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Zusammenfassung V

Zusammenfassung

In dieser Arbeit konstruieren und analysieren wir Mehrgittermethoden zur Lösung

gewisser Klassen von Optimalsteuerungsproblemen. Ursprünglich wurden Mehrgitter-

methoden zur Lösung elliptischer Probleme konstruiert. Die Optimalsteuerungspro-

bleme jedoch werden durch ein lineares System notwendiger Bedingungen beschrieben

(Optimalitätssystem), das nicht elliptisch ist. Wir machen uns jedoch zunutze, dass

das Optimalitätssystem eine Block-Matrix ist, das eine Sattelpunktstruktur aufweist:

Einerseits haben wir die beiden Blöcke von Variablen, die bereits Teil des Optimals-

teuerungsproblems sind: die Variablen, die den Zustand beschreiben, und die Variablen,

die die Kontrolle beschreiben. Ferner bilden die Lagrange-Multiplikatoren einen dritten

Block von Variablen, der beim Übergang zum Optimalitätssystem eingeführt wird.

Es gibt nun mehrere Möglichkeiten, in diesem Kontext Mehrgitterverfahren zu verwen-

den. Eine Möglichkeit besteht darin, das Mehrgitterverfahren als Teil eines Vorkondi-

tionierers jeweils auf einzelne Blöcke des Gesamtsystems anzuwenden. Dazu müsste die

Mehrgittermethode in jedem Schritt des jeweils gewählten äußeren Iterationsverfahrens

angewandt werden. Eine andere Möglichkeit, der wir in dieser Arbeit folgen, ist es, die

Methode direkt auf das Gesamtsystem anzuwenden. Ein solcher Zugang wird auch als

all-at-once approach bezeichnet.

Für einen solchen Ansatz ist der wesentlichse Punkt die Wahl eines passenden Glätters.

Wir werden Glätter konstruieren, deren Konvergenzraten vom Grad der Verfeinerung

der Diskretisierung unabhängig sind. Da in diesem Fall der Gesamtaufwand der Me-

thode linear von der Anzahl der Unbekannten abhängt, sprechen wir auch von einer

optimalen Konvergenzrate.

Für eine Teilklasse der betrachteten Probleme gehen wir einen Schritt weiter und kon-

struieren auch Lösungsmethoden, deren Konveregnzraten robust in einem Kosten- oder

Regularisierungsparameter sind, der Teil der Problemstellung ist. Methoden, die auf

eine solche Robustheit nicht Rücksicht nehmen, zeigen für kleine Werte dieses Parame-

ters typischerweise sehr langsame Konveregenz.



VI

Die Konvergenztheorie wird auf einen allgemeinen Konvergenzsatz aufgebaut, der auf

eine große Klasse von Methoden anwendbar ist. Der Konvergenzbeweis selbst folgt

klassischen Ideen und ist auf der von Hackbusch eingeführten Aufspaltung in Glättungs-

und Approximationseigenschaft aufgebaut. Danach wenden wir noch eine zweite Art

der Konvergenzanalyse an: lokale Fourieranalyse. Dieser Ansatz erlaubt uns, scharfe

Abschätzungen der Konveregenzrate zu bestimmen.



Abstract VII

Abstract

In this thesis we construct and analyze multigrid methods for solving the optimality

system characterizing the solution of an optimal control problem. Originally multigrid

methods were constructed for elliptic problems. However, the (discretized) optimal-

ity system is not elliptic. We make use of the fact that the matrix is a block-matrix

with saddle point structure: on the one hand we have two blocks of variables repre-

senting state and control. These two blocks are already part of the optimal control

problem itself. On the other hand, the conversion to the optimality system requires the

introduction of Lagrange multipliers, which form the third block of variables.

There are several possibilities to use multigrid methods for constructing solvers for

such saddle point problems. One approach to solve such problems is to apply multigrid

methods in every step of an overall block-structured iterative method to equations in

just one of these blocks of variables. Another approach, which we will follow here, is

to apply the multigrid idea directly to the (reduced or not reduced) optimality system,

which is called an all-at-once approach.

The choice of an appropriate smoother is the key issue in constructing such a multigrid

method. The other part of the method – the coarse-grid correction – can be set up

in a canonical way because we will use a framework of conforming geometric multigrid

method. In this framework the smoother will be constructed such that the convergence

rates are independent of the grid level. This leads to an overall computational complex-

ity that is linear in the number of unknowns which is called an optimal convergence.

For a sub-class of the class of problems we will introduce in a first point, we will go

one step further and construct methods where the convergence rates are also robust in

a certain regularization or cost parameter which is part of the problem. Moreover, we

will show this fact. Methods that do not take this into account typically show quite

poor convergence rates if this parameter attains small values.

For the analysis, we will introduce a general framework that is based on Hackbusch’s

splitting of the analysis into smoothing and approximation property. This allows to

give general convergence theorems for the methods under investigation. A second point

we consider is local Fourier analysis which allows to compute sharp bounds of the

convergence rates.
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Chapter 1

Introduction

The goal of this thesis is the construction and the analysis of fast numerical methods

for computing approximate solutions for optimization problems with partial differential

equations as constraints (PDE-constrained optimization problems). Problems which

belong to this class are optimal control problems, (cf. Lions [42] and Tröltzsch [65])

optimal design problems, shape and topology optimization problems (cf. Bendsøe and

Sigmund [7], Pironneau [50]) and many others. In this thesis we focus on optimal

control problems. Often, optimal control problems have a quadratic goal functional and

linear constraints. Such problems are called quadratic optimization problems. If other

problems are considered, typically linearization techniques, like (semi-smooth) Newton

methods, lead to such subproblems. Also problems with additional algebraic inequality

constraints can be approximated by a sequence of quadratic optimization problems,

see, e.g., Ito and Kunisch [40], Gfrerer [32], Herzog and Sachs [37] and others.

Therefore the construction of fast solvers for quadratic PDE-constrained optimization

problems is of particular interest.

In principle, black-box methods for solving such optimization problems are possible, i.e.,

one can use appropriate solvers for the PDEs forming the constraints and construct an

appropriate outer iteration for solving the optimization problems. Typically, already the

solution of the PDE itself is relatively costly, especially if a fine resolution of the problem

is required. Therefore, alternative approaches which directly lead to the solution of the

optimization problem are of particular interest.

We use the fact that the solution of the problems of our interest can be characterized

by their optimality systems, which are also called Karush-Kuhn-Tucker systems (KKT-

systems). In this thesis we only consider quadratic problems. For this case, the first

order optimality system is a necessary and sufficient condition for a solution.
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After discretization, the optimality system is a large-scale linear system which has

saddle point structure. We will study multigrid methods for solving these linear sys-

tems. Originally, multigrid methods have been designed and analyzed for elliptic prob-

lems. They also work well for saddle point problems (like the KKT-systems for PDE-

constrained optimization and particularly optimal control problems) and have gained

growing interest in this area, see, e.g., Borzi and Schulz [13] and the references

cited there. Neither the construction of such multigrid solvers, nor their analysis is

standard.

The unknowns of the discretized KKT-system of a PDE-constrained optimization prob-

lem can be partitioned into primal and dual variables. For optimal control problems

the primal unknowns are the state variable and the control variable. The dual vari-

ables are Lagrange multipliers that are introduced to incorporate the constraints into

the optimality system. One approach to solve such problems is to apply multigrid

methods in every step of an overall block-structured iterative method to equations

in just one of these blocks of variables. Such methods have been proposed, e.g.,

in Hackbusch [34], Battermann and Heinkenschloss [5], Battermann and

Sachs [6], Biros and Ghattas [11, 10], Hazra and Schulz [36], Schöberl and

Zulehner [54], Zulehner [71] and Rees, Dollar and Wathen [51].

Another approach, which we will follow here, is to apply the multigrid idea directly to

the (reduced or not reduced) KKT-system. This approach is called an all-at-once

approach. Such methods have been proposed, e.g., in Taasan [60], Arian and

Taasan [2], Trottenberg [66], Borzi, Kunisch and Kwak [12], Schulz and

Wittum [55], Borzi and Schulz [13], Lass [41], Simon and Zulehner [58] and

Schöberl, Simon and Zulehner [53].

The choice of an appropriate smoother is a key issue in constructing such a multigrid

method. Since we use a conforming geometric multigrid method, the coarse-grid cor-

rection can be chosen canonically. Therefore, the smoother is actually the only degree

of freedom in constructing the method. In this framework the smoother will be con-

structed such that the multigrid convergence rates are independent of the grid level.

Obtaining multigrid convergence rates independent of the grid level is a main reason for

choosing a multigrid method, as many other iterative methods do not allow this. The

optimal control problems of our interest depend on a parameter and we are interested

in the construction of multigrid solvers that allow also robustness of the convergence

rates in this parameter, which is one challenge of this work. We will introduce two

classes of smoothers: normal equation smoothers and collective point smoothers. Both

classes of smoothers are used in practice and are known from literature. The first kind

of smoothers, normal equation smoothers, are known to be relatively easy to analyze

and have been proposed in literature, see, e.g., Brenner [22]. We will see in numerical
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tests that the efficiency of those smoothers is comparable to other smoothers used in

practice. The other choice, collective point smoothers, belongs to the class of Vanka

smoothers, see, e.g., Vanka [67], and can be used without further knowledge for various

problems. Such kind of smoothers have been proposed for optimal control problems,

e.g., in Borzi, Kunisch and Kwak [12].

In this thesis, we will discuss mainly two kinds of convergence analysis. On the one

hand, we stick to rigorous convergence proofs, based on a multiplicative splitting into

smoothing property and approximation property, as introduced by Hackbusch, see,

e.g., his book on multigrid, Hackbusch [35]. Already Brenner [22] introduced a

framework for showing the convergence of a multigrid method for parameter-dependent

saddle point problems satisfying certain properties. Unfortunately, her results cannot

be directly applied to all model problems we consider in this thesis. We will give another

convergence framework which follows another strategy. We will introduce five sufficient

conditions for convergence of a multigrid method. The proof itself follows standard

proofs for two-grid and W-cycle multigrid methods, which can be found in literature,

e.g., in Hackbusch [35]. The framework covers on the one hand the approximation

property and on the other hand the smoothing property for the smoothers based on

the normal equation. The combination of both results implies convergence.

We apply this framework to three model problems to obtain convergence results for

all of them. This extends the work of Simon [57] and Simon and Zulehner [58] to

more general control problems. The extension of their work to the boundary control

model problem was published in Takacs and Zulehner [61]. Afterwards, we will

see how to extend the convergence analysis to obtain parameter-robust results. Such a

result was already stated – within a different framework – in Schöberl, Simon and

Zulehner [53]. In Takacs and Zulehner [62], we have extended their result to

collective point smoothers, where rigorous analysis has not been available. Afterwards,

we will relax the regularity assumptions which were necessary in Schöberl, Simon

and Zulehner [53] and in the other papers cited above to the case of partial regularity

(which allows to cover domains with reentrant corners).

The other approach for a multigrid convergence analysis, which we also study here,

is local Fourier analysis (or local mode analysis), cf. Brandt [19]. The main idea

is to use Fourier series in the analysis of multigrid methods. Local Fourier analysis

provides a framework to analyze various numerical methods with a unified approach

that gives quantitative statements on the methods under investigation and leads to

the determination of sharp convergence rates. Local Fourier analysis can be justified

rigorously only in special cases, e.g., on rectangular domains with uniform grids and

periodic boundary conditions. However, results obtained with local Fourier analysis

can be carried over to more general problems at least in a heuristic way.
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The use of the Fourier series reduces the need of analyzing (discretized) differential

operators and multigrid methods to the need of analyzing algebraic relations. For

example, for computing the convergence rate of a multigrid method we will see that we

have to determine the supremum of a rational function. So far, these algebraic problems

have been solved by numerical approximation, see, e.g., the work Borzi, Kunisch and

Kwak [12] on a local mode analysis for a model problem discussed also in this thesis.

In a joint work with Veronika Pillwein, we have used quantifier elimination algorithms

based on cylindrical algebraic decomposition, see, e.g., Collins [27], for computing

such relations in an exact way. The results presented in this theses were published in

Pillwein and Takacs [48].

This thesis is organized as follows. In Chapter 2 we will introduce the main framework.

First, we will give some standard statements on Sobolev spaces in Section 2.1. In

Section 2.2, we will present the optimal control model problems which will be discussed

throughout the whole thesis. In Section 2.3 we will shortly discuss the concept of weak

formulations and standard finite element methods that can be used to discretize the

problem of our interest, which will lead to a linear system to be solved.

In Chapter 3 we will present the all-at-once multigrid methods which we propose

for solving such systems. In Section 3.1 we will introduce the overall framework

and comment on the coarse-grid correction. Subsequently, in Section 3.2 two classes

of smoothers will be proposed: normal equation smoothers and collective point

smoothers.

The analysis is done in two chapters. In Chapter 4 we will discuss the analysis based

on Hackbusch’s splitting into smoothing property and approximation property. At first

we will introduce this splitting and we will derive general sufficient conditions for con-

vergence of the proposed multigrid methods in Section 4.1. Here, we will follow proofs

found in literature. In Section 4.2 we will apply this framework to the model problems

to show the approximation property. Moreover, this section also cover the smoothing

property for the normal equation smoothers, which together with the approximation

property implies convergence. In Section 4.3, we will extend the convergence analysis to

obtain parameter-robust results. Such a result was already stated – within a different

framework – in Schöberl, Simon and Zulehner [53]. We will extend their result

in Section 4.4 to collective point smoothers. In Section 4.5, we will relax the regularity

assumptions introduced in Section 4.3 to the case of partial regularity.

In Chapter 5 we will discuss local Fourier analysis. Therefore, we will first introduce

the local Fourier analysis framework in Section 5.1. Then we will discuss quantifier

elimination, mention a method to perform quantifier elimination for a given formula

and discuss its link to local Fourier analysis in Section 5.2. In Sections 5.3 and 5.4, we
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will apply the framework to the model problem to derive sharp convergence results for

the model problems.

In Chapter 6 we will present numerical results and in Chapter 7 we will give some

concluding remarks.



6 Introduction
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Chapter 2

Preliminaries

In this chapter, we will give some definitions and preliminary results. We will start

with Sobolev spaces, which are the natural spaces for considering the weak formulation

of partial differential equations (PDEs).

In a next step, we will introduce the optimal control problems, which will be discussed

throughout this thesis. Then we will discuss existence and uniqueness of the solution

of the problem and the discretization of the problem. We will start with the partial

differential equation forming the constraint, which is an elliptic equation. Afterwards,

we will discuss existence and uniqueness of the solution of the optimization problem,

the introduction of the optimality system and its discretization.

After the third section of this chapter, we will have a linear system to be solved. Then,

in the last section of this chapter, we will discuss various iterative solvers for solving

such a linear system.

2.1 Banach, Hilbert, Lebesgue and Sobolev spaces

In this section, we introduce the definitions and ideas related to Banach and Hilbert

spaces, Lebesgue and Sobolev spaces. This is done to keep this thesis self-contained.

Results are only presented if they are needed in later chapters of this thesis. Therefore,

we restrict ourselves to the case of real vector spaces. For more details we refer to

standard literature, e.g., Adams and Fournier [1] or Brenner and Scott [21].
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A Banach space is a vector space A together with a norm ‖·‖A, also written as (A, ‖·‖A)

such that A is complete with respect to the norm ‖ · ‖A, i.e., all Cauchy sequences are

convergent. If the norm is induced by a scalar product, i.e., if

‖u‖A = (u, u)
1/2
A

holds for all u ∈ A and some scalar product (·, ·)A : A × A → R, we call (A, (·, ·)A) a

Hilbert space.

The norm of the Banach space (A, ‖ · ‖A) is induced by a scalar product if and only if

the parallelogram identity

‖u+ v‖2A + ‖u− v‖2A = 2
(
‖u‖2A + ‖v‖2A

)
is satisfied for all u and v ∈ A. If this identity holds on A, the scalar product is given

by

(u, v)A :=
1

4

(
‖u+ v‖2A − ‖u− v‖2A

)
.

So, (A, (·, ·)A) is Hilbert space. Due to the fact that the scalar product is characterized

by the norm, we call also (A, ‖ · ‖A) a Hilbert space if the parallelogram identity is

satisfied.

The set of bounded linear functionals mapping from a (reflexive) Banach space (Hilbert

space) A to the reals R is again a Banach space (Hilbert space) equipped with norm

‖u‖A∗ := sup
v∈A\{0}

u(v)

‖v‖A

for all such functionals u. We call this set the dual of A, in short A∗. Often we use for

the evaluation of such a functional the duality product 〈u, v〉 := u(v).

Having Banach (Hilbert) spaces, we can easily construct more such spaces by taking

the algebraic sum or by taking the intersection. Let A1 and A2 be Banach (Hilbert)

spaces with norms ‖ · ‖A1 and ‖ · ‖A2 , respectively. The algebraic sum,

A1 +A2 = {u1 + u2 : u1 ∈ A1 and u2 ∈ A2},

and the intersection,

A1 ∩A2,

are also Banach (Hilbert) spaces equipped with norms

‖u‖A1+A2 = inf
u=u1+u2, u1∈A1, u2∈A2

(‖u1‖2A1
+ ‖u2‖2A2

)1/2 and

‖u‖A1∩A2 = (‖u‖2A1
+ ‖u‖2A2

)1/2,
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respectively, see, e.g., Proposition 3.2.1 in Butzer and Berens [26]. We have more-

over

(A1 +A2)∗ = A∗1 ∩A∗2 and (A1 ∩A2)∗ = A∗1 +A∗2.

Now we can introduce the Lebesgue space L2 and the Sobolev spaces Hm for m ∈
N := {1, 2, 3, . . .}. Here and in what follows, let Ω be a bounded open subset of Rd (for

d ∈ {1, 2, 3}) with Lipschitz boundary ∂Ω (we call Ω a domain).

First we introduce the standard Lebesgue space: L2(Ω) is the set of all (real-valued)

square-integrable functions on Ω (integrability is understood in the sense of Lebesgue

integrals). On this vector space we can introduce the scalar product

(u, v)L2(Ω) :=

∫
Ω
u(x)v(x) dx

and the corresponding norm ‖ · ‖L2(Ω) := (·, ·)1/2
L2(Ω)

. Using the convention that two

L2-functions u and v are equal if their values are equal almost everywhere, one can

show that (·, ·)L2(Ω) is a scalar product and (L2(Ω), (·, ·)L2(Ω)) is a Hilbert space.

Using the concept of weak derivatives, we can introduce Sobolev spaces. Let α =

(α1, . . . , αd) ∈ (N0)d := {0, 1, 2, 3, . . .}d be a multi-index. The function w ∈ L2(Ω) is

called the α-th weak derivative of u ∈ L2(Ω), for short w = Dαu, if

(w, v)L2(Ω) = (−1)|α|(u,Dαv)L2(Ω) for all v ∈ C∞0 (Ω),

where C∞0 (Ω) denotes all C∞-functions that have compact support in Ω. Here, |α| =

|α1|+ . . .+ |αd| and Dα, applied to a C∞-function, is the differential operator

Dα =
∂α1

∂xα1
1

· · · ∂
αd

∂xαd1

.

For m ∈ N0, the Sobolev space Hm(Ω) is the set of all functions u ∈ L2(Ω) such that

for all multi-indices α with |α| ≤ m the weak derivative Dαu ∈ L2(Ω) exists, i.e.,

Hm(Ω) :=
{
u ∈ L2(Ω) : Dαu ∈ L2(Ω) for all α ∈ Nd0 with |α| ≤ m

}
. (2.1)

Together with the scalar product

(u, v)Hm(Ω) :=
∑
|α|≤m

(Dαu,Dαv)L2(Ω),

the Sobolev space Hm(Ω) is a Hilbert space.
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This definition covers the case m = 0 (due to (2.1), we have H0(Ω) = L2(Ω)). Dual

spaces of Sobolev spaces are interpreted as follows. The dual space of L2(Ω), denoted by

(L2(Ω))∗, can be identified with L2(Ω) itself. For m > 0, we interpret the dual spaces of

Hm(Ω), denoted by (Hm(Ω))∗, as supersets of L2(Ω). To do so, we need an embedding

of L2(Ω) into spaces (Hm(Ω))∗: we associate to any u ∈ L2(Ω) the functional

(u, ·)L2(Ω) ∈ (Hm(Ω))∗.

Note that not every v ∈ (Hm(Ω))∗ can be expressed in this form, therefore L2(Ω) and

(Hm(Ω))∗ are non-equal. The dual spaces could be introduced as Sobolev spaces with

negative index m. We do not use this notion here, as sets like H−1(Ω) include special

assumptions on boundary conditions. In Section 4.5, we will generalize the notation of

Sobolev spaces for non-integer indices.

2.2 Optimal control problems

The next step is the introduction of the model problems. As mentioned, we are inter-

ested in a particular class of PDE-constrained optimization problems: optimal control

problems. Such problems have the following abstract setting. We consider some sys-

tem, where its state can be described using the variable (state variable) y ∈ Y . This

can be, for example, a heat distribution, a flow field or the pressure distribution. We

assume that the state variable y satisfies a PDE of the form

Ly = f(u),

By = g(u),

where L is a differential operator, B is a boundary operator and u is a variable that

describes parameters that can be adjusted from outside of the system, like forces or

heating sources applied from outside. We assume that we can adjust u, therefore we

call u the control variable. f and g are given functionals.

If the PDE and appropriate boundary conditions (which may also depend on the con-

trol) are fixed, we assume that we are able to solve the system, i.e., we may compute

for a given choice of the control variable u the state y.

The main point of optimal control problems is that we are interested in finding the

best choice of the control u such that some cost functional J is minimized. Of course,

this could be done using an outer iteration that uses a solver for the corresponding

simulation problem in a black-box manner. Such methods, which guarantee that the

constraints are satisfied for every iterate, are also called feasible path methods. We
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are interested in a direct approach to solve such problems, so we are interested in

conditions characterizing the solution of the optimization problem, which could be

solved in a second step. For this purpose, we have to use information on the structure

of the problem. Therefore, we prescribe a particular class of cost functional first.

Popular choices for the cost functional are tracking functionals. They consist on the

one hand of the difference between state y and some desired state yD, i.e., on

‖y − yD‖,

where ‖·‖measures something like the distance, i.e., it is typically a norm or a seminorm.

Often, here the L2-norm is considered, see, e.g., Lions [42]. We stick to this choice.

Since that such a problem needs regularization, we assume also to have a regularization

term. Therefore the cost functional may look as follows:

J(y, u) = ‖y − yD‖2L2 +
α

2
‖u‖2L2 ,

where α > 0 is a parameter. Depending on the considered model, α may be a cost

parameter (for the costs that are related to applying the control) or a regularization

parameter. Especially in the case that α is a regularization parameter, the choice

of small values for α is of particular interest. So, we are interested in efficient finite

element solvers for such optimal control problems, in particular in solvers where the

convergence rates can be bounded from above by constants independent of the choice

of α.

2.2.1 Model problems

In this thesis, we present the theory and the numerical results for some model prob-

lems. In the later chapters, the convergence theory will not be restricted to the model

problems only. Numerical results will be computed for the model problems, introduced

in this section only.

All our model problems are elliptic optimal control problems, i.e., the PDE of our

interest is elliptic. For sake of simplicity, we restrict to the Laplace-like PDE

−∆y + y = f.

In general, we can handle other elliptic PDEs in a similar way.
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The first model problem is a distributed control problem, i.e., we assume to control

the system using a source term living on the whole domain Ω or, more generally, on a

subdomain Ω2 ⊆ Ω. So, the PDE looks like

−∆y + y =

{
u in Ω2

0 in Ω\Ω2

,

where u ∈ L2(Ω2) or, shorter, as

−∆y + y = EΩu in Ω,

where

EΩu :=

{
u in Ω2

0 in Ω\Ω2

,

i.e., EΩ is an extension operator L2(Ω2) → L2(Ω) which extends u with 0 outside of

Ω2. Of course, we additionally need boundary conditions. For the model problems

we assume for sake of simplicity to have homogeneous Neumann boundary conditions,

i.e.,
∂y

∂n
= 0 on ∂Ω,

where ∂
∂n is the outer-normal derivative.

We choose the tracking functional consisting of L2-norms but the tracking functional

may just live on subset a Ω1 ⊆ Ω. So, the first model problem looks as follows.

Model Problem 1 Find the control u ∈ L2(Ω2) and the state y ∈ H1(Ω) such that

they minimize the cost functional J , given by

J(y, u) =
1

2
‖y − yD‖2L2(Ω1) +

α

2
‖u‖2L2(Ω2),

subject to the elliptic boundary value problem

−∆y + y = EΩu in Ω and
∂y

∂n
= 0 on ∂Ω. (2.2)

Especially, if we consider the theory, the fact that the norms above only live in parts of Ω

causes troubles. Therefore, we introduce an easier model problem, where Ω1 = Ω2 = Ω

is satisfied.
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Model Problem 2 Find the control u ∈ L2(Ω) and the state y ∈ H1(Ω) such that

they minimize the cost functional J , given by

J(y, u) =
1

2
‖y − yD‖2L2(Ω) +

α

2
‖u‖2L2(Ω),

subject to the elliptic boundary value problem

−∆y + y = u in Ω and
∂y

∂n
= 0 on ∂Ω. (2.3)

The third model problem we consider, is similar to the first two model problems. It is

a boundary control problem. Here, the control variable does not live in the interior of

the object but on its boundary and affects the boundary conditions of the state y, not

the right-hand side of the partial differential equation.

Model Problem 3 Find the control u ∈ L2(∂Ω) and the state y ∈ H1(Ω) such that

they minimize the cost functional J , given by

J(y, u) =
1

2
‖y − yD‖2L2(Ω) +

α

2
‖u‖2L2(∂Ω),

subject to the elliptic boundary value problem

−∆y + y = 0 in Ω and
∂y

∂n
= u on ∂Ω.

2.3 Weak formulations and discretization

In this section, we will introduce standard finite element techniques for discretizing the

problem of our interest. The first part here is the introduction of the weak formulation

and the discussion of existence and uniqueness. The second part consists of a finite

element discretization. We will start both parts with the state equation only, as this

equation itself is a standard elliptic model problem, which allows to introduce the

standard elliptic convergence theory. Afterwards, we will extend the ideas in each

case to saddle point problems, in particular, to the optimality systems associated with

optimal control problems.
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2.3.1 Weak formulation of the state equation

First we consider the state equation (2.2) in weak formulation, which reads as follows.

Find y ∈ Y := H1(Ω) such that

(∇y,∇ỹ)L2(Ω) + (y, ỹ)L2(Ω) = (u, ỹ)L2(Ω2) for all ỹ ∈ Y.

Using the bilinear form b, given by

b(x, ỹ) := (y, ỹ)H1(Ω) = (∇y,∇ỹ)L2(Ω) + (y, ỹ)L2(Ω),

and the linear functional f ,

f(ỹ) := (u, ỹ)L2(Ω2),

we can rewrite the weak formulation as follows: Find y ∈ Y := H1(Ω) such that

b(y, ỹ) = f(ỹ) for all ỹ ∈ Y. (2.4)

The first question to be answered is the question of existence and uniqueness of a

solution y for a given control u. For elliptic problems, the Lax-Milgram theorem can

be used to show existence and uniqueness.

Theorem 4 (Lax and Milgram) Let (Y, (·, ·)Y ) be a Hilbert space. Let b : Y × Y →
R be a bilinear form, which is

• bounded, i.e., there is a constant C such that

b(y, ỹ) ≤ C2‖y‖Y ‖ỹ‖Y for all y, ỹ ∈ Y (2.5)

and

• coercive, i.e., there is a constant C such that

b(y, y) ≥ C2‖y‖2Y for all y ∈ Y. (2.6)

Assume that f ∈ Y ∗. Then, for a given f , there is exactly one solution yf of the

problem (2.4). The solution yf satisfies

1

C
‖f‖Y ∗ ≤ ‖yf‖Y ≤

1

C
‖f‖Y ∗ .

For a proof see, e.g., Brenner and Scott [21], Theorem (2.7.7).
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For the model problem the conditions of the Lax-Milgram theorem are satisfied with

C = C = 1 because b(·, ·) = (·, ·)H1(Ω), i.e., the bilinear form is equal to the scalar

product. Therefore existence of a solution and its uniqueness are guaranteed.

The conditions of the Lax-Milgram theorem imply the weaker condition

C‖y‖Y ≤ sup
ỹ∈Y \{0}

b(y, ỹ)

‖ỹ‖Y
≤ C‖y‖Y for all y ∈ Y.

We will see in the next subsection that also this weaker condition is sufficient for

showing existence and uniqueness. Here, we mention this condition because we will

use this condition for showing existence and uniqueness of the solution of the optimal

control model problems.

As proposed, we have shown that the state equation is solvable for every choice of the

control variable u ∈ L2(Ω2) for Model Problem 1. The analysis can be extended to

Model Problem 3 in a straight-forward way. So we can start discussing the introduction

of the optimality systems.

2.3.2 Weak formulation of the control problem (Karush Kuhn Tucker

system, KKT-system)

As mentioned above, we are interested in a characterization of the solution of the

optimal control problem by a system of PDEs. Here, we use the method of Lagrange

multipliers. For Model Problem 1, we obtain the Lagrange functional

L(y, u, p) =
1

2
‖y − yD‖2L2(Ω1) +

α

2
‖u‖2L2(Ω2) + (y, p)H1(Ω) − (u, p)L2(Ω2).

Solving the model problem is equivalent to finding a saddle point of the Lagrange

functional which leads to the first order optimality system, which are called Karush

Kuhn Tucker system (KKT-system). This system reads as follows. Find (y, u, p) ∈
H1(Ω)× L2(Ω2)×H1(Ω) such that

(y, ỹ)L2(Ω1) + (p, ỹ)H1(Ω) = (yD, ỹ)L2(Ω1)

α (u, ũ)L2(Ω2) − (p, ũ)L2(Ω2) = 0

(y, p̃)H1(Ω) − (u, p̃)L2(Ω2) = 0

holds for all (ỹ, ũ, p̃) ∈ H1(Ω)×L2(Ω2)×H1(Ω). This system characterizes the solution

of the Model Problem 1, cf. Tröltzsch [65] and others.
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Because

α (u, ũ)L2(Ω2) = (p, ũ)L2(Ω2)

holds for all ũ ∈ L2(Ω2), we obtain

u = α−1p|Ω2 ,

where p|Ω2 is the restriction of the Lagrange multiplier p to the domain Ω2. This allows

us to reduce the KKT-system as follows. Find (y, p) ∈ X := Y × P := H1(Ω)×H1(Ω)

such that
(y, ỹ)L2(Ω1) + (p, ỹ)H1(Ω) = (yD, ỹ)L2(Ω1)

(y, p̃)H1(Ω) − α−1(p, p̃)L2(Ω2) = 0

holds for all (ỹ, p̃) ∈ X. This system is called the reduced KKT-system.

Obviously, this problem can also be interpreted as one single variational equation: Find

x ∈ X such that

B(x, x̃) = F(x̃) for all x̃ ∈ X,

where

B((y, p), (ỹ, p̃)) := (y, ỹ)L2(Ω1) + (p, ỹ)H1(Ω) + (y, p̃)H1(Ω) − α−1(p, p̃)L2(Ω2),

F(ỹ, p̃) := (yD, ỹ)L2(Ω1).

Now the question arises if this problem has a solution and if the solution is unique. As

already mentioned, this question can be answered using the Babuška-Aziz Theorem.

Theorem 5 (Babuška and Aziz) Let (X1, ‖ ·‖X1) and (X2, ‖ ·‖X2) be Hilbert spaces

and let B : X1 ×X2 → R be a bilinear form and let F ∈ X∗2 .

Assume that there are constants C > 0 and C such that

C‖x‖X1 ≤ sup
x̃∈X2\{0}

B(x, x̃)

‖x̃‖X2

≤ C‖x‖X1

holds for all x ∈ X1 and

C‖x‖X2 ≤ sup
x̃∈X1\{0}

B(x̃, x)

‖x̃‖X1

≤ C‖x‖X2

holds for all x ∈ X2.

Then the problem, find x ∈ X1 such that

B(x, x̃) = F(x̃) for all x̃ ∈ X2,
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has a unique solution xF , which satisfies

1

C
‖F‖X2

∗ ≤ ‖xF‖X1 ≤
1

C
‖F‖X2

∗ .

For a proof see, e.g., Babuška [4], Theorem 2.1.

For the KKT-systems, the bilinear form B is symmetric. In the present section, we need

the case X1 = X2 := X and ‖·‖X1 = ‖·‖X2 := ‖·‖X only. Therefore, the two conditions

of the Babuška-Aziz theorem (Theorem 5) reduce to the following condition:

(A1) There are constants C > 0 and C such that the estimate

C‖x‖X ≤ sup
x̃∈X\{0}

B(x, x̃)

‖x̃‖X
≤ C‖x‖X

holds for all x ∈ X.

It is not easy to analyze (A1) directly for block-systems, like the (reduced) KKT-

systems. As mentioned, these systems have saddle point structure. Therefore, we

introduce a framework of saddle point problems and rephrase condition (A1) in terms

of the individual blocks of the saddle point system.

Definition 6 (Saddle point problem) We call the variational problem, find x ∈ X
such that

B(x, x̃) = F(x̃) for all x̃ ∈ X, (2.7)

a saddle point problem, if there are Hilbert spaces Y and P such that X = Y × P and

there are bilinear forms a, b and c such that

• B((y, p), (ỹ, p̃)) = a(y, ỹ) + b(y, p̃) + b(ỹ, p)− c(p, p̃)

• a and c are symmetric, i.e., a(y, ỹ) = a(ỹ, y) and c(p, p̃) = c(p̃, p)

• a and c are non-negative, i.e., a(y, y) ≥ 0 and c(p, p) ≥ 0.

Note that every F ∈ X∗ = Y ∗ × P ∗ can be represented as

F(ỹ, p̃) = f̂(ỹ) + ĝ(ỹ), (2.8)

where f̂ ∈ Y ∗ and ĝ ∈ P ∗.
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Using this notation, the saddle point problem (2.7) can be rewritten in block-notation

as follows. Find y ∈ Y and p ∈ P such that

a(y, ỹ) + b(ỹ, p) = f̂(ỹ) for all ỹ ∈ Y,
b(y, p̃) − c(p, p̃) = ĝ(p̃) for all p̃ ∈ P.

In such a setting, i.e., if X = Y ×P , a norm on X can be constructed using the norms

on Y and P by

‖(y, p)‖X =
(
‖y‖2Y + ‖p‖2P

)1/2
for all y ∈ Y and p ∈ P . Throughout this thesis, we restrict to this case.

Assuming that the bilinear form c vanishes, Brezzi’s theorem gives sufficient conditions

for existence and uniqueness of the solution of the problem. We give a variant of Brezzi’s

theorem stating that condition (A1) is satisfied.

Theorem 7 (Brezzi) Assume that a saddle-point problem in the sense of Definition 6

with c = 0 satisfies the following conditions:

• There are constants C1 and C1 such that

C1‖p‖P ≤ sup
ỹ∈Y \{0}

b(ỹ, p)

‖ỹ‖Y
≤ C1‖p‖P for all p ∈ P.

• There are constants C2 and C2 such that

a(y, ỹ) ≤ C2‖y‖Y ‖ỹ‖Y for all y, ỹ ∈ Y

and

a(y, ỹ) ≥ C2‖y‖2Y

for all y ∈ ker(B) := {y ∈ Y : b(y, p̃) = 0 for all p̃ ∈ P}.

Then condition (A1) is satisfied. The constants C and C in (A1) only depend on the

constants C1, C1, C2 and C2, introduced above.

For a proof, see Proposition 1.1 in Brezzi [23].

Since the bilinear form c does not vanish for the reduced KKT-system, we cannot

apply Brezzi’s theorem. Therefore we use another approach, which was introduced in

Zulehner [71].
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Theorem 8 For saddle point problems in the sense of Definition 6, (A1) is equivalent

to

(A1’) There are constants C1 > 0, C2 > 0, C1 and C2 such that

C1‖y‖Y ≤ sup
ỹ∈Y \{0}

a(y, ỹ)

‖ỹ‖Y
+ sup
p̃∈P\{0}

b(y, p̃)

‖p̃‖P
≤ C1‖y‖Y for all y ∈ Y,

C2‖p‖P ≤ sup
ỹ∈Y \{0}

b(ỹ, p)

‖ỹ‖Y
+ sup
p̃∈P\{0}

c(p, p̃)

‖p̃‖P
≤ C2‖p‖P for all p ∈ P.

The constants C and C in (A1) only depend on the constants C1, C2, C1 and C2 in

(A1’) and vice versa.

For a proof, see Zulehner [71], Theorems 2.2 and 2.3.

We return to the analysis of the reduced KKT-system of Model Problem 1. The KKT-

system has saddle point structure (Definition 6), where obviously a(·, ·) = (·, ·)L2(Ω1),

b(·, ·) = (·, ·)H1(Ω), c(·, ·) = α−1(·, ·)L2(Ω2), f̂(·) = (yD, ·)L2(Ω1) and ĝ = 0.

If applied to Model Problem 1, for standard norms condition (A1’) reads as follows:

There are constants C1 > 0, C2 > 0, C1 and C2 such that

C1‖y‖H1(Ω) ≤ sup
ỹ∈H1(Ω)\{0}

(y, ỹ)L2(Ω1)

‖ỹ‖H1(Ω)
+ sup
p̃∈H1(Ω)\{0}

(y, p̃)H1(Ω)

‖p̃‖H1(Ω)
≤ C1‖y‖H1(Ω)

and

C2‖p‖H1(Ω) ≤ sup
ỹ∈H1(Ω)\{0}

(p, ỹ)H1(Ω)

‖ỹ‖H1(Ω)
+ sup
p̃∈H1(Ω)\{0}

α−1(p, p̃)L2(Ω2)

‖p̃‖H1(Ω)
≤ C2‖p‖H1(Ω)

for all y, p ∈ H1(Ω).

First we analyze boundedness. Using the Cauchy-Schwarz inequality and the fact that

the L2-norms ‖ · ‖L2(Ω1) and ‖ · ‖L2(Ω2) are bounded by the H1(Ω)-norm, boundedness

is guaranteed with constants C1 = 2 and C2 = 2α−1.

Now we analyze the lower bounds. First we recognize that we have

sup
p̃∈H1(Ω)\{0}

(y, p̃)H1(Ω)

‖p̃‖H1(Ω)
= ‖y‖H1(Ω).

Since

sup
ỹ∈H1(Ω)\{0}

(y, ỹ)L2(Ω1)

‖ỹ‖H1(Ω)
≥ 0,
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we have the first inequality with constant C1 = 1. The same argument can be applied

for the second inequality to obtain C2 = 1. This shows condition (A1’). Using

Theorems 5 and 8, and the fact that Model Problem 2 is a special case of Model

Problem 1, we conclude as follows.

Theorem 9 Let α > 0 be fixed. For Model Problems 1 and 2 condition (A1) is satisfied

for the following choices of the norm:

‖x‖X := (‖y‖2Y + ‖p‖2P )1/2, (2.9)

where

‖y‖Y := ‖y‖H1(Ω) and ‖p‖P := ‖p‖H1(Ω).

Remark 10 For Model Problem 3, the bilinear form and the right-hand side read as

follows:

B((y, p), (ỹ, p̃)) = (y, ỹ)L2(Ω) + (p, ỹ)H1(Ω) + (y, p̃)H1(Ω) − α−1(p, p̃)L2(∂Ω),

F(ỹ, p̃) = (yD, ỹ)L2(Ω).

Also in this case, one can show that in the same way as above that condition (A1) is

satisfied for all fixed choices of α > 0 and the norms chosen in Theorem 9.

The same can be done, as long as the bilinear forms a(·, ·) and c(·, ·) are non-negative

and bounded in H1(Ω).

Remark 11 For the non-reduced KKT-system, a similar analysis can be carried out.

We give the results for Model Problem 1, the other model problems can be treated anal-

ogously.

Here, we have to comment on the notation first. The non-reduced KKT-system consists

of the primal variables y and u and of the dual variable p. Due to the fact that the

framework above is formulated for one primal variable in Y and one dual variable P ,

we take (y, u) ∈ Y to be the primal variable and p ∈ P to be dual variable. Still, x

consists of all variables, i.e., x = (y, u, p) ∈ X = Y × P .
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For the non-reduced KKT-systems, the bilinear forms a, b and c and the functionals f̂

and ĝ, introduced in Definition 6, read as follows:

a((y, u), (ỹ, ũ)) = (y, ỹ)L2(Ω1) + α(u, ũ)L2(Ω2),

b((y, u), p̃) = (y, p̃)H1(Ω) − (y, p̃)L2(Ω2),

c(p, p̃) = 0,

f̂(ỹ, ũ) = (yD, ỹ)L2(Ω1),

ĝ(p̃) = 0.

Theorems 5 and 8 can be applied and lead to the following result. For every fixed α > 0,

condition (A1) is satisfied for the choice of the norm:

‖x‖X := (‖(y, u)‖2Y + ‖p‖2P )1/2,

where

‖(y, u)‖Y := (‖y‖2H1(Ω) + ‖u‖2L2(Ω2))
1/2 and ‖p‖P := ‖p‖H1(Ω).

We have seen that the constants in (A1’) (and therefore also the constants in (A1))

depend on the choice of α. Therefore this approach does not allow to prove convergence

results with constants independent of α, i.e., we will have to do some refinement of the

analysis to obtain such a result.

For doing such a refined analysis, we have to restrict ourselves to the reduced KKT-

system for Model Problem 2. Here, we have to find appropriate norms ‖ · ‖Y and ‖ · ‖P
such that

C1‖y‖Y ≤ sup
ỹ∈Y \{0}

(y, ỹ)L2(Ω)

‖ỹ‖Y
+ sup
p̃∈P\{0}

(y, p̃)H1(Ω)

‖p̃‖P
≤ C1‖y‖Y for all y ∈ Y

and

C2‖p‖P ≤ sup
ỹ∈Y \{0}

(p, ỹ)H1(Ω)

‖ỹ‖Y
+ sup
p̃∈P\{0}

α−1(p, p̃)L2(Ω)

‖p̃‖P
≤ C2‖p‖P for all p ∈ P

is satisfied with constants independent of α.

The choice Y = P with ‖p‖P = α−1/2‖p‖Y allows to reduce these two conditions to the

condition

C1‖y‖Y ≤ sup
ỹ∈Y \{0}

(y, ỹ)L2(Ω)

‖ỹ‖Y
+ sup
ỹ∈Y \{0}

α1/2(y, ỹ)H1(Ω)

‖ỹ‖Y
≤ C1‖y‖Y for all y ∈ Y.
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It is easy to see, that

sup
ỹ∈Y \{0}

(y, ỹ)L2(Ω)

‖ỹ‖Y
+ sup
ỹ∈Y \{0}

α1/2(y, ỹ)H1(Ω)

‖ỹ‖Y
≥ sup

ỹ∈Y \{0}

(y, ỹ)L2(Ω) + α1/2(y, ỹ)H1(Ω)

‖ỹ‖Y

holds for all y ∈ Y . On the right-hand side, we have a coercive bilinear form (y, ỹ)L2(Ω)+

α1/2(y, ỹ)H1(Ω). For this bilinear, we have

sup
ỹ∈L2(Ω)∩α1/4H1(Ω)\{0}

(y, ỹ)L2(Ω) + α1/2(y, ỹ)H1(Ω)

‖ỹ‖L2(Ω)∩α1/4H1(Ω)

= ‖y‖L2(Ω)∩α1/4H1(Ω),

which shows the lower bound for C1 = C2 = 1. Cauchy-Schwarz inequality shows the

upper bound with constants C1 = C2 = 2. Therefore, we conclude as follows.

Theorem 12 For Model Problem 2, condition (A1) is satisfied with constants inde-

pendent of the parameter α for the following choices of the norm:

‖x‖X :=
(
‖y‖2Y + ‖p‖2P

)1/2
, (2.10)

where

‖y‖Y := ‖y‖L2(Ω)∩α1/4H1(Ω) =
(
‖y‖L2(Ω) + α1/2‖y‖H1(Ω)

)1/2

and

‖p‖P := ‖p‖α−1/2L2(Ω)∩α−1/4H1(Ω) =
(
α−1‖p‖L2(Ω) + α−1/2‖p‖H1(Ω)

)1/2
.

This norm was introduced in Schöberl and Zulehner [54]. In Zulehner [71] this

norm was derived in a straight-forward way using interpolation.

Remark 13 A similar analysis can be carried out as long as c(·, ·) = α−1a(·, ·) is

satisfied for some α > 0. This covers the case of Model Problem 1 for Ω1 = Ω2 ⊆ Ω.

Remark 14 For the non-reduced KKT-system, a similar analysis can be carried out.

Again, we have to restrict ourselves to Model Problem 2. Condition (A1) is satisfied

with constants robust in the parameter α for the following choices of the norm:

‖x‖X :=
(
‖(y, u)‖2Y + ‖p‖2P

)1/2
,

where

‖(y, u)‖Y :=
(
‖y‖2

L2(Ω)∩α1/4H1(Ω)
+ ‖u‖2

α1/2L2(Ω)

)1/2
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and

‖p‖P := ‖p‖α−1/2L2(Ω)∩α−1/4H1(Ω).

2.3.3 Discretization

As in the last section, we first introduce the idea of finite element discretization for the

state equation only. For sake of simplicity, we restrict ourselves to the two-dimensional

case. Let Ω ⊂ R2 be some polygonal domain (an open, connected set with polygonal

boundary).

The discretization is done using standard techniques. We use a family of triangular

meshes, which are identified by grid levels k ∈ N0. We assume that some coarsest

triangular mesh (grid level k = 0) is prescribed. The grids on the grid levels k ∈ N are

obtained by uniform refinement, i.e., we subdivide every element into four congruent

elements, see Figure 2.1.

We assume that the meshes are admissible, i.e., we assume that the set of elements

(δk,i)
T0
i=1 satisfies:

• all elements δk,i are open triangles,

• they cover the whole domain, i.e., ∪Tki=1δk,i = Ω, where A is the closure of A,

• they do not intersect, i.e., δk,i ∩ δk,j = ∅ for i 6= j and

• the intersection of the closures of two elements, i.e., δk,i∩ δk,j , is either the empty

set, a common vertex, a common edge or the element itself.

One can show in a straight-forward way that, if an admissible set is uniformly refined,

also the refined meshes are admissible.

Figure 2.1: Uniform refinement
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For k ∈ N0, we denote the size of the largest edge of the mesh by hk. Since we have

uniform refinement, hk = 2−kh0 holds.

Based on the subdivision of the domain into triangles, we can introduce on every grid

level a set of discretized functions Yk ⊆ Y . Also here we use the easiest choice: the

Courant element. The functions are linear on each element δk,i and continuous on the

whole domain, i.e.,

Yk := {yk ∈ C1(Ω) : yk|δk,i is linear for all i = 1, . . . Tk}.

As we have to work with that set, we need a good characterization of the degrees of

freedom or, in other words, we need a good basis for the set Yk. Obviously, a linear

function mapping R2 to R can be characterized by the values of the function at three

points (assuming the points are not located on a straight line). Therefore the linear

functions on the elements can be characterized by the values on the three vertices.

Due to the fact that we require continuity, a value fixed for one vertex affects directly

all elements sharing the same vertex. It is easy to see, that every piecewise linear

function constructed by prescribing its values at the vertices of the triangular elements

is continuous on the whole domain. So the overall number of degrees of freedom is the

number of vertices (nodes), which is denoted by Nk.

Therefore prescribing the values on the nodes is equivalent to specifying a function in

Yk. We introduce a nodal basis (ϕk,i)
Nk
i=1 for Yk as follows. The basis functions ϕk,i are

elements of Yk and they satisfy

ϕk,i(xj) =

{
1 for i = j

0 for i 6= j,

for all nodes xj. As mentioned above, this completely describes the function ϕk,i. Every

function yk ∈ Yk can be represented with respect to this basis, i.e.,

yk =

Nk∑
i=1

yk,iϕk,i,

where the coefficients yk,i form the coefficient vector y
k

= (yk,i)
Nk
i=1.

For the discretization of the problem we use Galerkin’s principle and replace the original

variational problem, find y ∈ Y such that

b(y, ỹ) = f(ỹ) for all ỹ ∈ Y,
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by the problem, find yk ∈ Yk such that

b(yk, ỹk) = f(ỹk) for all ỹk ∈ Yk. (2.11)

Using the nodal basis, we can introduce the stiffness matrix

Bk = (b(ϕk,i, ϕk,j))
Nk
i,j=1

and the right-hand-side vector

f
k

= (f(ϕk,j))
Nk
j=1,

which allows to rewrite (2.11) in matrix-vector notation as follows. Find y
k
∈ RNk such

that

Bk yk = f
k

holds.

Also for the discretized problem, we have to show existence and uniqueness of the

solution, i.e., if the matrix Bk is non-singular. This can be shown again using the Lax-

Milgram theorem (Theorem 4), due to the fact that all conditions of the Lax-Milgram

theorem are satisfied also if applied to the vector space Yk ⊆ Y . Moreover, we are

interested in a discretization error estimate, which the following lemma provides.

Theorem 15 (Céa) Let (Y, (·, ·)Y ) be a Hilbert space and let Yk ⊆ Y be a closed

subspace of Y . Let b be a bilinear form mapping Y × Y → R and let f ∈ Y ∗.

Consider the original problem, find y ∈ Y such that

b(y, ỹ) = f(ỹ) for all ỹ ∈ Y,

and the discretized problem, find yk ∈ Yk such that

b(yk, ỹk) = f(ỹk) for all ỹk ∈ Yk.

Assume that conditions of the Lax-Milgram theorem (Theorem 4) are satisfied. Then

both problems have a unique solution and moreover the following discretization error

estimate holds:

‖y − yk‖Y ≤
C

C
inf
ỹk∈Yk

‖y − ỹk‖Y .
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For a proof see, e.g., Brenner and Scott [21], Theorem (2.8.1).

The next step is to estimate the approximation error. Using an interpolation operator

Πk : Y → Yk, we can estimate the approximation error error by the interpolation error,

i.e., we have

inf
ỹk∈Yk

‖y − ỹk‖Y ≤ ‖y −Πky‖Y .

Certainly, this result is valid for all interpolation operators. We are interested in an

interpolation operator such that ‖y−Πky‖Y is small. The existence of such an operator

states the following theorem.

Theorem 16 (Interpolation error estimate) For a family of meshes obtained by

uniform refinement, and a discretization using the Courant element, there is a constant

CI (independent of grid level) and on every grid level k ∈ N0 an interpolation operator

Πk : H1(Ω)→ Yk ⊆ H1(Ω) such that for all 0 ≤ i ≤ m ≤ 2 and for all y ∈ Hm(Ω)

‖y −Πky‖Hi(Ω) ≤ CI hm−ik ‖y‖Hm(Ω)

is satisfied.

For a proof see, e.g., Brenner and Scott [21], Theorem (4.8.7) and Re-

mark (4.8.11).

Remark 17 If we are only interested in introducing the interpolation operator defined

on H2(Ω), we can define the interpolation operator Πk : H2(Ω) → Yk by defining

yk := Πky to be that function in Yk satisfying

yk(xj) = y(xj) for all nodes xj.

This interpolation operator is not well-defined H1(Ω). See equation (4.8.2) in Brenner

and Scott [21] for an interpolation operator which is well-defined in H1(Ω).

Combining all these results, we obtain an overall approximation error result

inf
ỹk∈Yk

‖y − ỹk‖H1(Ω) ≤
C

C
CIhk‖y‖H2(Ω), (2.12)

and the complete error analysis

‖y − yk‖H1(Ω) ≤
C

C
CIhk‖y‖H2(Ω),
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which allows to bound the error by the H2-norm of the solution y.

Next we discuss an inequality that ‖y‖H2(Ω) bounds from above by a constant times

‖f‖L2(Ω). Such a result cannot be guaranteed in general, but on domains with smooth

boundary (see, e.g., Necas [44]) or on polygonal or polyhedral domains which are

convex (see, e.g., Dauge [29, 30]), the following regularity result can be guaranteed:

(R) Full elliptic regularity: There is a constant CR > 0 such that the following result

holds. For f ∈ L2(Ω) let yf ∈ H1(Ω) be the solution of

(yf , ỹ)H1(Ω) = (f, ỹ)L2(Ω) for all ỹ ∈ H1(Ω).

Then yf ∈ H2(Ω) and

‖yf‖H2(Ω) ≤ CR‖f‖L2(Ω).

Remark 18 Since yf is assumed to be the solution of a homogeneous Neumann prob-

lem, we have moreover yf ∈ Y + :=
{
y ∈ H2(Ω) : ∂y

∂n

∣∣∣
∂Ω

= 0
}

.

Remark 19 Based on the fact that f = −∆yf + yf also the estimate

‖f‖L2(Ω) ≤ ‖ −∆yf + yf‖L2(Ω) ≤ ‖y‖H2(Ω)

holds for all yf ∈ Y +.

Remark 20 Due to the fact, that the sets H2(Ω) ⊆ H1(Ω) ⊆ L2(Ω) are dense in each

other, the regularity assumption (R) implies that

CR‖y‖H2(Ω) ≤ sup
ỹ∈H1(Ω)\{0}

(y, ỹ)H1(Ω)

‖ỹ‖L2(Ω)
≤ CR‖y‖H2(Ω) for all y ∈ Y +

and

CR‖y‖L2(Ω) ≤ sup
ỹ∈Y +\{0}

(y, ỹ)H1(Ω)

‖ỹ‖H2(Ω)
≤ CR‖y‖L2(Ω) for all y ∈ H1(Ω)

for CR = C−1
R and CR = 1.

And vice versa, the Babuška-Aziz theorem (Theorem 5) shows that these two conditions

imply regularity assumption (R) with CR = C−1
R .

The regularity assumption (R) allows to state the following a-priori error estimate.
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Corollary 21 Under the assumptions of Cea’s Lemma and provided regularity assump-

tion (R) is satisfied, the discretization error can be bounded as follows

‖y − yk‖H1(Ω) ≤
C

C
CICRhk‖f‖L2(Ω).

Proof: Combine (2.12) and (R). �

In Section 4.5 we will discuss how the regularity assumptions can be relaxed; in such a

case we typically do not obtain an a-priori bound that behaves like hk, but like hγk for

some γ ∈ (0, 1).

2.3.4 Discretization of saddle point problems (Mixed finite elements)

In this section, we discuss the discretization of KKT-systems. As mentioned in the last

section, if the assumptions of the Lax-Milgram theorem are satisfied for a space Y , they

are also satisfied for every subspace Yk. Therefore, no matter which discretization is

chosen, the discretized problem is solvable and the standard discretization error results

(Céa’s lemma) hold.

This is not the case for saddle point problems, condition (A1) does not imply the

corresponding condition for the discretized problem, which reads as follows.

(A1a) There are constants CD > 0 and CD such that on all grid levels k the estimate

CD‖x‖X ≤ sup
x̃∈Xk\{0}

B(x, x̃)

‖x̃‖X
≤ CD‖x‖X

holds for all x ∈ Xk.

The construction of a discretization that also satisfies condition (A1a) is not easy

in general, see, e.g., the Stokes problem and many other problems with saddle-point

structure. For the Stokes problem it is well-known that several discretization tech-

niques, which work well for elliptic problems, do not satisfy condition (A1a) and lead

to instability, see, e.g., Braess [14], Chapter III, § 6. Therefore, the discretization

schemes have to be chosen carefully to satisfy the condition, like the Taylor-Hood ele-

ment (cf. Brezzi and Fortin [24]) or the Crouzeix-Raviart element (cf. Crouzeix

and Raviart [28]).



2.3 Weak formulations and discretization 29

For the optimal control problems we consider, the choice of an appropriate discretiza-

tion, is not a big deal. Again Theorem 8 can be used to show that (A1a) is equivalent

to

(A1a’) There are constants CD,1 > 0, CD,2 > 0, CD,1 and CD,2 such that

CD,1‖y‖Y ≤ sup
ỹ∈Yk\{0}

a(y, ỹ)

‖ỹ‖Y
+ sup
p̃∈Pk\{0}

b(y, p̃)

‖p̃‖P
≤ CD,1‖y‖Y for all y ∈ Yk,

CD,2‖p‖P ≤ sup
ỹ∈Yk\{0}

b(ỹ, p)

‖ỹ‖Y
+ sup
p̃∈Pk\{0}

c(p, p̃)

‖p̃‖P
≤ CD,2‖p‖P for all p ∈ Pk.

Provided that Yk = Pk, we can show (A1a’) in the same way as we could show (A1’)

in Subsection 2.3.2.

The discretization of the model problems reads as follows. Instead of finding x ∈ X =

Y × P such that

B(x, x̃) = F(x̃) for all x̃ ∈ X,

we consider the following problem. Find xk ∈ Xk := Yk × Pk such that

B(xk, x̃k) = F(x̃k) for all x̃k ∈ Xk.

Here, the sets Yk = Pk are constructed as in the last subsection.

The second question that may arise concerns the discretization error estimate. For

elliptic problem, bounds for the discretization error are stated by Céa’s lemma (The-

orem 15). Due to the fact, that we are interested in saddle point problems, we give a

more general theorem which covers them.

Theorem 22 (Discretization error) Let (X, (·, ·)X) be a Hilbert space and let Xk ⊆
X be a closed subspace of X. Let B be a symmetric bilinear form mapping X ×X → R
and let F ∈ X∗.

Consider the original problem, find x ∈ X such that

B(x, x̃) = F(x̃) for all x̃ ∈ X,

and the discretized problem, find xk ∈ Xk such that

B(xk, x̃k) = F(x̃k) for all x̃k ∈ Xk.
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Assume that conditions (A1) and (A1a) are satisfied. Then both problems have a

unique solution and moreover the following discretization error estimate holds:

‖x− xk‖X ≤
C

C
inf

x̃k∈Xk
‖x− x̃k‖X .

For a proof see, e.g., Babuška [4], Theorem 2.2.

Here, we can again estimate the approximation error as it was done in the last subsec-

tion. Since we need a regularity result for the optimality systems of our interest, we

postpone this discussion to Chapter 4.

As in the last subsection, we can use the nodal basis to rewrite the optimality system

in matrix-vector notation as follows:(
Ak Bk

Bk −Ck

)
︸ ︷︷ ︸
Ak :=

(
y
k

p
k

)
︸ ︷︷ ︸
xk :=

=

(
g
k

0

)
︸ ︷︷ ︸
f̂
k

:=

(2.13)

with mass matrices Ak and Ck and stiffness matrix Bk, given by

Ak = (a(ϕk,i, ϕk,j))
Nk
i,j=1 Bk = (b(ϕk,i, ϕk,j))

Nk
i,j=1

Ck = (c(ϕk,i, ϕk,j))
Nk
i,j=1 f̂

k
= (f̂(ϕk,i))

Nk
i=1.

Here and in what follows, an underlined quantity, like xk, denotes the coefficient vectors

of the corresponding function, here xk, with respect to the nodal basis chosen for the

corresponding space, here Xk.

2.4 Iterative solvers

The problem of our interest (2.13) is a large-scale sparse linear system. Therefore it is

of particular interest to use iterative solvers for constructing approximate solutions for

such a system. In this section, we give a short overview on iterative solvers which are

relevant for the problems of our interest.

As in the last section, we start our discussion in Subsection 2.4.1 with the symmetric

and positive definite matrix Bk, representing the state equation. In a second step

(Subsection 2.4.2) we will discuss iterative solvers for the saddle point system Ak xk =

f
k
, representing the whole optimal control problem.
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2.4.1 Iterative solvers for symmetric positive definite problems

In this subsection we consider the following problem. Find y
k

such that

Bk yk = f
k

(2.14)

holds, where Bk is a symmetric and positive definite matrix and f
k

is a given vector.

The easiest solution method for such a problem is the gradient method or Richardson’s

iteration, which is given by the following iteration formula. Given an initial guess y
(0)
k ,

for m = N0, the iterates y
(m)
k are given by

y(m+1)
k

= y(m)
k

+ τ
(
f
k
−Bk y(m)

k

)
.

Here, we choose a relaxation parameter τ > 0. The convergence analysis of Richardson’s

iteration is rather simple. As Bk is symmetric, also the iteration matrix

Mk := I − τBk,

is symmetric. Therefore σ(Mk), the spectrum of Mk, s given by

σ(Mk) = 1− τσ(Bk) ⊂ [1− τλmax(Bk), 1− τλmin(Bk)]

because σ(Bk) ⊂ [λmin(Bk), λmax(Bk)]. Here, λmin(A) and λmax(A) denote the minimal

and the maximal eigenvalue of a matrix A, respectively. The method is convergent if

and only if the spectral radius of Mk is smaller than 1. This is the case if and only if

0 < λmin(Bk) ≤ λmax(Bk) <
2

τ
. (2.15)

We obtain the optimal convergence rate using

τ∗ :=
2

λmax(Bk) + λmin(Bk)
,

which leads to the convergence rate

q =
κ(Bk)− 1

κ(Bk) + 1
,

where

κ(A) :=
λmax(A)

λmin(A)

is the condition number of a matrix A.

This analysis shows two facts. On the one hand, Richardson’s iteration only converges

for positive definite problems, cf. (2.15). Therefore, the method is not directly applica-
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ble to the KKT-systems, which have saddle point structure. Methods for saddle point

problems will be discussed in the next subsection.

On the other hand we have seen that the convergence rate of Richardson’s method

depends on the condition number Bk. Because Bk is the discretization of a second

order elliptic PDE, we have

κ(Bk) = O(h−2
k ),

i.e., the asymptotic behavior of the condition number is like h−2
k for k approaching

infinity. Therefore, the convergence rate q approaches 1 for k approaching infinitely, in

detail we obtain

q = 1−O(h2
k).

Since a good approximation of the solution of the PDE requires sufficiently fine grids,

methods, where the convergence rates do not depend on the grid size, are of particular

interest. We observe that the original problem (2.14) is equivalent to the preconditioned

problem

B̂−1
k Bk yk = B̂−1

k uk.

If B̂k is a symmetric and non-singular matrix and if Bk is symmetric and positive

definite, the above equation is self-adjoined with respect to the scalar product induced

by the matrix Bk. If B̂k is positive definite, the system above is also positive definite.

The convergence rate in this case is bounded by

κ(B̂−1
k Bk)− 1

κ(B̂−1
k Bk) + 1

.

Therefore, the linear operator B̂−1
k shall be chosen such that on the one hand the

condition number is small. On the other hand, it should be chosen such that B̂−1
k p

k

can be computed efficiently for any vector p
k
. Note that an explicit representation of

B̂k or B̂−1
k as matrix is not necessary.

One possibility to construct such preconditioners, is the idea of Schwarz type methods.

The easiest choices for such preconditioners lead to the Jacobi method (which can

be seen as an additive Schwarz method) and the Gauss-Seidel method (which can be

seen as an multiplicative Schwarz method). Using the notation y
(m)
k =

(
y

(m)
i

)Nk
i=1

and

Bk = (bij)
Nk
i,j=1, we can write Jacobi iteration as follows:

y
(m+1)
i := y

(m)
i + b−1

ii

fi − Nk∑
j=1

bij y
(m)
j

 ,
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i.e., we compute the (local) residuals ri :=
(
fi −

∑Nk
j=1 bij y

(m)
j

)
on every point (node),

solve the problem

biiwi = ri

and update the iterate, i.e., set y
(m+1)
i := y

(m)
i + wi. In case of Gauss-Seidel iteration,

the newly computed updates are already used for computing the next residuals, i.e., we

obtain

y
(m+1)
i = y

(m)
i + b−1

ii

fi − i−1∑
j=1

bij y
(m+1)
j −

Nk∑
j=i

bij y
(m)
j

 ,

Both methods, Jacobi iteration and Gauss-Seidel iteration, can be rewritten as precon-

ditioned Richardson method. In case of Jacobi iteration, the preconditioner B̂k is the

diagonal of Bk and in case of the Gauss-Seidel method it is the lower-triangular part

of Bk (including the diagonal).

Jacobi method and Gauss-Seidel method do not improve the convergence behavior

qualitatively as also the condition number of the preconditioned system increases like

O(h−2
k ), if k approaches infinity. One kind of methods that guarantees condition num-

bers independent of the grid size, are multigrid and multilevel methods, which are based

on sequences of grids. We will discuss multigrid methods in detail in Chapter 3.

More efficient methods than simple linear iteration schemes are typically Krylov sub-

space methods. For problems with a symmetric and positive matrix, we can apply

the conjugate gradient methods, see Hestenes and Siefel [38]. For this method we

obtain the convergence rate √
κ(Bk)− 1√
κ(Bk) + 1

.

The conjugate gradient method converges, if the system matrix Bk is self-adjoined and

positive definite. Note that also for the conjugate gradient method, the convergence

rates increase if k approaches infinity.

The convergence rates can be improved using a preconditioner. For the preconditioned

version of the conjugate gradient method the convergence rate is given by√
κ(B̂−1

k Bk)− 1√
κ(B̂−1

k Bk) + 1
.

Like in the case of Richardson’s iteration, also in this case, we require that B̂−1
k Bk is

self-adjoined with respect to some scalar product. Since standard Jacobi iteration as

well as multigrid and multilevel methods (if set up accordingly) can be represented as

preconditioned Richardson iteration with a symmetric preconditioner B̂k, these meth-

ods can also be applied as preconditioner for conjugate gradient method. In case of
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(accordingly chosen) multigrid and multilevel methods, convergence rates independent

in the grid size hk can be expected for the overall iteration.

2.4.2 Iterative solvers for saddle point problems

Here, we give a rough overview of possible iteration schemes for saddle point prob-

lems. For more details, the author refers to the survey paper Benzi, Golub and

Liesen [8].

First we want to present two kinds of preconditioning techniques. For the first kind

of preconditioning techniques, the preconditioned system is again self-adjoined and

positive definite. In the second case, the preconditioned system is indefinite.

First we start with preconditioned normal equation solvers, which are applicable to

general systems

Ak xk = f
k
.

The first observation is that

ATk Ak xk = ATk fk, (2.16)

is equivalent to the original problem. The matrix ATk Ak is symmetric and positive

definite. Therefore methods, developed for symmetric and positive definite problems,

can be applied.

The equation (2.16) can be interpreted as an optimality condition for the following

optimization problem. Find xk such that it minimizes the norm of the residual, i.e.,

min
xk∈Xk

J(xk), where J(xk) :=
∥∥∥Ak xk − fk∥∥∥2

`2

and ‖ · ‖`2 is the Euclidean norm. The functional can be represented by

J(xk) = sup
x̃k∈Xk\{0}

(B (xk, x̃k)−F (x̃k))
2

‖x̃k‖2`2
.

Here, instead of ‖ · ‖`2 , another norm can be chosen. Consider

min
xk∈Xk

JX(xk), where JX(xk) := sup
x̃k∈Xk\{0}

(B(xk, x̃k)−F(x̃k))
2

‖x̃k‖2X
. (2.17)

This can be rewritten in matrix-vector notation. Let the symmetric and positive definite

matrix Qk be such that

(Qk xk, x̃k)`2 = (xk, x̃k)X for all xk, x̃k ∈ Xk.
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Then the minimization problem (2.17) reads as follows.

min
xk∈Xk

JX(xk), where JX(xk) = ‖Ak xk − fk‖
2
Q−1
k

.

Here, the optimality condition reads as follows. Find xk such that

Q−1
k A

T
k Q−1

k Ak xk = Q−1
k A

T
k Q−1

k f
k
. (2.18)

The system matrix Q−1
k A

T
k Q

−1
k Ak is self-adjoined in the scalar product (·, ·)Qk and

positive definite. The eigenvalues are bounded away from 0 and from above by constants

that only depend on the constants in condition (A1a) . So, if the norm ‖ · ‖X is chosen

such that the constants are independent of the grid level, we obtain optimal complexity,

i.e., the convergence rates are bounded away from 1 by a constant independent of

the grid level k. In case the constants are independent of the choice of α, also the

convergence rates are robust in α.

Because the system matrix is self-adjoined, we can apply Richardson’s method to the

problem (2.18), which leads to the iteration

x(m+1) := x(m) + τQ−1
k A

T Q−1
k (xk −Ak x

(m)
k ),

where 0 < τ < 2ρ(Q−1/2
k AT Q−1/2

k ) and ρ(·) denotes the spectral radius. One can

show that, if τ is chosen in an optimal way, the convergence rates can be bounded by

a constant that only depends on the constants in (A1a). Variants of that method can

be constructed by applying Jacobi or Gauss-Seidel iteration.

As the normal equation (2.18) is self-adjoined and positive definite, we can also apply

conjugate gradient method as solver.

Certainly, for realizing the proposed methods based on the normal equation, we have

to solve problems of the form: find wk such that

Qk wk = rk

for some residual rk. The matrixQk is block-diagonal, therefore linear systems involving

the blocks have to be solved. These blocks are symmetric and positive definite and

involve the stiffness matrix (as the norm ‖ · ‖X is a (scaled) H1-norm).

We have for the choice of ‖ · ‖X as in (2.9)

Kk wk = rk (2.19)
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and for the choice (2.10)

(Mk + α1/2Kk)wk = rk. (2.20)

Here, methods presented in the last subsection can be used as the matrices Kk and

Mk +α1/2Kk are symmetric and positive definite. Since we have to solve four problems

of the form (2.19) or (2.20) (at least approximately) for each iterate, also this may be

costly.

More involved iteration schemes can be constructed by using structural information on

the problem. For saddle point problems of the form

Ak =

(
Ak BT

k

Bk −Ck

)
,

iteration procedures based on a block LU-factorization have been proposed by Arrow,

Hurwicz and Uzawa [3]. Bramble and Pasciak [18] proposed a possibility for

preconditioning such a saddle point problem to obtain a self-adjoined and positive

definite system also based on such a block LU-factorization. Assume that Âk is a

symmetric and positive definite matrix with Âk > Ak, i.e., such that Ak−Âk is positive

definite. Then the preconditioned system Â−1
k Ak with

Âk =

(
Âk 0

Bk −I

)
,

is self-adjoined and positive definite with respect to the scalar product((
y
k
, p
k

)
,
(
ỹ
k
, p̃
k

))
BP

:=
((
Ak − Âk

)
y
k
, ỹ
k

)
`2

+
(
p
k
, p̃
k

)
`2
.

Therefore the conjugated gradient method can be applied (Bramble-Pasciak-CG,

BPCG). Similar approaches were proposed, e.g., by Schöberl and Zulehner [54]

or Benzi and Wathen [9].

Another possibility is to use Krylov subspace methods that can be directly applied to

indefinite problems, e.g., the MINRES method, see Paige and Saunders [45]. This

method can be applied directly to the discretized optimality system. For practical

applications, good preconditioning is necessary. One possibility for computing such

preconditioners are block-diagonal preconditioners. One possibility is again to use con-

dition (A1a) as above, i.e., we use Âk := Qk as block-diagonal preconditioner, see, e.g.,

Zulehner [71] for an application of that approach to the model problems discussed in

this thesis. Another possibility is to choose

Âk :=

(
Âk

Ŝk

)
,
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where Âk approximates Ak and Ŝk approximates the Schur-complement Sk = Ck −
BkA

−1
k Bk. Such a method can be used to derive methods being robust in the parameter

α for Model Problem 2, see, e.g., Pearson and Wathen [47]. In both cases, two

problems of the form (2.19) and (2.20) have to be solved for each iterate.

Another approach are all-at-once multigrid methods, which are directly applied to solve

the whole saddle-point system. If such a method is introduced, the multigrid method

can be used directly as a solver, i.e., an outer iteration scheme (like a MINRES method)

is not necessary. Nonetheless, it would be also possible to use all-at-once multigrid

methods for preconditioning a MINRES method.

We propose those all-at-once multigrid methods due to their flexibility and due to the

fact that an outer iteration is not necessary. We will see that the construction of a

multigrid iteration for the problem of our interest is non-standard, especially if the

method should be constructed such that the convergence rates are robust in α.



38 Preliminaries



39

Chapter 3

Multigrid methods

As mentioned in the last chapter, iterative solvers are essential tools for solving the

linear system resulting from the discretization of partial differential equations. As we

have seen in the last chapter, the convergence rates of (standard linear) iterative solvers

typically depend on the condition number of the matrix. On the other hand, we have

seen that the condition number of the stiffness matrix increases if the grid size hk

approaches 0.

Of course, if we want a higher accuracy of the approximate solution, it is important to

refine the mesh accordingly. Therefore, methods, where the convergence rates do not

depend on the grid size, are of particular interest. One class of methods having this

property are multigrid methods. For an overview about multigrid methods, we refer to

the books by Hackbusch [35], Bramble [17] and Trottenberg, Oosterlee and

Schüller [66].

As the model problems of our interest are linear, we restrict ourselves to linear multigrid

methods. A multigrid iteration scheme consists of two parts which have – in some sense

– complementary properties: the smoothing step and and coarse-grid correction step.

Intuitively speaking, the names smoothing and coarse-grid correction describe exactly

what those two steps are doing.

A key observation for standard linear iteration schemes, like Jacobi iteration for sym-

metric and positive definite linear systems, reduce the hight-frequency parts of the

residual rapidly. The fact that these methods have poor overall convergence rates is

due to the fact, that low-frequency parts are reduced slowly.

The coarse-grid correction is based on restricting the residual to a coarser grid. The

residual is typically approximated well on a coarse grid, if it consists of low-frequency

parts only, as one can see for an easy one dimensional example in Figure 3.1. Of course,
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much higher approximation errors have to be expected for oscillating functions, as one

can see in Figure 3.2.
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Figure 3.1: Approximation of a smooth function (blue) by a function on a coarser grid
(red)
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Figure 3.2: Approximation of an oscillating function (blue) by a function on a coarser
grid (red)

Having these two iteration schemes with complementary properties, one could hope

that the combination of these methods leads to a good iteration scheme.

This chapter is organized as follows. In Section 3.1 we will introduce the overall multi-

grid framework. Moreover we comment on the realization of the coarse-grid correction.

We restrict ourselves to a canonical choice of the coarse-grid correction, which is pos-

sible in the framework we consider. For the construction of the smoother, there are

several possibilities, which we will discuss in Section 3.2. In Section 3.3, we will discuss

two possible strategies for convergence analysis. In Chapters 4 and 5, we will develop

the convergence analysis for the model problems based on these strategies.
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3.1 Multigrid framework

In this section, we introduce a general multigrid framework for solving linear systems

arising from the discretization of a variational formulation which reads as follows. Find

x ∈ X such that

B(x, x̃) = F(x̃) for all x̃ ∈ X.

Assume that we have a sequence of grids with grid levels k ∈ N0. On every grid level,

we construct finite dimensional subsets Xk ⊆ X. Here, we assume that these subsets

are nested, i.e., Xk ⊆ Xk+1 holds for all k. If the problem is discretized as as proposed

in Subsection 2.3.3 using uniform refinement, we obtain nested subsets.

We have already mentioned the discretization in Chapter 2. Note that the problem

can be discretized on each grid level and the discretized problems read as follows. Find

xk ∈ Xk such that

B(xk, x̃k) = F(x̃k) for all x̃k ∈ Xk.

This can be rewritten in matrix-vector notation as follows. Find xk ∈ RNk such that

Ak xk = f
k
. (3.1)

The next step is the introduction of intergrid-transfer operators for the transfer between

two consecutive grids. Since we consider nested subspaces, every function xk−1 ∈ Xk−1

is also an element of Xk. Therefore, the prolongation can be chosen in a canonical way:

we choose the identity operator as prolongation operator. The matrix representation

of the prolongation operator between Xk−1 and Xk is denoted by Ikk−1 ∈ RNk−1×Nk .

The matrix representation Ik+1
k of the restriction operator is the transpose of the matrix

representation of the prolongation operator, i.e., we choose Ik+1
k :=

(
Ikk−1

)T
.

This allows to introduce the multigrid iteration for solving the discretized equation (3.1)

on grid level k. Starting from an initial approximation x
(0)
k , one step of the iteration is

given in the following way:

• Apply ν smoothing steps:

x
(0,m)
k := x

(0,m−1)
k + τ Â−1

k

(
f
k
−Ak x

(0,m−1)
k

)
(3.2)

for m ∈ {1, . . . , ν} with x
(0,0)
k = x

(0)
k . The choice of τ and Âk will be discussed

below.

• Apply the coarse-grid correction, i.e.:
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– Compute the defect f
k
− Ak x

(0,ν)
k and restrict it to the coarser grid (level

k − 1):

r
(1)
k−1 := Ik−1

k

(
f
k
−Ak x

(0,ν)
k

)
.

– Solve (approximatively) the linear system

Ak−1w
(1)
k−1 = r

(1)
k−1, (3.3)

living on the coarser grid level k − 1.

– Prolongate the result w
(1)
k−1 to grid level k and add it to the last iterate:

x
(1)
k := x

(0,ν)
k + Ikk−1w

(1)
k−1.

If the problem (3.3) is solved exactly, we obtain

x
(1)
k = x

(0,ν)
k + Ikk−1A−1

k−1 I
k−1
k

(
f
k
−Ak x

(0,ν)
k

)
for the next iterate (two-grid method). In practice the solution of (3.3) is approxi-

mated by applying one step (V-cycle) or two steps (W-cycle) of the multigrid method,

recursively. On grid level k = 0 the problem is solved exactly.

The idea of these multigrid iteration schemes is visualized in Figures 3.3 and 3.4, where

the blue dots represent the smoothing steps, the red rectangles represent exact solves

(on the coarsest grid) and the arrows represent the intergrid-transfer.

k=0

k=1

k=2

k=3

Figure 3.3: V-cycle multigrid method

k=0

k=1

k=2

k=3

Figure 3.4: W-cycle multigrid method
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Certainly, the multigrid method presented here can be modified in certain ways. We

want to mention just one modification: the introduction of post-smoothing. The frame-

work presented above consists of pre-smoothing steps and coarse-grid correction. After

finishing coarse-grid correction, more smoothing steps (post-smoothing) can be ap-

plied.

For sake of simplicity, in Chapter 3, we restrict ourselves to pre-smoothing only and

give remarks on the case that also post-smoothing is applied. In Chapters 4 and 5, we

restrict ourselves to a method with pre- and post-smoothing.

3.2 Smoothers for saddle point problems

The next step in constructing a multigrid solver is the choice of the smoother.

For symmetric and positive definite systems arising from the discretization of par-

tial differential equations, typically simple linear iteration schemes can be applied as

smoothers. If we consider a finite element discretization of the Laplace equation,

Richardson, Jacobi or Gauss-Seidel iteration are known to be good smoothers, see,

e.g., Hackbusch [35], Chapter 3.3. Richardson and Jacobi iteration typically have

to be damped if they are used as a smoother, whereas Gauss-Seidel iteration can by

applied directly.

For saddle point problems, the choice of an appropriate smoother is a key issue. In this

thesis we propose two classes of smoothers for saddle point problems, namely normal

equation smoothers and collective smoothers.

3.2.1 Normal equation smoothers

In Subsection 2.4.1, we have already seen the approach of using the normal equation

for constructing a solver. Here, we are not interested constructing an iteration scheme

which is a good solver but in the construction of a good smoother.

In Subsection 2.4.1, the preconditioner was constructed based on the norm ‖ · ‖X ,

represented by the matrix Qk.

Instead of ‖ · ‖X , we use here another Hilbert space norm, ‖ · ‖X−,k , represented by a

matrix Lk. In Chapter 4, we will see how to choose this scalar product such that the

overall multigrid method converges.
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Here, we just assume that Lk is a symmetric and positive definite matrix.

Then the preconditioned normal equation smoother reads as follows:

x
(0,m)
k := x

(0,m−1)
k + τ L−1

k A
T
kL−1

k

(
f
k
−Ak x

(0,m−1)
k

)
,

where τ is chosen such that

0 < τ <
2

ρ
(
L−1/2
k AkL

−1/2
k

)2

holds. In principle, τ can be chosen on each grid level differently but we will see that,

provided Lk is chosen accordingly, τ can be chosen to be equal on all grid levels.

We can also introduce variants of this smoother, especially in a Jacobi-type or in a

Gauss-Seidel-type manner. The Jacobi-type normal equation smoother reads as fol-

lows:

x
(0,m)
k := x

(0,m−1)
k + τ diag

(
AkL−1

k Ak
)−1AkL−1

k

(
f
k
−Ak x

(0,m−1)
k

)
,

where τ is chosen such that

0 < τ <
2

ρ
(

diag
(
AkL−1

k Ak
)−1AkL−1

k Ak
)

holds. An advantage of the Jacobi-type normal equation smoother is the fact that is

invariant with respect to a scaling of Lk by a scalar constant.

We will see in Chapter 4 how to choose Lk and τ in detail. Additionally, we should

mention that all of these methods can be implemented in a reasonably efficient way if

the matrix Lk is easily invertible.

3.2.2 Collective point smoothers

In this subsection we introduce the class of collective iteration schemes which relies on

the block-structure of our problem. The iteration schemes are constructed by solving

local problems, involving the complete system of PDEs, in an additive or multiplicative

Schwarz-type manner. As in the case of elliptic problems, the local problems may live

on patches or, as in our case, just on single points. Such methods have been proposed,

e.g., in Trottenberg [66], Borzi, Kunisch and Kwak [12], Borzi and Schulz [13]

and Lass [41].
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For sake of simplicity, we focus on a method using local problems living on points only:

collective Jacobi iteration for 2-by-2 block systems. Standard Jacobi relaxation, which

can be used as a smoother for a linear system Bk yk = f
k
, where Bk ∈ RNk×Nk is

symmetric and positive definite, reads as follows:

y
(0,m)
i := y

(0,m−1)
i + τ b−1

ii

fi − Nk∑
j=1

bij y
(0,m−1)
j

 ,

where y
(0,m)
i , fi and bij are the components of the vectors y

(0,m)
k and f

k
and the matrix

Bk, respectively. This iteration scheme can be carried over to saddle point problems of

the form (
Ak Bk

Bk −Ck

)
︸ ︷︷ ︸
Ak :=

(
y
k

p
k

)
︸ ︷︷ ︸
xk :=

=

(
f̂
k

ĝ
k

)
︸ ︷︷ ︸
f
k

:=

in the following way. We define collective Jacobi relaxation to be the following iterative

procedure:

x
(0,m)
i := x

(0,m−1)
i + τ A−1

ii

f
i
−

Nk∑
j=1

Aij x(0,m−1)
j

 , (3.4)

where x
(0,m)
i :=

(
y

(0,m)
i , p

(0,m)
i

)T
, f

i
:=
(
f̂i, ĝi

)T
and

Aij =

(
aij bij

bij −cij

)
.

Here, y
(0,m)
i , p

(0,m)
i , f̂i, ĝi, aij , bij and cij are the components of y

(0,m)
k , p

(0,m)
k , f̂

k
, ĝ

k
,

Ak, Bk and Ck, respectively.

Collective Richardson relaxation and collective Gauss-Seidel relaxation are constructed

analogously. Of course, such iteration schemes can be represented in a compact no-

tation. The relaxation is given by the general formula (3.2) using the preconditioner

Âk =

(
Âk B̂k

B̂k −Ĉk

)
,

where Âk, B̂k and Ĉk are preconditioners for Ak, Bk and Ck, respectively. In particu-

lar:

• In the case of collective Jacobi relaxation Âk, B̂k and Ĉk are the diagonals of Ak,

Bk and Ck, respectively, and the damping parameter τ is chosen to be in (0, 1).
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• In the case of collective Richardson relaxation we have Âk = ak I, B̂k = bk I and

Ĉk = ck I, where for some constant Ĉ > 0

1

2
λmax(Ak) ≤ ak ≤

Ĉ

2
λmax(Ak),

1

2
λmax(Bk) ≤ bk ≤

Ĉ

2
λmax(Bk) and

1

2
λmax(Ck) ≤ ck ≤

Ĉ

2
λmax(Ck)

holds. The damping parameter τ is chosen to be in (0, 1).

• In the case of collective Gauss-Seidel iteration Âk, B̂k and Ĉk are the left-lower

trigonal part (including the diagonal) of Ak, Bk and Ck, respectively, and the

damping parameter τ is chosen to be 1.

Collective iteration schemes can be realized efficiently if they are implemented as de-

scribed in (3.4), see e.g. Lass [41].

As we can easily see, collective iteration schemes can be introduced for the reduced

KKT-systems for all three model problems. Contrary to the smoothers based on the

normal equation, insight into the problem is not necessary for defining collective point

smoothers.

3.2.3 Other classes of smoothers

Besides the classes of smoothers, we have introduced in the last two subsections, also

other smoothers have been constructed for saddle point problems. Here, we want to

mention only a few.

Uzawa type smoothers, that are based on a block LU-factorization of the iteration

matrix based on an LU-factorization, have been applied in Simon and Zulehner [58]

and Schöberl, Simon and Zulehner [53] to distributed control problems and in

Takacs and Zulehner [61] to the boundary control Model Problem 3.

For problems with vanishing (2,2)-block, smoothers can be constructed such that the

iterates stay in the subspace introduced by the (2,1)-block (constraint preconditioner).

Braess and Sarazin [16] have proposed such a smoother with an simple (1,1)-block

for the Stokes problem. One could consider such a smoother also for the non-reduced

KKT-system.



3.3 Convergence analysis 47

Another class of smoothers are transforming smoothers, introduced in Wittum [69, 70].

The idea of these smoothers is to transform the matrix Ak to a block-triangular form

and to find smoothers for the diagonal blocks. This class of smoothers were applied to

PDE-constrained problems in Schulz and Wittum [55].

3.3 Convergence analysis

We have seen that the proposed methods can be implemented in an efficient way and

numerical experiments have shown that these methods work in practice. A main goal

of this thesis is to confirm this observation by convergence theory. We have seen for

the normal equation smoothers that the convergence analysis yields hints for the right

choice of the matrix Lk.

There are several ways of establishing convergence theory for multigrid methods. In

this thesis, we consider two approaches: Hackbusch’s multiplicative splitting into ap-

proximation property and smoothing property, which leads to rigorous convergence

proofs. The other approach, we follow, is local Fourier analysis, which is based the fact

that for simple grids (uniform, no boundaries) the error can be expressed in terms of

Fourier series. This does not lead to a rigorous convergence proof for the general case

but can be taken as an indicator for convergence of more general problems. Moreover,

great advantages of local Fourier analysis are the facts that it is not only a qualitative

analysis but also a quantitative analysis, i.e., it allows to compute sharp or at least

realistic bounds for the convergence rate, and local Fourier analysis forms machinery

which can be applied to various problems in a straight-forward way.

3.3.1 Smoothing and approximation property

To achieve a convergence result for the problems of our interest, we have to choose two

norms, say ||| · |||0,k and ||| · |||2,k. For convergence it is sufficient to show the following

two conditions:

• Smoothing property:

There is some function η with limν→∞ η(ν) = 0 such that for all grid levels k ∈ N
and all ν ∈ N the estimate∣∣∣∣∣∣∣∣∣x(0,ν)

k − xk
∣∣∣∣∣∣∣∣∣

2,k
≤ η(ν)

∣∣∣∣∣∣∣∣∣x(0)
k − xk

∣∣∣∣∣∣∣∣∣
0,k

(3.5)

holds.
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• Approximation property: There is a constant CA > 0 such that for all grid levels

k ∈ N the estimate ∣∣∣∣∣∣∣∣∣x(1)
k − xk

∣∣∣∣∣∣∣∣∣
0,k
≤ CA

∣∣∣∣∣∣∣∣∣x(0,ν)
k − xk

∣∣∣∣∣∣∣∣∣
2,k

(3.6)

holds.

Here, xk := A−1
k f

k
is the exact solution of the linear system.

The combination of both estimates, (3.5) and (3.6), implies that the two-grid method

converges if ν, the number of smoothing steps, is large enough. Due to standard argu-

ments the convergence of the two-grid method implies the convergence of the W-cycle

multigrid method under weak assumptions, as we will see in the next chapter. Hence

analyzing smoothing and approximation property stated above, is of our particular

interest.

This analysis is carried out in Chapter 4.

3.3.2 Local Fourier analysis

Another approach, which allows quantitative analysis, is local Fourier analysis. If we

assume to have a regular grid and if we neglect the boundary conditions, i.e., we assume

to have an infinite domain, we can compute the Fourier transformation of the system

matrix Ak and of the components of the multigrid method.

The goal of such a transformation is the decoupling of the analysis for the individual

Fourier modes which allows to determine exactly how the amplitude of each Fourier

mode is modified by the multigrid iteration scheme. In case of the smoother, the anal-

ysis for the individual Fourier modes completely decouples. In case of the coarse-grid

correction, linear spans of Fourier modes with small dimension have to be analyzed.

This analysis is carried out in Chapter 5. We will see that tools of symbolic computation

can help to derive sharp bounds for the convergence rate.
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Chapter 4

Multigrid analysis based on

smoothing and approximation

property

In this chapter we give convergence proofs for the all-at-once multigrid methods intro-

duced in Chapter 3. The presentation of this chapter follows the framework and the

notation introduced in the recent paper Takacs and Zulehner [63]. In Section 4.1,

we will introduce a general convergence framework for multigrid methods, which fol-

lows classical ways. Then we will apply these conditions to the model problems in

Sections 4.2 and 4.3.

As a part of the general convergence framework, we will also show that the normal equa-

tion smoother satisfies the smoothing property. Due to the fact that the convergence

framework is constructed in a modular way, the proof of the approximation property

can be combined with the proof of the smoothing property of any other smoother, pro-

vided that the norms used in the approximation property and the norms used in the

smoothing property are equal. We will give examples of smoothing results that fit into

the general framework. One of those examples, the class of collective point smoothers,

will be worked out in detail in Section 4.4.

The results given in Sections 4.2 and 4.3 are based on the regularity assumption (R),

introduced on page 27. This regularity assumption cannot be guaranteed, e.g., for

domains with reentrant corners. In Section 4.5, we will discuss the case that assump-

tion (R) cannot be guaranteed, but a weaker condition (R’), which is satisfied also on

non-convex polygonal domains.
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4.1 A general convergence framework

The main goal of this section is the introduction of a systematic approach for the

construction and the analysis of all-at-once multigrid methods for parameter-dependent

saddle point problems. In this chapter we discuss the multigrid framework introduced

in Section 3.1.

Already Brenner [22] introduced a framework for showing the convergence of a multi-

grid method for parameter-dependent saddle point problems satisfying certain proper-

ties. Unfortunately, her results cannot be applied directly to all model problems we

consider in this thesis.

We will give another convergence framework which follows another strategy. We will

introduce five sufficient conditions for convergence of a multigrid method. The proof

itself follows standard proofs for two-grid and W-cycle multigrid methods, which can

be found in literature, e.g., in Hackbusch [35]. The framework covers on the one

hand the approximation property and on the other hand the smoothing property for

the normal equation smoother. The combination of both results implies convergence.

For showing a multigrid convergence result based on Hackbusch’s splitting of the anal-

ysis in smoothing property and approximation property, we have to introduce an ap-

propriate framework. As mentioned, we choose for every grid level k ∈ N0 appropriate

norms ||| · |||0,k and ||| · |||2,k, defined on RNk . Then it is sufficient to guarantee the

smoothing property (3.5) and the approximation property (3.6), as introduced in Sub-

section 3.3.1.

For the framework, we consider, we need to be able to extend the norm ||| · |||0,k to

an appropriate superset of X, i.e., we assume that there is a linear space X− ⊇ X

equipped with (mesh-dependent) norms ‖ · ‖X−,k and set

|||xk|||0,k := ‖xk‖X−,k

for all xk ∈ Xk and all grid levels k ∈ N0. We assume that the norms ‖ · ‖X−,k are

induced by scalar products, therefore for all k, the tuples X−,k := (X−, ‖ · ‖X−,k) are

Hilbert spaces.

Similar to other convergence frameworks, we choose ||| · |||2,k to be the residual norm

with respect to ‖ · ‖X−,k , i.e., we have

|||xk|||2,k := sup
x̃k∈Xk\{0}

B(xk, x̃k)

‖x̃k‖X−,k
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for all xk ∈ Xk and all grid levels k ∈ N0.

For these choices, smoothing and approximation property read as follows.

• Smoothing property: There is some function η with limν→∞ η(ν) = 0 such that

for all grid levels k ∈ N and all ν ∈ N the estimate

sup
x̃k∈Xk\{0}

B
(
x

(0,ν)
k − xk, x̃k

)
‖x̃k‖X−,k

≤ η(ν)
∥∥∥x(0)

k − xk
∥∥∥
X−,k

(4.1)

holds.

• Approximation property: There is a constant CA > 0 such that for all grid levels

k ∈ N the estimate

∥∥∥x(1)
k − xk

∥∥∥
X−,k

≤ CA sup
x̃k∈Xk\{0}

B
(
x

(0,ν)
k − xk, x̃k

)
‖x̃k‖X−,k

(4.2)

holds.

It is easy to see that, if we combine both conditions, we obtain∥∥∥x(1)
k − xk

∥∥∥
X−,k

≤ q(ν)
∥∥∥x(0)

k − xk
∥∥∥
X−,k

,

where q(ν) = CA η(ν), i.e., the two-grid method converges if ν is sufficiently large. The

convergence of the W-cycle multigrid method will be discussed in Subsection 4.1.4.

In the next two subsections, we will give five sufficient conditions that guarantee that

the conditions (4.1) and (4.2) are satisfied. We will see that the analysis of those

conditions is relatively easy and well known cases are covered by them.

4.1.1 Smoothing property for the normal equation smoother

In this subsection we give conditions on the choice of the norm ‖ · ‖X−,k such that

the normal equation smoother satisfies the smoothing property. As we have already

mentioned, the knowledge on the norm ‖ · ‖X−,k or more precisely its matrix represen-

tation Lk, i.e.,

(Lk xk, x̃k)`2 = (xk, x̃k)X−,k for all xk, x̃k ∈ Xk.

is required for constructing the method. In this framework the smoothing property for

the normal equation smoother can be shown:
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Theorem 23 Assume that condition (A1a), introduced on page 28, and the following

condition hold.

(A2) There is a constant CM > 0 such that for all grid levels k the estimate

‖xk‖X ≤ CM‖xk‖X−,k holds for all xk ∈ Xk.

Then for the preconditioned normal equation smoother

x
(0,m)
k := x

(0,m−1)
k + τ L−1

k A
T
kL−1

k

(
f
k
−Ak x

(0,m−1)
k

)
, (4.3)

with damping parameter τ := τ(k) := ρ
(
L−1/2
k AkL

−1/2
k

)−2
satisfies the smoothing

property with smoothing rate

η(ν) =
CS√
ν
,

where CS only depends on the constants used in (A1a) and (A2).

Proof: We have to show that there is a constant CS > 0 such that for all choices of ν

the following estimate holds:∥∥∥L−1/2
k AkMν

kL
−1/2
k

∥∥∥
`2
≤ CS√

ν
,

where the iteration matrix Mk is given by

Mk := I − τL−1
k A

T
kL−1

k Ak.

We obtain immediately∥∥∥L−1/2
k AkMν

kL
−1/2
k

∥∥∥2

`2
=
∥∥∥L−1/2

k Ak(I − τL−1
k AkL

−1
k Ak)

νL−1/2
k

∥∥∥2

`2

=
∥∥∥L−1/2

k AkL
−1/2
k (I − τL−1/2

k ATkL−1
k AkL

−1/2
k )ν

∥∥∥2

`2

=
∥∥Pk(I − τPTk Pk)ν∥∥2

`2

and using the definition of the Euclidean norm further∥∥∥L−1/2
k AkMν

kL
−1/2
k

∥∥∥2

`2
= ρ

(
(I − τPTk Pk)νPTk Pk(I − τPTk Pk)ν

)
= ρ

(
PTk Pk(I − τPTk Pk)2ν

)
, (4.4)

where Pk := L−1/2
k AkL

−1/2
k . Certainly, PTk Pk is symmetric and positive definite.

Therefore all eigenvalues are positive and we can use an eigenvalue decomposition
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to estimate (4.4). Using σ :=
[
λmin

(
PTk Pk

)
, λmax

(
PTk Pk

)]
and the fact that τ ≤

λmax
(
PTk Pk

)−1
, we obtain

ρ
(
PTk Pk

(
I − τPTk Pk

)2ν) ≤ sup
λ∈σ

λ(1− τλ)2ν ≤ sup
µ∈[0,1]

τ−1µ(1− µ)2ν

= τ−1 1

(1 + ν−1)ν(1 + ν)
≤ 1

τν
(4.5)

Using conditions (A1a) and (A2), we obtain

τ−1 = ρ(Pk)2 ≤
∥∥∥L−1/2

k AkL
−1/2
k

∥∥∥2

`2

=
∥∥∥L−1/2

k Q1/2
k

∥∥∥4

`2

∥∥∥Q−1/2
k AkQ

−1/2
k

∥∥∥2

`2
≤ C2

DC
4
M , (4.6)

where CD is the constant from condition (A1a) and CM is the constant from condi-

tion (A2). By combining (4.5) and (4.6), we obtain

∥∥∥L−1/2
k AkMν

kL
−1/2
k

∥∥∥2

`2
≤ C2

DC
4
M

1

ν
=:

C2
S

ν
,

which finishes the proof. �

A second important property, which we will need in Subsection 4.1.3 and in Sections 4.4

and 4.5, is the concept of power-boundedness.

Lemma 24 Under the assumptions of Theorem 23 there is a constant CB > 0 such

that for all grid levels k

|||Mν
k xk|||0,k ≤ CB|||xk|||0,k (4.7)

holds and all xk ∈ RNk and all ν ∈ N. Here, Mk is the iteration matrix representing

the normal equation smoother (4.3).

Proof: The power-boundedness (4.7) can be rewritten in matrix-vector notation as

follows ∥∥∥L1/2
k M

ν
kL
−1/2
k

∥∥∥
`2
≤ CB. (4.8)

Similar to the proof of Theorem 4.4, we can show that∥∥∥L1/2
k MkL

−1/2
k

∥∥∥
`2

=
∥∥I − τPTk Pk∥∥`2 ≤ 1,

which directly implies (4.8). �

In the next sections we will choose the norm ‖ · ‖X−,k such that the condition (A2),

introduced in Theorem 23, is satisfied. In the next subsection we will see that this norm

has to satisfy also another condition to guarantee the approximation property.
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For the realization of the smoother, we have to invert the matrix Lk. Therefore we

have to choose the norm ‖ · ‖X−,k such that the matrix Lk, representing this norm, (or

a spectral equivalent matrix L̂k) is easy to invert.

Note that condition (A2) is also of importance if other smoothers are considered be-

cause typically the smoothing property can only be shown if that condition is satisfied.

The condition is also satisfied for multigrid methods proposed previously for the model

problems in Schöberl, Simon and Zulehner [53], Takacs and Zulehner [62] and

others.

Typically the exact implementation of the normal equation smoother is not efficient

but the conditions can be relaxed further as follows.

Corollary 25 The result stated in Theorem 23 also holds for an inexact version of the

preconditioned normal equation smoother, where Lk is replaced by a spectrally equivalent

matrix L̂k, i.e., such that

CL Lk ≤ L̂k ≤ CL Lk,

holds for some constants 0 < CL ≤ CL and τ is replaced by τ̂ such that

Cτ ≤
τ̂

ρ(P̂k)2
≤ Cτ ,

holds for some constants 0 < Cτ ≤ Cτ < 2, where P̂k := L̂−1/2
k AkL̂

−1/2
k .

In this case the smoothing rate may also depend on the constants Cτ , Cτ , CL and CL.

We skip the proof of this corollary because the proof is a straight-forward but rather

technical generalization of the proof of Theorem 23.

4.1.2 Approximation property

For showing the approximation property, first we reconsider known results for the

Laplace equation. Consider the variational problem, find yk ∈ Yk such that

b(yk, ỹk) = f(ỹk) for all ỹk ∈ Yk,

which is the discretization of the original variational problem, find y ∈ Y = H1(Ω) such

that

b(y, ỹ) = f(ỹ) for all ỹ ∈ Y.
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If one can show boundedness (2.5) and coercivity (2.6) of the bilinear form b, the Lax-

Milgram theorem (Theorem 4) guarantees existence and uniqueness of the solution.

Cea’s lemma (Theorem 15) allows to show the convergence error result

‖y − yk‖H1(Ω) ≤ C‖f‖[H1(Ω)]∗ .

Using the approximation error result (2.12) and the regularity assumption (R), intro-

duced on page 27, we obtain

‖y − yk‖H1(Ω) ≤ Chk‖f‖L2(Ω),

Using a standard approach (Aubin Nitsche duality trick), one can show an estimate of

the L2-error:

‖y − yk‖L2(Ω) ≤ Ch2
k‖f‖L2(Ω). (4.9)

Such a result is used to show the approximation property for multigrid methods in case

of an elliptic problem, see, e.g., Hackbusch [35], Section 6.3.1.

Concluding, for a proof of the approximation property in case of an elliptic problem,

we need that

1. the conditions of the Lax-Milgram theorem (estimates (2.5) and (2.6)),

2. the approximation error estimate (2.12) and

3. the regularity assumption (R)

are satisfied.

An analogous strategy can be applied for the indefinite problems of our interest, i.e.,

the ideas of Hackbusch’s proof are not restricted to elliptic problems. We have already

introduced the abstract Hilbert spaces X and X−,k (playing the role of H1(Ω) and

L2(Ω), respectively, from above). For showing the approximation property, we assume

to have another Hilbert space X+,k (playing the role of H2(Ω) from above) such that

the following conditions are satisfied:

1. The assumptions of the Babuška-Aziz theorem (Theorem 5): We need condi-

tion (A1), introduced on page 17. We have to guarantee that this condition is

also satisfied for the discretized problem. Therefore, we additionally need condi-

tion (A1a), introduced on page 28.

2. We need the approximation error estimate (A3), introduced below.
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3. We need the regularity assumption (A4), introduced below.

Here, for sake of self-containedness we give a complete proof of the approximation prop-

erty using these assumptions. As we are interested in parameter-dependent problems,

we need qualitative knowledge about the constants. Therefore, we show that only the

constants in the conditions of the theorem affect the constant CA in the approximation

property.

Theorem 26 Assume that there are Hilbert spaces X−,k = (X−, ‖ · ‖X−,k), X =

(X, ‖ · ‖X) and X+,k = (X+, ‖ · ‖X+,k
) such that X+ ⊆ X ⊆ X− and the following

conditions hold.

(A1) There are constants C > 0 and C such that the well-posedness result

C‖x‖X ≤ sup
x̃∈X\{0}

B(x, x̃)

‖x̃‖X
≤ C‖x‖X

holds for all x ∈ X.

(A1a) There are constants CD > 0 and CD such that for all grid levels k the well-

posedness result for the discretized problem,

CD‖xk‖X ≤ sup
x̃k∈Xk\{0}

B(xk, x̃k)

‖x̃k‖X
≤ CD‖xk‖X

holds for all xk ∈ Xk.

(A3) There is a constant CI > 0 such that for all grid levels k and all x ∈ X+ the

approximation error result

inf
xk∈Xk

‖x− xk‖X ≤ CI‖x‖X+,k

is satisfied.

(A4) There is a constant CR > 0 such that for all grid levels k, all F ∈ (X−)∗ the

solution of the problem, find xF ∈ X such that

B(xF , x̃) = F(x̃) for all x̃ ∈ X,

satisfies xF ∈ X+ and the bound

‖xF‖X+,k
≤ CR‖F‖(X−,k)∗ .
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Then the approximation property (4.2) is satisfied with a constant CA, only depending

on C, C, CD, CD, CI and CR

Proof: The details of this proof follow Theorems 2.5 and 3.1 in Schöberl, Simon

and Zulehner [53].

In this proof, for sake of simplicity C is a generic constant that only depends on C, C,

CD, CD, CI and CR.

Let x ∈ X and xk ∈ Xk be such that

B(x, x̃)= F(x̃) for all x̃ ∈ X,
B(xk, x̃k)= F(x̃k) for all x̃k ∈ Xk.

First we show that

‖x− xk‖X−,k ≤ C sup
x̃∈X−\{0}

F(x̃)

‖x̃‖X−,k
(4.10)

holds. The proof of this estimate follows the classical line of arguments: Because

of (A1) and (A1a), we can estimate the discretization error in the X-norm by the

approximation error:

‖x− xk‖X ≤ C inf
x̃k∈Xk

‖x− x̃k‖X .

Using (A3) and (A4) we obtain further

‖x− xk‖X ≤ C‖F‖(X−,k)∗ .

For the estimate in the norm ‖·‖X−,k , we use the Aubin-Nitsche duality trick: For every

(arbitrarily but fixed) F∗ ∈ (X−)∗, we consider the following problem: Find x̂F∗ ∈ X
such that

B(x̃, x̂F∗) = F∗(x̃) for all x̃ ∈ X.

Using Galerkin orthogonality, we obtain

F∗(x− xk) = B(x− xk, x̂F∗) = B(x− xk, x̂F∗ − x̂k)

for all x̂k ∈ Xk. Using (A1) and (A1a), we obtain

F∗(x− xk) ≤ C‖x− xk‖X inf
x̂k∈Xk

‖x̂F∗ − x̂k‖X .

As above we obtain

F∗(x− xk) ≤ C‖x− xk‖X‖F∗‖(X−,k)∗ ,
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which implies (as we may choose F∗ arbitrarily)

‖x− xk‖(X−,k)∗ = sup
F∗∈(X−,k)∗\{0}

F∗(x− xk)
‖F‖(X−,k)∗

≤ C‖x− xk‖X ,

which shows (4.10). Now we show the approximation property

∥∥∥x(1)
k − xk

∥∥∥
X−,k

≤ CA sup
x̃k∈Xk\{0}

B
(
x

(0,m)
k − xk, x̃k

)
‖x̃k‖X−,k

.

One easily sees that

xk − x
(1)
k = tk − tk−1,

with tk = xk−x
(0,m)
k and tk−1 ∈ Xk−1 given by the formula for the coarse-grid correction

step

B(tk−1, x̃k−1) = F(x̃k−1)− B
(
x

(0,m)
k , x̃k−1

)
for all x̃k−1 ∈ Xk−1.

We observe that

B(tk−1, x̃k−1) = F(x̃k−1)− B
(
x

(0,m)
k , x̃k−1

)
= B

(
xk − x

(0,m)
k , x̃k−1

)
(4.11)

= B(tk, x̃k−1)

for all x̃k−1 ∈ Xk−1. For a given F∗ ∈ (X−,k)
∗, let x̂ ∈ X, x̂k ∈ Xk and x̂k−1 ∈ Xk−1

satisfy

B(x̃, x̂)= F∗(x̃) for all x̃ ∈ X,
B(x̃k, x̂k)= F∗(x̃k) for all x̃k ∈ Xk,

B(x̃k−1, x̂k−1)= F∗(x̃k−1) for all x̃k−1 ∈ Xk−1.

Then

F∗(tk − tk−1) = B(tk − tk−1, x̂k) = B(tk, x̂k − x̂k−1)

since

B(tk−1, x̂k) = F∗(tk−1) = B(tk−1, x̂k−1) = B(tk, x̂k−1)

using (4.11). Hence

F∗(tk − tk−1) ≤ sup
x̃k∈Xk\{0}

B(tk, x̃k)

‖x̃k‖X−,k
‖F∗‖(X−,k)∗ .

Therefore,

‖tk − tk−1‖X−,k = sup
F∗∈(X−,k)∗\{0}

F∗(tk − tk−1)

‖F∗‖(X−,k)∗
≤ C sup

x̃k∈Xk\{0}

B(tk, x̃k)

‖x̃k‖X−,k
,

which completes the proof. �
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Remark 27 Assume that X is a dense subset of X− and the solution of the problem,

find xF ∈ X such that

B(xF , x̃) = F(x̃) for all x̃ ∈ X,

satisfies xF ∈ X+.

Then condition (A4) is equivalent to

C−1
R ‖x‖X+,k

≤ sup
x̃∈X\{0}

B(x, x̃)

‖x̃‖X−,k
for all x ∈ X+. (4.12)

4.1.3 A two-grid convergence result

We can directly combine the smoothing property and the approximation property and

obtain the following result.

Corollary 28 Provided that both, the smoothing property (4.1) and the approximation

property (4.2), are satisfied, then∥∥∥x(1)
k − xk

∥∥∥
X−,k

≤ CA η(ν)
∥∥∥x(0)

k − xk
∥∥∥
X−,k

and limν→∞ η(ν) = 0 holds, where x
(0)
k is the initial guess, xk is the exact solution and

x
(1)
k is the output of the two-grid iteration. Therefore, for ν large enough the two-grid

method is a contraction with a contraction number bounded away from 1.

It is easy to extend this result to the two-grid method also having post-smoothing steps.

Provided that the smoother satisfies the power-boundedness condition (4.7), one can

show that the method converges if sufficiently many pre-smoothing steps are applied (no

matter how many post-smoothing steps are applied). By considering the transpose of

the iteration matrix, one can show that the two-grid method converges also if sufficiently

many post-smoothing steps are applied (no matter how many pre-smoothing steps are

applied).

4.1.4 A W-cycle multigrid convergence result

A perturbation argument can be used to show that the two-grid-convergence result

implies the convergence of the W-cycle multigrid convergence.
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Theorem 29 Assume that we have a sequence of grids for k ∈ N with nested subspaces

X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ X. Assume that the multigrid method fits into the framework

introduced in Section 3.1 and that the smoothing property (4.1), the approximation

property (4.2), the power-boundedness condition (4.7) and the following condition hold.

(A5) There are constants CC > 0 and CC such that on all grid levels k the estimate

CC‖xk−1‖X−,k−1
≤ ‖xk−1‖X−,k ≤ CC‖xk−1‖X−,k−1

holds for all xk−1 ∈ Xk−1.

Then, for all ν ≥ ν0, the estimate∥∥∥x(1)
k − xk

∥∥∥
X−,k

≤ 2CA η(ν)
∥∥∥x(0)

k − xk
∥∥∥
X−,k

holds, where x
(0)
k is the initial guess, xk is the exact solution and x

(1)
k is the output of

the W-cycle multigrid iteration. The constant ν0 only depends on the constants in the

approximation property, equation (4.7) and condition (A5) and of the function η(ν).

Therefore, for ν sufficiently large, the W-cycle multigrid method is a contraction with

a contraction number bounded away from 1.

For a proof, see, e.g., Hackbusch [35], Theorem 7.12.

Condition (A5) is a weak assumption which can be guaranteed for all model problems

we are discussing in this thesis.

As mentioned in Chapter 3, the W-cycle multigrid method is one possible realization

of the multigrid method. An alternative would be the V-cycle multigrid method. In

the numerical experiments for the model problems, the V-cycle multigrid method has

shown the same convergence behavior as the W-cycle multigrid method. Since the

complexity of one V-cycle is smaller than the complexity of one W-cycle by a certain

factor, the V-cycle is method is always faster.

Nonetheless, a (rigorous) convergence proof for the V-cycle multigrid method is not

known for saddle point problems, as the ideas of Theorem 29 cannot be carried over to

the V-cycle. For elliptic problems, a V-cycle convergence analysis is available, see, e.g.,

Braess and Hackbusch [15]. Their proof relies to the energy norm which does not

exist for indefinite problems. Therefore, to the knowledge of the author, convergence

proofs for the V-cycle multigrid method for indefinite problems are not available.
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4.2 Application to the model problems: non-robust

convergence results

In this section we give a convergence proof for both, the reduced KKT-system and

the original (non-reduced) KKT-system. We will start in the first subsection with the

reduced KKT-system.

In the second subsection we will treat the non-reduced KKT-system. Although the

non-reduced KKT-system characterizes the solution of the same model problem as the

reduced KKT-system, this analysis is also of interest because sometimes a reduction to

a 2-by-2 system is not possible or not reasonable, e.g., if the linearization of a non-linear

problem or a problem with additional inequality constraints is considered. Moreover, we

will see that for the non-reduced KKT-system some difficulty arises because the control

variable u lives in L2(Ω), not in H1(Ω). We will see that the framework presented in

this thesis can also be applied in this case.

Note that in the present section, the robustness in the parameter α is not an issue,

therefore all constants arising in the analysis may depend on the choice of the param-

eter α.

4.2.1 An analysis for the reduced KKT-system

In this section we apply the theory introduced in Section 4.1 to Model Problem 1. We

assume that α > 0 is fixed. As already mentioned, the solution of the model problem

is characterized by the reduced KKT-system, which reads as follows. Let yD ∈ L2(Ω).

Find (y, p) ∈ X = Y × P = H1(Ω)×H1(Ω) such that

(y, ỹ)L2(Ω1) + (ỹ, p)H1(Ω) = (yD, ỹ)L2(Ω) for all ỹ ∈ Y,
(y, p̃)H2(Ω) − α−1(p, p̃)L2(Ω2) = 0 for all p̃ ∈ P.

For showing convergence, we analyze the conditions (A1) – (A5).

Conditions (A1) and (A1a)

We have shown in Chapter 2 (Theorem 9) that the conditions (A1) and (A1a) are

satisfied for the norm

‖x‖X :=
(
‖y‖2Y + ‖p‖2P

)1/2
,

where

‖y‖Y := ‖y‖H1(Ω) and ‖p‖P := ‖p‖H1(Ω).
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Condition (A2)

The next step is to choose the norm ‖·‖X−,k such that both, condition (A2), introduced

on page 52, is satisfied and that the matrix Lk, representing that norm, can be easily

inverted, at least in an approximative way. The latter is satisfied for (scaled) L2-

norms because the mass matrix, representing the L2-norm, is spectrally equivalent

to its diagonal under weak assumptions on the grid which are satisfied within our

framework.

Therefore we choose X− := Y− × P− := L2(Ω) × L2(Ω) and use the following ansatz

for the norm on X−:

‖x‖X−,k :=
(
‖y‖2Y−,k + ‖p‖2P−,k

)1/2
,

where

‖y‖Y−,k := ηk‖y‖L2(Ω) and ‖p‖P−,k := ρk‖p‖L2(Ω).

For this choice, condition (A2) reads as follows:

‖yk‖2H1(Ω) + ‖pk‖2H1(Ω) ≤ η
2
k‖yk‖2L2(Ω) + ρ2

k‖pk‖2L2(Ω) for all (yk, pk) ∈ Yk × Pk.

These conditions can be shown using standard inverse inequalities if ηk ≥ Ch−1
k and

ρk ≥ Ch−1
k for some constant C. Therefore, we choose the norm as follows:

‖x‖X−,k :=
(
‖y‖2Y−,k + ‖p‖2P−,k

)1/2
,

where

‖y‖Y−,k := h−1
k ‖y‖L2(Ω) and ‖p‖P−,k := h−1

k ‖p‖L2(Ω).

Condition (A4)

We discuss the condition (A4), introduced on page 56, before discussing condi-

tion (A3), because condition (A4) allows to motivate the choice of the norm ‖·‖X+,k
.

For the discussion of the condition (A4) we need the following lemma.

Lemma 30 Assume that the regularity assumption (R), introduced on page 27, holds

and let f and g ∈ L2(Ω). Then the solution of the problem, find (y, p) ∈ X = Y × P
such that

(y, ỹ)L2(Ω1) + (ỹ, p)H1(Ω) = (f, ỹ)L2(Ω) for all ỹ ∈ Y,
(y, p̃)H2(Ω) − α−1(p, p̃)L2(Ω2) = (g, p̃)L2(Ω) for all p̃ ∈ P

(4.13)
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holds, satisfies the following regularity result: (y, p) ∈ H2(Ω)×H2(Ω) and

‖y‖2H2(Ω) + ‖p‖2H2(Ω) ≤ C
(
‖f‖2L2(Ω) + ‖g‖2L2(Ω)

)
.

The constant C only depends on α and the constants in assumptions (R) and (A1).

Proof: The first line of the KKT-system (4.13) can be rewritten as follows

(p, ỹ)H1(Ω) = −(y, ỹ)L2(Ω1) + (f, ỹ)L2(Ω1) for all ỹ ∈ Y = H1(Ω).

Assumption (R) states that p ∈ H2(Ω) and

‖p‖H2(Ω) ≤ CR‖f − y‖L2(Ω) ≤ CR
(
‖f‖L2(Ω) + ‖y‖Y

)
.

Using the second line of the KKT-system, we obtain

‖y‖H2(Ω) ≤ CR
∥∥g − α−1p

∥∥
L2(Ω2)

≤ CR max{1, α−1}
(
‖g‖L2(Ω) + ‖p‖P

)
.

Using condition (A1) and the fact that ‖ · ‖X ≥ ‖ · ‖L2(Ω), we obtain

‖x‖X ≤
1

C
‖F‖X∗ ≤

1

C
‖F‖L2(Ω)

for F(·) := (f, ·)L2(Ω) + (g, ·)L2(Ω). This allows to conclude

‖y‖2H2(Ω) + ‖p‖2H2(Ω) ≤ CR max{1, α−1}
(
1 + C−1

) (
‖f‖2L2(Ω) + ‖g‖2L2(Ω)

)
,

which finishes the proof. �

For the model problem, condition (A4) reads as follows. There is a constant CR > 0

such that for all grid levels k, all f, g ∈ L2(Ω) the solution of the problem, find xF ∈ X
such that

B(xF , x̃) = (f, ỹ)L2(Ω) + (g, ỹ)L2(Ω) for all x̃ ∈ X,

satisfies xF ∈ X+ and

‖xF‖X+,k
≤ CR hk

(
‖f‖2L2(Ω) + ‖g‖2L2(Ω)

)1/2
.

Lemma 30 implies

hk

(
‖y‖2H2(Ω) + ‖p‖2H2(Ω)

)1/2
≤ C hk

(
‖f‖2L2(Ω) + ‖g‖2L2(Ω)

)1/2
.

This means that condition (A4) is satisfied for X+ := Y+ × P+ with norms

‖x‖X+,k
:=
(
‖y‖2Y+,k + ‖p‖2P+,k

)1/2
,
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where

‖y‖Y+,k := hk‖y‖H2(Ω) and ‖p‖P+,k
:= hk‖p‖H2(Ω).

Condition (A3)

For the model problem, condition (A3), introduced on page 56, reads as follows. There

is a constant CI > 0 such that for all grid levels k and all (y, p) ∈ Y+ × P+ = H2(Ω)×
H2(Ω) the approximation error result

inf
(yk,pk)∈Yk×Pk

(
‖y − yk‖2H1(Ω) + ‖p− pk‖2H1(Ω)

)
≤ C2

I h
2
k

(
‖y‖2H2(Ω) + ‖p‖2H2(Ω)

)
is satisfied.

This is a standard approximation error result, which immediately follows from the

interpolation error estimate in Theorem 16.

Condition (A5)

As we are also interested in showing convergence of the W-cycle multigrid method, we

have also to analyze condition (A5), introduced on page 60, which reads as follows.

There are constants CC and CC such that

CC‖xk−1‖X−,k−1
≤ ‖xk−1‖X−,k ≤ CC‖xk−1‖X−,k−1

for all xk−1 ∈ Xk−1.

Here, the estimates for yk−1 and pk−1 easily decouple. Therefore we need

CC‖yk−1‖Y−,k−1
≤ ‖yk−1‖Y−,k ≤ CC‖yk−1‖Y−,k−1

for all yk−1 ∈ Yk−1

and the same result for the adjoined state pk−1. Using the definition of the norms we

can rewrite the condition from above

CCh
−1
k−1‖yk−1‖L2(Ω) ≤ h−1

k ‖yk−1‖L2(Ω) ≤ CCh−1
k−1‖yk−1‖L2(Ω) for all yk−1 ∈ Yk−1,

which reduces to

CC ≤
hk−1

hk
≤ CC .

In case of uniform refinement, this is the case with constants CC = CC = 1
2 .

Convergence result

As we have shown the conditions (A1), (A1a), (A3) and (A4), we can apply Theo-

rem 26 and obtain the following result.
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Corollary 31 Consider Model Problem 1 and assume that the regularity assump-

tion (R) is satisfied. Then the approximation property (4.2) holds with a constant

CA independent of the grid level. The constant CA may depend on the choice of the

parameter α.

If the result is combined with a statement on the smoothing property, the convergence

of the two-grid method follows. For the preconditioned normal equation smoother,

we can combine the approximation property with Theorems 23 and 29 and obtain the

following statement.

Corollary 32 Consider Model Problem 1 and assume that the regularity assump-

tion (R) is satisfied. Assume that the normal equation smoother (Subsections 3.2.1

and 4.1.4) is applied and that Lk and τ are chosen as mentioned in Corollary 25.

Then there is a constant C > 0 independent of the grid level k such that∥∥∥x(1)
k − xk

∥∥∥
X−,k

≤ C√
ν

∥∥∥x(0)
k − xk

∥∥∥
X−,k

holds, where xk is the exact solution, x
(0)
k is the starting value and x

(1)
k is the iterate

after one step of the two-grid method or the W-cycle multigrid method.

Therefore, for ν large enough, the convergence rate is bounded away from 1 by a constant

independent of the grid level k. The convergence rate may depend on the choice of the

parameter α.

If the Courant element is chosen for discretization, an efficient implementation of the

normal equation smoother for Model Problem 1 is possible using

L̂k :=

(
diagKk

diagKk

)
. (4.14)

For this choice of L̂k, a refined analysis allows to compute how the damping parameter τ̂

has to be chosen such that the conditions of Corollary 25 and, as a consequence the

conditions of Corollary 32, are satisfied.

Corollary 33 For the choice (4.14) and

τ̂ ∈
(

0 ,
1

2 (1 + max {1, α−1})2

)
, (4.15)

the conditions of Corollary 25 are satisfied.
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Proof: We show that the conditions of Corollary 25 are satisfied. The matrix Lk is

given by

Lk =

(
h−2
k Mk

h−2
k Mk

)
.

Due to standard scaling arguments, this matrix is spectrally equivalent to L̂k.

Because of the fact that the Courant element is chosen for discretization, the matrix

Kk is diagonal dominant and therefore 2 diagKk ≥ Kk ≥ Mk holds. Therefore, the

spectral radius of L̂−1
k Ak can be estimated from above as follows.

ρ(L̂−1
k Ak) = ρ

(
K̂−1
k MkK̂

−1/2
k K̂

−1/2
k KkK̂

−1/2
k

K̂−1
k KkK̂

−1/2
k −α−1K̂

−1/2
k MkK̂

−1/2
k

)
≤ ρ

(
K̂
−1/2
k KkK̂

−1/2
k

)
+ max

{
1, α−1

}
ρ
(
K̂
−1/2
k MkK̂

−1/2
k

)
≤ 2 + 2 max

{
1, α−1

}
,

where K̂k := diagKk. This shows that (4.15) is an appropriate choice. �

The analysis presented in this section can be carried over to the boundary control Model

Problem 3 using the same norms as introduced above for Model Problem 1.

For showing the approximation property, we need a regularity assumption that includes

boundary conditions. Therefore, we introduce the following assumption.

(RΓ) There is a constant CR > 0 such that the following result holds. For f ∈ L2(Ω)

and g ∈ H1/2(∂Ω) let yf ∈ H1(Ω) be the solution of

(yf , ỹ)H1(Ω) = (f, ỹ)L2(Ω) + (g, ỹ)L2(∂Ω) for all ỹ ∈ H1(Ω).

Then yf ∈ H2(Ω) and

‖yf‖H2(Ω) ≤ CR
(
‖f‖L2(Ω) + ‖g‖H1/2(Ω)

)
.

Based on this assumption we show the approximation property and – as a consequence

– the convergence of the two-grid method and the W-cycle multigrid method.

Theorem 34 Consider Model Problem 3 and assume that the domain has a sufficiently

smooth boundary and that regularity assumption (RΓ) is satisfied. Assume that the

normal equation smoother (Subsections 3.2.1 and 4.1.4) is applied and that Lk and τ

are chosen as mentioned in Corollary 25.
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Then there is a constant C > 0 independent of the grid level k such that∥∥∥x(1)
k − xk

∥∥∥
X−,k

≤ C√
ν

∥∥∥x(0)
k − xk

∥∥∥
X−,k

holds, where xk is the exact solution, x
(0)
k is the starting value and x

(1)
k is the iterate

after one step of the two-grid method or the W-cycle multigrid method.

Therefore, for ν large enough, the convergence rate is bounded away from 1 by a constant

independent of the grid level k. The convergence rate may depend on the choice of the

parameter α.

Proof: We have seen in Remark 10 that the conditions (A1) and (A1a) hold for

Model Problem 3. Because the conditions (A2), (A3) and (A5) do not depend on

the bilinear form, they are also satisfied for Model Problem 3.

Therefore, only condition (A4) has to be shown.

Due to Adams and Fournier [1], Lemmas 7.40, 7.41 and Remark 7.45.1 on sufficiently

smooth domains in R2, for m > 1/2 there is a trace operator T mapping Hm(Ω) to

Hm−1/2(∂Ω) such that

‖Ty‖Hm−1/2(∂Ω) ≤ C‖y‖Hm(Ω) for all y ∈ Hm(Ω).

Using these results, we can show condition (A4) analogously to the proof of Lemma 30

as follows. When considering the problem

(y, p̃)H1(Ω) = α−1(p, p̃)L2(∂Ω) + (g, p̃)L2(Ω) for all p̃ ∈ P,

we first use the fact that the trace of p is in H1/2(Ω) and use regularity assumption (RΓ)

afterwards to obtain

‖y‖H2(Ω) ≤ C max
{

1, α−1
} (
‖p‖H1/2(∂Ω) + ‖g‖L2(Ω)

)
≤ C max

{
1, α−1

} (
‖p‖H1(Ω) + ‖g‖L2(Ω)

)
.

The rest of the proof of condition (A4) is completely analogous to the proof of

Lemma 30. This concludes the proof because the statement of the theorem follows

from the conditions (A1) – (A5) using the Theorems 23, 26 and 29. �

The statement of Corollary 33 on an efficient implementation of the multigrid iteration

for the Model Problem 1 is also satisfied for the boundary control Model Problem 3.
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Note that here the analysis for Model Problem 3 was done for domains with a smooth

boundary only. The generalization of such an analysis to convex polygonal domains is

non-trivial. Due to Grisvard [33], also for convex polygonal domains a H2-regularity

result can be shown, cf. Theorems 1.4.1 and 1.4.2 there. Fur this purpose, the traces

on the line segments of the polygonal boundary have to be estimated individually. We

do not comment on it in detail because the analysis is quite technically.

4.2.2 An analysis for the non-reduced KKT-system

In this subsection we discuss how to apply the convergence framework introduced in

this thesis to the non-reduced KKT-system.

A convergence analysis in this case was already worked out in Simon and

Zulehner [58] for Model Problem 2. In Takacs and Zulehner [61] it was shown

that the analysis can be carried over to the boundary control Model Problem 3. In

both cases the approximation property was shown using the framework introduced by

Brenner [22]. Here, we use the framework introduced in Section 4.1.

Here we work out the details for Model Problem 3. The details for Model Problem 1 can

be worked out analogously. As already mentioned, the solution of the model problem

is characterized by the (non-reduced) KKT-system, which reads as follows. Let yD ∈
L2(Ω). Find (y, u, p) ∈ X = H1(Ω)× L2(∂Ω)×H1(Ω) such that

(y, ỹ)L2(Ω) + (p, ỹ)H1(Ω) = (yD, ỹ)L2(Ω)

α(u, ũ)L2(∂Ω) − (p, ũ)L2(∂Ω) = 0

(y, p̃)H1(Ω) − (u, p̃)L2(∂Ω) = 0

for all (ỹ, ũ, p̃) ∈ X. Again, we show that the conditions (A1) – (A5) hold.

Conditions (A1) and (A1a)

In Remark 11 we have seen that the conditions (A1) and (A1a) are satisfied for

(y, u) ∈ Y := H1(Ω)× L2(∂Ω) and p ∈ P := H1(Ω) with norms

‖x‖X :=
(
‖(y, u)‖2Y + ‖p‖2P

)1/2
,

where

‖(y, u)‖Y :=
(
‖y‖2H1(Ω) + ‖u‖2L2(∂Ω)

)1/2
and ‖p‖P := ‖p‖H1(Ω).
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Condition (A2)

Analogously to the last subsection, a standard inverse inequality implies that condi-

tion (A2), introduced on page 23, is satisfied for (y, u) ∈ Y− := L2(Ω) × L2(∂Ω) and

p ∈ P− := L2(Ω) with norms

‖x‖X−,k :=
(
‖(y, u)‖2Y−,k + ‖p‖2P−,k

)1/2
,

where

‖(y, u)‖Y−,k :=
(
h−2
k ‖y‖

2
L2(Ω) + ‖u‖2L2(∂Ω)

)1/2
and ‖p‖P−,k := h−1

k ‖p‖L2(Ω).

Condition (A3)

Analogously to the last subsection, we can show that

inf
xk∈Xk

‖x− xk‖X ≤ CI
(
h2
k‖y‖2H2(Ω) + h2

k‖u‖2H1(∂Ω) + h2
k‖p‖H2(Ω)

)1/2

︸ ︷︷ ︸
‖(y, u, p)‖X#,k

:=

(4.16)

holds. Certainly, also

inf
xk∈Xk

‖x− xk‖X ≤ ‖x‖X (4.17)

holds because 0 ∈ Xk. The combination of (4.17) and (4.17) implies

inf
xk∈Xk

‖x− xk‖X ≤ CI‖x‖X+X#,k
. (4.18)

So, for X+,k := X +X#,k, the estimate (4.18) is exactly condition (A3), as introduced

on page 26.

Note that we can represent the Hilbert space X+,k explicitly: we have X+ = Y+ × P+,

where Y+ = H1(Ω)× L2(∂Ω) and P+ = H1(Ω) with norms

‖x‖X+,k
=
(
‖(y, u)‖2Y+,k + ‖p‖2P+,k

)1/2
,

where

‖(y, u)‖Y+,k =
(
‖y‖2[hkH2(Ω)]+H1(Ω) + ‖u‖2[hkH1(∂Ω)]+L2(∂Ω)

)1/2

and

‖p‖P+,k
= ‖p‖[hkH2(Ω)]+H1(Ω).

Condition (A4)
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The proof of condition (A4), introduced on page 56, is a bit more involved than the

proof for the case of the reduced KKT-system. Here, similar to the framework in

Brenner [22], we have to split the analysis into an analysis for the state variable y

and the adjoined state p on the one hand and an analysis for the control u on the other

hand and combine these results.

Lemma 35 Assume that the regularity assumption (RΓ), introduced on page 66, holds.

Then the condition (A4) is satisfied in the framework of this subsection.

Proof: In this proof C is a generic constant which is independent of hk but may depend

on α, CR, C and C.

As required, F ∈ (X−)∗ = L2(Ω) × L2(∂Ω) × L2(Ω). Therefore, we can express F as

follows:

F(x̃) = F1(x̃) + F2(x̃),

where

F1(ỹ, ũ, p̃) = (f1, ỹ)L2(Ω) + (g, p̃)L2(Ω) for all f1 ∈ L2(Ω), g ∈ L2(Ω),

F2(ỹ, ũ, p̃) = (f2, ũ)L2(∂Ω) for all f2 ∈ L2(∂Ω).

Let xF1 and xF2 be such that

B(xF1 , x̃) = F1(x̃) for all x̃ ∈ X,

B(xF2 , x̃) = F2(x̃) for all x̃ ∈ X.

Due to linearity, we have xF = xF1 + xF2 . So, it is sufficient to show

‖xF1‖X#,k
≤ ‖F1‖X∗−,k , (4.19)

‖xF2‖X ≤ ‖F2‖X∗−,k (4.20)

because

‖xF‖X#,k+X = inf
xF=x1+x2

‖x1‖X#,k
+ ‖x2‖X ≤ ‖xF1‖X#,k

+ ‖xF2‖X

≤ C
(
‖F1‖X∗−,k + ‖F2‖X∗−,k

)
≤ C

(
‖F1‖2X∗−,k + ‖F2‖2X∗−,k

)1/2
= C‖F‖X∗−,k ,

which is the statement we have to show.
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First we show (4.19). If the right-hand side is chosen to be F1, the KKT-system can

be rewritten as follows:

(p, ỹ)H1(Ω) = (f1, ỹ)L2(Ω) − (y, ỹ)L2(Ω) for all ỹ ∈ H1(Ω)

α−1(u, ũ)L2(∂Ω) = (p, ũ)L2(∂Ω) for all ũ ∈ L2(Ω)

(y, p̃)H1(Ω) = (g, p̃)L2(Ω) − (u, p̃)L2(∂Ω) for all p̃ ∈ H1(Ω)

(4.21)

The first line of the system (4.21) implies

‖p‖H2(Ω) ≤ C
(
‖f1‖L2(Ω) + ‖y‖L2(Ω)

)
.

The second line of the system (4.21) implies u = α−1Tp, where T is the trace operator,

and therefore

‖u‖H1(∂Ω) ≤ Cα−1‖p‖H3/2(Ω) ≤ Cα
−1‖p‖H2(Ω).

The third line of the system (4.21) implies

‖y‖H2(Ω) ≤ C
(
‖g‖L2(Ω) + ‖u‖H1/2(∂Ω)

)
.

Using these results and the fact that ‖F1‖(X−,k)∗ = hk

(
‖f1‖2L2(Ω) + ‖g‖2L2(Ω)

)1/2
, we

can show similar to the proof of Lemma 30 that (4.19) holds.

As ‖F2‖X∗−,k = ‖f2‖L2(∂Ω) = ‖F2‖X∗ holds and condition (A1) is satisfied, also the

estimate (4.20) holds, which finishes the proof. �

Condition (A5)

Condition (A5), introduced on page 60, can be shown in the same way as in the last

subsection.

Convergence result

As we have shown the conditions (A1) – (A5), we can apply Theorems 23, 26 and 29

and obtain the following statement.

Corollary 36 Consider Model Problem 3 and assume that the regularity assump-

tion (RΓ) is satisfied. Assume that the normal equation smoother (Subsections 3.2.1

and 4.1.4) is applied and that Lk and τ are chosen as mentioned in Corollary 25.

Then there is a constant C > 0 independent of the grid level k such that∥∥∥x(1)
k − xk

∥∥∥
X−,k

≤ C√
ν

∥∥∥x(0)
k − xk

∥∥∥
X−,k
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holds, where xk is the exact solution, x
(0)
k is the starting value and x

(1)
k is the iterate

after one step of the two-grid or the W-cycle multigrid method. The convergence rate

may depend on the choice of the parameter α.

Therefore, for ν large enough, the convergence rate is bounded away from 1 by a constant

independent of the grid level k.

If the Courant element is chosen for discretization, an efficient implementation of the

normal equation smoother for Model Problem 3 is possible using

L̂k :=

 diagKk

diagMΓ,k

diagKk

 . (4.22)

If we fix this choice of L̂k, a refined analysis allows to compute how the damping param-

eter τ̂ has to be chosen such that the conditions of Corollary 25 and, as a consequence

the conditions of Corollary 36, are satisfied.

Corollary 37 For the choice (4.22) and

τ̂ ∈
(

0 ,
1

2(1 + max{1, α})2

)
,

the conditions of Corollary 25 are satisfied.

This corollary can be proven analogously to Corollary 33.

As mentioned above, an analysis for Model Problem 1 can be carried out in a completely

analogous way. We skip that analysis because this does not give any deeper insight.

Remark 38 (Other smoothers) Other smoothers, like Uzawa type smoothers dis-

cussed in Simon and Zulehner [58], or Takacs and Zulehner [61], also satisfy

the smoothing property for both, the reduced KKT-system and the non-reduced KKT-

system, for the model problems and the norms introduced in this section. Therefore also

for these smoothers convergence can be guaranteed.
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4.3 Application to the model problem 2: a robust

convergence result based on full regularity

In this section we are interested in convergence results which are robust in the param-

eter α, i.e., we want the convergence rate to be bounded away from 1 by a constant

independent of the grid level k and the choice of the parameter α. Here, we have restrict

ourselves to Model Problem 2. The statement we show in this section has already been

carried out in Schöberl, Simon and Zulehner [53].

In this section we give the result in terms of the convergence framework introduced in

Section 4.1. Here, we choose the norms slightly different to Schöberl, Simon and

Zulehner [53] which will allow the extension of the convergence result to the partial

elliptic regularity case, which will be carried out in Section 4.5. In this section, we

follow the ideas introduced in Takacs and Zulehner [63]. For this purpose, we have

to introduce the concept of interpolation spaces first.

4.3.1 Interpolation spaces

In this subsection we introduce interpolation spaces. We restrict ourselves to the defi-

nition and those results which are necessary for the convergence analysis for the model

problem. For further information, we refer to standard text books, like Lions and

Magenes [43], Butzer and Berens [26] and Adams and Fournier [1].

Let A1 and A2 be Hilbert spaces contained in a linear Hausdorff space. Between the

Hilbert spaces A1 + A2 and A1 ∩ A2, we introduce for every θ ∈ (0, 1) interpolation

spaces [A1, A2]θ with norms

‖u‖2[A1,A2]θ
=

∫ ∞
0

t−2θ−1

(
inf

u=u1+u2, u1∈A1, u2∈A2

‖u1‖2A1
+ t2‖u2‖2A2

)
dt. (4.23)

The interpolation space [A1, A2]θ is the subset of A1+A2 of elements u with finite norm,

i.e., where ‖u‖[A1,A2]θ < ∞. This definition refers to the K-method of constructing

interpolation spaces, cf. the text books mentioned above. The space [A1, A2]θ lies

between A1 ∩A2 and A1 +A2, i.e., we have

A1 ∩A2 ⊆ [A1, A2]θ ⊆ A1 +A2

and

‖u‖A1+A2 ≤ C(θ)‖u‖[A1,A2]θ for all u ∈ [A1, A2]θ
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and

‖u‖[A1,A2]θ ≤ C(θ)−1‖u‖A1∩A2 for all u ∈ A1 ∩A2, (4.24)

where C(θ) =
√

2θ(1− θ), see (3.2.15) and (3.2.16) in Butzer and Berens [26].

Sobolev spaces with broken index, Hθ(Ω) can be defined as the corresponding interpo-

lation spaces, i.e., we have

Hm+θ(Ω) = [Hm(Ω), Hm+1(Ω)]θ

for all θ ∈ (0, 1) and all m ∈ Z+
0 . This definition is equivalent to other definitions of

such Sobolev spaces, see, e.g., Theorem 4.3.6 in Butzer and Berens [26].

Such a statement is not only true for two consecutive standard Sobolev spaces Hm(Ω)

and Hm+1(Ω), but also in general. This is a consequence of the following theorem.

Theorem 39 (Reiteration theorem) Let A1 and A2 be Hilbert spaces. Then

[[A1, A2]θ0 , [A1, A2]θ1 ]λ = [A1, A2](1−λ)θ0+λθ1

and

[A1, [A1, A2]θ1 ]λ = [A1, A2]θ1λ

holds for all θ0, θ1, λ ∈ (0, 1).

For a proof, see Theorem 3.2.20 and Corollary 3.2.17 in Butzer and Berens [26].

Note that the second statement in Theorem 39 is not a consequence of the first state-

ment in Theorem 39 because [A1, A2]θ0 is not defined for θ0 = 0 in general.

Taking the dual space and interpolation between two Hilbert spaces commute, i.e., for

Hilbert spaces A1 and A2, where A1 ∩ A2 is dense in A1 and in A2, and all θ ∈ (0, 1)

the identity

[A∗1, A
∗
2]θ = ([A∗1, A

∗
2]θ)
∗

holds (duality theorem), see Butzer and Berens [26], p. 214.

As we also work with weighted Sobolev spaces, which can be interpreted as intersections

of the involved scaled spaces, we need some results on interpolation of intersections of

Hilbert spaces and of scaled Hilbert spaces. Concerning scaling, interpolation spaces

behave like the weighted geometric mean, i.e., for all Hilbert spaces A1 and A2 and all

scalars α1 and α2 and all θ ∈ (0, 1) the identity

[α1A1, α2A2]θ = α1−θ
1 αθ2[A1, A2]θ (4.25)
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holds. Due to monotonicity of the interpolation formula (4.23), we have for all Hilbert

spaces A1, A2 and A3, all u ∈ [A1 ∩A2, A3]θ and all θ ∈ (0, 1).

‖u‖[A1∩A2,A3]θ ≥ ‖u‖[A1,A3]θ

and therefore √
2‖u‖[A1∩A2,A3]θ ≥ ‖u‖[A1,A3]θ∩[A2,A3]θ . (4.26)

A very powerful result for interpolation spaces, is the following statement.

Theorem 40 (Interpolation Theorem) Let A1, A2, B1 and B2 be Hilbert spaces

and let T : A1 +A2 → B1 +B2 with T (A1) ⊆ B1 and T (A2) ⊆ B2 be an operator such

that there are constants C1 and C2 such that

‖Tu‖B1 ≤ C1‖x‖A1 for all u ∈ A1,

‖Tu‖B2 ≤ C2‖x‖A2 for all u ∈ A2.

Then the estimate

‖Tu‖[B1,B2]θ ≤ C(θ)C1−θ
1 Cθ2‖u‖[A1,A2]θ

holds for all u ∈ [A1, A2]θ, where C(θ) only depends on θ.

For a proof, see Theorem 3.2.23 in Butzer and Berens [26].

4.3.2 An analysis for the reduced KKT-system

As already mentioned, the solution of the model problem is characterized by the reduced

KKT-system, which reads as follows. Let yD ∈ L2(Ω). Find (y, p) ∈ X = Y × P =

H1(Ω)×H1(Ω) such that

(y, ỹ)L2(Ω) + (ỹ, p)H1(Ω) = (yD, ỹ)L2(Ω) for all ỹ ∈ Y,
(y, p̃)H2(Ω) − α−1(p, p̃)L2(Ω) = 0 for all p̃ ∈ P.

Again, we discuss the conditions (A1) – (A5).

Conditions (A1) and (A1a)

We have seen in Theorem 12 that the conditions (A1) and (A1a), introduced on

pages 17 and 28, are satisfied for X = H1(Ω)×H1(Ω) with norm

‖x‖X =
(
‖y‖2Y + ‖p‖2P

)1/2
,
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where

‖y‖Y =
(
‖y‖2L2(Ω) + α1/2‖y‖2H1(Ω)

)1/2

and

‖p‖P =
(
α−1‖p‖2L2(Ω) + α−1/2‖p‖2H1(Ω)

)1/2
.

This result was already given in Schöberl and Zulehner [54]. In Zulehner [71]

the same result was shown using condition (A1’), introduced on page 19.

Condition (A2)

Now we choose the norm ‖ · ‖X−,k such that both, condition (A2), introduced on

page 52, is satisfied and that the matrix Lk, representing that norm, can be easily

inverted, at least in an approximative way. As mentioned in the last section, the latter

is the case for (scaled) L2-norms.

Therefore we use again the ansatz X− := Y− × P− := L2(Ω)× L2(Ω) and

‖x‖X−,k :=
(
‖y‖2Y−,k + ‖p‖2P−,k

)1/2
,

where

‖y‖Y−,k := ηk‖y‖L2(Ω) and ‖p‖P−,k := ρk‖p‖L2(Ω).

For this choice, condition (A2) reads as follows:

‖yk‖2L2(Ω)+α1/2‖yk‖2H1(Ω)+α−1‖pk‖2L2(Ω)+α−1/2‖pk‖2H1(Ω) ≤ η
2
k‖yk‖2L2(Ω)+ρ2

k‖pk‖2L2(Ω)

for all yk ∈ Yk, pk ∈ Pk. Due to inverse inequality it is sufficient to have η2
k ≥

C (1 + α1/2h−2
k ) and ρ2

k ≥ C α−1
(
1 + α1/2h−2

k

)
. Therefore, we choose ηk and ρk as

follows

η2
k := 1 + α1/2h−2

k and ρ2
k := α−1

(
1 + α1/2h−2

k

)
. (4.27)

Condition (A4)

We discuss condition (A4) before discussing condition (A3), because condition (A4)

allows to motivate the choice of the norm ‖ · ‖X+,k
.

First note that we have seen in Subsection 4.2.1 (Lemma 30), that for F ∈ (X−)∗ =

L2(Ω)× L2(Ω), the corresponding solution xF ∈ X+ = H2(Ω)×H2(Ω).
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The estimate, we have shown in Subsection 4.2.1 was not robust in the parameter α.

Therefore, we have to construct a robust estimate. We use Remark 27 and show that

the inf-sup-condition (4.12) is satisfied.

For this purpose, we use the following theorem.

Theorem 41 Assume that the following two conditions hold.

(A4’) Assume that Y+ is a dense subset of Y , Y is a dense subset of Y−, P+ is a

dense subset of P and P is a dense subset of P−. Assume that there is a value

ψk (depending on k and α) such that

0 ≤ a(·, ·)1/2 ≤ CR3ψ
−1
k ‖ · ‖Y−,k ≤ CR4ψk‖ · ‖Y+,k

and

0 ≤ c(·, ·)1/2 ≤ CR3ψ
−1
k ‖ · ‖P−,k ≤ CR4ψk‖ · ‖P+,k

.

(A4”) Assume that there are constants CR1 > 0, CR1, CR2 > 0 and CR2 such that

CR1‖y‖Y+,k ≤ sup
ỹ∈Y \{0}

a(y, ỹ)

‖ỹ‖Y−,k
+ sup
p̃∈P\{0}

b(y, p̃)

‖p̃‖P−,k

holds for all y ∈ Y+ and

CR2‖p‖2P+,k
≤ sup

ỹ∈Y \{0}

b(ỹ, p)

‖ỹ‖Y−,k
+ sup
p̃∈P\{0}

c(p, p̃)

‖p̃‖P−,k

holds for all p ∈ P+.

Then condition (4.12) holds and the constant in (4.12) only depends on the constants

CR1 CR2 CR3 and CR4 in (A4’) and (A4”), not on the choice of ψk.

Proof: The proof is similar to the proofs of Theorem 2.3 in Zulehner [71].
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We observe

sup
x̃∈X\{0}

B(x, x̃)

‖x̃‖X−,k
≥ 1

2

(
sup

ỹ∈Y \{0}

a(y, ỹ) + b(ỹ, p)

‖ỹ‖Y−,k
+ sup
p̃∈P\{0}

b(y, p̃)− c(p, p̃)
‖p̃‖P−,k

)

≥ 1

2

((
sup

ỹ∈Y \{0}

b(ỹ, p)

‖ỹ‖Y−,k
+ sup
p̃∈P\{0}

b(y, p̃)

‖p̃‖P−,k

)

−

(
sup

ỹ∈Y \{0}

a(y, ỹ)

‖ỹ‖Y−,k
+ sup
p̃∈P\{0}

c(p, p̃)

‖p̃‖P−,k

))
=

1

2
(ξ − η)‖x‖X+,k

,

where

η :=
supỹ∈Y \{0}

a(y,ỹ)
‖ỹ‖Y−,k

+ supp̃∈P\{0}
c(p,p̃)
‖p̃‖P−,k

‖x‖X+,k

ξ :=
supỹ∈Y \{0}

b(ỹ,p)
‖ỹ‖Y−,k

+ supp̃∈P\{0}
b(y,p̃)
‖p̃‖P−,k

‖x‖X+,k

.

A second bound follows from:

sup
x̃∈X\{0}

B(x, x̃)

‖x̃‖X−,k
≥ B((y, p), (y,−p))
‖(y,−p)‖X−,k

=
a(y, y) + c(p, p)

‖(y,−p)‖X−,k
≥ a(y, y) + c(p, p)

ψ2‖(y,−p)‖X+,k

=
supỹ∈Y \{0}

a(y,ỹ)2

a(ỹ,ỹ) + supp̃∈P\{0}
c(p,p̃)2

c(p̃,p̃)

ψ2‖x‖X+,k

≥
supỹ∈Y \{0}

a(y,ỹ)2

‖ỹ‖2Y−,k
+ supp̃∈P\{0}

c(p,p̃)2

‖p̃‖2P−,k
‖x‖X+,k

≥ 1

2
η2‖x‖X+,k

We know ξ + η ≥ min{CR1, CR2} > 0. In the same way as in Zulehner [71], we can

show that there is a lower bound only depending on CR1, CR2, CR3 and CR4. �

Remark 42 One can show in the same way as it was done in Zulehner [71] that

condition (4.12) implies condition (A4”).

Still, our goal is to choose the norm ‖ · ‖X+,k
such that (4.12) (and therefore condi-

tion (A4)) is satisfied. Due to Theorem 41, it is sufficient to choose ‖ · ‖X+,k
such that

the conditions (A4’) and (A4”) are satisfied. First we consider condition (A4”).

Using the definition of ‖ · ‖X−,k , the first line of condition (A4”) reads as follows:

CR1‖y‖Y+,k ≤ sup
ỹ∈Y \{0}

(y, ỹ)L2(Ω)

ηk‖ỹ‖L2(Ω)
+ sup
p̃∈P\{0}

(y, p̃)H1(Ω)

ρk‖p̃‖L2(Ω)
for all y ∈ Y+, (4.28)
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where ηk and ρk are given by (4.27). Now, we use equation (4.28) to derive the

norm ‖ · ‖Y+,k . It is easy to see, that

sup
ỹ∈Y \{0}

(y, ỹ)L2(Ω)

ηk‖ỹ‖L2(Ω)
= η−1

k ‖y‖L2(Ω)

is satisfied. Due to Remark 20, there are constants CR > 0 and CR such that

CR ρ
−1
k ‖y‖H2(Ω) ≤ sup

p̃∈P\{0}

(y, p̃)H1(Ω)

ρk‖p̃‖L2(Ω)
≤ CR ρ−1

k ‖y‖H2(Ω)

holds for all y ∈ Y+. So, condition (4.28) simplifies to: Guarantee that there is a

constant CR1 > 0 such that

CR1‖y‖Y+,k ≤ η
−1
k ‖y‖L2(Ω) + CRρ

−1
k ‖y‖H2(Ω) for all y ∈ Y+,

where ρk and ηk are given by (4.27). We can do the same for the second line of condition

(A4”): Guarantee that there is a constant CR2 > 0 such that

CR2‖p‖P+,k
≤ α−1ρ−1

k ‖p‖L2(Ω) + CRη
−1
k ‖p‖H2(Ω) for all p ∈ P+.

This motivates to choose X+ := Y+ × P+ := H2(Ω)×H2(Ω) with associated norms

‖x‖X+,k
:=
(
‖y‖2Y+,k + ‖p‖2P+,k

)1/2
,

where

‖y‖Y+,k :=
(

1 + α1/2h−2
k

)−1/2 (
‖y‖2L2(Ω) + α‖y‖2H2(Ω)

)1/2

and

‖p‖P+,k
:= α−1

(
1 + α1/2h−2

k

)−1/2 (
‖p‖2L2(Ω) + α‖p‖2H2(Ω)

)1/2
.

By construction, condition (A4”) is satisfied with constants CR1 and CR2 only depend-

ing on CR. It is easy to see, that the condition (A4’) is satisfied with CR3 = CR4 = 1

for ψk :=
(
1 + α1/2h−2

k

)1/2
because ‖ · ‖H2(Ω) ≥ ‖ · ‖L2(Ω) holds. Therefore, Theorem 41

implies that condition (A4) holds.

We observe that, for all grid levels k, the Hilbert space (X, ‖ · ‖X) is the interpolant

between (X−, ‖ · ‖X−,k) and (X+, ‖ · ‖X+,k
) at 1

2 , i.e.,

X = [(X−,k), (X+,k)]1/2. (4.29)

Note that this is also satisfied in classical proof for the Laplace equation, cf Hack-

busch [35]. There the norms are – in the notation of the present thesis – ‖ · ‖X−,k =

h−1
k ‖ · ‖L2(Ω), ‖ · ‖sX = ‖ · ‖H1(Ω) and ‖ · ‖X+,k

= hk‖ · ‖H2(Ω).
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We want to mention that in Schöberl, Simon and Zulehner [53] the norm ‖ · ‖X+,k

was defined in a different way, as it is done in this thesis. There, the relation (4.29)

was not satisfied. In Section 4.5 we will see that this relation can be used to construct

the spaces needed for the partial regularity case in a straight-forward way.

Condition (A3)

The following lemma shows condition (A3), as introduced on page 56.

Lemma 43 There is a constant CI > 0 such that

inf
(yk,pk)∈Yk×Pk

(
‖y − yk‖2Y + ‖p− pk‖2P

)1/2 ≤ CI (‖y‖Y+,k + ‖p‖P+,k

)1/2
holds for all y ∈ Y+ and p ∈ P+.

Proof: Throughout this proof, C is a generic constant that only depends on the

constant in Theorem 16.

Due to Theorem 16 there is an interpolation operator such that for all y ∈ H2(Ω)

‖y −Πky‖2L2(Ω) ≤ C‖y‖
2
L2(Ω) ‖y −Πky‖2L2(Ω) ≤ Ch

2
k‖y‖2H1(Ω)

‖y −Πky‖2H1(Ω) ≤ C‖y‖
2
H1(Ω) ‖y −Πky‖2H1(Ω) ≤ Ch

2
k‖y‖2H2(Ω)

holds.

Moreover we find out that for all Hilbert spaces A1 and A2 the relation ‖ · ‖[A1,A2]1/2 ≤√
2‖ · ‖A1∩A2 holds. Therefore, the following inequality holds:

α1/2‖y‖2H1(Ω) ≤ 2
(
‖y‖2L2(Ω) + α‖y‖2H2(Ω)

)
.

So we have(
1 + α1/2h−2

k

)
‖y −Πky‖2Y

=
(

1 + α1/2h−2
k

)(
‖y −Πky‖2L2(Ω) + α1/2‖y −Πky‖2H1(Ω)

)
= ‖y −Πky‖2L2(Ω) + α1/2h−2

k ‖y −Πky‖2L2(Ω)

+ α1/2‖y −Πky‖2H1(Ω) + αh−2
k ‖y −Πky‖2H1(Ω)

≤ C
(
‖y‖2L2(Ω) + α1/2‖y‖2H1(Ω) + α1/2‖y‖2H1(Ω) + α‖y‖2H2(Ω)

)
≤ C

(
‖y‖2L2(Ω) + α‖y‖2H2(Ω)

)
= C

(
1 + α1/2h−2

k

)
‖y‖2Y+,k .
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As we can show the analogous result for ‖ · ‖P and ‖ · ‖P+,k
, the desired result follows

immediately. �

Condition (A5)

Similar to last section, condition (A5), introduced on page 60, reduces for quasi-

uniform grids to show

C2
C ≤

1 + α1/2h−2
k−1

1 + α1/2h−2
k

≤ C2
C .

This holds in a standard setting for CC = 1
2 and CC = 1.

Convergence result

As we have shown the conditions (A1), (A1a), (A3) and (A4), we can apply Theo-

rem 26 and obtain the following result.

Corollary 44 Consider Model Problem 2 and assume that the regularity assump-

tion (R) is satisfied. Then the approximation property holds with a constant CA inde-

pendent of the grid level k and the choice of the parameter α.

If the result is combined with a statement on the smoothing property, the convergence

of the two-grid method follows. For the preconditioned normal equation smoother,

we can combine the approximation property with Theorems 23 and 29 and obtain the

following statement.

Corollary 45 Consider Model Problem 2, assume that the regularity assumption (R)

is satisfied. Assume that the normal equation smoother (Subsections 3.2.1 and 4.1.4)

is applied and that Lk and τ are chosen as mentioned in Corollary 25.

Then there is a constant C > 0 independent of the grid level k and the choice of the

parameter α such that ∥∥∥x(1)
k − xk

∥∥∥
X−,k

≤ C√
ν

∥∥∥x(0)
k − xk

∥∥∥
X−,k

(4.30)

holds, where xk is the exact solution, x
(0)
k is the starting value and x

(1)
k is the iterate

after one step of the two-grid or the W-cycle multigrid method.

Therefore, for ν large enough, the convergence rate is bounded away from 1 by a constant

independent of the grid level k and the parameter α.
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The convergence result is a statement in non-standard mesh-dependent norm ‖ · ‖X−,k .

The following corollary shows that this result also implies convergence (with the same

rate) in the standard norm ‖ · ‖L2(Ω).

Corollary 46 Under the notations and assumptions of Corollary 45 there is a constant

C > 0 and a factor q = C√
ν

, both independent of k and α, such that the L2-convergence

result ∥∥∥x(n)
k − xk

∥∥∥
L2(Ω)

≤ Cqn‖yD‖L2(Ω)

holds for all n ∈ N and all α ∈ (0, 1], provided y
(0)
k = p

(0)
k = 0.

Proof: This proof was published in Takacs and Zulehner [62].

Corollary 45 states (4.30), which is equivalent to(∥∥∥y(n)
k − yk

∥∥∥2

L2(Ω)
+ α−1

∥∥∥p(n)
k − pk

∥∥∥2

L2(Ω)

)1/2

≤ qn
(∥∥∥y(0)

k − yk
∥∥∥2

L2(Ω)
+ α−1

∥∥∥p(0)
k − pk

∥∥∥2

L2(Ω)

)1/2

.

Assuming y
(0)
k = p

(0)
k = 0 implies

(∥∥∥y(n)
k − yk

∥∥∥2

L2(Ω)
+ α−1

∥∥∥p(n)
k − pk

∥∥∥2

L2(Ω)

)1/2

≤ qn
(
‖yk‖2L2(Ω) + α−1 ‖pk‖2L2(Ω)

)1/2
,

The right-hand-side is bounded from above by qn‖xk‖X . Using (A1a), we obtain

‖xk‖X ≤ C−1 sup
x̃k∈Xk\{0}

B(xk, x̃k)

‖x̃k‖X
= C−1 sup

x̃k∈Xk\{0}

F(x̃k)

‖x̃k‖X
.

Using

F(ỹk, p̃k) = (yD, ỹk)L2(Ω) ≤ ‖yD‖L2(Ω)‖ỹk‖L2(Ω) ≤ ‖yD‖L2(Ω)‖(ỹk, p̃k)‖X ,

we obtain ‖xk‖X ≤ C−1‖yD‖L2(Ω) and further

(∥∥∥y(n)
k − yk

∥∥∥2

L2(Ω)
+ α−1

∥∥∥p(n)
k − pk

∥∥∥2

L2(Ω)

)1/2

≤ C−1qn ‖yD‖L2(Ω) .

For α ≤ 1, we have(∥∥∥y(n)
k − yk

∥∥∥2

L2(Ω)
+
∥∥∥p(n)

k − pk
∥∥∥2

L2(Ω)

)1/2

≤
(∥∥∥y(n)

k − yk
∥∥∥2

L2(Ω)
+ α−1

∥∥∥p(n)
k − pk

∥∥∥2

L2(Ω)

)1/2

,

which completes the proof. �



4.3 Application to the model problem 2: a robust convergence result based on full

regularity
83

If the Courant element is chosen for discretization, an efficient implementation of the

normal equation smoother for Model Problem 1 is possible using

L̂k :=

(
diag (Mk + α1/2Kk)

α−1diag (Mk + α1/2Kk)

)
. (4.31)

If we fix this choice of L̂k, a refined analysis allows to compute how the damping param-

eter τ̂ has to be chosen such that the conditions of Corollary 25 and, as a consequence

the conditions of Corollary 45, are satisfied.

Corollary 47 For the choice (4.31) and

τ̂ ∈
(

0,
1

8

)
. (4.32)

the conditions of Corollary 25 are satisfied.

Proof: The matrix Lk is given by

Lk =

(
(1 + α1/2h−2

k )Mk

α−1(1 + α1/2h−2
k )Mk

)
.

Due to standard scaling arguments, this matrix is spectrally equivalent to L̂k, specified

in (4.31).

Let Âk := diag
(
Mk + α1/2Kk

)
. Since the Courant element is chosen for discretization,

the matrix Kk is diagonal dominant and therefore 2 diagKk ≥ Kk and 2 diagMk ≥
Mk holds. Therefore, the spectral radius of L̂−1

k Ak can be estimated from above as

follows.

ρ(L̂−1
k Ak) = ρ

(
Â−1
k MkÂ

−1/2
k α1/2Â

−1/2
k KkÂ

−1/2
k

α1/2Â−1
k KkÂ

−1/2
k −Â−1/2

k MkÂ
−1/2
k

)
≤ α1/2ρ

(
Â
−1/2
k KkÂ

−1/2
k

)
+ ρ

(
Â
−1/2
k MkÂ

−1/2
k

)
≤ 4,

which shows that for (4.32) the conditions of Corollary 25 are satisfied. �

Remark 48 (Other smoothers) We want to mention, that other smoothers, like

Uzawa type smoothers discussed in Schöberl, Simon and Zulehner [53] and collec-

tive point smoothers which will be discussed in the next section, also satisfy the smooth-

ing property for the model problem and the norms introduced in this section. Therefore

also for these smoothers convergence can be guaranteed.
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4.4 Smoothing property for collective point smoothers and its

application to the model problem 2

In the last section, we gave a rigorous convergence result for the case that the normal

equation smoother is chosen. In this section, we show that the convergence results also

holds if a collective point smoother is used. Here, we have to restrict to the case of

collective Richardson smoothers. In Theorem 49 we give a smoothing result that relies

on algebraic relations between the involved matrices. In Corollary 50, we see that this

theorem can be applied in the framework of this thesis for Model Problem 2.

As already mentioned, the collective point smoothers are very popular and have been

proposed, e.g., in Trottenberg [66], Borzi, Kunisch and Kwak [12], Borzi and

Schulz [13] and Lass [41]. Convergence analysis based on Fourier analysis was avail-

able, but a rigorous convergence analysis was, up to the author’s knowledge, not avail-

able. The convergence theorem presented in this section was worked out an and pub-

lished in Takacs and Zulehner [62].

Theorem 49 Consider the block-matrix Ak, which is given by

Ak =

(
Ak Bk

Bk −α−1Ak

)
,

where Ak, Bk ∈ RNk×Nk are symmetric and positive definite matrices. Let the precon-

ditioner Âk be given by

Âk :=

(
Âk B̂k

B̂k −α−1Âk

)
.

Here, Âk, B̂k ∈ RNk×Nk are preconditioners such that

ρ
(
I − Â−1

k Ak

)
≤ 1 and ρ

(
I − B̂−1

k Bk

)
≤ 1 (4.33)

holds. Moreover we assume that there is a symmetric positive definite matrix D̂k such

that Âk := ak D̂k and B̂k := bk D̂k, where ak > 0 and bk > 0 are scalars.

Then, for all τ ∈ (0, 1), there is a constant CS > 0 such that∥∥∥L−1/2
k Ak

(
I − τÂ−1

k Ak
)ν
L−1/2
k

∥∥∥
`2
≤ CS√

ν
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holds for all grid levels k ∈ {0, . . . ,K}, for all choices of α > 0 and for all ν ∈ N. Here,

the matrix Lk is given by

Lk :=

(
(Â2

k + αB̂2
k)1/2

α−1(Â2
k + αB̂2

k)1/2

)
.

Moreover, the iteration scheme is power-bounded, i.e.,∥∥∥L1/2
k

(
I − τÂ−1

k Ak
)ν
L−1/2
k

∥∥∥
`2
≤ 2

holds for all ν ∈ N.

Before we prove this theorem, we discuss its application to the Model Problem 2.

Corollary 50 Consider the reduced KKT-system for Model Problem 2. Then the col-

lective Richardson iteration, introduced in Subsection 3.2.2 satisfies for τ ∈ (0, 1) the

smoothing property with smoothing rate

η(ν) =
CS√
ν
,

where the constant CS is independent of the grid level k and the choice of the parame-

ter α.

If moreover the regularity assumption (R), introduced on page 27, is satisfied, there is

a constant C > 0 independent of the grid level k such that∥∥∥x(1)
k − xk

∥∥∥
X−,k

≤ C√
ν

∥∥∥x(0)
k − xk

∥∥∥
X−,k

holds, where xk is the exact solution, x
(0)
k is the starting value and x

(1)
k is the iterate

after one step of the two-grid or the W-cycle multigrid method. The convergence rate

may depend on the choice of the parameter α.

Therefore, for ν large enough, the convergence rate is bounded away from 1 by a constant

independent of the grid level k.

Proof: Here, we use Theorem 49 with D̂k = I and use the fact that Lk, introduced

in Theorem 49, and Lk, representing the norm ||| · |||0,k, introduced in Section 4.3, are

spectrally equivalent.

This shows the smoothing property. The approximation property was shown in Sec-

tion 4.3. Therefore, the convergence of the two-grid method and the W-cycle multigrid

method immediately follow. �
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For the proof of Theorem 49 we use a variant of Reusken’s lemma. See Reusken [52]

for the original work.

Lemma 51 Let Lk be a symmetric positive definite matrix and let Mk be a matrix

that is power bounded with respect to ‖ · ‖Lk , i.e., there is a constant CB such that

‖Mν
kxk‖Lk ≤ CB‖x‖Lk (4.34)

for all ν ∈ N.

Then for every choice of the damping parameter τ ∈ (0, 1) there is a constant C (inde-

pendent of hk and α) such that

‖(I −Mk)((1− τ)I + τMk)
ν‖Lk ≤

C√
ν

holds for all ν ∈ N.

Proof: The proof was given in Ecker and Zulehner [31] for the case ‖Mk‖Lk ≤ 1

and can easily be extended to the case that Mk is power bounded. �

Remark 52 Note that the fact that a linear iteration with iteration matrixMk is power

boundedness implies that also the damped iteration with damping parameter τ ∈ (0, 1)

and iteration matrix (1− τ)I + τMk is power bounded.

Due to Lemma 51, we have to show that the iteration matrix of the (non-damped)

iteration scheme is power bounded. This will be done in the next two lemmas.

Lemma 53 Using the notations of Theorem 49, the identity

‖(I − Â−1
k Ak)

ν‖Lk = ‖Z̃νk‖`2

holds for all ν ∈ N, where Z̃k is given by

Z̃k := (Â2
k + αB̂2

k)1/4 Zk (Â2
k + αB̂2

k)−1/4

with

Zk := (Âk +
√
αB̂ki)

−1(∆Ak +
√
α∆Bki).
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Proof: One easily verifies that

I − Â−1
k Ak = Â−1

k

(
Âk −Ak

)
=

(
Xk Yk

−αYk Xk

)

with

Xk :=
(
αÂ−1

k B̂k + B̂−1
k Âk

)−1 (
αÂ−1

k ∆Bk + B̂−1
k ∆Ak

)
Yk :=

(
αÂ−1

k B̂k + B̂−1
k Âk

)−1 (
B̂−1
k ∆Bk − Â−1

k ∆Ak

)
,

where ∆Ak := Âk −Ak and ∆Bk := B̂k −Bk.

A similarity transformation with the matrix

Nk :=

(
iI −iI
√
αI

√
αI

)
,

leads to a block-diagonal matrix Mk:

Mk = N−1
k

(
I − Â−1

k Ak
)
Nk

=

(
Xk − i

√
αYk

Xk + i
√
αYk

)

with

Xk − i
√
αYk =

(
Âk +

√
αB̂ki

)−1 (
∆Ak +

√
α∆Bki

)
Xk + i

√
αYk =

(
Âk −

√
αB̂ki

)−1 (
∆Ak −

√
α∆Bki

)
.

It is easy to see that

NkNH
k = 2

(
I

α I

)
,

where NH
k denotes the Hermitian transpose of Nk. We introduce

Ñk :=
1

2

(
(Â2

k + αB̂2
k)−1/4

(Â2
k + αB̂2

k)−1/4

)
Nk

and obtain
(
ÑkÑH

k

)−1
= Lk. The matrix

M̃k = Ñ−1
k

(
I − Â−1

k Ak
)
Ñk

is block diagonal with (1,1)-block Z̃k. The (2,2)-block is the conjugate complex of the

(1,1)-block. Therefore obviously ∥∥∥M̃ν
k

∥∥∥
`2

=
∥∥∥Z̃νk∥∥∥

`2
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holds. Since∥∥∥M̃ν
k

∥∥∥2

`2
=
∥∥∥(Ñ−1

k

(
I − Â−1

k Ak
)
Ñk
)ν∥∥∥2

`2

=
∥∥∥Ñ−1

k

(
I − Â−1

k Ak
)ν
Ñk
∥∥∥2

`2

= ρ

(
ÑH
k

(
I − Â−1

k Ak
)νT
Ñ−Hk Ñ−1

k

(
I − Â−1

k Ak
)ν
Ñk
)

= ρ

(
L−1
k

(
I − Â−1

k Ak
)νT
Lk
(
I − Â−1

k Ak
)ν)

=
∥∥∥L1/2

k

(
I − Â−1

k Ak
)ν
L−1/2
k

∥∥∥2

`2

=
∥∥∥(I − Â−1

k Ak
)ν∥∥∥2

Lk
,

the proof is completed. �

Lemma 54 Under the assumptions and notations of Theorem 49 the matrix I−Â−1
k Ak

is power bounded with constant 2, i.e., it satisfies (4.34) with CB = 2.

Proof: It is sufficient to show that Z̃k, given in Lemma 53, is power bounded (with

constant 2). We will show that

r(Z̃k) ≤ 1 (4.35)

holds, where

r(Z̃k) := sup
xk∈CNk\{0}

∣∣∣∣∣(Z̃kxk, xk)`2(xk, xk)`2

∣∣∣∣∣ (4.36)

is the numerical radius of the matrix Z̃k.

Observe that

Zk = (ak +
√
αbki)

−1D̂−1
k (∆Ak +

√
α∆Bki)

and, therefore,

Z̃k = (Â2
k + αB̂2

k)1/4 Zk (Â2
k + αB̂2

k)−1/4 = D̂
1/2
k Zk D̂

−1/2
k

= (ak +
√
αbki)

−1D̂
−1/2
k (∆Ak +

√
α∆Bki)D̂

−1/2
k .

Hence we obtain

r(Z̃k) = sup
xk∈CNk\{0}

∣∣∣∣∣(Z̃kxk, xk)`2(xk, xk)`2

∣∣∣∣∣
= sup

xk∈CNk\{0}

∣∣∣∣∣ ((∆Ak +
√
α∆Bki)xk, xk)`2

(ak +
√
αbki)(D̂

1/2
k xk, D̂

1/2
k xk)`2

∣∣∣∣∣
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and further

r(Z̃k) = sup
xk∈CNk\{0}

∣∣∣∣∣(∆Akxk, xk)`2 +
√
α(∆Bkxk, xk)`2 i

(Âkxk, xk)`2 +
√
α(B̂kxk, xk)`2 i

∣∣∣∣∣
= sup

xk∈CNk\{0}

√
(∆Akxk, xk)

2
`2

+ α(∆Bkxk, xk)
2
`2

(Âkxk, xk)
2
`2

+ α(B̂kxk, xk)
2
`2

.

The last equation holds because all involved scalar products have real values. We know

that numerical radius is bounded by 1, if we can show that (∆Akxk, xk)
2
`2 ≤ (Âkxk, xk)

2
`2

and (∆Bkxk, xk)
2
`2 ≤ (B̂kxk, xk)

2
`2 holds for all xk ∈ CNk .

This property can be shown: The estimate (4.33) implies that

((Â
−1/2
k AkÂ

−1/2
k − I)xk, xk)`2 ≤ (xk, xk)`2

holds for all vectors xk ∈ CNk , since Âk is symmetric and positive definite. Using

∆Ak = Ak − Âk, this implies

(∆Akxk, xk)`2 ≤ (Âkxk, xk)`2 . (4.37)

Since Ak is symmetric and positive definite, we have moreover

−(Âkxk, xk)`2 ≤ (∆Akxk, xk)`2 . (4.38)

Combining (4.37) and (4.38) shows that

(∆Akxk, xk)
2
`2 ≤ (Âkxk, xk)

2
`2

holds for all xk ∈ CNk . The argument for Bk is completely analogous.

Hence we have shown (4.35).

For the next step we use that the numerical radius satisfies the power inequality

r(Mν) ≤ r(M)ν

for all (quadratic) matrices M and all ν ∈ N, see, e.g., Pearcy [46],.

Using the power inequality, the estimate (4.35) implies that

r
(
Z̃νk

)
≤ 1

holds for all ν ∈ N. Using the fact, that ‖M‖`2 ≤ 2 r(M) holds for all matrices, we

know that ∥∥∥Z̃νk∥∥∥
`2
≤ 2
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holds for all ν ∈ N, which finishes the proof. �

Additionally, we need that the preconditioner Âk can be bounded from above using the

matrix Lk:

Lemma 55 Under the assumptions and notations of Theorem 49, we have∥∥∥L−1/2
k ÂkL

−1/2
k

∥∥∥
`2

= 1.

Proof: Using the definition Ẑk :=
(
Â2
k + αB̂2

k

)1/4
, we observe that Ẑk =(

a2
k + αb2k

)1/4
D̂

1/4
k . Therefore the desired result immediately follows:

∥∥∥L−1/2
k ÂkL

−1/2
k

∥∥∥
`2

=

∥∥∥∥∥
(

Ẑ−1
k ÂkẐ

−1
k Ẑ−1

k α1/2B̂kẐ
−1
k

Ẑ−1
k α1/2B̂kẐ

−1
k −Ẑ−1

k ÂkẐ
−1
k

)∥∥∥∥∥
`2

=
(
a2
k + αb2k

)−1/2

∥∥∥∥∥
(

akI α1/2bkI

α1/2bkI −akI

)∥∥∥∥∥
`2

= 1.

�

We combine Lemmas 51 – 55 to prove Theorem 49 as follows.

Proof of Theorem 49: Let Mk = I − Â−1
k Ak. Lemma 54 states that

‖Mν
k‖Lk ≤ 2,

i.e., condition (4.34), holds. Using Lemma 51 we conclude

‖(I −Mk)((1− τ)I + τMk)
ν‖Lk ≤

C√
ν
.

By plugging in for Mk, we obtain∥∥∥L1/2
k Â

−1
k Ak

(
I − τÂ−1

k Ak
)ν
L−1/2
k

∥∥∥
`2
≤ C√

ν
.

Using the sub-multiplicativity of norms, we obtain∥∥∥L−1/2
k Ak

(
I − τÂ−1

k Ak
)ν
L−1/2
k

∥∥∥
`2
≤ C√

ν

∥∥∥L−1/2
k ÂkL

−1/2
k

∥∥∥
`2
,

which finishes the proof, as we know from Lemma 55 that
∥∥∥L−1/2

k ÂkL
−1/2
k

∥∥∥
`2

= 1. �
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4.5 Application to the model problem 2: a robust

convergence result based on partial regularity

The convergence proofs we have presented so far are based on the regularity assump-

tion (R), introduced on page 27, which cannot be guaranteed on domains with reentrant

corners. One can show that on such domains there exist functions f ∈ L2(Ω) such that

the solution yf of the problem, find yf ∈ H1(Ω) such that

(yf , ỹ)H1(Ω) = 〈f, ỹ〉 for all ỹ ∈ H1(Ω),

has singularities close to the corners. This implies that yf is not in H2(Ω), but in a

weaker space H2−s(Ω) for some s ∈ (0, 1).

In this section, we carry out a convergence result that is based on the following regularity

assumption.

(R’) Partial elliptic regularity: There is a parameter s ∈ (0, 1) and a constant CR > 0

such that the following result holds. For f ∈ [Hs(Ω)]∗ let yf ∈ Y = H1(Ω) be

such that

(yf , ỹ)H1(Ω) = 〈f, ỹ〉 for all ỹ ∈ H1(Ω).

Then yf ∈ H2−s(Ω) and

‖yf‖H2−s(Ω) ≤ CR‖f‖[Hs(Ω)]∗ .

The following theorem guarantees that the regularity assumption (R’) is satisfied on

general polygonal domains.

Theorem 56 Let Ω be an open subset of R2 with polygonal boundary. The angels of

the domain Ω, measured from inside, are denoted by ωj for j = 1, . . . ,M . (So, ωj > π

refers to a reentrant corner.) Let ω be the largest angle, i.e., ω = maxj=1,...,M{ωj}.
Then the regularity assumption (R’) holds for all s with

max
{

0, 1− π

ω

}
< s ≤ 1.

For a proof see, e.g., Grisvard [33], Remark 2.4.6.

We can rewrite the lower bound for s in the following way: s = max
{

0, 1− π
ω

}
+ ε with

ε > 0. A simple example for a non-convex polygonal domain is the L-shaped domain

(Figure 4.1). For the L-shaped domain, we obtain s = 1
3 + ε.
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Ω1=3Π�2 Ω2=Π�2

Ω6=Π�2

Ω3=Π�2Ω4=Π�2

Ω5=Π�2

Figure 4.1: L-shaped domain

In the next subsections, we introduce a regularity result that is based on partial regu-

larity. In Subsection 4.5.1 we discuss how to choose the norms for the case of partial

regularity. In Subsections 4.5.2 and 4.5.3 we show the smoothing property and the

approximation property for this choice of the norms. Finally, we summarize the results

and give an overall convergence result. The results presented in this section have been

published in the recent paper Takacs and Zulehner [63].

4.5.1 The choice of the norms

In this subsection we introduce the norms which we will use to carry out a convergence

result assuming that regularity assumption (R’) is guaranteed for some s ∈ (0, 1).

Here, the Hilbert spaces (their norms) X0
−,k := X−,k, X and X0

+,k := X+,k are the

Hilbert which we have introduced in Section 4.3 for showing the convergence for the

full elliptic regularity case.

In this section, the convergence is shown in the Hilbert space Xs
−,k, given by interpola-

tion:

Xs
−,k := [X−,k, X]s, (4.39)

i.e., Xs
−,k is the interpolation space of X−,k and X.

The next step is to construct a closed form of the norm on this Hilbert space. For this

purpose, we need the following lemma.

Lemma 57 For all Banach spaces A1 and A2, the Banach spaces A1 ∩ [A2, A1]θ and

[A1 ∩ A2, A1]θ are equal and have equivalent norms. The constants, describing the

equivalence, only depend on the choice of θ.
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Proof: In this proof, C > 0 is a generic constant which is independent of k and α but

which may depend on θ. First note that

‖u‖[A1∩A2,A1]θ ≥ C‖u‖[A1,A1]θ∩[A2,A1]θ ≥ C‖u‖A1∩[A2,A1]θ

follows directly from the monotonicity of the interpolation.

So it remains to show ‖u‖[A1∩A2,A1]θ ≤ C‖u‖A1∩[A2,A1]θ . Let u ∈ [A1 ∩ A2]θ ∩ A1. The

definition of the norms on the interpolation spaces (real K-method, cf. Lions and

Magenes [43]) and elementary relations yield

‖u‖2[A1∩A2,A1]θ
=

∫ ∞
0

t−2θ−1 inf
u1+u2=u

(
‖u1‖2A1

+ ‖u1‖2A2
+ t2‖u2‖2A1

)
dt

=

∫ 1

0
t−2θ−1 inf

u1+u2=u

(
‖u1‖2A1

+ ‖u1‖2A2
+ t2‖u2‖2A1

)
dt

+

∫ ∞
1

t−2θ−1 inf
u1+u2=u

(
‖u1‖2A1

+ ‖u1‖2A2
+ t2‖u2‖2A1

)
dt.

By replacing the infimum by a particular choice, using the triangular inequality and by

computing the integrals, we obtain

‖u‖2[A1∩A2,A1]θ

≤
∫ 1

0
t−2θ−1t2‖u‖2A1

dt (4.40)

+

∫ ∞
1

t−2θ−1 inf
u1+u2=u

(
(‖u‖A1 + ‖u2‖A1)2 + ‖u1‖2A2

+ t2‖u2‖2A1

)
dt

≤ 1

2− 2θ
‖u‖2A1

+
1

θ
‖u‖2A1

+ 2

∫ ∞
1

t−2θ−1

(
inf

u1+u2=u
‖u1‖2A2

+ (1 + t)2‖u2‖2A1

)
dt.

By a variable transformation and again using the definition of the norms on the inter-

polation spaces, we obtain that further

‖u‖2[A1∩A2,A1]θ

≤ 1

(1− θ)θ
‖u‖2A1

+ 2

(
1

2

)−2θ−1 ∫ ∞
1

(1 + t)−2θ−1 inf
u1+u2=u

(
‖u1‖2A2

+ (1 + t)2‖u2‖2A1

)
dt

=
1

(1− θ)θ
‖u‖2A1

+ 22θ+2

∫ ∞
2

t−2θ−1 inf
u1+u2=u

(
‖u1‖2A2

+ t2‖u2‖2A1

)
dt

≤ 1

(1− θ)θ
‖u‖2A1

+ 22θ+2‖u‖2[A2,A1]θ
≤ C(θ)2‖u‖2[A2,A1]θ∩A1

holds, which finishes the proof for C(θ) = max
{

(1− θ)−1/2θ−1/2, 2θ+1
}

. �

For further reference, the following lemma gives a closed representation of the

norm ‖ · ‖Xs
−,k

or, more precisely, we introduce a norm with closed form which is equiv-

alent to the norm ‖ · ‖Xs
−,k

.
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Lemma 58 The Hilbert space Xs
−,k, introduced in (4.39) by interpolation, is the linear

space

Xs
− = Hs(Ω)×Hs(Ω)

equipped with the mesh-dependent norm

‖x‖Xs
−,k

=
(
‖y‖2Y s−,k + ‖p‖2P s−,k

)1/2
,

where

‖y‖Y s−,k ∼
(

1 + α1/2h−2
k

)(1−s)/2 (
‖y‖2L2(Ω) + αs/2‖y‖2Hs(Ω)

)1/2
and

‖p‖P s−,k ∼ α
−1
(

1 + α1/2h−2
k

)(1−s)/2 (
‖p‖2L2(Ω) + αs/2‖p‖2Hs(Ω)

)1/2
.

Here, ∼ denotes the equivalence of norms, where the constants are independent of hk

and α.

Proof: First note that Xs
−,k, defined by (4.39), has product structure. Therefore,

it suffices to discuss the Hilbert spaces Y s
−,k and the P s−,k separately. First, we con-

sider Y s
−,k.

Using (4.39), the definitions of the norms ‖·‖Y 0
−,k

and ‖·‖Y and Lemma 57, we obtain

‖y‖Y s−,k = ‖y‖[(Y 0
−,k),Y ]s

= ‖y‖[(1+α1/2h−2
k )1/2L2(Ω),L2(Ω)∩α1/4H1(Ω)]s

∼
(

1 + α1/2h−2
k

)(1−s)/2
(‖y‖2L2(Ω) + αs/2‖y‖Hs(Ω))

1/2.

The same can be done for the Hilbert space P s−,k. �

In the present section we show the convergence in the Hilbert space Xs
−,k. This is done

using the smoothing property and the approximation property. In the context of the

present section these properties read as follows.

• Smoothing property: There is some function η with limν→∞ η(ν) = 0 such that

for all grid levels k ∈ N and all ν ∈ N the estimate

sup
x̃k∈Xk\{0}

B
(
x

(0,ν)
k − xk, x̃k

)
‖x̃k‖Xs

−,k

≤ η(ν)
∥∥∥x(0)

k − xk
∥∥∥
Xs
−,k

(4.41)

holds.
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• Approximation property: There is a constant CA > 0 such that for all grid levels

k ∈ N the estimate

∥∥∥x(1)
k − xk

∥∥∥
Xs
−,k

≤ CA sup
x̃k∈Xk\{0}

B
(
x

(0,ν)
k − xk, x̃k

)
‖x̃k‖Xs

−,k

(4.42)

holds.

Again, the combination of the smoothing property and the approximation property

implies the convergence of the two-grid method.

4.5.2 Smoothing property

In this subsection we show that the smoothing property for the full elliptic regularity

case can be carried over to the partial elliptic regularity case. Here, we are not interested

in constructing a particular smoother for the partial regularity case. Therefore we do

not show condition (A2).

Note that it is not a good idea to set up a normal equation smoother in the Hilbert

space Xs
−,k because the a matrix representing the norm ‖ · ‖Xs

−,k
cannot be inverted

efficiently. We are interested in using the same smoothers that we have proposed

for the full elliptic regularity case. The following theorem states that the smoothing

property (4.41) is satisfied.

Theorem 59 Assume that Ak is symmetric and that the smoother is given by

x
(0,m)
k := x

(0,m−1)
k + Â−1

k

(
f
k
−Ak x

(0,m−1)
k

)
for m = 1, . . . , ν, (4.43)

where Âk is a symmetric matrix. Assume that this smoother satisfies the smoothing

property in the norm ‖ · ‖X0
−,k

, i.e.,

sup
x̃k∈Xk

B
(
x

(0,ν)
k − xk, x̃k

)
‖x̃k‖X0

−,k

≤ η(ν)
∥∥∥x(0)

k − xk
∥∥∥
X0
−,k

holds. Moreover, assume that condition (A1a) holds and the smoother is power-

bounded, i.e., condition (4.7) holds.

Then for all s ∈ (0, 1) the smoother satisfies the smoothing property also in the norm

‖ · ‖Xs
−,k

, i.e., there is a constant C̃S, depending only on s, CD and CD and CB, such

that

sup
x̃k∈Xk

B
(
x

(0,ν)
k − xk, x̃k

)
‖x̃k‖Xs

−,k

≤ C̃S η(ν)1−s
∥∥∥x(0)

k − xk
∥∥∥
Xs
−,k

(4.44)
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is satisfied.

Proof: The proof is done using interpolation. By assumption, we know that the

smoothing property

sup
x̃k∈Xk

B
(
x

(0,ν)
k − xk, x̃k

)
‖x̃k‖X0

−,k

≤ η(ν)
∥∥∥x(0)

k − xk
∥∥∥
X0
−,k

is satisfied. We will also show that there is a constant C > 0 such that

sup
x̃k∈Xk

B
(
x

(0,ν)
k − xk, x̃k

)
‖x̃k‖X

≤ C‖x(0)
k − xk‖X (4.45)

holds. Then the interpolation theorem (Theorem 40) immediately implies (4.44).

In order to show (4.45), we reformulate the condition in matrix-vector notation:

‖Ak(I − τÂ−1
k Ak)

νrk‖Q−1
k
≤ C‖rk‖Qk

has to be shown for all rk := x
(0)
k − xk. Here, the matrix Qk represents the scalar

product (·, ·)X on Xk. In other words, we have to show that the spectral norm of

Pk := Q−1/2
k Ak(I − τÂ−1

k Ak)
νQ−1/2

k

is bounded by a constant. This matrix is symmetric, so we have

‖Pk‖`2 = ρ(Pk) = ρ
(
L1/2
k Q

−1
k Ak(I − τÂ

−1
k Ak)

νL−1/2
k

)
≤
∥∥∥L1/2

k Q
−1
k AkL

−1/2
k

∥∥∥
`2

∥∥∥L1/2
k (I − τÂ−1

k Ak)
νL−1/2

k

∥∥∥
`2
,

where ‖ · ‖`2 is the spectral norm and the matrix Lk represents the scalar product

(·, ·)X0
−,k

on Xk. Here, the second factor can be bounded from above by CB using

condition (4.7). The first factor can be bounded from above by two times the numerical

radius, where r(M) is the numerical radius of a matrix M . We obtain∥∥∥L1/2
k Q

−1
k AkL

−1/2
k

∥∥∥
`2
≤ 2 r

(
L1/2
k Q

−1
k AkL

−1/2
k

)

≤ 2 sup
xk∈RNk\{0}

|(L1/2
k Q

−1
k AkL

−1/2
k xk, xk)`2 |

|(xk, xk)`2 |

= 2 sup
xk∈RNk\{0}

|(Q−1/2
k LkQ−1

k AkQ
−1/2
k xk, xk)`2 |

|(Q−1/2
k LkQ

−1/2
k xk, xk)`2 |
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and further

∥∥∥L1/2
k Q

−1
k AkL

−1/2
k

∥∥∥
`2
≤ 2 sup

xk,yk∈R
Nk\{0}

|(Q−1/2
k AkQ

−1/2
k xk, yk)`2 |

|(xk, yk)`2 |

≤ 2
∥∥∥Q−1/2

k AkQ
−1/2
k

∥∥∥
`2

= 2 sup
xk∈RNk\{0}

|(Q−1/2
k AkQ

−1/2
k xk, xk)`2 |

(xk, xk)`2

= 2 sup
xk∈RNk\{0}

|(Akxk, xk)`2 |
(Qkxk, xk)`2

= 2 sup
xk∈RNk\{0}

|B(xk, xk)|
‖xk‖2X

≤ 2CD,

where CD is the constant in (A1a). This shows (4.45) which finishes the proof. �

The conditions of this theorem are satisfied for both smoothers introduced in this work,

the collective Richardson smoother and the preconditioned normal equation smoother.

Corollary 60 Both, the collective Richardson smoother and preconditioned normal

equation smoother, satisfy the smoothing property (4.41) with smoothing rate

η(ν) = CS(s) ν−(1−s)/2,

where the constant CS(s) is independent of k and α. The constant CS(s) may depend

on s.

Proof: For both smoothers, the smoothing property in the norm ‖·‖X0
−,k

was shown in

Theorem 23 or Corollary 50, respectively. In both cases, the smoothing rate was given

by η(ν) = CSν
−1/2.

Both methods can be represented in the closed from (4.43) with symmetric matrix Âk
and both methods are power-bounded (Lemma 24 or Lemma 54, respectively).

Therefore Theorem 59 implies the desired result. �

Remark 61 We can show in a similar way that, provided power boundedness is satis-

fied for s = 0, that power boundedness is also satisfied for s ∈ (0, 1).
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4.5.3 Approximation property

In this subsection, we show the approximation property by showing the conditions

(A1), (A1a), (A3) and (A4). Before we show the conditions, we have to introduce

the Hilbert spaceXs
+,k. The Hilbert spacesXs

−,k andX have already been introduced.

The Hilbert space Xs
+,k is defined analogously to Xs

−,k by interpolation:

Xs
+,k := [X+,k, X]s (4.46)

For further reference, the following lemma gives a closed representation of the

norm ‖ · ‖Xs
+,k

or, more precisely, we introduce a norm with closed form which is equiv-

alent to the norm ‖ · ‖Xs
+,k

.

Lemma 62 The Hilbert space Xs
+,k, introduced in (4.46), is the linear space

Xs
+ = H2−s(Ω)×H2−s(Ω)

equipped with a mesh-dependent norm

‖x‖Xs
+,k

=
(
‖y‖2Y s+,k + ‖p‖2P s+,k

)1/2
,

where

‖y‖Y s+,k ∼
(

1 + α1/2h−2
k

)−(1−s)/2 (
‖y‖2L2(Ω) + α(2−s)/2‖y‖2H2−s(Ω)

)1/2
and

‖p‖P s+,k ∼ α
−1
(

1 + α1/2h−2
k

)−(1−s)/2 (
‖p‖2L2(Ω) + α(2−s)/2‖p‖2H2−s(Ω)

)1/2
.

Here, ∼ denotes the equivalence of norms, where the constants are independent of hk

and α.

Proof: First note that Xs
+,k, defined by (4.46), has product structure. Therefore,

it suffices to discuss the Hilbert spaces Y s
+,k and the P s+,k separately. First, we con-

sider Y s
+,k.

Using (a) equation (4.46), (b) equation (4.29) and the reiteration theorem (Theo-

rem 39), (c) the definitions of the norms ‖ · ‖Y 0
+,k

and ‖ · ‖Y 0
−,k

and (d) Lemma 57,

we obtain

‖y‖Y s+,k =(a) ‖y‖[Y+,k,Y ]s ∼(b) ‖y‖[Y+,k,Y−,k]s/2

=(c)

(
1 + α1/2h−2

k

)−(1−s)/2
‖y‖[L2(Ω)∩α1/2H2(Ω),L2(Ω)]s/2

∼(d)

(
1 + α1/2h−2

k

)(s−1)/2 (
‖y‖2L2(Ω) + α(2−s)/2‖y‖2H2−s(Ω)

)1/2
.
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The same can be done for the Hilbert space P s+,k. �

The next step is to show the conditions (A1), (A1a), (A3) and (A4).

Conditions (A1) and (A1a)

The conditions (A1) and (A1a) have already be shown in Theorem 12.

Condition (A3)

In Lemma 43, we have shown that the condition (A3), introduced on page 56, is

satisfied for s = 0, i.e., we have shown that

inf
xk∈Xk

‖x− xk‖X ≤ CI‖x‖X0
+,k

holds for all x ∈ X0
+.

Based on this result, the following lemma states that condition (A3) is also satisfied

for s ∈ (0, 1).

Lemma 63 In the framework of this section, condition (A3) is satisfied for all s ∈
(0, 1), i.e.,

inf
xk∈Xk

‖x− xk‖X ≤ CI‖x‖Xs
+,k

holds for all x ∈ Xs
+.

Proof: Here, the analysis for the state y and for the adjoined state p completely

decouples. We consider the state y first. We know that condition (A3) holds for s = 0,

which implies that

‖y −Πky‖Y ≤ C‖y‖Y 0
+,k

(4.47)

holds for all y ∈ Y 0
+.

Due to Theorem 16, we know that there is a projection operator Πk on Y = H1(Ω)

such that the estimate (4.47) and the following boundedness result hold.

‖y −Πky‖H1(Ω) ≤ C‖y‖H1(Ω) and ‖y −Πky‖L2(Ω) ≤ C‖y‖L2(Ω).

This implies that

‖y −Πky‖Y ≤ C‖y‖Y
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holds for all y ∈ Y . The interpolation theorem (Theorem 40), relation (4.24) and the

fact that Y + Y 0
+ = Y states that√

1

2s(1− s)
‖y −Πky‖Y = ‖y −Πky‖[Y,Y ]s ≤ C‖y‖[(Y 0

+,k),Y ]s = C‖y‖Y s+,k

holds for all y ∈ Y s
+. The analysis for p is completely analogous. �

Condition (A4)

As it was done in Section 4.5, condition (A4), introduced on page 56, is shown in two

steps.

First note that one can show completely analogous to Lemma 30, that for F ∈ (X−)∗ =

(Hs(Ω))∗ × (Hs(Ω))∗, the corresponding solution xF ∈ X+ = H2−s(Ω)×H2−s(Ω).

This does not allow to construct an estimate which is robust in α and k. For con-

structing an estimate, we use Remark 27 and show that the inf-sup-condition (4.12) is

satisfied. Theorem 41 states that condition (4.12) is a consequence of conditions (A4’)

and (A4”).

First, we show the condition (A4’). Using the closed forms of the norms, introduced

in Lemma 58 and Lemma 62, this condition reads as follows:

0 ≤ (y, y)
1/2
L2(Ω)

≤ CR3ψ
−1
k

(
1 + α1/2h−2

k

)(1−s)/2 (
‖y‖2L2(Ω) + αs/2‖y‖2Hs(Ω)

)1/2

≤ CR4ψk

(
1 + α1/2h−2

k

)−(1−s)/2 (
‖y‖2L2(Ω) + α(2−s)/2‖y‖2H2−s(Ω)

)1/2

and

0 ≤ α−1/2(p, p)
1/2
L2(Ω)

≤ CR3α
−1/2ψ−1

k

(
1 + α1/2h−2

k

)(1−s)/2 (
‖p‖2L2(Ω) + αs/2‖p‖2Hs(Ω)

)1/2

≤ CR4α
−1/2ψk

(
1 + α1/2h−2

k

)−(1−s)/2 (
‖p‖2L2(Ω) + α(2−s)/2‖p‖2H2−s(Ω)

)1/2
.

This is satisfied for CR3 = CR4 = 1 and ψk := (1+α1/2h−2
k )(1−s)/2 because ‖·‖H2−s(Ω) ≥

‖ · ‖Hs(Ω) holds.

So, it remains to show the condition (A4”), i.e., that

CR1‖y‖Y s+,k ≤ sup
ỹ∈Y \{0}

(y, ỹ)L2(Ω)

‖ỹ‖Y s−,k
+ sup
p̃∈P\{0}

(y, p̃)H1(Ω)

‖p̃‖P s−,k
(4.48)
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holds for all y ∈ Y s
+. By plugging in ‖ · ‖P s−,k = α−1/2‖ · ‖Y s−,k and combining the two

suprema to one supremum, we obtain that

CR1‖y‖Y s+,k ≤ sup
ỹ∈Y \{0}

(y, ỹ)L2(Ω) + α1/2(y, p̃)H1(Ω)

‖ỹ‖Y s−,k
for all y ∈ Y s

+ (4.49)

implies (4.48). Using the definition of the norms, (4.49) reads as follows:

CR1‖y‖L2(Ω)∩α1/2−s/4H2−s(Ω) ≤ sup
ỹ∈H1(Ω)\{0}

(y, ỹ)L2(Ω) + α1/2(y, ỹ)H1(Ω)

‖ỹ‖L2(Ω)∩αs/4Hs(Ω)

(4.50)

holds for all y ∈ H2−s(Ω).

For showing (4.50), we analyze the elliptic problem (4.51) first.

Lemma 64 Assume that the assumption (R’) is satisfied for some s ∈ (0, 1).

Then there is a constant CE > 0 such that for all α > 0 and all f ∈ [Hs(Ω)]∗ the

solution of the problem, find yf ∈ H1(Ω) such that

(yf , ỹ)L2(Ω) + α1/2(yf , ỹ)H1(Ω) = 〈f, ỹ〉 for all ỹ ∈ H1(Ω), (4.51)

satisfies yf ∈ H2−s(Ω) and

‖yf‖L2(Ω)∩α1/2−s/4H2−s(Ω) ≤ CE‖f‖[L2(Ω)]∗+αs/4[Hs(Ω)]∗

holds. The constant CE only depends on the constant in the assumption (R’).

Proof: Let f ∈ [Hs(Ω)]∗. The first step is to show that yf ∈ H2−s(Ω).

From yf ∈ H1(Ω) we conclude (yf , ·)L2(Ω) ∈ [Hs(Ω)]∗. Consider the following problem.

Find y ∈ Y such that

(y, ỹ)H1(Ω) =
〈
α−1/2(f − yf ), ỹ

〉
holds for all ỹ ∈ H1(Ω).

The regularity assumption (R’) states yf ∈ H2−s(Ω) and

‖yf‖H2−s(Ω) ≤ CR
(
‖f‖[Hs(Ω)]∗ + α−1/2‖yf‖[Hs(Ω)]∗

)
. (4.52)

Condition (A1) implies ‖yf‖H1(Ω) ≤ C−1‖f‖[Hs(Ω)]∗ . By combining this estimate

with (4.52), we obtain

‖yf‖H2−s(Ω) ≤ C(α)‖f‖[Hs(Ω)]∗ ,

where C(α) is some constant that may depend on α.
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Now, in a second step we construct a result that is robust in α. Let f ∈ L2(Ω) be

arbitrarily but fixed.

We consider the following problem with solution yf : Find y ∈ H1(Ω) such that

(y, ỹ)H1(Ω) =
(
α−1/2(f − yf ), ỹ

)
L2(Ω)

holds for all ỹ ∈ H1(Ω).

The Lax-Milgram theorem (Theorem 4) applied directly to the energy norm ‖ · ‖H1(Ω)

shows that the solution yf ∈ H1(Ω) satisfies

‖yf‖H1(Ω) = α−1/2‖f − yf‖[H1(Ω)]∗ (4.53)

and the regularity assumption (R’) implies that yf ∈ H2−s(Ω) and

‖yf‖H2−s(Ω) ≤ CR α−1/2‖f − yf‖[Hs(Ω)]∗ . (4.54)

We consider the following problem with solution yf : Find y ∈ H1(Ω) such that

(y, ỹ)L2(Ω) + α1/2(y, ỹ)H1(Ω) = (f, ỹ)L2(Ω) holds for all ỹ ∈ H1(Ω). (4.55)

The Lax-Milgram theorem applied directly to the energy norm ‖·‖L2(Ω)∩α1/4H1(Ω) shows

that the solution yf satisfies

‖yf‖L2(Ω)∩α1/4H1(Ω) = ‖f‖[L2(Ω)∩α1/4H1(Ω)]∗ . (4.56)

The combination of (4.53) and (4.56) shows:

‖f − yf‖[α1/4H1(Ω)]∗ ≤ C‖f‖[L2(Ω)∩α1/4H1(Ω)]∗ . (4.57)

If we choose ỹ = y = yf in (4.55), we obtain using α1/2(yf , ỹ)H1(Ω) ≥ 0 that ‖yf‖2L2(Ω) ≤
‖f‖L2(Ω)‖yf‖L2(Ω) and therefore

‖yf‖L2(Ω) ≤ ‖f‖L2(Ω)

and therefore

‖f − yf‖L2(Ω) ≤ C‖f‖L2(Ω). (4.58)

The combination of (4.57) and (4.58) and the interpolation theorem (Theorem 40)

together with (4.26) shows:

‖f − yf‖[αs/4Hs(Ω)]∗ ≤ C‖f‖[L2(Ω)∩αs/4Hs(Ω)]∗ ,

which reads, if combined with (4.54), as follows:

‖yf‖α1/2−s/4H2−s(Ω) ≤ C‖f‖[L2(Ω)∩αs/4Hs(Ω)]∗ . (4.59)
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The equation (4.56) implies

‖yf‖L2(Ω) ≤ ‖f‖[L2(Ω)∩α1/4H1(Ω)]∗ ,

which shows using (4.24)

‖yf‖L2(Ω) ≤ ‖f‖[L2(Ω)∩α1/4Hs(Ω)]∗ ,

which can be combined with (4.59) to the desired result:

‖yf‖L2(Ω)∩α1/2−s/4H2−s(Ω) ≤ C‖f‖L2(Ω)+αs/4[Hs(Ω)]∗

for all f ∈ L2(Ω).

Since L2(Ω) is dense in [Hs(Ω)]∗ we have for f0 ∈ [Hs(Ω)]∗ and fε ∈ L2(Ω) with

‖f0 − fε‖[Hs(Ω)]∗ ≤ ε that

‖yf0‖L2(Ω)∩α1/2−s/4H2−s(Ω) ≤ ‖yfε‖L2(Ω)∩α1/2−s/4H2−s(Ω) + ‖yfε − yf0‖L2(Ω)∩α1/2−s/4H2−s(Ω)

≤ C‖fε‖L2(Ω)+αs/4[Hs(Ω)]∗ + C(α)‖fε − f0‖[Hs(Ω)]∗

≤ C‖f0‖L2(Ω)+αs/4[Hs(Ω)]∗ + (1 + C(α))‖fε − f0‖[Hs(Ω)]∗

≤ C‖f0‖L2(Ω)+αs/4[Hs(Ω)]∗ + (1 + C(α))ε

holds, which shows the desired result for ε → 0. Here, yf0 and yfε are the solutions of

the variational problem (4.51) for right-hand-sides f0 and fε, respectively. �

Using the fact that H1(Ω) is dense in Hs(Ω), the statement of Lemma 64 implies

sup
ỹ∈H1(Ω)\{0}

(y, ỹ)L2(Ω) + α1/2(y, ỹ)H1(Ω)

‖ỹ‖L2(Ω)∩αs/4Hs(Ω)

= sup
ỹ∈H1(Ω)\{0}

〈f, ỹ〉
‖ỹ‖L2(Ω)∩αs/4Hs(Ω)

= sup
ỹ∈Hs(Ω)\{0}

〈f, ỹ〉
‖ỹ‖L2(Ω)∩αs/4Hs(Ω)

= ‖f‖[L2(Ω)∩αs/4Hs(Ω)]∗

≥ C−1
E ‖y‖L2(Ω)∩α1/2−s/4H2−s(Ω).

This shows (4.50) and therefore (A4”).

As we have shown (A4’) and (A4”), Theorem 41 implies (4.12) and, as a conse-

quence, (A4).

Approximation property

As we have shown (A1), (A1a), (A3) and (A4), we can apply Theorem 26 and

conclude as follows.
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Corollary 65 Consider Model Problem 2, assume that the regularity assumption (R’)

is satisfied for some s ∈ (0, 1). Then the approximation property holds with a constant

CA independent of the grid level and the choice of α.

4.5.4 Convergence result

Again, the combination of approximation property and smoothing property shows the

convergence of the two-grid method.

We could show that the preconditioned normal equation smoother and the collective

Richardson smoother satisfy the conditions of the last subsections, i.e., we could show

that the smoothing property for these methods holds. This shows – if also the conditions

of Corollary 65 are satisfied – that the two-grid method converges.

For showing that also the W-cycle multigrid method converges, we have to show con-

dition (A5). This condition was satisfied for the case s = 0, i.e., we had

CC‖xk−1‖X0
−,k
≤ ‖xk−1‖X0

−,k−1
≤ CC‖xk−1‖X0

−,k

for all xk−1 ∈ Xk−1. Of course, also

‖xk−1‖X ≤ ‖xk−1‖X ≤ ‖xk−1‖X

is satisfied. Using the interpolation theorem (Theorem 40) we obtain

ĈC‖xk−1‖[(X0
−,k),X]s ≤ ‖xk−1‖[(X0

−,k−1),X]s ≤ ĈC‖xk−1‖[(X0
−,k),X]s ,

and further

ĈC‖xk−1‖Xs
−,k
≤ ‖xk−1‖Xs

−,k−1
≤ ĈC‖xk−1‖Xs

−,k
.

Using the smoothing property (Corollary 60), the approximation property (Corol-

lary 65) and condition (A5) we conclude as follows.

Corollary 66 Consider Model Problem 2, assume that regularity assumption (R’) is

satisfied for some s ∈ (0, 1). Assume that the normal equation smoother (Subsec-

tions 3.2.1 and 4.1.4) or that the collective Richardson smoother is applied.
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Then there is a constant C > 0 independent of the grid level k and the choice of the

parameter α such that∥∥∥x(1)
k − xk

∥∥∥
Xs
−,k

≤ C

ν(1−s)/2

∥∥∥x(0)
k − xk

∥∥∥
Xs
−,k

holds, where xk is the exact solution, x
(0)
k is the starting value and x

(1)
k is the iterate

after one step of the two-grid or the W-cycle multigrid method.

Therefore, for ν large enough, the convergence rate is bounded away from 1 by a constant

independent of the grid level k and the choice of α. The convergence rate may depend

on s.

4.6 Summary

We could show for all model problems and for both, the reduced KKT-system and

the non-reduced KKT-system, that the W-cycle multigrid iteration scheme with the

preconditioned normal equation smoother converges if ν is large enough, i.e., we obtain

a that there is a convergence rate q ∈ (0, 1) (independent of the grid level k) such that∥∥∥x(n)
k − xk

∥∥∥
L2(Ω)

≤ qn‖yD‖L2(Ω)

holds on all grid levels, provided x
(0)
k = 0. Here, xk is the exact solution and x

(n)
k is the

n-th iterate.

For the reduced KKT-system for Model Problem 2, we have shown convergence for two

smoothers: the preconditioned normal equation smoother and the collective Richard-

son smoother. We have shown in Sections 4.3 and 4.4 that we have in both cases the

same result as above but with convergence rate q independent of the grid level and of

the choice of the parameter α. In Section 4.5, we have relaxed the regularity assump-

tion (R) to regularity assumption (R’) which does not exclude reentrant corners.
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Chapter 5

Local Fourier analysis

Local Fourier analysis (or local mode analysis) is a commonly used approach for de-

signing and analyzing convergence properties of multigrid methods. In the late 1970s

A. Brandt proposed to use Fourier series to analyze multigrid methods, see, e.g.,

Brandt [19]. Local Fourier analysis provides a framework to analyze various nu-

merical methods with a unified approach that gives quantitative statements on the

methods under investigation. The computed bounds for the convergence rates are typi-

cally sharp. Other work on multigrid theory – such as the analysis presented in the last

chapter – typically just shows convergence and does not give sharp or realistic bounds

for the convergence rates.

Local Fourier analysis can be justified rigorously only in special cases, e.g., on rect-

angular domains with uniform grids and periodic boundary conditions, see, e.g.,

Brandt [20]. However, local Fourier analysis can also be interpreted as an heuris-

tic approach for a wide class of applications.

For the analysis of multigrid methods for saddle point problems, local Fourier anal-

ysis has been applied recently, e.g., in Trottenberg [66], Borzi, Kunisch and

Kwak [12] and Lass [41]. In Wienands [68] the method is explained as machinery

and a local Fourier analysis software LFA is presented. This software can be configured

using a graphical user interface and allows to approximate (numerically) smoothing and

convergence rates based on local Fourier analysis approaches for various problems and

multigrid approaches.

Upper bounds for smoothing rates or convergence rates can be formulated in terms of

logical formulas consisting of quantifiers and polynomial inequalities. These formulas

can be simplified by means of quantifier elimination using cylindrical algebraic decom-

position. This tool has been applied earlier for finite difference methods for (systems of)

ordinary and partial differential equations. There Hong, Liska and Steinberg [39]
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have transformed the necessary conditions for stability, asymptotic stability and well-

posedness of the given systems into statements on polynomial inequalities using Fourier

or Laplace transforms.

For applying local Fourier analysis, we have to restrict ourselves to Model Problem 2.

We consider the 2-by-2 formulation (reduced KKT-system) of the problem and the anal-

ysis is done for collective point smoothers (collective Jacobi and collective Gauss-Seidel

smoother). Note that the presented strategy for the computation of the convergence

rates is not restricted to this choice of the formulation of the problem or to the particular

smoother.

The results presented in this chapter were worked out in a joint work with V. Pill-

wein. The analysis for the one dimensional case was partly published in Pillwein and

Takacs [48]. For the two dimensional case, see Pillwein and Takacs [49], which

is not a part of the thesis. The authors of that paper have prepared Mathematica

notebooks1 which contain the computations presented in these papers.

This chapter is organized as follows. The local Fourier analysis framework is introduced

in Section 5.1. In Section 5.2, we will give a brief overview on quantifier elimination

and cylindrical algebraic decomposition, i.e., on the symbolic methods applied in order

to compute suprema symbolically. In Sections 5.3 and 5.4 we will apply the machinery

introduced in the first two sections to the model problem.

5.1 Local Fourier analysis framework

5.1.1 Iteration matrix

Here, we restrict ourselves to the two-grid analysis: We consider a two-grid iteration

scheme with νpre = ν/2 pre-smoothing and νpost = ν/2 post-smoothing steps.

The main goal of a convergence analysis is to find a (sharp) bound for the convergence

rate. This bound is the smallest factor q such that the norm of the error after the

n + 1-st iterate can be bounded by q times the error after the n-th iterate, i.e., such

that ∥∥∥x(n+1)
k − xk

∥∥∥
X
≤ q

∥∥∥x(n)
k − xk

∥∥∥
X

is satisfied, where xk := A−1
k f

k
is the exact solution and ‖ · ‖X is a given norm, as we

will discuss later.

1 The document is available online at http://www.risc.jku.at/people/vpillwei/sLFA/
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Using the notations of Chapter 3, we obtain

x
(n+1)
k − xk = TGk−1

k

(
x

(n)
k − xk

)
,

where the iteration matrix TGk−1
k is given by

TGk−1
k := S

νpost
k

(
I − Ikk−1A−1

k−1I
k−1
k Ak

)
︸ ︷︷ ︸

CGk−1
k :=

S
νpre
k ,

and the iteration matrix of the smoother, Sk, is given by

Sk := I − τÂ−1
k Ak.

Certainly, the convergence rate can be bounded from above by the matrix norm of the

iteration matrix, i.e.,

q ≤ qTG =
∥∥∥TGk−1

k

∥∥∥
X

holds. This estimate is sharp if we consider the supremum over all possible starting

values or, equivalently, all possible right-hand sides. If qTG < 1 is satisfied, the method

converges for all starting values with a contraction rate bounded by qTG.

5.1.2 Symbols of the mass matrix and the stiffness matrix

The idea of (local) Fourier analysis is to simplify the problem such that the eigenvectors

and the eigenvalues of the mass matrix and the stiffness matrix can be written down

explicitly. Therefore, typically uniform grids are assumed. Whereas more rigorous

approaches assume the domain to be an interval or a rectangle, in local Fourier analysis

the boundary is neglected by assuming periodic boundary conditions. This allows to

extend a bounded domain Ω to the entire space R, see Brandt [20]. So we consider

the case Ω := R. Let us repeat that the fact that local Fourier analysis predicts good

convergence rates for simple cases, typically also indicates good convergence behavior

of the analyzed methods on more general domains, cf. Figure 6.6 in Section 6.1.

As mentioned in Chapter 2, the discretization is done using the Courant element. Here,

we use this fact directly. So, on each grid level k = 0, 1, 2, . . ., we assume to have a

uniform grid with nodes

xk,n := n hk for n ∈ Z,

where the uniform grid size is given by hk = 2−k. The functions in Yk = Pk are con-

tinuous on the whole domain and linear between two nodes. Therefore, the discretized

function can be specified by prescribing the values on the nodes only.
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For every θ ∈ Θ := [−π, π) and every grid level k, we define a Fourier vector ϕk(θ) ∈ CZ

as follows:

ϕk(θ) := (ϕk,n(θ))n∈Z := (eiθxk,n/hk)n∈Z.

The next step is to analyze how the multiplication of the mass matrix and the stiffness

matrix with the Fourier vectors looks like.

First, note that for uniform grids, the mass matrix and the stiffness matrix look as

follows:

Mk =
hk
6


. . .

. . .
. . .

1 4 1

1 4 1
. . .

. . .
. . .


and

Kk =
1

hk


. . .

. . .
. . .

−1 2 −1

−1 2 −1
. . .

. . .
. . .

 .

If we consider an infinite domain, Mk and Kk become operators CZ → CZ, given by

Mk ϕk(θ) =

(
hk ϕk,n−1(θ)

6
+

4hk ϕk,n(θ)

6
+
hk ϕk,n+1(θ)

6

)
n∈Z

and

Kk ϕk(θ) =

(
−
ϕk,n−1(θ)

hk
+

2ϕk,n(θ)

hk
−
ϕk,n+1(θ)

hk

)
n∈Z

.

We obtain

Mk ϕk(θ) =
(e−iθ + 4 + eiθ)hk

6︸ ︷︷ ︸
Mk(θ) :=

ϕk(θ) and Kk ϕk(θ) =
−e−iθ + 2− eiθ

hk︸ ︷︷ ︸
Kk(θ) :=

ϕk(θ).

Thus indeed the Fourier vectors ϕk(θ) are eigenvectors of Mk and Kk with eigenvalues

Mk(θ) and Kk(θ), respectively. The quantities Mk(θ) and Kk(θ) are called symbols.

If we assume that y
k

can be represented as a linear combination of Fourier vectors, i.e.,

y
k

=
∑
i

yk(θi)ϕk(θi) (5.1)
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we know that also the products Mk yk and Kk yk can be represented as linear combi-

nation of Fourier vectors:

Mk yk =
∑
i

Mk(θi) yk(θi)ϕk(θi) and Kk yk =
∑
i

Kk(θi) yk(θi)ϕk(θi).

For bounded domains, it is possible to show that the decomposition (5.1) exists,

cf. Brandt [20], Section 8. Often the existence of such a decomposition is just as-

sumed, cf. Brandt [20], Section 3.1. In this case, local Fourier analysis is a formal

tool. In the present work, we follow this idea.

5.1.3 Symbol of the system matrix Ak

In the last subsection we have shown that for all θ ∈ Θ the linear span formed by the

vector

ϕk(θ)

is invariant under the action of Mk and Kk. This can be extended to the block-matrix

Ak as follows: for all θ ∈ Θ the linear span formed by the vectors(
ϕk(θ)

0

)
,

(
0

ϕk(θ)

)
(5.2)

is invariant under the action of Ak. Again, we can introduce the symbol:

Ak(θ) =

(
Mk(θ) Kk(θ)

Kk(θ) −α−1Mk(θ)

)
. (5.3)

Here, the symbol is a 2-by-2 matrix and therefore it cannot be explained as an eigenvalue

anymore. Note that the two vectors in (5.2) form a basis of a two-dimensional space.

The symbol Ak(θ) is the representation of the block-matrix Ak with respect to that

basis, i.e., we have the following relation.

Assume that xk(θ) = (ξ1, ξ2) is the representation of some xk with respect to the

basis (5.2), i.e., we have

xk = ξ1

(
ϕk(θ)

0

)
+ ξ2

(
0

ϕk(θ)

)
.

Then the product Ak xk is also in the linear span spanned by the vectors given in (5.2).

The representation of that product with respect to the bases is given by Ak(θ) xk(θ),
i.e., for (η1, η2) = Ak(θ) xk(θ) we have

Ak xk = η1

(
ϕk(θ)

0

)
+ η2

(
0

ϕk(θ)

)
.
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5.1.4 Symbol of the smoother

In the present subsection we determine the symbol of Sk, the iteration matrix of the

smoother. As mentioned in the introduction, the analysis is presented for collective

point smoothers (cf. Subsection 3.2.2) or, more precisely, for two smoothers of this

class: the collective Jacobi smoother and the collective Gauss-Seidel smoother.

First, we discuss the collective Jacobi smoother. The preconditioner representing this

smoother is given by M̂
(jac)
k := diagMk and K̂

(jac)
k := diagKk. The preconditioners

are diagonal matrices, therefore

M̂
(jac)
k ϕk(θ) =

2hk
3︸︷︷︸

M̂
(jac)
k (θ) :=

ϕk(θ) and K̂
(jac)
k ϕk(θ) =

2

hk︸︷︷︸
K̂

(jac)
k (θ) :=

ϕk(θ)

holds.

The preconditioner Â(jac)
k , representing the collective Jacobi smoother, is given by

Â(jac)
k =

(
M̂

(jac)
k K̂

(jac)
k

K̂
(jac)
k −α−1M̂

(jac)
k

)
.

Analogous to Subsection 5.1.3, we can represent the symbol of Â(jac)
k as 2-by-2 matrix

with respect to the basis introduced in (5.2) and obtain

Â(jac)
k (θ) =

 M̂
(jac)
k (θ) K̂

(jac)
k (θ)

K̂
(jac)
k (θ) −α−1M̂

(jac)
k (θ)

 .

As a consequence, we can also derive the symbol of the iteration matrix of the smoother:

S
(jac)
k (θ) = I − τ Â(jac)

k (θ)−1Ak(θ).

A similar analysis can be worked out for the collective Gauss-Seidel smoother. Here,

we assume that the nodes are updated in a consecutive way (from left to right). This

smoother is represented by the preconditioners M̂
(gs)
k and K̂

(gs)
k . These two matrices

are the left-lower triangular part of the matrices Mk and Kk, respectively. The symbols

are given by

M̂
(gs)
k ϕk(θ) =

(e−iθ + 4)hk
6︸ ︷︷ ︸

M̂
(gs)
k (θ) :=

ϕk(θ) and K̂
(gs)
k ϕk(θ) =

(−e−iθ + 2)

hk︸ ︷︷ ︸
K̂

(gs)
k (θ) :=

ϕk(θ).
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Analogously to the case of the collective Jacobi smoother, we have

Â(gs)
k (θ) =

 M̂
(gs)
k (θ) K̂

(gs)
k (θ)

K̂
(gs)
k (θ) −α−1M̂

(gs)
k (θ)


and therefore, the symbol of the iteration matrix of the smoother reads as follows:

S
(gs)
k (θ) = I − τ Â(gs)

k (θ)−1Ak(θ).

5.1.5 Symbol of the whole two-grid operator

As we are interested in the analysis of a whole two-grid step, we have also to take

the coarse-grid correction into account. The coarse-grid correction operator consists of

the restriction operator, the operator Ak−1 on the coarser grid and the prolongation

operator. First, we discuss the restriction operator Ik−1
k , which was defined in Chapter 3

as operator (matrix) acting on xk = (y
k
, p
k
), i.e., on both variables. Certainly, we can

restrict the state y
k

and the adjoined state p
k

separately, i.e., there is a restriction

operator P k−1
k such that Ik−1

k (y
k
, p
k
) = (P k−1

k y
k
, P k−1

k p
k
) holds. The next step is the

analysis of the operator P k−1
k . One can verify that the restriction operator P k−1

k maps

the basis functions

ϕk(θ) and ϕk(θ) (5.4)

to the same function

ϕk−1(2θ) (5.5)

on the coarser grid for all θ ∈ Θ(low) := [π/2, π/2). Here and in what follows, θ is given

by

θ :=

{
θ + π for θ < 0

θ − π for θ ≥ 0.

The same can be done for the prolongation operator P kk−1: this operator maps the

function given in (5.5) to a linear combination of the functions in (5.4). Therefore, we

cannot represent the two-grid correction operator with respect to the basis stated in

(5.2) but with respect to the basis(
ϕk(θ)

0

)
,

(
0

ϕk(θ)

)
,

(
ϕk(θ)

0

)(
0

ϕk(θ)

)
, (5.6)

see, e.g., Trottenberg [66] or Borzi, Kunisch and Kwak [12]. The symbols with

respect to (5.6) of both, Ak and Sk, are block-diagonal:

Ak(θ) =

(
Ak(θ)

Ak(θ)

)
∈ C4×4, Sk(θ) =

(
Sk(θ)

Sk(θ)

)
∈ C4×4. (5.7)
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The symbol of the intergrid transfer operator has a rectangular form, as the intergrid

transfer operator maps from the basis given in (5.6) (for some θ) to the basis given in

(5.2) (for 2θ), i.e., we have

Ikk−1(θ) =


P kk−1(θ) 0

0 P kk−1(θ)

P kk−1(θ) 0

0 P kk−1(θ)

 ,

where P kk−1(θ) is given by

P kk−1(θ) =
1

2

(
e−θi + 2 + eθi

)
.

Using these matrices, we can represent the symbol of the two-grid operator by

TGk−1
k (θ) = Sk(θ)

νpost

(
I − Ikk−1(θ)

(
Ak−1(2θ)

)−1
(
Ikk−1(θ)

)T
Ak(θ)

)
︸ ︷︷ ︸

CGk−1
k (θ) =

Sk(θ)
νpre . (5.8)

Here, the symbol Ak−1(2θ) is a 2-by-2 matrix, as introduced in (5.3). A similar analysis

was done in Borzi, Kunisch and Kwak [12], cf. Theorem 5.1 in their work.

As mentioned earlier, we are interested in analyzing the norm of TGk−1
k . The idea of

local Fourier analysis is to compute the supremum of the norms of the symbols, i.e., we

compute

sup
θ∈Θ

∥∥∥TGk−1
k (θ)

∥∥∥
X
, (5.9)

where

‖A‖X :=

∥∥∥∥∥∥∥∥∥∥


1

α−1/2

1

α−1/2

A


1

α1/2

1

α1/2


∥∥∥∥∥∥∥∥∥∥
`2

.

This definition of the norm is motivated by the corresponding norm introduced in

Theorem 12.

So, as mentioned above we have to take the supremum of (5.9) over all frequencies to

obtain the convergence rate. Moreover, we are interested in an analysis that is robust

in the grid size hk and the choice of the parameter α. Therefore, we are interested in

qTG(τ) := sup
hk>0

sup
α>0

sup
θ∈Θ

∥∥∥TGk−1
k (θ)

∥∥∥
X
.
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Here, the 4-by-4 matrix TGk−1
k (θ) and also its norm

∥∥∥TGk−1
k (θ)

∥∥∥
X

can be computed

in a straight-forward way. The computation of the supremum is non-trivial but it can

be done using tools from symbolic computation as outlined in the next section.

5.2 Quantifier elimination using cylindrical algebraic

decomposition

In the present section we discuss how to compute the supremum of a given function

using tools from symbolic computation. First we notice that the problem of computing

the supremum can be equivalently rewritten as a general quantifier elimination problem.

Let D ⊆ Rn and f : Rm+n → R be a function. Then, for fixed y1, . . . , ym, the problem

to compute

sup
(x1,...,xn)∈D

f(x1, . . . , xn, y1, . . . , ym)

can be equivalently rewritten as follows: Find the smallest λ ∈ R such that

∀ (x1, . . . , xn) ∈ D : f(x1, . . . , xn, y1, . . . , ym) ≤ λ

is satisfied. This lower bound for λ can be derived easily if we are able to eliminate the

quantifiers in this term. This can be done using quantifier elimination algorithms which

allow to solve the following kind of problems (quantifier elimination problems).

Assume that a statement of the form

Q1 x1 . . . Qn xn : A(x1, . . . , xn, y1, . . . , ym)

is given, where the Qi denote quantifiers (either ∀ or ∃) and A(x1, . . . , xn, y1, . . . , ym) is

a boolean combination of polynomial inequalities. The problem of finding an equivalent,

quantifier free formula B(y1, . . . , ym) consisting of a boolean combination of polyno-

mial inequalities depending only on the free variables is called a (polynomial) quantifier

elimination problem. The first algorithm to solve this problem over the reals was given

by Tarski [64] in the early 1950s. His method was practically not efficient. G. Collins’

cylindrical algebraic decomposition, cf. Collins [27], makes it possible to carry out non-

trivial computations in a reasonable amount of time. Modern implementations of this

approach were developed by Brown [25], Seidel and Sturm [56], Strzeboński [59]

and others.

For illustrating the technique of cylindrical algebraic decomposition, we consider the

following simple example: Determine for z > 0

g(z) := sup
0<x<1

sup
0<y<1

x

y + z
+

y

x+ z
. (5.10)
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This can be rewritten as a quantified formula by introducing an additional variable λ:

z > 0 ∧ ∀ 0 < x < 1 ∀ 0 < y < 1 :
x

y + z
+

y

x+ z
≤ λ,

or equivalently,

∀ x ∀ y : z > 0 ∧
[
0 < x < 1 ∧ 0 < y < 1⇒ x

y + z
+

y

x+ z
≤ λ

]
.

This is equivalent to

∀ x ∀ y : z > 0 ∧ [0 < x < 1 ∧ 0 < y < 1⇒ x(x+ z) + y(y + z) ≤ λ(x+ z)(y + z)] .

Here we use that x > 0, y > 0 and z > 0. (Such a rewriting in polynomial form is also

possible if the denominator cannot be guaranteed to be positive. However, in this case

the formula may be more complicated).

Here we have A(x, y, z, λ) ≡ z > 0 ∧ [0 < x < 1 ∧ 0 < y < 1 ⇒ x(x + z) + y(y + z) ≤
λ(x + z)(y + z)]. We use Mathematica’s command Resolve to perform a cylindrical

algebraic decomposition:

In[1]= Resolve[ForAll[x, 0 < x < 1,ForAll[y, 0 < y < 1, z > 0&&x(x + z) + y(y + z) ≤

λ(x+ z)(y + z)]], {z, λ},Reals]

Out[1]=

(
0 < z ≤ 1&&λ ≥ 1

z

)
‖
(
z > 1&&λ ≥ 2

1 + z

)

This means, we obtain B(z, λ) ≡
(
0 < z ≤ 1 ∧ λ ≥ 1

z

)
∨
(
z > 1 ∧ λ ≥ 2

1+z

)
. We see that

in the result only the free variables λ and z (which were not fixed by the quantifiers)

appear. The bound variables x and y (variables that are fixed by the quantifiers) do not

appear anymore. Consequently, in cases where no free variables appear in the input,

the result is one of the logical constants True or False.

When executing the algorithm first the quantifier free part of the formula is considered,

i.e., in the example above the inequalities z > 0, 0 < x < 1, 0 < y < 1 and x(x+ z) +

y(y+z) ≤ λ(x+z)(y+z). The given polynomials define a natural decomposition of the

real space (in the example R4) into maximal connected cells on which the polynomials

are sign invariant. This decomposition is then further refined by the algorithm to

obtain cells on which the polynomials are not only sign invariant, but the cells are also

cylindric, i.e., every cell C ⊆ Rn has the following form:

• C = {(x, y) ∈ Rn−1 × R : x ∈ D and ψ(x) < y < ψ(x)} or

• C = {(x, y) ∈ Rn−1 × R : x ∈ D and y = ψ(x)},
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where ψ, ψ and ψ : Rn−1 → R ∪ {−∞,∞} and D is a cylindric cell in Rn−1. On R,

cylindric cells are open intervals or single points.

The requirement that all cells are cylindrical assumes the variables to be ordered. This

ordering is fixed for the bound variables by the order of the quantifiers and by the user

(or the implementation) for the free variables. In this sense one may consider variables

as being on the bottom (or innermost) level or on higher levels of the resulting CAD.

Once such a cylindrical decomposition is obtained the quantifiers can be eliminated by

considering each of the cells in an order determined by the quantifiers. The result is a

formula where all the bound variables have been eliminated, and the description of the

cells where the formula holds is given solely in terms of the free variables as shown in

the example above.

This procedure may be very costly depending heavily on the input parameters such

as the number of polynomial inequalities, the polynomial degrees and the number of

variables. In the worst case it is doubly exponential in the number of variables and

this worst case bound is not only met in theory, but often experienced in practice. As

we will see below, already for the one dimensional analysis suitable substitutions of

the variables are applied in order to speed up the computations. These substitutions

aim at reducing the number of variables on the one hand and lowering the polynomial

degrees on the other hand. Although it might seem a high price to pay, the gain is an

optimal bound for the given formula that is determined by a proving procedure that is

not approximate in any way.

For the forthcoming analysis of the two (or even three) dimensional case, further sim-

plifications will be necessary because of the increase in both, the number of unknowns

as well as the polynomial degrees of the given formulas.

Return to the problem of computing g(z). As mentioned, the supremum is the smallest

upper bound, i.e., the smallest λ that satisfies

B(z, λ) ≡
(

0 < z ≤ 1 ∧ λ ≥ 1

z

)
∨
(
z > 1 ∧ λ ≥ 2

1 + z

)
. (5.11)

Therefore, g(z) is a piecewise linear function, given by

g(z) =

{
1
z for 0 < z ≤ 1

2
1+z for z > 0

.

Note that for the interpretation of as piecewise defined function, the prescribed ordering

of the variables is of importance.
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In this section, we have seen that we are able to resolve the supremum of a rational

function. In the further sections of the chapter, we will apply this strategy like a

black-box to resolve suprema of our interest.

5.3 An analysis based on smoothing rates

The goal of this section is the computation of sharp upper bounds for the convergence

rate of the two-grid method. The first step is the computation of the smoothing rate

because the computation of the smoothing rates is rather simple and is a good starting

point for doing the CAD computations presented in the last section. The smoothing

rate has been introduced as smoothing factor in equation (3.8) in Brandt [19]. Also

in Borzi, Kunisch and Kwak [12] the smoothing rates were derived. Contrary to

the present work, they approximated these rates numerically.

Certainly, the smoothing rates we will compute do not give any information about the

convergence of the overall multigrid method (or two-grid method) directly. We will

present a possibility to construct – based on the information on the smoothing rate –

an upper bound for the convergence of the two-grid method.

Often (cf. Borzi, Kunisch and Kwak [12] or Trottenberg [66]) such an analysis

is not done and the two-grid convergence rates are computed directly (without using

the computed smoothing rates). Since the whole two-grid operator is considered, we

call this an all-at-once analysis. We will give such an analysis in Section 5.4. The

big advantage of the all-at-once analysis is the fact that sharp upper bounds of the

convergence rate of the two-grid method is computed whereas the analysis presented

in this section gives relatively rough upper bounds for the convergence rate.

Nonetheless, the separation of the analysis for the smoother and the coarse-grid cor-

rection done in this section simplifies the comparison of different kinds of smoothers

and the analysis for varying numbers of smoothing steps ν. Moreover, the separation

decomposes the original problem to smaller subproblems which seems to be the key

for extending the results presented here to higher dimensions. (This is not an issue if

convergence rates are approximated numerically because there the complexity of the

analysis is not growing exponentially with the size of the problem.)

5.3.1 A rigorous justification for the use of smoothing rates

As already mentioned, the concept of smoothing rates, that is used in Subsection 5.3.2,

is well-known. The following theorem states that the combination of the smoothing rate
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qSM and a complementary result on the coarse grid correction directly yields an upper

bound for the convergence rate. The proof of this theorem shows that the concept of

the smoothing property follows naturally from a splitting of the two-grid operator.

Theorem 67 Consider the two-grid method, introduced in Section 5.1, with ν/2 pre-

and ν/2 post-smoothing steps. Assume that the smoother satisfies

sup
θ∈Θ(low)

∥∥Sk(θ)∥∥X ≤ 1. (5.12)

Then, the convergence rate

qTG := sup
θ∈Θ(low)

∥∥∥TGk−1
k (θ)

∥∥∥
X

can be bounded as follows

qTG ≤ q̃TG(q
ν/2
SM ),

where

q̃TG(q) := sup
θ∈Θ(low)

∥∥∥I(q)CGk−1
k (θ)I(q)

∥∥∥
X
, (5.13)

I(q) :=

(
I

qI

)
, (5.14)

qSM := sup
θ∈Θ(high)

∥∥Sk(θ)∥∥X , (5.15)

Θ(low) := [−π/2, π/2) and Θ(high) := [−π, π)\[−π/2, π/2).

Proof: Using (5.8), the semi-multiplicativity of operator norms, (5.7) and (5.14), we

obtain∥∥∥TGk−1
k (θ)

∥∥∥
X

=
∥∥∥Sk(θ)ν/2CGk−1

k (θ)Sk(θ)
ν/2
∥∥∥
X

=
∥∥∥Sk(θ)ν/2 I(q−ν/2) I(qν/2)CGk−1

k (θ) I(qν/2) I(q−ν/2)Sk(θ)
ν/2
∥∥∥
X

≤
∥∥∥I(qν/2)CGk−1

k (θ) I(qν/2)
∥∥∥
X

∥∥∥I(q−ν/2)Sk(θ)
ν/2
∥∥∥2

X

=
∥∥∥I(qν/2)CGk−1

k (θ) I(qν/2)
∥∥∥
X

∥∥∥∥∥I(q)−ν/2

(
Sk(θ)

ν/2

Sk(θ)
ν/2

)∥∥∥∥∥
2

X

=
∥∥∥I(qν/2)CGk−1

k (θ) I(qν/2)
∥∥∥
X

max
{∥∥∥Sk(θ)ν/2∥∥∥

X
, q−ν/2

∥∥∥Sk(θ)ν/2∥∥∥
X

}2

≤
∥∥∥I(qν/2)CGk−1

k (θ) I(qν/2)
∥∥∥
X

max
{∥∥Sk(θ)∥∥X , q−1

∥∥Sk(θ)∥∥X}ν . (5.16)

If we choose

q := qSM = sup
θ∈Θ(high)

∥∥Sk(θ)∥∥X ,
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we obtain

q−1
∥∥Sk(θ)∥∥X ≤ 1

for all θ ∈ Θ(low) because θ ∈ Θ(low) implies θ ∈ Θ(high). Since we have also (5.12), we

obtain

max
{∥∥Sk(θ)∥∥X , q−1

∥∥Sk(θ)∥∥X}ν ≤ 1

and therefore due to (5.16) finally

qTG =
∥∥∥TGk−1

k (θ)
∥∥∥
X
≤ q̃TG(q

ν/2
SM ) =

∥∥∥I(q
ν/2
SM )CGk−1

k (θ) I(q
ν/2
SM )

∥∥∥
X

for all θ ∈ Θ(low). �

We will see in Subsection 5.3.2 that (5.12) holds and the smoothing rate qSM < 1 can

be computed. In Subsection 5.3.3, we will see that, provided qSM small enough, an

optimal and robust convergence result can be shown, i.e., that the convergence rate is

bounded by q̃TG(q
ν/2
SM ) < 1, which is independent in hk and α.

5.3.2 Smoothing rates

First, we analyze the collective Jacobi smoother. We compute

qSM (τ) := sup
θ∈Θ(high)

sup
hk>0

sup
α>0

σ(θ, hk, α, τ), (5.17)

where

σ(θ, hk, α, τ) :=
∥∥∥ I − τ (Â(jac)

k (θ)

)−1

Ak(θ)︸ ︷︷ ︸
S

(jac)
k (θ) :=

∥∥∥
X
.

The computation of σ(θ, hk, α, τ) is straight forward. We obtain

σ2(θ, hk, α, τ) =
h4
k((cos θ + 2)τ − 2)2 + 36α((cos θ − 1)τ + 1)2

4
(
h4
k + 9α

) .

Here, due to the presence of a trigonometric function cos θ, the function σ2 is not

a rational function. The cosine is eliminated by replacing cos θ by some variable c.

As θ ∈ Θ(high) is equivalent to c := cos θ ∈ [−1, 0], we obtain

q2
SM (τ) = sup

c∈[−1,0]
sup
hk>0

sup
α>0

σ̃2(c, hk, α, τ), (5.18)

where

σ̃2(c, hk, α, τ) :=
h4
k((c+ 2)τ − 2)2 + 36α((c− 1)τ + 1)2

4
(
h4
k + 9α

) .
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Resolving (5.18) is done as outlined in Section 5.2. So we have to find the smallest λ

that satisfies

∀c ∈ [−1, 0] : ∀hk > 0 : ∀α > 0 σ̃2(c, hk, α, τ) ≤ λ.

Here, the quantifies can be eliminated with Mathematica’s Resolve command in less

than a second. We obtain the following equivalent formula:

(
τ ≤ 0 ∧ 4τ2 − 4τ + 1 ≤ λ

)
∨
(

0 < τ ≤ 4

5
∧ 1

4

(
τ2 − 4τ + 4

)
≤ λ

)
∨
(

4

5
< τ ∧ 4τ2 − 4τ ≤ λ

)
.

Therefore, we obtain

q2
SM (τ) =


4τ2 − 4τ + 1 for τ ≤ 0
1
4

(
τ2 − 4τ + 4

)
for 0 < τ ≤ 4

5

4τ2 − 4τ + 1 for 4
5 < τ

. (5.19)

If we take the square root of (5.19) and restrict ourselves to the relevant range τ ∈ [0, 1],

we obtain the following result.

Theorem 68 The smoothing rate for the collective Jacobi smoother is given by

qSM (τ) =

{
1
2 (2− τ) for 0 ≤ τ ≤ 4

5

2τ − 1 for 4
5 < τ ≤ 1

(5.20)

for all τ ∈ [0, 1].

The graph of the function qSM can be seen in Figure 5.1. qSM (τ) takes its minimum

for τ = 4
5 with value qSM

(
4
5

)
= 3

5 . For the choice τ = 1
2 , we obtain qSM

(
1
2

)
= 3

4 .

A smoothing analysis in a similar setting has been carried out in Borzi, Kunisch

and Kwak [12], where the authors obtain estimates for smoothing and convergence

rates using numerical interpolation. To the knowledge of the author (5.20) provide

the first rigorously proven sharp bounds for the smoothing rate (cf. Pillwein and

Takacs [48]).

We have to show also (5.12) for all hk and α, i.e., we have to show

sup
θ∈Θ(low)

sup
hk>0

sup
α>0

σ(θ, hk, α, τ) ≤ 1, (5.21)

which can be done as above. Here, we obtain

sup
hk>0

sup
α>0

σ(θ, hk, α, τ) =

{
1− 3τ

2 for τ < 0

1 for τ ≥ 0
,
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Figure 5.1: Smoothing factor depending on damping parameter τ

i.e., (5.21) holds for all τ ∈ [0, 1].

We can develop the smoothing analysis for the collective Gauss-Seidel smoother similar

to the analysis above. The damping parameter is fixed: τ = 1. Therefore, the smoothing

rate does not depend on τ anymore:

qSM := sup
θ∈Θ(high)

sup
hk>0

sup
α>0

σ(θ, hk, α),

where

σ(θ, h, α) :=
∥∥∥Sk(gs)

(θ)
∥∥∥
X
.

Here, σ can be computed completely analogous to the previous case:

σ2(θ, hk, α) :=(
h4
k + 36α

) (
(17 + 8c)h4

k + 72h2
kα

1/2| sin θ|+ 36(5− 4 cos θ)α
)

(17 + 8 cos θ)2h8
k + 72(40 cos2 θ − 28 cos θ + 13)h4

kα+ 1296(5− 4 cos θ)2α2
.

In this formula, the occurrences of cos θ and sin θ are replaced by c and s, respectively.

For an equivalent rewriting, we have to require Pythagoras’ identity s2+c2 = 1 explicitly

as constraint. The fact that θ ∈ Θ(low) is equivalent to c ∈ [−1, 0] (as in the case of

collective Jacobi relaxation). The absolute value is eliminated as follows. Because σ

does not depend on the sign of s = sin θ, we can restrict ourselves to assuming s ≥ 0,

which allows to replace |s| by s. Moreover, we replace α1/2 by α̃ > 0. Using these

rewritings, the final formula for qSM reads as follows.

q2
SM = sup

(s,c)∈D
sup
hk>0

sup
α̃>0

(
h4
k + 36α̃2

) (
(17 + 8c)h4

k + 72h2
kα̃s+ 36(5− 4c)α̃2

)
(17 + 8c)2h8

k + 72(40c2 − 28c+ 13)h4
kα̃

2 + 1296(5− 4c)2α̃4
,

where D := {(s, c) ∈ R2 : s2 + c2 = 1, c ≤ 0, s ≥ 0}.

We solve the problem using Mathematica’s Resolve and obtain after about twenty

minutes a quantifier free formula. We obtain the following statement.
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Theorem 69 The smoothing rate for the collective Gauss-Seidel smoother is given by

qSM = 1
7

(
3 +
√

2
)
≈ 0.63.

Even though twenty minutes are not a very long time to wait for a result that needs to

be obtained only once, it still seems too long for such a simple formula. We can speed up

the calculation significantly by reducing both, the number of variables and the degrees

of the polynomials, by substituting α̃/h2
k = α1/2/h2

k by a new variable η := α1/2/h2
k.

This substitution reduces the formula for qSM to

q2
SM = sup

(s,c)∈D̃
sup
η>0

(
1 + 36η2

) (
(17 + 8c) + 72ηs+ 36(5− 4c)η2

)
(17 + 8c)2 + 72(40c2 − 28c+ 13)η2 + 1296(5− 4c)2η4

.

Based on this representation Mathematica’s Resolve command is able to derive qSM

within about twenty seconds.

We have to show also (5.12) for all hk and α, i.e., we have to show

sup
θ∈Θ(low)

sup
hk>0

sup
α>0

σ(θ, hk, α, τ) ≤ 1.

We can compute the supremum using the rewritings introduced above. Mathematica’s

Resolve command terminates within some seconds. We obtain that the supremum is

equal to 1.

An alternative approach for showing (5.12) is just to verify

∀θ ∈ Θ(low) : ∀hk > 0 : ∀α > 0 : σ(θ, hk, α, τ) ≤ 1.

Mathematica’s quantifier elimination algorithm can be applied directly to such a prob-

lem (after applying the rewritings introduced above) and yields the logical constant

True, which shows that the supremum in (5.12) is smaller or equal 1.

5.3.3 Two-grid convergence rate

In this subsection we follow the approach introduced in Theorem 67 and derive q̃TG,

introduced in (5.13). Since we take also the supremum with respect to hk and α, the

formula for q̃TG reads as follows

q̃TG(q) := sup
θ∈Θ(low)

sup
hk>0

sup
α>0

∥∥∥I(q)CGk−1
k (θ) I(q)

∥∥∥
X
.
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We compute σ(θ, hk, α, q) :=
∥∥∥I(q)CGk−1

k (θ) I(q)
∥∥∥
X

first. We have

∥∥∥I(q) CGk−1
k (θ)I(q)

∥∥∥2

X

= λmax

(
L−1/2
k I(q) CGk−1

k (θ)I(q) LkI(q) CGk−1
k (θ)I(q) L−1/2

k︸ ︷︷ ︸
Nk :=

)
.

The matrix Nk can be computed in a straight-forward way and we obtain

Nk =
P (hk, α, c, q)

Q(hk, α, c, q)


1 0 (c+1)q

c−1 0

0 1 0 (c+1)q
c−1

(c+1)q
c−1 0

(
(c+1)q
c−1

)2
0

0 (c+1)q
c−1 0

(
(c+1)q
c−1

)2

 ,

where

P (hk, α, c, q) := (h4
k((c− 2)2(c− 1)4 + (c− 1)2(c+ 1)2(c+ 2)2q

+ 36(c− 1)4(c+ 1)2(1 + q)α),

Q(hk, α, c, q) := 16((2c2 + 1)2h4
k + 9(c2 − 1)2α).

We can compute the spectral radius of Nk and obtain

σ2(hk, α, c, q) =

(
1 +

(
(1 + c)q

c− 1

)2
)
P (hk, α, c, q)

Q(hk, α, c, q)
.

We are interested in computing

q̃TG
2(q) = sup

hk>0
sup
α>0

sup
0≤c≤1

σ2(hk, α, c, q).

In principle, this can be resolved using CAD. Unfortunately, the computation does not

terminate within a reasonable time. We can simplify the problem here in a similar way

as it was done for the smoothing property: Also in this subsection, the function σ does

not depend on hk and α individually but only on η := α/h4
k. Therefore, we could try

to compute

q̃TG
2(q) = sup

η>0
sup

0≤c≤1
σ2(1, η, c, q).

using CAD. But also this is not possible within a reasonable time. Therefore, we have

to use further information. Observe that

σ2(1, η, c, q) =
A1(c, q) + ηA2(c, q)

B1(c, q) + ηB2(c, q)
,
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where

A1(c, q) := ((c− 2)2(c− 1)2 + (c+ 1)2(c+ 2)2q))((c− 1)2 + (c+ 1)2q)

A2(c, q) := 36(c− 1)2(c+ 1)2(q + 1)((c− 1)2 + (c+ 1)2q)

B1(c, q) := 16(2c2 + 1)2

B2(c, q) := 144(c2 − 1)2.

It is easy to see that

sup
η>0

A1(c, q) + ηA2(c, q)

B1(c, q) + ηB2(c, q)
= max

{
A1(c, q)

B1(c, q)
,
A2(c, q)

B2(c, q)

}
holds in general, i.e., we take the maximum over the cases η = 0 and η → ∞. Now

we are able to compute sup0≤c≤1
A1(c,q)
B1(c,q) and sup0≤c≤1

A2(c,q)
B2(c,q) within some minutes and

obtain the following result.

Theorem 70 The convergence rate for the two-grid method is given by

q̃TG(q) =

{
1+q

2 for 0 ≤ q ≤ 1
3√

q(1 + q) for 1
3 < q

for all q > 0.

The function q̃TG(q) is visualized in Figure 5.2. Since q̃TG(0) = 1
2 , using this method a

convergence rate better that 1
2 cannot be shown. To obtain convergence at all, we have

to guarantee that q := qνSM <
√

5−1
2 ≈ 0.62 holds.
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Figure 5.2: Convergence rate depending on smoothing rate



126 Local Fourier analysis

We can combine the results of this subsection and the last subsection to obtain upper

bounds for the convergence rate of the two-grid method, i.e., we obtain

qTG ≤ q̃TG(qνSM ).

In case of collective Jacobi iteration, we obtain the following result.

Corollary 71 If ν = νpre + νpost = 2 + 2 smoothing steps are applied and collective

Jacobi iteration is chosen as smoother, the convergence rate can be bounded as follows.

qTG(τ) ≤ q̃TG(q2
SM (τ)) =

{
1
4(2− τ)

√
8 + (τ − 4)τ for 0 ≤ τ ≤ 4

5

(2τ − 1)
√

2 + 4(τ − 1)τ for 4
5 < τ ≤ 1

.

The bound of the two-grid convergence rate, q̃TG(q2
SM (τ)), is visualized in Figure 5.3.

Here, the optimal choice for τ follows directly from the smoothing analysis (as q̃TG

is just a monotone increasing function). The optimal choice is τ = 4
5 which leads to

q̃TG
(
q2
SM

(
4
5

))
= 1

25

(
3
√

34
)
≈ 0.70. For the choice τ = 1

2 , we obtain q̃TG
(
q2
SM

(
1
2

))
=

15
16 ≈ 0.94.

In case of collective Gauss-Seidel iteration, we obtain the following result.

Corollary 72 If ν = νpre + νpost = 2 + 2 smoothing steps are applied and collective

Gauss-Seidel iteration is chosen as smoother, the convergence rate can be bounded as

follows.

qTG ≤ q̃TG(q2
SM ) =

1

49

√
732 + 426

√
2 ≈ 0.75.

Note that for both, the collective Jacobi smoother and the collective Gauss-Seidel

smoother, we are not able to show convergence using the approach proposed in this

section if only ν = νpre+νpost = 1+1 smoothing steps are applied. This case is covered

by the analysis we will present in the next section.

5.4 An all-at-once analysis

As mentioned in the beginning of the last section, we can also analyze the complete

two-grid operator in one step, i.e., we can compute

q2
TG(τ) = sup

hk>0
sup
α>0

sup
θ∈Θ

∥∥∥TGk−1
k (θ)

∥∥∥2

X
(5.22)
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Figure 5.3: Convergence rate depending on damping parameter τ for 2 pre- and 2 post-
smoothing steps

directly for some fixed smoother and some fixed ν. Note that here, contrary to the last

section, not only an upper bound for the overall convergence rate is computed but a

sharp upper bound is determined.

The term
∥∥∥TGk−1

k (θ)
∥∥∥
X

depends on all of the variables, τ , hk, α and θ. The norm can

be computed in a straight-forward way. We obtain

∥∥∥TGk−1
k (θ)

∥∥∥2

X
= σ

(
τ,
h4
k

α
, cos2(θ)

)
,

where

σ(τ, η, γ) =
P1(τ, η, γ)P2(τ, η, γ)

64(9 + η)2(9(γ − 1)2 + η(1 + 2γ)2)
,

with

P1(τ, η, γ) := η
(
γ2τ2 + γ

(
4− 3τ2

)
+ 4(τ − 1)2

)
+ 36

(
γ2τ2 + γ

(
6τ2 − 6τ + 1

)
+ (τ − 1)2

)
P2(τ, η, γ) := η2

(
γ3τ2 + γ2

(
4 + 16τ − 7τ2

)
+ γ

(
8τ2 − 56τ + 52

)
+ 16(τ − 1)2

)
+ 36η

(
2γ3τ2 + γ2

(
28τ2 − 22τ + 5

)
+ γ

(
34τ2 − 34τ + 5

)
+ 8(τ − 1)2

)
+ 1296(γ − 1)2

(
(γ + 1)τ2 − 2τ + 1

)
.

Consequently, the equation (5.22) can be rewritten using the function σ and we obtain

q2
TG(τ) = sup

η>0
sup

0≤γ≤1
σ(τ, η, γ). (5.23)

Again, we have to resolve the supremum of a rational function which can be done as

outlined in Section 5.2. Unfortunately, a direct application of Mathematica’s Resolve

command to the quantified formula representing the problem (5.23) does not terminate

within a reasonable time.
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Therefore, the problem has to be simplified further. Here, contrary to the case of the

last section, numerator and denominator are not linear in η. Therefore, we cannot

apply the strategy used there, directly. We use a slightly different approach: we guess

the convergence rate using the samples η := 0 and η →∞ as a first step and show that

the guess is correct as a second step.

As outlined, by sampling we obtain

σ0(τ, γ) := σ(τ, 0, γ) = (1 + τ(−2 + τ + γτ))((τ − 1)2 + γ2τ2 + γ(1 + 6(τ − 1)τ)),

σ∞(τ, γ) := lim
η→∞

σ(τ, η, γ)

=
1

64(1 + 2γ)2
(4(τ − 1)2 + γ2τ2 + γ(4− 3τ2))(16(τ − 1)2 + γ3τ2

+ γ2(4 + 16τ − 7τ2) + γ(52− 56τ + 8τ2)).

We compute the supremum using Mathematica’s Resolve command for both cases sep-

arately and obtain

q2
0(τ) := sup

0≤γ≤1
σ0(τ, γ) and q2

∞(τ) := sup
0≤γ≤1

σ∞(τ, γ). (5.24)

Since we obtain rather complicated expressions for (5.24), we do not give the details.

The next step is to compute the maximum of these two functions, i.e., we define

qGUESS(τ) := max{q0(τ), q∞(τ)}

and guess that this equals qTG(τ), defined in (5.23). By construction, qTG(τ) ≥
qGUESS(τ) holds for all τ , i.e., if qGUESS(τ) is an upper bound, it is also sharp.

The computation of qGUESS is also done using CAD. Recall that the suprema in (5.24)

were computed by solving a quantifier elimination problem. Therefore, q2
0(τ) is the

smallest λ0 satisfying a (non-quantified) formula B0(λ0, τ) and q2
∞(τ) is the smallest

λ∞ satisfying a (non-quantified) formula B∞(λ∞, τ). Then q2
GUESS(τ) is the smallest

λ satisfying both formulas, i.e.,

B0(λ, τ) ∧B∞(λ, τ). (5.25)

We use Mathematica’s command CylindricalDecomposition to obtain a represen-

tation of the set characterized by (5.25) as a union of cylindrical cells. Using such a

representation, the (piecewise polynomial) function q2
GUESS(τ) can be determined by

inspection.



5.4 An all-at-once analysis 129

We obtain

q2
GUESS(τ) =


(1− 2τ)2(2 + 4(τ − 1)τ) for 0 ≤ τ < τ1

1
2(2− τ) for τ1 ≤ τ < τ2

(1− 2τ)2(2 + 4(τ − 1)τ) for τ2 ≤ τ ≤ 1

,

where τ1 < τ2 are the two real solutions of

(1− 2τ)2(2 + 4(τ − 1)τ) =
1

2
(2− τ).

To show that qGUESS(τ) is an upper bound, we set up the quantified formula

∀ 0 ≤ τ ≤ 1 : ∀ η > 0 : ∀ 0 ≤ γ ≤ 1 : σ2(τ, η, γ) ≤ q2
GUESS(τ). (5.26)

Since q2
GUESS is a piecewise polynomial function, we may split (5.26) into the intervals

[0, τ1), [τ1, τ2) and [τ2, 1] used in the definition of q2
GUESS . Again we use Mathematica’s

Resolve command, which reduces these formulas to the logical constant true, i.e, which

shows that qGUESS(τ) is an upper bound. Therefore, we obtain.

Theorem 73 The convergence rate for the two-grid method using ν = νpre + νpost =

1 + 1 smoothing steps of collective Jacobi relaxation is given by

qTG(τ) = max

{
|1− 2τ |

√
2 + 4(τ − 1)τ ,

1

4
(τ − 2)2

}
for all τ ∈ [0, 1], which can be seen in Figure 5.4.
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Figure 5.4: Two-grid convergence factor depending on damping parameter

Using this closed form, we can find out for which choices of τ the method converges.

Moreover, we obtain that the best choice is τ ≈ 0.70 with qTG(τ) ≈ 0.42. Still, we

should keep in mind, that the computed rate is a sharp worst-case analysis of the

convergence rate.
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5.5 Summary

In this chapter we have seen that symbolic local Fourier analysis – the combination

of local Fourier analysis with cylindrical algebraic decomposition – is a strategy for

computing convergence rates or smoothing rates in an entirely automatic manner. The

convergence rates of the particular problems and two-grid solvers computed above are

not only interesting results on their own but they have the character of model problems

for the method of symbolic local Fourier analysis and illustrate the prospects of that

method.

Also the analysis for higher dimensions as well as the analysis of other smoothers or

the analysis of multigrid methods for other model problems leads to an expression that

is a rational function in the mesh size hk, certain parameters (like α in our case),

the damping parameter τ , and trigonometric expressions of the frequencies θ. This is

in particular the case for the model problem described in this chapter for the above

mentioned generalizations.

Theoretically, all these problems can be solved in finite but not necessarily in reasonable

time. Therefore, it is necessary to apply proper strategies to reduce the complexity of

the problems as we could see in the last two sections.
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Chapter 6

Numerical results

In this chapter we will illustrate the convergence results presented in the last two

chapters for model problems. The author will comment on the choice of the damping

parameter τ , which can be chosen larger as predicted in Chapter 4.

This chapter is organized as follows. In Section 6.1, we will consider the case α = 1. In

this case, we will see that for all model problems optimal complexity can be observed.

In Section 6.2, we will concentrate on robustness. We will note, as proposed by the

convergence theory, that for Model Problem 2, accordingly constructed methods show

robust convergence behavior. We will observe such a behavior also in cases where the

theory does not state this.

6.1 Optimal complexity

6.1.1 Distributed control model problem

Here, we fix a simple domain Ω := (0, 1)2. The coarsest grid consists of two triangles

which are constructed by introducing an edge between the nodes (0, 1) and (1, 0), cf.

Figure 6.1. The refinement is done in an uniform way. First, we give numerical examples

for the distributed control Model Problem 2.

The model problem reads as follows. Find the control u ∈ L2(Ω) and the state y ∈
H1(Ω) such that they minimize the cost functional J , given by

J(y, u) =
1

2
‖y − yD‖2L2(Ω) +

α

2
‖u‖2L2(Ω),
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Figure 6.1: Initial mesh and uniform refinement
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Figure 6.2: Desired state yD

subject to the elliptic boundary value problem

−∆y + y = u in Ω and
∂y

∂n
= 0 on ∂Ω,

where yD : (0, 1)2 → R is given by

yD(x) :=

 1 if
∥∥x− (1

2 ,
1
2

)∥∥
`2
≤
√

1
5

0 otherwise
,

cf. Figure 6.2. As mentioned, here α := 1 is fixed. The optimal state and the optimal

control are shown in Figure 6.3.

In this thesis we have proposed to use a multigrid method with the preconditioned

normal equation smoother (which can be applied to the 3-by-3 formulation of the KKT-

system and to the reduced (2-by-2) KKT-system) and the collective point smoothers

(which we have only introduced for the reduced (2-by-2) KKT-system).

First we start with the original 3-by-3 formulation of the KKT-system. For this formula-

tion, we can apply the preconditioned normal equation smoother (cf. Subsections 3.2.1
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Figure 6.3: Distributed control Model Problem 2 for α = 1

and 4.1.4) where the matrix Lk is defined analogously to (4.22). Analogously to the

statement in Corollary 33, convergence can be shown for τ ∈ (0, 1/8). In fact, this

bound is not sharp and the convergence rate can be improved significantly if larger

values of τ are chosen, cf. Table 6.1 and Figure 6.4.

Here and in what follows, a W-cycle multigrid method with ν pre- and ν post-smoothing

steps was used for simulation. It has to be mentioned that for the model problems,

shown here, also the V-cycle converges with rates comparable with the convergence

rates of the W-cycle method. The number of iterations and convergence rates were

measured as follows: we start with a random initial error and measure the reduction

of the error in each step using the norm ‖ · ‖X−,k . The iteration was stopped when the

initial error was reduced by a factor of ε = 10−6. The convergence rates q is the mean

convergence rate in this iteration, i.e.,

q =

(
‖x(n)

k − xk‖X−,k
‖x(0)

k − xk‖X−,k

)1/n

,

where n is the number of iterations needed to reach the stopping criterion. Here, xk is

the exact solution and x
(i)
k is the i-th iterate.

Table 6.1 shows that the best convergence rates are obtained for τ = 7/16. Therefore,

we will use this choice for the further calculations. In Table 6.2, we see that the pre-

conditioned normal equation smoother is convergent on all tested grid levels k already

for ν = 1 pre- and post-smoothing steps. The convergence theory states that the con-

vergence rates behave like ν−1/2, the numerical results show a faster decay. Moreover,

we see that the convergence rates are independent of the grid level k. This means that

the overall computational complexity (the number of floating point operations that

have to be performed) is proportional to the computational complexity of one multi-



134 Numerical results

n q

τ = 1/16 > 100 0.95
τ = 2/16 > 100 0.92
τ = 3/16 > 100 0.88
τ = 4/16 86 0.85
τ = 5/16 69 0.82
τ = 6/16 57 0.78
τ = 7/16 48 0.75
τ = 8/16 > 100 0.96

Table 6.1: 3-by-3 distributed control: Number of iterations n and convergence rate q
for normal equation smoother on grid level k = 5 and ν = νpre+νpost = 1+1
smoothing steps
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Figure 6.4: 3-by-3 distributed control: convergence rate for normal equation smoother
on grid level k = 5 and ν = 4 smoothing steps

ν = 1 + 1 ν = 2 + 2 ν = 4 + 4 ν = 8 + 8
n q n q n q n q

k = 5 49 0.75 24 0.56 14 0.35 10 0.24
k = 6 49 0.75 25 0.57 14 0.36 10 0.24
k = 7 49 0.75 25 0.57 14 0.36 10 0.25
k = 8 49 0.75 25 0.57 14 0.36 10 0.25
k = 9 49 0.75 25 0.57 14 0.36 10 0.25

Table 6.2: 3-by-3 distributed control: Number of iterations n and convergence rate q
for normal equation smoother for τ = 7/16
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grid cycle. It can be verified that the computational complexity of one multigrid cycle

is proportional to the number of unknowns Nk.

An alternative approach is based on the reduction of the problem to a 2-by-2 formula-

tion (reduced KKT-system). For this case we have introduced two kinds of smoothers.

We can apply collective point smoothers (cf. Subsection 3.2.2) or we can again use a

preconditioned normal equation smoother, which we consider first. Here, the implemen-

tation follows (4.14) and again, τ = 7/16 is a good choice for the damping parameter.

In Table 6.3, we see that the multigrid method with the preconditioned normal equation

smoother is convergent for all tested grid levels k and already for ν = νpre+νpost = 1+1

smoothing steps. Moreover, we observe optimal complexity and again the convergence

rate decays faster than ν−1/2 which was proposed by the theory. The convergence rates

are comparable with the case of the 3-by-3 formulation.

ν = 1 + 1 ν = 2 + 2 ν = 4 + 4 ν = 8 + 8
n q n q n q n q

k = 5 47 0.74 24 0.56 14 0.35 10 0.24
k = 6 48 0.75 25 0.57 14 0.36 10 0.24
k = 7 48 0.75 25 0.57 14 0.36 10 0.25
k = 8 49 0.75 25 0.57 14 0.36 10 0.25
k = 9 49 0.75 25 0.57 14 0.36 10 0.25

Table 6.3: 2-by-2 distributed control: Number of iterations n and convergence rate q
for normal equation smoother for τ = 7/16

An alternative approach are collective point smoothers. Here, we stick to the case of

the collective Jacobi smoother. Convergence theory shows convergence for τ ∈ (0, 1).

As due to Table 6.4 (cf. Figure 6.5), τ = 3/4 seems to be optimal, we use that choice. In

Figure 6.6, we compare the observed convergence rates with the convergence rates com-

puted in Section 5.4 using local Fourier analysis. There we have analyzed the two-grid

method in the one dimensional case. Here, we have used a W-cycle multigrid method

for a two-dimensional problem. Nonetheless, we see that the bounds for the conver-

gence rates computed with local Fourier analysis seem to be quite precise estimates for

the true behavior.

In Table 6.5 we see that the multigrid method with the collective Jacobi smoother

shows an optimal convergence behavior. Moreover, we see that the collective Jacobi

smoother leads to much better convergence rates than the preconditioned normal equa-

tion smoother. Moreover, one step of the preconditioned normal equation smoother

requires approximately twice as much floating point operations than one step of the
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n q

τ = 1/8 91 0.86
τ = 2/8 44 0.73
τ = 3/8 29 0.61
τ = 4/8 21 0.51
τ = 5/8 16 0.41
τ = 6/8 13 0.33
τ = 7/8 21 0.51
τ = 15/16 44 0.73
τ = 8/8 > 100 0.97

Table 6.4: 2-by-2 distributed control: Number of iterations n and convergence rate q
for collective Jacobi smoother on grid level k = 5 and ν = νpre+νpost = 1+1
smoothing steps

ν = 1 + 1 ν = 2 + 2 ν = 4 + 4 ν = 8 + 8
n q n q n q n q

k = 5 13 0.34 8 0.16 6 0.08 4 0.03
k = 6 13 0.34 8 0.17 6 0.08 5 0.04
k = 7 13 0.34 8 0.17 6 0.08 5 0.04
k = 8 13 0.34 8 0.17 6 0.08 5 0.04
k = 9 13 0.34 8 0.17 6 0.08 5 0.04

Table 6.5: 2-by-2 distributed control: Number of iterations n and convergence rate q
for collective Jacobi smoother for τ = 3/4
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Figure 6.5: 2-by-2 distributed control: convergence rate for collective Jacobi smoother
on grid level k = 5 and νpre + νpost = 1 + 1 smoothing steps
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Figure 6.6: 2-by-2 distributed control: convergence rate for collective Jacobi smoother
compared with result from local Fourier analysis

collective Jacobi smoother, which makes the multigrid method with the collective Jacobi

smoother much faster, cf. Table 6.6 for the CPU times on a standard PC. Moreover,

we obtain that the CPU time grows linearly with the number of unknowns. Here, for

the 3-by-3 formulation the number of unknowns is 3 times the number of nodes and for

the 2-by-2 formulation the number of unknowns is 2 times the number of nodes. The

methods were realized (including the choice of τ) as outlined above.

3-by-3 2-by-2
Nk Normal equation Normal equation Collective Jacobi

k = 5 1 089 0.10 sec 0.05 sec 0.01 sec
k = 6 4 225 0.35 sec 0.19 sec 0.04 sec
k = 7 16 641 1.50 sec 0.84 sec 0.18 sec
k = 8 66 049 6.34 sec 4.01 sec 0.94 sec

Table 6.6: Distributed control: Number of nodes Nk and CPU times for all three ap-
proaches for ν = νpre + νpost = 1 + 1 smoothing steps

6.1.2 Boundary control model problem

In this subsection, we consider a more advanced problem: the boundary control Model

Problem 3. We discuss, how the solution of the model problem looks like, first. The

model problem reads as follows. Find control u ∈ L2(∂Ω) and state y ∈ H1(Ω) such

that they minimize the cost functional J , given by

J(y, u) =
1

2
‖y − yD‖2L2(Ω) +

α

2
‖u‖2L2(∂Ω),
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subject to the elliptic boundary value problem

−∆y + y = 0 in Ω and
∂y

∂n
= u on ∂Ω,

where yD is the same function as in the distributed control case. For α = 1, the optimal

state and the optimal control are shown in Figure 6.7.
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Figure 6.7: Boundary control Model Problem 3 for α = 1

3-by-3 2-by-2
Normal equation Normal equation Collective Jacobi
ν = 1 + 1 ν = 2 + 2 ν = 1 + 1 ν = 2 + 2 ν = 1 + 1 ν = 2 + 2
n q n q n q n q n q n q

k = 5 48 0.75 25 0.57 47 0.74 24 0.56 13 0.34 8 0.16
k = 6 48 0.75 24 0.56 48 0.75 25 0.57 13 0.34 8 0.17
k = 7 48 0.75 25 0.57 49 0.75 25 0.57 13 0.34 8 0.17
k = 8 49 0.75 25 0.57 49 0.75 25 0.57 13 0.34 8 0.17
k = 9 49 0.75 25 0.57 49 0.75 25 0.57 13 0.34 8 0.17

Table 6.7: Boundary control: Number of iterations n and convergence rate q for all
three proposed methods

Again, we apply the same numerical tests as in the case of the distributed control

model problem. Here, we want to mention that the boundary control problem is not

covered by the convergence theory for the multigrid method with the collective point

smoothers, but it is covered by the convergence theory for the multigrid method with

the preconditioned normal equation smoother. We again follow the definition of the

matrix, given in (4.14) and (4.22).
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Numerical experiments indicate that the optimal choices of the damping parameter

(τ = 7/16 for the preconditioned normal equation smoother and τ = 3/4 for the

collective Jacobi smoother) are also optimal choices for the boundary control model

problem. The numerical tests are collected in Table 6.7. Again all three approaches

shows optimal complexity. Again, the convergence rates decay faster than ν−1/2 and

the collective Jacobi smoother is the fastest smoother.

6.2 Robustness

6.2.1 Distributed control model problem

The next step is to analyze the convergence behavior for α approaching 0. Here, we

restrict ourselves to the 2-by-2 formulation of the model problem as we have restricted

ourselves to that case also for the analysis. Again, we consider the distributed control

Model Problem 2 first.

We have computed the solution for various choices of α. For α = 1, 10−6 and 10−12,

the optimal state is shown in Figure 6.8, the optimal control is shown in Figure 6.9. We

see that for α = 10−6 the optimal state can be seen as a reconstruction of the desired

state. This is non-trivial as we have chosen a general L2-function as desired state which

cannot be reconstructed as H1-function in a trivial way. For the case α = 10−12 we

observe oscillations at the position where the desired state jumps.
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Figure 6.8: Distributed control Model Problem 2: Optimal state

The methods we have proposed to obtain robust convergence rates, was the multigrid

method with the preconditioned normal equation smoother and the collective point
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Figure 6.9: Distributed control Model Problem 2: Optimal control

α = 1 α = 10−4 α = 10−8 α = 10−12

n q n q n q n q

k = 5 48 0.75 50 0.76 40 0.71 50 0.76
k = 6 48 0.75 48 0.75 51 0.76 53 0.77
k = 7 49 0.75 48 0.75 54 0.77 56 0.78
k = 8 49 0.75 49 0.75 50 0.76 44 0.73
k = 9 49 0.75 49 0.75 49 0.75 44 0.73

Table 6.8: 2-by-2 distributed control: Number of iterations n and convergence rate q for
preconditioned normal equation smoother for τ = 7/16 and ν = νpre+νpost =
1 + 1 smoothing steps

α = 1 α = 10−4 α = 10−8 α = 10−12

n q n q n q n q

k = 5 13 0.34 13 0.33 9 0.21 13 0.33
k = 6 13 0.34 13 0.34 12 0.29 13 0.33
k = 7 13 0.34 13 0.34 13 0.33 13 0.33
k = 8 13 0.34 13 0.34 13 0.34 11 0.26
k = 9 13 0.34 13 0.34 13 0.34 10 0.25

Table 6.9: 2-by-2 distributed control: Number of iterations n and convergence rate q
for collective Jacobi smoother for τ = 3/4 and ν = νpre + νpost = 1 + 1
smoothing steps
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α = 1 α = 10−4 α = 10−8 α = 10−12

n q n q n q n q

k = 5 7 0.10 6 0.10 9 0.18 6 0.07
k = 6 7 0.10 6 0.10 8 0.17 6 0.07
k = 7 7 0.10 7 0.10 7 0.12 6 0.07
k = 8 7 0.10 7 0.10 7 0.11 7 0.13
k = 9 7 0.10 7 0.10 7 0.10 8 0.17

Table 6.10: 2-by-2 distributed control: Number of iterations n and convergence rate q
for collective Gauss Seidel smoother for ν = νpre + νpost = 1 + 1 smoothing
steps

smoothers. First we give the convergence tables, where the preconditioned normal

equation smoother was used, in Table 6.8. We observe that convergence behavior is

both, independent of the grid level k and robust in the choice of α. The same conver-

gence behavior can also be observed for the collective Jacobi smoother, see Table 6.9.

As already mentioned in Section 3.2.2, we can improve the convergence rates further by

using collective Gauss Seidel iteration, cf. Table 6.10. Here, damping is not necessary

and therefore we have used an undamped version. We have to mention that conver-

gence theory is not available for collective Gauss Seidel iteration but that method is a

canonical extension of collective Jacobi iteration.

6.2.2 Boundary control model problem

First we want to show how the solution of the model problem looks like. We have

computed the solution for various values of α. For α = 1, 10−6 and 10−12, the optimal

state is shown in Figure 6.10, the optimal control is shown in Figure 6.11.
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Figure 6.10: Boundary control Model Problem 3: Optimal state
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Figure 6.11: Boundary control Model Problem 3: Optimal control

α = 1 α = 10−4 α = 10−8 α = 10−12

n q n q n q n q

k = 5 13 0.34 13 0.34 16 0.40 16 0.41
k = 6 13 0.34 13 0.34 17 0.43 16 0.42
k = 7 13 0.34 13 0.34 19 0.48 17 0.44
k = 8 13 0.34 13 0.34 18 0.45 17 0.43
k = 9 13 0.34 13 0.34 14 0.35 17 0.44

Table 6.11: 2-by-2 boundary control: Number of iterations n and convergence rate q
for collective Jacobi smoother for τ = 3/4 and ν = νpre + νpost = 1 + 1
smoothing steps

α = 1 α = 10−4 α = 10−8 α = 10−12

n q n q n q n q

k = 5 6 0.10 7 0.10 10 0.22 11 0.24
k = 6 7 0.10 7 0.10 12 0.27 11 0.27
k = 7 7 0.10 7 0.11 12 0.30 11 0.26
k = 8 7 0.10 7 0.10 12 0.29 12 0.28
k = 9 7 0.10 7 0.10 8 0.14 12 0.29

Table 6.12: 2-by-2 boundary control: Number of iterations n and convergence rate q
for collective Gauss Seidel smoother for ν = νpre + νpost = 1 + 1 smoothing
steps
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As mentioned, we do not know a norm ‖ · ‖X such that the problem is well posed (in

the sense of condition (A1), introduced on page 17) robust with respect to α, i.e.,

such that the constants in (A1) are independent of α. Therefore, we cannot construct

a norm ‖ · ‖X−,k , as outlined in Chapter 4, and therefore we cannot even apply the

preconditioned normal equation smoother.

For the collective Jacobi smoother and the collective Gauss Seidel smoother, we do not

need to know these norms for applying the method. The numerical experiments show

good convergence behavior also for the boundary control case, which is not covered by

the convergence theory, cf. Table 6.11 for the collective Jacobi iteration and Table 6.11

for the collective Gauss Seidel iteration.

6.2.3 Distributed control model problem on a non-convex domain

In Section 4.5 we have shown that the methods introduced in this thesis for the dis-

tributed control Model Problem 2 also converge on domains where the full H2-ellipticity

cannot be guaranteed. One example, for such a domain is the L-shaped domain

Ω := (0, 2)2\[1, 2)2, cf. Figure 4.1. There, we have only partial elliptic regularity,

i.e., we can only show that – provided to have sufficiently smooth data – the solution is

a function in H2−s(Ω), where s ∈ [0, 1) is the regularity parameter of assumption (R’),

introduced on page 91. For the L-shaped domain, we have used the initial mesh shown

in Figure 6.12 and uniform refinement. For the L-shaped domain, we have s > 1
3 .

Figure 6.12: Initial mesh and uniform refinement

In the Tables 6.13 and 6.14, we see that the convergence rates for the L-shaped domain

and for the domain Ω = (0, 1)2 are comparable, i.e., the multigrid method does not

suffer from the lack of full regularity. Convergence theory shows that for varying ν, we

cannot expect anymore that the convergence rates behaves like ν−1/2 but like ν−(1−s)/2.

However, the numerical experiments show convergence rates that decays even faster

than ν−1/2, cf. Table 6.15.
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α = 1 α = 10−4 α = 10−8 α = 10−12

n q n q n q n q

k = 5 49 0.75 50 0.76 41 0.71 50 0.76
k = 6 48 0.75 49 0.75 51 0.76 53 0.77
k = 7 49 0.75 49 0.75 55 0.77 56 0.78
k = 8 49 0.75 49 0.75 51 0.76 44 0.73
k = 9 49 0.75 49 0.75 49 0.75 44 0.73

Table 6.13: 2-by-2 distributed control on L-shaped domain: Number of iterations n
and convergence rate q for preconditioned normal equation smoother for
τ = 7/16 and ν = νpre + νpost = 1 + 1 smoothing steps

α = 1 α = 10−4 α = 10−8 α = 10−12

n q n q n q n q

k = 5 14 0.35 13 0.34 9 0.21 13 0.33
k = 6 13 0.34 13 0.34 12 0.29 13 0.33
k = 7 13 0.34 13 0.34 13 0.33 13 0.33
k = 8 13 0.34 13 0.34 13 0.34 11 0.26
k = 9 13 0.34 13 0.34 13 0.34 11 0.26

Table 6.14: 2-by-2 distributed control on L-shaped domain: Number of iterations n
and convergence rate q for collective Jacobi smoother for τ = 3/4 and
ν = νpre + νpost = 1 + 1 smoothing steps

ν = 1 + 1 ν = 2 + 2 ν = 4 + 4
n q n q n q

Preconditioned normal equation 49 0.75 25 0.57 14 0.36
Collective Jacobi smoother 14 0.35 8 0.17 6 0.08

Table 6.15: 2-by-2 distributed control on L-shaped domain: Number of iterations n and
convergence rate q on grid level k = 5
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Chapter 7

Conclusions

In this thesis we have seen how fast iterative solvers for solving optimality systems

arising from optimal control problems can be constructed. Similar to former results,

cf. Simon [57] and Schöberl, Simon and Zulehner [53], we could give convergence

results based on Hackbusch’s splitting into smoothing and approximation property.

In Simon [57], the analysis was restricted to a distributed control model problem (cf.

Model Problem 2). The first result we saw in this work was that his convergence results

(for α fixed) can be carried over to other model problems. Moreover, in Simon [57],

Uzawa type smoothers have been proposed and analyzed. Here, we propose two other

kinds of smoothers: on the one hand we propose smoothers based on the normal equa-

tion which can be constructed in a more flexible way. Moreover, the analysis of such

smoothers is easier than the analysis of Uzawa type smoothers. Smoothers based on

the normal equation were known before, but in Takacs and Zulehner [61] we gave

numerical results which indicated that they show convergence rates comparable to the

convergence rates obtained using Uzawa type smoothers, which was a surprise for us.

On the other hand, we have seen collective point smoothers. Also this kind of smoothers

was known, cf. Borzi, Kunisch and Kwak [12]. Here, we have presented a smoothing

analysis (cf. Takacs and Zulehner [62]) that guarantees robustness of the conver-

gence rates in α. At a first observation, this result fits into the framework of Schöberl,

Simon and Zulehner [53], so we can combine the smoothing analysis with their work

to show convergence.

Numerical experiments have shown that the collective point smoothers are much faster

than the preconditioned normal equation smoothers. Moreover, even if the conver-

gence analysis is restricted to the distributed control Model Problem 2, collective point

smoothers can be applied also to the other model problems, e.g., to the boundary con-

trol Model Problem 3. Also in this case, we have observed robust convergence behavior.
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Such a result could not be achieved using the normal equation smoothers as insight into

the problem is required even for the setup of the method. For applying collective point

smoothers in our context no insight is needed.

Under the assumption of full elliptic regularity we gave a convergence proof which is

slightly different to the proof given in Schöberl, Simon and Zulehner [53]. This

proof can be generalized to domains where full elliptic regularity cannot be guaranteed.

Typically, full elliptic regularity requires that the domain has a sufficiently smooth

boundary or that the domain is convex. The analysis, we have presented, relaxes this

condition and is applicable to any reasonable polygonal (or polyhedral) domain.

Beside qualitative convergence results, we also were interested in quantitative conver-

gence analysis: we wanted to compute sharp upper bounds for the convergence rates.

Here, we have used local Fourier analysis. Already in Borzi, Kunisch and Kwak [12],

local Fourier analysis has been applied to the problems discussed in this thesis. We

could show that a tool from symbolic computation – cylindrical algebraic decomposition

(CAD) – allows to compute an explicit representation of the convergence rate as a func-

tion of a certain parameter like the damping parameter τ in this thesis (cf. Pillwein

and Takacs [48, 49]). In Figure 6.6 we have seen that the results computed with local

Fourier analysis are very similar to the cases obtained in numerical experiments.
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Fachhochschule Wels, Austria

Winter terms 2006/07, Student Tutor

2007/08 Tutorium Numerik für MechatronikerInnen

University of Linz, Austria

Summer 2005 – present Software development

Development of a statistics tool to evaluate demonstrable re-

liability of technical systems using the Load Matrix method

University of Linz, Austria



158 Curriculum vitae

Feb 2004 – Jul 2008 Civilian service and part-time work

Evangelisches Diakoniewerk, Gallneukirchen, Austria

Summers 2002 and 2003 Work in holidays

Data maintenance and ad-hoc-optimization of production

lines

BMW Motoren, Steyr, Austria

List of Publications

[1] S. Takacs and W. Zulehner. Multigrid Methods for Elliptic Optimal Control

Problems with Neumann Boundary Control. In Numerical Mathematics and Ad-

vanced Applications 2009: Proceedings of ENUMATH, pages 855 – 863. Springer,

2010.

[2] V. Pillwein and S. Takacs. Smoothing analysis of an all-at-once multigrid ap-

proach for optimal control problems using symbolic computation. In U. Langer

and P. Paule, editors, Numerical and Symbolic Scientific Computing: Progress

and Prospects. Springer, Wien, 2011.

[3] S. Takacs and W. Zulehner. Convergence Analysis of Multigrid Methods with

Collective Point Smoothers for Optimal Control Problems. Computing and Vi-

sualization in Science, 14(3):131–141, 2011.

[4] V. Pillwein and S. Takacs. A local Fourier convergence analysis of a multigrid

method using symbolic computation. 2012. Submitted (DK-report 04-2012).

[5] S. Takacs and W. Zulehner. Convergence analysis of all-at-once multigrid meth-

ods for elliptic control problems under partial elliptic regularity. 2012. Submitted

(DK-report 08-2012).


	1 Introduction
	2 Preliminaries
	2.1 Banach, Hilbert, Lebesgue and Sobolev spaces
	2.2 Optimal control problems
	2.2.1 Model problems

	2.3 Weak formulations and discretization
	2.3.1 Weak formulation of the state equation
	2.3.2 Weak formulation of the control problem (Karush Kuhn Tucker system, KKT-system)
	2.3.3 Discretization
	2.3.4 Discretization of saddle point problems (Mixed finite elements)

	2.4 Iterative solvers
	2.4.1 Iterative solvers for symmetric positive definite problems
	2.4.2 Iterative solvers for saddle point problems


	3 Multigrid methods
	3.1 Multigrid framework
	3.2 Smoothers for saddle point problems
	3.2.1 Normal equation smoothers
	3.2.2 Collective point smoothers
	3.2.3 Other classes of smoothers

	3.3 Convergence analysis
	3.3.1 Smoothing and approximation property
	3.3.2 Local Fourier analysis


	4 Multigrid analysis based on smoothing and approximation property
	4.1 A general convergence framework
	4.1.1 Smoothing property for the normal equation smoother
	4.1.2 Approximation property
	4.1.3 A two-grid convergence result
	4.1.4 A W-cycle multigrid convergence result

	4.2 Application to the model problems: non-robust convergence results
	4.2.1 An analysis for the reduced KKT-system
	4.2.2 An analysis for the non-reduced KKT-system

	4.3 Application to the model problem 2: a robust convergence result based on full regularity
	4.3.1 Interpolation spaces
	4.3.2 An analysis for the reduced KKT-system

	4.4 Smoothing property for collective point smoothers and its application to the model problem 2
	4.5 Application to the model problem 2: a robust convergence result based on partial regularity
	4.5.1 The choice of the norms
	4.5.2 Smoothing property
	4.5.3 Approximation property
	4.5.4 Convergence result

	4.6 Summary

	5 Local Fourier analysis
	5.1 Local Fourier analysis framework
	5.1.1 Iteration matrix
	5.1.2 Symbols of the mass matrix and the stiffness matrix
	5.1.3 Symbol of the system matrix Ak
	5.1.4 Symbol of the smoother
	5.1.5 Symbol of the whole two-grid operator

	5.2 Quantifier elimination using cylindrical algebraic decomposition
	5.3 An analysis based on smoothing rates
	5.3.1 A rigorous justification for the use of smoothing rates
	5.3.2 Smoothing rates
	5.3.3 Two-grid convergence rate

	5.4 An all-at-once analysis
	5.5 Summary

	6 Numerical results
	6.1 Optimal complexity
	6.1.1 Distributed control model problem
	6.1.2 Boundary control model problem

	6.2 Robustness
	6.2.1 Distributed control model problem
	6.2.2 Boundary control model problem
	6.2.3 Distributed control model problem on a non-convex domain


	7 Conclusions
	Bibliography

