definition is weak
as it does not impose any restriction on the isotopy: there is a free choice of how to match
the components of L1 with those of L2. In Figure 2.34 we include several examples of knots
and links, i.e. the trefoil knot, the Hopf link and the Borromean rings.

Figure 2.34: Examples of knots and links. From left to right: the trefoil knot, the Hopf
link, the Borromean rings. Pictures produced with Mathematica, see [Wolfram, 2000] for
more information.

In particular, we are interested in a special type of links called algebraic links. Without
going too much into details concerning the algebraic links, at this point we mention that a
link is called algebraic if it arises as the intersection of an algebraic curve with a sufficiently
small sphere. We will thoroughly introduce the notion of an algebraic link in the second
part of this subsection and in Subsection 2.4.2. From now on we will basically refer only to
the class of links from knot theory since a knot is a link with one component.
In our study we use the following convention: we approximate links by simple closed polyg-
onal curves in R3, but we usually draw them as smooth curves that do not intersect them-
selves in R3. In fact, in our study, we approximate a differentiable link by a piecewise linear
link. Another important observation is that when we work with links, we actually work
with their projection in the 2-dimensional Euclidean plane. In fact we work with their
regular projection, which we define in the following way for the piecewise linear case:

Definition 37. A regular projection of a link L is a linear projection for which no three
points on the link project to the same point, and no vertex projects to the same point as
any other point on the link. A crossing point of the link L is an image of two knot points
of such a regular projection from R3 to R2.

In Figure 2.35 we visualize the figure eight knot with its regular projection in R2.

As we can notice from Figure 2.35, regular projections of a link have the disadvantage that
they contain double points (i.e. crossings) for which it is not clear which of the two paths
goes under the other. To remove this problem we change the regular projection close to
these double points, drawing the projection such that it has been cut. In this way, regular

2.3. Topology of Plane Complex Algebraic Curves 59

Algebra

Applied Mathematics

Calculus and Analysis

Discrete Mathematics

Foundations of Mathematics

Geometry

History and Terminology

Number Theory

Probability and Statistics

Recreational Mathematics

Topology

Alphabetical Index

Interactive Entries

Random Entry

New in MathWorld

MathWorld Classroom

About MathWorld

Contribute to MathWorld

Send a Message to the Team

MathWorld Book

13,072 entries
Last updated: Mon Jul 11 2011

Topology > Knot Theory > Knots >

Topology > Knot Theory > Alternating Knots >

Topology > Knot Theory > Amphichiral Knots >

More...

Figure Eight Knot

The figure eight knot, also known as the Flemish knot and savoy knot, is the unique prime knot of four crossings 04-001. It has braid word .

The figure eight knot is implemented in Mathematica as KnotData["FigureEight"].

It is a 2-embeddable knot, and is amphichiral as well as invertible. It has Arf invariant 1. It is not a slice knot (Rolfsen 1976, p. 224).

The Alexander polynomial , BLM/Ho polynomial , Conway polynomial , HOMFLY polynomial , Jones polynomial , and Kauffman polynomial F

 of the figure eight knot are

(1)

(2)

(3)

(4)

(5)

(6)

There are no other knots on 10 or fewer crossings sharing the same Alexander polynomial, BLM/Ho polynomial, bracket polynomial, HOMFLY polynomial, Jones polynomial, or

Kaufmann polynomial X.

The figure eight knot has knot group

(7)

(Rolfsen 1976, p. 58).

Helaman Ferguson's sculpture "Figure-Eight Complement II" illustrates the knot complement of the figure eight knot (Borwein and Bailey 2003, pp. 54-55, color plate IV, and

front cover; Bailey et al. 2007, p. 37). Furthermore, Ferguson has carved the BBP-type formula for the hyperbolic volume of the knot complement (discussed below) on both

figure eight knot complement sculptures commissioned by the Clay Mathematics Institute (Borwein and Bailey 2003, p. 56; Bailey et al. 2007, pp. 36-38).

The hyperbolic volume of the knot complement of the figure eight knot is approximately given by

(8)

(Sloane's A091518). Exact expressions are given by the infinite sums

(9)

(10)

(11)

(12)

(13)

where is a harmonic number.

 has a variety of BBP-type formulas including

(14)

(15)

(16)

(17)

(18)

with additional identities for coefficients of of the form (E. W. Weisstein, Sep. 30, 2007). Higher-order identities are

SEARCH MATHWORLD

 Other Wolfram Web Resources »

Figure Eight Knot -- from Wolfram MathWorldhttp://mathworld.wolfram.com/FigureEightKnot.html

1 of 27/11/11 1:45 PM

Figure 2.35: Example of a figure eight knot and its regular projection. From left to right: (1)
the figure eight knot, which is a picture produced with Mathematica, see [Wolfram, 2000]
for more information; (2) regular projection of the figure eight knot.

projections of a link to the plane allow the representation of a link as a special type of
projection called a diagram, which we formally define as follows:

Definition 38. We consider the regular projection of a link as introduced in Definition 37.
Then:

1. A link diagram (or simply diagram) of a link is the image under regular projection
of the link, together with the information on each crossing point telling which branch
goes over and which goes under, see Figure 2.36 and Figure 2.37. Thus we speak
about overcrossings and undercrossings.

2. A diagram together with an arbitrary orientation of each knot in the link is called
an oriented diagram. Otherwise it is called unoriented. An arbitrary orientation of a
knot is defined by choosing a direction to travel around the knot. This direction is
denoted by placing coherently directed arrows along the projection of the knot in the
chosen direction. In this case, we say that the knot is oriented.

Algebra

Applied Mathematics

Calculus and Analysis

Discrete Mathematics

Foundations of Mathematics

Geometry

History and Terminology

Number Theory

Probability and Statistics

Recreational Mathematics

Topology

Alphabetical Index

Interactive Entries

Random Entry

New in MathWorld

MathWorld Classroom

About MathWorld

Contribute to MathWorld

Send a Message to the Team

MathWorld Book

13,072 entries
Last updated: Mon Jul 11 2011

Topology > Knot Theory > Knots >

Topology > Knot Theory > Alternating Knots >

Topology > Knot Theory > Chiral Knots >

More...

Trefoil Knot

The trefoil knot , also called the threefoil knot or overhand knot, is the unique prime knot with three crossings. It

is a (3, 2)-torus knot and has braid word . The trefoil and its mirror image are not equivalent, as first proved by

Dehn (1914). In other words, the trefoil knot is not amphichiral. It is, however, invertible, and has Arf invariant 1.

Its laevo form is implemented in Mathematica, as illustrated above, as KnotData["Trefoil"].

M. C. Escher's woodcut "Knots" (Bool et al. 1982, pp. 128 and 325; Forty 2003, Plate 71) depicts three trefoil knots

composed of differing types of strands. A preliminary study (Bool et al. 1982, p. 123) depicts another trefoil.

The animation above shows a series of gears arranged along a Möbius strip trefoil knot (M. Trott).

The bracket polynomial can be computed as follows.

(1)

(2)

Plugging in

(3)

(4)

gives

(5)

The corresponding Kauffman polynomial X is then given by

(6)

(7)

where the writhe (Kauffman 1991, p. 35; Livingston 1993, p. 219)

The Alexander polynomial , BLM/Ho polynomial , Conway polynomial , HOMFLY polynomial

, Jones polynomial , and Kauffman polynomial F of the trefoil knot are

(8)

(9)

(10)

(11)

(12)

(13)

Here, corresponds to the right-hand trefoil.

There are no other knots on 10 or fewer crossings sharing the same Alexander polynomial, BLM/Ho polynomial, or

Jones polynomial.

The knot group of the trefoil knot is

(14)

or equivalently

(15)

(Rolfsen 1976, pp. 52 and 61).

SEE ALSO: Figure Eight Knot, Granny Knot, Knot, Prime Knot, Square Knot

REFERENCES:

Bar-Natan, D. "The Knot ." http://www.math.toronto.edu/~drorbn/KAtlas/Knots/3.1.html.

Trefoil Knot in the

Torus Knot

Curvature of the Trefoil

Knot

Aerial Tour of Differential

Geometry

SEARCH MATHWORLD

 Other Wolfram Web Resources »

Trefoil Knot -- from Wolfram MathWorldhttp://mathworld.wolfram.com/TrefoilKnot.html

1 of 27/11/11 2:19 PM

Figure 2.36: Example of a trefoil knot together with its diagram. From left to right: (1)
the trefoil knot in R3; (2) the corresponding diagram of the trefoil knot in R2. Pictures
produced with Mathematica, see [Wolfram, 2000] for more information.

We are interested in the following elements of a diagram:

Definition 39. For each diagram of a link we define the following elements:

1. A crossing is a double point of a regular projection together with the extra information
telling which branch goes under and which goes over. In addition, for an oriented
diagram we distinguish between lefthanded and righthanded crossings. A crossing of
an oriented diagram is lefthanded if the underpass traffic goes from left to right or it
is righthanded if the underpass traffic goes from right to left. We denote a lefthanded

60 Chapter 2. Plane Complex Algebraic Curves

Algebra

Applied Mathematics

Calculus and Analysis

Discrete Mathematics

Foundations of Mathematics

Geometry

History and Terminology

Number Theory

Probability and Statistics

Recreational Mathematics

Topology

Alphabetical Index

Interactive Entries

Random Entry

New in MathWorld

MathWorld Classroom

About MathWorld

Contribute to MathWorld

Send a Message to the Team

MathWorld Book

13,072 entries
Last updated: Mon Jul 11 2011

Topology > Knot Theory > Knots >

Topology > Knot Theory > Alternating Knots >

Topology > Knot Theory > Amphichiral Knots >

More...

Figure Eight Knot

The figure eight knot, also known as the Flemish knot and savoy knot, is the unique prime knot of four crossings 04-001. It has braid word .

The figure eight knot is implemented in Mathematica as KnotData["FigureEight"].

It is a 2-embeddable knot, and is amphichiral as well as invertible. It has Arf invariant 1. It is not a slice knot (Rolfsen 1976, p. 224).

The Alexander polynomial , BLM/Ho polynomial , Conway polynomial , HOMFLY polynomial , Jones polynomial , and Kauffman polynomial F

 of the figure eight knot are

(1)

(2)

(3)

(4)

(5)

(6)

There are no other knots on 10 or fewer crossings sharing the same Alexander polynomial, BLM/Ho polynomial, bracket polynomial, HOMFLY polynomial, Jones polynomial, or

Kaufmann polynomial X.

The figure eight knot has knot group

(7)

(Rolfsen 1976, p. 58).

Helaman Ferguson's sculpture "Figure-Eight Complement II" illustrates the knot complement of the figure eight knot (Borwein and Bailey 2003, pp. 54-55, color plate IV, and

front cover; Bailey et al. 2007, p. 37). Furthermore, Ferguson has carved the BBP-type formula for the hyperbolic volume of the knot complement (discussed below) on both

figure eight knot complement sculptures commissioned by the Clay Mathematics Institute (Borwein and Bailey 2003, p. 56; Bailey et al. 2007, pp. 36-38).

The hyperbolic volume of the knot complement of the figure eight knot is approximately given by

(8)

(Sloane's A091518). Exact expressions are given by the infinite sums

(9)

(10)

(11)

(12)

(13)

where is a harmonic number.

 has a variety of BBP-type formulas including

(14)

(15)

(16)

(17)

(18)

with additional identities for coefficients of of the form (E. W. Weisstein, Sep. 30, 2007). Higher-order identities are

SEARCH MATHWORLD

 Other Wolfram Web Resources »

Figure Eight Knot -- from Wolfram MathWorldhttp://mathworld.wolfram.com/FigureEightKnot.html

1 of 27/11/11 1:45 PM

Figure 2.37: Example of a figure eight knot together with its diagram. From left to right:
(1) the eight figure knot in R3; (2) the corresponding diagram of the figure eight knot in
R2. Pictures produced with Mathematica, see [Wolfram, 2000] for more information.

crossing with −1 and a righthanded crossing with +1 as indicated by the dotted round
arrow in Figure 2.38.

2. An arc is the part of a diagram between two undercrossings, see Figure 2.39. We
notice that the number of arcs in a diagram equals the number of crossings in the
same diagram, see Figure 2.39.

������

GG������

WW/////////////

−1

��

//////

WW//////

GG�������������

+1

��

Figure 2.38: Types of crossings: lefthanded crossing (-1) and righthanded crossing (+1).

2

1 3

c1

c2

c3

Figure 2.39: Oriented diagram of the trefoil with 3 arcs denoted with {1, 2, 3} and 3 left-
handed crossings denoted with {c1, c2, c3}.

In the following we include a list containing different types of knots:

• The first type of knots that we mention in this thesis are the torus knots. In the
following we explain the method used to generate this type of knots. As introduced
in Subsection 2.3.1 in Example 13 a torus is generated by taking a circle in the yz

2.3. Topology of Plane Complex Algebraic Curves 61

plane of radius r centered on the y-axis at distance R + r from the origin, and then
by rotating it around the z-axis. If we parametrize the circle by angle v ∈ [0, 2π] and
the rotation by angle u ∈ [0, 2π], then we can express the torus as: cosu − sinu 0

sinu cosu 0
0 0 1

 0
R+ r cos v
r sin v

 =

 −(R+ r cos v) sinu
(R+ r cos v) cosu

r sin v

 .

The parameters r,R control the geometry of the torus: r is the radius of the tube,
R is the radius of the hole. The angles form a coordinate system: any point on the
torus can be labelled by a pair (v, u).
The subset of points defined by the equation pv = qu for coprime integers p, q winds
its way around the torus and forms a knot, called a (p, q)-torus knot. A (p, q)-torus
knot is equivalent with a (q, p)-torus knot. Since they lie in the surface of a standard
torus, torus knots are some of the simplest knots to describe parametrically. Thus we
can give the following definition for a torus knot:

Definition 40. The following definitions are equivalent:

1. A (p, q)-torus knot is obtained by looping a string through the hole of a torus
p times with q revolutions before joining its ends, where p and q are relatively
prime.

2. A (p, q)-torus knot is a curve on the torus, which is specified by winding p times
around the main axis of the torus and q times around the tube of the torus.

In Figure 2.40 we include several examples of torus knots. We notice that the trefoil
knot is a (3, 2)-torus knot.

Algebra

Applied Mathematics

Calculus and Analysis

Discrete Mathematics

Foundations of Mathematics

Geometry

History and Terminology

Number Theory

Probability and Statistics

Recreational Mathematics

Topology

Alphabetical Index

Interactive Entries

Random Entry

New in MathWorld

MathWorld Classroom

About MathWorld

Contribute to MathWorld

Send a Message to the Team

MathWorld Book

13,072 entries
Last updated: Mon Jul 11 2011

Topology > Knot Theory > Knots >

Topology > Knot Theory > Torus Knots >

Interactive Entries > Interactive Demonstrations >

Torus Knot

A -torus knot is obtained by looping a string through the hole of a torus times with revolutions

before joining its ends, where and are relatively prime. A -torus knot is equivalent to a

-torus knot. All torus knots are prime (Hoste et al. 1998, Burde and Zieschang 2002). Torus knots are

all chiral, invertible, and have symmetry group (Schreier 1924, Hoste et al. 1998).

Knots on ten and fewer crossing can be tested in Mathematica to see if they are torus knots using the

command KnotData[knot, "Torus"].

The link crossing number of a -torus knot is

(1)

(Williams 1988, Murasugi and Przytycki 1989, Murasugi 1991, Hoste et al. 1998). The unknotting

number of a -torus knot is

(2)

(Adams 1991).

The numbers of torus knots with crossings are 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, ... (Sloane's

A051764). Torus knots with fewer than 11 crossings are summarized in the following table (Adams et

al. 1991) and the first few are illustrated above.

knot name

trefoil knot (3, 2)

Solomon's seal knot (5, 2)

(7, 2)

(4, 3)

(9, 2)

(5, 3)

The torus knot indices corresponding to knots on 16 or fewer crossings are , , , ,

, , , , , , , and (Hoste et al. 1998).

The , , and -torus knots are almost alternating knots (Adams 1994, p. 142).

The Jones polynomial of an -torus knot is

(3)

The bracket polynomial for the torus knot is given by the recurrence relation

(4)

where

(5)

The knot group of the -torus knot is

(6)

(Rolfsen 1976, p. 53).

SEE ALSO: Almost Alternating Knot, Hyperbolic Knot, Knot, Satellite Knot, Solomon's Seal Knot, Trefoil

Knot

REFERENCES:

Adams, C.; Hildebrand, M.; and Weeks, J. "Hyperbolic Invariants of Knots and Links." Trans. Amer. Math. Soc. 326, 1-56,

1991.

Adams, C. C. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman,

1994.

Burde, G. and Zieschang, H. Knots, 2nd rev. ed. Berlin: de Gruyter, 2002.

Gray, A. "Torus Knots." §9.2 in Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca

Raton, FL: CRC Press, pp. 209-215, 1997.

Torus Knot in the

Coils, Knots, and Rosettes

Torus Knot

Linked Torus Knots

Entangled Torus Coils

SEARCH MATHWORLD

 Other Wolfram Web Resources »

Torus Knot -- from Wolfram MathWorld http://mathworld.wolfram.com/TorusKnot.html

1 of 2 7/11/11 1:39 PM

Figure 2.40: Examples of torus knots. From left to right: (1) a (3, 2) torus knot;
(2) a (5, 2) torus knot; (3) a (7, 2) torus knot. Pictures from Wolfram Research, see
[E W. Weisstein, 1999].

• The second type of knots that we present in our study are the prime knots. Informally,
two oriented knots (or links) can be summed by placing them side by side and joining
them by straight bars so that orientation is preserved in the sum. The knot sum is
also known as composition in [Adams, 2004] or connected sum in [Rolfsen, 1976]. We
add that given any 2 knots K and J one can form their connected sum denoted by
K#J. In Figure 2.41 we visualize the connected sum K1#K2 of two unknots denoted
with K1 and K2.

Under these assumptions, we say that a knot is prime if it cannot be decomposed as a
connected sum of nontrivial knots. As examples we mention that all torus knots are
prime knots. In addition the figure eight knot (also known as the Flemish knot and
savoy knot) is the unique prime knot of four crossings, see Figure 2.42. An important

62 Chapter 2. Plane Complex Algebraic Curves

Algebra

Applied Mathematics

Calculus and Analysis

Discrete Mathematics

Foundations of Mathematics

Geometry

History and Terminology

Number Theory

Probability and Statistics

Recreational Mathematics

Topology

Alphabetical Index

Interactive Entries

Random Entry

New in MathWorld

MathWorld Classroom

About MathWorld

Contribute to MathWorld

Send a Message to the Team

MathWorld Book

13,072 entries
Last updated: Mon Jul 11 2011

Topology > Knot Theory > Knot Operations >

Knot Sum

Two oriented knots (or links) can be summed by placing them side by side and joining them by

straight bars so that orientation is preserved in the sum. The knot sum is also known as

composition (Adams 1994) or connected sum (Rolfsen 1976, p. 40).

This operation is denoted #, so the knot sum of knots and is written

The figure above illustrated the knot sum of two trefoil knots having the same handedness.

The knot sum is in general not a well-defined operation, but depends on the choice of balls where

the connection is made and perhaps also on the choice of the attaching homeomorphism. The

square knot and granny knot illustrate this ambiguity (Rolfsen 1976, pp. 40-41).

Schubert (1949) showed that every knot can be uniquely decomposed (up to the order in which

the decomposition is performed) as a knot sum of a class of knots known as prime knots, which

cannot themselves be further decomposed. Knots that are the sums of prime knots are known as

composite knots.

The knot sum of any knot with the unknot is again (Adams 1994, p. 8). The knot sum of any

number of knots cannot be the unknot unless each knot in the sum is the unknot (Schubert 1949;

Steinhaus 1999, p. 265).

SEE ALSO: Composite Knot, Connected Sum, Knot, Prime Knot

REFERENCES:

Adams, C. C. "Composition of Knots." §1.2 in The Knot Book: An Elementary Introduction to the Mathematical Theory

of Knots. New York: W. H. Freeman, pp. 7-12, 1994.

Rolfsen, D. Knots and Links. Wilmington, DE: Publish or Perish Press, pp. 206-207, 1976.

Schubert, H. Sitzungsber. Heidelberger Akad. Wiss., Math.-Naturwiss. Klasse, 3rd Abhandlung. 1949.

Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, 1999.

CITE THIS AS:

Weisstein, Eric W. "Knot Sum." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com

/KnotSum.html

Contact the MathWorld Team

© 1999-2011 Wolfram Research, Inc. | Terms of Use

SEARCH MATHWORLD

 Other Wolfram Web Resources »

Knot Sum -- from Wolfram MathWorld http://mathworld.wolfram.com/KnotSum.html

1 of 1 7/11/11 1:52 PM

Figure 2.41: Connected sum of 2 unknots. From left to right: (1) two unknots in R3

denoted K1,K2 : (2) the connected sum K1#K2. Pictures from Wolfram Research, see
[E W. Weisstein, 1999].

result was proven by Schubert in 1974. Basically he showed that any knot can be
decomposed uniquely as the connected sum of prime knots. This is an analogy to
positive integers.

Algebra

Applied Mathematics

Calculus and Analysis

Discrete Mathematics

Foundations of Mathematics

Geometry

History and Terminology

Number Theory

Probability and Statistics

Recreational Mathematics

Topology

Alphabetical Index

Interactive Entries

Random Entry

New in MathWorld

MathWorld Classroom

About MathWorld

Contribute to MathWorld

Send a Message to the Team

MathWorld Book

13,072 entries
Last updated: Mon Jul 11 2011

Topology > Knot Theory > Knots >

Topology > Knot Theory > Alternating Knots >

Topology > Knot Theory > Amphichiral Knots >

More...

Figure Eight Knot

The figure eight knot, also known as the Flemish knot and savoy knot, is the unique prime knot of four crossings 04-001. It has braid word .

The figure eight knot is implemented in Mathematica as KnotData["FigureEight"].

It is a 2-embeddable knot, and is amphichiral as well as invertible. It has Arf invariant 1. It is not a slice knot (Rolfsen 1976, p. 224).

The Alexander polynomial , BLM/Ho polynomial , Conway polynomial , HOMFLY polynomial , Jones polynomial , and Kauffman polynomial F

 of the figure eight knot are

(1)

(2)

(3)

(4)

(5)

(6)

There are no other knots on 10 or fewer crossings sharing the same Alexander polynomial, BLM/Ho polynomial, bracket polynomial, HOMFLY polynomial, Jones polynomial, or

Kaufmann polynomial X.

The figure eight knot has knot group

(7)

(Rolfsen 1976, p. 58).

Helaman Ferguson's sculpture "Figure-Eight Complement II" illustrates the knot complement of the figure eight knot (Borwein and Bailey 2003, pp. 54-55, color plate IV, and

front cover; Bailey et al. 2007, p. 37). Furthermore, Ferguson has carved the BBP-type formula for the hyperbolic volume of the knot complement (discussed below) on both

figure eight knot complement sculptures commissioned by the Clay Mathematics Institute (Borwein and Bailey 2003, p. 56; Bailey et al. 2007, pp. 36-38).

The hyperbolic volume of the knot complement of the figure eight knot is approximately given by

(8)

(Sloane's A091518). Exact expressions are given by the infinite sums

(9)

(10)

(11)

(12)

(13)

where is a harmonic number.

 has a variety of BBP-type formulas including

(14)

(15)

(16)

(17)

(18)

with additional identities for coefficients of of the form (E. W. Weisstein, Sep. 30, 2007). Higher-order identities are

SEARCH MATHWORLD

 Other Wolfram Web Resources »

Figure Eight Knot -- from Wolfram MathWorldhttp://mathworld.wolfram.com/FigureEightKnot.html

1 of 27/11/11 1:45 PM

Figure 2.42: Figure eight knot, which is the unique prime knot of four crossings. Picture
produced with Mathematica, see [Wolfram, 2000] for more information.

• The third type of knots that we remember are the amphicheiral knots (or achiral
knots). We say that a knot is amphicheiral (or achiral) if it is equivalent to its mirror
image. As examples, we add that the trefoil not is not amphicheiral, whereas the
figure eight knot is amphicheiral, see Figure 2.43 and Figure 2.44. In addition all the
torus knots are not amphicheiral.

Figure 2.43: Figure eight knot and its mirror image, from [University of Wales, 2004].

• The last type of knots that we present in this overview are the alternating knots. We
define an alternating knot as a knot that possesses a diagram in which crossings alter-
nate between under and over crossings. Not all the knot diagrams of an alternating
knot need to be alternating diagrams. We add that the trefoil, the figure eight knot
and all the prime knots with 7 or fewer crossings are alternating knots. In Figure 2.45
we visualize an alternating projection of the figure eight knot, which thus shows that

2.3. Topology of Plane Complex Algebraic Curves 63

Figure 2.44: Figure eight knot deformed to its mirror image by a sequence of moves,
which shows that the figure eight knot is an amphicheiral knot. Pictures from
[University of Wales, 2004].

the figure eight knot is an alternating knot. We finish here our list containing different
types of knots.

Figure 2.45: Alternating projection of the figure eight knot, which shows that the figure
eight knot is an alternating knot.

The main problem in knot theory is to distinguish between different links and to establish
whether two links are equivalent or not. A simplified version of this problem is formulated
as follows: given a projection of a knot, decide whether it is the unknot or not. To show
that 2 diagrams represent the same knot diagram we can use Reidemeister theorem, that
basically says that 2 diagrams representing the same knot are always related by a sequence
of three special moves called the Reidemeister moves. We define the Reidemeister moves in
the following way:

Definition 41. A Reidemeister move is one of the 3 ways to change a diagram of a knot
that will modify the relation between its crossings see Figure 2.46, i.e.:

1. the Reidemeister move of type I allows to put in or to take out a twist in a knot;

2. the Reidemeister move of type II allows to either add two crossings or to remove two
crossings of the knot;

3. and the Reidemeister move of type III allows to slide a strand of the knot from one
side of the crossing to the other side of the crossing.

Thus to show that two diagrams represent the same knot we can use Reidemeister theorem
(1926), which is formulated as follows:

64 Chapter 2. Plane Complex Algebraic Curves

Reidemeister move of type I ↔

Reidemeister move of type II ↔

Reidemeister move of type III ↔

Figure 2.46: Reidemeister moves of type I, II, III.

Theorem 7. Two links are equivalent if and only if any diagram of one can be transformed
into a diagram of the other by a sequence of Reidemeister moves.

However if two links are equivalent it can be difficult to decide the smallest number of moves
that can be used to transform one diagram into the other. If after some time one cannot
transform one diagram into another using the Reidemeister moves, maybe one is not smart
enough. Or it might just happen that the knots are really different. To prove that two links
are not equivalent we use the notion of link invariants:

Definition 42. A link invariant is a function from link diagrams to some discrete set (Z or
Z[t]), which is unchanged under the Reidemeister moves of type I, II or III (see Figure 2.46).

Some link invariants are: the crossing number, the unknotting number, the tricolorabil-
ity, the Alexander polynomial, the Jones polynomial, etc. We make some basic remarks
concerning some of these link invariants:

• The crossing number and the unknotting number are the most natural invariants
to study knots. They are simple to define, but their computation is difficult. We
define the crossing number of a knot K, denoted with c(K), as the least number of
crossings that occur in any diagram of the knot. Moreover, we say that a knot K has
unknotting number n

(
denoted u(K) = n

)
if there exists a diagram of K such that

changing n crossings in the diagram turns the knot into the unknot and there is no
other diagram such that fewer changes would have turned it into the unknot. As an
example we mention that the trefoil knot has its crossing number equal to 3 and its
unknotting number equal to 1, as seen in Figure 2.47.

• Another link invariant is the tricolorability. We say that a diagram of a knot is
tricolorable (or simply colorable) if each arc can be drawn using one of the 3 colors
such that at each crossing either 3 different colors came together or the same color
comes together and at least 2 of the colors are used. From Figure 2.48 we observe
that the trefoil knot is colorable. From Figure 2.49 we observe that the unknot is
not colorable since only one color is used to draw the unknot, while the notion of
colorability requires that at least 2 colors are being used. Since the trefoil is colorable

2.3. Topology of Plane Complex Algebraic Curves 65

Figure 2.47: Trefoil knot has its crossing number equal to 3 as 3 is the least number of
crossings that occur in any diagram of the trefoil; and its unknotting number equal to 1
since changing 1 crossing in the diagram change the trefoil into the unknot. Pictures from
[University of Wales, 2004].

and the unknot is not colorable, we conclude that the trefoil and the unknot are
different knots. Furthermore, any colorable knot is nontrivial. From Figure 2.50 we
remark that the figure eight knot is also not colorable because there is a crossing for
which 2 different colors meet. From the definition of colorability this is impossible
as either 3 or 1 colors can meet at one crossing. Since the figure eight knot and the
unknot are not colorable, it follows that the colorability cannot be used to show that
figure eight knot is different from the unknot. Therefore we conclude that colorability
is not a complete invariant for knots. Another important theorem, which we include
here without a proof, says that if a diagram of a knot is colorable then all of its
diagrams are colorable. A generalization of the notion of tricolorability is a more
subtle kind of labelling, which gives new invariants, i.e. mod p labellings, where p is
a prime positive integer. The problem of finding mod p labellings of a knot diagram
can be reduced to solving a system of linear equations mod p. The dimension of the
solution space for this system of equations is called the mod p rank of the knot. It is
proved that if K has mod p rank n, then the number of the mod p labellings of the
knot diagram is p(pn − 1), see [Livingston, 1993] for details.

Figure 2.48: Trefoil knot is tricolorable. Picture from [University of Wales, 2004].

• The most successful invariants to tell knots apart are the polynomial invariants. We
mention here the following polynomial invariants:

– The Alexander Polynomial introduced by J. W. Alexander in 1928. This poly-
nomial distinguishes all knots of 8 crossings or fewer, but it does not distinguish
a knot from its mirror image, i.e. it does not distinguish the amphicheiral knots.

– The Jones polynomial introduced by Vaughan F. R. Jones in 1984. It distin-
guishes all knots of 10 crossings or fewer, it also distinguishes a knot from its
mirror image, but it does not distinguish the mutant knots, which is another class
of special knots, see [Adams, 2004] for information on the definition of mutant
knots.

66 Chapter 2. Plane Complex Algebraic Curves

Figure 2.49: Unknot is not tricolorable as only one color is used for drawing the knot.
Picture from [University of Wales, 2004].

Figure 2.50: Figure eight knot is not tricolorable since there is a crossing for which only 2
different colors meet. From the definition of colorability this is impossible, since either 3 or
1 colors can meet at one crossing. Picture from [University of Wales, 2004].

– The HOMFLY polynomial was introduced in 1985/1987. This polynomial is a
generalization of both the Alexander and the Jones polynomials. It is named
after its inventors J. Hoste, A. Ocneanu, K. Millett, P. J. Freyd, W. B. R.
Lickorish, and D. N. Yetter. Independently also J. H. Prztycki and P. Traczyk
discovered the same polynomial. It does not distinguish mutant knots.

For further details and information on link invariants the reader can consult the detailed
books of [Adams, 2004], [Livingston, 1993], [Burde and Zieschang, 1985]. As an important
observation we mention that at present, there exists no complete invariant for links, i.e. an
invariant that distinguishes all the links.
In this paper we will extensively use the Alexander polynomial, therefore at this point in
our study we make several important remarks concerning the Alexander polynomial as a
link invariant in knot theory. The Alexander polynomial of a link can be computed in
several ways:

• by using Alexander’s combinatorial method (1928), [Alexander, 1928]. This method
uses the diagram of the knots, and the Reidemeister moves. This method will be
presented in detail in Subsection 2.4.3;

• by using Fox’s method (1963). This technique uses a representation of the funda-
mental group of the complement of the knot. It was also mentioned in Alexander’s
original paper [Alexander, 1928] in his ”Miscellaneous” section, but Fox’s descrip-
tion is more detailed. For a detailed and comprehensive overview of this method see
[Crowell and Fox, 1963];

• or by using Conway’s skein relation (1969). This method uses skein relation, some
special equations that connect the crossings of different knot diagrams. It was also

2.3. Topology of Plane Complex Algebraic Curves 67

mentioned in Alexander’s original paper, but Conway’s presentation is clearer and
thus it paved the discovery for the Jones polynomial 15 years later.

In the following, we shortly present Fox’s method for computing the Alexander polynomial
of a link by following the book of [Crowell and Fox, 1963]. Fox’s method for computing the
Alexander polynomial is based on the study of the properties of the fundamental groups of
the complementary spaces of knots. The complementary space of a knot K denoted with
R3 \ K consists of all the points of R3 that do not belong to K. We recall that K ⊂ R3

is a knot if there exists a homeomorphism of the unit circle S1 into R3 whose image is
K. The main idea in Fox’s method for computing the Alexander polynomial is to define
the fundamental group of the knot. For this purpose, we have to introduce the notion
of a fundamental group of a topological space. We introduce the following preliminaries
definitions:

Definition 43. A path in the topological space X is a continuous map p : [0, 1]→ X. The
continuous function f : [0, 1] → X with the property that f(0) = f(1) is called a loop. In
addition, f(0) = f(1) is called the base point of the loop.

We introduce the homotopy relation between two loops in a topological space as follows:

Definition 44. Let x ∈ X and denote with P (X,x) the set of all loops in X with the base
point x. Let f, g ∈ P (X,x) be two loops in X. We say that the loops f, g are homotopic
denoted with f ≈ g if there exists a continuous function H : [0, 1] × [0, 1] → X, i.e. the
family of maps Ht = H|[0, 1]× {t}, t ∈ [0, 1] is continuous, such that:

1. H0(y) := H(y, 0) = f(y) and H1(y) := H(y, 1) = g(y) for all y ∈ [0, 1];

2. the base point Ht(0) := H(0, t) = H(1, t) := Ht(1) = x is independent of t.

We notice that the homotopy relation from the previous definition is an equivalent relation.
We denote with π(X,x) = P (X,x)/≈ the collection of all equivalence classes of loops in the
topological space X with the base point x. We define the following operations on π(X,x) :

• the inverse:

i : π(X,x)→ π(X,x),
s ∈ π(X,x) 7→ i(s)(t) := s−1(t) = s(1− t) ∈ π(X,x), (2.36)

• and the multiplication:

m : π(X,x)2 → π(X,x),
(s1, s2) ∈ π(X,x)2 7→ m(s1, s2) := s1 ◦ s2 = s3 ∈ π(X,x), (2.37)

where s3(t) =


s1(2 · t), t ∈ [0,

1
2
]

s2(2 · t− 1), t ∈ [
1
2
, 1].

We call the group
(
π(X,x),m, i

)
:=
(
π(X,x), ◦, −1

)
the fundamental group of the topo-

logical space X relative to the base point x.
We remember that a topological space X is connected if any two of its points can be joined
by a path lying in X. As a remark we add that R3 is a connected topological space. We
include the following important theorem concerning the fundamental group of a connected
topological space:

68 Chapter 2. Plane Complex Algebraic Curves

Theorem 8. If X is a connected topological space with x, y ∈ X, then π(X,x) is isomorphic
to π(X, y), which we denote by π(X,x) ' π(X, y). In other words, in a connected topological
space X, the fundamental group of X is independent on the base point.

The fundamental group of a knot K ⊂ R3 for some choice of the basepoint x ∈ K is denoted
with π(K,x). However, the fundamental group of the complement of the knot K denoted
with π(R3 \ K,x) is more interesting to study. Since R3 \ K is a connected topological
space, we use simply the notation π(R3 \K) for the fundamental group of the complement
of the knot because π(R3 \K) is independent of the base point. The fundamental group of
the complement of the knot K denoted with π(R3 \K) := G(K) is simply called the knot
group of K, or simply the group of the knot K. In this thesis, we will use both of these
terminology.
We now need to introduce the notion of a presentation of a group. For this purpose,
we let S = |n| be a set of cardinality n. Then any a ∈ S is called a letter of S, any
an with a ∈ S, n ∈ Z is called a syllable, and a finite ordered sequence of syllables such as
b−3a0a1c2c2a0c1 is called a word. The unique word 1 is called the empty word. We denote
with W (S) the set of all words formed on S. On W (S) we define the following operations:

• the product of 2 words formed by writing one word after the other;

• the elementary expansions and contractions: If w1, w2 ∈W (S) then:
u = w1a

0w2 ⇔ u = w1w2,
u = w1a

paqw2 ⇔ u = w1a
p+qw2.

• If u, v ∈W (S), then u ∼ v if one can be obtained from the other by a finite sequence
of elementary expansions and contractions.

We denote by F (S) = W (S)/∼ the set of equivalence classes of words. On F (S) we define
the following two operations:

• the multiplication operation inherited from W (S) defined as [u][v] = [uv];

• the inverse operation denoted by [u]−1 and representing the word obtained from u by
reversing the order of its syllables and changing the sign of each exponent.

Under these assumptions, (F (S), ·, −1) is a group, called the free group on the set S. We
give the intuitive significance of the free group: a free group on a set S denoted by F (S) is
a group in which each element can be uniquely described as a finite length product of the
form sa1

1 · s
a2
2 · ... · san

n , where sj are distinct elements of S and aj ∈ Z∗ for all j ∈ {1, ..., n}.
The set S is called the set of generators. In addition, a useful theorem from group theory
says that any group is the homomorphic image of some free group.
Informally for the presentation of a group one specifies a set S of generators of G such that
every element of the group can be written as a product of some of these generators, and
a set R of relations among those generators. In addition, we say that the group G has a
presentation denoted by G = 〈S | R〉. Formally we say that a group G has the presentation
G = 〈S | R〉 if it is isomorphic (denoted by ') to the quotient of the free group F (S) by
the normal subgroup N of F (S) generated by the relations R, i.e.

G = 〈S | R〉 ' F (S)/N .

To construct the presentation of the group G = 〈S | R〉 the idea is to take the smallest
quotient of F (S) such that each element of R gets identified with the identity element.
We mention that R may not be a subgroup (or a normal subgroup), so we cannot take a

2.3. Topology of Plane Complex Algebraic Curves 69

quotient by R. Therefore we take N the normal closure of R in F (S), i.e. the smallest
normal subgroup in F (S) that contains R.
We recall that the knot group G(K) of a knot K is the fundamental group of the knot com-
plement G(K) := π(R3 \K). A presentation of the knot group G(K) of the knot K is the
Wirtinger presentation, which can be constructed from the diagram of the knot K ⊂ R3. We
add that the knot group of the unknot is isomorphic to Z, but the knot group of any nontriv-
ial knot is infinite and non-abelian, as we will soon see later in this subsection. A proof that
the Wirtinger presentation describes G(K) is found in [Rolfsen, 1976]. The proof mainly
uses the van Kampen theorem. We do not insist on the proof of this theorem, but we do
describe the Wirtinger presentation of G(K) as described also in [Harris and Quenell, 1999]:

• an element of G(K) is represented by a loop, which begins at some fixed base point
x0 6∈ K, winds through the space around K and returns to x0;

• the composition operation in G(K) corresponds to the concatenation of loops;

• the identity element is represented by a path that never leaves x0, or by a loop at x0,
which never gets tangled up with any part of K such that it can be shrunk back to
x0 without getting caught anywhere;

• the inverse of the group element represented by a loop σ is represented by the same
path traced in the opposite direction.

As an example in Figure 2.51 we visualize three loops in the complement of the figure eight
knot, i.e. three loops in the group of the figure eight knot. If the loop σ1 represents the
group element g, then σ2 represents g2, and σ3 represents the identity.

Figure 2.51: Three loops in the group of the figure eight knot represented by σ1, σ2, σ3.
Picture and example from [Harris and Quenell, 1999].

To obtain the generators S of the knot group G(K) of a knot K we proceed in the following
way:

• we consider x0 somewhere off to the side of the oriented diagram of the knot K. We
denote the arcs of the diagram with labels represented by non-negative integers. For
each arc denoted with the label i in the diagram, we write down a group element gi,
represented by a loop that begins at x0, crosses under arc i from right to left, then
crosses over arc i and returns to x0 without getting tangled up anywhere else in the
knot;

70 Chapter 2. Plane Complex Algebraic Curves

• all the elements gi generate the knot group G(K) such that gi ∈ S, i.e. any x0-based
loop through the space around K can be deformed into a sequence of loops each of
which leaves x0, circles one arc of K and returns to x0.

In Figure 2.52 we can see the generators g1, g2, g3 of the knot group G(K) of the trefoil
knot.

Figure 2.52: Generators of the knot group of the trefoil knot, i.e. S = {g1, g2, g3}. Picture
from [Harris and Quenell, 1999].

To get the relations S of the knot group G(K) of the knot K we proceed as follows:

• for each crossing in the diagram, we have a relation among all the generators from
S. For the type of crossing from Figure 2.53, we generate the following relation: the
loop that passes under all the 3 arcs and circles the crossing once represents the
group element gigkg

−1
i g−1

j since it can be deformed into 4 loops representing these
generators. Since this loop can be pulled clear of K, it is the identity element, so we
get gigkg

−1
i g−1

j = 1.

Figure 2.53: Crossing for the diagram of the trefoil knot, which for the knot group G(K)
of the trefoil knot with generators S = {gi, gj , gk} produces the relation gigkg

−1
i g−1

j = 1 in
G(K). Picture from [Harris and Quenell, 1999].

Thus for the diagram of the trefoil knot K from Figure 2.52, we obtain the following pre-
sentation of its knot group: G(K) = 〈S | R〉, where the set of generators S is given by S =

2.3. Topology of Plane Complex Algebraic Curves 71

{g1, g2, g3}, and the set of relations is represented by R = {g2g1g−1
2 g−1

3 = 1, g3g2g−1
3 g−1

1 =
1, g1g3g−1

1 g−1
2 = 1}.

The existence and the uniqueness of the Alexander polynomials (and of other knot poly-
nomials) depend on the abelianized group of a knot group. In the following we introduce
the abelianization of a group G. For any two elements g, h ∈ G, the commutator of g, h is
given by [g, h] = g−1h−1gh. The commutator group denoted by [G,G] is the subgroup of
G generated by all the commutators, and [G,G] is a normal subgroup of G. The quotient
G/[G,G] is an abelian group, called the abelianization of G. We introduce the notion of a
free derivative as follows:

Definition 45. Let F
(
〈x1, ..., xn〉

)
be the free group of the generators 〈x1, ..., xn〉 and Z[F]

the group ring of F. We define the free derivative for every generator xi from 〈x1, ..., xn〉 as

follows: Di : F
(
〈x1, ..., xn〉

)
→ Z[F], Di :=

∂

∂xi
with the following properties:

∂

∂xi
1 = 0,

∂xj

∂xi
= δij =

{
1, if i = j
0, if i 6= j

,

∂x−1
j

∂xi
= −δijx−1

j ,

and for any word w = uxj ∈ F
(
〈x1, ..., xn〉

)
:
∂

∂xi
uxj =

∂

∂xi
u+ u

∂xj

∂xi
.

(2.38)

Let F (S) be the free group on S = 〈x1, ..., xn〉, and consider the following knot group
presentation: G(K) =

(
〈x1, ..., xn〉 | 〈r1, ..., rn〉

)
. We consider the following function to be

a group homomorphism:

φ : F (S)→ G,
s 7→ s. (2.39)

We recall that any group is a homomorphic image of some free group. Then φ : Z[F]→ Z[G]
is a ring homomorphism.
Let ψ : G→ G

′
be a group homomorphism with G

′
= ψ(G) an abelian group, i.e. ψ is the

abelianization of G. We include the following important theorem concerning the abelianized
group of a knot group:

Theorem 9. The abelianized group of every knot group is infinite cyclic, i.e. the generators
of a presentation of a knot group are all mapped into the same generator.

Based on the previous theorem, ψ(G) is an infinite cyclic group generated by one element.
We choose this element to be t and so it follows that the following function is a ring
homomorphism:

ψ : Z[G]→ Z[G
′
] = Z[t, t−1],

xi 7→ t.
(2.40)

We now define the Alexander matrix of the presentation of a knot group G(K) as follows:

Definition 46. Let G be an infinite cyclic group. Then to any knot group presentation
G(K) =

(
〈x1, ..., xn〉 | 〈r1, ..., rm〉

)
we associate a Jacobian matrix of dimension m×n called

the Alexander matrix of G(K) whose ijth entry is given by ψφ(
∂ri
∂xj

) with i ∈ {1, ...,m}, j ∈

{1, ..., n}.

72 Chapter 2. Plane Complex Algebraic Curves

Before we introduce the main elements that lead to the computation of the Alexander
polynomial of a link, we recall some fundamental concepts from algebra:

• A ring is called a greatest common divisor domain if it is an integral domain and every
finite set of elements has a greatest common divisor. Moreover a unique factorization
domain is an integral domain with identity in which every element that is neither zero
nor a unit has an essentially unique factorization into primes. The relation between
a unique factorization domain and a greatest common divisor domain is given by the
following proposition: every unique factorization domain is a greatest common divisor
domain.

• In a group ring, all group elements and their negatives are obviously units. They are
called trivial units of the group ring.

• An ideal is called a principal ideal if it is generated by a single element. In addition,
in a greatest common divisor domain with identity, the greatest common divisor of
any finite set of elements is the generator of the smallest principal ideal that contains
them.

For defining the Alexander polynomial of a link we now systematically introduce the fol-
lowing terminology and basic results from [Crowell and Fox, 1963]:

• Let R be an arbitrary commutative ring with a nonzero multiplicative identity 1.
We consider a m (row) × n (column) matrix A with entries in R that we denote by
A ∈ Mm×n(R). For any non-negative integer k ∈ Z+ we define the kth elementary
ideal Ek(A) of A as follows:

– If 0 < n − k ≤ m, then Ek(A) is the ideal generated by the determinants of all
(n− k)× (n− k) submatrices of A.

– If n− k > m, then Ek(A) = 0.

– If n− k ≥ 0, then Ek(A) = R.

Moreover, the elementary ideals of A form an ascending chain:

E0(A) ⊂ E1(A) ⊂ ... ⊂ En(A) = En+1(A) = ... = R.

• For any finite group representation of a knot group G(K) and non-negative integer
k, we define the kth elementary ideal of G(K) to be the kth elementary ideal of
the Alexander matrix of G(K) as introduced in Definition 46. The elementary ide-
als, defined for any finite group presentation, represent a generalization of the knot
polynomials. There are several differences between elementary ideals and knot poly-
nomials. In this study, we underline some of these differences. The elementary ideals
are defined for arbitrary finitely presented groups, whereas knot polynomials exist
and are unique only for a more restricted class of groups satisfying certain algebraic
conditions of the abelianized group of a knot group. In fact it can be shown that any
tame knot group satisfies these algebraic conditions. Even when the knot polynomials
exist, the elementary ideals contain more information. For instance, there exists knots
that are not distinguishable by their polynomials, but which have different elementary
ideals, for specific details see [Crowell and Fox, 1963, p. 128]. The invariance theorem
basically says that the elementary ideals are invariants of any finitely presented group
G, i.e. any two finite representations of G have the same chain of ideals.

2.3. Topology of Plane Complex Algebraic Curves 73

• We recall that the abelianized group of any knot group is infinite cyclic, i.e. the
generators of a presentation of a knot group are all mapped into the same genera-
tor. We establish the necessary algebraic properties of the group ring of an infinite
cyclic group: the group ring of an infinite cyclic group is a greatest common divi-
sor domain. For more information on the group ring of an infinite cyclic group see
[Crowell and Fox, 1963, p.113].

• The group ring of an infinite cyclic group becomes upon selection of a generator t of
the group, the ring of Laurent polynomials in t.

• For any integer k ≥ 0, the kth knot polynomial ∆k of a finite presentation G(K) =(
〈x1, ..., xn〉|〈r1, ..., rm〉

)
of a knot group is the greatest common divisor of the de-

terminants of all (n − k) × (n − k) submatrices of the Alexander matrix of G(K) as
introduced in Definition 46. In addition:

∆k =
{

0, if n− k > m
1, if n− k ≤ 0.

• The group ring of the abelianized group of any finite presentation of a knot group is a
greatest common divisor domain with only trivial units, i.e. the powers of a generator
t and their negatives. It follows that the knot polynomials exist and are unique to
within ±tn, where n is any integer and t is a generator of the infinite cyclic abelianized
group of the finite presentation of the knot group.

• Each knot polynomial ∆k is the generator of the smallest principal ideal containing
the elementary ideal Ek.

• The 0th elementary ideal and polynomial of a knot group are trivial, i.e. E0 = ∆0 = 0.

• The 1st elementary ideal of a knot group is a principal ideal generated by the 1st
knot polynomial ∆1(t). This is the most important member of the sequence of knot
polynomials, it is denoted by ∆(t) and it is called the Alexander polynomial of the
knot. In addition it is proven that the determinant of any one of the (n− 1)× (n− 1)
submatrices of A may be taken to be the Alexander polynomial ∆(t).

• The 1st elementary ideal of a knot group is an invariant for the knot and does not
depend on the presentation of the knot group.

In the following we illustrate the computation of the Alexander polynomial of the trefoil
knot by considering the presentation of the knot group of the trefoil from Figure 2.52.

• We recall that a presentation of the knot group of the trefoil knot from Figure 2.52
is given by:

G = (S | R), where

S = 〈g1, g2, g3〉,

R = 〈g2g1g−1
2 g−1

3 = 1, g3g2g−1
3 g−1

1 = 1, g1g3g−1
1 g−1

2 = 1〉.

• In this case, based on Definition 46 the Alexander matrix of the trefoil knot K is the

74 Chapter 2. Plane Complex Algebraic Curves

Jacobian defined as:

J =
{

(aij) = ψφ
(∂ri
∂gj

)
| i, j ∈ {1, 2, 3}

}
,

with φ : Z[F]→ Z[G], φ(s) = s,

and ψ : Z[G]→ Z[t, t−1], ψ(gj) = t, for j ∈ {1, 2, 3}.

• By using the properties of the derivatives from the Equations 2.38, we first compute

the terms
∂ri
∂gj

for all i, j ∈ {1, 2, 3}. We compute these terms as follows:

– we first compute the term ∂r1/∂g1 in the following way:

∂r1
∂g1

=
∂g2g1g

−1
2 g−1

3

∂g1
=
∂g2g1g

−1
2

∂g1
+ g2g1g

−1
2 · ∂g

−1
3

∂g1
=

=
∂g2g1g

−1
2

∂g1
+ g2g1g

−1
2 · (−δ31g−1

3) =
∂g2g1g

−1
2

∂g1
+ g2g1g

−1
2 · 0 =

=
∂g2g1
∂g1

+ g2g1 ·
∂g−1

2

∂g1
=
∂g2g1
∂g1

+ g2g1 · (−δ21g−1
2) =

=
∂g2g1
∂g1

+ g2g1 · 0 =
∂g2
∂g1

+ g2 ·
∂g1
∂g1

= 0 + g2 · 1 = g2.

– in the same way we obtain the next terms:

∂r1
∂g2

=
∂g2g1
∂g2

+ g2g1g
−1
2 = 1− g2g1g−1

2 ,

∂r1
∂g3

= −g2g1g−1
2 g−1

3 .

– we continue in the same manner and we compute all the terms ∂ri/∂gj for
i ∈ {2, 3} and j ∈ {1, 2, 3}.

• By using the fact that φ(s) = s, we thus obtain the Jacobian as follows:

J =



g1 g2 g3
∂r1
∂gj

ψ(g2) ψ(1− g2g1g−1
2) ψ(−g2g1g−1

2 g−1
3)

∂r2
∂gj

ψ(−g3g2g−1
3 g−1

1) ψ(g3) ψ(1− g3g2g−1
3)

∂r3
∂gj

ψ(1− g1g3g−1
1) ψ(−g1g3g−1

1 g−1
2) ψ(g1)


• By using the information that ψ(gj) = t for all j ∈ {1, 2, 3} we obtain the following

expression for the Jacobian:

J =

 t 1− ttt−1 −ttt−1t−1

−ttt−1t−1 t 1− ttt−1

1− ttt−1 −ttt−1t−1 t

 ,

2.3. Topology of Plane Complex Algebraic Curves 75

and thus we obtain:

J =

 t 1− t −1
−1 t 1− t

1− t −1 t

 .

• The 2× 2 minors of the Jacobian J generate the elementary ideal 〈t2 − t+ 1〉, which
is a principal ideal and which is generated by the Alexander polynomial of the trefoil
knot ∆(t) = t2 − t+ 1.

Another classical problem in knot theory is the classification of knots and links. At present
there exist knot tables constructed by using Dowker notation, a notion that we will not
discuss in our study. However the Dowker notation for knots and links does not allow the
classification of all knots and links. For information on the Dowker notation, the reader
can consult [Adams, 2004]. Another way in which knots can be classified is by using the
notion of a braid, which we will not discuss in details in this thesis, but which can be
studied also from [Adams, 2004]. We mention that the braids were originally studied by J.
W. Alexander. Some basic results of Alexander concerning braids show that every knot can
be converted into a braid, that braids can be classified and that braids can be manipulated
by a sequence of arithmetical rules. Still, these results are not enough to allow a complete
classification of knots and links.

Summary of knot theory. As a summary we recall the basic facts from knot theory
introduced so far, which are in particular useful for our study:

• A knot is a piecewise linear or a differentiable simple closed curve in the 3-dimensional
space R3.

• A link is a finite union of disjoint knots. The individual knots which make up a link
are called the components of the link. A knot will be considered a link with one
component.

• A link is called algebraic if it arises as the intersection of an algebraic curve with a
sufficiently small sphere.

• In our study we approximate a differentiable algebraic link by a piecewise linear
algebraic link.

• Two links are equivalent if there exists an orientation preserving homeomorphism on
R3 that maps one link onto the other. This equivalence is called (ambient) isotopy.

• When we work with links we actually work with a special type of their projection
in R2 called a diagram, which contains information on each of its crossing by telling
which branch goes under and which goes over. Therefore we distinguish between
overcrossings and undercrossings.

• A diagram with an arbitrary orientation on it is called an oriented diagram. The
elements of an oriented diagram are its crossings and its arcs.

• A crossing of an oriented diagram can either be righthanded or lefthanded. In par-
ticular, a crossing is lefthanded if the underpass traffic goes from left to right or it is
righthanded if the underpass traffic goes from right to left. An arc is the part of a
diagram between two undercrossings. A crossing is always determined by three arcs.
The number of crossings always equals the number of arcs in an (oriented) diagram.

76 Chapter 2. Plane Complex Algebraic Curves

• A link invariant is a function from link diagrams to some discrete set (Z or Z[t]),
which is unchanged under the Reidemeister moves of type I, II or III.

• Examples of link invariants are: the unknotting number, the crossing number, the
colorability, the Alexander polynomial, the Jones polynomial, etc. However at present
there is no complete invariant for links, i.e. there exists no invariant that distinguishes
among all the links.

• An essential link invariant for our study is the Alexander polynomial, which can be
computed in several ways. In this section, following [Crowell and Fox, 1963], we pre-
sented the computation of the Alexander polynomial by using Fox’s method, which
in fact uses the fundamental group of the complement of the knot in R3. In Sub-
section 2.4.3 we will fully describe the computation of the Alexander polynomial by
using Alexander’s method, a method that basically uses the diagram of the knot and
the Reidemeister moves.

Local Topology of Plane Complex Algebraic Curves

The study of the local topology of isolated singularities of plane complex algebraic curves
has been studied by many authors and it is closely related to knot theory. As mentioned in
[Neumann, 2003], [Brauner, 1928], [Brieskorn and Knorrer, 1986] and in the detailed paper
of [Eisenbud and Neumann, 1985], the local topology of a plane complex algebraic curve
around its singular point can be described as follows: we consider a plane complex algebraic
curve C with a singularity in the origin (0, 0) and we take a disk D of small enough radius
centered in the origin (0, 0). We denote with S the 3-dimensional sphere centered in the
origin, i.e. S represents the boundary of the small disk D. This small disk will intersect the
curve C in a set that is homeomorphic to the cone over C ∩ S. In addition, the set C ∩ S
is a link in the 3-dimensional sphere S and it determines completely the local topology of
C at its singularity (0, 0). In the literature, the links that arise as intersections of a plane
complex algebraic curve with a small sphere are called links of plane curve singularities.
It follows that to understand the topology of a plane complex algebraic curve around its
singularity Q it suffices to understand the link of the singularity Q. To understand the
local topology of a plane complex algebraic curve near its singular point, we also need
to study the fundamental group of the complement of the link of the singularity in the 3-
dimensional sphere. Consequently, we are interested in studying invariants, which determine
completely the topology of plane curve singularities. We describe this issue in details in
Subsection 2.4.3.
To make the description for the link of a plane curve singularity more formal, we next
consider the 3-dimensional sphere of radius ε centered in the origin (0, 0) denoted

Sε = {(z, w) ∈ C2 | |z|2 + |w|2 = ε2} ⊂ C2,

and a plane complex algebraic curve

C = {(z, w) ∈ C2 | f(z, w) = 0} ⊂ C2

defined by the squarefree polynomial f(z, w) ∈ C[z, w] with an isolated singularity in the
origin (0, 0) ∈ C2. Since C2 is isomorphic to R4, we replace the complex variables z =
a+ ib and w = c+ id in the defining equations of the sphere Sε and of the curve C and we
obtain:

Sε = {(a, b, c, d) ∈ R4 | a2 + b2 + c2 + d2 = ε2} ⊂ R4,

and respectively
C = {(a, b, c, d) ∈ R4 | p(a, b, c, d) = 0}.

2.3. Topology of Plane Complex Algebraic Curves 77

For small enough radius ε, the intersection Xε = C ∩ Sε is a knot or a link in the 3-
dimensional sphere Sε ⊂ R4 and it determines completely the local topology of C near its
singularity (0, 0). We identify this 3-dimensional sphere Sε topologically with R3 by using
the stereographic projection. For the time being, we will not give a formal definition of
the stereographic projection. For more information on the stereographic projection see
Subsection 2.4.1. At this point, we only mention that the stereographic projection of the
sphere from its north point N(0, ε) maps each point (z, w) of the sphere different from
(0, ε) to the point of intersection of the line joining (z, w) and (0, ε) with the 3-dimensional
real space {(a, b, c, d) ∈ R4 | d = 0}. The point N(0, ε) is mapped to ∞. In the literature,
the stereographic projection is used to project the link Xε from the 3-dimensional sphere
Sε ⊂ R4 to R3. In particular we consider the stereographic projection π defined by the
following mapping:

π : Sε \ {N} ⊂ R4 → R3

(a, b, c, d) 7→


(
x =

a

ε− d
, y =

b

ε− d
, z =

c

ε− d

)
, if d 6= ε

∞, if d = ε,

(2.41)

with inverse π−1 given by:

π−1 : R3 → Sε \ {N} ⊂ R4


(x, y, z) 7→

(
a = 2xε

κ , b = 2yε
κ , c = 2zε

κ , d = (x2+y2+z2−1)ε
κ

)
∞ 7→ (0, ε),

(2.42)

where κ = 1 + x2 + y2 + z2. As mentioned earlier, the stereographic projection π allows us
to project the link Xε = C ∩Sε from Sε ⊂ R4 to R3 by preserving its topological properties.
Thus we compute the image π(Xε) of Xε through stereographic projection as follows:

π(Xε) =
{

(x, y, z) ∈ R3 | ∃ (a, b, c, d) ∈ C ∩ Sε : π(a, b, c, d) = (x, y, z)
}

=

=
{

(x, y, z) ∈ R3 | ∃ π−1(x, y, z) ∈ C ∩ Sε

}
.

(2.43)

Since the stereographic projection preserves all the topological properties of Xε, it follows
that π(Xε) coincide with the link of the singularity for small values of the radius ε. In the
following paragraph we include an example, in which we present the computation of the
link of a singularity of a plane complex algebraic curve using the stereographic projection.

Example 16. We consider the following plane complex algebraic curve:

C = {(z, w) ∈ C2 | z3 − w2 = 0},

defined by the squarefree polynomial f(z, w) = z3 − w2 ∈ C[z, w] with a singularity in the
origin (0, 0) ∈ C2. In addition, we consider the sphere of radius ε centered in the singularity
(0, 0) denoted with:

Sε =
{
(z, w) ∈ C2 | |z|2 + |w|2 = ε2

}
.

Without loss of generality in this case we assume ε = 1 and thus we obtain:

S1 =
{
(z, w) ∈ C2 | |z|2 + |w|2 = 1

}
.

To compute the link of the singularity (0, 0) of the curve C we proceed in the following way:

78 Chapter 2. Plane Complex Algebraic Curves

• We replace the complex variables z = a+ ib and w = c+ id in the defining equations
of the curve C and of the sphere Sε identifying in this way C2 with R4. We obtain:

C = {(a, b, c, d) ∈ R4 | (a+ ib)3 − (c+ id)2 = 0} and
S1 =

{
(a, b, c, d) ∈ R4 | a2 + b2 + c2 + d2 = 1

}
. (2.44)

• We next intersect the curve C with the sphere S1 and we obtain a 1-dimensional set
X1 in R4 :

X1 = C ∩ S1 = {(a, b, c, d) ∈ R4 | (a+ ib)3 − (c+ id)2 = 0 and
a2 + b2 + c2 + d2 = 1}. (2.45)

For ε = 1, the intersection X1 = C ∩ S1 is a link, i.e. a disjoint union of embedded
circles, called the link of the singularity (0, 0) of the plane complex algebraic curve C.

• We project the setX1 from R4 to R3 by using the stereographic projection π defined by
the Equations (2.41) for ε = 1. We basically need to compute the image of X1 through
the stereographic projection π by using the inverse π−1 defined by the Equations 2.42
for ε = 1. We notice that by using the inverse π−1 of the stereographic projection
π, the coordinates (a, b, c, d) of the 4-dimensional space are expressed in terms of the
coordinates (x, y, z) of the 3-dimensional space, i.e.

(
a = 2x

κ , b = 2y
κ , c = 2z

κ , d =
x2+y2+z2−1

κ

)
, where κ = 1 + x2 + y2 + z2. We next replace these formulas for the

variables (a, b, c, d) in terms of (x, y, z) in the defining equation of the curve C to
compute the image π(X) ofX through the stereographic projection π.We thus obtain:

π(X1) =

{
(x, y, z) ∈ R3 |

(
2x
κ

+
2y
κ
i

)3

−

−

(
2z
κ

+
x2 + y2 + z2 − 1

κ
i

)2

= 0

}
,

(2.46)

where κ = 1 + x2 + y2 + z2. For simplicity reasons, we denote the defining polyno-
mial of π(X1) from Equation (2.46) with q(x, y, z) ∈ C[x, y, z]. Next we eliminate
the denominators in the defining equation q(x, y, z) = 0 of π(X1). Since the defin-
ing polynomial q(x, y, z) ∈ C[x, y, z] of π(X1) is a complex polynomial, it follows
that we obtain in fact two defining equations for π(X1) denoted with q1(x, y, z) =
0, q2(x, y, z) = 0, where q1(x, y, z), q2(x, y, z) ∈ R[x, y, z], given by the real and the
imaginary part of q(x, y, z), where by a straightforward computation we obtain the
following expressions for q1, q2 :

q1(x, y, z) := 1− 2x2 + x4 + 2y − 2x2y − 2y2 + +2x2y2 − 2y3 + y4 + 4xz−
−6z2 + 2x2z2 − 2yz2 + 2y2z2 + z4 = 0 and

q2(x, y, z) := 1− 2x2 + x4 + 2y − 2x2y − 2y2 + 2x2y2 − 2y3 + y4 + 4xz−
−6z2 + 2x2z2 − 2yz2 + 2y2z2 + z4 = 0.

We thus obtain:

π(X1) =

{
(x, y, z) ∈ R3 | q1(x, y, z) = 0, q2(x, y, z) = 0

}
⊂ R3. (2.47)

We obtain that π(X1) is a space algebraic curve in R3 given as the intersection of
two algebraic surfaces S1 and S2 in R3 with their defining polynomials q1(x, y, z) ∈

2.3. Topology of Plane Complex Algebraic Curves 79

R[x, y, z] and respectively q2(x, y, z) ∈ R[x, y, z]. We use an algebraic geometric mod-
eler as Axel [Wintz et al., 2006] to display the space algebraic curve π(X1). More
information on Axel and on the methods used to display the space algebraic curve
π(X1) are discussed in Chapter 3 and in Chapter 5. In Figure 2.54 we visualize the
space algebraic curve π(X1).

Figure 2.54: Link of the singularity (0, 0) of the plane complex algebraic curve C given by
z3 −w2 = 0. From left to right: (1) the link L of the singularity (0, 0) of C, represented by
the trefoil knot; (2) the two algebraic surfaces that define as their intersection the link L.
Pictures produced with Axel, see Chapter 5 for more information.

We observe that π(X1) is a closed curve in R3 that does not intersect itself, i.e. π(X1)
is a smooth space algebraic curve in R3, which represents the link of the singularity
(0, 0) of the curve C. In addition, we notice that the link L := π(X1) of the singularity
(0, 0) of C is the trefoil knot. Only two points on this trefoil knot can be seen in the
real picture from Figure 2.55, points that are represented by the intersection of the
plane real algebraic curve defined by z3 − w2 = 0 with the unit circle z2 + w2 = 1.
In Subsection 2.4.2 we include a precise formal description for links of plane curve
singularities.

Figure 2.55: Real points of the curve z3−w2, which are represented by the two intersection
points of the plane real algebraic curve defined by z3 −w2 = 0 with a small sphere around
the origin represented by the unit circle z2 + w2 = 1. Pictures produced with Axel, see
Chapter 5 for more information.

80 Chapter 2. Plane Complex Algebraic Curves

2.4 Invariants of Plane Complex Algebraic Curves

2.4.1 Preliminaries

In this subsection, we introduce and we define the topological invariants of plane complex
algebraic curves, which are the main topic of research in this thesis. We recall that two
subsets U ⊂ Rk, V ⊂ Rn are topologically equivalent or homeomorphic if there exists a
bijective function ϕ : U → V such that both ϕ and its inverse are continuous. In this case,
ϕ is called an homeomorphism. We now introduce the concept of homeomorphism of pairs
in the following way:

Definition 47. A pair (X,A) of spaces is a topological space together with a subspace
A ⊆ X. A mapping ϕ : (X,A)→ (Y,B) of pairs is a continuous mapping ϕ : X → Y with
ϕ(A) ⊆ B. A homeomorphism ϕ : (X,A)→ (Y,B) of pairs is a mapping of pairs, which is
a homeomorphism ϕ : X → Y and which induces a homeomorphism ϕ/A : A→ B.

In this thesis, the topological invariants of a plane complex algebraic curve C are those
topological properties of C and its singularities that are unchanged under homeomorphism
of small disks around 0 mapping the first curve onto the second curve.
An important notion for our study is the stereographic projection. Firstly, we consider the
stereographic projection from R3 to R2 as a mapping that projects a sphere onto a plane.
It is constructed as in Figure 2.56: we take a sphere; we draw a line from the north pole N
of the sphere to a point P̂ in the equator plane to intersect the sphere at a point P. We say
that the stereographic projection of P̂ is P. Since the stereographic projection is a bijective
map, it follows that this map works in both ways. So we can think of projecting points
from the sphere down to the plane using the same type of intersecting line. Each point
from the sphere has a correspondence point in the plane, except for the north pole of the
sphere. Since points close to the north pole of the sphere map into the plane far from the
sphere, the north pole is said to represent the plane’s “point at infinity”. We remark that
the stereographic projection gives an explicit homeomorphism from the unit sphere minus
the north pole to the Euclidean plane.
More generally, the stereographic projection may be applied to a n-sphere Sn in Rn+1 in
the following way: we consider a n-sphere in Rn+1 of radius 1 denoted with

Sn = {(x1, x2, ..., xn+1) ⊂ Rn+1 | x2
1 + x2

2 + ...+ x2
n+1 = 1},

and we consider the north point of the n-sphere to be N(0, ..., 1) ∈ Sn. If H is a hyperplane
in Rn+1 not containing N, then the stereographic projection of the point P ∈ Sn \ N is
the point P̂ of the intersection of the line NP with H. The stereographic projection is an
homeomorphism from Sn \N ⊂ Rn+1 to Rn.

We remember that a plane complex algebraic curve C ⊂ C2 is in fact a 2-dimensional object
in R4, since we know that C2 is isomorphic with R4. For our study, we use the stereographic
projection from R4 to R3 to project objects from R4 to R3 by preserving their topological
properties. In other words, the stereographic projection preserves the invariants of a plane
complex algebraic curve. In this thesis, we study the following invariants of a plane complex
algebraic curve and its singularities:

• the link of each singularity Q of the plane complex algebraic curve C;

• the Alexander polynomial of the link of each singularity Q of C, which we also call
simply the Alexander polynomial of the singularity Q;

• the delta-invariant of each singularity Q of C;

2.4. Invariants of Plane Complex Algebraic Curves 81

x, ξ

y, η

z, ζ

N

P̂

S

P
β

φ

a

Figure 2.56: Stereographic projection from R3 to R2. Picture generated with PGF/TikZ
by T. M. Trzeciak.

• the Milnor number of each singularity Q of C;

• the genus of C;

• the Euler characteristic of the Riemann surfaces attached to C.

In the following subsections we define each of these invariants and we explain the main
reasons for studying them.

2.4.2 Link of a Singularity

In this subsection, we define the link of a singularity of a plane complex algebraic curve and
we formally explain how we can use the link of a singularity to study the local topology of
plane complex algebraic curves. We add that some general remarks on the local topology of
plane complex algebraic curves was made in Subsection 2.3.3. However, in this subsection
we include a more formal study for the local topology of plane complex algebraic curves. We
recall that in this thesis we consider C2 isomorphic to R4, which we denote with C2 ' R4.
Therefore, we consider a plane complex algebraic curve C ⊂ C2 as a real 2-dimensional
object in R4. One of the main purposes of this thesis is to study and to understand the
topology of 2-dimensional objects near their singularities, topology that can be determined
by introducing the notion of a link of a singularity.
We introduce the notion of topological equivalence between two isolated singularities of two
plane complex algebraic curves following [Tráng, 1973]. We consider that both singularities
are centered in the origin (0, 0).

Definition 48. Let C = {(z, w) ∈ C2 | f(z, w) = 0} be a plane complex algebraic curve
defined by f(z, w) ∈ C[z, w], with an isolated singularity in the origin (0, 0) ∈ C2. Let
D = {(z, w) ∈ C2 | g(z, w) = 0} be another plane complex algebraic curve defined by
g(z, w) ∈ C[z, w], with an isolated singularity in the origin (0, 0) ∈ C2. We say that the
isolated singularities (0, 0) of C and D are topologically equivalent

(
or that C and D have

82 Chapter 2. Plane Complex Algebraic Curves

the same topological type at (0, 0)
)

if there exist two neighborhoods U, V ⊂ C2 of (0, 0)
and a homeomorphism ϕ : U → V such that ϕ(C ∩ U) = D ∩ V and ϕ

(
(0, 0)

)
= (0, 0).

For our study we use the following essential theorem:

Theorem 10. ([Milnor, 1968]) Let V ⊂ Cn+1 be a hypersurface in Cn+1, i.e. an algebraic
variety defined by a single polynomial f. Assume ~0 ∈ V and ~0 is an isolated singularity, i.e.
there is no other singularity on a sufficiently small neighborhood of (0, 0); Sε is the sphere
centered in the origin ~0 and of radius ε; and Dε is the disk centered in ~0 of radius ε. Then,
for sufficiently small ε, Xε = Sε ∩V is a (2n− 1)-dimensional nonsingular set and the pair
(Dε, Dε ∩ V) is homeomorphic to the pair consisting of the cone over Sε and the cone over
Xε = Sε ∩ V.

We now discuss the meaning of Milnor’s theorem1. In the curve case of Theorem 10, we
have that n = 1 and that all the singularities are isolated. Moreover, we alternatively
use the following notation for denoting the plane complex algebraic curve: V =

{
(z, w) ∈

C2 | f(z, w) = 0
}

:= f−1(0).
In addition, in the case n = 1, Milnor’s theorem says that there exists ε0 ∈ R>0 such that
for any ε1, ε2 ∈ R>0 with ε1 < ε0 and ε2 < ε0, the images of Xε1 = Sε1 ∩ V ⊂ Sε1 and
Xε2 = Sε2 ∩ V ⊂ Sε2 through stereographic projection are links and they are equivalent,
i.e. Dε1 ∩ C and Dε2 ∩ C are homeomorphic. In addition, for any 0 < ε < ε0 the image of
Xε through stereographic projection is called the link L of the singularity of f (or of C) at
(0, 0) and it is well-defined up to homeomorphism of pairs. In this case, the link L defined
as the image of Xε ⊂ Sε through stereographic projection determines the topological type
of the singularity (0, 0) of C. In the literature, a link is called algebraic if it is equivalent
to the link of a plane curve singularity. Under these assumptions, we actually notice that
Theorem 10 asserts that the equivalence class of the link of a singularity determines the
homeomorphism type of the singularity itself.
Under the same hypotheses from Theorem 10 and considering S1 the unit circle, Milnor
fibration theorem states that the mapping φ : Sε \ L→ S1, φ(z, w) = f(z, w)/|f(z, w)| is a
fibration, i.e. the complement Sε \L is a union of smooth surfaces, each being the preimage
of one point.
Based on the previous observations, we notice that we can compute the link of a singularity
Q of a plane complex algebraic curve C in the following main steps:

1. we translate the singularity Q of the curve C in the origin O by an affine change of
coordinates;

2. we consider the curve C with an isolated singularity in the origin O, which is a 2-
dimensional set in the 4-dimensional space R4, i.e. C is a surface in R4. We take the
sphere centered in the origin and of a small radius ε;

3. we intersect the curve C with this sphere obtaining a 1-dimensional set Xε in the 4-
dimensional space, i.e. Xε is a curve in R4. Based on Theorem 10 this 1-dimensional
set is the link of the singularity O for sufficiently small values of the radius ε, i.e. the 1-
dimensional set is an algebraic link for sufficiently small values of the radius ε. Next,

1We wish to emphasize that J. Milnor, the author of Theorem 10 and the founder of other important
results used in this thesis, was awarded the Abel Prize in 2011 by the Norwegian Academy of Science
and Letters “for pioneering discoveries in topology, geometry and algebra.” The author would wish to
congratulate J. Milnor on this special occasion and to express her gratitude and her admiration towards
the innovative work and results conducted by J. Milnor. It is the inspiring work of such great minds that
leads the young and brilliant students to aim for obtaining a PhD in mathematics or even to devote their
talent towards a career in research!

2.4. Invariants of Plane Complex Algebraic Curves 83

we follow Brauner and Heergaard technique [Brauner, 1928] to move the algebraic
link from the 4-dimensional space to the 3-dimensional space using the stereographic
projection. As discussed earlier, the stereographic projection allows us not only to
project the algebraic link from R4 into R3, but it actually preserves all the topological
properties of the algebraic link from the the 4-dimensional Euclidean space into the
3-dimensional Euclidean space.

We notice that the last step from the previous computation depends on the input parameter
ε, which represents the radius of the sphere that we intersect with the given plane complex
algebraic curve. More exactly, from Milnor’s theorem we know that the intersection of a
plane complex algebraic curve C with a singularity in the origin with a small sphere Sε

centered in the origin and of radius ε is the link of the singularity for sufficiently small
values of the parameter ε. However, we notice that Milnor’s theorem does not provide a
constructive method for determining a general formula for the parameter ε for which the
intersection C ∩ Sε is the link of the singularity. This is the key point for introducing
the notion of ε-link of a singularity of a plane complex algebraic link in Section 2.5. We
sometimes refer to the ε-link of a plane curve singularity as simply the approximate link of
the plane curve singularity.
We recall that in Subsection 2.3.3 we have informally introduced the notion of an algebraic
link. Thus we say that a link is algebraic if it arises as the intersection of an algebraic curve
with a sufficiently small sphere. We notice that this process coincides with the computation
of the link of a singularity, as described in this subsection. We remember that two links are
equivalent if there exists an orientation preserving homeomorphism on R3 that maps one
link onto the other. Moreover, this equivalence is called (ambient) isotopy. We can now
introduce the formal definition of an algebraic link:

Definition 49. A link is called algebraic if it is equivalent to the link of a plane curve
singularity.

Some examples of algebraic links are the trefoil knot, the Hopf link, and all the torus knots.
The Borromean rings are not an algebraic link, i.e they do not arise from the intersection
of a plane complex algebraic curve with a sufficiently small sphere. For more informa-
tion on these types of knots and links, the reader can check Subsection 2.3.3. Following
[Brieskorn and Knorrer, 1986], we recall the description of a torus knot as the intersec-
tion of a plane complex algebraic curve with a 3-dimensional sphere. We consider the
plane complex algebraic curve C = {(z, w) ∈ C2 | zp + wq = 0} with an isolated singu-
larity in the origin (0, 0) and with p, q being coprime positive integers. In addition, we
take the 3-dimensional sphere of radius 1 and centered in the origin (0, 0) denoted with
S1 = {(z, w) ∈ C2 | |z|2 + |w|2 = 1} ⊂ C2. Then the intersection C ∩ S1 is an (p, q)-torus
knot, i.e. a knot that lies on the surface of a torus, with p and q counting the number of
times that the knot winds around the two cycles of the torus.
We notice that the construction of the link of a singularity relates singularity theory to
knot theory. In the following subsections we derive a polynomial invariant for algebraic
links, which completely distinguishes among all the algebraic links. From this polynomial
invariant we derive formulas for other topological invariants of a plane complex algebraic
curve.

2.4.3 Alexander Polynomial of a Singularity

In this subsection we introduce the Alexander polynomial of a singularity of a plane complex
algebraic curve and we mention the importance of computing the Alexander polynomial.
On one side, in Subsection 2.3.3 we introduced basic notions from knot theory and we

84 Chapter 2. Plane Complex Algebraic Curves

saw that at present there exist several link invariants in knot theory for distinguishing
links among one another, such as the tricolorability, the unknotting number, the Alexander
polynomial, the Jones polynomial, etc. In addition, we discussed in more details one of these
invariants, i.e. the Alexander polynomial of a link. Moreover, we presented a method for
the computation of the Alexander polynomial of a knot based on the fundamental group of
the complement of the knot in R3. However, we saw that there exists no complete invariant
for links, i.e. there exists no invariant that distinguishes among all the links.
On the other side, in Subsection 2.4.2 we introduced the notion of a link of a singularity,
we presented a method for computing the link of a singularity and we explained how the
link of the singularity can be used to study the local topology of the singularity of a plane
complex algebraic curve. Furthermore based on the existence of links of singularities, we
introduced a special class of links called the algebraic links. In particular, we said that a
link is algebraic if it is equivalent to the link of a plane curve singularity.
Since the link of the singularity of a plane complex algebraic curve offers essential informa-
tion on the local topology of the curve itself as explained in Subsection 2.4.2, in this thesis,
for our purpose, we are thus interested in studying invariants of links of singularities, i.e. we
are motivated to study invariants of algebraic links. An important result in this direction
of research was proved by Yamamoto in 1984, see [Yamamoto, 1984]. Yamamoto showed
that the Alexander polynomial is a complete invariant for the algebraic links, that is the
Alexander polynomial uniquely identifies all the algebraic links up to an (ambient) isotopy.
This result has an important consequence for our study, which we explain in the following
paragraph:

• We consider two singularities of two plane complex algebraic curves denoted with Q1

and Q2.

• We assume that we can compute the links of the two singularities Q1 and Q2 de-
noted with L(Q1) and respectively with L(Q2) using the method described in Sub-
section 2.4.2.

• We can use Yamamoto’s result as follows: if the Alexander polynomials of L(Q1), and
of L(Q2) are equal, then Q1 and Q2 have the same topology, else they have different
topology.

In this way, we can use the Alexander polynomial of the link of a singularity to distinguish
the topological type of the singularity itself. Therefore we require a computational method
for determining the Alexander polynomial of the link of a singularity. In this subsection, we
present a straightforward algorithm to compute the Alexander polynomial attached to the
link of a singularity by using combinatorial objects from knot theory such as the oriented
diagram of the link, i.e. its arcs and its crossings, and the Reidemeister moves. This method
is in fact the Alexander’s method used for computing the Alexander polynomial of a link, as
shortly mentioned in Subsection 2.3.3. In this thesis, we use the following terminology: if Q
is the singularity of a plane complex algebraic curve and L(Q) is the link of the singularity
Q, then we sometimes call the Alexander polynomial of the link L(Q) of the singularity Q
simply the Alexander polynomial of the singularity Q or the Alexander polynomial of the
algebraic link L(Q).
First of all, we recall several notions from knot theory as discussed in Subsection 2.3.3.
These notions are essential for the computation of the Alexander polynomial of a link. In
our study, we are interested in the following type of combinatorial information of an oriented
diagram of a link:

• the type of each crossing in the oriented diagram. We recall that we distinguish
between two types of crossings in an oriented diagram, i.e. lefthanded or righthanded

2.4. Invariants of Plane Complex Algebraic Curves 85

crossing. In particular, a crossing is lefthanded if the underpass traffic goes from left
to right or it is righthanded if the underpass traffic goes from right to left. We denote
a lefthanded crossing with −1 and a righthanded crossing with +1 as indicated by the
dotted round arrow in Figure 2.57. Moreover, for the computation of the Alexander
polynomial of the link of a singularity we introduce the following essential terminology:
whether lefthanded or righthanded, each crossing of a link diagram is determined by
three arcs and we denote the overgoing arc with the label i, and the undergoing arcs
with the labels j and k as seen in Figure 2.57.

• the arc of the oriented diagram, which is defined as the part of a diagram between two
undercrossings, see Figure 2.58. Furthermore, we remember that the number of arcs
in a diagram equals the number of crossings in the same diagram, see Figure 2.58.

j
������

k GG������

i
WW/////////////

−1

���
z _ D

2

j//////

k
WW//////

i GG�������������

+1

�� 2
D_z

�

Figure 2.57: Types of crossings: lefthanded crossing (-1) and righthanded crossing (+1),
together with the labels for the 3 arcs of a crossing.

2

1 3

c1

c2

c3

c1j=1
��������

k=3

??��������

i=2
__?????????????????

Figure 2.58: Oriented diagram of the trefoil knot with 3 arcs denoted with {1, 2, 3} and
3 crossings denoted with {c1, c2, c3}. Example of arcs labeling for the crossing denoted c1,
which is lefthanded.

For introducing the Alexander polynomial of a link, we introduce some preliminary defini-
tions based mainly on the book of [Livingston, 1993]. Firstly, we introduce the notion of a
labelling matrix for the oriented link diagram D(L) of a link L :

Definition 50. Let D(L) be an oriented link diagram of the link L with r components
and n crossings cq : q ∈ {1, ..., n}. We denote the arcs of D(L) with the labels {1, ..., n} and
separately the crossings of D(L) with {1, ..., n}. We denote the labelling matrix of D(L)
with LM(L) ∈ M(n, 4,Z). We define LM(L) = (bql)q,l with q ∈ {1, ..., n}, l ∈ {1, ..., 4}
row by row for each crossing cq as follows:

• at bq1 store the type of the crossing cq, i.e. +1 or − 1;

86 Chapter 2. Plane Complex Algebraic Curves

• at bq2 store the label of the arc i of cq in D(L);

• at bq3 store the label of the arc j of cq in D(L);

• at bq4 store the label of the arc k of cq in D(L), see Figure 2.58 for an example.

Secondly, we define the prealexander matrix for the oriented diagram D(L) of the link L in
the following way:

Definition 51. Let D(L) be an oriented link diagram of the link L with r components
and n crossings cq : q ∈ {1, ..., n}. We denote the arcs and the crossings of D(L) as in
Definition 50. We consider LM(L) the labelling matrix of D(L) as in Definition 50. We
denote the prealexander matrix of L with PM(L) ∈ M(n, n,Z[t1, t2, ..., tr]). If D(L) has
no crossings, then PM(L) ∈ M(0, 0, ∅), otherwise we define PM(L) row by row for each
crossing cq depending on LM(L). For each crossing cq we consider the variable ts, where
s ∈ {1, ..., r} is the s-th knot component of D(L), which contains the overgoing arc that
determines the crossing cq. Then:

• if cq is righthanded, i.e. bq1 = +1 in LM(L), then at position bq2 of PM(L) store the
label 1− ts, at position bq3 store −1 and at position bq4 store ts;

• if cq is lefthanded, i.e. bq1 = −1 in LM(L), then at position bq2 of PM(L) store the
label 1− ts, at position bq3 store ts and at position bq4 store −1;

• if two or all of the positions bq2, bq3, bq4 have the same value, then store the sum of the
corresponding labels at the corresponding position. All other entries of the matrix
are 0.

Before we define the Alexander polynomial attached to a link, we recall some essential
notions from algebra:

• We say that a minor Mij is the reduced determinant of a determinant expansion that
is formed by omitting the ith row and the jth column of a matrix A. We recall that
the determinant expansion is a method for computing the determinant of a given
square matrix A. If we denote by |A| the determinant of a square matrix A, then the

determinant expansion of the matrix is given by |A| =
k∑

i=1

(−1)i+jaijMij , where Mij

is the minor of A obtained by taking the determinant of A for which the row i and
the column j were eliminated. We add that determinant expansions are efficient for
matrices of small sizes, whereas for matrices of larger sizes the Gaussian elimination
method is more efficient.

• In addition, a normalized polynomial is a polynomial in which the term of the lowest
degree is a positive constant.

We now define the Alexander polynomial of the oriented diagram D(L) of the link L de-
pending on the number of knot components in L :

Definition 52. Let D(L) be an oriented link diagram of the link L with r components
and n crossings, let LM(L) be its labelling matrix as in Definition 50 and let PM(L) be
its prealexander matrix as in Definition 51. Then:

1. The univariate Alexander polynomial [Livingston, 1993] denoted with

∆(t1) ∈ Z[t±1
1]

2.4. Invariants of Plane Complex Algebraic Curves 87

is the normalized polynomial computed as the determinant of any (n − 1) × (n − 1)
minor of the prealexander matrix of D(L).

2. The multivariate Alexander polynomial [Cimasoni, 2004] denoted with

∆(t1, ..., tr) ∈ Z[t±1
1 , ..., t±1

r]

is the normalized polynomial computed as the greatest common divisor of all the
(n− 1)× (n− 1) minor determinants of the prealexander matrix of D(L).

If PM(L) ∈M(0, 0, ∅), then we define ∆(t1) = 1 and ∆(t1, ..., tr) = 0.

In Definition 52, the univariate polynomial computed as the determinant of any (n− 1)×
(n − 1) minor of the prealexander matrix of D(L) depends on the choice of the original
oriented diagram D(L) of a knot and its labellings. Alexander’s result [Alexander, 1928]
is that although the choice of the original oriented diagram of a knot and its labellings
may produce different polynomials, any of them will differ by a multiple of ±tk1 , for some
integer k. Thus, if we normalize the polynomial to have a positive constant term, the
resulting Alexander polynomial will be a knot invariant. A similar argument follows from
[Cimasoni, 2004] for the multivariate Alexander polynomial attached to a link with at least
2 knot components. Therefore we introduce the univariate and the multivariate Alexander
polynomial as a normalized polynomial in Definition 52.
We observe that the Definition 50, the Definition 51 and the Definition 52 are derived
from Fox’s method for the computation of the Alexander polynomial of a link based on the
fundamental group of the complement of the link in R3, as described in Subsection 2.3.3.
From Definition 50, Definition 51 and Definition 52, we thus distinguish three steps for
the computation of the Alexander polynomial ∆ of an oriented link diagram D(L) of an
arbitrary link L, which are sketched in the following diagram:

D(L)
(1) // Labelling matrix(L)

(2)// Prealexander matrix(L)
(3) // ∆ ,

and that means:

1. in the first step denoted (1), we compute the labelling matrix LM(L) of the arbitrary
link L from the oriented diagram D(L) of the link;

2. in the second step denoted (2), we compute the prealexander matrix PM(L) of the
link L from the labelling matrix LM(L);

3. in the third and last step denoted (3), we compute the Alexander polynomial ∆ of
the link L from the prealexander matrix PM(L).

In the following paragraphs, we include several examples for the computation of the Alexan-
der polynomial of an arbitrary link of a singularity to familiarize the reader with these types
of computations.

Example 17. In this example we compute the Alexander polynomial of the oriented dia-
gram of the trefoil knot L from Figure 2.58. We add that the trefoil knot is an algebraic
knot. We first give the diagram an arbitrary orientation, we denote the crossings of the
diagram with the labels {c1, c2, c3} and separately the arcs of the diagram with the labels
{1, 2, 3} as indicated in Figure 2.58. We then compute the labelling matrix of LM(L) with
Definition 50 and we obtain:

LM(L) =


type labeli labelj labelk

c1 −1 2 1 3
c2 −1 1 3 2
c3 −1 3 2 1

 .

88 Chapter 2. Plane Complex Algebraic Curves

From LM(L) we compute the prealexander matrix of D(L) with Definition 51. We notice
that L has only one knot component so s = 1 in Definition 51. We obtain the following
expression for the prealexander matrix PM(L) :

PM(L) =



labeli labelj labelk
c1 2 1 3
−1 1− t1 t1 −1
c2 1 3 2
−1 1− t1 t1 −1
c3 3 2 1
−1 1− t1 t1 −1


=


1 2 3

c1 t1 1− t1 −1
c2 1− t1 −1 t1
c3 −1 t1 1− t1

 .

From PM(L) we compute the univariate Alexander polynomial with Definition 52 and we
obtain:

det
(
Minor33

(
PM(L)

))
= det

(
t1 1− t1

1− t1 −1

)
= −t21 + t1 − 1,

∆(t1) = Normalize(−t21 + t1 − 1) = t21 − t1 + 1,

where we denote with Minor33 the minor of PM(L) obtained by taking the determinant of
PM(L) for which the 3th row and respectively the 3th column of PM(L) were eliminated.

Example 18. In this example we compute the Alexander polynomial of the cinquefoil
link L, which is a link with one knot component. We consider the cinquefoil link from
Figure 2.59, which is an algebraic link.

Figure 2.59: Oriented counterclockwise diagram of the cinquefoil algebraic knot with 8 arcs
and 8 lefthanded crossings. Picture produced with 3D-XplorMath-J Applet. We denote the
crossings from the upperleft to the lowerright corner with {c1, c2, c3, c4} and the crossings
from the lowerleft to the upperright corner with {c5, c6, c7, c8}.

We first consider the diagram to have a counterclockwise orientation and we denote the arcs
of the oriented diagram with the labels {1, ..., 8}, and the crossings with the labels {c1, ..., c8}
as indicated in Figure 2.59. We then compute the labelling matrix of this algebraic link

2.4. Invariants of Plane Complex Algebraic Curves 89

denoted LM(L) by using Definition 50 and we obtain:

LM(L) =



type labeli labelj labelk
c1 −1 1 8 2
c2 −1 2 5 4
c3 −1 1 6 7
c4 −1 2 3 1
c5 −1 1 4 3
c6 −1 2 1 6
c7 −1 1 2 5
c8 −1 2 7 8


.

Based on the computed labelling matrix LM(L), we now compute the prealexander matrix
of the cinquefoil algebraic link using Definition 51. Since L has only one knot component, it
follows that s = 1 in Definition 51. We obtain the following expression for the prealexander
matrix PM(L) :

PM(L) =



labeli labelj labelk
c1 1 8 2
−1 1− t1 t1 −1
c2 2 5 4
−1 1− t1 t1 −1
c3 1 6 7
−1 1− t1 t1 −1
c4 2 3 1
−1 1− t1 t1 −1
c5 1 4 3
−1 1− t1 t1 −1
c6 2 1 6
−1 1− t1 t1 −1
c7 1 2 5
−1 1− t1 t1 −1
.c8 2 7 8
−1 1− t1 −1 t1



=

=



1 2 3 4 5 6 7 8
c1 1− t1 −1 0 0 0 0 0 t1
c2 0 1− t1 0 −1 t1 0 0 0
c3 1− t1 0 0 0 0 t1 −1 0
c4 −1 1− t1 t1 0 0 0 0 0
c5 1− t1 0 −1 t1 0 0 0 0
c6 t1 1− t1 0 0 0 −1 0 0
c7 1− t1 t1 0 0 −1 0 0 0
c8 0 1− t1 0 0 0 0 t1 −1


.

Finally, by using Definition 52, we compute the Alexander polynomial of the cinquefoil
algebraic link by using the computed labelling matrix LM(L) and the computed prealexan-
der matrix PM(L). Since the cinquefoil algebraic link has one knot component (i.e. it
is a knot), we denote its Alexander polynomial with ∆(t1) and by Definition 52 for the
univariate case of the Alexander polynomial we obtain:

det
(
Minor77

(
PM(L)

))
= −t51 + t41 − t31 + t21 − t1,

∆(t1) = Normalize(−t51 + t41 − t31 + t21 − t1) = t41 − t31 + t21 − t1 + 1,

90 Chapter 2. Plane Complex Algebraic Curves

where we denote with Minor77 the minor of PM(L) obtained by taking the determinant of
PM(L) for which the 7th row and respectively the 7th column of the prealexander matrix
PM(L) were eliminated.

Example 19. In this example we compute the Alexander polynomial of the oriented dia-
gram of the Hopf link L from Figure 2.60. We add that the Hopf link is an algebraic link
and it has 2 knot components.

Figure 2.60: Oriented clockwise diagram of the Hopf link with 2 lefthanded crossings and 2
arcs. We denote the crossings from up to down with the labels {c1, c2} and we denote the
arcs from left to right with the labels {1, 2}.

We first give the diagram of the Hopf link a clockwise orientation (i.e. the two knot
components of the Hopf link have both a clockwise orientation). In addition, we denote
the crossings of the diagram with the labels {c1, c2} and separately we denote the arcs of
the same diagram with the labels {1, 2, } as indicated in Figure 2.58. We then compute the
labelling matrix of LM(L) with Definition 50 and we obtain:

LM(L) =

 type labeli labelj labelk
c1 −1 2 1 1
c2 −1 1 2 2

 .

From LM(L) we compute the prealexander matrix PM(L) of the oriented diagram of the
Hopf link with Definition 51. Since L has 2 knot components, it follows that s = {1, 2} in
Definition 51. In addition, we observe that for the crossing denoted with c1 the overgoing
arc is represented by the arc with the label 2, whereas for the crossing denoted with c2
the overgoing arc is given by the arcs with the label 1. Therefore, we obtain the following
expression for the prealexander matrix PM(L) :

PM(L) =


labeli labelj labelk

c1 2 1 1
−1 1− t2 t2 −1
c2 1 2 2
−1 1− t1 t1 −1

 =

 1 2
c1 t2 − 1 1− t2
c2 1− t1 t1 − 1

 .

From the prealexander matrix PM(L) we compute the multivariate Alexander polynomial
of the Hopf link with Definition 52. We first have to compute all the 2 × 2 minors of
PM(L). We denote by Mij with i, j ∈ {1, 2} the minor of PM(L) obtained by taking
the determinant of PM(L) for which the ith row and respectively the jth column were
eliminated. We obtain the following list of minors:

• M11 = t1 − 1,

• M12 = 1− t1,

2.4. Invariants of Plane Complex Algebraic Curves 91

• M21 = 1− t2,

• M22 = t2 − 1.

Definition 52 states that the Alexander polynomial is determined by the greatest common
divisors of all the 2 × 2 minors of PM(L). Since the Hopf Link L has 2 knot components
we denote the Alexander polynomial of the Hopf link with ∆(t1, t2). It follows that the
Alexander polynomial of the Hopf link is given by the following formula:

∆(t1, t2) = gcd(t1 − 1, 1− t1, 1− t2, t2 − 1) = 1,

where by gcd we denote the greatest common divisor of polynomials.

For our study the Alexander polynomial of the link of a singularity of a plane complex
algebraic curve (also called the Alexander polynomial of the plane curve singularity or
simply the Alexander polynomial of the singularity) has significant importance:

• The Alexander polynomial distinguishes among all the algebraic links, and thus it is a
complete invariant for links of singularities. We can use the Alexander polynomial of a
link to extract essential information on the local topology of a plane curve singularity.

• From the Alexander polynomial of the singularity Q we can compute other invariants
of the plane complex algebraic curve and its singularities as described in the next
subsections, e.g. delta-invariant, Milnor number, genus.

As a remark we mention that the computation of the Alexander polynomial of the singu-
larity Q of a plane complex algebraic curve C is derived from the link L of the singularity
Q. This link L arises from the intersection of the curve C with a sphere of small radius ε
centered in Q. Thus the computation of the Alexander polynomial of a singularity depends
on the computation of the link of the singularity, which is conditioned by the parameter ε.
This is in fact the main reason for introducing the ε-Alexander polynomial of the singularity
in Section 2.5.

2.4.4 Delta-Invariant of a Singularity

In this subsection we give a formula for the delta-invariant of each singularity of a plane
complex algebraic curve. This formula is derived from the Alexander polynomial of the
plane curve singularity. We use Milnor results [Milnor, 1968] for computing the delta-
invariant of the isolated singularity (0, 0) of a plane complex algebraic curve. We proceed
in the following way:

• we consider µ(O) a positive integer that measures the amount of degeneracy at the
critical point O(0, 0) of the complex polynomial f(z, w). In fact, µ(O) is the Milnor
number. We use the same notations from Subsection 2.4.2. We recall that we use the
following notation for the plane complex algebraic curve defined by the polynomial
f(z, w), i.e. V = {(z, w) ∈ C2 | f(z, w) = 0} := f−1(0). In addition, we consider
the sphere centered in the singularity (0, 0) and of a small radius ε denoted with
Sε = {(z, w) ∈ C2 | |z|2 + |w|2 = ε2}. It is shown that µ(O) is the degree of the
characteristic polynomial Λ of the link L = V ∩ Sε determined by V := f−1(0). The
characteristic polynomial denoted with Λ is defined in the following way:

– Λ coincides with the Alexander polynomial ∆(t), if L has one knot component,

– and Λ =
(t− 1)
±ti

∆(t, ..., t), if L has more than one knot components.

92 Chapter 2. Plane Complex Algebraic Curves

It is proven thus that µ(O) is the degree of the characteristic polynomial Λ. Based
on this observation we deduce the following formula for the Milnor number µ(O),
formula that is derived from the Alexander polynomial:

– µ(O) is the degree of the Alexander polynomial, if L has one knot component,

– and µ(O) is the degree of the Alexander polynomial +1, if L has more than one
knot components.

• we consider r the number of local analytic branches of V := f−1(0) with L = V ∩ Sε

passing through the origin (0, 0). That is r is the number of knot components in the
link L determined by V , i.e. r is the number of variables in the Alexander polynomial
of the link L.

We base our method for the computation of the delta-invariant of a plane curve singularity
on the following theorem proved by Milnor:

Theorem 11. ([Milnor, 1968]) Suppose that r branches of the curve V := f−1(0) pass
through the origin O(0, 0), which is an isolated singularity for V. Then the delta-invariant
of the isolated singularity O(0, 0) denoted with δ(O) > 0 is related to the Milnor number
µ(O) by the equation 2δ(O) = µ(O) + r − 1 and it is always a positive integer.

From Theorem 11 we derive a formula for the delta-invariant of the isolated singularity
O(0, 0) of the plane complex algebraic curve V = f−1(0). We notice that the delta-invariant
of the singularity O denoted with δ(O) is given by the formula:

2δ(O) = µ(O) + r − 1, (2.48)

where µ represents the Milnor number of the singularity O and it is defined depending on
the number r of knot components in the link L of the singularity O in the following way:

µ(O) =

 n, if r = 1

n+ 1, if r ≥ 2,
(2.49)

with n denoting the degree of the Alexander polynomial of the singularity O.
From Equation (2.48) and Equation (2.49) it follows that the formula for the delta-invariant
of the singularity O depends on the degree of the Alexander polynomial and on the num-
ber r of variables in the Alexander polynomial, which coincides with the number of knot
components in the link L of the singularity O. We obtain the following expression for the
delta-invariant of the singularity O :

2δ(O) =

 n+ r − 1, if r = 1

n+ 1 + r − 1, if r ≥ 2,
(2.50)

and thus

2δ(O) =

 n, if r = 1

n+ r, if r ≥ 2.
(2.51)

In the following, we assume that we have computed the Alexander polynomial ∆ of the link
L of each singularity of a plane complex algebraic curve as described in Subsection 2.4.3.
From the Alexander polynomial ∆, we derive a formula for the delta-invariant of each
singularity of a plane complex algebraic curve in the following way:

2.4. Invariants of Plane Complex Algebraic Curves 93

Definition 53. Let ∆(t1, . . . , tr) be the Alexander polynomial of the link L of the isolated
singularity Q of a plane complex algebraic curve. Let r be the number of variables in ∆ and
let n be the degree of ∆. We denote by δ(Q) > 0 the delta-invariant of the singularity Q. If
r = 1, then the delta-invariant of Q is computed as δ(Q) = n/2, otherwise δ(Q) = (n+r)/2.

As an important observation we add that the delta-invariant of the singularity Q of a
plane complex algebraic curve C intuitively measures the number of double points of C
concentrated at Q. For instance, a singular point Q of a plane complex algebraic curve with
delta-invariant δ(Q) concentrates δ(Q) double points at Q. In addition, the delta-invariant
of a plane curve singularity is a local invariant of a plane complex algebraic curve.

2.4.5 Genus of a Plane Complex Algebraic Curve

In the theory of plane algebraic curves, one is interested in computing their genus, which is
a birational invariant that plays an important role in the rational parametrization property
of plane algebraic curves. From the theory we know that an irreducible plane algebraic
curve is rational parametrizable if and only if its genus is 0. Thus another goal of this
thesis is to compute the genus of plane complex algebraic curves.
For algebraic curves with only ordinary singularities we have a method for computing the
genus, based on the multiplicities of the ordinary singularities. We recall that the ordinary
singularities and the multiplicities of ordinary singularities were introduced in details in
Subsection 2.2.1. We mention the following definition for computing the genus of plane
complex algebraic curves, assuming that the curve has only ordinary singularities:

Definition 54. ([Sendra et al., 2008]) Let C be a plane complex algebraic curve given by
its defining polynomial f(z, w) of degree m. We denote by OrdSing(C) the set of ordinary
singular points of the curve C. For a point Q ∈ OrdSing(C) we denoted by mQ the multi-
plicity of C at the point Q. Then the genus of the plane complex algebraic curve C, denoted
with genus(C), is computed using the following formula:

genus(C) =
1
2

(
(m− 1)(m− 2)−

∑
Q∈OrdSing(C)

mQ(mQ − 1)

)
,

where genus(C) ∈ Z.

If the singularities of the plane complex algebraic curves are nonordinary, then the main idea
is to construct a birational map and to transform the given curve into another birational
curve with only ordinary singularities. We recall that a birational map is a rational map
that admits a rational inverse, whereas a rational map is any map that can be written
as the ratio of two polynomial functions. An important result says that if two curves
are birational, then they have the same genus. So if we can transform the given curve
to a birational curve with only ordinary singular points, then we can compute the genus
of the original curve by computing the genus of the other one. We will not focus on
the details of this method for computing the genus of plane complex algebraic curves, as
this method is not among the purposes of this thesis. We advise the reader to consult
[Brieskorn and Knorrer, 1986], [Fulton, 1989], [Sendra et al., 2008], and [Walker, 1978] for
more information on this method.
We concentrate our attention on another formula for computing the genus of plane com-
plex algebraic curves, a formula which does not depend on the type of singularities of the
plane complex algebraic curves. Thus we derive a formula for the genus of a plane com-
plex algebraic curve as described in [Milnor, 1968] based on the delta-invariants of all the
singularities of the curve:

94 Chapter 2. Plane Complex Algebraic Curves

Definition 55. Let C̃ be a plane complex algebraic curve in the projective plane defined
by the squarefree homogeneous polynomial f(z, w, u) ∈ C[z, w, u] of degree m, as intro-
duced in Subsection 2.1.2. We denote by Sing(C̃) the singularities of C̃ as introduced in
Subsection 2.2.1, and by δ(Q) ∈ Z>0 the delta-invariant of the singularity Q as defined in
Subsection 2.4.4. The genus of C̃, denoted with genus(C̃) ∈ Z, is defined as:

genus(C̃) =
(m− 1)(m− 2)

2
−

∑
Q∈Sing(C̃)

δ(Q).

We mention that the link of a plane curve singularity, the Alexander polynomial and the
delta-invariant of the singularity are local invariants of a plane complex algebraic curve,
whereas the genus of the plane complex algebraic curve is a global topological invariant.

2.4.6 More Invariants: Milnor Number, Euler Characteristic

In this subsection we introduce other topological invariants of a plane complex algebraic
curve. Based on Subsection 2.4.4 we first give a formal definition for the Milnor number of
a plane curve singularity, which is a local topological invariant of a plane complex algebraic
curve. We then introduce the Euler characteristic of the compact Riemann surface attached
to the resolution of singularities of a plane complex algebraic curve.
We introduce the Milnor number of a plane curve singularity following [Milnor, 1968]. Infor-
mally, the Milnor number µ(Q) of the singularity Q(a, b) of a plane complex algebraic curve
C defined by the squarefree polynomial f(z, w) ∈ C[z, w] is defined as a positive integer,
which measures the amount of degeneracy at the critical point Q(a, b) of the complex poly-
nomial f(z, w). The Milnor number µ(Q) is defined as the multiplicity of Q(a, b) as solution

to the collection of the polynomial equations
∂f

∂z
(z, w) =

∂f

∂w
(z, w) = 0 or equivalently

µ(Q) = dim

(
C[z, w]〈∂f
∂z
,
∂f

∂w

〉),

where we denote by
〈∂f
∂z
,
∂f

∂w

〉
the ideal generated by the partial derivatives of f(z, w) with

respect to z and w denoted with
∂f

∂z
and respectively with

∂f

∂w
. From Subsection 2.4.4 we

derive a formula for the Milnor number of a plane curve singularity based on the Alexander
polynomial of the singularity itself. Thus we introduce the following definition for the
Milnor number of a plane curve singularity:

Definition 56. Let ∆(t1, . . . , tr) be the Alexander polynomial of the link L of the isolated
singularity Q of a plane complex algebraic curve. Let r be the number of variables in the
Alexander polynomial ∆, which coincides with the number of knot components in the link
L of Q. Let n be the degree of ∆. We denote with µ(Q) the Milnor number of the singularity
Q. If r = 1, then µ(Q) = n, otherwise µ(Q) = n+ 1. The Milnor number µ(Q) is always a
positive integer.

We give the intuitive significance for the Milnor number of a plane curve singularity, and
that is the larger the Milnor number of the singularity is, the more complicated the structure
of the singular point is. In this thesis, the Milnor number is also important as it provides a
formula for the delta-invariant of the singularity, which is then used to compute the genus
of a plane complex algebraic curve.

2.4. Invariants of Plane Complex Algebraic Curves 95

We now introduce the Euler characteristic of the compact Riemann surface attached to
the resolution of singularities of a plane complex algebraic curve. We consider a projective
plane complex algebraic curve C̃. We assume S to be the compact Riemann surface attached
to the resolution of singularities of C̃, as discussed in Subsubsection 2.3.2. For introducing
the notion of Euler characteristic, we need to recall some basic notions concerning compact
surfaces and their triangulations. We define a triangulation (also called a polygonal repre-
sentation) of a surface (or of a plane polygon) as the division of the surface (or the plane
polygon) into a set of triangles (or a set of polygonal regions) called faces, which are formed
of smooth non-selfintersecting edges joined at vertices. In addition, the triangulation of a
surface requires the following restrictions:

• any two faces have only one edge in common if any. Each edge belongs to the bound-
aries of two faces;

• two edges meet in one common vertex if any;

• at least 3 edges meet at each vertex. In the literature, there exist different formulations
concerning the restrictions imposed by the triangulation of a surface. Still, all these
different formulations of the restrictions of a triangulation of a surface produce the
same formula for the Euler characteristic.

From the literature [Lee, 2000] we know that every surface (or a 2-dimensional real manifold)
has a triangulation, which might require an infinite number of triangles. However every
compact surface (as in the case of our problem) admits a triangulation with a finite number
of triangles. We introduce the definition of the Euler characteristic of a compact surface as
follows:

Definition 57. Let V (T), E(T), F (T) be the number of vertices, the number of edges
and respectively the number of faces of the triangulation T of a compact surface S. We
define the Euler characteristic of S denoted with χ(S, T) as the quantity

χ(S, T) = V (T)− E(T) + F (T).

Since χ(S, T) is independent on the choice of a triangulation of S we denote the Euler
characteristic of the compact surface S from Definition 57 with χ(S). In addition, the Euler
characteristic is a topological invariant, see [Lee, 2000] for details. The Euler characteristic
of a compact surface S is related to the genus of S by the following proposition:

Proposition 2. ([Lee, 2000, p. 143]) The Euler characteristic of a compact surface S with
genus g is equal to:

(i) 2, if S is homeomorphic to a sphere;

(ii) 2− 2g, if S is homeomorphic to a connected sum of g tori.

Thus to compute the Euler characteristic χ(S) of the compact Riemann surface S attached
to the resolution of singularities of a projective plane complex algebraic curve C̃ of genus
g, we use the formula χ(S) = 2 − 2g from Proposition 2. The computation of the Euler
characteristic shows that the topological invariants computed in the previous subsections of
a plane complex algebraic curve can be used to derive other information on a plane complex
algebraic curve.

96 Chapter 2. Plane Complex Algebraic Curves

2.5 Approximate Invariants of Plane Complex Alge-
braic Curves

In Section 2.4 we introduced several invariants for a plane complex algebraic curve C with
an isolated singularity, i.e. the link of the isolated singularity, the Alexander polynomial at-
tached to the link of the singularity, the Milnor number of the singularity, the delta-invariant
of the singularity, the genus of the curve and the Euler characteristic of the Riemann sur-
face attached to the resolution of singularities of the curve C. We notice that the compu-
tation of these invariants is conditioned by the computation of the image of Xε through
stereographic projection, which is the link L of the singularity and which depends on the
parameter ε ∈ R>0.

Hence we are motivated to define the ε-invariants of a plane complex algebraic curve with
an isolated singularity, which depend on a parameter ε ∈ R>0 :

Definition 58. Let C be a plane complex algebraic curve defined by the squarefree poly-
nomial p(z, w) ∈ C[z, w]. Let Q(z0, w0) ∈ C2 be an isolated singularity of C and let
Sε(Q) = {(z, w) ∈ C2 : |z − z0|2 + |w − w0|2 = ε2} be the sphere centered in Q of radius
ε ∈ R>0. We take Yε = C ∩ Sε(Q). We consider π(ε,N) the stereographic projection of the
sphere Sε(Q) from its north pole N, which does not belong to C and which is defined as:

π(ε,N) : Sε \ {N} ⊂ R4 → R3

(a, b, c, d)→ (x, y, z) = (a
ε−d ,

b
ε−d ,

c
ε−d) , (2.52)

with its inverse given by:

π−1
(ε,N) : R3 → Sε \ {N} ⊂ R4

(x, y, z) 7→ (a, b, c, d) = (2xε
κ , 2yε

κ , 2zε
κ , −ε+x2ε+y2ε+z2ε

κ),
(2.53)

where κ = 1 + x2 + y2 + z2 .
If π(ε,N)(Yε) has no singularities, then:

• we call Lε(Q) := π(ε,N)(Yε) the ε-link of the singularity of p(z, w) (or of C) at Q. We
call Lε an ε-algebraic link.

• we define the ε-Alexander polynomial of C at Q as the Alexander polynomial of Lε.
We denote the ε-Alexander polynomial with ∆ε(Q).

• we define the ε-Milnor number of Q as the Milnor number of the ε-Alexander polyno-
mial of C at Q. If we assume that the ε-Alexander polynomial denoted ∆ε has degree
n, then we derive the following formula for the ε-Milnor number of Q depending on
the number of variables r in ∆ε :

– if r = 1, then µε(Q) = n,

– otherwise µε(Q) = n+ 1.

• we define the ε-delta-invariant of Q as the delta-invariant of the ε-Alexander poly-
nomial of C at Q. If we assume that the ε-Alexander polynomial denoted ∆ε(Q) has
degree n and r variables, then we derive the following formula for the ε-delta-invariant
of Q depending on the number of variables r in ∆ε(Q) :

– if r = 1, then δε(Q) = n/2,

– otherwise δε(Q) = (n+ r)/2.

2.5. Approximate Invariants of Plane Complex Algebraic Curves 97

• the ε-genus of the plane complex algebraic curve C is computed based on the ε-delta-
invariants of all the singularities of C in the following way: ε-genus:

genusε(C) =
(m− 1)(m− 2)

2
−

∑
Q∈Sing(C)

δε(Q),

where we denote with Sing(C) the set of singularities of the plane complex algebraic
curve C.

• the ε-Euler characteristic χε of the compact Riemann surface attached to the resolu-
tion of singularities of C is computed using the following formula χε = 2−2genusε(C).

• moreover, we define the ε-local topological type of Q as the pair
(
Lε(Q),∆ε(Q), δε(Q)

)
,

where Lε(Q) denotes the ε-link of the singularity Q, where ∆ε(Q) denotes the ε-
Alexander polynomial of Lε(Q), and δε(Q) denotes the ε-delta-invariant of Q.

Thus in our study computing the approximate invariants of a plane complex algebraic curve
and its singularities means computing the invariants of the plane complex algebraic curve
and its singularities depending on an input parameter ε ∈ R>0. More specifically, for a
plane complex algebraic curve C with a singularity Q, the approximate invariants of the
singularity Q are determined by the intersection of the curve C with a sphere centered
in Q and of a radius ε as specified in Definition 58. If the intersection C ∩ Sε has no
singularities, then we compute the ε-algebraic link and its ε-Alexander polynomial. The ε-
Alexander polynomial can only change if the intersection C ∩Sε has singularities, otherwise
we have an isotopy which leaves the ε-Alexander polynomial fixed. From the ε-Alexander
polynomial we derive formulas for other approximate topological invariants of plane complex
algebraic curves, including a formula for the ε-genus of the curve. In Chapter 3 we give
straightforward algorithms to compute all the approximate invariants of a plane complex
algebraic curve introduced in Definition 58. The algorithms depend on an input parameter
ε, which represents the radius of a small sphere that we intersect with the given plane
complex algebraic curve.

98 Chapter 2. Plane Complex Algebraic Curves

Chapter 3
Symbolic-Numeric Algorithms for
Plane Complex Algebraic Curves

In this chapter, we state the main problem that we solve, i.e. the algebraic problem of
computing approximate topological invariants (i.e. approximate delta-invariant, approxi-
mate genus) of a plane complex algebraic curve defined by a squarefree polynomial with
exactly and inexactly-known coefficients. Moreover, based on Chapter 2, we design and we
present straightforward symbolic-numeric algorithms for computing approximate invariants
of a plane complex algebraic curve.

Problem 1. Given the following:

(i) a squarefree complex bivariate polynomial p(z, w) ∈ C[z, w] with exact and inexact
coefficients that defines a plane complex algebraic curve C ⊂ C2, i.e. C = {(z, w) ∈
C2 | p(z, w) = 0} ⊂ C2. For the polynomial p(z, w) we associate a positive real number
δ ∈ R>0, which measures the error level (also called the tolerance level or the noise
level) in the coefficients of p(z, w).

(ii) a parameter ε ∈ R>0 that determines the sphere Sε centered in the origin O(0, 0) ∈ C2

and of radius ε denoted with Sε = {(z, w) ∈ C2 | |z|2 + |w|2 = ε2}.

our goal is: to compute a set of ε-invariants (also called approximate invariants) of C and
its singularities as introduced in Chapter 2, Section 2.5, Definition 58. We compute: (1) the
ε-algebraic link, ε-Alexander polynomial, the ε-Milnor number, the ε-delta-invariant of each
singularity Q of C, (2) the ε-genus of C, (3) the ε-Euler characteristic of the Riemann surface
attached to the resolution of singularities of C, (4) the ε-topological type of each singularity
Q of C.

3.1 Algorithm for Computing the Approximate Singu-
larities

3.1.1 Description of the Algorithm

In this subsection, we describe an algorithm for computing the set of singularities Sing(C) of
the plane complex algebraic curve C of degreem defined by a squarefree polynomial p(z, w) ∈

100 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

C[z, w] with both exact and inexact coefficients. We assume that for the polynomial p(z, w)
we are also provided with a positive real number δ ∈ R>0, which measures the error level
in the coefficients of p(z, w). Consequently, we need effective methods for computing the
singularities of a plane complex algebraic curve defined by a polynomial with both exact
and inexact data. For this purpose, we define a numerical singularity of C as a point

Q(z0, w0) ∈ C2 such that p(Q),
∂p

∂z
(Q) and

∂p

∂w
(Q) are small compared to the coefficients

of the polynomial p(z, w).
From Chapter 2, Section 2.5, Definition 6, it follows that to compute the set of singularities,
we need to determine the following set of points:

Sing(C) = {(z0, w0) ∈ C2 | p(z0, w0) = ∂zp(z0, w0) = ∂wp(z0, w0) = 0}.

We thus need to solve the following overdeterminate system of 3 polynomial equations in 2
unknowns z0 and w0 in C2 :

p(z0, w0) = ∂zp(z0, w0) = ∂wp(z0, w0) = 0. (3.1)

We first compute the roots of System (3.1) in R2 with subdivision methods introduced
in [Mourrain and Pavone, 2009] and implemented in the free system Axel developed by
[Wintz et al., 2006] and in the free computer algebra system Mathemagix developed by
[van der Hoeven et al., 2002]. The advantage of these methods is that they numerically
compute the roots of System (3.1), and that they can be used for both exact and inexact
coefficients of the defining polynomial p(z, w) of the curve C. These subdivision methods
take as input the polynomials defining the System (3.1), a box B = [−a, a]× [−b, b] ⊂ R2,
and a positive real number δ ∈ R>0, which measures the error level in the coefficients of
p(z, w). The box B has to be big enough to contain all the roots of System (3.1). The
output of the subdivision methods is a set of boxes S in B ⊂ R2 smaller than δ, which
contains all the roots of System (3.1), and a set M containing the middle points of all the
boxes from S.

We compute the real singularities of the plane algebraic curve defined by the squarefree
polynomial p(z, w) ∈ C[z, w] with exact and inexact coefficients in the projective real plane
P2(R) by homogenizing and dehomogenizing the polynomial p(z, w) with respect to differ-
ent variables and making sure not to return solutions in the overlaps twice. We consider
the projective plane over the real numbers P2(R) = Uz ∪ Uw ∪ Uu, where Uz, Uw, Uu are
homeomorphic to R2 and Uz = {(1 :

w

z
:
u

z
)}, Uw = {(z

w
: 1 :

u

w
)}, Uu = {(z

u
:
w

u
: 1)}

represent the dehomogenizations with respect to the variables z, w and u. Without loss of
generality we assume that |u| ≥ |z|, |w|. We notice that any point from P2(R) is in one
of the boxes Bz, Bw, Bu, where Bz ⊆ Uz, Bw ⊆ Uw, Bu ⊆ Uu and Bz = Bw = Bu =
[−1, 1] × [−1, 1]. Thus by using subdivision methods, we compute a list of δ-boxes S in
B = [−1, 1]× [−1, 1] ⊂ R2 smaller than a given tolerance δ, and a list M of middle points
for all the boxes in S with two properties: (1) each real singularity of the plane complex
algebraic curve is contained in one of the δ-boxes from S, (2) and the value of p and its
first derivatives in each point from M are small. It follows that by using the subdivision
methods we compute a list of δ-boxes in B smaller than δ, which contain all the singularities
of C. Still, the existence and the uniqueness of a singularity in each δ-box is not guaranteed
[Mourrain et al., 2008], but this is not required for our purpose.
In the same way, we can use subdivision methods to find the complex singularities of the
plane complex algebraic curve C in the projective complex plane P2(C). We consider the
complex variables z = z1 + iz2, w = w1 + iw2, u = u1 + iu2 and the projective plane over the
complex numbers P2(C) = Uz∪Uw∪Uu, where Uz, Uw, Uu are homeomorphic to C2 and Uz =
{(1 :

w

z
:
u

z
)}, Uw = {(z

w
: 1 :

u

w
)}, Uu = {(z

u
:
w

u
: 1)} represent the dehomogenizations

3.1. Algorithm for Computing the Approximate Singularities 101

with respect to the variables z, w and u. We assume |z1| ≥ |z2|, |w1|, |w2|, |u1|, |u2| and we
show that any point from P2(C) is in one of the boxes Bz, Bw, Bu, where Bz ⊆ Uz and
Bz = {(w, u) ∈ C2|w1, w2, u1, u2 ∈ [−1, 1]} (we obtain equivalent formula for Bw, Bu). For
instance, we consider Uz = {(1 :

w

z
:
u

z
)} and Re(

w

z
) the real part of the complex number

w

z
. We rewrite

Re(
w

z
) = Re

(
w1 + iw2

z1 + iz2

)
= Re

(
(z1 − iz2)(w1 + iw2)

z2
1 + z2

2

)
=
z1w1 + z2w2

z2
1 + z2

2

.

We get:

|Re(w
z

)| =
∣∣∣∣z1w1 + z2w2

z2
1 + z2

2

∣∣∣∣ ≤ |z1||z1|+ |z1||z1|2|z1|2
=

2|z1|2

2|z1|2
= 1.

In our implementation, we apply the subdivision methods for the real case. As discussed
before, we can apply the subdivision methods to the complex case, but this is not available
yet in our current implementation.
We describe the algorithm ApproxRealSing(C, p, δ) for computing the approximate real sin-
gularities (also called the numerical real singularities) of the plane complex algebraic curve
C defined by the squarefree complex polynomial p(z, w) with exact and inexact coefficients.
For the inexact coefficients of p(z, w) we are given a positive real number δ ∈ R>0, which
determines the error level. We recall that as input parameter to the subdivision methods
we need a subset B ⊂ R2 called a box.

Algorithm 1 Approximate real singularities of the plane complex algebraic curve C defined
by p(z, w) of degree m and for which the tolerance in its coefficients is measured by δ. The
algorithm takes as input also the box B = [−a, a]× [−b, b] : ApproxRealSing(C, p, δ, B)
Input: p(z, w) ∈ C[z, w] a squarefree polynomial, m the degree of p(z, w),
C = {(z, w) ∈ C2 | p(z, w) = 0)} a plane complex algebraic curve of degree m,
δ ∈ R>0 a positive real number,
B = [−a, a]× [−b, b] ⊂ R2 a subset of R2 called a box.
Output: a list of points M ⊂ B such that for every Q ∈ Sing(C) there exists a unique
R ∈M such that d(Q,R) ≤ δ,
where Sing(C) is the set of real singularities of C in the projective real plane.

1: Homogenize p(z, w) w.r.t. u to get p(z, w, u).

(a) Dehomogenize p1(z, w) := p(z, w, 1).

(b) Get S1 by solving p1 = ∂zp1 = ∂wp1 = 0 with subdivision methods.

(c) Homogenize S1 = {(z0, w0) ∈ R2} to get S
′

1 = {(z0 : w0 : 1) ∈ P2(R)}.
(d) Dehomogenize p2(w, u) := p(1, w, u).

(e) Get S2 by solving p2 = ∂wp2 = ∂up2 = u = 0 with subdivision methods.

(f) Homogenize S2 = {(w0, u0) ∈ R2} to get S
′

2 = {(1 : w0 : u0) ∈ P2(R)}.
(g) Dehomogenize p3(z, u) := p(z, 1, u).

(h) Get S3 by solving p3 = ∂zp3 = ∂up3 = z = u = 0 with subdivision methods.

(i) Homogenize S3 = {(z0, u0) ∈ R2} to get S
′

3 = {(z0 : 1 : u0) ∈ P2(R)}.

2: Return Sing(C) = S
′

1 ∪ S
′

2 ∪ S
′

3.

102 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

In the rest of this thesis we call the list M returned by the algorithm ApproxRealSing
the list of numerical singularities of the plane complex algebraic curve C. We sometimes
denote the list M with NumSing(C). In Example 20 we compute the set of numerical real
singularities Sing(C) of a plane complex algebraic curve C defined by a squarefree polynomial
p(z, w) ∈ C[z, w] with exact coefficients using the Algorithm 1-ApproxRealSing(C, p, δ).

Example 20. We consider C the plane complex algebraic curve defined by the squarefree
polynomial p(z, w) = z2w+w4 ∈ C[x, y] of degree 4. We mention that the values of the box
B = [−a, a]× [−b, b] ⊂ R2 are set directly in the subdivision methods and we do not have
to introduce them explicitly as input to the algorithm. We compute the set of singularities
Sing(C) of the plane complex algebraic curve C in the following steps:

1. We homogenize p(z, w) w.r.t. the variable u to obtain p(z, w, u) = z2wu+ w4.

(a) We replace u = 1 in p(z, w, u) and we obtain p1(z, w) = z2w + w4.

(b) We solve the overdeterminate system z2
0w0 + w4

0 = 2z0w0 = z2
0 + 4w3

0 = 0 and
we get S1 = {(0, 0)}.

(c) We homogenize S1 and we get S
′

1 = {(0 : 0 : 1)}.
(d) We replace z = 1 in p(z, w, u) and we obtain p2(w, u) = wu+ w4.

(e) Similarly as for the System (1b), we solve the overdeterminate system w0u0 +
w4

0 = u0 + 4w3
0 = w0 = u0 = 0 and we obtain S2 = {(0, 0)}.

(f) We homogenize S2 and we get S
′

2 = {(1 : 0 : 0)}.
(g) We replace w = 1 in p(z, w, u) and we obtain p3(z, u) = z2u+ 1. We notice that

S3 = ∅.

2. We return Sing(C) = S
′

1 ∪ S
′

2 ∪ S
′

3 = {(0 : 0 : 1), (1 : 0 : 0)}.

3.1.2 Applications of the Algorithm

We use the Algorithm 1-ApproxRealSing to compute the set of approximate real singu-
larities of a plane complex algebraic curve defined by a squarefree polynomial with both
exact and inexact coefficients. We mention that there exists several symbolic methods that
can be used to compute the singularities of a plane complex algebraic curve defined by
a squarefree polynomial with exact coefficients. Such methods include the Gröbner bases
method [Buchberger and Winkler, 1998], or the resultants method [Lang, 2002]. However
these methods are not usable for problems with inexact data, as in the case of our problem.

3.2 Algorithm for Computing the Approximate Link of
a Singularity

3.2.1 Description of the Algorithm

In this subsection, we construct an algorithm for computing the ε-link (or the approximate
link) Lε of an isolated singularity of a plane complex algebraic curve using the notions
defined in Chapter 2, Subsection 2.3.3 and Subsection 2.4.2. We consider a plane complex
algebraic curve C = {(z, w) ∈ C2 | p(z, w) = 0} defined by the squarefree polynomial
p(z, w) ∈ C[z, w] with an isolated singularity in the point Q(z0, w0) ⊂ C2. For our purpose,
we firstly translate the singularity Q(z0, w0) of the plane complex algebraic curve C in the
origin O(0, 0) ∈ C2 by making an affine change of coordinates, i.e. C = {(z, w) ∈ C2 | p(z+

3.2. Algorithm for Computing the Approximate Link of a Singularity 103

z0, w+w0) = 0}. Hence, we obtain that the plane complex algebraic curve C has a singularity
in the origin O(0, 0) ∈ C2.We secondly substitute the complex variables z = a+ib, w = c+id
in the defining polynomial of C and we obtain p(a, b, c, d) = R(a, b, c, d) + iI(a, b, c, d), with
R(a, b, c, d), I(a, b, c, d) ∈ R[a, b, c, d]. The equations R(a, b, c, d) = I(a, b, c, d) = 0 define a
surface in R4, which we denote with S :

S = {(a, b, c, d) ∈ R4 | R(a, b, c, d) = I(a, b, c, d) = 0}. (3.2)

We next take the sphere centered in the origin (0, 0, 0, 0) ∈ R4 and of a small radius ε ∈ R>0

denoted with:

Sε = {(a, b, c, d) ∈ R4 | a2 + b2 + c2 + d2 = ε2}.

We intersect S with this small sphere Sε to obtain a curve Yε = S ∩ Sε in R4.

We now consider N(0, 0, 0, ε) the north pole of the sphere Sε, which does not belong to S.
We consider the stereographic projection from R4 to R3, defined by the following homeo-
morphism:

π(ε,N) : Sε \ {N} ⊂ R4 → R3,

(a, b, c, d) 7→ (x, y, z) = (
a

ε− d
,

b

ε− d
,

c

ε− d
).

(3.3)

with its inverse π(ε,N) given by:

π−1
(ε,N) : R3 → Sε \ {N} ⊂ R4,

(x, y, z) 7→ (a, b, c, d) = (
2xε
κ
,
2yε
κ
,
2zε
κ
,
−ε+ x2ε+ y2ε+ z2ε

κ
),

(3.4)

where κ = 1 + x2 + y2 + z2. We notice that π(ε,N) allows us to project the set Yε =
S ∩ Sε ⊂ Sε \ {N} from R4 into R3, and the inverse π−1

(ε,N) allows us to compute the set
π(ε,N)(Yε) in the following way:

π(ε,N)(Yε) = {(x, y, z) ∈ R3 | ∃(a, b, c, d) ∈ Yε : π(ε,N)(a, b, c, d) = (x, y, z)} ⇔

π(ε,N)(Yε) = {(x, y, z) ∈ R3 | ∃(a, b, c, d) = π−1
(ε,N)(x, y, z) ∈ Yε = S ∩ Sε}. (3.5)

In Equation (3.5) we replace the formula for (a, b, c, d) computed in Equation (3.4) and we
obtain:

π(ε,N)(Yε) = {(x, y, z) ∈ R3 | (2xε
κ
,
2yε
κ
,
2zε
κ
,
−ε+ x2ε+ y2ε+ z2ε

κ
) ∈ Yε}. (3.6)

We denote α := (
2xε
κ
,
2yε
κ
,
2zε
κ
,
−ε+ x2ε+ y2ε+ z2ε

κ
) and we rewrite Equation (3.6) as

follows:

π(ε,N)(Yε) = {(x, y, z) ∈ R3 | α ∈ S ∩ Sε}.

Based on Equation (3.2) we get:

π(ε,N)(Yε) = {(x, y, z) ∈ R3 | R(α) = I(α) = 0}.

We clear out the denominators in R(α) = I(α) = 0 and we obtain two equations gε(x, y, z) =
0 and hε(x, y, z) = 0 defining the stereographic projection of Yε :

π(ε,N)(Yε) = {(x, y, z) ∈ R3 | gε(x, y, z) = hε(x, y, z) = 0},

104 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

where gε(x, y, z), hε(x, y, z) ∈ R[x, y, z]. Based on Chapter 2, Definition 58, if π(ε,N)(Yε) has
no singularities

(
i.e. it is a smooth and closed implicit algebraic curve in R3 given as the

intersection of two implicit algebraic surfaces with the defining polynomials gε(x, y, z) and
respectively hε(x, y, z)

)
, then we call Lε := π(ε,N)(Y) the ε-link (also called the approximate

link) of the singularity Q of the curve C. In addition, from Chapter 2, Theorem 10 of Milnor
we know that for sufficiently small ε, Lε is equal to the link of the singularity Q, which we
denote with L. In fact, L is a smooth and closed implicit algebraic curve in R3 given as
the intersection of two implicit algebraic surfaces S1, S2 in R3 with defining polynomials
gε(x, y, z), hε(x, y, z) ∈ R[x, y, z]. We add that the two surfaces S1, S2, which define as their
intersection the link L, are part of the Milnor fibration as discussed in Subsection 2.4.2.

Remark 10. We make an important observation concerning the existence of vertical and
of horizontal tangents of the plane complex algebraic curve C at the north pole N(0, ε) of
the sphere Sε, north pole that is used for defining the stereographic projection π(ε,N) from
Equation (3.3). To ensure the correct stereographic projection of the intersection S ∩ Sε,
where S denotes the 2-dimensional object in R4 defined by C, and Sε denotes the sphere
of radius ε centered in the origin, we have to eliminate the vertical and the horizontal
tangents of C at N, in case these vertical and horizontal tangents do exist. One solution
of eliminating these tangents would be to choose another coordinates for the north pole
N instead of the chosen coordinates (0, ε). In this case, we would have to adapt also the
formula for defining the stereographic projection from Equation (3.3). Alternatively, we
choose to rotate the plane complex algebraic curve before we project the intersection S ∩Sε

such that we eliminate the vertical and the horizontal tangents at N(0, ε). We distinguish
the following cases for rotating the plane complex algebraic curve C:

• We consider the lowest degree part l(x, y) of the defining polynomial p(z, w) ∈ C[z, w]
of C. If the variable z factors out in l(z, w)

(
i.e. the curve C has a vertical tan-

gent at N(0, ε)
)
, then we make the substitution {z → −w,w → z} in p(z, w) (i.e.

we rotate the curve C counterclockwise by 90◦). We consider the rotation matrix(
cos θ −sinθ

sin θ cos θ

)
with θ = 90◦, and we obtain the substitution:

(
cos θ − sin θ

sin θ cos θ

)(
z

w

)
→

(
0 −1

1 0

)(
z

w

)
→

(
−w

z

)
.

• We consider the lowest degree part l(z, w) of the defining polynomial p(z, w) ∈ C[z, w]
of C. If the variable w factors out in l(z, w) (i.e. the curve has an horizontal tangent
at N(0, ε)), then we make the substitution {z → −w,w → z} in p(z, w)

(
i.e. we

rotate the curve C counterclockwise by 90◦
)
. The substitution is basically obtained

as in the previous case.

• We consider the lowest degree part l(z, w) of the defining polynomial p(z, w) ∈ C[z, w]
of C. If both variables z and w factor out in l(z, w)

(
i.e. the curve C has both a vertical

and an horizontal tangent at N(0, ε)
)
, then we make the substitution {z → z−w,w →

z + w} in p(z, w) (i.e. we rotate the curve C counterclockwise by 45◦). We consider

the rotation matrix

(
cos θ −sinθ

sin θ cos θ

)
with θ = 45◦, and we obtain the substitution:

1√
2
− 1√

2
1√
2

1√
2


(

z

w

)
→

(
z − w

z + w

)
1√
2
, where we can omit the

1√
2

term.

3.2. Algorithm for Computing the Approximate Link of a Singularity 105

We describe the algorithm ApproxLink(ε,Q, C, p) for computing the ε-algebraic link Lε of
the singularity Q of the plane complex algebraic curve C defined by the squarefree poly-
nomial p(z, w) ∈ C[z, w] with exact and inexact coefficients. The parameter ε denotes the
radius of the sphere Sε ⊂ C2 that we intersect with the zero set of p(z, w), as described in
Chapter 2, Section 2.5, Definition 58.

Algorithm 2 ε-link of the singularity Q of the plane algebraic curve C defined by p(z, w):
ApproxLink(ε,Q, C, p)
Input: p(z, w) ∈ C[z, w] a squarefree complex polynomial, m the degree of p(z, w),
C = {(z, w) ∈ C2 | p(z, w) = 0} a plane complex algebraic curve of degree m,
Q(z0, w0) a numerical singularity of C,
ε ∈ R>0 a positive real number, which defines the sphere Sε(O) of radius ε centered in O.
Output: G, H ∈ R[x, y, z],
where the common zero set of G,H equals Lε.

1: Translate the singularity Q(z0, w0) in the origin O(0, 0) by substituting z ← z+ z0, w ←
w + w0 in p(z, w). In p(z, w) set the terms of degree 0 and of degree 1 to zero.

2: Consider l(z, w) the lowest degree part of p(z, w).

3: If z or w factors out in l(z, w), substitute {z → −w,w → z} in p(z, w).

4: If z and w factors out in l(z, w), substitute {z → z − w,w → z + w} in p(z, w).

5: Substitute z ← a+ ib, w ← c+ id in p(z, w) and obtain

p(a, b, c, d) = R(a, b, c, d) + iI(a, b, c, d), with R, I ∈ R[a, b, c, d].

6: Extract R(a, b, c, d) = I(a, b, c, d) = 0, which defines

S = {(a, b, c, d) ∈ R4 | R(a, b, c, d) = I(a, b, c, d) = 0}.

7: Define α =: (2xε
κ , 2yε

κ , 2zε
κ , −ε+x2ε+y2ε+z2ε

κ), where κ = 1 + x2 + y2 + z2.

8: Substitute (a, b, c, d)← α in S to get R(α) = I(α) = 0.

9: Eliminate the denominators in R(α) = I(α) = 0 to get gε(x, y, z) = hε(x, y, z) = 0, with
gε, hε ∈ R[x, y, z]. For Yε = S ∩ Sε(O) these equations define:

π(ε,N)(Yε) = {(x, y, z) ∈ R3 : gε(x, y, z) = hε(x, y, z) = 0},

where π(ε,N) denotes the stereographic projection defined by Equation (3.3).

10: If π(ε,N)(Yε) has no singularities, then

• return G =: gε(x, y, z) and H =: hε(x, y, z).

• else return “failure”.

Example 21. We consider C the plane complex algebraic curve defined by the squarefree
polynomial p(z, w) = z2w + w4 ∈ C[x, y], i.e.

C = {(z, w) ∈ C2 | z2w + w4 = 0}.

106 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

In Example 20, we computed the set of real singularities of C defined by the homoge-
neous polynomial p(z, w, u) = z2wu + w4 in the projective real plane, and we obtained
Sing(C) = {(0 : 0 : 1), (1 : 0 : 0)} with the Algorithm 1-ApproxRealSing. We now
want to compute the ε-links of both singularities from Sing(C). We notice that the affine
parts of the considered projective algebraic curve have the same singularity (0, 0). We
thus need to compute the ε-link of the singularity (0, 0) two times obtaining the same
duplicated result. We now compute the ε-link of the singularity Q(0, 0) using the Algo-
rithm 2−ApproxLink(ε,Q, C, p). We consider the input parameter to be ε = 0.5.

1. We substitute z ← a+ ib, w ← c+ id and we obtain

p(a, b, c, d) = a2c− b2c+ c4 − 2abd− 6c2d2 + d4+
+i(2abc+ a2d− b2d+ 4c3d− 4cd3).

2. We extract the real and the imaginary part from the equation p(a, b, c, d) = 0 and we
obtain the following two equations:

a2c− b2c+ c4 − 2abd− 6c2d2 + d4 = 2abc+ a2d− b2d+ 4c3d− 4cd3 = 0. (3.7)

3. We define α =: (2xε
κ , 2yε

κ , 2zε
κ , −ε+x2ε+y2ε+z2ε

κ), where κ = 1 + x2 + y2 + z2.

4. We substitute (a, b, c, d)← α in the Equations (3.7).

5. We clear out the denominators in the two previous equations and we obtain the
following two polynomials:

gε(x, y, z) = 8xyε3 − 8x5yε3 − 16x3y3ε3 − 8xy5ε3 + 8x2zε3 + 8x4zε3 − 8y2zε3−
8y4zε3 − 16x3yz2ε3 − 16xy3z2ε3 + 8x2z3ε3 − 8y2z3ε3 − 8xyz4ε3 + ε4 − 4x2ε4+
6x4ε4 − 4x6ε4 + x8ε4 − 4y2ε4 + 12x2y2ε4 − 12x4y2ε4 + 4x6y2ε4 + 6y4ε4−
12x2y4ε4 + 6x4y4ε4 − 4y6ε4 + 4x2y6ε4 + y8ε4 − 28z2ε4 + 60x2z2ε4−
36x4z2ε4 + 4x6z2ε4 + 60y2z2ε4 − 72x2y2z2ε4 + 12x4y2z2ε4−
36y4z2ε4 + 12x2y4z2ε4 + 4y6z2ε4 + 70z4ε4 − 60x2z4ε4+
6x4z4ε4 − 60y2z4ε4 + 12x2y2z4ε4 + 6y4z4ε4−
28z6ε4 + 4x2z6ε4 + 4y2z6ε4 + z8ε4 and
hε(x, y, z) = −4x2ε3 + 4x6ε3 + 4y2ε3 + 4x4y2ε3 − 4x2y4ε3 − 4y6ε3+
16xyzε3 + 16x3yzε3 + 16xy3zε3 + 8x4z2ε3 − 8y4z2ε3 + 16xyz3ε3+
4x2z4ε3 − 4y2z4ε3 + 8zε4 − 24x2zε4 + 24x4zε4 − 8x6zε4−
24y2zε4 + 48x2y2zε4 − 24x4y2zε4 + 24y4zε4 − 24x2y4zε4−
8y6zε4 − 56z3ε4 + 80x2z3ε4 − 24x4z3ε4 + 80y2z3ε4−
48x2y2z3ε4 − 24y4z3ε4 + 56z5ε4 − 24x2z5ε4−
24y2z5ε4 − 8z7ε4.

6. For ε = 0.5, the two polynomials g0.5(x, y, z), h0.5(x, y, z) define two space algebraic
surfaces, which determine as their intersection a space implicitly defined algebraic

3.2. Algorithm for Computing the Approximate Link of a Singularity 107

curve denoted withM :

M = {(x, y, z) ∈ R3 | g0.5(x, y, z) = h0.5(x, y, z) = 0} =
= {(x, y, z) ∈ R3|g0.5(x, y, z) = 0.0625− 0.25x2 + 0.375x4 − 0.25x6 + 0.0625x8+
1.xy − 1.x5y − 0.25y2 + 0.75x2y2 − 0.75x4y2 + 0.25x6y2 − 2.x3y3 + 0.375y4−
0.75x2y4 + 0.375x4y4 − 1.xy5 − 0.25y6 + 0.25x2y6 + 0.0625y8 + 1.x2z+
1.x4z − 1.y2z − 1.y4z − 1.75z2 + 3.75x2z2 − 2.25x4z2 + 0.25x6z2−
2.x3yz2 + 3.75y2z2 − 4.5x2y2z2 + 0.75x4y2z2 − 2.xy3z2−
2.25y4z2 + 0.75x2y4z2 + 0.25y6z2 + 1.x2z3 − 1.y2z3+
4.375z4 − 3.75x2z4 + 0.375x4z4 − 1.xyz4 − 3.75y2z4+
0.75x2y2z4 + 0.375y4z4 − 1.75z6 + 0.25x2z6+
0.25y2z6 + 0.0625z8 = 0,
h0.5(x, y, z) = −0.5x2 + 0.5x6 + 0.5y2 + 0.5x4y2 − 0.5x2y4 − 0.5y6 + 0.5z − 1.5x2z+
1.5x4z − 0.5x6z + 2.xyz + 2.x3yz − 1.5y2z + 3.x2y2z − 1.5x4y2z + 2.xy3z+
1.5y4z − 1.5x2y4z − 0.5y6z + 1.x4z2 − 1.y4z2 − 3.5z3 + 5.x2z3−
1.5x4z3 + 2.xyz3 + 5.y2z3 − 3.x2y2z3 − 1.5y4z3 + 0.5x2z4−
0.5y2z4 + 3.5z5 − 1.5x2z5 − 1.5y2z5 − 0.5z7 = 0}.

We notice that the polynomials g0.5(x, y, z), h0.5(x, y, z) define two implicit algebraic sur-
faces S1, S2 in R3 whose intersection is a space implicit algebraic curveM. In order to visu-
alize this curve and the surfaces S1, S2, we need specific algebraic and geometric algorithms.
For this purpose we use the Axel free system developed by [Alberti and Mourrain, 2007,
Wintz, 2008]. We implement the Algorithm 2-ApproxLink in Axel, and thus we compute
and we visualize the space implicit algebraic curve M and the surfaces S1, S2. For the
space implicit algebraic curve M, Axel uses subdivision methods from [Liang et al., 2008]
and it outputs a piecewise linear approximation as a 3-dimensional graph data structure,
see Figure 3.1. This 3-dimensional graph data structure is a set of edges in R3 together
with their Euclidean space coordinates and a set of edges connecting them. In addition,
this 3-dimensional graph data structure is called the topology of the space algebraic curve.
From this figure, we also notice that for ε = 0.5, the space algebraic curve M has no sin-
gularities (i.e. it is a smooth and closed space algebraic curve), and thus it represents the
ε-link Lε of the singularity (0, 0) of C for ε = 0.5, i.e. M coincides with π(ε,N)(Yε). We say
that the ε-link Lε is an ε-algebraic link. We observe that Lε is an ε-differentiable algebraic
link. Moreover, in this case the ε-link Lε is in fact the link of the singularity (0, 0) of the
curve C defined by the squarefree complex polynomial z2w+w4 ∈ C[z, w], and the surfaces
S1, S2 are part of the Milnor fibration as explained in Subsection 2.4.2. In this case we say
that L is an algebraic link. In addition, we notice that L is in fact a differentiable algebraic
link.

3.2.2 Applications of the Algorithm

In our approach, we approximate an ε-differentiable algebraic link, namely the intersection
of G and H computed by the Algorithm 2-ApproxLink by a piecewise linear algebraic
link. From now on, we only consider in our study piecewise linear algebraic links. We recall
that with the Algorithm 2-ApproxLink we compute the ε-link Lε of the singularity Q of
the plane complex algebraic curve C defined by the squarefree polynomial p(z, w) ∈ C[z, w].
In our approach, we basically computed two polynomials G,H ∈ R[x, y, z] by using the
stereographic projection and we showed that the ε-link Lε of the singularity Q is the zero
common set ofG,H.Moreover, Lε is a smooth and closed implicit algebraic curve in R3 given
as the intersection of two implicit space algebraic surfaces in R3 with defining polynomials
G,H. If the zero common set of G and H has singularities, then Lε is not a link (i.e. it is not

108 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

Figure 3.1: Link of the singularity (0, 0) of the plane complex algebraic curve C defined by
z2w+w4 = 0. From left to right: (1) the link L of the singularity (0, 0) of C represented by
a link with 2 components. The link L is computed as a 3-dimensional graph data structure;
(2) the two algebraic surfaces that define as their intersection the link L. Pictures produced
with GENOM3CK in Axel, see Chapter 5 for more information.

a smooth curve) and we return an error message. We call the ε-link Lε an ε-differentiable
algebraic link.
For the implementation of the Algorithm 2-ApproxLink, we use the Axel free algebraic
geometric modeler. Axel uses certified algorithms [Liang et al., 2008] to compute a piece-
wise linear approximation L

′

ε for the ε-differentiable algebraic link Lε, which is isotopic to
Lε, i.e. L

′

ε can be continuously deformed into Lε. We recall that L
′

ε is computed as a
3-dimensional graph data structure Graph = 〈V,E〉, where V is a set of points (or vertices)
together with their Euclidean coordinates in R3 and E is a set of edges connecting them.
We denote L

′

ε := Graph(Lε).
Next, from the output Graph(Lε) returned by Axel for each ε-differentiable algebraic link
Lε, we compute the diagram of Graph(Lε) denoted by D

(
Graph(Lε)

)
, as introduced

in Chapter 2, Subsection 2.3.3, Definition 38. We basically compute the elements of
D
(
Graph(Lε)

)
, i.e. the crossing points, the arcs and the number of (knot) components

of each diagram. We also compute the type of each crossing point, i.e. righthanded or
lefthanded crossing. These combinatorial information computed for each ε-differentiable
algebraic link allows us to compute the ε-Alexander polynomial of each singularity of the
plane complex algebraic curve as explained in Chapter 2, Subsection 2.4.3.

3.3 Algorithm for Computing the Approximate Alexan-
der Polynomial

3.3.1 Sweep-Line Algorithms from Computational Geometry

This subsection contains the results from the paper [Hodorog et al., 2011] and from the tech-
nical report [Hodorog and Schicho, 2010a]. We present an adapted version of the Bentley-
Ottmann algorithm [Berg et al., 2008] for computing all the intersection points among the
edges of the projection of a 3-dimensional graph. In addition, the adapted algorithm com-
putes some extra information on each intersection point and on the pair of edges that
contains it. For our purpose, the adapted Bentley-Ottmann algorithm operates on a 3-
dimensional graph data structure, which represents the piecewise linear approximation of
a closed and smooth space algebraic curve, implicitly defined as the intersection of two
algebraic surfaces and computed by the Algorithm 2-ApproxLink. We compute this space
algebraic curve as the ε-link Lε of the singularity Q of a plane complex algebraic curve C

3.3. Algorithm for Computing the Approximate Alexander Polynomial 109

defined by the squarefree polynomial p(z, w), as described in Section 3.2.
We manage the adapted version of the Bentley-Ottmann algorithm in a simpler way than
in the original version because the 3-dimensional graph has some special properties as de-
scribed in [Diestel, 2005]: (i) it consists of several cycles; (ii) it is a regular graph, i.e. it
contains no loops or multiple edges; (iii) and its projection contains at most one crossing
point. The first two properties are always guaranteed since the 3-dimensional graph repre-
sents the piecewise linear approximation of an implicitly defined space algebraic curve, which
is closed and smooth (i.e. it does not intersects itself). We perform a test to check whether
the third property holds for the given 3-dimensional graph and if the test fails, then we re-
port a failure message. Using the free algebraic geometric modeler Axel [Wintz et al., 2006]
we compute efficient and robust results.
For our purpose, the adapted Bentley-Ottmann algorithm offers essential benefits: it al-
lows us to compute the approximate Alexander polynomial of the singularity of a plane
complex algebraic curve. From the approximate Alexander polynomial we compute other
approximate invariants of the singularity, e.g. the approximate Milnor number and the
approximate delta-invariant. In this way, we recover topological local information on each
singularity of a plane complex algebraic curve. Thus we can use the adapted algorithm
to solve a specific problem from algebraic geometry, i.e. the problem of computing sev-
eral topological invariants for each singularity of a plane complex algebraic curve. These
topological invariants play an important role in the classification and the analysis of the
singularities of a plane complex algebraic curve as discussed in [Arnold et al., 1998].
We recall that the Bentley-Ottmann algorithm for reporting the pairwise intersections
among a set of objects in the plane, proved itself useful in many applications from combi-
natorial geometry and computer graphics. A generalized version of the Bentley-Ottmann
algorithm [Bieri and Schmidt, 1991] computes the pairwise intersections among geometric
objects in Rd. The Bentley-Ottmann algorithm uses a sweep technique, i.e. a sweep plane
(or a sweep line in R2) sweeps the space Rd (or R2) that contains a set of geometric objects.
At certain positions called event points, the sweep is interrupted and the problem is locally
solved. The sweep is greedy, without any backtracking.

Data Structures

For our study, we define a 3-dimensional graph data structure as follows:

Definition 59. A (3-dimensional) graph is defined as a pair G = 〈V,E〉, where V is a list of
points (vertices) in the 3-dimensional space together with their Euclidean coordinates, and
E is a list of edges connecting them, i.e. V = {p(x, y, z) ∈ R3} and E = {e(i, j) | i, j ∈ V }.

We are interested in the following elements of a 3-dimensional graph:

Definition 60. A point (or a vertex) in the 3-dimensional graph is a 4-tuple of the form
p(index , x, y, z), where index ∈ Z uniquely identifies each point in the graph, and (x, y, z) ∈
R3 are the Euclidean coordinates of the point. An edge in the 3-dimensional graph is defined
as a 2-tuple e(s, d), where s is the index of the source point of e and d is the index of the
destination point of e, see Figure 3.2.

We now present several notations, which we use in the rest of this thesis.

Remark 11. We introduce the following notations:

• A 3-dimensional graph is denoted as a pair G = 〈V,E〉, where V is a set of points in
the 3-dimensional space together with their Euclidean coordinates, and E is a set of
edges connecting them, i.e. V = {p(x, y, z) ∈ R3} and E = {e(i, j) | i, j ∈ P}.

110 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

A(s, x1, y1, z1)

B(d, x2, y2, z2)

#
e(s,d)

#ccccccccccccccccccccccccccc

Figure 3.2: An edge e(s, d) in a 3-dimensional graph. The edge e is determined by its source
point A(s, x1, y1, z1) and by its destination point B(d, x2, y2, z2), where s, d ∈ Z uniquely
identify the points A,B and (x1, y1, z1), (x2, y2, z2) ∈ R3 are the Euclidean coordinates of
A,B.

• We denote a point in the graph as a 4-tuple p(index , x, y, z), where index ∈ Z uniquely
identifies each point in the graph, and (x, y, z) ∈ R3 are the Euclidean coordinates of
the point.

• We denote an edge in the graph as a 2-tuple e(s, d), where s is the index of the source
point of e and d is the index of the destination point of e.

• We use the dot notation for accessing the elements of a tuple, i.e. p.index , p.x, p.y,
p.z, e.s, e.d.

• For a random point p(index , x, y, z) of a 3-dimensional graph, we introduce the fol-
lowing notations:

– point3D(index) = (x, y, z) ∈ R3 for denoting the x, y, z coordinates of index .

– point2D(index) = (x, y) ∈ R2 for denoting the x, y coordinates of index . We
alternatively use the notation xycoord(index) = (x, y) ∈ R2 for denoting the x, y
coordinates of index .

– xcoord(index) = x ∈ R for denoting the x coordinate of index .

– ycoord(index) = y ∈ R for denoting the y coordinate of index .

– zcoord(index) = z ∈ R for denoting the z coordinate of index .

• For a random edge e(a, b) of a 3-dimensional graph with a, b ∈ Z, we use the notations:

– source(e) = a ∈ Z for denoting the index of the source point of e.

– destination(e) = b ∈ Z for denoting the index of the destination point of e.

• We access the i-th component of a list (or a vector) SW with the underscore notation
for the index i, i.e sw i. We consider that the indexes of a list (or a vector) start from
0. In addition, we distinguish between the name of the list, which is denoted with
upper case letters (i.e. SW), and the elements of the list themselves that are denoted
with lower case letters, i.e. sw0.

• Given a list (or a vector) denoted with SW , we use the notation length(SW) to denote
its length.

• In order to state that an object is not empty we will use the predicate symbol
IsNotEmpty(object), which will be true when the object is not empty, and false oth-
erwise.

• We will use the Null pointer notation as in the C++ programming language, whenever
an algorithm has “nothing“ as its returning value.

3.3. Algorithm for Computing the Approximate Alexander Polynomial 111

We recall that a path in the 3-dimensional graph is a sequence of consecutive edges in a
graph, and a cycle (circuit) is a path that ends at the vertex it begins. In addition, a
loop is an edge that connects a vertex to itself, and multiple edges are two or more edges
connecting the same two vertices, see [Diestel, 2005] for details.
We assume that the 3-dimensional graph is simple (regular), i.e. it has no multiple edges
or loops as in Figure 3.3. For our purpose, we are interested in the projection of a 3-
dimensional graph that always consists of several cycles, see Figure 3.4 for an example. We
consider the edges of a 3-dimensional graph G to be “small” edges, i.e. the projection of
any edge of G has at most one crossing point. If this property is not true for a certain pair
of edges from a 3-dimensional graph, then we report a failure message during runtime.

(a) (b)

Figure 3.3: (a) A graph with multiple edges. (b) A graph with a loop.

Figure 3.4: (a) Two algebraic surfaces that implicitly define as their intersection a closed
and smooth space algebraic curve computed as a 3-dimensional graph G with 3 cycles. (b)
The projection of the 3-dimensional graph G with 3 cycles from (a). Pictures produced
with GENOM3CK in Axel, see Chapter 5 for details.

Remark 12. The 3-dimensional graph G that we study in this subsection represents
the piecewise linear approximation of a closed and smooth implicitly defined space al-
gebraic curve. We compute this curve as the ε-link Lε of the singularity (0, 0) of a
plane complex algebraic curve C. For sufficiently small ε, from Chapter 2, Theorem 10
we know that Lε equals the link of the singularity (0, 0) of C and it characterizes com-
pletely the topology of the curve C around its singularity (0, 0). For instance, in Figure 3.4
we visualize the link of the singularity (0, 0) of the plane complex algebraic curve defined
by the squarefree polynomial x3 − y3 = 0. In the literature [Sendra and Alcazar, 2005],
[Liang et al., 2008], the 3-dimensional graph computed as the piecewise linear approxima-
tion of an implicitly defined space algebraic curve is called the topology of the curve. We use
the Axel [Wintz et al., 2006] free algebraic geometric modeler to compute the 3-dimensional
graph as presented in Section 3.2. For the special case of smooth implicitly defined space

112 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

algebraic curves, Axel uses certified algorithms to compute their topology as explained in
Subsection 3.2.2. Thus in our study, the 3-dimensional graph G represents the approxima-
tion denoted with Graph(Lε) of the ε-link Lε of the singularity (0, 0) of the plane complex
algebraic curve C. We mention that basically the ε-link Lε is computed using the Axel
system as a graph data structure, and thus in our study G = Graph(Lε).

We state the subproblem that we want to solve:

Subproblem 1. Given the following:

(i) a 3-dimensional graph G = 〈V,E〉 as in Definitions 59 and 60, which has only ”small”
edges, which is regular and which consists of several cycles,

our goal is:

(1) to compute the intersection points among all the edges of the projection of G. In
addition, we compute some extra information:

(1.1) for each intersection point Q find the pair of edges (em, en) that contains it.

(2.2) the pair of edges (em, en) is ordered, i.e. em is under en in the 3-dimensional
Euclidean space R3.

Basic Coordinate Geometry Algorithms

To solve Subproblem 1 we first need to design several algorithms from coordinate geometry,
which we call basic coordinate geometry algorithms, since they are straightforward and they
do not imply a lot of complicated computations. These algorithms allow us:

• to compute the slope of a line, given two points in R2;

• to compute the Y -intercept of a line, given two points in R2;

• to compute the equation of a line, given its slope and its Y -intercept;

• to compute the equation of a line, given two points in R2;

• to decide whether a point in R2 lies on a line of a certain given equation.

We denote the slope of a line in the coordinate plane system Oxy with m. We define m
as the ratio of the change in the y-value over the corresponding change in the x-value
between two distinct points on the line. We consider A(a, b) and B(u, v) two points with
given coordinates in the 2-dimensional Euclidean plane R2. It follows that the slope of the

line AB denoted with m is defined as the ratio m =
v − b
u− a

, under the hypothesis that

(u − a) 6= 0. We notice that if (u − a) = 0, then the value of the slope m is ∞, thus
undefined. In fact if m = ∞, then the corresponding line is a vertical line, i.e. a parallel
line to the y-axis. We recall that if two lines have the same slope, then they are parallel.
We now describe the algorithm GetSlope(A,B), which computes the slope of the line AB
determined by two points A,B in the Euclidean plane R2.

3.3. Algorithm for Computing the Approximate Alexander Polynomial 113

Algorithm 3 Slope of the line AB, determined by two points A,B in the Euclidean plane:
GetSlope(A,B)
Input: A(a, b), B(u, v) ∈ R2 two points in the Euclidean plane R2.
Output: m ∈ R,

where m equals the slope of the edge (and of the line) AB, determined by the two
points A,B.

1: if (u− a) 6= 0 then

2: return m =
v − b
u− a

3: else
4: print Zero denominator! The slope is undefined!
5: end if

We denote the Y -intercept of a line in the coordinate plane system Oxy with n. We define
n as the distance on the y-axis from the origin O(0, 0) to the point where the line intercepts
the y-axis of the coordinate plane system Oxy. If we consider P (0, n) to be the point where
the line intercepts the y-axis, then the Y -intercept equals the y-coordinate of the point P.
Given the same points A(a, b), B(u, v) as in Algorithm 3-GetSlope and supposing that
the equation of the line AB determined by the two points A and B is y = mx+ n, where

m =
v − b
u− a

with u − a 6= 0 is the slope of the line as computed with the Algorithm 3-

GetSlope(A,B) and n is the Y -intercept of the line AB, then we can compute the value

of the Y -intercept as n = y − mx = y − v − b
u− a

x, assuming that u − a 6= 0. Since the

point B(u, v) belongs to the line AB, we obtain the value for the Y -intercept to be n =

v− v − b
u− a

u =
b · u− a · v
u− a

, for (u−a) 6= 0. If u−a = 0, then we notice that the Y -intercept

of the line AB is undefined. We present the algorithm GetYIntercept(A,B) for computing
the Y -intercept of the line AB, determined by two points A,B in the Euclidean plane R2.

Algorithm 4 Y -intercept of the line AB, determined by two points A,B in the Euclidean
plane: GetYIntercept(A,B)
Input: A(a, b), B(u, v) ∈ R2 two points in the Euclidean plane R2.
Output: n ∈ R,

where n equals the Y -intercept of the edge (and of the line) AB, determined by the two
points A,B.

1: if (u− a) 6= 0 then

2: return n =
b · u− a · v
u− a

3: else
4: print Zero denominator! The Y -intercept is undefined!
5: end if

We recall that a line in the coordinate plane system Oxy, with slope m and Y -intercept
n, has the defining equation y = mx + n or equivalently mx − y + n = 0. Given the

same points A(a, b), B(u, v) with m =
v − b
u− a

and n =
b · u− a · v
u− a

for u − a 6= 0 as

computed in Algorithm 3-GetSlope and respectively in Algorithm 4-GetYIntercept
for (u − a) 6= 0, we get the following form for the defining equation of the line AB :

y =
v − b
u− a

· x − b · u− a · v
u− a

. A straightforward computation produces the equation of the

114 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

line AB : (b− v)x+ (u− a)y + (a · v − b · u) = 0. We notice that for the defining equation
of an arbitrary line AB computed from two points A,B in R2, it is enough to return the
coefficients of the defining equation of the line in the variables x and y (if this equation is
defined), as described in the following algorithm EqnLine(A,B).

Algorithm 5 Equation of the line AB, determined by two points A,B in the Euclidean
plane: EqnLine(A,B)
Input: A(a, b), B(u, v) ∈ R2 two points in the Euclidean plane R2.
Output: α, β, γ ∈ R,

where α, β, γ are the real coefficients of the equation of the line AB : αx+ βy + γ = 0.

1: if (u− a) 6= 0 then
2: α = (b− v)
3: β = (u− a)
4: γ = a · v − b · u
5: return (α, β, γ)
6: else
7: print The equation of the line AB is undefined!
8: end if

In the rest of this thesis, we consider an edge in the projection of a 3-dimensional graph data
structure as a line in the Euclidean plane. We notice that if we are given an edge as a pair
e(s, d), where s is the index of the source point of e and d is the index of the destination
point of e, then we can compute the equation of the edge e using the Algorithm 5-
EqnLine(A,B), where the coordinates of the source point and of the destination point of
e are given by A

(
xcoord(s), ycoord(s)

)
and B

(
xcoord(d), ycoord(d)

)
. Thus if we are given

an arbitrary point Q(q, r) and an arbitrary edge as a pair e(s, d), we can first compute the
equation of the edge e and then we can decide whether the point Q(q, r) belongs to the edge
e(s, d) or not. If we suppose that the equation of the edge returned by the Algorithm 5-
EqnLine(A,B) is defined and is given by the equation αx+βy+γ = 0, then we can compute
the quantity value = αq+βr+γ. It follows that the point Q(q, r) belongs to the edge e(s, d)
if and only if value = 0. We now describe the algorithm EvalAtPointEqnLine

(
e(s, d), Q

)
,

which computes the value of the equation of the edge e(s, d) evaluated at the point Q(q, r).

Algorithm 6 Value of the equation of the edge e(s, d) evaluated at the point Q from the
Euclidean plane: EvalAtPointEqnLine

(
e(s, d), Q

)
Input: e(s, d) an edge in the Euclidean plane R2,

Q(q, r) ∈ R2 a point in the Euclidean plane R2.
Output: value ∈ R,

where value equals the real value of the equation of the edge e evaluated at Q.

1: a = xcoord(s), b = ycoord(s)
2: u = xcoord(d), v = ycoord(d)
3: consider A(a, b), B(u, v)
4: if (u− a) 6= 0 then
5: (α, β, γ)=EqnOfLine(A,B)
6: return value = αq + βr + γ
7: else
8: print The equation of the edge e is undefined!
9: end if

3.3. Algorithm for Computing the Approximate Alexander Polynomial 115

We notice that all the basic coordinate geometry algorithms require O(1) constant time
and O(1) constant space (memory) for their computation.

Methodology

To solve Subproblem 1, we secondly compute the intersection points of all the edges of
the projection of a 3-dimensional graph, and for each intersection point, we compute the
pair of edges that contains it. For this purpose, we design a sweep line based algorithm as
the Bentley-Ottmann algorithm from [Berg et al., 2008]. We distinguish several steps for
our adapted Bentley-Ottmann algorithm, that we describe in comparison with the original
Bentley-Ottmann algorithm:

Step 1 (Ordering criteria). The edges of the projection of the 3-dimensional graph G
are oriented from left to right and they are ordered in the list of edges E = {e0, ..., eN} as
in Figure 3.5: (1) by the x-coordinates of their source points; (2) if the x-coordinates of
the source points of two edges coincide, then the two edges are ordered by the two slopes
of their supporting lines; (3) if the x-coordinates of the source points and the slopes of two
edges coincide, then the two edges are ordered by the y-coordinates of their destination
points. The ordering criteria is necessary for the correctness of the algorithm.

e0

??���������
e1

!!CC
CC

CC
C

XXX

W W W

z
z

z

z
z

z
e1

=={{{{{{{
e0 ++XXXXXXXX

e0

77ooooooo

e1

77ooooooo

Figure 3.5: Ordering criteria for the edges.

Step 2 (Sweep line paradigm). As in the Bentley-Ottmann algorithm, we consider a
vertical sweep line l that sweeps the plane from left to right. While l moves, it intersects
several edges from E, which are stored in a list denoted SW and that we call the sweep list.
The status of SW changes while l sweeps the plane and it is updated only at certain points
of the edges from E called event points. As in the Bentley-Ottmann algorithm the event
points are the source and the destination points of the edges (segments) and the detected
intersection points. In this algorithm, the sweep list SW is ordered by the y-coordinates of
the intersections of the edges of E with the sweep line l. Hence, as in the Bentley-Ottmann
algorithm, SW represents the status of the algorithm and it contains the ordered sequence
of segments intersecting the sweep line.

Step 3 (Initialization). We consider E the list of ordered edges as described in Step 1,
and SW the sweep list as described in Step 2. We denote with I the list of intersection
points of all the edges of the projection of the 3-dimensional graph G, and with EI the
list of all pairs of intersection edges that contain the intersection points. At the end of the
algorithm, the i-th element of the list EI represents the pair of edges that contains the i-th
intersection point from the list I, with the extra information that the first edge from the
pair of edges is under the second edge from the pair of edges in R3. In the initialization
step of our adapted Bentley-Ottmann algorithm, E contains all the ordered edges of the
projection of G, SW contains always the first two edges of E, whereas I and EI are empty.

116 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

Step 4 (Sweep line management). We observe that in E each index appears two times
since E always contains several cycles. This allows us to manage SW in a simpler way in
our adapted Bentley-Ottmann algorithm than in the original version. While we traverse
E, we insert the current edge em(sm, dm) from E in SW in the right position and that
is: (1) we search for an edge en(sn, dn) in SW such that its destination coincide with the
source of em ∈ E, i.e. dn = sm; if we find such an en ∈ SW we replace it with em ∈ E;
(2) if such an edge en ∈ SW does not exist, we insert em in SW depending on its position
against the current edges from SW . We assume SW = {ei

0, e
i
1, e

i
2, ..., e

i
k}, with ei

q ∈ E for
all q ∈ {1, ..., k}. There exists a unique index j with 0 ≤ j ≤ k such that ycoord(sm) is
larger than the y-coordinates of all the intersections of ei

0, ..., e
i
j with l, and smaller than

the y-coordinates of all the intersections of ei
j+1, ..., e

i
k with l. This index j can be found by

checking all the signs of the determinants constructed with (xycoord(sm), 1), (xycoord(si
j), 1)

and (xycoord(di
j), 1). Then we insert em in SW between the two edges ei

j and ei
j+1 and we

obtain SW = {ei
0, e

i
1, ..., e

i
j , em, e

i
j+1, ..., e

i
k}. When we insert an edge from E into SW on

the right position, we have to additionally update SW depending on the encountered event
points:

• we test each inserted edge in SW against its two neighbours for intersection. If an
intersection point P is found we report it together with the pair of edges that contains
it. In addition, we swap the edges that intersect in SW . As opposed to the original
Bentley-Ottmann algorithm after swapping the edges in SW , we do not test the edges
against their new neighbours for intersections because we consider only ”small” edges.

• we test each inserted edge in SW against its two neighbours for common destination.
In addition, when two edges are swapped in SW after reporting their intersection
point, we test them against their new neighbours for common destination. Whenever
we find two consecutive edges with common destinations we erase them from SW . As
opposed to the original Bentley-Ottmann algorithm after deleting edges from SW ,
we do not test the new neighbours for intersection because we consider only ”small”
edges.

We notice that in the adapted Bentley-Ottmann algorithm we basically process the pre-
ordered list of edges E in a for-loop in a way which makes the explicit use of a data structure
for storing the event points redundant. We recall that in the Bentley-Ottmann algorithm
a separate data structure such as a balanced binary search tree is required for storing the
event points, data structure which is not needed in our adapted version of the algorithm.

Remark 13. We mention briefly a way to modify the adapted Bentley-Ottmann algorithm
such that in the case of a 3-dimensional graph G with ”long” edges (i.e. the projection of
any edge of G has at least one crossing point), the algorithm would detect all the intersection
points and would not only report a failure message at runtime. The main idea is to update
the ordered list of edges E and the sweep list SW each time the algorithm reports an
intersection point as follows: if the algorithm reports the intersection point P (x, y) ∈ R2

together with the pair of edges (e1, e2) that contains P (x, y), then for i = 1, 2 we split
each edge of intersection ei in two new edges el

i, e
r
i . The new vertices el

i are determined
by the source point of ei and by the coordinates of P (x, y), whereas the new edges er

i are
determined by the coordinates of P (x, y) and by the destination point of ei, as described
in Figure 3.6. Then we update the lists SW and E as follows: we replace the edges ei by
el
i in SW , and we insert the edges er

i in E following the ordering criteria from Step 1,
Figure 3.5.

3.3. Algorithm for Computing the Approximate Alexander Polynomial 117

A

BC

D

•
P

e1

��?
??

??
??

??
??

??
??

??
??

??

e2

??���������������������

A

BC

D

P

el
1

��?
??

??
??

??
??

er
1

��?
??

??
??

??
??

el
2

??�����������

er
2

??�����������

Figure 3.6: Refinements of the adapted Bentley-Ottmann algorithm. If the intersection
point P is reported together with its corresponding pair of edges (e1, e2), then each edge
e1, e2 is split in two new edges, i.e. e1 is split in el

1, e
r
1, and e2 is split in el

2, e
r
2. The new

vertices el
i are determined by the source point of ei and by the coordinates of P , while the

new edges er
i are determined by the coordinates of P and by the destination point of ei, for

i ∈ {1, 2}. We replace the edges ei by el
i in SW , and we insert the edges er

i in E following
the ordering criteria from Step 1, Figure 3.5.

In the following we assume that we have computed: (1) a list I = {(xi, yi) ∈ R2} of the
intersection points of all the edges of the projection of a 3-dimensional graph; (2) and a list
EI of pairs of edges for I such that the i-th element of EI represents the pair of edges that
contains the i-th intersection point from I. In the example from Figure 3.4, our adapted
Bentley-Ottmann algorithm computes all the 6 intersection points together with the list of
pairs of edges that contain these intersection points.
To solve Subproblem 1, we now have to order each pair of edges from EI depending on the
Euclidean space coordinates of the intersection points from I. For instance, in Figure 3.7
we consider P (x, y) ∈ I the intersection point of the pair of edges (e1, e2) ∈ EI. We order
this pair such that the first component always lies under the second component in R3.
We assume that for i = {1, 2} the source and the destination points of ei are Ai(ai, bi, 0),
Bi(ui, vi, 0), which are the projections of A

′

i(ai, bi, ci), B
′

i(ui, vi, wi) from R3. To order the
pair of edges we proceed as follows:

1. For i = {1, 2} we compute the equations of the support lines Li for the edges ei in
R2. We use the determinant formula for the equations of the lines Li and we obtain:

Li(x, y) : det

 ai bi 1
ui vi 1
x y 1

 = 0 , (3.8)

and thus Li(x, y) : (bi − vi)x+ (ui − ai)y + aivi − biui = 0 for ui − ai 6= 0 .

2. We compute the coordinates z1, z2 of P1(x, y, z1) and P2(x, y, z2) in R3 as in Figure 3.7.
As an example we compute z1 (we proceed in the same way for z2). Firstly we compute
α1 from

α1L2(A1) + (1− α1)L2(B1) = 0 . (3.9)

Then we compute z1 as z1 = α1c1 + (1− α1)w1 .

3. If z1 < z2, then e1 is under e2 in R3 and we return the pair (e1, e2) for P (x, y)
(
i.e. e1

is the undergoing edge and e2 is the overgoing edge for (e1, e2)
)
; otherwise e2 is under

e1 in R3 and we thus return the pair (e2, e1) for P (x, y)
(
i.e. e2 is the undergoing

edge and e1 is the overgoing edge for (e2, e1)
)
, as in the example from Figure 3.7.

118 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

A
′

1(a1, b1, c1)

B
′

1(u1, v1, w1)A
′

2(a2, b2, c2)

B
′

2(u2, v2, w2)
•

P2(x, y, z2)

P1(x, y, z1)

A1(a1, b1, 0)

B1(u1, v1, 0)
A2(a2, b2, 0)

B2(u2, v2, 0)
•

P (x, y)

22ddddddddddddddddddddddd --[[[[[[[[[[

e1

22dddddddddddddddddddddddd

e2
\\\\\\\\\\

--\\\\\\\\\\

Figure 3.7: Ordering the pair of edges (e1, e2) that contains an intersection point P (x, y)
with respect to the Euclidean space coordinates of the edges e1, e2.

Description of the Sweep-Line Algorithms

We now describe the algorithms that we design for solving Subproblem 1, algorithms that
are based on the methods presented in the previous paragraph. We basically distinguish
two basic algorithms for solving Subproblem 1, i.e.:

(1) An algorithm for computing all the intersection points among all the edges of the
projection of a 3-dimensional graph. In addition, for each detected intersection point,
this algorithm computes the pair of edges that contains it. We refer to this algorithm
as the algorithm for computing the intersection points.

(2) An algorithm that arranges the pair of edges reported for each computed intersection
point depending on the Euclidean space coordinates of the edges and of the detected
intersection point. For instance, if I(x, y) is the intersection point reported for the pair
of edges (e1, e2) with I(x, y) = e1 ∩ e2, then this algorithm will report the pair of edges
(e1, e2) if e1 is below e2 in the 3-dimensional Euclidean space, or the algorithm will
report the pair (e2, e1) if e2 is below e1 in the 3-dimensional Euclidean space. We refer
to this algorithm as the algorithm for arranging the pair of intersecting edges.

As we discussed in the previous paragraph, the first algorithm is a sweep-line algorithm,
while the second algorithm depends on the first one. Therefore we call these algorithms
sweep-line algorithms. We sometimes refer to both of these algorithms as an adapted-version
of the Bentley-Ottmann algorithm.

Algorithm for computing the intersection points. For solving Subproblem 1, we
first need a basic algorithm to compute the intersection point of two edges e1, e2, if such an
intersection point exists. We call this algorithm FindIntersection(e1, e2). This algorithm
uses an auxiliary algorithm ComputeIntersection(e1, e2), which effectively computes the
coordinates of the intersection point I(x, y) of the pair of edges (e1, e2). In the following we
describe the main idea of the algorithm ComputeIntersection. To find the coordinates of
the intersection point I(x, y), we solve a linear system of two equations in the x, y unknowns,
system that is determined by the defining equations of the two edges e1, e2. We first extract
the coordinates of the source and of the destination points of each edge e1, e2. Using the
Algorithm 3-GetSlope and the Algorithm 4-GetYIntercept, we compute the slopes and
the Y -intercepts of the two edges denoted with m1, n1 for e1 and respectively with m2, n2

3.3. Algorithm for Computing the Approximate Alexander Polynomial 119

for e2. We get the following linear system of equations in the x, y indeterminates, system
which is formed by the equations of the two edges e1, e2: m1x− y + n1 = 0

m2x− y + n2 = 0.
(3.10)

We assume thatm1−m2 6= 0 and by using Cramer’s rule we get as solutions to System (3.10)
the coordinates (x, y) of the intersection point I(x, y) of the pair of edges (e1, e2), where x =
n2 − n1

m1 −m2
and y =

m1 · n2 −m2 · n1

m1 −m2
. We add that if m1−m2 = 0 (i.e. the two edges e1 and

e2 are parallel), then we report a failure message. We now present the auxiliary algorithm
ComputeIntersection(e1, e2) for computing the coordinates (x, y) of the intersection point
I(x, y) of the pair of edges (e1, e2), if such an intersection point exists.

Algorithm 7 Compute the coordinates of the intersection point I(x, y) ∈ R2 of the pair
of edges (e1, e2) in the Euclidean plane: ComputeIntersection(e1, e2)
Input: e1(s1, d1), e2(s2, d2) two edges in the Euclidean plane R2.
Output: (x, y) ∈ R2,

where the pair (x, y) represents the coordinates of the intersection point I(x, y) of the
pair of edges (e1, e2), i.e. I(x, y) = e1 ∩ e2.

1: a1 = xcoord(s1), b1 = ycoord(s1), u1 = xcoord(d1), v1 = ycoord(d1)
2: a2 = xcoord(s2), b2 = ycoord(s2), u2 = xcoord(d2), v2 = ycoord(d2)
3: consider A1(a1, b1), B1(u1, v1)
4: consider A2(a2, b2), B2(u2, v2)
5: m1 = GetSlope(A1, B1), n1 = GetYIntercept(A1, B1)
6: m2 = GetSlope(A2, B2), n2 = GetYIntercept(A2, B2)
7: if (m1 −m2 6= 0) then

8: x=
n2 − n1

m1 −m2
, y=

m1 · n2 −m2 · n1

m1 −m2
9: return (x, y)

10: else
11: print The two edges are parallel and thus they do not intersect!
12: end if

Next, we explain the idea of the algorithm FindIntersection(e1, e2). This algorithm tests
whether two edges e1, e2 intersect or not. If the edges intersect, then the algorithm uses
the auxiliary algorithm called ComputeIntersection(e1, e2) to compute the coordinates of
the intersection point I(x, y) of the pair of edges (e1, e2). If the edges do not intersect, then
the algorithm returns the Null pointer. We present the test for deciding whether two edges
e1, e2 intersect or not. Given two edges e1(s1, d1), e2(s2, d2) we first extract the coordinates
of their source and of their destination points. We assume that e1 has the source point
A1(a1, b1) and the destination point B1(u1, v1), whereas e2 has the source point A2(a2, b2)
and the destination point B2(u2, v2). We compute the defining equations of the two edges e1
and e2 using their slopes and their Y -intercepts, i.e. m1, n1 for e1 and m2, n2 for e2. Hence,
we compute the equations of the two edges e1 and e2 denoted with L1(x, y), and respectively
with L2(x, y). By a straightforward computation we obtain L1(x, y) : m1 · x − y + n1 = 0
and L2(x, y) : m2 ·x−y+n2 = 0. If the two edges e1 and e2 do intersect, then the following
two conditions have to be simultaneously true:

1. condition 1: we consider L1(x, y) the equation of the edge e1. If e1 intersects e2, then
the points A2 and B2 have to be on opposite semiplanes determined by e1, i.e. the
condition L1(A2) · L1(B2) < 0 has to be true;

120 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

2. condition 2: we consider L2(x, y) the equation of the edge e2. If e2 intersects e1, then
the points A1 and B1 have to be on opposite semiplanes determined by e2, i.e. the
condition L2(A1) · L2(B1) < 0 has to be true.

We now describe the algorithm FindIntersection(e1, e2), which returns the coordinates
(x, y) of the intersection point I(x, y) of the pair of edges (e1, e2) in R2, if such an intersection
point exists, and which returns the Null pointer if such an intersection point does not exist.

Algorithm 8 Decide whether two edges e1 and e2 intersect in the Euclidean plane and
compute the intersection point in the affirmative case: FindIntersection(e1, e2)
Input: e1(s1, d1), e2(s2, d2) two edges in the Euclidean plane R2.
Output: If the two edges e1 and e2 intersect, then return their intersection point I(x, y)

with I = e1 ∩ e2, otherwise return the Null pointer.

1: a1 = xcoord(s1), b1 = ycoord(s1), u1 = xcoord(d1), v1 = ycoord(d1)
2: a2 = xcoord(s2), b2 = ycoord(s2), u2 = xcoord(d2), v2 = ycoord(d2)
3: consider A1(a1, b1), B1(u1, v1)
4: consider A2(a2, b2), B2(u2, v2)
5: (m1, n1, p1) = EqnLine(A1, B1)
6: (m2, n2, p2) = EqnLine(A2, B2)
7: value1=EvalAtPointEqnLine

(
A2, e1(s1, d1)

)
8: value2=EvalAtPointEqnLine

(
B2, e1(s1, d1)

)
9: value3=EvalAtPointEqnLine

(
A1, e2(s2, d2)

)
10: value4=EvalAtPointEqnLine

(
B1, e2(s2, d2)

)
11: if (m1 −m2) = 0 then
12: return Null {the edges are parallel}
13: end if
14: if (value1 · value2 < 0) and (value3 · value4 < 0) then
15: return (x, y) =ComputeIntersection(e1, e2) {the edges do intersect}
16: else
17: return Null {the edges do not intersect}
18: end if

For solving Subproblem 1, we secondly need a basic algorithm to introduce a current
edge e(s, d) from E into the right position in the sweep list SW as described in Step
4 (Sweep line management) of the adapted Bentley-Ottmann algorithm. The main
purpose of this algorithm is thus to keep the sweep list SW ordered. We call this basic
algorithm InsertSW(e,SW). The algorithm InsertSW(e,SW) uses an auxiliary algorithm
ComputeDet(A,B, P). This auxiliary algorithm computes the value of the determinant
formed by the coordinates of the three points A(a, b), B(u, v), P (m,n).
In the following, we assume that an arbitrary edge sw(s, d) from the sweep list has the point
A(a, b) as its source point and the point B(u, v) as its destination point. Given the point
P (m,n) we want to test whether P lies above or below the edge sw in the 2-dimensional
Euclidean plane R2. If the value of the determinant formed by the three points A,B, P
computed with the algorithm ComputeDet(A,B, P) is positive, then the point P is above
the edge sw . If the value of the determinant is negative, then the point P is below the edge
sw . Moreover, if the value of the determinant is zero, then the three points are collinear. In
addition, if we assume that the point P is the source point of the current edge e(s, d) from
E, which has to be inserted in the sweep list SW in the right position, then by computing
the value of the determinant formed by the three points A,B, P , we can decide the position
of the edge e from E towards the edge sw from the sweep list SW . We distinguish the
following possible cases:

3.3. Algorithm for Computing the Approximate Alexander Polynomial 121

(1) If the value of the determinant is positive, then e is above sw in R2 and thus e has to
be inserted after the edge sw in the sweep list SW , see Figure 3.8, (a).

(2) If the value of the determinant is negative, then e is below sw in R2 and thus e has to
be inserted before the edge sw in the sweep list SW , see Figure 3.8, (b).

(3) If the value of the determinant is zero, then e and sw lie on the same line, i.e. they
have a common index point (either the source point or the destination point). In this
case, we insert the current edge e from E instead of the edge sw in the sweep list SW ,
see Figure 3.8, (c).

A B

P
4

e

4tttttttttttt

� sw �

(a)

A B

P
5

e

5uuuuuuuuuuuuu

� sw �

(b)

/
sw

/ooooooo

/
e

/ooooooo

(c)

Figure 3.8: Position of an edge e(s, d) from the ordered list of edges E towards an arbitrary
edge sw from the sweep list SW .

Algorithm 9 Compute the value of the determinant formed by the Euclidean plane coor-
dinates of three points A,B, P in R2 : ComputeDet(A,B, P)
Input: A(a, b), B(u, v), P (m,n) ∈ R2.
Output: det(A,B, P) ∈ R,

where det(A,B, P) is the value of the determinant formed by the three points A,B, P.

1: return det(A,B, P) = −u · b+m · b+ a · v −m · v − a · n+ u · n

We now describe the algorithm InsertSW(e,SW), which inserts the current edge e from E in
the sweep list SW on the right position as described in Step 4 (Sweep line management)
of the adapted Bentley-Ottmann algorithm. As discussed in the previous paragraph, we
assume that the edge e(s, d) has the point P (m,n) as its source point. We consider an
arbitrary edge at position i in the sweep list, which we denote with sw i(s, d), and for which
the source point is A(a, b) and the destination point is B(u, v). If we assume that the sweep
list SW is ordered as described in Step 4 (Sweep line management) of the adapted
Bentley-Ottmann algorithm depending on the y-coordinates of its edges, then the position
of the edge e(s, d) towards the edges from the sweep list can be described as follows:

(1) either the edge e(s, d) is below sw i in R2 and e(s, d) is below all the other edges from
the sweep list SW in R2. In addition, there are no other edges from the sweep list SW
below e in R2. For visualizing the described situation see Figure 3.9, (a);

(2) either the edge e(s, d) is above sw i in R2 and e(s, d) is above all the other edges from
the sweep list SW in R2. Moreover, there are no other edges from the sweep list SW
above e in R2. For a better understanding of this situation see Figure 3.9, (b);

(3) or finally, the edge e(s, d) is above the edge sw i from the sweep list SW in R2. In this
case, it follows that the edge e(s, d) is above all the edges which are below sw i in R2

122 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

and that the edge e(s, d) is below all the other edges from the sweep list SW in R2.
For a graphical description of this situation, see Figure 3.9, (c).

swi+2
\\\\\\\\\\\\

swi aaaaaaaaaaaa

swi+1
\\\\\\\\\\\\

%
e

%eeeeeeeeeeee

(a)

swi aaaaaaaaaaaa

� e
�\\\\\\\\\\\\

swi−1 eeeeeeeeeeee

swi−2 eeeeeeeeeeee

(b)

! e !aaaaaaaaaaaa

swi+1
\\\\\\\\\\\\

swi eeeeeeeeeeee swi−1 eeeeeeeeeeee
(c)

Figure 3.9: Position of an edge e(s, d) from the ordered list of edges E towards the edges
from the sweep list SW .

We now describe the algorithm InsertSW(e,SW), which inserts the current edge e from
the ordered list of edges E in the sweep list SW as described in Step 4 (Sweep line
management) of the adapted Bentley-Ottmann algorithm.

Algorithm 10 Insert an edge e from the ordered list of edges E in the sweep list SW
in the right position as described in Step 4 of the adapted Bentley-Ottmann algorithm:
InsertSW(e,SW)
Input: e(s, d) an edge in the 2-dimensional Euclidean plane R2,

SW the sweep list ordered as in Step 4 of the adapted Bentley-Ottmann algorithm.
Output: SW the sweep list ordered as in Step 4 of the Bentley-Ottmann algorithm, in

which we insert e on the right position.

1: for i = 0 to length(SW) do
2: if we find sw i in SW such that source(e) = destination(swi) then
3: insert e instead of sw i in SW
4: else
5: take P ← source point of e
6: take A← source point of sw i

7: take B ← destination point of sw i

8: value =ComputeDet(A,B, P)
9: if (value < 0) and (there are no edges in SW below e) then

10: insert e before sw i in SW {e is below sw i and above no edges}
11: else if (value ≥ 0) and (there are no edges in SW above e) then
12: insert e after sw i in SW {e is above sw i and below no edges}
13: else
14: insert e after sw i in SW {e is above sw i and below several edges}
15: end if
16: end if
17: return SW .
18: end for

We now assume that we know the following algorithms: (i) the FindIntersection(e1, e2)
algorithm for finding the intersection point of two edges e1, e2, if this intersection point
exists, together with its auxiliary algorithm called ComputeIntersection(e1, e2); (ii) and
the InsertSW(e,SW) algorithm for inserting an edge e from the ordered list of edges E
into the sweep list SW on the right position, together with its auxiliary algorithm called
ComputeDet(A,B, P). In the following, we describe the algorithm SweepPlane(G, V, E).

3.3. Algorithm for Computing the Approximate Alexander Polynomial 123

This algorithm operates on the projection G of a 3-dimensional graph, with V denoting its
list of vertices and with E denoting its list of edges. The algorithm computes the intersection
points among all the edges E of the projection G of the 3-dimensional graph and for each
computed intersection point the pair of edges that contains it. The sweep line algorithm uses
three auxiliary algorithms denoted HandleCase1, HandleCase2 and HandleCase3. These
three auxiliary algorithms manage the sweep list SW in different ways, depending on the
position on which each edge e from the list of ordered edges E is inserted in the sweep list
SW . We define a non-trivial position of the sweep list SW as a position of SW different
from its first or its last position. This means that the i-th position of SW is non-trivial if
i ∈ {1, ..., length(SW)−1}. We distinguish the following cases in the SweepPlane algorithm:

(1) If an edge e is inserted on the first position in the sweep list SW , then the SweepPlane
algorithm calls the HandleCase1 algorithm.

(2) If an edge e is inserted on the last position in the sweep list SW , then the SweepPlane
algorithm calls the HandleCase2 algorithm.

(3) If an edge e is inserted on a non-trivial position in the sweep list SW , then the
SweepPlane algorithm calls the HandleCase3 algorithm.

Algorithm 11 Perform the sweep-line algorithm on the projection G of a 3-dimensional
graph, where V is its list of vertices and E is its list of edges. The sweep line algorithm
computes the intersection points among all the edges from E, and for each intersection
point, the pair of edges that contains it: SweepPlane(G, V, E)
Input: G the projection of a 3-dimensional graph data structure Graph(Lε),

V the list of vertices of G with pi(index, xi, yi) for each pi ∈ V, where i ∈ Z,
E the list of edges of G with ei(si, di) for each ei ∈ E, where si, di ∈ V and i ∈ Z. The
list of edges E is ordered as in Step 1 of the adapted Bentley-Ottmann algorithm.

Output: I the list of intersection points among all the edges from E,
EI the list of pairs of edges that contain all the intersection points.

1: E ← {e0, e1, e2, ..., en} and SW ← {e0, e1}
2: I ← ∅ and EI ← ∅
3: for i← 2 to length(E) do
4: p← InsertSW(ei,SW) {p is the position on which ei is inserted in SW }
5: if (p = 0) then
6: HandleCase1 {ei is inserted on the first position in SW }
7: else if

(
p = length(SW)

)
then

8: HandleCase2 {ei is inserted on the last position in SW }
9: else

10: HandleCase3 {ei is inserted on a non-trivial position in SW }
11: end if
12: end for
13: return 〈I, EI〉

We now describe in details the three auxiliary algorithms HandleCase1, HandleCase2 and
HandleCase3, algorithms which are needed for the SweepPlane algorithm. These three
auxiliary algorithms are designed based on the Step 4 (Sweep line management) of
the adapted Bentley-Ottmann algorithm. We present the HandleCase1 algorithm, which
is called by the SweepPlane algorithm if the edge e is inserted on the first position in the
sweep list SW . The HandleCase1 algorithm proceeds in the following way:

124 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

• Whenever we insert an edge e from the ordered list of edges E on the first position
in the sweep list SW , we test it for intersection only with its right neighbour, since
in this case we know that the left neighbour of e does not exist.

• We call an intersection point of two edges degenerate if the two edges have a common
destination point and the intersection point coincides with the common destination
point of the two edges. Since we do not want to detect degenerate intersection points,
we test e and its neighbour for intersection with the FindIntersection algorithm
only if the two edges do not have the same destination point.

• If an intersection point is detected, then we insert it in the list of intersection points
denoted with I. In addition, the corresponding pair of edges that contains the detected
intersection point is inserted in the list of pairs of intersection edges denoted with EI.

• Moreover, whenever an intersection point P is reported for the pair of edges (e, f)
from SW , we have to swap the order of the two edges in the sweep list.

• If an edge e and its neighbours have the same destination points, then we have to erase
them from the sweep list SW to ensure the correctness of the algorithm. Therefore
whenever we insert an edge in the sweep list we have to test it for common destination
point against its neighbours. If we detect that an edge e and its neighbour have
a common destination point, we erase the two edges from the sweep list SW . We
mention that if two neighbouring edges with the same destination points are not
erased from the sweep list SW , then the adapted Bentley-Ottmann algorithm does
not detect all the intersection points.

• We notice that when we insert an edge e on the first position in the sweep list SW ,
we perform two different types of operations depending on whether e intersects its
right neighbour or not. We distinguish the following two operations:

– if the edge e intersects its right neighbour from the sweep list SW denoted
with sw1, then after reporting the intersection point, the two intersecting edges
(e, sw1) are swapped in the sweep list SW . After the swapping process, the edge
e has a new right neighbour and it has a left neighbour that coincides with the
original right neighbour of e, see Figure 3.10 for visualizing this situation. In
this case, the edge e has to be tested for common destination point both with
its left and with its right neighbour;

– if the edge e and its original right neighbour from the sweep list SW denoted
sw1 do not intersect but they have the same destination point, then we erase the
two edges from the sweep list, see Figure 3.11 for a graphical description of this
situation.

0 1 2 ... n
e sw1 sw2 ... sw − n =⇒ 0 1 2 ... n

sw1 e sw2 ... swn

Figure 3.10: Insertion of an edge e from the ordered list of edges E on the first position
of the sweep list SW with an intersection point detected. If the edge e intersects its right
neighbour sw1, then we report the computed intersection point and we swap the pair of
edges (e, sw1) in the sweep list SW . After the swapping process, the edge e is tested for
common destination point with its left neighbour sw1 and with its right neighbour sw2.

We present the HandleCase2 algorithm, which is called by the SweepPlane algorithm if the
edge e is inserted on the last position in the sweep list SW . The HandleCase2 algorithm
proceeds similarly to the HandleCase1 algorithm with the required modifications as follows:

3.3. Algorithm for Computing the Approximate Alexander Polynomial 125

0 1 2 ... n
e sw1 sw2 ... sw − n =⇒ 0 1 2 ... n

e sw1 sw2 ... swn

Figure 3.11: Insertion of an edge e from the ordered list of edges E on the first position
of the sweep list SW with no intersection point detected. If the edge e does not intersect
its right neighbour sw1, then no intersection point is reported and no swapping process is
performed in the sweep list SW . The edge e is tested for common destination point with
its right neighbour sw1.

Algorithm 12 Manage the sweep list SW in the algorithm SweepPlane when an edge e
from the ordered list of edges E is inserted on the first position in SW : HandleCase1
Input: Same input as in the SweepPlane algorithm.
Output: I and EI as in the SweepPlane algorithm.

1: if ycoord(swp) 6= ycoord(swp+1) then
2: v = FindIntersection(swp, swp+1) {exclude degenerate case}
3: end if
4: if IsNotEmpty(v) then
5: insert the intersection point v to the list I
6: insert the pair of edges (swp, swp+1) to the list EI
7: swap(swp, swp+1) {intersection detected}
8: if ycoord(swp+1) = ycoord(swp+2) then
9: erase the edges swp+1, swp+2 from SW {assure correctness}

10: end if
11: end if
12: if ycoord(swp) = ycoord(swp+1) then
13: erase the edges swp, swp+1 from SW {assure correctness}
14: end if
15: return 〈I, EI〉

126 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

• Whenever we insert an edge e on the last position in the sweep list SW , we test it
for intersection only with its left neighbour, since in this case we know that the right
neighbour of the edge e does not exist.

• As in the case of the HandleCase1 algorithm, since we do not want to detect degen-
erate intersection points, we always test e and its neighbour for intersection with the
FindIntersection algorithm only if the two edges do not have the same destination
point.

• If an intersection point is detected, then we insert it in the list of intersection points
denoted with I. Moreover, the corresponding pair of edges that contains the detected
intersection point is inserted in the list of pairs of intersection edges denoted with EI.

• As in the case of the HandleCase1 algorithm, whenever we insert an edge e on the last
position in the sweep list SW , we perform two different types of operations depending
on whether e intersects its left neighbour or not. We distinguish the following two
operations:

– if the edge e intersects its left neighbour from the sweep list SW denoted with
swn−1, then after reporting the intersection point, the two intersecting edges
(swn−1, e) are swapped in the sweep list SW . After the swapping process, the
edge e has a new left neighbour and it has a left neighbour which coincides with
the original right neighbour of e, see Figure 3.12 for visualizing this situation.
In this case, the edge e has to be tested for common destination point both with
its left and with its right neighbour;

– if the edge e and its original left neighbour from the sweep list SW denoted
swn−1 do not intersect but they have the same destination point, then we erase
the two edges from the sweep list, see Figure 3.13 for a graphical description of
this situation.

0 ... n− 2 n− 1 n
sw0 ... swn−2 swn−1 e

=⇒ 0 ... n− 2 n− 1 n
sw0 ... swn−2 e swn−1

Figure 3.12: Insertion of an edge e from the ordered list of edges E on the last position
of the sweep list SW with an intersection point detected. If the edge e intersects its left
neighbour swn−1, then we report the computed intersection point and we swap the pair
of edges (swn−1, e) in the sweep list SW . After the swapping process, the edge e is tested
for common destination point with its left neighbour swn−2 and with its right neighbour
swn−1.

0 ... n− 2 n− 1 n
sw0 ... swn−2 swn−1 e

=⇒ 0 ... n− 2 n− 1 n
sw0 ... swn−2 swn−1 e

Figure 3.13: Insertion of an edge e from the ordered list of edges E on the last position
of the sweep list SW with no intersection point detected. If the edge e does not intersect
its left neighbour swn−1, then no intersection point is reported and no swapping process is
performed in the sweep list SW . The edge e is tested for common destination point with
its left neighbour swn−1.

We present the HandleCase3 algorithm, which is called by the SweepPlane algorithm if
the edge e is inserted on a non-trivial position in the sweep list SW , i.e. the edge e is

3.3. Algorithm for Computing the Approximate Alexander Polynomial 127

Algorithm 13 Manage the sweep list SW in the algorithm SweepPlane when an edge e
from the ordered list of edges E is inserted on the last position in SW : HandleCase2
Input: Same input as in the SweepPlane algorithm.
Output: I and EI as in the SweepPlane algorithm.

1: if ycoord(swp−1) 6= ycoord(swp) then
2: v = FindIntersection(swp−1, swp) {exclude degenerate case}
3: end if
4: if IsNotEmpty(v) then
5: insert the intersection point v to the list I
6: insert the pair of edges (swp−1, swp) to the list EI
7: swap(swp−1, swp) {intersection detected}
8: if ycoord(swp−1) = ycoord(swp−2) then
9: erase the edges swp−1, swp−2 from SW {assure correctness}

10: end if
11: end if
12: if ycoord(swp−1) = ycoord(swp) then
13: erase the edges swp−1, swp from SW {assure correctness}
14: end if
15: return 〈I, EI〉

inserted on a position different from the first or the last position in the sweep list SW . The
HandleCase3 algorithm proceeds similarly to the HandleCase1 and to the HandleCase2
algorithm, with the required modifications as follows:

• Whenever we insert an edge e on a non-trivial position in the sweep list SW , we want
to test it for intersection with both its left and its right neighbour. We apply the
same strategies as in the case of HandleCase1 and of HandleCase2 algorithms. In
the HandleCase3 algorithm we distinguish between different cases as follows:

– Firstly, we treat the case of the edge e and its left neighbour. If the two edges have
different destination points, then we test them for intersection. If an intersection
is detected, then we report it together with the pair of edges that contains it. In
addition, we swap the order of the edges of intersection in the sweep list SW .
If the edge e has common destination points with its neighbours, then we erase
the edges from the sweep list SW , see Figure 3.14 for a graphical description of
this situation.

– Secondly, we consider the case of e and its right neighbour. If the two edges have
different destination points, then we test them for intersection. If an intersection
point is detected, then we report it together with the pair of edges that contains
it, and we swap the order of edges of intersection in the sweep list SW . Moreover,
if the edge e has common destination points with its neighbours, then we erase
the edges from the sweep list SW , see Figure 3.15.

– Finally, we handle the case in which the edge e does not intersect any of its
neighbours. In this case, we only have to test the edge e against its left and right
neighbour for common destination points. If the edge e has common destination
point with its left or its right neighbour, then the edges are removed from the
sweep list SW , see Figure 3.16.

– Whenever two consecutive edges from the sequence{
left-neighbour(e), e, right-neighbour(e)

}

128 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

have a common destination point, they are erased from the sweep list. Since
we have considered only “small” edges, the edge e cannot intersect in the same
time both its right and its left neighbour, so this case was not included in the
treatment of the adapted Bentley-Ottmann algorithm.

... i− 2 i− 1 i i+ 1 ...

... swi−2 swi−1 e swi+1 ...
⇒ ... i− 2 i− 1 i i+ 1 ...

... swi−2 e swi−1 swi+1 ...

Figure 3.14: Insertion of an edge e from the ordered list of edges E on a non-trivial position
of the sweep list SW with an intersection point detected between e an its left neighbour.
If the edge e intersects its left neighbour sw i−1, then we report the computed intersection
point and we swap the pair of edges (sw i−1, e) in the sweep list SW . After the swapping
process, the edge e is tested for common destination point with its left neighbour sw i−2

and with its right neighbour sw i−1.

... i− 1 i i+ 1 i+ 2 ...

... swi−1 e swi+1 swi+2 ...
⇒ ... i− 1 i i+ 1 i+ 2 ...

... swi−1 swi+1 e swi+2 ...

Figure 3.15: Insertion of an edge e from the ordered list of edges E on a non-trivial position
of the sweep list SW with an intersection point detected between e an its right neighbour.
If the edge e intersects its right neighbour sw i+1, then we report the computed intersection
point and we swap the pair of edges (e, sw i+1) in the sweep list SW . After the swapping
process, the edge e is tested for common destination point with its left neighbour sw i+1

and with its right neighbour sw i+2.

... i− 1 i i+ 1 ...

... swi−1 e swi+1 ...
⇒ ... i− 1 i i+ 1 ...

... swi−1 e swi+1 ...

Figure 3.16: Insertion of an edge e from the ordered list of edges E on a non-trivial position
of the sweep list SW with no detected intersection point. If the edge e does not intersect
neither its left neighbour sw i−1 nor its right neighbour sw i+1, then no intersection point is
reported and no swapping process is performed in the sweep list SW . The edge e is tested
for common destination point with its left neighbour sw i−1 and with its right neighbour
sw i+1.

Algorithm for arranging the pair of intersection edges. As output to the SweepPlane
algorithm we obtain the list of intersection points denoted with I, and the list of pairs of
edges that contain all the intersection points from I denoted with EI. For instance, if Pi

is the i-th intersection point from I, then the i-th pair of edges (ei, fi) from EI represents
the pair of intersection edges that contains the intersection point Pi, i.e. Pi = ei ∩ fi.
We need an algorithm that orders each pair of intersection edges. We say that the pair of
intersection edges (e1, e2) that contains the intersection point P is ordered if e1 is under e2
in R3. We give the main idea of the algorithm for arranging the pair of intersecting edges,
see Figure 3.7 for a consistent graphical description.

3.3. Algorithm for Computing the Approximate Alexander Polynomial 129

Algorithm 14 Manage the sweep list SW in the algorithm SweepPlane when an edge e
from the ordered list of edges E is inserted on a non-trivial position in SW , i.e. e is inserted
in SW on a position different from the first or the last position of SW : HandleCase3
Input: Same input as in the SweepPlane algorithm.
Output: I and EI as in the SweepPlane algorithm.

1: if ycoord(swp−1) 6= ycoord(swp) then
2: v = FindIntersection(swp−1, swp) {exclude degenerate case}
3: end if
4: if IsNotEmpty(v) then
5: insert the intersection point v to the list I
6: insert the pair of edges (swp−1, swp) to the list EI
7: swap(swp−1, swp) {intersection detected}
8: if ycoord(swp−1) = ycoord(swp−2) then
9: erase the edges swp−1, swp−2 from SW {assure correctness}

10: end if
11: end if
12: if ycoord(swp) 6= ycoord(swp+1) then
13: v = FindIntersection(swp, swp+1) {exclude degenerate case}
14: end if
15: if IsNotEmpty(v) then
16: insert the intersection point v to the list I
17: insert the pair of edges (swp, swp+1) to the list EI
18: swap(swp, swp+1) {intersection detected}
19: if ycoord(swp+1) = ycoord(swp+2) then
20: erase the edges swp+1, swp+2 from SW {assure correctness}
21: end if
22: end if
23: if ycoord(swp−1) = ycoord(swp) = ycoord(swp+1) then
24: erase the edges swp−1, swp, swp+1 from SW {assure correctness}
25: end if
26: if ycoord(swp−1) 6= ycoord(swp) and ycoord(swp) = ycoord(swp+1) then
27: erase the edges swp, swp+1 from SW {assure correctness}
28: end if
29: if ycoord(swp−1) = ycoord(swp) and ycoord(swp) 6= ycoord(swp+1) then
30: erase the edges swp−1, swp from SW {assure correctness}
31: end if
32: return 〈I, EI〉

130 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

• For both edges e1, e2 we first extract the coordinates of their source and of their
destination points in R2. We denote the source and the destination points of e1 with
the points A1(a1, b1), B1(u1, v1), and the source and destination points of e2 with
the points A2(a2, b2), B2(u2, v2). Assuming that the two edges e1, e2 do intersect, we
need to compute the coordinates of their intersection point P (x, y) in R2 with the
ComputeIntersection algorithm.

• We compute the equations of the two edges e1, e2 with the EqnLine algorithm. We
denote the equation of e1 with L1(x, y), and the equation of e2 with L2(x, y).

• We remember that e1, e2 are projections of the edges of a 3-dimensional Graph(Lε)
from R3 that we denote with e

′

1, e
′

2. For both e
′

1, e
′

2 we extract the coordinates of
their source and of their destination points in R3, which we denote with the points
A
′

1(a1, b1, c1), B
′

1(u1, v1, w1) for e
′

1, and with the points A
′

2(a2, b2, c2), B
′

2(u2, v2, w2)
for e

′

2. The intersection point P (x, y) = e1 ∩ e2 from R2 has two corresponding points
in R3 :

– a point P
′

1(x, y, z1) that lies on e
′

1 with the special property that P and P
′

1 divide
e1 and e

′

1 in the same proportion factor α1 since e1 is the projection of e
′

1, i.e.
e1 and e

′

1 are parallel;

– and a point P
′

2(x, y, z2) that lies on e
′

2 with the special property that P and P
′

2

divide e2 and e
′

2 in the same proportion factor α2 since e2 is the projection of
e
′

2, i.e. e2 and e
′

2 are parallel.

We notice that the points P
′

1 and P
′

2 in R3 differ only by their z-coordinate. In fact, if
z1 < z2, then e

′

1 is under e
′

2 in the 3-dimensional Euclidean space R3. Since e1, e2 are the
projections of e

′

1, e
′

2, if z1 < z2, then we say that e1 is under e2 in R3, otherwise we say
that e2 is under e1 in R3. In this way, the criteria for ordering the pair of intersection edges
(e1, e2) of the intersection point P (x, y) reduces to computing the corresponding coordinates
z1, z2 in R3 as described above. For computing the coordinates z1, z2 we need an algorithm
that computes the proportion factors α1, α2. For instance, we compute α1. For computing
α2 we proceed in the same way. We consider the points A1(a1, b1), B1(u1, v1) in R2 and
the equation of the line L2(x, y) computed as before. We compute α1 from the equation

α1 · L2(A1) + (1 − α1) · L2(B1) = 0. We get α1 =
L2(B1)

L2(B1)− L2(A1)
, as described in the

GetAlpha algorithm.
We continue with computing the z1 coordinate of the point P

′

1(x, y, z1). We assume that
we computed α1 with the GetAlpha algorithm. We consider the edge e1 as the projection
in R2 of the edge e

′

1 from R3. In this case the coordinates of the source point of the edge
e
′

1 in the 3-dimensional Euclidean space are given by A
′

1(a1, b1, c1). In the same way, the
coordinates of the destination point of the e

′

1 in R3 are given by B
′

1(u1, v1, w1). Under these
assumptions, we compute z1 = α1 · c1 + (1− α1) · w1 as described in the GetZCoordinate
algorithm. We recall that in this thesis we use the following terminology: we call the
algorithm that computes all the intersection points of a set of edges in the 2-dimensional
Euclidean space as described in the SweepPlane algorithm and that computes the pair of
ordered edges of intersections as described in the GetZCoordinate algorithm, an adapted
version of the Bentley-Ottmann algorithm.

3.3. Algorithm for Computing the Approximate Alexander Polynomial 131

Algorithm 15 First auxiliary algorithm for arranging the pair of intersection edges (e, f)
(with e determined by A,B ∈ R2 and f(s, d) the projection of the edge f

′
from R3). In

addition, (e, f) ∈ EI with the intersection point P = e ∩ f, returned by the SweepPlane
algorithm: GetAlpha(A,B, f, P)
Input: A(a, b), B(u, v) in R2, points that determine the edge e ∈ R2,

which is the projection of the edge e
′ ∈ R3 from Graph(Lε),

f(s, d) ∈ R2 an edge given with its source index s and with its destination index d,
which is the projection of the edge f

′ ∈ R3 from Graph(Lε),
P (x, y) the intersection of the pair of edges (e, f) and
P

′
(x, y, z) lies on e

′
in R3.

Output: α ∈ Z>0,
where α is the proportion factor of the edges e, e

′
with the property that the points P

and P
′
divide the edges e and e

′
in the same proportion factor α.

1: m = xcoord(s), n = ycoord(s)
2: p = xcoord(d), q = ycoord(d)
3: consider M(m,n) and N(p, q)
4: (β, γ, δ) =EqnLine(M,N)
5: L(x, y) = βx+ γy + δ
6: value1 = EvalAtPointEqnLine

(
L(x, y), A(a, b)

)
7: value2 = EvalAtPointEqnLine

(
L(x, y), B(u, v)

)
8: if (value2 − value1 6= 0) then
9: return α =

v2
v2 − v1

10: else
11: print The proportion factor for the two edges is undefined!
12: end if

Algorithm 16 Second auxiliary algorithm for arranging the pair of intersection edges (e, f)
(with e determined by A,B ∈ R2 and f(s, d) the projection of the edge f

′
from R3). In

addition, (e, f) ∈ EI with the intersection point P = e ∩ f, returned by the SweepPlane
algorithm: GetZCoordinate(A,B, f, P)
Input: A(a, b), B(u, v) in R2, points that determine the edge e ∈ R2,

which is the projection of the edge e
′ ∈ R3 from Graph(Lε),

edge that is determined by A
′
(a, b, c) ∈ R3 and B

′
(u, v, w) ∈ R3,

f(s, d) ∈ R2 and edge given with its source index s and with its destination index d,
which is the projection of the edge f

′ ∈ R3 from Graph(Lε),
P (x, y) the intersection of the pair of edges (e, f) and
P

′
(x, y, z) lies on e

′
in R3.

Output: z ∈ R \ {0},
where z is the Euclidean coordinate of P

′
(x, y, z) in R3, as described in Figure 3.7.

1: α = GetAlpha(A,B, f, P)
2: return z = α · c+ (1− α) · w

We assume that we know the GetAlpha and the GetZCoordinate algorithms. For a pair
of intersection edges (e1, e2) of the intersection point P (x, y) in R2, we compute the corre-
sponding coordinate z1, z2 in R3 with the GetAlpha and the GetZCoordinate algorithms.
If z1 < z2, then e1 is under e2 in R3 and thus the pair (e1, e2) is ordered. If z1 > z2, then e1
is over e2 in R3. In this case, we swap the two edges in the pair of intersection edges (e1, e2)
and we obtain the new ordered pair (e2, e1). After applying the SweepPlane algorithm on

132 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

the projection G of a 3-dimensional graph Graph(Lε) returned by Axel, we always perform
the ArrangeEdgesIntersect algorithm on the list of pairs of intersection edges denoted
with EI, which is returned by the SweepPlane algorithm. Consequently, we order the pairs
of intersection edges from EI.

Algorithm 17 Arrange the pair of intersection edges from the list EI returned by the
SweepPlane algorithm: ArrangeEdgesIntersect(EI)
Input: EI as returned by the SweepPlane algorithm and representing the pair of inter-

section edges of all the intersection points detected for all the edges of a 3-dimensional
graph.

Output: The ordered list EI,
where for each pair (ei, fi) ∈ EI, ei is under fi in the Euclidean space R3.

1: for all i = 0 to length(EI) do
2: consider the pair of intersection edges (ei, fi) from EI
3: consider A1, B1 the source and destination points of ei

4: consider A2, B2 the source and destination points of fi

5: z1 = GetZCoordinate(A1, B1, fi)
6: z2 = GetZCoordinate(A2, B2, ei)
7: if (z1 > z2) then
8: swap(ei, fi)
9: end if

10: return EI
11: end for

3.3.2 Combinatorial Algorithms from Knot Theory

In this subsection, we assume that for each singularity of a plane complex algebraic curve
we computed its approximate differentiable link Lε as a 3-dimensional graph data structure
Graph(Lε) by using the subdivision algorithms of the Axel algebraic geometric modeler
as described in Section 3.2. The Graph(Lε) = 〈V,E〉 is defined as a pair between its
set of vertices V (or points in R3) together with their Euclidean coordinates and between
its set of edges E. In addition, we assume that for the projection of the 3-dimensional
graph Graph(Lε) we computed the set of intersection points I and the set of pairs of edges
that contain all the intersection points using the algorithm SweepPlane

(
Graph(Lε), V, E

)
.

Moreover, we assume that we ordered the pairs of edges from the set EI using the algorithm
ArrangeEdgesIntersect(EI).
We next want to compute more combinatorial information on the special projection of
the 3-dimensional Graph(Lε) in R2, special projection that we call the diagram of the
approximate link as introduced in Chapter 2, Subsection 2.3.3. For the rest of this thesis we
denote the diagram of the approximate link with D

(
Graph(Lε)

)
. This is the main reason

for which we call the algorithms presented in this subsection combinatorial algorithms
from knot theory. We present the following combinatorial algorithms for computing the
diagram D

(
Graph(Lε)

)
of a 3-dimensional graph Graph(Lε), graph that represents the

approximation of an approximate link Lε :

1. an algorithm for computing the knot components of the approximate link, which
represents the knot components of the diagram D

(
Graph(Lε)

)
;

2. an algorithm for computing the arcs of the diagram D
(
Graph(Lε)

)
, as defined in

Chapter 2, Subsection 2.3.3.

3.3. Algorithm for Computing the Approximate Alexander Polynomial 133

Combinatorial Algorithms for Detecting the Knot Components of an Approxi-
mate Link

First of all we present the combinatorial algorithm for computing the knot components of
an approximate link Lε of a plane curve singularity, approximate link that is represented
as a 3-dimensional graph Graph(Lε).
We mention that if the approximate link Lε of a singularity has several knot components,
then the Graph(Lε) data structure contains also several cycles represented by piecewise
linear knots that are the approximations of the differentiable knots. For computing the
diagram of the approximate link, we certainly need to compute all the piecewise linear knot
components. We observe that the piecewise linear knot components of the approximate
link represent the cycles of the 3-dimensional graph Graph(Lε). From now on in our study
we consider only piecewise linear knot components, which we simply call knot components.
Thus in this paragraph we present an algorithm for constructing the knot components of the
diagram of an approximate link from the projection of the 3-dimensional graph Graph(Lε).
The algorithm also returns the total number of knot components in the diagram.
We consider the set of ordered edges E from Graph(Lε) as in Subsection 3.3.1. It follows
that the edges from the set E are ordered according to the ordering criteria from Step 1
of the adapted Bentley-Ottmann algorithm from Subsection 3.3.1. We denote a positive
edge in R2 satisfying the relation xcoord(s) < xcoord(y) with e(s, d), and we denote its
corresponding negative edge satisfying the relation xcoord(s) > xcoord(y) with −e(d, s).
We notice that the positive edges are oriented from left to right, while the negative ones
are oriented from right to left, see Figure 3.17.

A(se, xA, yA)

B(de, xB , yB)

A(se, xA, yA)

B(de, xB , yB)
e

33ggggggggggg

−e

ssggggggggggg

Figure 3.17: Orientation for a positive edge e and for its corresponding negative edge −e
in a 3-dimensional graph data structure.

We denote the knot components of an approximate link with Kj , j ∈ N. All the knot
components Kj of a link must satisfy the following two properties:

• Property 1: for each edge ek(sk, dk) ∈ Kj there exists an edge ek+1(sk+1, dk+1) ∈ Kj

with dk = sk+1; in this case, we call ek+1 the right consecutive edge of ek, and we
call the sequence {ek, ek+1} a suitable sequence of two consecutive edges in a knot
component.

• Property 2: for each Kj = {e0(s0, d0), ..., en(sn, dn)}, with j ∈ N: dn = s0. It
follows that the source index of the first edge in a knot component coincides with the
destination index of the last edge in the same knot component. This property assures
that the knot component is always a circuit in the graph.

As we mentioned before, we need an algorithm that constructs all the knot components
Kj , j ∈ N with the two properties introduced in the paragraph above. As opposed to the
list of ordered edges E that contains only positive edges oriented from left to right, we notice
that each list of knot components Kj contains both positive and negative edges. We present
the way in which the first knot component of a link can be computed from the projection
of the 3-dimensional Graph(Lε) data structure. We initialize the first knot K0 with the
first edge e0(s0, d0) from E. Next, we look for the edge en in the list of ordered edges E

134 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

that has a common index, either source or destination, with d0. If we find such an edge
en(d0, dn) ∈ E, then we insert en(d0, dn) in K0 as a positive edge. If we find en(sn, d0) ∈ E,
then we insert −en(d0, sn) in K0 as a negative edge. In this case, we notice that we need to
swap the source and the destination index points of the positive edge en(sn, d0) to obtain its
negative corresponding edge −en(d0, sn), which is in fact inserted in K0. We call the edge
en the right consecutive edge of e0. After we insert en in the list of knot component K0, we
erase it from the list of ordered edges E. We mention that we always find such an edge en

in E for the edge e0, because each index such as d0 appears two times in E. We continue
with inserting edges from E in K0 in the same manner until the destination of an inserted
edge coincide with the source s0 of the first edge e0 from K0. We apply the same strategy
to constructs all the other knot components Kj of the diagram D

(
Graph(Lε)

)
until the

list of ordered edges E is empty, increasing j each time a new knot component starts being
constructed. At the end of the algorithm, the index j + 1 returns the total number of knot
components of D

(
Graph(Lε)

)
. We notice that all the knot components that are constructed

from the list (or set) of ordered edges E have always a counterclockwise orientation. In
Example 22 we show the way in which the combinatorial algorithm for computing the knot
components of an approximate link Lε represented as a 3-dimensional graph Graph(Lε)
behaves on the list of edges of Graph(Lε).

Example 22. We consider E = {e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11} as in Figure 3.18.
We assume that E represents the set of ordered edges of the 3-dimensional graph data
structure Graph(Lε) = 〈V,E〉, which approximates the ε-link Lε of a plane curve singularity.
We notice that the set of vertices of the graph Graph(Lε) is not explicitly given as input
to the problem. The combinatorial algorithm for constructing the knot components of Lε

consists of the following two steps:

• Step 1: We initialize the first knot component with K0 = {e0}. We continue with
inserting edges from the ordered list of edges E into the knot component K0 into the
right direction (either from left to right for the positive edges or from right to left for
the negative edges) until two consecutive edges have the same source index. While
inserting edges from E in K0, we erase them from E. We obtain:

E = {��e0,��e1, e2, e3,��e4,��e5, e6, e7,��e8, e9,��e10, e11},

K0 = {e0, e4, e10,−e8,−e5,−e1}.

• Step 2: We initialize K1 = {e2}. We proceed in the same way as in Step 2 and we
obtain:

E = {��e2,��e3,��e6,��e7,��e9,��e11},

K1 = {e2, e6, e11,−e9,−e7,−e3}.

The algorithm terminates since we notice that at this step E = ∅. The algorithm also
returns the number of knot components in Lε, which in this case is 2.

For a graphical description of the way the combinatorial algorithm for computing the knot
components of an approximate link works on the ordered list of edges E from this example
see Figure 3.18. We now describe the CreateKnots algorithm.

3.3. Algorithm for Computing the Approximate Alexander Polynomial 135

e3

55lllllllllllllll
e2

&&NNNNNNNNNN

e7 00̀``````````````

e6

//̀`````````````````````

e9

++XXXXXXXX

e11

EE

e1

??����������
e0 %%KKK

KKK

e5 00̀`````````````````

e4

//̀``````````````````````

e8
,,YYYYYYYYYYYYYYYYY

e10

77ppppppppppppppp

⇓
−e3

uulllllllllllllll

e2

&&NNNNNNNNNN

−e7
pp```````````````

e6

//̀`````````````````````

−e9
kkXXXXXXXX

e11

EE

−e1

����
��

��
��

��

e0 %%KKK
KKK

−e5
pp``````````````````

e4

//̀``````````````````````

−e8

llYYYYYYYYYYYYYYYYY

e10

77ppppppppppppppp

Figure 3.18: Creating the knot components of an approximate link represented as a 3-
dimensional graph Graph(Lε).

136 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

Algorithm 18 Compute the knot components of an approximate link Lε represented as a
3-dimensional graph Graph(Lε) = 〈V,E〉 with V being its set of vertices and E being its
set of edges: CreateKnots

(
Graph(Lε), V, E

)
Input: G the projection of the 3-dimensional graph Graph(Lε) that approximates Lε,

V the set of points of G with pi(index, xi, yi) ∈ V, and i ∈ N,
E the set of ordered edges as in Step 1 of the adapted Bentley-Ottmann algorithm
with ei(si, di), si, di ∈ V, and i ∈ N.

Output: Kj , j ∈ N lists of ordered edges from E and count ∈ N,
where Kj , j ∈ N represent all the knot components of Lε constructed from the list of
ordered edges E. Each Kj , j ∈ N satisfies Property 1 and Property 2. Moreover,
count + 1 represents the total number of knot components of Lε.

1: count ← −1
2: while IsNotEmpty(E) do
3: count + +
4: consider Kcount ← ∅ a knot component of the approximate link Lε

5: insert e0 in Kcount

6: erase e0 from E
7: repeat
8: consider e the last edge in Kcount

9: for all i← 0 to length(E) do
10: find ei the right consecutive edge of e in Kcount with a common index (either

source or destination) with destination(e)
11: if destination(e) = source(ei) then
12: insert ei after e in Kcount

13: erase ei from E
14: end if
15: if destination(e) = destination(ei) then
16: swap

(
source(ei), destination(ei)

)
17: insert ei after e in Kcount

18: erase ei from E
19: end if
20: end for
21: until two suitable consecutive edges have the same source points
22: end while
23: return

〈
{Kj , j ∈ N}, count

〉
Combinatorial Algorithms for Detecting the Arcs in the Diagram of a Link

We now present the algorithm for computing the arcs of the diagram D
(
Graph(Lε)

)
of a

3-dimensional graph Graph(Lε), graph that represents the approximation of the ε-link Lε.
We recall from Chapter 2, Subsection 3.2 that for the diagram of a link we can always
distinguish between the type of its crossings, i.e. we distinguish between a lefthanded and
a righthanded crossing. We say that a crossing is lefthanded if the underpass traffic goes
from left to right and we say that a crossing is righthanded if the underpass traffic goes
from right to left. We denote a lefthanded crossing with −1 (or sometimes with LH) and
a righthanded crossing with +1 (or sometimes with RH), see Figure 3.19.
Moreover, we define the notion of an arc in the diagram of a link. An arc is the part of
a diagram between two undercrossings. We now describe the combinatorial algorithm for
constructing the arcs for each knot component of a 3-dimensional graph representing the
approximation of an ε-link. The algorithm also decides the type of crossings (righthanded

3.3. Algorithm for Computing the Approximate Alexander Polynomial 137

j
������

k GG������

i
WW/////////////

−1

���
z _ D

2

j//////

k
WW//////

i GG�������������

+1

�� 2
D_z

�

i j k
1-t t -1

i j k
1-t -1 t

Figure 3.19: Type of crossings in a diagram: lefthanded crossing (denoted with −1) and
righthanded crossing (denoted with +1) together with their corresponding arcs labelling.

or lefthanded) for each knot component. For constructing the arcs, we consider the set
of ordered edges E as in the algorithm CreateKnots and as in Step 1 of the adapted
Bentley-Ottmann algorithm presented in Subsection 3.3.1. This algorithm operates on the
output of the algorithm SweepPlane and on the output of the algorithm CreateKnots, i.e.
it operates on the list of intersection points I together with the list of ordered pairs of
intersection edges EI, and it operates on the the lists of edges Kj , j ∈ N, which represent
all the knot components in the diagram of the ε-link. The key point of this combinatorial
algorithm is to search in all the knot components Kj , j ∈ N all the undergoing edges from
the list of ordered pairs of edges EI and to split these undergoing edges in two parts. For
instance in Figure 3.20, we consider a diagram of the trefoil knot and we compute the arcs
of this diagram. We assume that for the list of ordered edges

E = {e0, ..., en, em, ..., el, ek..., et, es, ..., elast},

we compute the following outputs with the algorithm SweepPlane and with the algorithm
CreateKnots:

I = {(x1, y1), (x2, y2), (x3, y3)},

EI = {(−en, em), (el, ek), (es,−et)},

K0 = {e0, ..., ek, ..., es, ..., em, ..., el, ...,−et, ...,−en, ...,−e1}.

We search the three undergoing edges −en, el, es one by one in K0 and we replace them
with −en → (−ed

n,−eu
n), el → (ed

l , e
u
l), es → (ed

s , e
u
s) obtaining the following modified knot

component denoted with K
′

0 :

K
′

0 = {e0, .., ek, .., e
d
s , e

u
s , .., em, .., e

d
l , e

u
l , ..,−et, ..,−ed

n,−eu
n, ..,−e1}.

From the definition of an arc, it follows that an arc contains the list of edges from a modified
knot component K

′

j , j ∈ N starting with an edge of type eu
j , j ∈ N from K

′

j and ending with
the next consecutive edge of type ed

k, k ∈ N from K
′

j . While we insert edges from a modified
knot component K

′

j into the list of edges representing the corresponding arc we erase them
from K

′

j . Thus in our example from Figure 3.20, from the modified knot component K
′

0 we
compute the following three arcs until K

′

0 is empty:

K
′

0 = {e0, .., ek, .., e
d
s ,(((((((

[eu
s , .., em, .., e

d
l], e

u
l , ..,−et, ..,−ed

n,−eu
n, ..,−e1},

arc0 = {eu
s , ..., em, ..., e

d
l },

138 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

K
′

0 = {e0, .., ek, .., e
d
s ,(((((((((

[eu
l , ..,−et, ..,−ed

n],−eu
n, ..,−e1},

arc1 = {eu
l , ..,−et, ..,−ed

n},

K
′

0 = {(((((((
[e0, .., ek, .., e

d
s],(((((([−eu

n, ..,−e1]},

arc2 = {eu
n, ..,−e1, e0, .., ek, .., e

d
s},

last

e
s

n

l
e
u

u

u

d

d

d

e
n

e
l

e
s

−e

0
e

n
e
m

e
k

e
l

t

e
s

e
0

1
1

−e
−e

−e

−e

 e
last

e

Figure 3.20: Creating the arcs of a trefoil knot diagram.

We describe the algorithm CreateArcs, which takes as input the following data:

(1) the list of intersection points I among all the edges of a 3-dimensional graph data
structure Graph(Lε) representing the approximation of an ε-link Lε;

(2) the list of ordered pairs of intersection edges EI containing all the intersection points
from I;

(3) the lists of edges Kj , j ∈ N representing all the knot components of the ε-link Lε;

(4) the total number of knot components in the ε-link Lε denoted with count+1, with j ∈
N. We mention that the list I and the list EI are computed with the SweepPlane
algorithm, whereas the lists Kj,j∈N are computed with the CreateKnots algorithm.

The algorithm CreateArcs computes as output the lists of edges representing all the arcs
for the diagram D

(
Graph(Lε)

)
of the ε-link Lε.

3.3. Algorithm for Computing the Approximate Alexander Polynomial 139

Algorithm 19 Create the arcs in the diagram of an ε-link Lε approximated by a 3-
dimensional graph Graph(Lε) = 〈V,E〉 with I being the list of intersection points among
all the edges from E, with EI being the list of ordered pairs of edges containing all the
intersection points from I. Moreover the lists Kj , j ∈ N represent all the knot components
in Lε and count+ 1 represents the total number of knot components in Lε. The algorithm
is denoted as follows: CreateArcs

(
〈I, EI〉, 〈{Kj , j ∈ N}, count〉

)
Input: I and EI as computed by the SweepPlane algorithm,

Kj , j ∈ N and count as computed by the CreateKnots algorithm.
Output: arck, k ∈ N lists of ordered edges from Kj , j ∈ N,

where the lists of edges arck, k ∈ N represent the arcs in all the knot components Kj , j ∈
N, and m + 1, with m ∈ N representing the total number of arcs in the approximate
link.

1: for all i← 0 to length(EI) do
2: consider (ei, fi) the i-th ordered pair of intersection edges with ei under fi in R3 as

computed with ArrangeEdgesIntersect(EI)
3: split the undergoing edge ei into the following pair of edges ei → (ed

i , e
u
i)

4: search for ei in all of the Kj , j ∈ N knot components and when ei is found in the
corresponding knot component Kj make the following substitution ei → (ed

i , e
u
i)

5: end for
6: m← −1
7: for all l← 0 to count do
8: consider Kl the l-th knot component
9: while IsNotEmpty(Kl) do

10: m+ +
11: consider arcm ← ∅ an arc of the knot component Kl

12: insert into arcm all the edges from Kl between the first edge of type eu and the
first consecutive edge of type ed

13: delete all the edges inserted in arcm from Kl

14: end while
15: end for
16: return {〈arck, k ∈ N〉,m}

For deciding the type of crossings in the diagram of an ε-link Lε, we observe that in each knot
component Kj , j ∈ N for a positive edge ei(si, di) the property xcoord(si) < xcoord(di) is
true, whereas for a negative edge −ej(sj , dj) the property xcoord(sj) > xcoord(dj) is true.
Each type of crossing (i.e. lefthanded crossing or righthanded crossing) depends on the
ordered pair of intersection edges (eunder , eover) that contains the corresponding intersection
point, and that is:

(1) the type of crossings depends on the orientation of the edge eunder , i.e. the type of
crossing depends on whether the edge eunder is oriented from left to right (i.e. it is
a positive edge) or whether the edge eunder is oriented from right to left (i.e. it is a
negative edge), see Figure 3.17;

(2) the type of crossings depends on the orientation of the edge eover , i.e. the type of
crossing depends on whether the edge eover is oriented from left to right (i.e. it is
a positive edge) or whether the edge eover is oriented from right to left (i.e. it is a
negative edge), see Figure 3.17;

(3) the type of crossings depends on the relation between the slope of eunder and the slope
of eover .

140 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

Depending on these three properties, we have 23 = 8 possible cases for deciding the type of
crossings. For instance, we consider a crossing c determined by the pair of ordered edges(
− el(sl, dl), ek(sk, dk)

)
, for which −el is the undergoing edge and ek is the overgoing edge

in R3. We assume that xcoord(sl) > xcoord(dl) for the negative undergoing edge el, and
we assume that xcoord(sk) < xcoord(dk) for the positive overgoing edge ek. If additionally
we suppose that slope(el) < slope(ek), then we notice that c is a lefthanded crossing. For
instance, in Figure 3.21 we can decide each type of crossings as follows:

• c1 = (−en, em) is a lefthanded crossing, since xcoord(sn) > xcoord(dn), xcoord(sm) <
xcoord(dm) and slope(em) < slope(−en);

• using the same reasoning as for the crossing c1, we notice that c2 = (el, ek), c3 =
(es,−et) are both lefthanded crossings. For c2 = (el, ek) we notice that xcoord(sl) >
xcoord(dl), xcoord(sk) < xcoord(dk) and slope(el) < slope(−ek). In the same way for
c3 = (es,−et) we observe that xcoord(ss) > xcoord(ds), xcoord(st) < xcoord(dt) and
slope(es) < slope(−et).

We now describe the DecideTypeCrossings algorithm. This algorithm uses the GetSlope
algorithm from Subsection 3.3.1, which computes the slope of an edge e(s, d). The algorithm
for deciding the type of crossings denoted with DecideTypeCrossings first extracts the x
and y coordinates of the source point and of the destination point of the edge e obtaining two
points in R2 denoted with A

(
xcoord(e.s), ycoord(e.s)

)
, B
(
xcoord(e.d), ycoord(e.d)

)
. Then

the algorithm computes the slope of e in R2 with the GetSlope(A,B) algorithm. For sim-
plicity reasons, we assume that we compute the slope of the edge e as explained before using
the procedure called slope(e). We use the procedure slope(e) in the DecideTypeCrossings
algorithm whenever we want to compute the slope of an edge e(s, d) from a 3-dimensional
graph. We mention that the procedure slope(e) basically computes the slope of the pro-
jection of the edge e(s, d) from a 3-dimensional graph Graph(Lε), which approximates the
ε-link Lε of a plane curve singularity. The output of the DecideTypeCrossings algorithm
is a list T of {−1,+1} elements. The length of the list T is the same as the length of the set
I of intersections points among all the edges E from the 3-dimensional graph Graph(Lε).
The ith element of the list T represents the type of the crossing corresponding to the ith
intersection point from the list I.

LH

n
e
m

e
k

e
l

−e
e
s

c
1

c
3

c
2

t

−e

RH

Figure 3.21: Deciding the type of crossings for the diagram of an ε-link represented as a
3-dimensional graph data structure. A crossing is lefthanded (denoted with −1 or with LH)
if the underpass traffic goes from left to right, whereas a crossing is righthanded (denoted
with +1 or RH) if the underpass traffic goes from right to left.

3.3. Algorithm for Computing the Approximate Alexander Polynomial 141

Algorithm 20 Decide the type of crossings for the diagram of an ε-link Lε represented as a
3-dimensional graph data structure Graph(Lε) = 〈V,E〉, where EI represents the ordered
pairs of intersections points for all the intersection points I reported among all the edges
from E. The algorithm is denoted with: DecideTypeCrossings(EI)
Input: EI as computed with the SweepPlane algorithm.
Output: T a list of {−1, 1} elements with the same length as EI,

where the i-th element from T represents the type of the crossing corresponding to the
i-th ordered pair of intersection edges (ei, fi) from EI.

1: for all i← 0 to length(EI) do
2: consider (ei, fi) the i-th ordered pair of intersection edges with ei under fi in R3 as

computed with ArrangeEdgesIntersect(EI)
3: if (xcoord(ei.s) < xcoord(ei.d) and xcoord(fi.s) < xcoord(fi.d) and slope(ei) >

slope(fi)) or
(xcoord(ei.s) < xcoord(ei.d) and xcoord(fi.s) > xcoord(fi.d) and slope(ei) <
slope(fi)) or
(xcoord(ei.s) > xcoord(ei.d) and xcoord(fi.s) < xcoord(fi.d) and slope(ei) <
slope(fi)) or
(xcoord(ei.s) < xcoord(ei.d) and xcoord(fi.s) < xcoord(fi.d) and slope(ei) >
slope(fi)) then

4: ti ← 1
5: end if
6: if (xcoord(ei.s) < xcoord(ei.d) and xcoord(fi.s) < xcoord(fi.d) and slope(ei) <

slope(fi)) or
(xcoord(ei.s) < xcoord(ei.d) and xcoord(fi.s) > xcoord(fi.d) and slope(ei) >
slope(fi)) or
(xcoord(ei.s) > xcoord(ei.d) and xcoord(fi.s) < xcoord(fi.d) and slope(ei) >
slope(fi)) or
(xcoord(ei.s) < xcoord(ei.d) and xcoord(fi.s) < xcoord(fi.d) and slope(ei) <
slope(fi))
then

7: ti ← −1
8: end if
9: end for

10: return T =
{
ti, i ∈ {0, ..., length(EI)}

}

3.3.3 Description of the Main Algorithm

In this subsection we include the main algorithm for computing the ε-Alexander polynomial
attached to the ε-link Lε of a plane curve singularity, ε-link that is approximated as a
3-dimensional graph data structure Graph(Lε) = 〈V,E〉, where V represents the set of
points together with their Euclidean coordinates in Graph(Lε) and E represents the set of
edges in Graph(Lε). For designing the algorithm for computing the approximate Alexander
polynomial we use the notions defined in Chapter 2, Subsection 2.4.3 and in Section 2.5.
In addition, we employ the algorithms discussed in the previous subsections. We notice
that basically the computation of the ε-Alexander polynomial ∆ε attached to the ε-link of
a plane curve singularity consists of the following two steps:

1. Step 1: from the 3-dimensional graph data structure Graph(Lε) = 〈V,E〉, which ap-
proximates the ε-link Lε, we compute the diagram of Lε denoted with D

(
Graph(Lε)

)
.

We assume that V represents the list of vertices in Graph(Lε) and E represents the

142 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

list of edges in Graph(Lε). We call this algorithm ApproxDiagram. The algorithm
basically computes the crossings of the diagram and the type of crossings in the dia-
gram. In addition, the algorithm computes the lists of edges from E that represents
all the knots components Kj , j ∈ N in the diagram and the total number of knot
components in the diagram. Moreover the algorithm computes the list of edges from
Kj , j ∈ N that represents all the arcs of the diagram. For a graphical description of
the input-output specification of the ApproxDiagram see Figure 3.22.

2. Step 2: from the diagram D
(
Graph(Lε)

)
computed previously in Step 1 with

the ApproxDiagram algorithm, we compute the ε-Alexander polynomial of the ε-
link Lε approximated as a graph data structure Graph(Lε). We call this algorithm
ApproxAlexPoly. We recall that the Alexander polynomial attached to the link of
a singularity is an invariant that uniquely identifies the links of singularities called
also algebraic links. It follows that the Alexander polynomial is a complete invari-
ant for algebraic links. We recall how the Alexander polynomial attached to a plane
curve singularity can be used to analyse the topology of the plane curve singularity.
We assume that Q1 and Q2 are the singularities of a plane complex algebraic curve.
In addition, we suppose that we computed the links of the singularity Q1 and Q2

denoted with L1 and respectively with L2. Moreover we consider that we computed
the Alexander polynomials of the links L1 and L2 denoted with ∆1 and respectively
∆2. If the computed Alexander polynomials ∆1 and ∆2 of the links L1 and L2 are
the same, then the topology of the singularity Q1 and Q2 is the same. If the com-
puted Alexander polynomials ∆1 and ∆2 of the links L1 and L2 are different, then
the topology of the singularity Q1 and Q2 is different. The ApproxAlexPoly algo-
rithm basically computes the ε-Alexander polynomial ∆ε of the ε-link Lε. We recall
that ∆ε is a Laurent polynomial. For a graphical visualization of the input-output
specification of the ApproxAlexPoly see Figure 3.23.

⇒

2

1 3

c1

c2

c3

Figure 3.22: Input-output specification of the ApproxDiagram algorithm, which from the
3-dimensional graph data structure Graph(Lε) that approximates the ε-link Lε, it computes
the diagram of the ε-link denoted with D

(
Graph(Lε)

)
.

We give the schematic algorithm ApproxDiagram for the computation of the diagram
D
(
Graph(Lε)

)
of an ε-link Lε computed as in Section 3.2 and approximated by a 3-

dimensional graph data structure Graph(Lε). This algorithm operates on the Graph(Lε)
data structure. In addition the algorithm ApproxDiagram uses the sweep line algorithm
SweepPlane, the ArrangeEdgesIntersect and the combinatorial algorithms CreateKnots,
CreateArcs and DecideTypeCrossings.

3.3. Algorithm for Computing the Approximate Alexander Polynomial 143

2

1 3

c1

c2

c3

⇒ ∆ε, the ε-Alexander polynomial

Figure 3.23: Input-output specification of the ApproxAlexPoly algorithm, which from the
diagram of the ε-link Lε denoted with Graph(Lε), it computes the ε-Alexander polynomial
∆ε of the ε-link Lε approximated as a graph data structure Graph(Lε).

Algorithm 21 Approximate diagram of the piecewise linear approximate link Graph(Lε) :
ApproxDiagram

(
Graph(Lε)

)
Input: Graph(Lε) = 〈V,E〉 piecewise linear algebraic link, which approximates
Lε an approximate differentiable algebraic link as computed in Section 3.2,
Graph(Lε) is a 3-dimensional graph,
V the set of vertices in Graph(Lε) with their Euclidean coordinates,
E the set of edges in Graph(Lε).
Output: D

(
Graph(Lε)

)
,

where D
(
(Graph(Lε)

)
is the counterclockwise oriented ε-diagram of Graph(Lε) with the

property that Graph(Lε) can be continuously deformed into Lε, i.e. Graph(Lε) and Lε are
isotopic.

1: Compute the crossings of D(Graph(Lε)) using the sweep-line algorithms described in
Subsection 3.3.1.

(a) Compute I the set of intersections among all the edges of E using the sweep line
algorithm SweepPlane(Graph(Lε), V, E). In addition, the same algorithm reports
EI the set of pairs of edges containing all the computed intersections points.

(b) Order the pairs of edges of intersection points, pairs of edges from the set EI using
the algorithm ArrangeEdgesIntersect(EI).

2: Compute Kj , j ∈ N the lists of edges of intersection from E representing
all the knot components of D

(
Graph(Lε)

)
using the combinatorial algorithm

CreateKnots
(
Graph(Lε), V, E

)
described in Subsection 3.3.2.

3: Compute the arcs of the diagram D
(
Graph(Lε)

)
using the combinatorial algorithm

CreateArcs
(
〈I, EI〉, 〈{Kj , j ∈ N}, count〉

)
described in Subsection 3.3.2.

4: Compute the type of crossings in D
(
Graph(Lε)

)
using the combinatorial algorithm

DecideTypeCrossings(EI) described in Subsection 3.3.2.

5: Return D
(
Graph(Lε)

)
.

144 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

We now describe the algorithm ApproxAlexPoly, which computes the ε-Alexander poly-
nomial of an ε-link Lε approximated by a 3-dimensional graph data structure Graph(Lε)
by using Definition 50, Definition 51 and Definition 52 from Subsection 2.4.3, Chapter 2.
This algorithm takes as input the diagram D

(
Graph(Lε)

)
of the ε-link Lε. The number

of knot components in the diagram D
(
Graph(Lε)

)
is denoted with r, while the number of

crossings in the same diagram D
(
Graph(Lε)

)
is denoted with n. The algorithm returns as

output the ε-Alexander polynomial of the ε-link Lε represented as a 3-dimensional graph
Graph(Lε). We recall that the Alexander polynomial of a plane curve singularity is a Lau-
rent polynomial. We mention that once we compute the ε-Alexander polynomial ∆ε we
detect the number of variables in ∆ε and the degree of ∆ε. These parameters are required
for computing other approximate invariants of a plane complex algebraic curve.

Algorithm 22 Approximate Alexander polynomial of the approximate diagram
D(Graph(Lε)) : ApproxAlexPoly(D(Lε), r, n)

Input: D
(
Graph(Lε)

)
counterclockwise oriented ε-diagram of Graph(Lε) with r compo-

nents and n crossings as computed with the Algorithm ApproxDiagram.
Output: ∆ε(t1, ..., tr) ∈ Z[t±1

1 , ..., t±1
r],

where ∆ε(t1, ..., tr) is the ε-Alexander polynomial of Lε with diagram D
(
Graph(Lε)

)
.

1: Denote the arcs and separately the crossings of D
(
Graph(Lε)

)
with {1, ..., n}.

2: Compute LM(Lε) the labelling matrix of D
(
Graph(Lε)

)
with Definition 50, Subsec-

tion 2.4.3, Chapter 2.

3: Compute PM(Lε) the prealexander matrix of D
(
Graph(Lε)

)
with Definition 51, Sub-

section 2.4.3, Chapter 2.

4: If r = 1 then:

(a) Compute M any (n− 1)× (n− 1) minor of PM(Lε).

(b) Compute D the determinant of the minor M.

(c) Return ∆ε(t1) = Normalize(Dε).

5: If r ≥ 2 then:

(a) Compute all the (n− 1)× (n− 1) minors of PM(Lε).

(b) Compute G the greatest common divisor of all the computed minors in 5.(a).

(c) Return ∆ε(t1, ...tr) = Normalize(G).

3.3.4 Applications of the Main Algorithm

In this subsection we assume that we computed the ε-Alexander polynomial ∆ε of the ε-link
Lε represented as a 3-dimensional graph Graph(Lε). We recall that Lε represents the ε-link
of the singularity Q of a plane complex algebraic curve denoted with C. In addition, we
remember that the ε-link arises from the intersection of the curve C with a small sphere
Sε(Q) of radius ε centered in the singularity Q. We assume that n denotes the degree of
∆ε and that r represents the number of variables in ∆ε. From Subsection 2.4.4 and from
Section 2.5 we notice that we can employ the ε-Alexander polynomial to derive a formula
for the ε-Milnor number µε of the singularity Q. From the ε-Alexander polynomial attached
to the singularity Q of a plane complex algebraic curve C, we also derive a formula for the

3.4. Algorithm for Computing the Approximate Delta-Invariant 145

ε-delta-invariant of the singularity Q of the plane complex algebraic curve C. We describe
this algorithm in Subsection 3.4.1. We now describe the algorithm ApproxMilnorNumber
for computing the ε-Milnor number of the singularity Q of a plane complex algebraic curve
given the ε-Alexander polynomial ∆ε attached to the ε-link Lε of the singularity Q.

Algorithm 23 Approximate Milnor number of the singularity Q having approximate
Alexander polynomial ∆ε with n being its degree: ApproxMilnorNumber(∆ε, n)
Input: ∆ε(t1, ..., tr) the ε-Alexander polynomial of Lε computed with the algorithm
ApproxAlex,
Lε the ε-link of the singularity Q(z0, w0) of the plane complex algebraic curve C,
n the degree of ∆ε.
Output: µε ∈ Z>0,
where µε is the ε-Milnor number of Q(z0, w0).

1: If r = 1, then return µε = n.

2: If r ≥ 2, then return µε = n+ 1.

3.4 Algorithm for Computing the Approximate Delta-
Invariant

3.4.1 Description of the Algorithm

We now present the algorithm ApproxDelta(∆ε, n, r) for computing the ε-delta-invariant of
the singularityQ of the plane complex algebraic curve C from the ε-Alexander polynomial ∆ε

of degree n and with r variables. We mention that the ε-Alexander polynomial is computed
from the 3-dimensional graph data structure Graph(Lε), graph that approximates the ε-link
of the singularity Q of the curve C. Moreover the ε-link Lε is computed as the stereographic
projection of the intersection of the curve C with a small sphere Sε(Q) of radius ε and
centered in the singularity Q.

Algorithm 24 Approximate delta-invariant of the singularity Q having approximate
Alexander polynomial ∆ε with n being its degree and r being its number of variables:
ApproxDelta(∆ε, n, r)
Input: ∆ε(t1, ..., tr) the ε-Alexander polynomial of Lε computed with the algorithm
ApproxAlexPoly,
Lε the ε-link of the singularity Q(z0, w0) of the plane complex algebraic curve C,
n the degree of ∆ε, r the number of variables in ∆Lε .
Output: δε ∈ Z>0,
where δε is the ε-delta-invariant of Q(z0, w0).

1: If r = 1, then return δε = n/2.

2: If r ≥ 2, then return δε = (n+ r)/2.

146 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

3.4.2 Applications of the Algorithm

Based on Subsection 2.4.5 and on Section 2.5, we observe that from the ε-delta-invariants
of all the singularities of a plane complex algebraic curve C of degree m we can derive
a formula for the ε-genus of the plane complex algebraic curve C, which is discussed in
Subsection 3.6.1. We mention that the set of singularities of C have to be computed in the
projective complex plane.

3.5 Algorithm for Computing the Approximate Local
Topological Type

From Chapter 2, we notice that in order to understand the local topology of a plane complex
algebraic curve around its singular point Q it suffices to understand the link of the singu-
larity Q. Hence, we are interested in studying topological invariants such as the Alexander
polynomial of the link of the singularity, which determines completely the local topology of
the plane complex algebraic curve around its singular point.
We now describe the algorithm ApproxType(p, C, Q, ε) for computing the ε-local topological
type of the singularity Q(z0, w0) of the plane complex algebraic curve C defined by the
squarefree polynomial p(z, w,) with exact and with inexact coefficients. The parameter
ε ∈ R>0 represents the radius of the sphere Sε(Q) centered in the origin Q that we intersect
with the input curve C in order to compute the ε-link of the singularity Q.

Algorithm 25 ε-local topological type of the singularity O of the plane curve C defined by
p(z, w): ApproxType(p, C, Q, ε)
Input: p(z, w) ∈ C[z, w] a squarefree complex polynomial,
C = {(z, w) ∈ C2 | p(z, w) = 0} a plane algebraic curve,
Q(z0, w0) a numerical singularity of C,
ε ∈ R>0 a positive real number.

Output: the pair
(
Lε(Q),∆ε(Q), δε(Q)

)
representing the ε-local topological type of Q,

where Lε(Q) is the ε-link of Q,
∆ε(Q) is the ε-Alexander polynomial of Q and
δε(Q) is the ε-delta-invariant of Q.

1: Compute the ε-link Lε(Q) of the singularity Q by using the algorithm
ApproxLink(p, C, Q, ε).

2: Compute the graph Graph(Lε) of the ε-link Lε by using subdivision methods from
[Liang et al., 2008] implemented in the Axel system.

3: Compute the diagram D(Lε) with m components and n crossings of Graph(Lε) by using
the algorithm ApproxDiagram

(
Graph(Lε)

)
.

4: Compute the ε-Alexander polynomial ∆ε(Q) of degree n and with r variables of the
singularity Q by using the algorithm ApproxAlexPoly(D(Lε),m, n).

5: Compute the ε-delta-invariant δε(Q) of the singularity Q by using the algorithm
ApproxDelta(∆ε, µ, r).

6: Return the pair
(
Lε(Q),∆ε(Q), δε(Q)

)
.

3.6. Algorithm for Computing the Approximate Genus 147

3.6 Algorithm for Computing the Approximate Genus

3.6.1 Description of the Algorithm

We now give the schematic algorithm for computing the ε-genus of a plane complex alge-
braic curve C defined by a squarefree complex bivariate polynomial p(z, w) ∈ C[z, w] with
exact and inexact coefficients. We assume that the degree of the curve C

(
and thus of the

polynomial p(z, w)
)

is m. Moreover for the inexact data in the polynomial p(z, w) we are
given a positive real number δ ∈ R>0, which measures the error (or noise or tolerance)
in the coefficients of p(z, w). Furthermore we assume that we know the input parameter
ε ∈ R>0, which represents the radius of the sphere centered in the singularity Q of C, sphere
that we intersect with the curve C to compute the ε-link Lε of Q. In addition, we assume
that we are give a subset B = [−a, a]× [−b, b] of the 2-dimensional plane R2, subset that we
call box and that is needed for computing the numerical singularities of the plane complex
algebraic curve.

Algorithm 26 Approximate genus of a plane complex algebraic curve C defined by a
squarefree complex bivariate polynomial p(z, w) of degree m, where ε ∈ R>0 is an arbi-
trary input parameter, δ ∈ R>0 is the noise in the coefficients of p(z, w) and B ⊂ R2 :
ApproxGenus(C, p,m, ε, δ, B)
Input: C = {(z, w) ∈ C2 | p(z, w) = 0} a plane complex algebraic curve,
p(z, w) ∈ C[z, w] a squarefree polynomial with exact and inexact coefficients,
m the degree of the plane complex algebraic curve C,
ε ∈ R>0 the input parameter,
δ ∈ R>0 the noise in the coefficients of the polynomial p(z, w),
B = [−a, a]× [−b, b] ⊂ R2 a subset of R2.
Output: genusε(C) ∈ Z,
where genusε(C) is the ε-genus of C.

1: sumDeltaInv = 0.

2: Compute NumSing(C) = ApproxRealSing(C, p, δ, B).

3: For each Qi(zi, wi) ∈ NumSing(C) do:

(a) Compute Lε = ApproxLink(ε,Qi, C, p) (Lε is approximated by Graph(Lε)).

(b) Compute D(Lε) = ApproxDiagram
(
Graph(Lε)

)
.

(c) Compute ∆ε(t1, ..., tr) = ApproxAlexPoly
(
D(Lε), r, n

)
.

(d) Compute δε(Qi) = ApproxDelta(∆ε, n, r).

(e) sumDeltaInv = sumDeltaInv + δε(Qi).

4: Return genusε(C) =
(m− 1)(m− 2)

2
− sumDeltaInv .

3.6.2 Applications of the Algorithm

In this subsection we assume that we compute the ε-genus of a plane complex algebraic curve
C defined by a squarefree bivariate complex polynomial p(z, w) ∈ C[z, w] with exact and
inexact coefficients. Based on Subsection 2.4.6 and on Section 2.5, we derive a formula for

148 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

the ε-Euler characteristic of the Riemann surface attached to the resolution of singularities
of C. We now describe the algorithm for computing the ε-Euler characteristic.

Algorithm 27 Approximate Euler characteristic of the Riemann surface attached
to the resolution of singularities of the plane complex algebraic curve C defined
by the squarefree polynomial p(z, w) ∈ C[z, w] and having the ε-genus genusε(C):
ApproxEulerChar

(
C, p(z, w), ε, genusε(C)

)
Input: C = {(z, w) ∈ C2 | p(z, w) = 0} a plane complex algebraic curve,
p(z, w) ∈ C[z, w] a squarefree polynomial with exact and inexact coefficients,
genusε(C) the ε-genus of C computed with the algorithm ApproxGenus.
Output: χε ∈ Z,
where χε is the ε-Euler characteristic of the Riemann surface attached to the resolution of
singularities of C.

1: Return χε = 2− 2genusε(C).

3.7 Algorithms for Computing Knot Theory Properties

In this section, we assume that we computed the ε-link Lε of the singularity Q of the plane
complex algebraic curve C. In this case, Lε is called an algebraic link. We assume that we
computed the ε-Alexander polynomial of Lε of Q denoted with ∆ε, where n denotes the
degree and r denotes the number of variables in the polynomial. In addition, we assume that
we computed the ε-Milnor number µε of Q and the ε-delta-invariant δε of Q, as described
in the previous sections. Based on these invariants, we will now compute several properties
from knot property for the algebraic link Lε.

The genus of an algebraic knot (i.e. algebraic link with one component). By
definition the genus of a knot (and implicitly the genus of an algebraic knot) is the minimum
genus of an orientable surface spanning the knot (and implicitly the algebraic knot) in the 3-
dimensional Euclidean space R3. This surface is called Seifert surface. We denote the genus
of an algebraic knot K with g(K). We denote the degree of the Alexander polynomial of the
algebraic knot K with n, i.e. n is the Milnor number µ of the singularity corresponding to
K. From Milnor’s fibration theorem we know that the complement R3\K admits a fibration
by Seifert surfaces of minimal genus, i.e. K is a fibered knot. From [Seifert, 1934], we obtain
that the degree of the Alexander polynomial of a knot never exceeds twice the genus of the
knot. Moreover, from [Murasugi, 1958] and [Crowell, 1959] we obtain that the equality
holds for any alternating knot, whereas from [Neuwirth, 1963] we get that the equality
holds for any fibered knot. Furthermore, for fibered knots, the Alexander polynomial of
K evaluated in 0 is ±1, i.e. ∆(0) = ±1, and this is also sufficient for alternating knots to
be fibered knots. Based on Neuwirth-Stallings theorem [Neuwirth, 1963] and on Milnor’s
research [Milnor, 1968], we deduce that the genus of an algebraic knot K is computed via
the formula g(K) =

µ

2
, where µ is the degree of the Alexander polynomial of K, i.e. µ is

the Milnor number of the corresponding singularity of K.

The genus of an algebraic link (i.e. algebraic link with more than one compo-
nent). By definition the genus of a link (and implicitly the genus of an algebraic link) is
the minimum genus of an orientable surface spanning the link (and implicitly the algebraic

3.7. Algorithms for Computing Knot Theory Properties 149

link) in the 3-dimensional Euclidean space R3. This surface is called Seifert surface. We
denote the genus of an algebraic link L with g(L). In addition, Milnor’s fibration theorem
[Milnor, 1968] states that the complement R3 \ L admits a fibration by Seifert surfaces of
minimal genus, i.e. L is a fibered link. For the genus of an algebraic link we can only
give a lower bound depending on the Milnor number of the corresponding singularity of
the algebraic link. This result is based on the Seifert generalization for links made by
[Crowell, 1959]. We noted in the above paragraph that Seifert has shown how to construct,
for any knot K prescribed by a regular projection, a tame embedding of a connected ori-
entable surface with boundary K called the Seifert surface. R.H. Crowell showed that the
same procedure is applicable to links. If we denote with µ the Milnor number of the alge-
braic link, i.e. µ is the degree of the Alexander polynomial +1, then we have the following

relation for computing the genus of the link: g(L) ≥ µ

2
=

n+ 1
2

. The genus of knots

and links (and implicitly of algebraic knots and algebraic links) it is an invariant for links
and algebraic links, since it is an invariant under the Reidemeister moves, see Chapter 2,
Subsection 2.3.3.

The unknotting number of an algebraic link. The unknotting number of a link
L with r components, r ≥ 1 (and implicitly of an algebraic link L with r components,
r ≥ 1) is defined as the smallest number of times that must be allowed for L to cross itself
during a smooth deformation so as to transform itself into a collection of r unlinked and
unknotted circles. We denote the unknotting number of the algebraic link L with u(L).
From [Kronheimer and Mrowka, 1993] we know that the delta-invariant of a plane complex
algebraic curve singularity Q equals the unknotting number of the algebraic link L of the
singularity Q. Thus if δ(Q) denotes the delta invariant of the singularity Q, if n denotes
the degree and if r denotes the number of variables in the Alexander polynomial of the
algebraic link L of Q, then the unknotting number of Q is defined as:

• If r = 1, then u(L) = δ(Q) =
n

2
.

• If r ≥ 2, then u(L) = δ(Q) =
n+ r

2
.

The unknotting number is an invariant for links and algebraic links since it is invariant
under the Reidemeister moves, see Chapter 2, Subsection 2.3.3 for more information.

The number of knot components of an algebraic link. The number of knot compo-
nents of an algebraic link is also called the multiplicity of the algebraic link. This number
remains unchanged under the Reidemeister moves, and therefore it is an invariant for links
(and for algebraic links), see Chapter 2 for further details. To determine the number of
(knot) components of an algebraic link we proceed in the following way: we choose a point
on an arc of the diagram of the algebraic link, we then walk along the diagram and we
observe that each (knot) component is a completed cycle.

The linking number of an algebraic link. The linking number is defined for links of
at least 2 components (and implicitly for algebraic links with at least 2 components). Given
an oriented link of 2 components, and implicitly an oriented algebraic link L of 2 (knot)
components J and K, it is possible to define the linking number of the two components J
and K denoted with lk(J,K) in the following way:

• Each crossing point in the diagram of the link is assigned a sign as follows: if the
crossing point is righthanded, then we assign a +1 sign to it. If the crossing point is

150 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

lefthanded, then we assign a −1 sign to it. For more information on righthanded and
lefthanded crossings see Chapter 2, Subsection 2.3.3.

• The linking number lk(J,K) is defined as the sum of the signs of the crossing points
where J and K meet, divided by 2. If for each crossing c where J and K meet we

denote with ε(c) the sign of the crossing, then lk(J,K) =
1
2

∑
c∈J∩K

ε(c).

We add that the linking number is always an integer. Moreover, it is an invariant for links
and algebraic links, since it is an invariant under the Reidemeister moves, see Chapter 2,
Subsection 2.3.3 for more information. Furthermore, the linking number is symmetric, i.e.
lk(J,K) = lk(K,J). We also mention that the linking number is an invariant only for links
or algebraic links with at least 2 knot components. The linking number of a knot for its
crossings is no longer an invariant under the Reidemeister moves. Thus, the linking number
is meaningful only for links and algebraic links consisting of 2 or more (knot) components.
For instance, the linking number of the Hopf link is ±1, and the linking number of the
unlink is 0. By convention, we consider the linking number of the unknot to be 0, and the
linking number of any nontrivial knot as undefined. A nontrivial knot is any knot which
is different from the unknot. In formulating this definition for the linking number of an
algebraic link, we follow the book of [Livingston, 1993].

The determinant of an algebraic link.

• The determinant of an algebraic knot, i.e. an algebraic link with one (knot) com-
ponent. Let ∆(t) be the Alexander polynomial of the algebraic knot K. Then the
determinant of the algebraic knot K denoted with det (K) is defined as the absolute
value of the Alexander polynomial of K evaluated at −1, i.e. det (K) = |∆(−1)|,
see [Murasugi, 1996]. The determinant of an algebraic knot is always an odd positive
integer (this is not true in the case of algebraic links).

• The determinant of an algebraic link, i.e. an algebraic link with more than one (knot)
components. Let ∆(t1, ..., tr) be the Alexander polynomial of the algebraic link L with
r ≥ 2 (knot components). Then the determinant of the algebraic link L denoted with
det (L) is defined as the absolute value of the Alexander polynomial of L evaluated
at (−1, ...,−1), i.e. det (L) = |∆(−1, ...,−1)|. The determinant of an algebraic link is
a positive integer.

The determinant of an algebraic knot or of an algebraic link is not an invariant of the
algebraic knot or of the algebraic link, it only helps in deciding the colorability property
of an algebraic knot or of an algebraic link. The colorability property is an invariant for
algebraic knots or for algebraic links since it is invariant under the Reidemeister moves, see
Chapter 2, Subsection 2.3.3 for details.

The colorability of an algebraic link. We decide the colorability property of an al-
gebraic link L of r components with r ≥ 1 being a positive integer following the book
of [Livingston, 1993]. We recall that a knot or link (and implicitly an algebraic knot or
an algebraic link) diagram is p-colorable if each arc can be labelled with an integer from
{0, ..., p − 1} such that the following properties are true: (1) at each crossing the relation
2x− y − z = 0(mod p) is true, where x is the label of the overcrossing and y and z are the
two labels of the undercrossing, and (2) at least two labels are distinct.
From [Livingston, 1993] we know that a knot or a link (and implicitly an algebraic knot or
an algebraic link) is p-colorable if and only if p divides the determinant of the knot or of the

3.7. Algorithms for Computing Knot Theory Properties 151

link (and implicitly the determinant of the algebraic knot or of the algebraic link). Thus
by computing the determinant of the knot or of the link (and implicitly of the algebraic
knot or of the algebraic link), we can decide the p-colorability of the knot or of the link
(and implicitly of the algebraic knot or of the algebraic link), in the following way: (1) If
det (L) = 0, then L is colorable via any p-numbering, with p being a positive prime integer.
(2) If det (L) = 1, then L is not colorable via any p-numbering, with p being a positive
prime integer. (3) If det (L) 6= 1 and det (L) 6= 0 and 3|det (L), then L is colorable via a
3-numbering, i.e. L is tricolorable. (4) If det (L) 6= 1 and det (L) 6= 0 and p|det (L), then
L is colorable via any p-numbering, with p being a positive prime integer.
We make the observation that the invariants of algebraic links described in this section (i.e.
the genus, the unknotting number, the linking number, the colorability) are not complete
invariants for the algebraic links, i.e. there exist different algebraic links having the same
value for these invariants.

152 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

Algorithm 28 Knot theory properties of the ε-link Lε(Q) of the singularity Q, with ∆ε(Q)
being its ε-Alexander polynomial, µε(Q) being its ε-Milnor number and δε(Q) being its
ε-delta-invariant: PropApproxLink

(
Lε,∆ε, n, r, µε, δε

)
Input: Lε(Q) the ε-link of the singularity Q,
∆ε(Q) the ε-Alexander polynomial of Lε of Q,
n the degree of ∆ε, r the number of variables in ∆ε,
µε(Q) the ε-Milnor number of the singularity Q,
δε(Q) the ε-delta-invariant of Q.
Output:

(
g(Lε), u(Lε),m(Lε), lk(Lε),det (Lε)

)
,

where g(Lε) denotes the genus of Lε,
u(Lε) denotes the unknotting number of Lε,
m(Lε) denotes the multiplicity of Lε,
lk(Lε) denotes the linking numbers of the knot components of Lε, and
det (Lε) denotes the determinant of Lε.

1: If r = 1, then g(Lε) =
µ

2
, u(Lε) = δε(Q) =

n

2
, m(Lε) = 1, detLε = |∆ε(−1)|.

2: If r ≥ 2, then g(Lε) ≥
µ

2
=

n+ 1
2

, u(Lε) = δε(Q) =
n+ r

2
, m(Lε) = r, detLε =

|∆ε(−1, ...,−1)|.

3: If Lε is the unknot or the unlink, then lk(Lε) = 0.

4: If Lε is a nontrivial knot, then lk(Lε) is “undefined”!
else compute a sequence concerning the linking numbers of all the knot components of
Lε.

5: If det (Lε) = 0, then L is colorable via any p-numbering, with p being a positive prime
integer.

6: If det (Lε) = 1, then L is not colorable via any p-numbering, with p being a positive
prime integer.

7: If det (Lε) 6= 1 and det (Lε) 6= 0 and 3|det (Lε), then L is colorable via a 3-numbering,
i.e. L is tricolorable.

8: If det (Lε) 6= 1 and det (Lε) 6= 0 and p|det (Lε), then L is colorable via any p-numbering,
with p being a positive prime integer.

9: Return
(
g(Lε), u(Lε),m(Lε), lk(Lε),det (Lε)

)
.

Remark 14. We make an observation concerning the way in which we can use the invari-
ants introduced in this subsection to extract more information on a plane complex algebraic
curve. We recall that in Chapter 2, Subsection 2.4.3, Definition 52 we define the Alexander
polynomial of the unknot (or of the trivial knot) as being equal to 1, and the Alexander
polynomial of the unlink (or of the trivial link) as being equal to 0. In addition, from Chap-
ter 2, Subsection 2.4.3, Example 19, we know that the Alexander polynomial of the Hopf
link is equal to 1. Consequently, we need some more information to distinguish between the
unknot and the Hopf link. For this purpose, we basically use the linking number. We notice
that the linking number of the unknot is being equal to 0, whereas the linking number of
the Hopf link is equal to ±1. It follows that we can distinguish between the unknot and the
Hopf link in the following way:

3.7. Algorithms for Computing Knot Theory Properties 153

• If the Alexander polynomial of a knot K is 1 and the linking number of K is 0, then
K coincides with the unknot.

• If the Alexander polynomial of a link L is 1 and the linking number of L is ±1, then
L coincides with the Hopf link..

In fact we notice that we can distinguish between the unknot and the Hopf link also based
on the Alexander polynomial and on the number of (knot) components as follows:

• If a link L has one (knot) component and the Alexander polynomial of L is 1, then L
coincides with the unknot.

• If a link L has at least 2 (knot) components and the Alexander polynomial of L is
1, then L coincides with the Hopf link. In this case, we assume that we know the
number of (knot) components in the link L, i.e. the multiplicity of L.

In Section 3.1, we use subdivison methods from [Mourrain and Pavone, 2009] to compute
the set of numerical singularities of a plane complex algebraic curve in the projective plane.
We recall that for a plane complex algebraic curve C defined by a squarefree polynomial
p(z, w) ∈ C[z, w] with exact and inexact coefficients, for a given tolerance δ ∈ R>0 in the
coefficients, and for a subset B ⊂ R2, these subdivision methods return a list M of boxes in
B smaller than δ containing all the singularities of C. Still, the existence and the uniqueness
of a singularity in each box is not guaranteed. By considering the middle points Q of each
box from M as singularities of C, we compute the ε-link Lε of each Q with the algorithm
ApproxLink from Section 3.2. In addition, we compute the ε-Alexander polynomial of Lε

with the algorithm ApproxAlexPoly from Section 3.3, and the linking number of Lε with
the algorithm PropApproxLink from this subsection. We can decide the existence of a
singular point in the list of boxes M as follows:

• If the ε-Alexander polynomial of Lε is 1 and the linking number of Lε is 0, then Lε is
the unknot. Thus from [Milnor, 1968], it follows that Q is not a singular point of C.

• If the ε-Alexander polynomial of Lε is 0, then Lε is the unlink. From [Milnor, 1968],
it follows that Q is not a singular point of C.

• If the ε-Alexander polynomial of Lε is 1 and the linking number of Lε is 1, then Lε is
the Hopf link. Thus from [Milnor, 1968], it follows that Q is a singular point of C.

• If (Lε has at least 2 knot components and the ε-Alexander polynomial of Lε is different
from 0) or (Lε has 1 knot component and the ε-Alexander polynomial of Lε is different
from 1), then Lε is a nontrivial link or a nontrivial knot. Thus from [Milnor, 1968],
it follows that Q is a singular point of C.

154 Chapter 3. Symbolic-Numeric Algorithms for Plane Algebraic Curves

Chapter 4
Convergence Analysis of the
Symbolic-Numeric Algorithms

We mention that in this thesis we approach the algebraic problem of computing topological
invariants of a plane complex algebraic curve C defined by a squarefree polynomial p(z, w) ∈
C[z, w] with both exact and inexact data. For the inexact data we associate a positive
real number called noise, which measures the error level in the coefficients of the defining
polynomial of the input curve. We deal with an ill-posed problem, i.e. small changes in
the input data produce huge changes in the output solution. Moreover, we recall that in
Chapter 3 we develop symbolic-numeric algorithms for computing approximate topological
invariants of a plane complex algebraic curve. These symbolic-numeric algorithms depend
on a positive real number called regularization parameter. In this section we show that
the symbolic-numeric algorithms designed in Chapter 3 compute approximate solutions,
which satisfy the following property (called convergence for noisy data property): as the
noise level decreases to zero and as the regularization parameter is chosen according to
a specific rule (called parameter choice rule), the approximate solutions computed by the
symbolic-numeric algorithms tend to the exact solutions of the considered problem.
Once the approximate Alexander polynomial of a plane curve singularity is known, the com-
putation of the approximate delta-invariant and of the approximate genus are not anymore
subject to numerical errors because we use discrete combinatorial algorithms combined
with robust computational geometry algorithms for their computation. The approximate
Alexander polynomial of a plane curve singularity is determined by the approximate link
of the singularity. We need to analyze the numerical behavior of the link of the singularity
under tiny perturbations. In this chapter, we basically prove the convergence results for
the symbolic-numeric algorithm that computes the approximate local topological type of
the singularity. We recall that the approximate local topological type of the singularity Q
of the plane complex algebraic curve C is defined as the pair

(
Lε(Q),∆ε(Q), δε(Q)

)
, where

Lε(Q) denotes the ε-link of the singularity Q (or the approximate link of Q), ∆ε(Q) denotes
the ε-Alexander polynomial of Lε(Q) (or the approximate Alexander polynomial of Q), and
δε(Q) denotes the ε-delta-invariant of Q (or the approximate delta-invariant of Q).
We mention that the results from this section are included in the following two papers
[Hodorog and Schicho, 2011a] and in [Hodorog and Schicho,].

156 Chapter 4. Convergence Analysis of the Symbolic-Numeric Algorithms

4.1 Basic Notations

We denote by VI the set of coefficient vectors of all the squarefree polynomials from C[z, w]
of degree bounded by some natural number m ∈ N \ {0}. The set P :=

{
Z[t1] ∪ Z[t1, t2] ∪

... ∪ Z[t1, ..., tk] ∪ ...
}

represents the set of all normalized Alexander polynomials either in
the t1 variable, or in the t1, t2 variables, or in the t1, t2, ...tk sequence of variables with
k ∈ N \ {0}, etc. We denote by i the imaginary unit. We denote by VO the discrete set
of integer coefficient vectors of all the polynomials from P. For a polynomial p(z, w) of
fixed degree we denote with p its corresponding coefficient vector. The set VI is a metric
space by the Euclidean distance of coefficient vectors, denoted with || · ||. The notation | · |
represents the absolute value function.
For p(z, w) ∈ C[z, w] we denote by:

Mp(z, w) :=

(
∂zp(z, w) ∂wp(z, w)

z w

)
(4.1)

the two-by-two matrix formed by the partial derivatives of p(z, w) with respect to z and
w, and by the complex conjugates z, w. We denote by Zeroes(p) the set of zeroes of the
polynomial p(z, w).
In addition, we consider the usual topology on the Euclidean space Rn, i.e. the basic open
sets are the open balls.

4.2 Basic Results

We use the Heine-Borel theorem as a criteria for defining compact subsets of Rn:

Theorem 12. Every subset of Rn with the usual topology is compact if and only if it is
closed and bounded.

We employ the Bolzano-Weierstrass theorem for ensuring the existence of convergence sub-
sequences in Rn:

Theorem 13. Each bounded sequence in Rn has a convergent subsequence.

For our study, the Euclidean extreme value theorem provides us with necessary conditions
for the existence of the maximum value for a continuous real-valued function:

Theorem 14. Any continuous real-valued function on a closed and bounded subset of Rn

attains its maximum and minimum values.

4.3 Definitions

First we establish a general framework for handling ill-posed algebraic problems using
adapted regularization principles from [Engl et al., 1996, Tikhonov and Arsenin, 1977]. We
then apply these principles to Problem 1 from Chapter 3, which we treat in this thesis.
We define a well-posed problem as it was first formulated by J. Hadamard: a problem is
said well-posed if: (i) there exists a solution to the problem (existence); (ii) the solution
is unique (uniqueness); (iii) the solution depends continuously on the data in some given
topological space (stability). Otherwise the problem is called ill-posed.

4.3. Definitions 157

We consider the discontinuous function:

E : X → Y, f 7→ E(f), (4.2)

on the metric spaces X,Y with metrics given by the Euclidean norm. The problem of
computing E(f) ∈ Y for given f ∈ X is ill-posed as the computed output does not contin-
uously depend on the input, i.e. the stability statement from the definition of well-posed
problems does not hold. We define a perturbation function as follows:

Definition 61. A perturbation of f ∈ X is defined as the function f− : R>0 → X, δ 7→ fδ

with ||f − fδ|| ≤ δ for all δ ∈ R>0. In this case f is called the exact data, fδ the perturbed
data and δ the noise level (error, tolerance).

We would like to approximate the discontinuous function E by continuous partial functions
Rε with the same discrete output set and with varying domains of definition. One can use
the additional parameter ε to “move away” the input from the set where the function Rε

is not defined. More precisely, we define:

Definition 62. For any ε ∈ R>0, let Uε ⊂ X × R>0 be an open subset and let:

Rε : Uε → Y, (f, ε) 7→ Rε(f)

be a continuous function. The function Rε is called a regularization if there exists a bijective,
monotonic function ε = α(δ), α : R>0 → R>0 with:

lim
δ→0

α(δ) = 0, (4.3)

such that for any f ∈ X, f ∈ Uα(δ′) for sufficiently small δ′ ∈ R>0, and for any perturbation
function f− with ||f − fδ|| ≤ δ for all δ ∈ R>0, the following property holds:

lim
δ→0

Rα(δ)(fδ) = E(f). (4.4)

The function α is called a parameter choice rule, ε is called the regularization parameter and
Rα is called the regularized solution of E. The equation (4.4) is called the convergence for
noisy data property of Rα. The pair (Rα, α) is called a regularization method for solving
the ill-posed problem E if the equations (4.3) and (4.4) are true.

For our problem, we consider X the set VI of coefficient vectors of squarefree polynomials
p(z, w) ∈ C[z, w] of degree bounded by some natural number m ∈ N \ {0} and Y the set
VO of integer coefficient vectors of normalized Alexander polynomials. In addition, we let:

E : VI → VO, f 7→ E(f) (4.5)

be the exact algorithm for computing the Alexander polynomial of a plane curve singularity.
Since VO is a discrete set, the function E is discontinuous. Therefore, the problem of
computing the Alexander polynomial E(f) ∈ VO for given f ∈ VI is ill-posed.
For every ε ∈ R>0, we denote by:

Aε : U ⊂ VI × R>0 → VO, (p, ε) 7→ Aε(p) (4.6)

the symbolic-numeric algorithm that computes the ε-Alexander polynomial Aε(p) for given
(p, ε) ∈ VI × R>0, as described in Chapter 3. This polynomial arises as the intersection
of the sphere Sε with the curve C defined by p. We notice that Aε is a partial function,
because it is not defined in case the intersection Sε ∩ C has singularities. Still, the function
Aε is continuous in its domain of definition denoted by U .
We wish to show that Aε is a regularization function for every (p, ε) ∈ U ⊂ VI×R>0. There-
fore, from Definition 62 we need to find a parameter choice rule ε = α(δ) with property (4.3)
and that satisfies equation (4.4). Consequently, the pair (Aα, α) would be a regularization
method for solving the ill-posed Problem 1.

158 Chapter 4. Convergence Analysis of the Symbolic-Numeric Algorithms

4.4 Convergence Results

In this subsection, we present the lemmas and the theorems that we formulate to prove the
convergence for noisy data property of the algorithm Aε considered in (4.6). For construct-
ing the proofs of our lemmas and theorems, we use fundamental notions and results from
algebraic geometry and topology as presented in [Bochnak et al., 1998, Marker, 2002] and
respectively in [Mumkres, 2000].
First of all, we set the general mathematical setting required for our study. Let f(z, w) ∈
C[z, w] be an arbitrary but fixed squarefree polynomial with exact coefficients (i.e. integer
numbers of rational numbers). For simplicity we denote fδ(z, w) =: g(z, w) ∈ C[z, w] with
||g−f || ≤ δ. We denote with SK the sphere centered in (0, 0) of radius K, and with BK the
open ball centered in (0, 0) of radius K. Moreover, LK denotes the K-link of the singularity
(0, 0) of the plane complex algebraic curve defined by the polynomial f(z, w) ∈ C[z, w].
We now introduce and we prove some lemmas, which are necessary for our study. We make

use of the isomorphism of C with the set of 2× 2 matrices of the form

(
x −y

y x

)
.

Lemma 2. Let A be a 4× 4 matrix defined over the real numbers as follows:
x −y u −v

y x v u

a b c d

−b a −d c

 . (4.7)

In addition, consider B to be a 2 × 2 matrix defined over the complex numbers in the
following way: (

x+ iy u+ iv

a− ib c− id

)
. (4.8)

Then rank(A) = 2rank(B).

Proof. We represent the matrices A,B as linear maps in the following way:

A : R4 → R4

x ∈ R4 7→ Ax ∈ R4

and
B : C2 → C2

z ∈ C2 7→ Bz ∈ C2.
We notice that the following equalities are true:

rank(A) = dimR
(
A(R4)

)
and

rank(B) = dimC
(
B(C2)

)
, (4.9)

where dimR(A(R4)) represents the real dimension of the image of A, whereas dimC(B(C2))
denotes the complex dimension of the image of B. Moreover, we observe that

dimC
(
B(C2)

)
= dimC

(
B(R4)

)
. (4.10)

Hence, from equalities (4.9) and (4.10) we obtain:

rank(B) = dimC
(
B(C2)

)
=

= dimC
(
B(R4)

)
=
dimR(A(R4))

2
=
rank(A)

2
,

and thus the lemma is proved.

4.4. Convergence Results 159

Lemma 3. We consider the matrices A and B defined as in Lemma 2. Then detA =
|detB|2.

Proof. By straightforward computation with a computer algebra system the lemma is
proved. We first compute the determinant of A :

detA = det


x −y u −v

y x v u

a b c d

−b a −d c

 =

= a2u2 + b2u2 + a2v2 + b2v2−
−2acux− 2bdux− 2bcvx+ 2advx+
+c2x2 + d2x2 + 2bcuy − 2aduy−
−2acvy − 2bdvy + c2y2 + d2y2.

(4.11)

Secondly, we compute the determinant of B and we get:

detB = det

(
x+ iy u+ iv

a− ib c− id

)
=

= −au− bv + cx+ dy + i(bu− av − dx+ cy).
(4.12)

We now compute the absolute value of the determinant of B from equality (4.12) and we
obtain:

|detB|2 =

=
(√

(−au− bv + cx+ dy)2 + (bu− av − dx+ cy)2
)2

=
= (−au− bv + cx+ dy)2 + (bu− av − dx+ cy)2 =
= a2u2 + b2u2 + a2v2 + b2v2−
−2acux− 2bdux− 2bcvx+ 2advx+
+c2x2 + d2x2 + 2bcuy − 2aduy−
−2acvy − 2bdvy + c2y2 + d2y2.

(4.13)

From equalities (4.11) and (4.13) we obtain that detA = |detB|2 and thus the lemma is
proved.

Lemma 4. We consider the matrices A and B as defined in Lemma 2. We consider the
following 3× 4 matrix defined over the real numbers:

J =


x −y u −v

y x v u

a b c d

 . (4.14)

Then rank(J) = 3 if and only if rank(A) = 4 (i.e. detA 6= 0) and equivalently rank(B) = 2
(i.e. detB 6= 0).

Proof. First of all, we assume that rank(J) = 3 and we prove that rank(A) = 4. We know
that rank(J) = 3 and that rank(J) < rank(A). In addition, we know that rank(A) is even
and that A is a 4× 4 matrix. Hence, rank(A) = 4.
We now assume that rank(A) = 4 (i.e. detA 6= 0) and we prove that rank(J) = 3. Since
rank(A) = 4, it follows that detA 6= 0. We now use the determinant expansion by minors
to compute detA and we obtain:

detA = b ·M41 + a ·M42 + d ·M43 + c ·M44 6= 0, (4.15)

160 Chapter 4. Convergence Analysis of the Symbolic-Numeric Algorithms

where M4j with j ∈ {1, 2, 3, 4} represents the minor of A obtained by taking the deter-
minant of A with row 4 and column j erased. It follows that at least one of the minors
M41,M42,M43,M44 from equality (4.15) is different from 0. Hence, at least one 3×3 minor
of J is nonzero. We obtain that rank(J) = 3 and thus the lemma is proved.

We formulate and we prove the following important proposition:

Proposition 3. We consider the plane complex algebraic curve C ⊂ C2 with a singularity in
the origin O(0, 0) ∈ C2, defined by the squarefree polynomial f(z, w) ∈ C[z, w]. We replace
z = a+ ib, w = c+ id in f(z, w) and we obtain

f(a, b, c, d) = u(a, b, c, d) + iv(a, b, c, d),

where u(a, b, c, d), v(a, b, c, d) ∈ R[a, b, c, d]. We represent C as a 2-dimensional object in R4 :

C = {(a, b, c, d) ∈ R4 | u(a, b, c, d) = v(a, b, c, d) = 0},

and we consider the 3-dimensional sphere of small radius K centered in the origin O(0, 0) :

Sε(O) = {(a, b, c, d) ∈ R4 | a2 + b2 + c2 + d2 = K2}.

We consider the following system of polynomial equations:
u(a, b, c, d) = 0

v(a, b, c, d) = 0

a2 + b2 + c2 + d2 = K2

, (4.16)

which represents the intersection of Zeroes(f)∩SK(O). We consider the Jacobian JI of the
system (4.16):

JI =


∂u

∂a
−∂u
∂b

∂u

∂c
−∂u
∂d

∂v

∂a

∂v

∂b

∂v

∂c

∂v

∂d

a b c d

 , (4.17)

and the following matrices:

S1 =



∂u

∂a
−∂u
∂b

∂u

∂c
−∂u
∂d

∂v

∂a

∂v

∂b

∂v

∂c

∂v

∂d

a b c d

−b a −d c


, (4.18)

S2 =

 ∂f

∂z

∂f

∂w

z w

 , (4.19)

where z, w represent the complex conjugates of z, w. Then the following statements are true:

1. rank(S1) = 2rank(S2).

2. detS1 = |detS2|2.

4.4. Convergence Results 161

3. rank(S1) = 4 if and only if rank(JI) = 3.

Proof. From the Cauchy-Riemann equations we know:

∂u

∂a
=
∂v

∂b
,
∂u

∂b
= −∂v

∂a

∂u

∂c
=
∂v

∂d
,
∂u

∂d
= −∂v

∂c
.

Consequently, the matrices JI , S1, S2 are of the same form as the matrices J,A,B from
Lemma 2, Lemma 3 and Lemma 4. Based on Lemma 2 it follows that rank(S1) =
2rank(S2). From Lemma 3 we obtain that detS1 = |detS2|2. In addition, by Lemma 4 we
get that rank(S1) = 4 if and only if rank(JI) = 3 and thus the proposition is proved.

Based on Proposition 3, we now formulate and we prove the following proposition, which is
essential for our proof concerning the convergence for noisy data property of the designed
symbolic-numeric algorithm from Chapter 3:

Proposition 4. We consider the same setting as in Proposition 3. Then the intersection
Zeroes(f) ∩ SK(O) has no singularities if and only if the equations

f(z, w) = det(Mf)(z, w) = |z|2 + |w|2 −K2 = 0 (4.20)

have no common solutions.

Proof. Based on equality (4.19) and on notation (4.1) we get:

detS2 = detMf . (4.21)

Firstly, we suppose that Zeroes(f) ∩ SK(O) has no singularities and we show that the
equations given in (4.20) have no common solutions. Since Zeroes(f) ∩ SK(O) has no
singularities, from Proposition 3 we get that rank(JI) = 3, which implies rank(S1) = 4.
It follows that the system (4.20) has no common solutions. Secondly, we assume that the
equations given defined in (4.20) have no common solutions. From Proposition 3, we get
that rank(S1) = 4. Consequently, Zeroes(f) ∩ SK(O) has no singularities.

Let K > 0 be such that Sε(O) ∩ C has no singularities for all ε, 0 < ε ≤ K. Such K exists
by Theorem 10 of Milnor. Then the following system

f(z, w) = det(Mf)(z, w) = 0 (4.22)

has no common solution except for (0, 0) in the closed ball BK :=
{

(z, w) ∈ C2 :
(
|z|2 +

|w|2
)1/2

≤ K
}

of radius K around (0, 0) ∈ C2, by Proposition 4. Note that (0, 0) is a
common solution because

f(0, 0) = det(Mf)(0, 0) = 0. (4.23)

In order to prove the convergence for noisy data property of Aε we require a preliminary
lemma.

Lemma 5. There exists N > 0 such that for all δ > 0, and for all g with ||g − f || ≤
δ there exists no zero for the system of polynomial equations determined by g(z, w) =
det(Mg)(z, w) = 0 whose length is greater than δ1/N and less than K.

162 Chapter 4. Convergence Analysis of the Symbolic-Numeric Algorithms

Proof. In order to prove Lemma 5 we prove the following equivalent statement:

∃N > 0 ∀δ > 0 ∀g : ||g − f || ≤ δ ∀(z, w) :(
g(z, w) = det(Mg)(z, w) = 0 and(

|z|2 + |w2|
)1/2

≤ K
)
⇒
(
|z|2 + |w2|

)1/2

≤ δ1/N .

(4.24)

We take δ > 0 and g with ||g − f || ≤ δ.
Step 1. We introduce the set Zδ of “special” zeroes of g as follows:

Zδ =
{(

(z, w), g
)

: ||g − f || ≤ δ,
g(z, w) = det(Mg)(z, w) = 0,(
|z|2 + |w|2

)1/2

≤ K
}
.

(4.25)

We notice that Zδ ⊆ BK ×VI . From equality (4.23) it follows that Zδ 6= ∅ since it contains(
(0, 0), f

)
.

We consider the following function:

τ : BK ×VI → R≥0(
(z, w), g

)
7→ τ

(
(z, w), g

)
=
(
|z|2 + |w|2

)1/2

.
(4.26)

For identifying compact sets we use Theorem 12 of Heine-Borel, which states that every
subset of Rn with the usual topology is compact if and only if it is closed and bounded.
Consequently, we observe that Zδ ⊂ BK × VI is compact and that τ is a continuous
real valued positive function. In addition, we have that Zδ 6= ∅ and Zδ ⊆ BK × VI .
From Theorem 14 on the Euclidean extreme value of real-valued functions, we know that
any continuous real-valued function on a compact subset of Rn attains its maximum and
minimum values. Hence, we obtain that τ(Zδ) attains its maximum value.
We use the maximum of τ(Zδ) to define the function:

β : R>0 → R≥0

δ 7→ β(δ) = max {τ(a) : a ∈ Zδ}.
(4.27)

We notice that β is a monotonic, semialgebraic function.
Step 2. We now prove the convergence of β:

lim
δ→0

β(δ) = 0. (4.28)

We consider (δn)n ⊂ R>0 an arbitrary but fixed sequence with lim
n→∞

δn = 0. We assume

that (δn)n is monotonic with δn ≤ δ1 for all n ∈ N \ {0}. To prove equality (4.28) we need
to prove that lim

n→∞
β(δn) = 0.

We define the sequence
(
(zn, wn), gn

)
n
⊆ BK × VI such that

(
(zn, wn), gn

)
∈ Zδn

and

τ
(
(zn, wn), gn

)
= β(δn) for all n ∈ N. In addition, we replace VI in the proof by VI = {g :

||g − f || ≤ δ1}. In this case, all the assumptions formulated previously are correct.
Under these assumptions we have that BK×VI is compact, by Theorem 12 of Heine-Borel.
From Theorem 13 of Bolzano-Weierstrass on compact sets, we know that each bounded

4.4. Convergence Results 163

sequence in Rn has a convergent subsequence. Consequently, we obtain that the sequence(
(zn, wn), gn

)
n
⊆ BK ×VI has a convergent subsequence.

We take this convergent subsequence to be the sequence
(
(znm , wnm), gnm

)
m

specified by

(nm)m with the following property:
lim

m→∞
znm = z̃

lim
m→∞

wnm
= w̃

lim
m→∞

gnm
= g̃

. (4.29)

Since
(
(znm

, wnm
), gnm

)
∈ Zδnm

for all m ∈ N, we get:

||gnm
− f || ≤ δnm

and (4.30)

gnm(znm , wnm) = det(Mgnm
)(znm , wnm) = 0. (4.31)

Under the hypothesis that lim
m→∞

δnm
= 0 and from inequality (4.30), we conclude that

g̃ = f.

Moreover, it follows that

f(z̃, w̃) = det(Mf)(z̃, w̃) = 0. (4.32)

From equalities (4.22) and (4.23) we know that (0, 0) is the only zero for the system of
polynomial equations (4.32) and thus (z̃, w̃) = (0, 0).
Consequently, we obtain lim

m→∞
β(δnm

) = 0. Since
(
β(δn)

)
n

is also a monotonic sequence we

obtain that lim
n→∞

β(δn) = 0 and thus we have proved the convergence of β.

Step 3. Finally, we show that the function β is bounded from above by δ1/N . From relation
(4.28) we obtain that the function β is bounded from above. We now have to show that β
is smaller or equal that δ1/N .

We use the following theorem for estimating the rate of growth of a semialgebraic function
of one variable:

Theorem 15. ([Bochnak et al., 1998]) Let f : (a,∞)→ R be a semialgebraic function (not
necessarily continuous). There exists b ≥ a and an integer N ∈ N such that |f(x)| ≤ xN

for all x ∈ (b,∞).

Moreover, we employ the following theorem for ensuring the piecewise continuity of a semi-
algebraic function:

Theorem 16. ([Marker, 2002]) Let F be a real closed field and f : F → F be a semialge-
braic function. Then, we can partition F into I1 ∪ ...Im ∪X, where X is finite and Ij are
pairwise disjoint open intervals with endpoints in F ∪ {±∞} such that f is continuous on
each Ij with j ∈ {1, ...,m} and m ∈ N.

Since β is a semialgebraic function, we obtain from Theorem 16 that β is piecewise contin-
uous on open intervals. We consider βr the restriction of β to the first open interval.
Case 1. The restriction βr is 0 in the first open interval. The lemma is true as (0, 0) is the
only “special” zero.

164 Chapter 4. Convergence Analysis of the Symbolic-Numeric Algorithms

Case 2. The restriction βr is not 0 in the first open interval. Because βr is continuous and
monotonic, it follows that the restriction βr is bijective. Using the inverse β−1

r we define
the function γ as follows:

γ : R>0 → R>0

δ 7→ γ(δ) =
1

β−1
r (δ−1)

. (4.33)

Since γ is a semialgebraic function, we apply Theorem 15 and we obtain that there exists
N ∈ N \ {0} and b ∈ R>0 such that:

γ(δ) ≤ δN , (4.34)

for all δ > b ∈ R+. We substitute δ with δ−1 in inequality (4.34) and we obtain that there
exists N ∈ N \ {0} and η ∈ R>0 such that:

γ(δ−1) ≤ δ−N , (4.35)

for all δ < η = b−1. We rewrite inequality (4.35) using the definition (4.33) of γ and by
eliminating the denominators we obtain:

δN ≤ β−1
r (δ). (4.36)

We compose the inequality (4.36) in both sides with βr. By using βr ◦ β−1
r = idR>0 we get:

βr(δN) ≤ δ. (4.37)

By substituting δ with δ1/N in inequality (4.37) we obtain an upper bound for the semial-
gebraic function β:

βr(δ) ≤ δ1/N ,

and thus the lemma is proved.

We use Lemma 5 as a tool for proving the convergence for noisy data statement (4.4) and for
ensuring the existence of a proper parameter choice rule (4.3) for the algorithm Aε defined
in relation (4.6). This convergence statement is given by the following theorem:

Theorem 17. There exists N > 0 and η ∈ R>0 such that for all δ > 0 with δ < η, for all
g with ||g − f || ≤ δ and for all ε ∈ [δ1/N ,K], the following property holds: Aε(g) = E(f).

Proof. We take N > 0, η ∈ R+ and ε = βr(δ) ≤ δ1/N given by Lemma 5. We show that
Aε(g) = E(f).
From Theorem 10 of Milnor we know that Aε(f) = E(f).
We construct an isotopy between the links Zeroes(f)∩Sε(0) and Zeroes(g)∩Sε(0) as follows:

gt : C2 × [0, 1]→ C
(z, w)→ gt(z, w) = tf(z, w) + (1− t)g(z, w), (4.38)

where gt is a continuous function for all 0 ≤ t ≤ 1 with g0 = g and g1 = f.

To prove the theorem, it suffices to show that Aε(gt) is an ε-algebraic link, i.e. that
Zeroes(gt) ∩ Sε(O) has no singularities, i.e. that the system of polynomial equations de-
termined by gt(z, w) = det(Mgt)(z, w) = 0 has no zero in Bε with ε = βr(δ) ≤ δ1/N . This
statement is true by Lemma 5.

4.4. Convergence Results 165

From Theorem 17 it follows that ε = δ1/N is a parameter choice rule for Aε, for which the
convergence for noisy data statement (4.4) of Aε holds. Still, this parameter choice rule
depends on N which is unknown. The following lemma provides us with an upper bound
for δ1/N which is independent on N :

Lemma 6. For all N > 0 there exists θ ∈ R>0 such that for all δ > 0 with δ < θ, the

inequality δ1/N ≤ 1
|lnδ|

is true.

Proof. We prove Lemma 6 by basic calculus and by using l’Hôpital rule. We take N > 0,
η ∈ R+ and ε = βr(δ) ≤ δ1/N given by Lemma 5. We prove that:

|lnδ| ≤ δ−1/N . (4.39)

By replacing x = δ−1 in (4.39), we need to prove that:

lnx < x1/N , (4.40)

for all x ∈ R>0. By replacing again x = ey in inequality (4.40), we need to show that:

y < ey/N , (4.41)

for all y ∈ R>0. It suffices thus to prove the inequality:

1 <
ey/N

y
for all y ∈ R>0. (4.42)

We notice that lim
y→∞

ey/N

y
=
∞
∞

. We thus apply l’Hôpital rule and we use derivatives to

evaluate this indeterminate limit. We get that:

lim
y→∞

ey/N

y
= lim

y→∞

(ey/N)′

(y)′
=

1
N
· e∞/N =∞. (4.43)

The inequality (4.42) follows from equality (4.43), and thus the lemma is proved.

The preceding two lemmas allow us to formulate the following theorem concerning the
existence of a parameter choice rule for Aε which only depends on the given δ ∈ R>0:

Theorem 18. The function α : R>0 → R>0, α(δ) =
1
|lnδ|

is a parameter choice rule, i.e.

lim
δ→0

Aα(δ)(fδ) = E(f). (4.44)

The theorem is true based on Lemma 5, Theorem 17 and Lemma 6.

Remark 15. The parameter choice rule indicates that the “degree of ill-posed-ness” is
rather high (cf with linear regularization theory [Tikhonov and Arsenin, 1977], where α(δ) =
δ1/2 frequently occurs). For fixed input instance f , the smallest function α : R>0 → R>0

such that (noisy convergence) is true is equal to the function β from Lemma 5. The choice
of α was done in order to ensure that α dominates β for every possible f . Here is a series of
examples that show that a semi-algebraic parameter choice rule cannot be used as a choice
rule.
Example. Let n > 0 be an integer. Let f(z, w) = z2−wn+2. We consider the perturbation
g(z, w) = fδ(z, w) = z2−wn+2 + δw2, for δ ∈ (0, 1). Then we have a special zero of (g,Mg)

166 Chapter 4. Convergence Analysis of the Symbolic-Numeric Algorithms

at (z, w) = (0, δ1/n). A closer analysis shows that the ε-link of g is the Hopf link for every
sphere with radius less than δ1/n, while the link of f is equal to the torus link (2, n + 2).
Consequently, β(δ) > δ1/n for this choice of f . Since n can be arbitrary, no function which
is dominated by a function of the from δ 7→ δ1/m for some m can be chosen as a parameter
choice rule.

Chapter 5
Software: The GENOM3CK library

GENOM3CK1 (GENus cOMputation of Plane Complex algebraiC Curves using Knot
theory) is a library designed mainly for computing the approximate genus of a plane complex
algebraic curve defined by a bivariate squarefree complex polynomial with coefficients of
limited accuracy, i.e. the coefficients may be exact data (i.e. integer or rational numbers)
or inexact data (i.e. numerical values). For the inexact data we associate a positive real
number δ ∈ R>0, which measures the error level (called also the noise or the tolerance
level) in the coefficients of the defining polynomial of the input plane complex algebraic
curve. The library GENOM3CK basically contains the implementation of the symbolic-
numeric algorithms from Chapter 3, algorithms that we developed for solving Problem 1
from Chapter 3. We sometimes refer to the symbolic-numeric algorithms developed in
Chapter 3 as the approximate algorithms. We mention that part of the results presented
in this Chapter are also included in the paper [Hodorog et al., 2010a].

5.1 Description of the Library

5.1.1 Main Functionality of the Library

In this subsection we remember the main steps of the symbolic-numeric algorithms from
Chapter 3 implemented in the library GENOM3CK. We recall that the symbolic-numeric
algorithms from Chapter 3 implemented in the library GENOM3CK are based on knot
theory and on the topology analysis of the singularities of a plane complex algebraic curve.
By using the symbolic-numeric algorithms from Chapter 3 we compute approximate invari-
ants of a plane complex algebraic curve and its singularities. We recall that computing
the approximate invariants of a plane complex algebraic curve and its singularities means
computing the invariants of the curve depending on an input parameter ε ∈ R>0. We
remember that for designing the symbolic-numeric algorithms from GENOM3CK we ba-

1The acronym GENOM3CK, chosen for the name of the library that we develop to implement the
symbolic-numeric algorithms for plane complex algebraic curves using knot theory, gives some intuition
behind the deep connection between mathematical knot theory and biology. The name GENOM3CK
basically represents the acronym of two words, i.e. genome and trick. In molecular biology, the genome
represents all the hereditary material possessed by an organism, and thus has various implications in the
past or present discoveries from medicine. For instance, F. H. Crick and J. D. Watson were jointly awarded
the Nobel Prize for Medicine in 1962 for their theory concerning the basic structure of the DNA, see
[Crick and Watson, 1953]. It is the hope of the author to see/to witness similar fruitful results arising from
the interplay of knot theory and biology with practical applications in the field of contemporary medicine.

168 Chapter 5. Software: The GENOM3CK library

sically use Milnor’s theory [Milnor, 1968] and Yamamoto’s result [Yamamoto, 1984], who
showed that the Alexander polynomial is a complete invariant for all the algebraic links
up to an ambient isotopy, i.e. the Alexander polynomial distinguishes all algebraic links
up to ambient isotopy. We mention that an algebraic link is a link that is equivalent to
the link of a plane curve singularity. We add that the computation of the approximate
genus of a plane complex algebraic curve reduces to the computation of the approximate
delta-invariant of each singularity of the plane complex algebraic curve. Using subdivision
methods from the algebraic geometric modeler Axel, we compute a piecewise linear approx-
imation of each approximate link of a plane curve singularity as a 3-dimensional graph data
structure. We recall that a 3-dimensional graph data structure is a set of vertices together
with their Euclidean coordinates in the 3-dimensional Euclidean space, and a set of edges
connecting them. We design computational geometry and combinatorial algorithms for
the computation of the approximate Alexander polynomial of each approximate algebraic
link, i.e. an adapted version of the Bentley-Ottmann algorithm [Berg et al., 2008]. From
the approximate Alexander polynomial of each approximate algebraic link we compute the
approximate delta-invariant of each singularity.
The symbolic-numeric algorithms implemented in the library GENOM3CK take as input
the following parameters:

(i) a bivariate squarefree complex polynomial p(z, w) ∈ C[z, w] with exact and inexact
coefficients, which defines a plane complex algebraic curve C. We add that for the
inexact data in the polynomial p(z, w) we associate a positive real number δ ∈ R>0,
which measures the error level in the coefficients;

(ii) a positive real number ε ∈ R>0, which represents the radius of the sphere centered
around the singular point Q of C, sphere that we intersect with the plane complex
algebraic curve C to compute the ε-link of the singularity Q. We mention that the
input parameter ε ∈ R>0 is also called the regularization parameter as discussed in
Chapter 4;

(iii) a subset of R3 denoted with B = [−a, a]× [−b, b]× [−c, c] ⊂ R3, with a, b, c ∈ N \ {0},
for the x, y and z coordinates of the three-dimensional space R3. We call the subset
B ⊂ R3 a box. We add that the box B is required for computing the piecewise linear
approximation of the ε-link of each singularity of C. The piecewise linear approximation
for each ε-link of a plane curve singularity is computed as a 3-dimensional graph data
structure.

Together with its main functionality to compute the approximate genus of a plane complex
algebraic curve, the library GENOM3CK computes as output other important information
about the plane complex algebraic curve as follows:

(1) the set of distinct real numerical singularities of the plane complex algebraic curve C,
singularities that are computed in the projective real plane. We recall that a numerical
singularity of C is a point Q such that p(Q), ∂zp(Q) and ∂wp(Q) are small in comparison
with the coefficients of the polynomial p(z, w);

(2) the approximate link of each singularity of the plane complex algebraic curve C, i.e. the
ε-link denoted with Lε of each singularity of C. For each numerical singularity Q of the
plane complex algebraic curve C, the library outputs the approximate link of Q, that is
the ε-link of Q. We recall that the ε-link Lε of the singularity Q is computed as a smooth
and closed space algebraic curve, implicitly defined as the intersection of two space alge-
braic surfaces S1, S2 with the defining polynomials gε(x, y, z), hε(x, y, z) ∈ R3. We men-
tion that the library basically outputs the two polynomials gε(x, y, z), hε(x, y, z) that

5.1. Description of the Library 169

define as their intersection the ε-link Lε. The library also outputs the 3-dimensional visu-
alization of the piecewise linear approximation of the ε-link Lε as a 3-dimensional graph
data structure denoted Graph(Lε). In addition, the library outputs the 3-dimensional
visualization of the two surfaces S1, S2. We add that the two surfaces S1, S2 are part
of the Milnor fibration of the singularity Q of the plane complex algebraic curve C;

(3) the approximate Alexander polynomial of each approximate link of each numerical
singularity of the plane complex algebraic curve;

(4) the approximate Milnor number of each numerical singularity of the plane complex
algebraic curve;

(5) the approximate number of branches of each numerical singularity of the plane complex
algebraic curve;

(6) the approximate delta-invariant of each numerical singularity of the plane complex
algebraic curve;

(7) the approximate genus of the plane complex algebraic curve;

(8) the approximate Euler characteristic of the Riemann surface attached to the resolution
of singularities of the plane complex algebraic curve.

(9) the set of several invariants and properties from knot theory of each approximate link of
each numerical singularity of the plane complex algebraic curve. The library basically
outputs the genus, the linking number, the unknotting number and the determinant of
each approximate link of each singularity of the plane complex algebraic curve. More-
over, the library also provides an answer to the problem of deciding the tricolorability
property of each approximate link of each singularity of the plane complex algebraic
curve.

We recall that computing the approximate invariants of a plane complex algebraic curve
C basically means computing the invariants of C and its singularities depending on the
input parameter ε ∈ R>0. For more details concerning the computation of the approximate
invariants of a plane complex algebraic curve C, the reader should consult Chapter 3. In
Figure 5.1 we visualize the input-output specification of the GENO3CK library.
The library GENOM3CK contains thus symbolic-numeric algorithms for computing differ-
ent approximate invariants of a plane complex algebraic curve and its singularities. The
output displayed by the library GENOM3CK represents the properties of a plane com-
plex algebraic curve and its singularities. Basically, the output of GENOM3CK is divided
into five types of properties as follows: geometric properties, invariant properties, algebraic
properties, topological properties and knot theory properties attached to a plane complex
algebraic curve and its singularities. In addition, the output of the library contains also
the computational time required for performing each type of properties attached to a plane
complex algebraic curve and its singularities. In Figure 5.2 we introduce a table that con-
tains the output of GENOM3CK divided into geometric properties, invariant properties,
algebraic properties, topological properties and knot theory properties of a plane complex
algebraic curve and its singularities.

5.1.2 Short History of the Library

The library GENOM3CK is implemented in the Axel [Wintz et al., 2006] free algebraic geo-
metric modeler and in the Mathemagix [van der Hoeven et al., 2002] free computer algebra
system. We mention that the Axel algebraic geometric modeler was originally developed in

170 Chapter 5. Software: The GENOM3CK library

Geometric
properties of C

AA

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�

Squarefree
polynomial

p(z, w) defining
the plane complex
algebraic curve C

&&NNNNNNNNNNNNNNN

Invariant
properties of C

88

qqqqqqqqqqqqqqqqqqqq

Parameter
ε ∈ R>0

// GENOM3CK
Algebraic

properties of C
//

Parameter
B ⊂ R3

66lllllllllllllllll
Topological

properties of C

((

QQQQQQQQQQQQQQQ

Knot theory
properties of C

!!

CCCCCCCCCCCCCCCCCCCCCCCCCCC

Analysis
on properties

$$

Figure 5.1: Input-output specification of the GENOM3CK library. For more details on
each class of properties attached to a plane complex algebraic curve C and its singularities,
see Figure 5.2.

5.1. Description of the Library 171

Geometric properties Invariant properties Algebraic properties
the approximate link of
each numerical singularity
of the plane complex alge-
braic curve C

the approximate Alexan-
der polynomial of each ap-
proximate link of each nu-
merical singularity of C

the set of numerical singu-
larities of C in the projec-
tive plane

the approximate Milnor fi-
bration of each numerical
singularity of C

the approximate delta-
invariant of each numeri-
cal singularity of C

for each computed numer-
ical singularity S of C, the
defining polynomial of C
moved in the origin

the intersection points of
each projected approxi-
mate link of each numer-
ical singularity of C

the approximate genus of
C

decide whether C admits
an approximate rational
parametrization

Topological properties Knot theory proper-
ties

Analysis of operations

the approximate Milnor
number of each numeri-
cal singularity of the plane
complex algebraic curve C

the genus of each approxi-
mate link of each numeri-
cal singularity of C

the computing time in
seconds for the algebraic
properties of C

the approximate number
of branches through each
numerical singularity of C

the unknotting number of
each approximate link of
each numerical singularity
of C

the computing time in sec-
onds for the graph that
represents the approxi-
mate link of each numer-
ical singularity of C

the determinant of each
approximate link of each
numerical singularity of C

the computing time in sec-
onds for the geometric and
the invariant properties of
C

decide whether each ap-
proximate link of each nu-
merical singularity of C is
colorable

the computing time in sec-
onds for the topological
and the knot theory prop-
erties attached to C

the number of knot com-
ponents for each approxi-
mate link of each numeri-
cal singularity of C
a sequence representing
the linking numbers for
the knot components of
each approximate link of
each numerical singularity
of C

Figure 5.2: Functionality of the GENOM3CK library. Visualization of the output pro-
duced by the GENOM3CK library, output divided into geometric properties, invariant
properties, algebraic properties, topological properties, knot theory properties of a plane
complex algebraic curve C and its singularities. The output of GENOM3CK contains also
the computational time required for performing each type of operation in the category
called “Analysis of operations”.

172 Chapter 5. Software: The GENOM3CK library

2006 at INRIA, Sophia−Antipolis in the Galaad (Geometry, Algebra and Algorithms) team.
Axel is written in the C++ programming language and it uses the Qt cross-platform appli-
cation and UI framework [Thelin, 2007], [Blanchette and Summerfield, 2008] and OpenGL
(Open Graphics Library) [Kuehne and Sullivan, 2008], [Guha, 2011]. Mathemagix is writ-
ten in the C++ programming language, it can be embedded into other applications and it
can be extended with libraries written in the C or in the C++ programming language. For
more detailed information on Axel, Mathemagix and the main programming languages and
libraries they are built on see Section 5.2.
For our purpose Axel provides an easy-to-use interface and unique algebraic and geometric
tools for performing the following important operations: (i) the visualization of implicit
algebraic curves and of implicit algebraic surfaces in the three-dimensional space. (ii) the
computation of the topology of space implicit algebraic curves, topology that is computed as
a 3-dimensional graph data structure. We recall that a 3-dimensional graph data structures
is a set of vertices together with their Euclidean coordinates in R3, and a set of edges con-
necting them. Moreover, the existence of plugins in Axel allows us to reuse and to combine
all of its computational power with the proposed symbolic-numeric algorithms from Chap-
ter 3 into one library. Furthermore, we use algebraic techniques from Mathemagix, such as,
for instance, subdivision techniques for the computation of the set of numerical singularities
of a plane algebraic curve. By using the algebraic geometric modeler Axel and the free com-
puter algebra system Mathemagix, we basically integrate symbolic, numeric and graphical
capabilities into a single library, which we call GENOM3CK [Hodorog et al., 2010a].
We developed an online platform support for the GENOM3CK library including download,
installation instructions and an extended documentation containing several examples that
indicate the usage of the library. The online platform support of the library can be checked
at the webpage: http://people.ricam.oeaw.ac.at/m.hodorog/software.html. For the cre-
ation of the webpage of the GENOM3CK library we employed the free editing platform
called GNU TeXmacs [van der Hoeven, 2004], which provides specific features for scientists
for producing technical and scientific documentation. Similarly to the LaTeX high-quality
typesetting system, GNU TeXmacs provides a user friendly interface for editing organized
documents containing text, mathematical formulas, pictures, interactive content, etc. In our
study, one of the main advantages of choosing GNU TeXmacs over LaTeX for writing the
documentation pages of the GENOM3CK library is the fact that TeXmacs admits a HTML
converter, which allows the conversion of the TeXmacs files into HTML files. We add that
the TeXmacs to HTML converter can be selected using the option Edit→Preferences→
Converters →TeXmacs →Html. In this case, the user can choose to export the mathe-
matical formulas from the TeXmacs file to the HTML file as text, as images or as MathML.
We mention that MathML (Mathematical Markup Language) is an application of XML
(Extensible Markup Language) for describing mathematical notations.

5.1.3 Interface of the Library

The interface of GENOM3CK is part of Axel’s interface, generated with Qt cross-platform
application and UI framework. All the computational operations performed with the library
GENOM3CK are incorporated into a main menu, which is called Complex Invariant, and
they are divided into geometric properties, invariant properties, algebraic properties, topo-
logical properties, knot theory properties and analysis on properties as shown in Figure 5.3.
The proposed symbolic-numeric algorithms prove to be efficient, as both its theoretical and
its practical complexity analysis shows it.
The main menu of the GENOM3CK library is divided into the following submenus:

1. The submenu containing the geometric properties attached to a plane complex alge-

http://people.ricam.oeaw.ac.at/m.hodorog/software.html

5.2. Implementation of the Library 173

Figure 5.3: Main interface of the GENOM3CK library in Axel. The main menu of
GENOM3CK is called “Complex Invariant”.

braic curve and its singularities called Geometric properties, see Figure 5.4.

2. The submenu containing the invariant properties attached to a plane complex alge-
braic curve and its singularities called Invariant properties, see Figure 5.5.

3. The submenu containing the algebraic properties attached to a plane complex alge-
braic curve and its singularities called Algebraic properties, see Figure 5.6.

4. The submenu containing the topological properties attached to a plane complex alge-
braic curve and its singularities called Topological properties, see Figure 5.7.

5. The submenu containing the knot theory properties attached to a plane complex
algebraic curve and its singularities called Knot theory properties, see Figure 5.8.

6. The submenu containing the analysis of each type of properties attached to a plane
complex algebraic curve and its singularities called Analysis on properties, see
Figure 5.9.

5.2 Implementation of the Library

5.2.1 Design of the Library

The library GENOM3CK is written in the Axel [Wintz et al., 2006] free algebraic geomet-
ric modeler and in the Mathemagix [van der Hoeven et al., 2002] free computer algebra
system. We recall that Axel is written in the C++ programming language using Qt cross-
platform application and UI framework [Thelin, 2007] and in OpenGL (Open Graphics
Library) [Kuehne and Sullivan, 2008]. In addition, we remember that the Mathemagix

174 Chapter 5. Software: The GENOM3CK library

Figure 5.4: Interface of the GENOM3CK library in Axel showing the geometric properties
of a plane complex algebraic curve and its singularities. The geometric properties are
exemplified on the input plane complex algebraic curve defined by the squarefree bivariate
complex polynomial p(z, w) = z2 − w4 ∈ C2.

5.2. Implementation of the Library 175

Figure 5.5: Interface of the GENOM3CK library in Axel indicating the invariant proper-
ties of a plane complex algebraic curve and its singularities. The invariant properties are
exemplified on the input plane complex algebraic curve defined by the squarefree bivariate
complex polynomial p(z, w) = z2 − w4 ∈ C2.

Figure 5.6: Interface of the GENOM3CK library in Axel presenting the algebraic proper-
ties of a plane complex algebraic curve and its singularities. The algebraic properties are
exemplified on the input plane complex algebraic curve defined by the squarefree bivariate
complex polynomial p(z, w) = z2 − w4 ∈ C2.

176 Chapter 5. Software: The GENOM3CK library

Figure 5.7: Interface of the GENOM3CK library in Axel rendering the topological properties
of a plane complex algebraic curve and its singularities. The topological properties are
exemplified on the input plane complex algebraic curve defined by the squarefree bivariate
complex polynomial p(z, w) = z2 − w4 ∈ C2.

Figure 5.8: Interface of the GENOM3CK library in Axel depicting the knot theory prop-
erties attached to a plane complex algebraic curve and its singularities. The knot theory
properties are exemplified on the input plane complex algebraic curve defined by the square-
free bivariate complex polynomial p(z, w) = z2 − w4 ∈ C2.

5.2. Implementation of the Library 177

Figure 5.9: Interface of the GENOM3CK library in Axel reporting the analysis of properties
attached to a plane complex algebraic curve and its singularities. The analysis of properties
is exemplified on the input plane complex algebraic curve defined by the squarefree bivariate
complex polynomial p(z, w) = z2 − w4 ∈ C2.

computer algebra system is written in the C++ programming language. In Figure 5.10 we
present the main functionality of the Axel system and of the Mathemagix system. The
library GENOM3CK is built on top of the two systems Axel and Mathemagix. We mention
that as the Axel algebraic geometric modeler and as the Mathemagix computer algebra
system, the library GENOM3CK is released under the GNU General Public License and
it is stored as a project in the version control system SVN [Collins-Sussman et al., 2004].
We mention that a version control system allows the developer/the programmer to manage
changes in documents, in source code files and in webpages, changes that are stored as
computer files. SVN [Collins-Sussman et al., 2004] (or Apache Subversion) is one of the
available version control systems, which is a free and an open source system.
In the following paragraphs we include some general remarks concerning the C++ program-
ming language, the Qt cross-platform application and UI framework and the Open Graphics
Library, systems that represent the main engines for the Axel system and for the Math-
emagix system. By stating these remarks in our study, we do not intend to give a complete
survey on the aforementioned engines, but we do wish to familiarize the reader with the
main reasons for which these engines are used for building systems as Axel and Mathemagix
for algebraic computation and geometric modeling in the scientific society. We assume that
the reader is acquainted with basic notions concerning structured programming languages
as C and with basic notions concerning object-oriented programming languages as C++ .
Assuming the reader has no knowledge of structured or of object-oriented programming
languages, the following remarks will still give a rough idea about the main paradigms and
principles used in the two types of programming languages. For more details on the C and
on the C++ programming languages, the reader is advised to consult [Banahan et al., 1991],
and respectively [Allison and Eckel, 2004].

178 Chapter 5. Software: The GENOM3CK library

Axel - a system
for geometric computation and

for 2D and 3D visualization

OO

Mathemagix - a system
for algebraic computation,
for exact computation and

for approximate computation
OO

C++ programming language
Qt cross-platform application

Open Graphics Library (OpenGL)
C++ programming language

Figure 5.10: Main functionality of the free Axel algebraic geometric modeler and of the free
Mathemagix computer algebra system. Axel and Mathemagix are the two systems used for
developing the GENOM3CK library.

C++ Programming Language. In our overview concerning the C++ programming lan-
guage we follow the books of [Eckel, 2000] and of [Allison and Eckel, 2004]. The C++ pro-
gramming language is an extension of the C programming language, which in addition offers
object-oriented programming capabilities. The C++ programming language was basically
introduced as a better C programming language, feature that is implied also by its name.
The name C++ contains the “++” construction, which is the C syntax employed for incre-
menting the value of a variable. We distinguish the following main features of the C++
programming language:

• the object-oriented paradigm: the object-oriented paradigm offers tools for cre-
ating general representations of the elements in the state space of the problem that
we want to solve. The elements in the state space of a problem and their general
representation are called objects. All objects that have the same characteristics (data
elements) and behaviours (functionality) are grouped into a class. The existence of
classes allows the programmer to extend the existing programming language by adding
new data types. These new created data types fit the problem that needs to be solved.
In this way, the programmer is not constrained to using the existing data types, but
he can create his own data-types, depending on his needs. By using and defining
classes, we can thus introduce abstract data types, which are basically data types
dependent on the operations they support and independent on their structure and
on their implementation. The existence of abstract data types in C++ is sometimes
referred to as data abstraction. We add that the existence of classes is not the only
main feature of the object-oriented paradigm. Other essential characteristics of the
object-oriented paradigm are for instance inheritance and polymorphism. We present
basic remarks concerning these notions later in this subsection. For more details on
the object-oriented paradigm and its main features check [Eckel, 2000].

• the portability: the programs written in C++ are independent on the type of com-
puter and on the type of operating systems used by the programmer.

• the modular programming: the programs written in C++ are divided into separate
files. The modular programming in C++ employs separate interface files and separate
implementation files. The interface files have the extension .h and they contain
declarations of variables and of functions, but they do not contain any source code. In
contrast, the implementation files have the extension .cpp and they do contain source
code. The implementation files also contain all the declarations from the interface files

5.2. Implementation of the Library 179

by using the #include directive. Thus a module in the C++ programming language
is a collection of functions or classes that perform the same operations. We mention
that by using modular programming, a program written in C++ can contain more
source files. These different source files are separately compiled and then they are
linked together into one executable program. It follows that, whenever a source file is
modified, the programmer has to recompile only the modified source file and not all
the source files of the program. This feature makes it possible to link C++ code with
code produced in other programming languages, such as C.

• the compatibility with the C programming language: any program written
in the C programming language can be included in the C++ programming language
without performing any changes to the original source code.

• the efficiency: the efficiency of a C++ program is derived from knowing the type of
object at the compilation time. This information is provided in the C++ programming
language by the generic programming approach, which is obtained by templates. We
will discuss the notion of templates in C++ later in this subsection.

We report on the following characteristics of the object-oriented C++ programming, char-
acteristics that represent essential and unique tools for performing effective algebraic com-
putations in an efficient computer algebra system:

• the existence of classes: we recall that a class is a collection grouping together
both data structures and functions/methods in a new type. A class always contains
a special method called a constructor, which has the same name as the class itself.
The existence of constructors is essential for a class, i.e. every time an instance of a
class is created the constructor method is called.

• the existence of types: we distinguish between two main types in the C++ program-
ming language: the default types (i.e int, long, float, double, etc) and the user-defined
types (i.e. classes, structs, unions).

• the existence of namespaces: in the C++ programming language, the namespaces
allow the developer to group together under the same name C++ entities such as
variables, constants, classes, objects, functions/methods, etc. We add that the default
namespace std of the C++ programming language contains the entire standard library
of the C++ programming language.

• the existence of inheritance: the inheritance in the C++ programming language
is a mechanism that allows to reuse and to extend a given class without making
modifications to the class itself. The inheritance mechanism allows the programmer
thus to produce hierarchical relations between classes. The new created class is called
the derived class, whereas the original class is called the base class. We mention that
the derived class contains all the data structures and the functions of the base class,
except the constructors of the base class.

• the existence of templates: a template allows the programmer to define a generic
function or a generic class. It follows that a generic function, and respectively a
generic class generates a family of functions, and respectively a family of classes. The
“Standard Template Library” represents the template library that is included in the
C++ programming language. This library contains different container templates and
data structures, which allow the programmer to produce robust and complex data
structures in a relatively easy manner. We add that the programming style done by
using templates is called generic programming. The advantage of generic programming

180 Chapter 5. Software: The GENOM3CK library

is that the programmer can model the functionality of a class independently on the
type of data existent in the class.

• the existence of polymorphism and of virtual functions: we add that poly-
morphism, which is implemented in C++ using virtual functions, is the third essential
characteristic of the object-oriented paradigm, after data abstraction and inheritance.
Informally, the polymorphism gives different meanings and functionalities to the meth-
ods of a class. Formally, the polymorphism is implemented in C++ in the following
way: the base class declares one of its method/function as a virtual function using
the keyword virtual; the derived class then overrides the definition of the virtual
function. We add an important remark concerning the binding process for virtual
functions in the C++ programming language. We mention that binding is the process
that connects a function call to a function body. If binding is realized by the compiler
and the linker before the program is run, then it is called early binding. It is important
to state that a virtual function in C++ causes the compiler to perform late binding, as
opposed to early binding. Late binding, called also runtime binding or dynamic bind-
ing, is a mechanism of dynamic binding using function pointers, which is performed
at runtime. For more information on late binding, please consult [Eckel, 2000].

Qt cross-platform application and UI framework. In our outline concerning the Qt
framework we follow the books of [Thelin, 2007] and of [Blanchette and Summerfield, 2008].
As stated by its name, Qt is a cross-platform application and UI framework. The Qt
framework is mainly used for developing software applications with a graphical user interface
(GUI). Still, the Qt framework can also be used for designing software applications without
a graphical user interface. We mention that the Qt framework offers mainly application
programming interfaces (APIs) for the C++ programming language (or for the JavaScript
language), however it is possible to use Qt in another programming languages as well
by using language bindings. The Qt framework allows the developer to include also 3-
dimensional graphics objects, since the framework itself includes a separate module that
incorporates OpenGL (see the next paragraph for more information on OpenGL and its
main functionalities). We add that OpenGL is suitable for visualization in the 3-dimensional
space. However OpenGL provides little functionality for creating application user interfaces,
which are available in the Qt framework. Lately, Qt has known an increased popularity
both in industry and in the scientific community.

Open Graphics Library (OpenGL). In our survey concerning the Open Graphics
Library we use the books of [Kuehne and Sullivan, 2008] and of [Guha, 2011]. The Open
Graphics Library (OpenGL) is a library of functions, a library that allows the programmer
to produce 2-dimensional and 3-dimensional images in computer graphics. In addition,
OpenGL offers a user friendly interface as the library hides all the functionalities from the
user. OpenGL is basically a low-level graphics library. This means that the library demands
the user or the programmer to specify exactly the objects that are to be visualized. As
presented in [Semwal, 2002], we mention the following main characteristics of OpenGL:

• OpenGL comprises the following collection of basic geometric primitives: points, lines,
polygons, images and bitmaps.

• OpenGL basically contains a collection of commands that allow the programmer to
define geometric objects in the 2-dimensional and in the 3-dimensional space. These
commands produce the geometric objects by using the aforementioned basic geometric
primitives from OpenGL and a collection of procedures that control the way in which
the geometric objects are drawn.

5.2. Implementation of the Library 181

• Since OpenGL offers a rather restrictive set of geometric objects represented by basic
geometric primitives (i.e. points, lines and polygons), we mention that the OpenGL
Utility Toolkit (GLUT) was produced to allow the programmer to design more com-
plicated geometric objects in the 3-dimensional space, such as for instance spheres or
tori.

• OpenGL offers an effective but primitive collection of commands for drawing geo-
metric objects. All the high level-drawing in OpenGL has to be done depending on
these primitive collection of commands. The OpenGL Utility Library (GLU) and the
OpenGL Utility Toolkit (GLUT) are two libraries that help the designer/the pro-
grammer to develop the main programming tasks in OpenGL. GLU offers different
procedures that employ low-level commands from OpenGL to produce basic opera-
tions in OpenGL such as for instance introducing matrices for defining viewing orien-
tations and for defining drawing of surfaces. GLUT implements an easy windowing
application programming interface (API) for OpenGL.

As described in [Network, 2002] and in [Semwal, 2002], in the following paragraph we shortly
present the main graphics operations that OpenGL performs for drawing an arbitrary image
on the screen/display:

1. the first graphics operation is the construction of shapes for the considered scene from
the basic geometric primitives (i.e. points, lines, polygons, images and bitmaps). At
this step a mathematical description of the object is created;

2. the second graphics operation is the arrangement of the objects in the 3-dimensional
space and the selection of the desired viewpoint for the considered scene;

3. the third graphics operation is the computation of the color of all the objects that com-
pose the considered scene. We can assign color to objects in OpenGL by performing
one of the three following actions: (i) assigning the color explicitly; (ii) determining
the color from the specified lighting conditions; (iii) pasting a texture onto the objects.
We mention that for computing the color of objects in OpenGL we can also perform
a combination of the three aforementioned actions (i), (ii), (iii).

4. the forth and the last graphics operation is the conversion of the mathematical de-
scription of the object and of its color information to pixels on the screen. This
process is called rasterization.

What are the advantages of combining C++ programming language, Qt frame-
work and OpenGL to create computer algebra systems? It follows that by using
the C++ object-oriented programming language combined with the Qt cross-platform appli-
cation and UI framework and the Open Graphics Library, robust computer algebra systems
as Mathemagix and effective algebraic geometric modeler as Axel can be successfully pro-
duced and employed in the scientific community. First of all, the generic programming
offered by the C++ object-oriented programming language allows the developer to create
generic algorithms, which can be applied to a large class of data structures. The object-
oriented paradigm basically allows the programmer to combine generic implementations
with specialized functions. Secondly, the Qt cross-platform application and UI framework
allows the developer to create modern user interfaces. Finally, the Open Graphics Library
provides tools and procedures for producing 3-dimensional images containing 3-dimensional
geometric objects. Moreover, by using the Qt framework we can extend the systems by
adding specific functionalities and we can create plugins such as GENOM3CK. We mention

182 Chapter 5. Software: The GENOM3CK library

that GENOM3CK is basically one of Axel’s plugins. In the next paragraph, we indicate
the main packages that GENOM3CK uses from Axel and Mathemagix.
As rendered in Figure 5.11, the GENOM3CK library uses the following specific packages
from Axel and Mathemagix:

1. from the Axel system, the library GENOM3CK uses algebraic packages from Math-
emagix, packages that are employed for geometric modeling. We mention that the
geometric objects displayed with the library GENOM3CK are geometric objects from
Axel, see [Wintz et al., 2006] for more details.

2. from the Mathemagix system, the library GENOM3CK uses algebraic computation
packages, exact computation packages and approximate computation packages. We
add that for implementing the symbolic-numeric algorithms designed in Chapter 3,
the approximate computation packages from Mathemagix offer the following efficient
and unique tools, which are essential for the purpose of this thesis:

(a) The subdivision methods for computing the set of numerical singularities of a
plane complex algebraic curve.

(b) The same subdivision methods from Mathemagix are employed by Axel to com-
pute the topology of each approximate link of each numerical singularity of a
plane complex algebraic curve. We recall that the topology of an approximate
link of a plane curve singularity is computed with subdivision methods from
Mathemagix in Axel as a 3-dimensional graph data structure. We remember
that a 3-dimensional graph data structure is a set of points (also called vertices)
in the 3-dimensional Euclidean space together with their Euclidean coordinates,
and a set of edges connecting them.

The algorithms implemented in GENOM3CK use the following set of algebraic and
of exact computation tools from Mathemagix:

(a) data structures for representing vectors, matrices, univariate polynomials and
multivariate polynomials;

(b) functions for manipulating univariate and multivariate polynomials;

(c) functions for manipulating homogeneous polynomials;

(d) functions for manipulating matrices of integers and matrices of univariate and
of multivariate polynomials;

(e) algebraic algorithms for computing the exact greatest common divisors of uni-
variate and multivariate polynomials;

(f) algebraic algorithms for computing the exact determinant of a matrix of univari-
ate polynomials;

(g) algebraic algorithms for computing the exact minors of a matrix of multivariate
polynomials, etc.

5.2.2 Dependencies of the Library

At present, the library GENOM3CK is available for the Macintosh OS X operating sys-
tem and for the Linux operating system. We mention that the library GENOM3CK is
an ongoing project, and therefore it suffers continuous updates and modifications. For
downloading the latest version of the library, please consult the homepage of the library.

5.2. Implementation of the Library 183

GENOM3CK
55

llllllllllllll jj

TTTTTTTTTTTTTTTT

Axel Mathemagix

�

�

�

�
Mathemagix
packages for

geometric
modeling

OO

�
�

�
�

Algebraic packages,
Exact and approximate
computation packages

OO

Figure 5.11: Design of the GENOM3CK library. GENOM3CK is built on top of the two
free systems Axel and Mathemagix, released under the GNU General Public License.

In addition, we add that the development of the library GENOM3CK depends on the de-
velopment of the two systems Axel and Mathemagix. Axel and Mathemagix are ongoing
projects, and thus they also suffer constant modifications and improvements. For down-
load and installation instructions concerning the Axel and the Mathemagix systems, please
consult the official websites of the two systems, i.e. [Wintz et al., 2006] and respectively
[van der Hoeven et al., 2002].
In this paragraph, we assume that for a machine running the Macintosh OS X operating
system the Xcode tools are successfully installed and available. For installing the library
GENOM3CK on a machine running the Macintosh OS X operating system or the Linux
operating system, we need to install the following systems and tools:

• Version 4 of the Qt framework. For more details on the Qt framework, the reader can
consult [Corporation, 2008], [Thelin, 2007] and [Blanchette and Summerfield, 2008].
Please notice that for installing the Axel algebraic geometric modeler, the user/the
developer is required to install at least version 4 of the Qt framework.

• The GMP library. GMP (GNU Multiple-Precision) [Foundation, 2000] is a free library
for arbitrary precision arithmetic on integer numbers, rational numbers and floating
point numbers. We mention that the library GMP is written in the C programming
language.

• The MPFR library. GNU MPFR [Fousse et al., 2007], [Hanrot et al., 2005] is a free
library for multi-precision floating point computations with correct rounding. We add
that MPFR is based on the GMP library.

• The CMake system. CMake [Martin and Hoffman, 2003] is an open source build
system, which contains tools for building, testing and packaging software. We mention
that for installing the Axel algebraic geometric modeler, the user/the developer is
required to install at least the version 2.6 of the CMake system.

• The Mathemagix [van der Hoeven et al., 2002] computer algebra system.

• The Axel [Wintz et al., 2006] algebraic geometric modeler.

We mention that for installing these tools on a machine running the Macintosh OS X oper-
ating system, the user/the developer can either user the MacPorts [Project, 2002] package

184 Chapter 5. Software: The GENOM3CK library

management system or the Fink [Project, 2001] package management system. We add that
the Axel algebraic geometric modeler is based on certain libraries (i.e. shape, realroot,
newmac, linalg, etc) of the Mathemagix computer algebra system. In the later versions
of the Axel system, it should not be necessary to install the whole Mathemagix computer
algebra system for building Axel, but only the necessary libraries from Mathemagix on
which Axel is built on. Still, if troubleshooting appears during the installation process, the
user/the developer is strongly advised to install the whole Mathemagix computer algebra
system before installing Axel. As the GENOM3CK library is one of Axel’s plugin, the
library is part of the Axel system and thus it is installed after the successful installation
of the Axel system. For more information on the individual libraries of the Mathemagix
computer algebra system, the user/the developer is strongly advised to consult the official
webpage of the Mathemagix computer algebra system at [van der Hoeven et al., 2002]. We
make some remarks concerning the most important libraries of the Mathemagix computer
algebra system, which are used by the Axel algebraic geometric modeler:

• shape library. The shape library contains functions and operations on algebraic curves
and on algebraic surfaces, defined using their implicit representation by polynomial
equation, or defined using their rational parametrization. This library contains meth-
ods for computing the topology, the singularities and the intersection of algebraic
curves and of algebraic surfaces.

• realroot library. The realroot library contains functions and operations on univariate
and multivariate polynomials. The library contains methods (i.e. subdivision meth-
ods [Mourrain and Pavone, 2009], [Liang et al., 2008]) for computing the real roots
of univariate and multivariate polynomial equations and of systems of polynomial
equations.

• newmac library. The newmac library contains methods for computing the solution
set of a system of polynomial equations, using the Gröbner basis method and the
Macaulay construction. For more information on this method, the reader is advised
to consult [Mourrain and Trébuchet, 2005].

• linalg library. The linalg library contains numerical methods from linear algebra. It
basically represents the template C++ version of the LAPACK library, for information
see [Anderson et al., 1999]. We add that LAPACK is a library containing functions
for solving systems of linear equations, methods for solving the eigenvalue problems,
etc.

5.3 Usage of the Library

We mention that this section mainly follows the documentation of the GENOM3CK library
found on the official homepage of the software.

5.3.1 Instructions for the User

In this section, we describe the main instructions that the user must follow in order to
successfully run, employ and exploit the GENOM3CK library. We add that the user,
who wants to purely test and to use the library GENOM3CK on different examples, is
recommended to download and to install the compiled version of the library GENOM3CK
on a machine running the Macintosh OS X operating system. The corresponding dmg file
can be downloaded directly from the official homepage of the library. We recall that the
input of the library GENOM3CK consists of the following data:

5.3. Usage of the Library 185

1. A squarefree bivariate complex polynomial f(z, w) ∈ C[z, w].

2. A positive real number ε ∈ R>0 called the input parameter (or the regularization
parameter).

3. A subset of the 3-dimensional Euclidean space B = [−a, a] × [−b, b] × [−c, c] ⊂ R3

called a box, which specify the x, y and z coordinates of the 3-dimensional Euclidean
space.

The first thing the user needs to do when running the GENOM3CK library is to insert the
input data represented by the polynomial f(z, w), by the regularization parameter ε ∈ R>0

and by the box B ⊂ R3. For introducing the input data, the user has to directly access
the button called Complex algebraic curve, which causes the appearance of the following
boxes:

• A box for introducing the polynomial f(z, w) ∈ C[z, w] with both exact and inexact
coefficients. We add that the input polynomial has to be introduced in the variables
x, y instead of the variables z, w. Moreover, we mention that the input polynomial is
given with a certain tolerance (or noise) in its coefficients. For instance, the coefficient
1.083 represents the floating-point number 1.083, which in this case is associated with
the noise δ = 10−3, which basically means that the last digit of 1.083 is unknown.
In addition, we add that the power function has to be introduced in the form xˆn,
for any n ∈ N \ {0}, whereas the multiplication function has to be typed in the form
x ∗ y. Furthermore, whenever the user wants to introduce an equation of the form
(x − 1)2 − (y − 2)3, the equation has to be introduced in its expanded form, i.e.
9− 2 ∗ x+ xˆ2− 12 ∗ y + 6 ∗ yˆ2− yˆ3.

• Two boxes (one for the numerator n ∈ N and another one for the denominator d ∈
N \ {0}) for introducing the regularization parameter ε ∈ R>0 in the form ε =

n

d
.

• Three boxes for introducing the subset B = [−a, a]× [−b, b]× [−c, c] ⊂ R3 for the x, y
and z coordinates of the 3-dimensional Euclidean space R3 with x ∈ [−a, a], y ∈ [−b, b]
and z ∈ [−c, c] and a, b, c ∈ N \ {0}.

After introducing the input data, the library calls the methods from Chapter 3 to compute
the set of all operations on the plane complex algebraic curve defined by the polynomial
f(z, w) ∈ C[z, w]. In the case that the methods from the library successfully compute
the desired output, the library will display a successful message. In this case, the user can
choose the visualization of one of the main operations performed on the input plane complex
algebraic curve, as summarized in Figure 5.2. We notice that the methods implemented in
the GENOM3CK library can fail, in which case the library will produce a failure message.
The failure message contains a short explanation for the failure behaviour and if possible it
presents the user the future options needed for running the library again. The main reasons
for the failure of the library are the following:

• the ε-link Lε of the singularity P of the input plane complex algebraic curve C has
singularities. We recall that Lε is computed as the projection of the intersection of the
curve C with the sphere Sε(P) of radius ε (where ε is the regularization parameter)
and centered in the singularity P. In this case, the user can run the library again with
another value for the regularization parameter ε, or it can be that the intersection of
the curve C with the sphere Sε(P) has singularities.

• the box B representing the domain for the x, y and z coordinates of R3, which is
required for computing the ε-link Lε is not big enough to contain the entire topology

186 Chapter 5. Software: The GENOM3CK library

of the ε-link Lε. In this case, the topology of Lε, represented by a graph data structure,
is not contained in B and therefore the value for the box B has to be increased.

5.3.2 Instructions for the Developer

In this subsection, we include the main instructions that the developer must follow in order
to build the library GENOM3CK, to test it and to extend it by adding new functionalities
to it. We mention that for the developer, who wants to study more the source code of the
GENOM3CK library, it is recommended to build the library GENOM3CK directly from
source code. It follows that the developer has to successfully build the following tools on a
machine running the Macintosh OS X or the Linux operating systems:

• Version 4 of the Qt framework, see [Corporation, 2008] for building instructions.

• The GMP library, see [Foundation, 2000].

• The MPFR library, see [Hanrot et al., 2005].

• The Mathemagix computer algebra system, see [van der Hoeven et al., 2002].

• The CMake system, see [Commons, 2000].

• The Axel algebraic geometric modeler, see [Wintz et al., 2006]. For building Axel, we
must first checkout the svn repository containing the system from the INRIA server
and then we can build the system. Once Axel is installed, we download the source
code of the GENOM3CK library and we build it.

5.4 Test Experiments

We mention that this section mainly follows the documentation of the GENOM3CK library
found on the official homepage of the software. In addition, this section contains results
from [Hodorog and Schicho, 2011b].

5.4.1 Examples for the Computation of Approximate Invariants

In this subsection, we include several examples that indicate the computation of the ap-
proximate invariants attached to a plane complex algebraic curve. We recall that the
computation of the approximate invariants attached to a plane complex algebraic curve is
performed by the methods from Chapter 3 implemented in the library GENOM3CK.
The first example indicates the computation of the algebraic properties attached to the
plane complex algebraic curve C defined by the squarefree bivariate complex polynomial
x2 − y3 ∈ C[x, y]. We recall that the algebraic properties are represented by the set of
numerical singularities in the projective plane of the input plane complex algebraic curve C.
To visualize the set of singularities in the projective plane of the input curve C, we proceed
in the following way:

1. We consider the input polynomial f(x, y) = x2 − y3 of degree 3 and its associated
homogenized polynomial g(x, y, z) = x2z − y3.

2. We consider the polynomial f1(x, y) = g(x, y, 1) = x2 − y3 denoted in GENOM3CK
with Polynomial and we compute the set of singularities S1 of the affine curve defined
by the polynomial f1(x, y). In this case we compute S1 = {(−3.72529e− 08, 0)}.

5.4. Test Experiments 187

3. We consider the polynomial f2(y, z) = g(1, y, z) = z − y3 denoted in GENOM3CK
with First dehomogenized polynomial and we compute the set of singularities S2

of the affine curve defined by the polynomial f2(y, z). In this case we compute S2 = ∅.

4. We consider the polynomial f3(x, z) = g(x, 1, z) = x2z − 1 denoted in GENOM3CK
with Second dehomogenized polynomial and we compute the set of singularities S3

of the affine curve defined by the polynomial f3(x, z). In this case we compute S3 = ∅.

5. We obtain the set of singularities S = S1 ∪ S2 ∪ S3.

6. The following output is computed and displayed by the library GENOM3CK as part
of a table containing the Algebraic properties of the input plane complex algebraic
curve C defined by the squarefree polynomial x2 − y3 :

• Polynomial → x2 − y3. The polynomial x2 − y3 is displayed as x2
0 − x3

1 since
the library GENOM3CK employs the same notation as in the Axel system, i.e.
the index notation for the sequence of variables of a polynomial. For example,
in the index notation, the sequence {x, y} is equivalent to {x0, x1}.
• First dehomogenized polynomial→ z−y3. The polynomial z−y3 is displayed

as x0 − x3
1, because in the index notation, the sequence {z, y} is equivalent to

{x0, x1}.
• Second dehomogenized polynomial → x2z− 1. The polynomial x2z− 1 is dis-

played as x2
0x1 − 1, as in index notation, the sequence {x, z} is equivalent to

{x0, x1}.
• Singularity 1 → (−3.72529e− 08, 0).

• Translated polynomial for singularity 1→ −x3
1+x

2
0+(−7.450583−08)x0+

1.3877e− 15.

We mention that the library GENOM3CK uses the scientific notation for floating point
numbers as in the C++ programming language. In the scientific notation, a number has two
parts: the significand and the exponent, which is basically a power of 10. The letter e is
used to separate the two parts. Thus 7e2 is equivalent to 7 ∗ 102 (or 700), whereas 7e− 2 is
equivalent to 7∗10−2 (or 0.07). In the example mentioned above the floating point number
−3.72529e− 08 is equivalent to −3.72529 ∗ 10−8.

The second example shows the computation of the geometric operations attached to the
input plane complex algebraic curve C defined by the squarefree bivariate complex polyno-
mial x2−y3 ∈ C[x, y]. We recall the main geometric operations attached to a plane complex
algebraic curve:

• the ε-link Lε of each numerical singularity Q of the plane complex algebraic curve C.
We remember that the ε-link Lε is a space algebraic curve that is computed as the
intersection of two space algebraic surfaces defined by two polynomials gε(x, y, z) and
hε(x, y, z).

• Another geometric property attached to a plane complex algebraic curve is the compu-
tation and the visualization of the algebraic surfaces with defining polynomials gε, hε,
surfaces that are part of the Milnor fibration and that define as their intersection the
ε-link Lε.

• The final geometric property attached to a plane complex algebraic curve is repre-
sented by the intersection points of the projection of the ε-link of each numerical
singularity of the input curve.

188 Chapter 5. Software: The GENOM3CK library

The following output is computed and displayed by the library GENOM3CK as part of a
table containing the Geometric properties of the input plane complex algebraic curve C
defined by the squarefree polynomial x2 − y3 :

• Compute algebraic link produces the visualization of the ε-link Lε of each numeri-
cal singularity of the input curve C.We mention that Lε is represented by a Mesh object
in the Axel system. We add that the ε-link Lε of the singularity (−3.72529e− 08, 0)
of the input curve C defined by the squarefree polynomial x2 − y3 is represented by
the trefoil knot, i.e. by the torus knot of type (2, 3).

• Compute Milnor fibration produces the visualization of the algebraic surfaces de-
fined by the polynomials gε, hε, gε+hε, gε−hε, which are all part of the Milnor fibration
and which define as their intersection the ε-link Lε. We add that these surfaces are
represented as ImplicitSurface objects in the Axel system.

• Intersection points of the projected algebraic link produces the visualiza-
tion of all the intersection points of the projection of the ε-link Lε.

In Table 5.1 and in Table 5.2 we include several examples performed with the library
GENOM3CK on several input plane complex algebraic curves defined by squarefree poly-
nomials with exact and respectively with inexact coefficients. Basically, these examples
indicate the geometric properties attached to the input plane complex algebraic curves.
In both tables the regularization parameter ε ∈ R>0 and the box B ⊂ R3 are set to the
following values: ε = 0.25 and B = [−4, 4] × [−6, 6] × [−6, 6]. We notice that the input
curves from Table 5.1 have their singularities in the origin Q(0, 0) ∈ C2, whereas the input
curves from Table 5.2 have their singularities close to the origin. We denote all the input
curves with C. For computing the ε-algebraic link and the εMilnor fibration of the singular-
ity Q(0, 0) of each input curve C, we use the methods from Chapter 3 implemented in the
library GENOM3CK.
In both tables, we include:

(i) in the first column, the equation of the input plane complex algebraic curve;

(ii) in the second column, the ε-link Lε of the singularity Q of the input curve C, computed
as a 3-dimensional graph data structure in the GENOM3CK library;

(iii) in the third column, the two implicit algebraic surfaces from R3 denoted with S1 and
S2 that define as their intersection the ε-link Lε. We recall that these surfaces are part
of the Milnor fibration.

(iv) in the forth column, the surfaces S1 and S2, plus the sum S1 + S2 and the difference
S1 − S2 of these surfaces, which are also part of the Milnor fibration.

The third example indicates the computation of the invariant properties attached to the
plane complex algebraic curve C defined by the squarefree polynomial x2 − y3 ∈ C[x, y].
The following output is computed and displayed by the library GENOM3CK as part of a
table containing the Invariant properties of the input plane complex algebraic curve C
defined by the squarefree polynomial x2 − y3 :

• Alexander polynomial 1 → x2
0 − x0 + 1 represents the ε-Alexander polynomial of

the ε-algebraic link Lε of the numerical singularity (−3.72529e− 08, 0).

• Delta invariant 1→ 1 represents the ε-delta-invariant of the numerical singularity
(−3.72529e− 08, 0) of the input curve C.

5.4. Test Experiments 189

Table 5.1: Topology analysis with GENOM3CK on exact examples
Equation ε-link, ε-Milnor fibration of the singularity (0, 0)

x2 − y2

x3 − y3

−x3 − xy + y2

x2 − y4

x2 − y5

190 Chapter 5. Software: The GENOM3CK library

Table 5.2: Topology analysis with GENOM3CK on inexact examples
Equation ε-Algebraic link and ε-Milnor fibration of the numerical

singularity (0, 0)

1.02x2y + 1.12y4

−x3 − xy + y2 − 0.01

−x3 − 1.875xy + y2

5.4. Test Experiments 191

• Genus of the complex curve → 0 represents the ε-genus of the input curve C.

• Euler characteristic of the Riemann surface attached to the input curve
→ 2 represents the ε-Euler characteristic of the Riemann surface attached to the res-
olution of singularities of the input plane complex algebraic curve C.

The forth example indicates the computation of the topological properties attached to the
plane complex algebraic curve C defined by the squarefree polynomial x2 − y3 ∈ C[x, y].
The following output is computed and displayed by the library GENOM3CK as part of a
table containing the Topological properties of the input plane complex algebraic curve
C defined by the squarefree polynomial x2 − y3 :

• Milnor number 1 → 2 represents the ε-Milnor number of the numerical singularity
(−3.72529e− 08, 0) of the input curve C.

• Number of branches 1 → 1 represents the ε-number of branches of the input curve
C through the numerical singularity (−3.72529e− 08, 0).

The fifth example indicates the computation of the knot theory properties attached to the
plane complex algebraic curve C defined by the squarefree polynomial x2 − y3 ∈ C[x, y].
The following output is computed and displayed by the library GENOM3CK as part of a
table containing the Knot theory properties of the input plane complex algebraic curve
C defined by the squarefree polynomial x2 − y3 :

• Genus of algebraic link 1 → 1 represents the genus of the ε-link Lε of the nu-
merical singularity (−3.72529e− 08, 0) of the input plane complex algebraic curve C.
We recall that a link is algebraic if it is equivalent to the link of the singularity of a
plane complex algebraic curve.

• Unknotting number of algebraic link 1 → 1 represents the unknotting number
of the ε-link Lε of the numerical singularity (−3.72529e − 08, 0) of the input plane
complex algebraic curve C.

• Determinant of algebraic link 1→ 3 represents the determinant of the ε-link Lε

of the numerical singularity (−3.72529e− 08, 0) of the input plane complex algebraic
curve C.

• Colorability of algebraic link 1 → Algebraic link is colorable via
3-numbering, i.e. the algebraic link is 3-colorable contains information
concerning the colorability property of the ε-link Lε of the numerical singularity
(−3.72529e − 08, 0) of the input plane complex algebraic curve C. In this case, we
observe that the ε-link Lε of the numerical singularity (−3.72529e − 08, 0), which is
represented by the trefoil knot, is 3-colorable.

• Number of knot components of algebraic link 1 → 1 represents the number of
knot components in the ε-link Lε of the numerical singularity (−3.72529e− 08, 0) of
the input plane complex algebraic curve C.

• Sequence of linking numbers for the knot components of algebraic link 1
→ undefined. If the ε-link of an input plane complex algebraic curve contains at least
2-knot components, then we can define a sequence of linking numbers between all the
knot components of the link. If the ε-link contains only one knot component, then
the sequence of linking numbers is undefined. Since the trefoil knot is a link with one
knot component, it follows that for the ε-link Lε of the singularity (−3.72529e−08, 0)
of the input curve C the sequence of linking numbers is undefined.

192 Chapter 5. Software: The GENOM3CK library

The last example indicates the computation times in seconds required for performing all
the operations attached to the plane complex algebraic curve C defined by the squarefree
polynomial x2−y3 ∈ C[x, y]. The following output is computed and displayed by the library
GENOM3CK as part of a table containing the Analysis on properties information con-
cerning the input plane complex algebraic curve C defined by the squarefree polynomial
x2 − y3 :

• For all singularities→ 0.01 contains the computing time in seconds required for
computing the set of singularities of the curve defined by the polynomial f1(x, y) =
g(x, y, 1) = x2 − y3. The singularities are computed using subdivision methods from
[Mourrain and Pavone, 2009].

• For first singularities at infinity → 0 contains the computing time in sec-
onds required for computing the set of singularities of the curve defined by the poly-
nomial f2(y, z) = g(1, y, z) = z−y3. The singularities are computed using subdivision
methods.

• For second singularities at infinity → 0 contains the computing time in sec-
onds required for computing the set of singularities of the curve defined by the polyno-
mial f3(x, z) = g(x, 1, z) = x2z − 1. The singularities are computed using subdivision
methods.

• For topology 1→ 1.68 contains the computing time in seconds required for comput-
ing the graph data structure representing the ε-link Lε of the singularity (−3.72529e−
08, 0) of the input curve C. The graph data structure representing the ε-link Lε is
called the topology of the ε-link Lε and it is computed using subvidision methods
from [Liang et al., 2008].

• For set of operations 1 → 0.01 contains the computing time in seconds required
for computing the invariant properties attached to the input curve C.

• For set of extended operations 1 → 0 contains the computing time in seconds
required for computing the topological properties and the knot theory properties
attached to the input curve C.

In Table 5.3, in Table 5.4 and in Table 5.5 we include a summary containing the approximate
invariants attached to several input plane complex algebraic curves defined by different
squarefree bivariate complex polynomials. We mention that the approximate invariants
from these tables are computed using the methods developed in Chapter 3 and implemented
in the library GENOM3CK.

5.4.2 Examples for the Convergence Property

In this subsection, we give some experimental evidence for the statement that our algorithm
is a regularization as explained in Chapter 4. We mention that this subsection contains
results from [Hodorog and Schicho, 2011b]. All the experiments, numerical and symbolical,
are done with the library GENOM3CK-Symbolic numeric techniques for GENus cOMpu-
tation of Complex algebraiC Curves using Knot theory. We recall that GENOM3CK is
implemented and included as a library in the free system Axel [Wintz, 2008], written in
C++ programming language with the Qt framework.
As evidences for the convergence for exact data property we consider an input polyno-
mial f(x, y) ∈ C[x, y] with both exact and inexact coefficients and we compute Aε(f(x, y))
with the approximate algorithm Aε. We compute Aε(f(x, y)) with the approximate al-
gorithm for different values of the parameter ε. We obtain several outputs such as: the

5.4. Test Experiments 193

Table 5.3: Summary of computed invariants with the GENOM3CK library. Part I
Equation ε Box ε-Link ε-Invariants
x2 − y2 1.0 [−4, 4,−6, 6,−6, 6] Hopf link ∆ε = 1

δε = 1, µε = 1, gε = −1

x2 − y3 1.0 [−4, 4,−6, 6,−6, 6] Trefoil
knot

∆ε = t21 − t1 + 1
δε = 1, µε = 2, gε = 0

x2 − y4 1.0 [−4, 4,−6, 6,−6, 6] 2-knots
links

∆1
ε = ∆2

ε = t1t2 + 1
δ1ε = δ2ε = 2, µ1

ε = µ2
ε = 3, gε = −1

x2 − y5 1.0 [−4, 4,−6, 6,−6, 6] 1-knot
link

∆1
ε = t41 − t31 + t21 − t1 + 1

δ1ε = 2, µ1
ε = 4, gε = 0

1-knot
link

∆2
ε = t81 − t71 + t51 − t41 + t31 − t1 + 1

δ2ε = 4, µ2
ε = 8

x3 − y2 1.0 [−4, 4,−6, 6,−6, 6] Trefoil
knot

∆ε = t21 − t1 + 1
δε = 1, µε = 2, gε = 0

x3 − y3 1.0 [−4, 4,−6, 6,−6, 6] 3-knots
link

∆ε = −t1t2t3 + 1
δε = 3, µε = 4, gε = −2

x3 + y4 1.0 [−4, 4,−6, 6,−6, 6] 1-knot
link

∆ε = t61 − t51 + t31 − t1 + 1
δε = 3, µε = 6, gε = 0

x3 − y5 1.0 [−4, 4,−6, 6,−6, 6] 1-knot
link

∆1
ε = t81 − t71 + t51 − t41 + t30 − t0 + 1

δ1ε = 4, µ1
ε = 8, gε = 0

1-knot
link

∆2
ε = t41 − t31 + t21 − t1 + 1

δ2ε = 2, µ2
ε = 4

x3 + y6 1.0 [−6, 6,−6, 6,−6, 6] 3-knots
link

∆1
ε = −t31t32t33 − t21t22t23 + t1t2t3 + 1

δ1ε = 6, µ1
ε = 10, gε = −2

3-knots
link

∆2
ε = −t31t32t33 − t21t22t23 + t1t2t3 + 1

δ2ε = 6, µ2
ε = 10

194 Chapter 5. Software: The GENOM3CK library

Table 5.4: Summary of computed invariants with the GENOM3CK library. Part II
Equation ε Box ε-Link ε-Invariants
x2 · y + y4 0.25

0.5
[−4, 4,−6, 6,−6, 6]
[−6, 6,−6, 6,−6, 6]

2-knots
links

∆1
ε = ∆2

ε = t31t2 + 1
δ1ε = δ2ε = 3
µ1

ε = µ2
ε = 5 gε = −3

1.02x2 · y + 1.12y4 0.25 [−4, 4,−6, 6,−6, 6] 2-knots
links

∆1
ε = ∆2

ε = t31t2 + 1
δ1ε = δ2ε = 3
µ1

ε = µ2
ε = 5 gε = −3

x2 − y2 − y3 0.5 [−4, 4,−6, 6,−6, 6] Hopf link ∆ε = 1
δε = 1, µε = 1, gε = 0

x4 + x2 · y + y5 0.5 [−4, 4,−6, 6,−6, 6] 3-knots
link

∆ε = −t21t22t3 + 1
δε = 4, µε = 6, gε = 2

x2 + x4 + y5 0.5 [−6, 6,−6, 6,−6, 6] 1-knot
link

∆ε = t41 − t31 + t21 − t1 + 1
δε = 2, µε = 4, gε = 4

−x3 − x · y + y2 0.14 [−4, 4,−6, 6,−6, 6] Hopf link ∆ε = 1
δε = 1, µε = 1, gε = 0

−x3−1.875x·y+y2 0.25 [−4, 4,−6, 6,−6, 6]
[−6, 6,−8, 8,−8, 8]

Hopf link ∆ε = 1
δε = 1, µε = 1, gε = 0

Table 5.5: Summary of computed invariants with the GENOM3CK library. Part III
Equation ε Box ε-Link ε-Invariants
9− 2x+ x2 − 12y+
6y2 − y3

1.0 [−4, 4,−6, 6,−6, 6] Trefoil
knot

∆ε = t21 − t1 + 1
δε = 1, µε = 2, gε = 0

3x−3x2 +x3−3y+
3y2 − y3

1.0 [−4, 4,−6, 6,−6, 6] 3-knots
link

∆ε = −t1t2t3 + 1
δε = 3, µε = 4, gε = −2

37 − 60x + 37x2 −
10x3 +x4 +y−y2−
y3

0.25 [−4, 4,−6, 6,−6, 6] Hopf
links

∆1
ε = ∆2

ε = 1
δ1ε = δ2ε = 1 µ1

ε = µ2
ε = 1

gε = 1
x4 + 2x2y2 + y4 +
3x2y − y3

0.5 [−6, 6,−8, 8,−8, 8] 3-knots
link

∆ε = 1− t1t2t3
δε = 3, µε = 4, gε = 0

2x4 − 3x2y + y2 −
2y3 + y4

0.5 [−6, 6,−8, 8,−8, 8] 2-knots
link

∆1
ε = t1t2 + 1

δ1ε = 2, µ1
ε = 3, gε = 0

Unknot ∆2
ε = 1

δ2ε = 1, µ2
ε = 1

x4 + x2y2 − 2x2y −
xy2 + y2

1 [−4, 4,−6, 6,−6, 6] 1-knot
link

∆ε = t41− t31 + t21− t1 + 1
δε = 1, µε = 4, gε = 2

5.4. Test Experiments 195

Table 5.6: Convergence of −x3 − xy + y2 with exact coefficients
Equation ε ε-Link ε-Alexander, ε-delta-invariant, ε-genus
−x3−xy+y2 1.00 Trefoil

knot
∆ε(t1) = t21 − t1 + 1 δε = 1 gε = 0

−x3−xy+y2 0.5 Trefoil
knot

∆ε(t1) = t21 − t1 + 1 δε = 1 gε = 0

−x3−xy+y2 0.25 Hopf
link

∆ε(t1, t2) = 1 δε = 1 gε = 0

−x3−xy+y2 0.14 Hopf
link

∆ε(t1, t2) = 1 δε = 1 gε = 0

Table 5.7: Convergence of −x3 − xy + y2 − 0.01 with inexact coefficients
Equation ε ε-Link ε-Alexander, ε-delta-invariant, ε-genus
−x3−xy+y2−0.01 1.00 Trefoil

knot
∆ε(t1) = t21 − t1 + 1 δε = 1 gε = 0

−x3−xy+y2−0.01 0.5 Hopf
link

∆ε(t1, t2) = 1 δε = 1 gε = 0

−x3−xy+y2−0.01 0.25 Hopf
link

∆ε(t1, t2) = 1 δε = 1 gε = 0

−x3−xy+y2−0.01 0.22 Hopf
link

∆ε(t1, t2) = 1 δε = 1 gε = 0

numerical singularities of the input curve defined by f(x, y), the ε-link of each singularity,
the ε-Alexander polynomial of each ε-link, the ε-delta-invariant of each singularity, and the
ε-genus of the curve. The computation of the ε-Alexander polynomial, ε-delta-invariant
and the ε-genus depends on the computation of the ε-link of each singularity. From the
experiments, we observe that the approximate solution computed with Aε converges to the
exact solution as ε tends to 0.

Example 23. We consider f(x, y) = x2 − xy − y3. We notice that x2 − xy = x(x − y)
thus f(x, y) has a vertical tangent x = 0 in C2. In order to assure a valid stereographic
projection in R3 we make the substitution {x→ −y, y → x} in f(x, y) obtaining f(x, y) =
−x3 − xy + y2, and thus we consider this polynomial as the input of the problem. We use
Arnold’s results [Arnold et al., 1985] concerning the analysis of curve singularities and we
deduce that the algebraic link of the singularity (0, 0) of the polynomial −x3−xy+y2 is the
same as the algebraic link of the singularity (0, 0) of the polynomial −xy + y2 which is the
Hopf link, and which represents the exact solution for the algebraic link of the singularity
(0, 0) of f(x, y). We notice in Table 5.6 that the approximate solution converges to the
exact solution as ε tends to 0.
We can consider the input polynomial with both exact and inexact coefficients, such as
f(x, y) = −x3 − xy + y2 − 0.01. We observe in Table 5.7 that the approximate solution
converges to the exact solution when ε tends to 0. This is an evidence for the convergence
for noisy data property from Chapter 4.

Example 24. We consider f(x, y) = x2− y2− y3. We use Arnold’s results concerning the
analysis of curve singularities and we deduce that the algebraic link of the singularity (0, 0)
of f(x, y) is the same as the algebraic link of the singularity (0, 0) of the polynomial x2−y2

which is the Hopf link, and which represent the exact solution for the algebraic link of the
singularity (0, 0) of f(x, y). We notice in Table 5.8 that the approximate solution converges
to the exact solution as ε tends to 0.

196 Chapter 5. Software: The GENOM3CK library

Table 5.8: Convergence of x2 − y2 − y3 with exact coefficients
Equation ε ε-Link ε-Alexander, ε-delta-invariant, ε-genus
x2 − y2 − y3 1.00 1 singular-

ity curve
− − −

x2 − y2 − y3 0.7 Hopf link ∆ε(t1, t2) = 1 δε = 1 gε = 0
x2 − y2 − y3 0.5 Hopf link ∆ε(t1, t2) = 1 δε = 1 gε = 0
x2 − y2 − y3 0.19 Hopf link ∆ε(t1, t2) = 1 δε = 1 gε = 0

Table 5.9: Continuity for perturbations of type I of −x3 − xy + y2

Perturbations I ε σ = 10−e, e ∈
N∗

Link Invariants

−x3−xy+y2−10−e 0.5 {10−2, ..., 10−10} Trefoil
knot

∆ε(t1) = t21 − t1 + 1
δε = 1 gε = 0

−x3−xy+y2−10−e 0.25 {10−2, ..., 10−10} Hopf
link

∆ε(t1, t2) = 1
δε = 1 gε = 0

As evidences for the continuity property we consider an input curve defined by the
polynomial f(x, y) ∈ C[x, y] with exact and inexact coefficients and we compute Aε(f(x, y))
with the approximate algorithm Aε. The continuity property of Aε states that small changes
in the input polynomial f(x, y) produce constant output for the computed approximate
solution. To observe this we proceed in the following way:

• we consider a polynomial p(x, y) ∈ C[x, y], which contains only exact coefficients;

• for σ ∈ R∗, we slightly perturbed the coefficients of the polynomial p(x, y) obtain-
ing some new polynomials denoted with pσ(x, y) that we call perturbations of the
polynomial p(x, y). We call σ the perturbation of the exact polynomial p(x, y).

• we consider several values for the parameter ε. For each of these values, we execute the
approximate algorithm Aε on the perturbed polynomials pσ(x, y) for different values of
σ ∈ R∗. The perturbed polynomials pσ(x, y) represent the input polynomials f(x, y)
with exact and inexact coefficients, i.e. f(x, y) = pσ(x, y), for σ ∈ R∗.

We distinguish between two types of perturbations:

1. Perturbations of type I: For these types of perturbations, pσ(x, y) is of the following
form: pσ(x, y) = p(x, y) + σ, where p(x, y) is the exact polynomial and σ ∈ R∗ is a
real number different from 0.

2. Perturbations of type II: For these types of perturbations, pσ(x, y) is of the following
form: pσ(x, y) = p(x, y) +σq(x, y), where p(x, y) is the exact polynomial, σ ∈ R∗ and
q(x, y) ∈ C[x, y] is an arbitrary exact polynomial.

From the experiments, we observe that for the perturbed polynomials the approximate
computed solution is preserved, that is for small changes of the input data we obtain
constant output for the computed approximate solution.

Example 25. For the exact polynomial p(x, y) = −x3−xy+y2, we consider perturbations
of type I of the form pσ(x, y) = −x3−xy+y2−σ, with σ ∈ {10−2, ..., 10−10}. We notice in
Table 5.9 that for perturbations of type I of −x3−xy+y2 we obtain constant approximate
solution.

5.4. Test Experiments 197

Table 5.10: Continuity for perturbations of type II of −x3 − xy + y2

Perturbations II ε σ = 10−e, e ∈
N∗

ε-Link ε-Invariants

−(1 + 10−e)x3 − (1 + 2 · 10−e)xy+
+(1 + 10−e)y2

0.15 {10−1, ...10−10} Hopf
link

∆ε(t1, t2) = 1
δε = 1 gε = 0

−(1 + 10−e)x3 − (1 + 2 · 10−e)xy+
+(1 + 10−e)y2

0.14 {10−1, ...10−10} Hopf
link

∆ε(t1, t2) = 1
δε = 1 gε = 0

Table 5.11: Continuity for perturbations of type I of x2 − y2 − y3

Perturbations I ε σ = 10−e, e ∈
N∗

ε-Link ε-Invariants

x2 − y2 − y3 − 10−e 0.5 {10−1, ..., 10−10} Hopf
link

∆ε(t1, t2) = 1
δε = 1 gε = 0

x2 − y2 − y3 − 10−e 0.14 {10−1, ..., 10−10} Hopf
link

∆ε(t1, t2) = 1
δε = 1 gε = 0

For the perturbations of type II we consider the exact polynomial p(x, y) = −x3−xy+ y2,
the arbitrary exact polynomial q(x, y) = −x3−2xy+y2 and σ ∈ {10−1, ..., 10−10}, obtaining
the perturbed polynomials pσ(x, y) = p(x, y)+
+σq(x, y) = −x3 − xy + y2 + σ(−x3 − 2xy + y2) = −(1 + σ)x3 − (1 + 2σ)xy + (1 + σ)y2.
For σ = 0.1 we obtain the perturbed polynomial pσ←0.1 = −1.1x3 − 1.2xy + 1.1y2; for
σ = 0.01 we obtain the perturbed polynomial pσ←0.01 = −1.01x3 − 1.02xy + 1.01y2; for
σ = 0.001 we obtain the perturbed polynomial pσ←0.001 = −1.001x3 − 1.002xy + 1.001y2,
etc. In Table 5.10 we notice that for perturbations of type II of −x3 − xy + y2 we obtain
constant approximate solution.

Example 26. For the exact polynomial p(x, y) = x2 − y2 − y3, we consider perturbations
on type I of the form pσ(x, y) = x2− y2− y3−σ, with σ ∈ {10−1, ..., 10−10}. In Table 5.11
that for perturbations of type I of x2 − y2 − y3 we obtain constant approximate solution.
For the perturbations of type II we consider the exact polynomial p(x, y) = x2 − y2 − y3,
the arbitrary exact polynomial q(x, y) = x2−3y2−4y3 and σ ∈ {10−1, ..., 10−10}, obtaining
the perturbed polynomials pσ(x, y) = p(x, y)+
+σq(x, y) = x2 − y2 − y3 + σ(x2 − 3y2 − 4y3) = (1 + σ)x2 − (1 + 3σ)y2 − (1 + 4σ)y3. For
σ = 0.1 we obtain the perturbed polynomial pσ←0.1 = 1.1x2 − 1.3y2 − 1.4y3; for σ = 0.01
we obtain the perturbed polynomial pσ←0.01 = 1.01x2 − 1.03y2 − 1.04y3; for σ = 0.001 we
obtain the perturbed polynomial pσ←0.001 = 1.001x2− 1.003y2− 1.004y3, etc. We notice in
Table 5.12 that for perturbations of type II of x2−y2−y3 we obtain constant approximate
solution.

Table 5.12: Continuity for perturbations of type II of x2 − y2 − y3

Perturbations II ε σ = 10−e, e ∈
N∗

ε-Link ε-Invariants

(1 + 10−e)x2 − (1 + 3 · 10−e)y2−
−(1 + 4 · 10−e)y3

0.25 {10−1, ...10−10} Hopf
link

∆ε(t1, t2) = 1
δε = 1 gε = 0

(1 + 10−e)x2 − (1 + 3 · 10−e)y2−
−(1 + 4 · 10−e)y3

0.14 {10−1, ...10−10} Hopf
link

∆ε(t1, t2) = 1
δε = 1 gε = 0

198 Chapter 5. Software: The GENOM3CK library

Chapter 6
Conclusions and Future Work

If I have seen further than others,
it is by standing upon the
shoulders of giants.

Isaac Newton

In this thesis, we approach the algebraic problem of computing topological invariants of
a plane complex algebraic curve defined by a squarefree polynomial with both exact (i.e.
integer numbers or real numbers) and inexact data (i.e numerical values). For the inexact
values we associate a positive real number called noise, which measures the error level in
the coefficients. We deal with an ill-posed problem in the sense that tiny changes in the
input data of the problem lead to dramatic changes in the output solution. For dealing with
the ill-posedness of the considered algebraic problem, we adopt a regularization method.
This method computes approximate solutions to the ill-posed problem that are stable under
small changes of the input.
We design symbolic-numeric algorithms for computing approximate topological invariants
of a plane complex algebraic curve. The designed symbolic-numeric algorithms take as
input parameter a positive real number, which is called a regularization parameter. These
symbolic-numeric algorithms compute approximate topological invariants for a plane com-
plex algebraic curve in the sense that the computed topological invariants depend on the
input regularization parameter. The symbolic-numeric algorithms compute the following
approximate topological invariants for a plane complex algebraic curve:

• the set of numerical singularities of the input curve in the projective real plane;

• the approximate link of each numerical singularity of the input curve. We compute the
approximate link of each singularity as the stereographic projection of the intersection
of the input curve with a small sphere centered in the singularity. The radius of
this sphere is represented by the input regularization parameter. The approximate
link is a smooth and closed space algebraic curve, given as the intersection of two
algebraic surfaces. We compute each approximate link as a 3-dimensional graph data
structure, i.e. a set of points in the 3-dimensional space together with their Euclidean
coordinates and a set of edges connecting them. We call this 3-dimensional graph data
structure the topology of the approximate link. In addition, for each approximate
link we compute different properties from knot theory: the genus, the unknotting
number, the determinant, the number of knot components, the sequence of linking

200 Chapter 6. Conclusions and Future Work

numbers between all the knot components of the approximate link. Moreover, for
each approximate link, we decide whether it is colorable or not;

• the approximate Alexander polynomial of each approximate link. For computing the
approximate Alexander polynomial, we design several computational geometry algo-
rithms such as an adapted version of the Bentley-Ottmann algorithm for computing
all the intersection points among the edges of the projection of a 3-dimensional graph
data structure. We also use combinatorial objects from knot theory such as the dia-
gram of the approximate link, which is a special type of projection of the approximate
link in the 2-dimensional Euclidean plane;

• the approximate delta-invariant of each singularity;

• the approximate Milnor number of each singularity;

• the approximate genus of the input curve;

• the approximate Euler characteristic of the Riemann surface attached to the resolution
of singularities of the input plane complex algebraic curve.

We describe the designed symbolic-numeric algorithms using principles from regularization
theory. We show that the designed symbolic-numeric algorithms with the regularization
parameter compute approximate solutions to the considered algebraic problem, approximate
solutions that satisfy the following property (called convergence for noisy data property): as
the noise level decreases to zero and as the regularization parameter is chosen according to
a certain rule (called parameter choice rule), the approximate solutions computed with the
designed symbolic-numeric algorithms tend to the exact solutions of the considered algebraic
problem. Instead of computing exact solutions to the considered problem, we compute
approximate solutions, which satisfy the convergence for noisy data property. By computing
approximate topological invariants that satisfy the convergence for noisy data property,
we estimate the topological invariants of a plane complex algebraic curve. Basically, our
regularization method consists of the set of designed symbolic-numeric algorithms satisfying
the convergence for noisy data property and of the parameter choice rule, which is a function
in the noise level.
We completely automatize the designed symbolic-numeric algorithms for computing topo-
logical invariants of a plane complex algebraic curve in the new software package called
GENOM3CK [Hodorog et al., 2010a] (GENus cOMputation of plane Complex algebraiC
Curves using Knot theory). GENOM3CK is an open source library, which is written in
the free computer algebra system Mathemagix [van der Hoeven et al., 2002] and in the free
algebraic geometric modeler Axel [Wintz et al., 2006]. The library combines graphical, nu-
merical and symbolical capabilities into one package. We perform several test experiments
with the library GENOM3CK. A first class of test experiments shows the computation
of the approximate invariants of a plane complex algebraic curve. A second class of test
experiments validate the convergence for noisy data property of the designed symbolic-
numeric algorithms. For symbolic input data, the library computes certified and exact
results. For numeric input data, we formalize a framework for interpreting the results of
these algorithms in the theory of approximate algebraic computation by using regulariza-
tion principles. Thus, the library provides certified results for both symbolic and numeric
input data, due to the efficient combination between the symbolic and numeric algorithms.
The designed symbolic-numeric algorithms can be used to certify information about the
singularities of a plane complex algebraic curve. In addition, we can use homotopy con-
tinuation methods from [Sommese and Wampler, 2005] for plane algebraic curves. The
homotopy continuation methods (i.e. predictor-corrector methods) can be used to compute

201

the topology of the approximate link of each singularity of the input plane complex alge-
braic curve. Moreover, we can use homotopy methods to compute the complex singularities
of the input plane complex algebraic curve in the projective complex plane.

202 Chapter 6. Conclusions and Future Work

Bibliography

[Adams, 2004] Adams, C. C. (2004). The Knot Book. An Elementary Introduction to the
Mathematical Theory of Knots. American Mathematical Society, Providence, Rhode
Island.

[Alberti and Mourrain, 2007] Alberti, L. and Mourrain, B. (2007). Visualization of Implicit
Algebraic Curves. In Proceedings of the 15th Pacific Conference on Computer Graphics
and Applications, pages 303–312. IEEE Computer Society, Washington, DC.

[Alexander, 1928] Alexander, J. W. (1928). Topological Invariant of Knots and Links.
Transactions of the American Mathematical Society, 30:275–306.

[Allison and Eckel, 2004] Allison, C. and Eckel, B. (2004). Thinking in C++, Volume 2:
Practical Programming. Prentice Hall Inc., New Jersey, US.

[Anderson et al., 1999] Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Don-
garra, J., Croz, J. D., Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D.
(1999). LAPACK Users’ Guide. Society for Industrial and Applied Mathematics, third
edition.

[Arnold et al., 1998] Arnold, V., Goryunov, V., Lyashko, O., and Vasil’ev, V. (1998). Sin-
gularity Theory. Volume I. Springer Verlag Berlin Heidelberg.

[Arnold, 2004] Arnold, V. I. (2004). Catastrophe Theory. Third Edition. Springer Verlag
Berlin Heidelberg.

[Arnold et al., 1985] Arnold, V. I., Varchenko, A. N., and Gusein-Zade, S. M. (1985). Sin-
gularities of Differentiable Maps: Volume 1. Birkhäuser, Boston.

[Banahan et al., 1991] Banahan, M., Brady, D., and Doran, M. (1991). The C Book. Second
Edition. Addison-Wesley.

[Bates et al., 2006] Bates, D., Hauenstein, J., Sommese, A., and Wampler, C. (2006).
Bertini: Software for numerical algebraic geometry. Software for solving polynomial sys-
tems. http://www.nd.edu/ sommese/bertini/.

[Bates et al., 2011] Bates, D. J., Peterson, C., Sommese, A. J., and Wampler, C. W. (2011).
Numerical computation of the genus of an irreducible curve within an algebraic set.
Journal of Pure and Applied Algebra, 215:1844–1851.

204 Bibliography

[Beman and Smith, 2007] Beman, W. W. and Smith, D. E. (2007). Famous problems of
elementary geometry: The duplication of the cube, the trisection of an angle, the quadra-
ture of the circle. An Authorized Translation of F. Klein’s Vorträge über ausgewahlte
Fragen der Elementargeometrie, Ausgearbeitet von F. Tägert, 1897.

[Berg et al., 2008] Berg, M., Krefeld, M., Overmars, M., and Schwarzkopf, O. (2008). Com-
putational Geometry: Algorithms and Applications. Second edition. Springer, Berlin.

[Bieri and Schmidt, 1991] Bieri, H. and Schmidt, P. M. (1991). An on-line algorithm for
constructing sweep planes in regular position. In Bieri, H. and Noltemeier, H., editors,
Proceedings of the International Workshop on Computational Geometry, volume 553,
pages 27–35. Springer Berlin Heidelberg.

[Blanchette and Summerfield, 2008] Blanchette, J. and Summerfield, M. (2008). C++ GUI
Programming with Qt 4. Second Edition. Prentice Hall US.

[Bochnak et al., 1998] Bochnak, J., Coste, M., and Roy, M.-F. (1998). Real Algebraic Ge-
ometry. Second Edition in English. Ergebnisse der Math. Springer Verlag, Germany.

[Bosma et al., 1997] Bosma, W., Cannon, J., and Playoust, C. (1997). The Magma alge-
bra system. I. The user language. Journal of Symbolic Computation, 24(3-4):235–265.
Computational algebra and number theory (London, 1993).

[Brauner, 1928] Brauner, K. (1928). Zur Geometrie der Funktionen zweier komplexer
Veränderlichen:II-IV. Abh. Math. Sem. Hamburg, 6:1–55.

[Brieskorn and Knorrer, 1986] Brieskorn, E. and Knorrer, H. (1986). Plane Algebraic
Curves. Birkhäuser, Berlin.

[Buchberger and Winkler, 1998] Buchberger, B. and Winkler, F. (1998). Gröbner Bases
and Applications. London Mathematical Society, Cambridge University Press.

[Burde and Zieschang, 1985] Burde, G. and Zieschang, H. (1985). Knots. Walter de
Gruyter.

[Cimasoni, 2004] Cimasoni, D. (2004). Studying the multivariable Alexander polynomial
by means of Seifert surfaces. Bol. Soc. Mat. Mexicana (3), 10:107–115.

[CoCoATeam, 1996] CoCoATeam (1996). CoCoA: A system for doing computations in
commutative algebra. http://cocoa.dima.unige.it/s.

[Collins-Sussman et al., 2004] Collins-Sussman, B., Fitzpatrick, B. W., and Pilato, C. M.
(2004). Version Control with Subversion. O’Reilly Media, Inc., California, US.

[Commons, 2000] Commons, C. (2000). CMake - Cross platform make. A cross platform,
open source build system. http://www.cmake.org/.

[Corless et al., 2003] Corless, R. M., Kaltofen, E., and Watt, S. M. (2003). Hybrid meth-
ods. In Grabmeier, J., Kaltofen, E., and Weispfenning, V., editors, Computer Algebra
Handbook, pages 112–125. Springer Verlag, Heidelberg, Germany.

[Corporation, 2008] Corporation, N. (2008). Qt Cross Platform Application and UI Frame-
work. http://qt.nokia.com/.

[Cozzarelli and Wasserman, 1986] Cozzarelli, N. R. and Wasserman, S. A. (1986). Bio-
chemical topology: Applications to DNA recombination and replication. In Science,
volume 232, pages 951–960.

Bibliography 205

[Crick and Watson, 1953] Crick, F. H. and Watson, J. D. (1953). A structure for deoxyri-
bose nucleic acids. In Nature, volume 171, pages 737–738.

[Crowell, 1959] Crowell, R. H. (1959). Genus of alternating link types. Ann. Math., 69:258–
275.

[Crowell and Fox, 1963] Crowell, R. H. and Fox, R. H. (1963). Intoduction to Knot Theory.
Springer Verlag, New York.

[Diestel, 2005] Diestel, R. (2005). Graph Theory. Graduate Texts in Mathematics. Springer
Verlag, Heidelberg.

[DoCarmo, 1976] DoCarmo, M. (1976). Differentiable Geometry of Curves and Surfaces.
Prentice Hall.

[E W. Weisstein, 1999] E W. Weisstein, W. R. (1999). Wolfram mathworld: The web’s
most extensive mathematics resource. http://mathworld.wolfram.com/.

[Eckel, 2000] Eckel, B. (2000). Thinking in C++, Volume 1: Introduction to Standard C++.
Second Edition. Prentice Hall Inc., New Jersey, US.

[Eisenbud and Neumann, 1985] Eisenbud, D. and Neumann, W. (1985). Three dimensional
link theory and invariants of plane curves singularities. In Annals of Math. Studies,
volume Study 110. Princeton University Press.

[Engl et al., 1996] Engl, H. W., Hanke, M., and Neubauer, A. (1996). Regularization of
Inverse Problems. Kluwer Academic Publishers Group.

[Fischer, 2001] Fischer, G. (2001). Plane Algebraic Curves. Student Mathematical Library,
Volume 15. American Mathematical Society, US.

[Foundation, 2004] Foundation, B. (2004). Blender - the free open source 3d content cre-
ation suite. http://www.blender.org/.

[Foundation, 2000] Foundation, F. S. (2000). GMP - the GNU multiple precision arithmetic
library. http://gmplib.org/.

[Fousse et al., 2007] Fousse, L., Hanrot, G., Lefeévre, V., Pélissier, P., and Zimmermann, P.
(2007). MPFR: A multiple-precision binary floating-point library with correct rounding.
ACM Transactions Mathematical Software, 33.

[Fulton, 1989] Fulton, W. (1989). Algebraic curves: An Introduction to Algebraic Geometry.
Addison-Wesley, Redwood City California.

[Gaal, 1998] Gaal, L. (1998). Classical Galois Theory, With Examples (5th Edition). Amer-
ican Mathematical Society.

[Geddes et al., 2008] Geddes, K., Labahn, G., and Monagan, M. (2008). Maple 12 Intro-
ductory Programming Guide. Maplesoft.

[Gilmore, 1981] Gilmore, R. (1981). Catastrophe Theory for Scientists and Engineers. John
Wiley and Sons, Inc.

[Greuel and Pfister, 2002] Greuel, G. M. and Pfister, G. (2002). A Singular Introduction
to Commutative Algebra. Springer Verlag, Berlin Heidelberg.

[Guha, 2011] Guha, S. (2011). Computer Graphics Through OpenGL: From Theory to
Experiments. Chapman and Hall/CRC, Taylor and Francis Group, US.

206 Bibliography

[Gutierrez et al., 2002] Gutierrez, J., Rubio, R., and Schicho, J. (2002). Polynomial
parametrization of curves without affine singularities. Computer Aided Geometric Design,
19:223–234.

[Haché, 1994] Haché, G. (1994). Example of axiom package paff. http://axiom-
wiki.newsynthesis.org/PAFF.

[Hanrot et al., 2005] Hanrot, G., Lefèvre, V., Pélissier, P., Thveny, P., and Zimmermann,
P. (2005). MPFR - the GNU MPFR library. http://www.mpfr.org/.

[Harris and Quenell, 1999] Harris, S. and Quenell, G. (1999). Knot labellings and knots
without labelings. The Mathematical Intelligencer, 21:51–57.

[Hauser, 2000] Hauser, H. (2000). Resolution of singularities 1860-1999. In Hauser, H.,
Lipman, J., Oort, F., and Quirós, A., editors, Resolution of singularities: A Research
Textbook in Tribute to Oscar Zariski, pages 5–36. Birkhäuser.

[Hess, 2004] Hess, F. (2004). Generalising the GHS attack on the elliptic curve discrete
logarithm. LMS Journal of Computation and Mathematics, 7:167–192.

[Hodorog et al., 2010a] Hodorog, M., Mourrain, B., and Schicho, J. (2010a). GENOM3CK
- A Library for Genus Computation of Plane Complex Algebraic Curves Using Knot
Theory. In ACM SIGSAM Communications in Computer Algebra, volume 44, pages
198–200. Association for Computing Machinery, Special Interest Group on Symbolic and
Algebraic Manipulation.

[Hodorog et al., 2010b] Hodorog, M., Mourrain, B., and Schicho, J. (2010b). A Symbolic-
Numeric Algorithm for Computing the Alexander Polynomial of a Plane Curve Singu-
larity. In Ida, T., Negru, V., Jebelean, T., Petcu, D., Watt, S., and Zaharie, D., editors,
Proceedings of the 12th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing, pages 21–28. IEEE Computer Society, Los Alamitos.

[Hodorog et al., 2011] Hodorog, M., Mourrain, B., and Schicho, J. (2011). An adapted
version of the Bentley-Ottmann algorithm for invariants of plane curve singularities.
In Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., and Apduhan, B. O., editors,
Proceedings of 11th International Conference on Computational Science and Its Applica-
tions, Session: Computational Geometry and Applications, pages 121–131. Lecture Notes
in Computer Science 6784, Springer.

[Hodorog and Schicho,] Hodorog, M. and Schicho, J. A regularization approach for esti-
mating the type of a plane curve singularity. Journal of Theoretical Computer Science,
Submitted.

[Hodorog and Schicho, 2010a] Hodorog, M. and Schicho, J. (2010a). Computational geom-
etry and combinatorial algorithms for the genus computation problem. Technical Report
DK Report 2010-07, Johannes Kepler University, Linz.

[Hodorog and Schicho, 2010b] Hodorog, M. and Schicho, J. (2010b). A symbolic-numeric
algorithm for genus computation. Technical Report DK Report 2010-06, Johannes Kepler
University, Linz.

[Hodorog and Schicho, 2011a] Hodorog, M. and Schicho, J. (2011a). A regularization
method for computing approximate invariants of plane curves singularities. In et al.,
M. M. M., editor, Proceedings of the 4th International Workshop on Symbolic-Numeric
Computation. Association for Computing Machinery. To appear.

Bibliography 207

[Hodorog and Schicho, 2011b] Hodorog, M. and Schicho, J. (2011b). A symbolic-numeric
algorithm for genus computation. In Langer, U. and Paule, P., editors, Numerical and
Symbolic Scientific Computing: Progress and Prospects. Springer Wien. To appear.

[Hoeij, 2000] Hoeij, M. (2000). The algcurves (algebraic curves) package in Maple.
http://www.math.fsu.edu/ hoeij/compalg/algcurves.html.

[Holzer and Labs, 2008] Holzer, S. and Labs, O. (2008). surfex 0.90. Technical report,
University of Mainz, University of Saarbrücken. www.surfex.AlgebraicSurface.net.

[Jänich, 1984] Jänich, K. (1984). Topology. Springer-Verlag New York.

[Jänich, 2000] Jänich, K. (2000). Vector Analysis. Springer-Verlag New York.

[Jenks and Sutor, 1992] Jenks, R. D. and Sutor, R. S. (1992). Axiom, the Scientific Com-
putation System. Springer Verlag.

[Kaltofen et al., 2007] Kaltofen, E., Yang, Z., and Zhi, L. (2007). Structured low rank
approximation of a Sylvester matrix. In Wang, D. and Zhi, L., editors, Symbolic-Numeric
Computation, Texts and Monographs in Symbolic Computation, pages 69–83. Birkhäuser
Verlag, Basel, Switzerland.

[Kauffman, 1991] Kauffman, L. H. (1991). Knots and Physics. World Scientific Singapore.

[Kendig, 1977] Kendig, K. (1977). Elementary Algebraic Geometry. Springer Verlag, New
York Inc.

[Kirwan, 1992] Kirwan, F. (1992). Complex Algebraic Curves. Cambridge University Press.

[Kronheimer and Mrowka, 1993] Kronheimer, P. and Mrowka, T. (1993). Gauge theory for
embedded surfaces: I. Topology, 32:773–826.

[Kuehne and Sullivan, 2008] Kuehne, R. J. and Sullivan, J. D. (2008). OpenGL Program-
ming on Mac OS X. Architecture, Performance, and Integration. Addison-Wesley US.

[Lang, 2002] Lang, S. (2002). Algebra, Graduate Texts in Mathematics, 211, Revised third
edition. Springer Verlag.

[Lee, 2000] Lee, J. M. (2000). Introduction to Topological Manifolds. Springer Verlag, New
York.

[Li et al., 2004] Li, C., Pion, S., and Yap, C. (2004). Recent progress in exact geometric
computation. Journal of Logic and Algebraic Programming, 64(1):85–111. Special issue
on“Practical Development of Exact Real Number Computation”.

[Liang et al., 2008] Liang, C., Mourrain, B., and Pavone, J. (2008). Subdivision methods
for the topology of 2d and 3d implicit curves. In Jüttler, B. and Piene, R., editors,
Geometric Modeling and Algebraic Geometry, pages 199–214. Springer, Berlin Heidelberg.

[Livingston, 1993] Livingston, C. (1993). Knot Theory. Mathematical Association of Amer-
ica.

[Marker, 2002] Marker, D. (2002). Model Theory: An Introduction. Graduate Texts in
Mathematics. Springer New York, United States of America.

[Martin and Hoffman, 2003] Martin, K. and Hoffman, B. (2003). Mastering CMake: A
Cross-Platform Build System. Kitware Inc., New York, US.

208 Bibliography

[Milnor, 1968] Milnor, J. (1968). Singular Points of Complex Hypersurfaces. Princeton
University Press and the University of Tokyo Press, New Jersey.

[Mnuk and Winkler, 1996] Mnuk, M. and Winkler, F. (1996). CASA - A system for com-
puter aided constructive algebraic geometry. In Proceedings International Symposium on
Design and Implementation of Symbolic Computation Systems, pages 297–307.

[Mourrain and Pavone, 2009] Mourrain, B. and Pavone, J. (2009). Subdivision methods
for solving polynomial equations. Journal of Symbolic Computation, 44:292–306.

[Mourrain et al., 2008] Mourrain, B., Pavone, J. P., Trebuchet, P., Tsigaridas, E. P., and
Wintz, J. (2008). Synaps: A library for dedicated applications in symbolic numeric com-
puting. In Arnold, D. N., Santosa, F., Stillman, M., Verschelde, J., and Takayama, N.,
editors, Software for Algebraic Geometry, volume 148 of The IMA Volumes in Mathe-
matics and its Applications, pages 81–109. Springer New York.

[Mourrain and Trébuchet, 2005] Mourrain, B. and Trébuchet, P. (2005). Generalized nor-
mal forms and polynomial system solving. In Proceedings of the 2005 International
symposium on Symbolic and Algebraic Computation, pages 253 – 260. ACM Association
for Computing Machinery, New York, NY, US.

[Mumkres, 2000] Mumkres, J. (2000). Topology. Second edition. Prentice Hall, Inc. Upper
Saddle River, New Jersey.

[Murasugi, 1958] Murasugi, K. (1958). On the genus of alternating knots i, ii. J. Mathe-
matical Soc. Japan, 10:94–105.

[Murasugi, 1996] Murasugi, K. (1996). Knot Theory and Its Applications. Birkhäuser
Boston.

[Network, 2002] Network, O. H. (2002). OpenGL (Open Graphics Library) programming
guide. http://glprogramming.com/red/chapter01.html.

[Neumann, 2003] Neumann, W. (2003). Topology of hypersurface singularities. In Berndt,
R. and Riemenschneider, O., editors, Eric Kähler - Mathematische Werke, Mathematical
Works, pages 727–736. Walter de Gruyter Berlin, New York.

[Neuwirth, 1963] Neuwirth, L. (1963). On stallings fibrations. Proc. Amer. Math. Soc.,
14:380–381.

[Pérez-Dı́az et al., 2010] Pérez-Dı́az, S., Sendra, J. R., Rueda, S. L., and Sendra, J. (2010).
Approximate parametrization of plane algebraic curves by linear systems of curves. Com-
puter Aided Geometric Design, 27(2):212–231.

[Project, 2001] Project, F. (2001). The Fink package management system official homepage.
http://www.finkproject.org/index.php.

[Project, 2002] Project, M. (2002). The MacPorts package management system official
homepage. http://www.macports.org/.

[Rolfsen, 1976] Rolfsen, D. (1976). Knots and Links. Publish or Perish, Inc. Houston,
Texas.

[Seifert, 1934] Seifert, H. (1934). über das Geschlecht von Knoten. Mathematische Annalen,
110:571–592.

[Semwal, 2002] Semwal, S. K. (2002). OpenGL (Open Graphics Library) tutorial.
http://www.cs.uccs.edu/ semwal/indexGLTutorial.html.

Bibliography 209

[Sendra and Alcazar, 2005] Sendra, J. R. and Alcazar, J. G. (2005). Computation of the
topology of real algebraic space curves. Journal of Symbolic Computation, 39:719–744.

[Sendra and Winkler, 1991] Sendra, J. R. and Winkler, F. (1991). Symbolic parametriza-
tion of curves. Journal of Symbolic Computation, 12:607–632.

[Sendra and Winkler, 1997] Sendra, J. R. and Winkler, F. (1997). Parametrization of alge-
braic curves over optimal field extensions. Journal of Symbolic Computation, 23:191–208.

[Sendra et al., 2008] Sendra, J. R., Winkler, F., and Pérez-Dı́az, S. (2008). Rational Alge-
braic Curves. A Computer Algebra Approach. Springer Verlag, Berlin Heidelberg, Ger-
many.

[Shuhong et al., 2008] Shuhong, G., Kaltofen, E., May, J., Yang, Z., and Zhi, L. (2008).
Approximate factorization of multivariate polynomials via differential equations. Journal
of Symbolic Computation, 43:359–376.

[Sommese and Wampler, 2005] Sommese, A. J. and Wampler, C. W. (2005). Numerical
Solution of Polynomial Systems Arising in Engineering and Science. World Scientific,
Singapore.

[Stetter, 2004] Stetter, H. J. (2004). Numerical Polynomial Algebra. Society for Industrial
and Applied Mathematics, Philadelphia.

[Cgal Project Members, 1997] Cgal Project Members (1997). Cgal, Computational Ge-
ometry Algorithms Library. http://www.cgal.org.

[Thelin, 2007] Thelin, J. (2007). Foundations of Qt Development. Springer Verlag New
York.

[Tikhonov and Arsenin, 1977] Tikhonov, A. N. and Arsenin, V. A. (1977). Solution of
Ill-posed Problems. V. H. Winston & Sons, Washington, D.C.

[Tráng, 1973] Tráng, L. D. (1973). Topologie des singularités des hypersurfaces complexes.
Astérisque, 7-8:171–182.

[University of Wales, 2004] University of Wales, B. (2004). Knots exhibition. Centre for
the Popularisation of Mathematics, http://www.popmath.org.uk/exhib/knotexhib.html.

[van der Hoeven, 2004] van der Hoeven, J. (2004). GNU TeXmacs. In ACM SIGSAM
Bulletin, volume 38, pages 24–25. Association for Computing Machinery, New York, US.

[van der Hoeven et al., 2002] van der Hoeven, J., Lecerf, G., and Mour-
rain, B. (2002). Mathemagix open source computer algebra system.
http://www.mathemagix.org/www/main/index.en.html.

[Walker, 1978] Walker, R. J. (1978). Algebraic Curves. Springer-Verlag, New York, United
States of America.

[Winkler, 1996] Winkler, F. (1996). Polynomial Algorithms in Computer Algebra. Springer
Verlag, Wien, New York.

[Wintz, 2008] Wintz, J. (2008). Algebraic Methods for Geometric Modeling. PhD thesis,
University of Nice, Sophia-Antipolis.

[Wintz et al., 2006] Wintz, J., Chau, S., Alberti, L., and Mourrain, B. (2006). Axel Alge-
braic Geometric Modeler. http://axel.inria.fr/.

210 Bibliography

[Wolfram, 2000] Wolfram, S. (2000). The Mathematica Book. Wolfram Research Inc.

[Yamamoto, 1984] Yamamoto, M. (1984). Classification of isolated algebraic singularities
by their Alexander polynomials. Topology, 23:277–287.

[Zeng, 2003] Zeng, Z. (2003). A method computing multiple roots of inexact polynomials.
In Proceedings of ISSAC ’03 International Symposium of Symbolic and Algebraic Compu-
tation (Philadelphia, Pennsylvania, August 3-6, 2003), pages 266–272. ACM Press, New
York.

[Zeng, 2005] Zeng, Z. (2005). Computing multiple roots of inexact polynomials. Math.
Comp., 74:869–903.

[Zeng, 2009a] Zeng, Z. (2009a). The approximate irreducible factorization of a univariate
polynomial. revisited. In Proceedings of the 2009 International Symposium on Symbolic
and Algebraic Computation, pages 367–374. ACM New York.

[Zeng, 2009b] Zeng, Z. (2009b). Regularization and matrix computation in numerical poly-
nomial algebra. In Robbiano, L. and Abbot, J., editors, Approximate Commutative
Algebra, pages 125–162. Springer Verlag, Wien.

[Zeng and Dayton, 2004] Zeng, Z. and Dayton, B. H. (2004). The approximate GCD of
inexact polynomials. part ii: A multivariate algorithm. In Proceedings of the 2004 inter-
national symposium on Symbolic and algebraic computation, pages 320–327. ACM New
York.

List of Notations

R Field of real numbers

C Field of complex numbers

i Imaginary unit with i =
√
−1

K Algebraically closed field of characteristic zero

R2 2-dimensional Euclidean plane

R3 3-dimensional Euclidean space

R4 4-dimensional Euclidean space

Rn n-dimensional Euclidean space with n ∈ N \ {0}
C2 2-dimensional complex plane

R[z, w] Ring of polynomials in the indeterminates z, w with coefficients in R
C[z, w] Ring of polynomials in the indeterminates z, w with coefficients in C
K[z, w] Ring of polynomials in the indeterminates z, w with coefficients in K

A2(C) Affine complex plane

P2(C) Projective complex plane

C,D Affine plane complex algebraic curves

C̃, D̃ Projective plane complex algebraic curves

p(z, w) Bivariate complex polynomial of degree m with m ∈ N \ {0}
p(z, w, u) Bivariate complex homogeneous polynomial of degre m ∈ N \ {0}

pz :=
∂p(z, w)
∂z

First order partial derivative with respect to z of p(z, w)

pw :=
∂p(z, w)
∂w

First order partial derivative with respect to w of p(z, w)

pzz :=
∂p2(z, w)
∂z∂z

Second order partial derivative with respect to z, z of p(z, w)

pzw :=
∂p2(z, w)
∂z∂w

Second order partial derivative with respect to z, w of p(z, w)

pww :=
∂p2(z, w)
∂w∂w

Second order partial derivative with respect to w,w of p(z, w)

212 List of Notations

pwz :=
∂p2(z, w)
∂w∂z

Second order partial derivative with respect to w, z of p(z, w)

pzr−1 :=
∂pr−1(z, w)
∂z...∂z︸ ︷︷ ︸

(r−1) times

Partial derivative of order (r − 1) of p(z, w)

pzr Partial derivative of order r of p(z, w)(
r
k

)
Binomial coefficient with r, k natural numbers including 0

n! Factorial function of n with n ∈ N
C∞(Rn) Class of infinitely differentiable (or smooth) functions over Rn

(∇f)(D) Gradient of the function f at the point D

Hf(D) Hessian matrix of the function f at the point D

◦ Composition of functions
√
· Squareroot function

f−1 Inverse of the functions f

· Dot product

|| · || Euclidean norm

d(·, ·) Euclidean metric (or distance)

cos−1 Inverse of the cosine function

Br(x) Open ball of radius r around x

Br(x) Closed ball of radius r around x

sup Supremum of a set
~0n+1 Origin vector in Rn+1

~0n Origin vector in Rn

Sn
1 (~0n+1) Sphere in Rn+1 of radius 1 around ~0n+1

Bn
1 (~0n) Open ball in Rn of radius 1 around ~0n

Bn
1 (~0n) Closed ball in Rn of radius 1 around ~0n

Tn n-dimensional torus

idX Identity function on the set X

ℵ0 Cardinality of the natural numbers denoted with aleph-0

ℵc Cardinality of the real numbers denoted with aleph-c

max Maximum of a set

S1 1-dimensional sphere (or circle)

[p, q] Segment line joining p and q

∪ Union of a collection of sets

∩ Intersection of a collection of sets

K Knot in R3

L Link in R3

List of Notations 213

K1#K2 Connected sum of the knots K1, K2

c(K) Crossing number of the knot K

u(K) Unknotting number of the knot K

R Arbitrary commutative ring with nonzero multiplicative identity 1

Mm×n(R) Set of m× n matrices over R

Sε Sphere of radius ε centered in the origin (0, 0)

π Stereographic projection of the sphere Sε from R4 to R3

| · | Absolute value of a complex number

L(Q) Link of the plane curve singularity Q

∆(Q) Alexander polynomial of the plane curve singularity Q

δ(Q) Delta-invariant of the plane curve singularity Q

µ(Q) Milnor-number of the plane curve singularity Q

genus(C̃) Genus of the projective plane complex algebraic curve C̃
χ(S) Euler characteristic of the compact surface S
Lε(Q) ε-Link of the plane curve singularity Q

∆ε(Q) ε-Alexander polynomial of the plane curve singularity Q

δε(Q) ε-Delta-invariant of the plane curve singularity Q

µ(Q) ε-Milnor-number of the plane curve singularity Q

genusε(C̃) ε-Genus of the projective plane complex algebraic curve C̃
χε(S) ε-Euler characteristic of the compact surface S
Re(z) Real part of the complex number z

Im(z) Imaginary part of the complex number z

Z+ Set of positive integer numbers including 0

R>0 Set of positive real numbers except 0

Mm×n(Z) Set of m× n matrices defined over Z
M(m,nZ) Set of m× n matrices defined over Z
Mm×n(R) Set of m× n matrices defined over R
M(m,n,R) Set of m× n matrices defined over R
Mm×n(C) Set of m× n matrices defined over C
M(m,n,C) Set of m× n matrices defined over C
∼ Equivalence relation

' Isomorphism
∼= Homeomorphism

≈ Homotopy

214 List of Notations

List of Figures

1.1 In topology, a doughnut and a coffee mug are equivalent objects, they both
have one hole (i.e. their genus is 1). Pictures generated from Youtube. . . . 2

2.1 Example of a circle and a line. From left to right: (1) the circle given by
(x− 1)2 + (y− 0)2 + 1 = 0; (2) the line given by y = x/2. Pictures produced
with Mathematica, see [Wolfram, 2000] for more information. 18

2.2 Generation of the hyperbola by intersecting the cone C given by x2 + y2 −
z2 = 0 with the plane P given by 3x + 2y − 2 = 0. From left to right: (1)
the intersection of the cone (in yellow) with the plane (in green); (2) the
hyperbola (in black) defined by the intersection C ∩ P . Pictures produced
with Surfex, see [Holzer and Labs, 2008] for more information. 18

2.3 Generation of the parabola by intersecting the cone C given by x2+y2−z2 =
0 with the plane P given by x − z − 2 = 0. From left to right: (1) the
intersection of the cone (in yellow) with the plane (in blue); (2) the parabola
(in black) defined by the intersection C ∩P . Pictures produced with Surfex,
see [Holzer and Labs, 2008] for more information. 19

2.4 Generation of the ellipse by intersecting the cone C given by x2 +y2−z2 = 0
with the plane P given by 3x − y + 4z + 4 = 0. From left to right: (1) the
intersection of the cone (in yellow) with the plane (in pink); (2) the ellipse
(in black) defined by the intersection C ∩P . Pictures produced with Surfex,
see [Holzer and Labs, 2008] for more information. 19

2.5 Example of conic sections. From left to right: (1) the parabola given by y2 =
2x−1; (2) the hyperbola given by y2 = x2−1; (3) the ellipse given by 16y2 =
−12x2 + 8x − 1. Pictures produced with Mathematica, see [Wolfram, 2000]
for more information. 20

2.6 Example of a cissoid of Diocles given by x3−2y2+xy2 = 0. Picture produced
with Mathematica, see [Wolfram, 2000] for more information. 21

2.7 Example of representatives from the family of curves with Equation (2.7),
defining the conchoids of Nicomedes. From left to right: (1) representa-
tive for a/b = 1/2; (2) representative for a/b = 1; (3) representative for
a/b = 3/2. Pictures produced with Mathematica, see [Wolfram, 2000] for
more information. 22

2.8 Conchoids of Nicomedes representing the family of curves with Equation (2.7),
visualized in the domain [−1.1, 3.1] × [−2, 2] ⊂ R2. Picture produced with
Mathematica, see [Wolfram, 2000] for more information. 23

216 List of Figures

2.9 Examples of epicycles. Pictures produced with Mathematica, for more infor-
mation see [Wolfram, 2000]. 23

2.10 Generation of the epicycles from Figure 2.9. In each picture, the epicycle is
represented by the path (in red) traced out by a point P on the boundary
of a circle of radius r1 (in blue) rolling without slipping on the outside of a
fixed circle (in black) of radius r2. Pictures produced with Mathematica, see
[Wolfram, 2000] for more information. 23

2.11 Example of a cycloid. Picture produced with Mathematica, for more infor-
mation see [Wolfram, 2000]. 24

2.12 Cycloid (in red) generated by a circle (in blue) rolling on a straight line.
Picture produced with Mathematica, see [Wolfram, 2000]. 24

2.13 Example of a cycloidal gear from http://www.rmhoffman.com. 24

2.14 Example of a Watt curve defined by the Equation (2.8) with the parame-
ters a = 2.1, b = 2 and c = 2.5. Picture produced with Mathematica, see
[Wolfram, 2000] for more information. 25

2.15 Example of representatives from the family of curves with Equation (2.9),
defining the Lissajou curves. We set the parameters δ = 0 and b = 1 for
all the representative. The parameters a and ω are individually chosen as
follows. First row from left to right: (1) representative for a = 1, ω = 1/2;
(2) representative for a = 1, ω = 1/3; (3) representative for a = 1, ω = 1/4.
Second row from left to right: (1) representative for a = 1, ω = 2/5; (2)
representative for a = 1, ω = 3/5; (3) representative for a = 1, ω = 4/5.
Pictures produced with Mathematica, see [Wolfram, 2000] for more informa-
tion. 26

2.16 The blue curve given by z2 − w2 − 1 = 0 and the red curve given by
z = ±w. The picture represents the hyperbola z2 − w2 − 1 = 0 together
with its two asymptotes z = ±w. Picture produced with Mathematica, see
[Wolfram, 2000] for more information. 28

2.17 Ordinary singularities of some plane algebraic curves. Pictures produced
with Mathematica, for more information see [Wolfram, 2000]. 32

2.18 Nonordinary singularities of some plane algebraic curves. Pictures produced
with Mathematica, see [Wolfram, 2000]. 32

2.19 Ordinary double point (or node) of the curve (in red) given by z3−z2+w2 = 0
with two distinct tangents (in blue) z +w = 0, z −w = 0. Picture produced
with Mathematica, see [Wolfram, 2000] for more information. 33

2.20 Nonordinary double point (cusp) of the curve (in red) given by z3 − w2 = 0
with two equal tangents (in blue) w = 0. Picture produced with Mathemat-
ica, see [Wolfram, 2000] for more information. 34

2.21 Ordinary singularities with their corresponding tangents lines. From left
to right: (1) ordinary double point; (2) ordinary triple point; (3) ordinary
quadruple point. Pictures produced with Mathematica, see [Wolfram, 2000]
for more information. 35

2.22 Nonordinary singularities with their corresponding tangents lines. From left
to right: (1) cusp; (2) ramphoid cusp; (3) nonordinary quadruple point. Pic-
tures produced with Mathematica, see [Wolfram, 2000] for more information. 36

2.23 Example of ill-posedness of the singularity (0, 0) of the red inner curve given
by −z3 − zw +w2 = 0. Picture produced with Axel, see Chapter 5 for more
information. 37

http://www.rmhoffman.com

List of Figures 217

2.24 Example of ill-posedness of the singularity (0, 0) of the red inner curve given
by z3 + z2 − w3 = 0. Picture produced with Axel, see Chapter 5 for more
information. 37

2.25 Fold catastrophe: perturbations of type f(x, c) = x3 + cx of the function
f(x) = x3 with doubly degenerate critical points at x = 0 cause changes in
the local topological structure of the function f(x) itself either by splitting
the degenerate critical points in two non-degenerate critical points when
c < 0 or by totally annihilating the degenerate critical points when c > 0.
Picture produced with Mathematica, see [Wolfram, 2000]. 41

2.26 Example of a sphere in the 3-dimensional Euclidean space. The interior of
this sphere is a ball in the 3-dimensional Euclidean space. Picture produced
with Mathematica, see [Wolfram, 2000] for more information. 46

2.27 Example of a torus in the 3-dimensional Euclidean space. Picture produced
with Mathematica, see [Wolfram, 2000] for more information. 47

2.28 Example of different types of tori in the 3-dimensional Euclidean space. From
left to right: (1) Ring torus; (2) Horn torus; (3) Spindle torus. Pictures
produced with Mathematica, see [Wolfram, 2000] for more information. . . 47

2.29 Deformation of a sphere into a cube in the 3-dimensional Euclidean space,
which represents the homeomorphism defined in Example 14. Pictures pro-
duced with Blender, see [Foundation, 2004] for more information. 52

2.30 Example of non-orientable surfaces. From left to right: (1) a Möbius strip;
(2) a Klein bottle. Pictures produced with Mathematica, see [Wolfram, 2000]
for more information. 52

2.31 Visualization for the genus of several nonsingular projective plane complex
algebraic curves. Every nonsingular projective plane complex algebraic curve
is topologically a torus with g-holes. The number g is called the genus of the
nonsingular curve. From left to right: (1) a sphere; (2) a torus with 1-hole;
(3) a torus with 2-holes; (4) a torus with 3-holes. Pictures produced with
Mathematica, see [Wolfram, 2000] for more information. 56

2.32 Example of the unknot, also called the trivial knot. Picture produced with
Mathematica, see [Wolfram, 2000] for more information. 56

2.33 Example of a wild knot. Picture from [Livingston, 1993]. 57

2.34 Examples of knots and links. From left to right: the trefoil knot, the
Hopf link, the Borromean rings. Pictures produced with Mathematica, see
[Wolfram, 2000] for more information. 58

2.35 Example of a figure eight knot and its regular projection. From left to right:
(1) the figure eight knot, which is a picture produced with Mathematica,
see [Wolfram, 2000] for more information; (2) regular projection of the figure
eight knot. 59

2.36 Example of a trefoil knot together with its diagram. From left to right:
(1) the trefoil knot in R3; (2) the corresponding diagram of the trefoil knot
in R2. Pictures produced with Mathematica, see [Wolfram, 2000] for more
information. 59

2.37 Example of a figure eight knot together with its diagram. From left to right:
(1) the eight figure knot in R3; (2) the corresponding diagram of the figure
eight knot in R2. Pictures produced with Mathematica, see [Wolfram, 2000]
for more information. 60

2.38 Types of crossings: lefthanded crossing (-1) and righthanded crossing (+1). 60

218 List of Figures

2.39 Oriented diagram of the trefoil with 3 arcs denoted with {1, 2, 3} and 3
lefthanded crossings denoted with {c1, c2, c3}. 60

2.40 Examples of torus knots. From left to right: (1) a (3, 2) torus knot; (2) a
(5, 2) torus knot; (3) a (7, 2) torus knot. Pictures from Wolfram Research,
see [E W. Weisstein, 1999]. 61

2.41 Connected sum of 2 unknots. From left to right: (1) two unknots in R3

denoted K1,K2 : (2) the connected sum K1#K2. Pictures from Wolfram
Research, see [E W. Weisstein, 1999]. 62

2.42 Figure eight knot, which is the unique prime knot of four crossings. Picture
produced with Mathematica, see [Wolfram, 2000] for more information. . . 62

2.43 Figure eight knot and its mirror image, from [University of Wales, 2004]. . . 62
2.44 Figure eight knot deformed to its mirror image by a sequence of moves,

which shows that the figure eight knot is an amphicheiral knot. Pictures
from [University of Wales, 2004]. 63

2.45 Alternating projection of the figure eight knot, which shows that the figure
eight knot is an alternating knot. 63

2.46 Reidemeister moves of type I, II, III. 64
2.47 Trefoil knot has its crossing number equal to 3 as 3 is the least number of

crossings that occur in any diagram of the trefoil; and its unknotting number
equal to 1 since changing 1 crossing in the diagram change the trefoil into
the unknot. Pictures from [University of Wales, 2004]. 65

2.48 Trefoil knot is tricolorable. Picture from [University of Wales, 2004]. 65
2.49 Unknot is not tricolorable as only one color is used for drawing the knot.

Picture from [University of Wales, 2004]. 66
2.50 Figure eight knot is not tricolorable since there is a crossing for which only

2 different colors meet. From the definition of colorability this is impos-
sible, since either 3 or 1 colors can meet at one crossing. Picture from
[University of Wales, 2004]. 66

2.51 Three loops in the group of the figure eight knot represented by σ1, σ2, σ3.
Picture and example from [Harris and Quenell, 1999]. 69

2.52 Generators of the knot group of the trefoil knot, i.e. S = {g1, g2, g3}. Picture
from [Harris and Quenell, 1999]. 70

2.53 Crossing for the diagram of the trefoil knot, which for the knot group G(K)
of the trefoil knot with generators S = {gi, gj , gk} produces the relation
gigkg

−1
i g−1

j = 1 in G(K). Picture from [Harris and Quenell, 1999]. 70
2.54 Link of the singularity (0, 0) of the plane complex algebraic curve C given by

z3 − w2 = 0. From left to right: (1) the link L of the singularity (0, 0) of C,
represented by the trefoil knot; (2) the two algebraic surfaces that define as
their intersection the link L. Pictures produced with Axel, see Chapter 5 for
more information. 79

2.55 Real points of the curve z3−w2, which are represented by the two intersection
points of the plane real algebraic curve defined by z3 − w2 = 0 with a small
sphere around the origin represented by the unit circle z2 +w2 = 1. Pictures
produced with Axel, see Chapter 5 for more information. 79

2.56 Stereographic projection from R3 to R2. Picture generated with PGF/TikZ
by T. M. Trzeciak. 81

2.57 Types of crossings: lefthanded crossing (-1) and righthanded crossing (+1),
together with the labels for the 3 arcs of a crossing. 85

List of Figures 219

2.58 Oriented diagram of the trefoil knot with 3 arcs denoted with {1, 2, 3} and 3
crossings denoted with {c1, c2, c3}. Example of arcs labeling for the crossing
denoted c1, which is lefthanded. 85

2.59 Oriented counterclockwise diagram of the cinquefoil algebraic knot with 8
arcs and 8 lefthanded crossings. Picture produced with 3D-XplorMath-J
Applet. We denote the crossings from the upperleft to the lowerright corner
with {c1, c2, c3, c4} and the crossings from the lowerleft to the upperright
corner with {c5, c6, c7, c8}. 88

2.60 Oriented clockwise diagram of the Hopf link with 2 lefthanded crossings and
2 arcs. We denote the crossings from up to down with the labels {c1, c2} and
we denote the arcs from left to right with the labels {1, 2}. 90

3.1 Link of the singularity (0, 0) of the plane complex algebraic curve C defined
by z2w + w4 = 0. From left to right: (1) the link L of the singularity (0, 0)
of C represented by a link with 2 components. The link L is computed as
a 3-dimensional graph data structure; (2) the two algebraic surfaces that
define as their intersection the link L. Pictures produced with GENOM3CK
in Axel, see Chapter 5 for more information. 108

3.2 An edge e(s, d) in a 3-dimensional graph. The edge e is determined by
its source point A(s, x1, y1, z1) and by its destination point B(d, x2, y2, z2),
where s, d ∈ Z uniquely identify the points A,B and (x1, y1, z1), (x2, y2, z2) ∈
R3 are the Euclidean coordinates of A,B. 110

3.3 (a) A graph with multiple edges. (b) A graph with a loop. 111

3.4 (a) Two algebraic surfaces that implicitly define as their intersection a closed
and smooth space algebraic curve computed as a 3-dimensional graph G with
3 cycles. (b) The projection of the 3-dimensional graph G with 3 cycles from
(a). Pictures produced with GENOM3CK in Axel, see Chapter 5 for details. 111

3.5 Ordering criteria for the edges. 115

3.6 Refinements of the adapted Bentley-Ottmann algorithm. If the intersection
point P is reported together with its corresponding pair of edges (e1, e2),
then each edge e1, e2 is split in two new edges, i.e. e1 is split in el

1, e
r
1, and

e2 is split in el
2, e

r
2. The new vertices el

i are determined by the source point
of ei and by the coordinates of P , while the new edges er

i are determined by
the coordinates of P and by the destination point of ei, for i ∈ {1, 2}. We
replace the edges ei by el

i in SW , and we insert the edges er
i in E following

the ordering criteria from Step 1, Figure 3.5. 117

3.7 Ordering the pair of edges (e1, e2) that contains an intersection point P (x, y)
with respect to the Euclidean space coordinates of the edges e1, e2. 118

3.8 Position of an edge e(s, d) from the ordered list of edges E towards an arbi-
trary edge sw from the sweep list SW . 121

3.9 Position of an edge e(s, d) from the ordered list of edges E towards the edges
from the sweep list SW . 122

3.10 Insertion of an edge e from the ordered list of edges E on the first position
of the sweep list SW with an intersection point detected. If the edge e
intersects its right neighbour sw1, then we report the computed intersection
point and we swap the pair of edges (e, sw1) in the sweep list SW . After the
swapping process, the edge e is tested for common destination point with its
left neighbour sw1 and with its right neighbour sw2. 124

220 List of Figures

3.11 Insertion of an edge e from the ordered list of edges E on the first position
of the sweep list SW with no intersection point detected. If the edge e does
not intersect its right neighbour sw1, then no intersection point is reported
and no swapping process is performed in the sweep list SW . The edge e is
tested for common destination point with its right neighbour sw1. 125

3.12 Insertion of an edge e from the ordered list of edges E on the last position of
the sweep list SW with an intersection point detected. If the edge e intersects
its left neighbour swn−1, then we report the computed intersection point
and we swap the pair of edges (swn−1, e) in the sweep list SW . After the
swapping process, the edge e is tested for common destination point with its
left neighbour swn−2 and with its right neighbour swn−1. 126

3.13 Insertion of an edge e from the ordered list of edges E on the last position
of the sweep list SW with no intersection point detected. If the edge e does
not intersect its left neighbour swn−1, then no intersection point is reported
and no swapping process is performed in the sweep list SW . The edge e is
tested for common destination point with its left neighbour swn−1. 126

3.14 Insertion of an edge e from the ordered list of edges E on a non-trivial
position of the sweep list SW with an intersection point detected between e
an its left neighbour. If the edge e intersects its left neighbour sw i−1, then
we report the computed intersection point and we swap the pair of edges
(sw i−1, e) in the sweep list SW . After the swapping process, the edge e is
tested for common destination point with its left neighbour sw i−2 and with
its right neighbour sw i−1. 128

3.15 Insertion of an edge e from the ordered list of edges E on a non-trivial
position of the sweep list SW with an intersection point detected between
e an its right neighbour. If the edge e intersects its right neighbour sw i+1,
then we report the computed intersection point and we swap the pair of edges
(e, sw i+1) in the sweep list SW . After the swapping process, the edge e is
tested for common destination point with its left neighbour sw i+1 and with
its right neighbour sw i+2. 128

3.16 Insertion of an edge e from the ordered list of edges E on a non-trivial position
of the sweep list SW with no detected intersection point. If the edge e does
not intersect neither its left neighbour sw i−1 nor its right neighbour sw i+1,
then no intersection point is reported and no swapping process is performed
in the sweep list SW . The edge e is tested for common destination point
with its left neighbour sw i−1 and with its right neighbour sw i+1. 128

3.17 Orientation for a positive edge e and for its corresponding negative edge −e
in a 3-dimensional graph data structure. 133

3.18 Creating the knot components of an approximate link represented as a 3-
dimensional graph Graph(Lε). 135

3.19 Type of crossings in a diagram: lefthanded crossing (denoted with −1) and
righthanded crossing (denoted with +1) together with their corresponding
arcs labelling. 137

3.20 Creating the arcs of a trefoil knot diagram. 138

3.21 Deciding the type of crossings for the diagram of an ε-link represented as a
3-dimensional graph data structure. A crossing is lefthanded (denoted with
−1 or with LH) if the underpass traffic goes from left to right, whereas a
crossing is righthanded (denoted with +1 or RH) if the underpass traffic
goes from right to left. 140

List of Figures 221

3.22 Input-output specification of the ApproxDiagram algorithm, which from the
3-dimensional graph data structure Graph(Lε) that approximates the ε-link
Lε, it computes the diagram of the ε-link denoted with D

(
Graph(Lε)

)
. . . . 142

3.23 Input-output specification of the ApproxAlexPoly algorithm, which from
the diagram of the ε-link Lε denoted with Graph(Lε), it computes the ε-
Alexander polynomial ∆ε of the ε-link Lε approximated as a graph data
structure Graph(Lε). 143

5.1 Input-output specification of the GENOM3CK library. For more details on
each class of properties attached to a plane complex algebraic curve C and
its singularities, see Figure 5.2. 170

5.2 Functionality of the GENOM3CK library. Visualization of the output pro-
duced by the GENOM3CK library, output divided into geometric properties,
invariant properties, algebraic properties, topological properties, knot theory
properties of a plane complex algebraic curve C and its singularities. The
output of GENOM3CK contains also the computational time required for
performing each type of operation in the category called “Analysis of oper-
ations”. 171

5.3 Main interface of the GENOM3CK library in Axel. The main menu of
GENOM3CK is called “Complex Invariant”. 173

5.4 Interface of the GENOM3CK library in Axel showing the geometric proper-
ties of a plane complex algebraic curve and its singularities. The geometric
properties are exemplified on the input plane complex algebraic curve defined
by the squarefree bivariate complex polynomial p(z, w) = z2 − w4 ∈ C2. . . 174

5.5 Interface of the GENOM3CK library in Axel indicating the invariant prop-
erties of a plane complex algebraic curve and its singularities. The invariant
properties are exemplified on the input plane complex algebraic curve defined
by the squarefree bivariate complex polynomial p(z, w) = z2 − w4 ∈ C2. . . 175

5.6 Interface of the GENOM3CK library in Axel presenting the algebraic prop-
erties of a plane complex algebraic curve and its singularities. The algebraic
properties are exemplified on the input plane complex algebraic curve defined
by the squarefree bivariate complex polynomial p(z, w) = z2 − w4 ∈ C2. . . 175

5.7 Interface of the GENOM3CK library in Axel rendering the topological prop-
erties of a plane complex algebraic curve and its singularities. The topological
properties are exemplified on the input plane complex algebraic curve defined
by the squarefree bivariate complex polynomial p(z, w) = z2 − w4 ∈ C2. . . 176

5.8 Interface of the GENOM3CK library in Axel depicting the knot theory
properties attached to a plane complex algebraic curve and its singulari-
ties. The knot theory properties are exemplified on the input plane com-
plex algebraic curve defined by the squarefree bivariate complex polynomial
p(z, w) = z2 − w4 ∈ C2. 176

5.9 Interface of the GENOM3CK library in Axel reporting the analysis of prop-
erties attached to a plane complex algebraic curve and its singularities. The
analysis of properties is exemplified on the input plane complex algebraic
curve defined by the squarefree bivariate complex polynomial p(z, w) =
z2 − w4 ∈ C2. 177

5.10 Main functionality of the free Axel algebraic geometric modeler and of the
free Mathemagix computer algebra system. Axel and Mathemagix are the
two systems used for developing the GENOM3CK library. 178

222 List of Figures

5.11 Design of the GENOM3CK library. GENOM3CK is built on top of the two
free systems Axel and Mathemagix, released under the GNU General Public
License. 183

List of Tables

2.1 List of A-D-E singularities from [Arnold et al., 1985] 40

5.1 Topology analysis with GENOM3CK on exact examples 189
5.2 Topology analysis with GENOM3CK on inexact examples 190
5.3 Summary of computed invariants with the GENOM3CK library. Part I . . 193
5.4 Summary of computed invariants with the GENOM3CK library. Part II . . 194
5.5 Summary of computed invariants with the GENOM3CK library. Part III . 194
5.6 Convergence of −x3 − xy + y2 with exact coefficients 195
5.7 Convergence of −x3 − xy + y2 − 0.01 with inexact coefficients 195
5.8 Convergence of x2 − y2 − y3 with exact coefficients 196
5.9 Continuity for perturbations of type I of −x3 − xy + y2 196
5.10 Continuity for perturbations of type II of −x3 − xy + y2 197
5.11 Continuity for perturbations of type I of x2 − y2 − y3 197
5.12 Continuity for perturbations of type II of x2 − y2 − y3 197

Index

3-dimensional graph, 109
projection, 111
simple, 111
small edges, 111

GENOM3CK, 167, 169, 172, 173, 182, 186,
188

affine plane complex algebraic curve
nonsingular, 32
singular, 32
smooth, 32

Alexander matrix, 71
Alexander polynomial, 65, 73, 83, 86
algorithm

adapted Bentley-Ottmann, 108, 115
approximate Alexander polynomial, 141
basic coordinate geometry, 112
combinatorial, 132
decide type of a crossing, 139
detect arcs in a diagram, 136
detect components in a link, 133
sweep-line, 118

algorithm pseudocode
ApproxAlexPoly, 144
ApproxDelta, 145
ApproxDiagram, 143
ApproxEulerChar, 148
ApproxGenus, 147
ApproxMilnorNumber, 145
ApproxType, 146
CreateArcs, 139
CreateKnots, 136
DecideTypeCrossings, 141
SweepPlane, 129
ApproxLink, 105
ApproxRealSing, 101
PropApproxLink, 151

ambient isotopy, 57, 58
approximate invariant, 96

approximate Alexander polynomial, 96
approximate delta-invariant, 96
approximate Euler characteristic, 97
approximate genus, 97
approximate link of a singularity, 96
approximate Milnor number, 96

approximate invariants, 99
approximate complex singularities, 100
approximate link of a singularity, 102
approximate real singularities, 100
approximate singularities, 99

approximate topological type, 97
arc of a diagram, 60, 85
Axel, 172, 177

Cartesian product, 42
catastrophes, 39
closed polygonal curve, 57

simple, 57
complex plane, 27

affine, 27
projective, 28

computation of Alexander polynomial
Alexander’s combinatorial method, 66
Conway’s skein relation, 66
Fox’s method, 66, 67

continuous function, 43
convergent sequence, 43
critical point, 39

degenerate, 39
non-degenerate, 39

crossing of a diagram, 59, 84
lefthanded, 59, 84
overcrossing, 59
righthanded, 59, 85
undercrossing, 59

delta-invariant, 91
diagram, 59

oriented, 59

Index 225

unoriented, 59
diameter of a set, 44
diffeomorphism, 39
dot product, 42

elements of a diagram
arc, 60, 85
crossing, 59

equivalence of links, 64
Euclidean metric, 43
Euclidean norm, 43
Euclidean space, 42

n-dimensional, 42
3-dimensional, 46

Euler characteristic, 95

factorization, 27
irreducible, 27
squarefree, 27

fold catastrophe, 41
fundamental group of a knot, 68

genus, 55, 93
compact Riemann surface, 55

GNU Texmacs, 172
gradient, 38

Hessian matrix, 38
homeomorphism, 50
homeomorphism of pairs, 80
HOMFLY polynomial, 66
homogeneous polynomial, 29
homotopy, 50

ideal, 72

Jones polynomial, 65

knot, 56, 57
achiral, 62
alternating, 62
amphicheiral, 62
prime, 61
tame, 57
torus, 60
trefoil, 58
trivial, 56
wild, 57

knot group, 69
abelianization, 71
generators, 69
presentation, 71
relations, 70

Wirtinger presentation, 69
knot sum, 61
knot tables, 75
knot theory properties, 148

colorability, 150
determinant, 150
genus, 148
linking number, 149
number of (knot) components, 149
unknotting number, 149

labelling matrix, 85
link, 57

algebraic, 58, 83
Borromean rings, 58
Hopf, 58
oriented, 58
trivial, 58

link invariants, 64
crossing number, 64
polynomial, 65
tricolorability, 64
unknotting number, 64

link of a singularity, 76, 81, 82
loop, 67

manifold, 53
differentiable, 54

Mathemagix, 173
metric space, 43
Milnor number, 94
Milnor’s theorem, 82
modular programming, 178
Morse, 39

function, 40
lemma, 39

multiplicity of a link, 57
multiplicity of singularity, 31

nonsingular points, 32

object oriented programming, 178
classes, 179
inheritance, 179
namespaces, 179
polymorphism, 180
templates, 179
types, 179
virtual functions, 180

open ball, 44
open cover, 44
OpenGL, 172, 180

226 Index

basic geometric primitives, 181
OpenGL Utility Library, 181
OpenGL Utility Toolkit, 181
rasterization, 181

path, 67
plane complex algebraic curve, 27

affine, 27
projective, 29

polynomial, 26
irreducible, 26
squarefree, 26

polynomial knot invariants
Alexander polynomial, 65
HOMFLY polynomial, 66
Jones polynomial, 65

prealexander matrix, 86
presentation of a group, 68
projective plane complex algebraic curve, 38

nonsingular, 38
singular, 38
smooth, 38

Qt framework, 172, 180
application programming interface, 180
graphical user interface, 180

regular points, 32
Reidemeister moves, 63
ring, 72

set, 44
closed, 44
compact, 44
open, 44

singularities, 31
affine plane complex algebraic curve, 31
projective plane complex algebraic curve,

37
singularity, 31

nonordinary, 31
ordinary, 31

smooth function, 38
stereographic projection, 80
subdivision methods, 100, 107
sublink, 57
surface, 52

compact, 55
non-orientable, 52
orientable, 52
Riemann, 55

sweep line technique, 109

Taylor series expansion, 30
theorem

Bolzano-Weierstrass, 156
Euclidean extreme value, 156
Heine-Borel, 156

Thom splitting lemma, 40
topological equivalence, 81
topological invariants, 80
topological space, 45

connected, 52
path connected, 52

topological type of a function, 39
topological type of a singularity, 81, 84
topology of an algebraic curve, 107, 111
torus, 46

horn, 47
ring, 47
spindle, 47

vector, 42

Curriculum Vitae

Contact Information

E-mail: madalina.hodorog@oeaw.ac.at
www: http://people.ricam.oeaw.ac.at/m.hodorog/

Personal Data

Date of Birth: 7th of January 1983.
Place of Birth: Deva, Romania.
Citizenship: Romanian.

Education

2008 – present Ph.D. Student in the ”Doctoral Program: Computational Mathematics” (DK)
Johannes Kepler University (JKU), Linz, Austria
Thesis Title: Symbolic-numeric algorithms for plane algebraic curves
Advisor: Prof. Dr. Josef Schicho

2007 – 2008 Ph.D. Student at the Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

2005 – 2007 Master Studies in Computer Science
West University of Timişoara, Romania
Master Diploma in Computer Science in July 2007
Thesis Title: A Case Study in Systematic Theory Exploration: Natural Numbers.
Advisor: Prof. Dr. Tudor Jebelean and Dr. Adrian Crăciun

2001 – 2005 Bachelor Studies in Mathematics and Computer Science
West University of Timişoara, Romania
Bachelor Diploma in Mathematics and Computer Science in July 2005
Thesis Title: Numerical Methods for Solving Nonlinear Systems of Partial Differential
Equations-Parallel Calculus.
Advisor: Prof. Dr. Dana Petcu

1997 – 2001 National College ”Decebal”, Deva, Romania
Baccalaureate Diploma in June 2001

228 Curriculum Vitae

Academic Work Experience

2008 – present Research assistant in the Symbolic Computation Group
Johann Radon Institute for Computational and Applied Mathematics
Linz, Austria

2007 – 2008 Junior researcher
Research Institute for Symbolic Computation
Hagenberg, Austria

2005 – 2007 Junior researcher at the Research Institute e-Austria
West University of Timişoara, Romania

Publications

Refereed Conference Papers

• M. Hodorog, J. Schicho. A Regularization Method for Computing Approximate In-
variants of Plane Curves Singularities. Accepted in: M. M. Maza et al., editors. Proc.
of the 4th International Workshop on Symbolic-Numeric Computation (SNC 2011),
ACM (Association for Computing Machinery), San Jose, California, June 7-9, 2011,
To appear.

• M. Hodorog, B. Mourrain, J. Schicho. An Adapted Version of the Bentley-Ottmann
Algorithm for Invariants of Plane Curve Singularities. In: B. Murgante et.al, editors.
Proc. of the 11th International Conference on Computational Science and Its Appli-
cations (ICCSA 2011), Part III, Session: Computational Geometry and Applications,
Lecture Notes in Computer Science 6784, pp. 121-131, Springer, 2011.

• M. Hodorog, B. Mourrain, J. Schicho. A Symbolic-Numeric Algorithm for Computing
the Alexander Polynomial of a Plane Curve Singularity. In: Proc. of the 12th Inter-
national Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC 2010), T. Ida, V. Negru, T. Jebelean, D. Petcu, S. Watt, D. Zaharie (eds.),
pp. 21-28, September 23-26 2010. Department of Computer Science, West University
of Timişoara, Romania, ISBN: 978-0-7695-4324-6.

• A. Crăciun, M. Hodorog. Decompositions of Natural Numbers: From A Case Study in
Mathematical Theory Exploration. In: Proceedings of the 9th International Sympo-
sium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2007),
D. Petcu, V. Negru, D. Zaharie and T. Jebelean (ed.), pp. 1-8, September 26-29 2007.
West University of Timişoara, Romania, ISBN:0-7695-3078-8.

• M. Hodorog, A. Crăciun. Scheme-Based Systematic Exploration of Natural Numbers.
In: Proceedings of the 8th International Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing (SYNASC 2006), D. Petcu, V. Negru, D. Zaharie, T.
Jebelean (ed.), pp. 23-34. September 26-29 2006. Department of Computer Science,
West University of Timişoara, Romania, ISBN:0-7695-2740-X.

Contributions in Collections

• M. Hodorog, B. Mourrain, J. Schicho. GENOM3CK - A Library for Genus Compu-
tation of Plane Complex Algebraic Curves using Knot Theory. In: ACM SIGSAM
Communications in Computer Algebra, vol. 44, No. 4, Issue 174, pp. 198-200,

Curriculum Vitae 229

December 2010, ISSN:1932-2240. Software Presentations at the 35th International
Symposium on Symbolic and Algebraic Computation (ISSAC 2010), July 25-28 2010,
Munich, Germany.

Book Chapters

• M. Hodorog, J. Schicho. A Symbolic-Numeric Algorithm for Genus Computation. In:
Numerical and Symbolic Scientific Computing: Progress and Prospects, U. Langer
and P. Paule (ed.), 30 pp., Springer Wien, 2011, to appear.

Technical Reports

• M. Hodorog, J. Schicho, A Symbolic-Numeric Algorithm for Genus Computation. DK
Report 2010-06, 31 pp., Johannes Kepler University, Linz-Austria.

• M. Hodorog, J. Schicho, Computational Geometry and Combinatorial Algorithms for
the Genus Computation Problem. DK Report 2010-07, 30 pp., Johannes Kepler Uni-
versity, Linz-Austria.

• M. Hodorog, A. Crăciun. A Case Study in Systematic Theory Exploration: Natural
Numbers. Technical report no. 07-18 in RISC Report Series, 38 pp., University of
Linz, Austria. October 2007. RISC, University of Linz, Austria.

Extended Abstracts

• M. Hodorog, B. Mourrain, J. Schicho. Topology Analysis of Complex Curves Singu-
larities Using Knot Theory, June 24-30, 2010. At: 7th International Conference on
Curves and Surfaces, Avignon-France.

• M. Hodorog, B. Mourrain, J. Schicho. The Genus Computation Problem: Symbolic-
Numeric Solutions and Beyond, March 15-19, 2010. At: Second SAGA Winter Work-
shop, Auron-France.

• A. Crăciun, M. Hodorog. The Quotient-Remainder Theorem for Natural Numbers:
Discovery by Lazy Thinking. University of Pécs, Hungary, June 21, 2007. At: First
Central and Eastern European Conference on Computer Algebra and Dynamic Ge-
ometry Systems in Mathematics Education (CADGME).

Submitted

• M. Hodorog, J. Schicho. A Regularization Approach for Estimating the Type of a
Plane Curve Singularity. Submitted to the Journal of Theoretical Computer Science.
Special Issue on Symbolic and Numeric Computation.

Conferences and Scientific Visits

• M. Hodorog, B. Mourrain, J. Schicho. Contributed talk: An Adapted Version of the
Bentley-Ottmann Algorithm for Invariants of Plane Curve Singularities. At: 11th In-
ternational Conference on Computational Science and Its Applications (ICCSA 2011),
Session: Computational Geometry and Applications, June 20-23, 2011, University of
Cantabria, Santander, Spain.

• M. Hodorog, B. Mourrain, J. Schicho. Contributed talk: A Regularization Method for
Computing Approximate Invariants of Plane Curves Singularities. At: 4th Interna-
tional Workshop on Symbolic-Numeric Computation (SNC 2011), June 7-9, 2011, San
Jose, California, US.

230 Curriculum Vitae

• M. Hodorog, B. Mourrain, J. Schicho. Contributed talk: A Symbolic-Numeric Algo-
rithm for Computing the Alexander Polynomial of a Plane Curve Singularity. At:
12th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC 2010), September 23-26 2010, Timişoara, Romania.

• M. Hodorog, B. Mourrain, J. Schicho. Contributed talk: GENOM3CK - A Library for
Genus Computation of Plane Complex Algebraic Curves using Knot Theory. Soft-
ware Presentation at the 35th International Symposium on Symbolic and Algebraic
Computation (ISSAC 2010), July 25-28 2010, Munich, Germany.

• M. Hodorog, B. Mourrain, J. Schicho. Contributed talk: Topology Analysis of Complex
Curves Singularities Using Knot Theory. At: 7th International Conference on Curves
and Surfaces, June 24-30 2010, Avignon, France.

• M. Hodorog, B. Mourrain, J. Schicho. Contributed talk: The Genus Computation
Problem: Symbolic-Numeric Solutions and Beyond. At: Second Winter Workshop
of the SAGA (Shapes, Geometry and Algebra) Project, March 15-19 2010, Auron,
France.

• M. Hodorog, A. Crăciun, T. Jebelean. Contributed talk: Systematic Exploration of
Mathematical Theories. July 27-30, 2008. At: Applications of Computer Algebra
(ACA 2008), Session Symbolic Computation and Deduction in System Design and
Verification.

• M. Hodorog, A. Crăciun. Contributed talk: Scheme-Based Systematic Exploration
of Natural Numbers. At: 8th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC 2006), September 2006. Department
of Computer Science, West University of Timişoara, Romania.

• Participating at the Special Semester on Gröebner Bases, Linz-Hagenberg-Austria,
March 2006.

• Research visit at INRIA Sophia-Antipolis, Sophia-Antipolis, France, 2009, 2011.

• Research visit at Colorado State University, Fort Collins, US, 2011.

	Eidesstatliche Erklärung
	Zusammenfassung
	Abstract
	Acknowledgements
	Introduction
	Motivation and Description of the Problem
	Setting the Framework
	Contemporary Algebraic Geometry
	Knot Theory and its Evolution
	Computational Geometry
	Recent Progress in Approximate Algebraic Computation
	Development of Mathematical Software Packages and Libraries

	Strategy for Solving the Problem
	Contributions of the Thesis
	Structure of the Thesis

	Plane Complex Algebraic Curves
	Preliminaries on Affine and Projective Plane Complex Algebraic Curves
	A Brief Historical Background
	Definitions and Examples

	Singularities of Plane Complex Algebraic Curves
	Definitions and Examples
	Applications of Singularities

	Topology of Plane Complex Algebraic Curves
	Preliminaries
	Topological Properties of Plane Complex Algebraic Curves
	Singularities and Knot Theory

	Invariants of Plane Complex Algebraic Curves
	Preliminaries
	Link of a Singularity
	Alexander Polynomial of a Singularity
	Delta-Invariant of a Singularity
	Genus of a Plane Complex Algebraic Curve
	More Invariants: Milnor Number, Euler Characteristic

	Approximate Invariants of Plane Complex Algebraic Curves

	Symbolic-Numeric Algorithms for Plane Algebraic Curves
	Algorithm for Computing the Approximate Singularities
	Description of the Algorithm
	Applications of the Algorithm

	Algorithm for Computing the Approximate Link of a Singularity
	Description of the Algorithm
	Applications of the Algorithm

	Algorithm for Computing the Approximate Alexander Polynomial
	Sweep-Line Algorithms from Computational Geometry
	Combinatorial Algorithms from Knot Theory
	Description of the Main Algorithm
	Applications of the Main Algorithm

	Algorithm for Computing the Approximate Delta-Invariant
	Description of the Algorithm
	Applications of the Algorithm

	Algorithm for Computing the Approximate Local Topological Type
	Algorithm for Computing the Approximate Genus
	Description of the Algorithm
	Applications of the Algorithm

	Algorithms for Computing Knot Theory Properties

	Convergence Analysis of the Symbolic-Numeric Algorithms
	Basic Notations
	Basic Results
	Definitions
	Convergence Results

	Software: The GENOM3CK library
	Description of the Library
	Main Functionality of the Library
	Short History of the Library
	Interface of the Library

	Implementation of the Library
	Design of the Library
	Dependencies of the Library

	Usage of the Library
	Instructions for the User
	Instructions for the Developer

	Test Experiments
	Examples for the Computation of Approximate Invariants
	Examples for the Convergence Property

	Conclusions and Future Work
	Bibliography
	List of Notations
	List of Figures
	List of Tables
	Index
	Curriculum Vitae

