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Abstract

The main topic of this thesis is the algorithmic treatment of two problems related
to linear Diophantine systems. Namely, the first one is counting and the second one is
listing the non-negative integer solutions of a linear system of equations/inequalities.

The general problem of solving polynomial Diophantine equations does not admit an
algorithmic solution. In this thesis we restrict to linear systems, so that we can treat
them algorithmically. In 1915, MacMahon, in his seminal work “Combinatory Anal-
ysis”, introduced a method called partition analysis in order to attack combinatorial
problems subject to linear Diophantine systems. Following that line, in the beginning
of this century Andrews, Paule and Riese published fully algorithmic versions of par-
tition analysis, powered by symbolic computation. Parallel to that, the last decades
saw significant progress in the geometric theory of lattice-point enumeration, starting
with Ehrhart in the 60’s, leading to important theoretical results concerning generating
functions of the lattice points in polytopes and polyhedra. On the algorithmic side of
polyhedral geometry, Barvinok developed the first polynomial-time algorithm in fixed
dimension able to count lattice points in polytopes.

The main goal of the thesis is to connect these two lines of research (partition analysis
and polyhedral geometry) and combine tools from both sides in order to construct better
algorithms.

The first part of the thesis is an overview of conic semigroups from both a geometric
and an algebraic viewpoint. This gives a connection between polyhedra, cones and
their generating functions to generating functions of solutions of linear Diophantine
systems. Next, we provide a geometric interpretation of Elliott Reduction and Omega2
(two implementations of partition analysis). The partial-fraction decompositions used in
these two partition-analysis methods are interpreted as decompositions of cones. With
this insight and employing tools from polyhedral geometry, such as Brion’s theorem
and Barvinok’s algorithm, we propose a new algorithm for the evaluation of the Ω≥
operator, the central tool in MacMahon’s work on partition analysis. This gives an
implementation of partition analysis heavily based on the geometric understanding of
the method. Finally, a classification of linear Diophantine systems is given, in order to
systematically treat the algorithmic solution of linear Diophantine systems, especially
the difference between parametric and non-parametric problems.
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Zusammenfassung

Das Hauptaugenmerk dieser Arbeit liegt auf der algorithmischen Lösung zweier Prob-
leme, welche im Zusammenhang mit linearen diophantischen Systemen auftreten. Das
erste Problem ist die Bestimmung der Anzahl der nicht-negativen, ganzzahligen Lösun-
gen linearer Systeme von (Un-)Gleichungen, das zweite die Auflistung ebendieser Lösun-
gen.

Die Lösung von polynomiellen diophantischen Gleichungen ist nicht ohne Einschrän-
kungen algorithmisch handhabbar. Aus diesem Grund beschränken wir uns in der vor-
liegenden Arbeit auf lineare Systeme. 1915 führte MacMahon in seinem Werk ”Com-
binatory Analysis” eine Methode namens Partition Analysis ein, um kombinatorische
Probleme zu lösen, in denen lineare diophantische Systeme auftreten. Darauf aufbauend,
jedoch unter weitreichender Miteinbeziehung von Techniken des symbolischen Rechnens,
veröffentlichten Andrews, Paule und Riese zu Beginn dieses Jahrhunderts algorithmische
Varianten der Partition Analysis. Parallel dazu gab es in den letzten Jahrzehnten er-
hebliche Fortschritte in der geometrischen Theorie zur Aufzählung von Gittervektoren,
beginnend mit Erhart in den 70er Jahren, welche zu wichtigen theoretischen Erkenntnis-
sen bezüglich erzeugender Funktionen von Gittervektoren in Polytopen und Polyedern
führten. Einen wesentlichen Beitrag in der algorithmischen Entwicklung leistete Barvi-
nok mit der Formulierung des ersten Algorithmus, der die Aufzählung von Gittervektoren
in Polytopen ermöglicht und bei fester Dimension eine polynomielle Laufzeit aufweist.

Das Ziel dieser Arbeit is es, beide Forschungsstränge -Partition Analysis und Polyeder
Geometrie- zu verbinden und die Werkzeuge aus beiden Theorien zu neuen, besseren
Algorithmen zu kombinieren. Der erste Teil gibt einen Überblick über konische Halb-
gruppen aus zweierlei Blickwinkeln, dem geometrischen und dem algebraischen. Dies
ermöglicht es uns, die Verbindung von Polyedern, Kegeln und ihrer erzeugenden Funk-
tionen zu den erzeugenden Funktionen der Lösungen von linearen diophantischen Sys-
temen herzustellen. Darauf folgend behandeln wir geometrische Interpretationen von
Elliotts Reduction und Omega2, zweier Realisierungen von Partition Analysis. Die Par-
tialbruchzerlegungen, welche in diesen beiden Methoden auftreten, werden als Zerlegun-
gen von Kegeln interpretiert. Zusammen mit geeigneten Hilfsmitteln aus der Polyeder
Geometrie, wie etwa dem Satz von Brion und Barvinoks Algorithmus, führt dies zur
Formulierung eines neuen Algorithmus zur Anwendung des Omega-Operators, dem zen-
tralen Werkzeug in MacMahons Arbeit an Partition Analysis. Wir erhalten daraus
eine algorithmische Realisierung von Partition Analysis, die entscheidend auf dem ge-
ometrischen Verständnis der Methode basiert. Abschließend wird eine Klassifikation
von linearen diophantischen Systemen eingeführt, um systematisch deren algorithmische
Lösung aufarbeiten zu können. Speziell wird dabei auf die Unterscheidung zwischen
parametrischen und nicht-parametrischen Problemen geachtet.
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Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbststndig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
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Introduction

Some History

One of the earliest recorded uses of geometry as a counting tool is the notion of figurate
numbers. Ancient Greeks used pebbles (χαλίκι, where the word calculus comes from),
in order to do arithmetic. For example, an arrangement of pebbles would be used to
calculate triangular numbers. In general figurate numbers were popular in ancient times.

Today we mostly care about squares and some special cases (like pentagonal numbers
in Euler’s celebrated theorem). Among the mathematicians that were interested in
figurate numbers was, of course, Diophantus who wrote a book on polygonal numbers
(see [25]). After an interesting turn of events, one of the most prominent methods for
the solution of linear Diophantine systems relies on generalizing figurate numbers.

This generalization bears the name of Eugene Ehrhart who made the first major con-
tributions to what is today called Ehrhart theory. The goal is to compute and investigate
properties of functions enumerating the lattice points in polytopes. In dimension 2 and
for the simple regular polygons this coincides with the concept of figurate numbers, but
naturally we are interested in higher-dimensional polytopes and polytopes with more
complicated geometry.

Diophantus in his masterpiece “Arithmetica” dealt with the solution of equations
[25]. But in the time of Diophantus, a couple of things were essentially different than in
modern mathematics:

∙ No notion of zero existed.

∙ Fractions were not treated as numbers (Diophantus was the first to do so).

∙ There was no notation for arithmetic.

”Arithmetica” consisted of 13 books, out of which only six survived and possibly an-
other four through Arab translations (found recently), dealing with the solution of 130
equations. On one hand his work is important because it is the oldest account we have
for indefinite equations (equations with more than one solutions). More importantly
though, Diophantus introduced a primitive notational system for (what later was called)
algebra.

For our purposes, the essential part of his work is his view on what is the solution of
an equation. He considered equations with positive rational coefficients whose solutions

11
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are positive rationals. Following this path, we consider a Diophantine problem to have
integer coefficients and non-negative integer solutions.

In 1463 the German mathematician Regiomontanus, traveling to Italy, he came across
a copy of Arithmetica. He considered it to be an important work when he reported to a
friend of his about it. He intended to do the translation, but he could only find six out
of the thirteen books that Diophantus mentioned in his introduction, thus he did not
proceed [14].

Although the most famous marginal note to be found in a copy of Arithmetica
is by Fermat (his last theorem), there is another one which is very interesting. The
Byzantine scholar Chortasmenos notes “Thy soul, Diophantus, be with Satan because
of the difficulty of your problems” (funny enough next to what came to be known as
Fermat’s last theorem).

This last comment, combined with the note that Diophantus did not have a gen-
eral method (after solving the 100th problem, you still have no clue how to attack the
101st) is important for us. Of course, for non-linear Diophantine problems one cannot
expect a general method (Hilbert’s 10th problem). But we present algorithmic solutions
(developed during the last century) for linear Diophantine systems and examine their
connections.

Contributions

The main contribution of this thesis is in the direction of connecting partition analysis, a
method for solving linear Diophantine systems, with polyhedral geometry. The analytic
viewpoint of traditional partition analysis methods (due to Elliott, MacMahon, An-
drews, Paule and Riese) is interpreted in the context of polyhedral geometry. Through
this interpretation we are allowed to use tools from geometry in order to enhance the
algorithmic procedures and the understanding of partition analysis. More precisely, the
main contributions are:

Geometric and algebraic interpretation of partition analysis

∙ In Theorem 3.2 a geometric interpretation of the generalized partial fraction de-
composition employed in Omega2 is given.

∙ We define geometric objects related to the crude generating function and provide
a geometric version of the Ω≥ operator.

∙ An algebraic version of Ω≥ is given based on gradings of algebraic structures and
a variant of Hilbert series.



CONTENTS 13

Algorithmic contributions to partition analysis

∙ A new algorithm for the evaluation of the Ω≥ operator, following the traditional
paradigm of recursive elimination of 𝜆 variables (see Section 4.1).

∙ A new algorithm, motivated by the geometric understanding of the action of Ω≥,
that performs simultaneous elimination of all 𝜆 variables (see Section 4.2).

A second goal of the thesis, especially given the interest in algorithmic solutions, is
the classification of linear Diophantine problems. In the literature the notion of a linear
Diophantine problem is not consistent and depends on the motivation of the author.

Finally, we note that the main reason why we believe it is important to explore such
connections, although in both contexts (partition analysis and polyhedral geometry)
there are already methods to attack the problem, is that knowledge transfer from one
area to another often helps to develop algorithmic tools that are more efficient.
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Chapter 1

Geometry, Algebra and
Generating Functions

In this chapter we present a basic introduction to geometric, algebraic and generating
function related concepts that will be used in later chapters. This introduction is not
meant to be complete but rather a recall of basic notions mostly to set up notation. In
Section 1.1, some geometric notions and the discrete analog of cones are presented. For
a detailed introduction see [17, 11, 38]. In Section 1.2 a hierarchy of algebraic structures
related to formal power series is presented first and then an introduction to generating
functions is given. Finally, in Section 1.3 we present the relation of formal power series
and generating functions via polyhedral geometry and give a short description of more
advanced geometric tools we will use later.

We note that in this chapter we will use boldface fonts for vectors and the multi-index
notation x𝑎 = 𝑥𝑎11 𝑥𝑎22 . . . , 𝑥𝑎𝑑𝑑 .

1.1 Polyhedra, Cones and Semigroups

In this section we give a short introduction to polyhedra and polytopes. We define the
fundamental objects of polyhedral geometry and provide terminology and notation that
will be used later. For a more detailed introduction to polyhedral geometry see [17, 38]
and references therein.

All of the theory developed in this section takes place in some Euclidean space. For
simplicity of notation and clarity, we agree this to be R𝑑 for some 𝑑 ∈ N. We fix 𝑑 to
denote the dimension of the ambient space R𝑑.

In Section 1.1.1 we will introduce polyhedra and in Section 1.1.2 we discuss about
polytopes, while in Section 1.1.3 we will present definitions and notation related to
polyhedral cones. In Section 1.1.4 we introduce semigroups and their connection to
polyhedral cones.

15



16 CHAPTER 1. GEOMETRY, ALGEBRA AND GENERATING FUNCTIONS

1.1.1 Polyhedra

There are many different ways to introduce the notion of polyhedra in literature [11, 17,
38, 12]. According to our intuition, polyhedra are geometric objects with ”flat sides”.
Thus, it is expected that we will resort to some sort of linear relations defining polyhedra.
In order to make this more precise we will use linear functionals.

Definition 1.1 (Linear Functional)
Given a real vector space R𝑑, a linear functional is a map 𝑓 : R𝑑 → R such that

𝑓(𝑎𝑢+ 𝑏𝑣) = 𝑎𝑓(𝑢) + 𝑏𝑓(𝑣)

for all 𝑢, 𝑣 ∈ R𝑑 and 𝑎, 𝑏 ∈ R. �

Observe that any linear equation/inequality in 𝑑 variables 𝑥1, 𝑥2, . . . , 𝑥𝑑, i.e.

𝑑∑︁
𝑖=1

𝑎𝑖𝑥𝑖 ≥ 𝑏 for 𝑎1, 𝑎2, . . . , 𝑎𝑑, 𝑏 ∈ R

can be expressed as 𝑓(x) ≥ 𝑏 in terms of a linear functional

𝑓(x) = (𝑎1, 𝑎2, . . . , 𝑎𝑑)
𝑇x.

For a ∈ R𝑑, we denote by 𝑓𝑎(x) the linear functional 𝑓𝑎(x) = (𝑎1, 𝑎2, . . . , 𝑎𝑑)
𝑇x.

Having a concise and formal way to express linear relations, the next step is to define
the solution space of a linear equation/inequality. Given a ∈ R𝑑 and 𝑏 ∈ R, the solution
space of 𝑓𝑎(x) = 𝑏 is called an affine hyperplane and is denoted by 𝐻𝑎,𝑏, i.e.,

𝐻𝑎,𝑏 = {x ∈ R𝑑 : 𝑓𝑎(x) = 𝑏}.

On the other hand, given a ∈ R𝑑 and 𝑏 ∈ R, the solution space of the inequality
𝑓𝑎(x) ≥ 𝑏 is called an affine halfspace and is denoted by ℋ+

𝑎,𝑏, i.e.,

ℋ+
𝑎,𝑏 = {x ∈ R𝑑 : 𝑓𝑎(x) ≥ 𝑏} for some 𝑏 ∈ R.

Naturally, a second half-space is given by ℋ−
𝑎,𝑏 = {x ∈ R𝑑 : 𝑓𝑎(x) ≤ 𝑏}. We note that the

hyperplane 𝐻𝑎,𝑏 is the intersection of the two halfspaces ℋ+
𝑎,𝑏 and ℋ

−
𝑎,𝑏, or, equivalently,

the hyperplane divides the Euclidean space into two halfspaces.
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𝑥

𝑦

𝑧

𝑥

𝑦

𝑧

A hyperplane and a halfspace it defines.

Let’s now consider (finite) intersections of halfspaces. Given two linear functionals 𝑓𝑎1
and 𝑓𝑎2 for some a1,a2 ∈ R𝑑, and two scalars 𝑏1, 𝑏2 ∈ R, we consider the intersection of
the two halfspaces

ℋ+
𝑎1,𝑏1
∩ℋ+

𝑎2,𝑏2
=
{︁
x ∈ R𝑑 : 𝑓𝑎1(x) ≥ 𝑏1, 𝑓𝑎2(x) ≥ 𝑏2

}︁
For simplicity, we omit the linear functional notation and use matrix notation, as it
is customary for systems of linear inequalities. In other words, given a set of vectors
ai ∈ R𝑑 and scalars 𝑏𝑖 ∈ R for 𝑖 ∈ [𝑚], we write⋂︁

𝑖∈[𝑚]

ℋ+
𝑎𝑖,𝑏𝑖

=
{︁
x ∈ R𝑑 : 𝐴x ≥ 𝑏

}︁

where 𝐴 is the matrix with ai as its 𝑖-th row and 𝑏 = (𝑏1, 𝑏2, . . . , 𝑏𝑚)𝑇 .

With the above notation and terminology we can proceed with the definition of the first
fundamental object in polyhedral geometry.

Definition 1.2 (Polyhedron)
A polyhedron is the intersection of finitely many affine halfspaces in R𝑑. More precisely,
given 𝐴 ∈ R𝑚×𝑑 and b ∈ R𝑚, then the polyhedron 𝒫𝐴,𝑏 is the subset of R𝑑

𝒫𝐴,𝑏 = {x ∈ R𝑑 : 𝐴x ≥ 𝑏}.

�

An important subclass of polyhedra, in which we will restrict for the rest of the thesis, is
that of rational polyhedra. In the definition of 𝒫𝐴,𝑏 we assume 𝐴 ∈ R𝑚×𝑑 and b ∈ R𝑚.
If 𝐴′ ∈ Z𝑚×𝑑 and 𝑏′ ∈ Z𝑚 can be chosen such that 𝒫𝐴,𝑏 = 𝒫𝐴′,𝑏′ , then the polyhedron
𝒫𝐴,𝑏 is called rational. For brevity, if no characterization is given, then we assume a
polyhedron is rational.
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𝑥

𝑦

𝑧

A polyhedron

In the beginning of the section we fixed 𝑑 to denote the dimension of the ambient
Euclidean space. Moreover, in the definitions of halfspaces and polyhedra we assumed
that these are subsets of R𝑑. Nevertheless, the dimension of a polyhedron is not neces-
sarily equal to the dimension of the ambient space as we shall see. In order to define the
notion of the dimension of a polyhedron, we will use the affine hull of a set. Given a real
vector space R𝑑 and a set 𝑆 ⊂ R𝑑, then affhullR𝑑 𝑆 is the set of all affine combinations
of elements in 𝑆, i.e.,

affhullR𝑑 𝑆 =

{︃
𝑛∑︁

𝑖=1

𝛼𝑖si

⃒⃒⃒⃒
⃒ 𝑛 ∈ N*,

𝑛∑︁
𝑖=1

𝛼𝑖 = 1, 𝑎𝑖 ∈ R

}︃
.

Let 𝒫𝐴,𝑏 be a polyhedron in the ambient Euclidean space R𝑑. The dimension of
𝒫𝐴,𝑏, denoted by dim𝒫𝐴,𝑏 is defined to be the dimension of the affine hull of 𝒫𝐴,𝑏, i.e.,

dim𝒫𝐴,𝑏 = dimR𝑑 (affhullR𝑑 𝒫𝐴,𝑏) .

Observe that dim𝒫𝐴,𝑏 ≤ 𝑑 in general. If dim𝒫𝐴,𝑏 = 𝑑, then we say that 𝒫𝐴,𝑏 is full
dimensional. A 𝑘-polyhedron is a polyhedron of dimension 𝑘.
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𝑥

𝑦

𝑧

A non full-dimensional polyhedron. The ambient space dimension is 3, while the
dimension of the polyhedron is 2.

1.1.2 Polytopes

Although we will mostly deal with polyhedra, a very important object, especially when
it comes to lattice-point enumeration, is the polytope. Among the numerous equivalent
definitions of a polytope, we chose the following:

Definition 1.3 (Polytope)
A bounded polyhedron is called a polytope. �

A 3-polytope.

One of the fundamental properties of polytopes, which we will also use in later
chapters, is that a polytope has two equivalent representations, the H-representation
and the V-representation. H-representation stands for halfspace representation and it
is the set of halfspaces whose intersection is the polytope, i.e., the description we used
in the definition. V-representation stands for vertex representation. A polytope is the
convex hull of its vertices, thus it can be described by a finite set of points in R𝑑. For a
detailed proof of this non-trivial fact see Appendix A in [17].



20 CHAPTER 1. GEOMETRY, ALGEBRA AND GENERATING FUNCTIONS

We note that the convex hull of a set of 𝑘 points 𝑆 ∈ R𝑑 is the smallest convex set
containing 𝑆, or alternatively, the set of all convex combinations of elements from 𝑆, i.e.,

{︃
𝑘∑︁

𝑖=1

𝛼𝑖si

⃒⃒⃒⃒
⃒ si ∈ 𝑆,

𝑘∑︁
𝑖=1

𝛼𝑖 = 1, 𝛼 ∈ R

}︃
.

In order to establish terminology and to define the notion of vertex used above, we
define the notions of supporting hyperplanes and faces of polyhedra and polytopes. A
hyperplane 𝐻 ∈ R𝑑 is said to support a set 𝑆 ⊆ R𝑑 if

∙ 𝑆 is contained in one of the two closed halfspaces determined by 𝐻,

∙ there exists 𝑥 ∈ 𝑆 such that 𝑥 ∈ 𝐻.

In other words, a supporting hyperplane 𝐻 for the polyhedron 𝑃 is a hyperplane that
intersects 𝑃 and leaves 𝑃 entirely on one side.

𝑥
𝑦

z

𝑥
𝑦

𝑧

Supporting hyperplanes for a cube in 3D

With the use of supporting hyperplanes, we can define now the faces of a polyhedron or
polytope 𝑃 in R𝑑. A face 𝐹 of 𝑃 is the intersection of 𝑃 with a supporting hyperplane
𝑆. The dimension of a face 𝐹 is the dimension of affhullR𝑑 𝐹 . A face of dimension
𝑘 is called a 𝑘-face. In particular a 0-face is called vertex, a 1-face is called edge or
extreme ray and a (dim𝑃 − 1)-face is called facet. We note that a face of a polyhedron
(resp. polytope) is again a polyhedron (resp. polytope) and that the definition of face
dimension is compatible with the the definition of the dimension of a polyhedron.
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A facet, a 1-face and a vertex of a 3-polytope.

Simplices are polytopes of very simple structure and are used as building blocks in
polyhedral geometry. We first define the standard simplex in dimension 𝑑.

Definition 1.4 (Standard Simplex)
The standard 𝑑-simplex is the subset of R𝑑 defined by

Δ𝑑 =

{︃
(𝑥1, 𝑥2 . . . , 𝑥𝑑) ∈ R𝑑

⃒⃒⃒⃒
⃒

𝑑∑︁
𝑖=1

𝑥𝑖 ≤ 1 and 𝑥𝑖 ≥ 0 ∀𝑖

}︃
Equivalently, the standard 𝑑-simplex Δ𝑑 is the convex hull of the 𝑑+ 1 points:

𝑒0 = (0, 0, 0, . . . , 0), 𝑒1 = (1, 0, 0, . . . , 0), 𝑒2 = (0, 1, 0, . . . , 0), . . . 𝑒𝑑 = (0, 0, 0 . . . , 1).

�

In general a 𝑑-simplex is defined to be the convex hull of 𝑑 + 1 affinely independent
points in R𝑑.

𝑥
𝑦

𝑧

𝑥

𝑦

𝑧

The standard 3-simplex and the simplex defined by (1, 1, 0), (2, 3, 0), (0, 3, 0) and
(1, 2, 4).
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1.1.3 Cones

In polyhedral geometry, the main object is the polyhedron but the main tool is the
polyhedral cone. It is usual to use cones in order to compute with polyhedra and
polytopes or in general to investigate their properties. A fundamental relation is given
by Brion’s theorem (see Theorem 1.3), connecting polyhedra and cones. Cones are
polyhedra of a special type. They are finite intersections of linear halfspaces.

Definition 1.5 (Polyhedral Cone)
Given a set of linear functionals 𝑓𝑖(x) : R𝑑 ↦→ R for 𝑖 ∈ [𝑘], we define the polyhedral
cone

𝐶 =
{︁
x ∈ R𝑑

⃒⃒⃒
𝑓𝑖(x) ≥ 0 for all 𝑖 ∈ [𝑘]

}︁
�

For the definition of a cone we used inequalities, complying with the definition of poly-
hedron. In what follows though, we will most often define cones via their generators.
We first define the conic hull of a set of vectors.

Definition 1.6
Given a set of vectors {v1,v2, . . . ,vk} ∈ R𝑑, its conic hull is

co(v1,v2, . . . ,vk) =

{︃
𝑘∑︁

𝑖=1

𝑟𝑖vi

⃒⃒⃒⃒
⃒ 𝑟𝑖 ∈ R, 𝑟𝑖 ≥ 0

}︃
.

�

The following lemma certifies that a cone can be defined via a finite set of generators.

Lemma 1. A polyhedral cone is the conic hull of its (finitely many) extreme rays. �

Now, given a1,a2, . . . ,ak ∈ R𝑑, we define the cone generated by a1,a2, . . . ,ak as

𝒞R (a1,a2, . . . ,ak) = co (a1,a2, . . . ,ak) =

{︃
x ∈ R𝑑

⃒⃒⃒⃒
⃒ 𝑥 =

𝑘∑︁
𝑖=1

ℓ𝑖ai, ℓ𝑖 ≥ 0, ℓ𝑖 ∈ R

}︃
.

A cone will be called rational if there exists a set of generators for the cone such that
the generators contain only rational coordinates. As with polyhedra, since all our cones
are rational, we omit the characterization.
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𝑥

𝑦

𝑧

A polyhedral cone.

Among cones, there are two special types that have a central role in computational
polyhedral geometry. These are simplicial and unimodular cones. A cone in R𝑑 is called
simplicial if and only if it is generated by linearly independent vectors in R𝑑. We note
that although usually the definition of a simplicial cone asserts 𝑑 linearly independent
generators, we do not enforce this restriction. The reason is that often our cones, and
polyhedra in general, will not be full dimensional.

A simplicial cone.

The connection to simplices is more than nominal, in particular a section by a hyperplane
(not containing the cone apex) of a simplicial 𝑘-cone is a (𝑘 − 1)-simplex. For the rest
of the section, except if stated differently, our cones are simplicial.

An object encoding all the information contained in a cone is the fundamental
parallelepiped of the cone.

Definition 1.7 (Fundamental Parallelepiped)
Given a simplicial cone 𝐶 = 𝒞R (a1,a2, . . . ,ad) ∈ R𝑑, we define its fundamental paral-
lelepiped as

ΠR(𝐶) =

{︃
𝑑∑︁

𝑖=1

𝑘𝑖ai

⃒⃒⃒⃒
⃒ 𝑘𝑖 ∈ [0, 1)

}︃
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and the set of lattice points in the fundamental parallelepiped as

ΠZ𝑑(𝐶) = ΠR(𝐶) ∩ Z𝑑

�

Note that we assume as working lattice the standard lattice Z𝑑.
In the figure below we can see that the cone is spanned by copies of its fundamental

parallelepiped. This is a general fact, i.e., any simplicial cone is spanned by copies of its
fundamental parallelepiped.

(1, 0)

(1, 3)

+(1, 3)

+(1, 0)

The fundamental parallelepiped of the cone generated by (1, 0) and (1, 3).

A cone 𝐶 is called unimodular if and only if ΠZ𝑑(𝐶) = {0}. An equivalent definition
is that the matrix of cone generators is a unimodular matrix, i.e., it has determinant
equal to ±1. The following lemma gives a condition for a non full-dimensional cone to
be unimodular.

Lemma 2. Let 𝐶 = 𝒞R (a1,a2, . . . ,an) in R𝑑, for 𝑛 ≤ 𝑑. Let 𝐺 = [a1,a2, . . . ,an],
the matrix with ai as columns. If 𝐺 contains a full rank square 𝑛 × 𝑛 submatrix with
determinant ±1, then 𝐶 is unimodular. �

Proof. Let 𝐼 be an index set such that [𝐺𝑖]𝑖∈𝐼 is a full rank square 𝑛×𝑛 submatrix with
determinant ±1, where 𝐺𝑖 is the 𝑖-th row of 𝐺. Without loss of generality rearrange the
coordinate system such that 𝐼 are the first 𝑛 coordinates. Let 𝐶𝑛 be the (orthogonal)
projection of 𝐶 into 𝑅𝑛. Then 𝐶𝑛 is unimodular. Since projection maps lattice points
to lattice points, the only way that 𝐶 is not unimodular is that Π(𝐶) contains lattice
points that all project to the origin. In that case, there would be a generator of the
form (0, 0, . . . , 0,an+1,an+2, . . . ,am), which contradicts the assumption that [𝐺𝑖]𝑖∈𝐼 is
full rank.

All cones we have seen until now are pointed cones, i.e., they contain a vertex.
According to the definition of cone, this is not necessary. A cone may contain a line or
higher dimensional spaces. It is easy to see though, that a cone is pointed if and only
if it does not contain a line. The unique vertex of a pointed cone is called the apex of
the cone. Observe that simplicial cones are always pointed.
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1.1.4 Semigroups

A semigroup is a very basic algebraic structure, essentially expressing that a set has a
well behaved operation. The semigroup operation will be called addition and will be
denoted by +.

Definition 1.8 (Semigroup)
A semigroup is a set 𝑆 together with a binary operation + such that

∙ For all 𝑎, 𝑏 ∈ 𝑆 we have 𝑎+ 𝑏 ∈ 𝑆.

∙ For all 𝑎, 𝑏, 𝑐 ∈ 𝑆, we have (𝑎+ 𝑏) + 𝑐 = 𝑎+ (𝑏+ 𝑐).

�

If a semigroup has an identity element, i.e., there exists 𝑒 in 𝑆 such that for all 𝑎 in
𝑆 we have 𝑒 + 𝑎 = 𝑎 + 𝑒 = 𝑎, then it is called a monoid. The standard example of a
monoid is the set of natural numbers N.

Let 𝑆 be a semigroup with operation +. A set 𝐴 ⊂ 𝑆 is called a subsemigroup of 𝑆
if it is closed under the operation +, i.e., for all 𝑎 and 𝑏 in 𝐴 we have that 𝑎+ 𝑏 is in 𝐴.

An important notion connecting the algebraic and geometric points of view is that
of an affine semigroup. We note that all semigroups we consider in what follows are
affine (except if the contrary is explicitly stated) due to Theorem 1.1. For brevity we
may omit the characterization affine later.

Definition 1.9 (Affine semigroup [20])
A finitely generated semigroup that is isomorphic to a subsemigroup of Z𝑑 for some 𝑑 is
called affine semigroup. We will call rank(𝑆) or dimension of 𝑆 the number 𝑑, i.e., the
least dimension such that the semigroup 𝑆 is a subsemigroup of Z𝑑. �

The following theorem by Gordan, in the frame of invariant theory, shows the con-
nection between cones and semigroups.

Theorem 1.1 (Gordan’s Lemma, [33])
If 𝐶 ⊂ R𝑑 is a rational cone and𝐺 a subgroup of Z𝑑, then 𝐶∩𝐺 is an affine semigroup. �

Gordan’s Lemma allows us to think of lattice points in cones as semigroups. We define,
the other way around, the cone of a semigroup.

Definition 1.10 (Cone of 𝑆)
Given a subsemigroup 𝑆 of Z𝑑, let 𝒞 (𝑆) be the smallest cone in R𝑑 containing 𝑆. �

Given a semigroup 𝑆, a set {𝑔1, 𝑔2, . . . , 𝑔𝑛} ⊂ 𝑆 is called a generating set for 𝑆 if and
only if for all 𝑎 in 𝑆 there exist ℓ1, ℓ2, . . . , ℓ𝑛 in N such that 𝑎 =

∑︀𝑛
𝑖=0 ℓ𝑖𝑔𝑖. We say that

the semigroup 𝑆 is generated by 𝐺 ⊂ 𝑆 if 𝐺 is a generating set for 𝑆. Note that we do
not set any kind of requirements about the elements of the generating set.

We already used the term lattice points in an intuitive way. Formally lattice points
are elements of a lattice and lattice is a group isomorphic to Z𝑑 (see [20]]). If no other
lattice is specified, then one should assume that lattice means Z𝑑.

We next investigate semigroups that have special structural properties. Let 𝑆 be
the intersection of a rational cone with a subgroup of Z𝑑 (due to Gordan’s Lemma the
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intersection is a semigroup). An important question is whether the semigroup generated
by the generators of the cone is equal to 𝑆. In order to formalize the question we need
the notions of integral element and integral closure.

Definition 1.11 (Integral element, [20])
Given a lattice ℒ and a subsemigroup 𝑆 of ℒ, an element 𝑥 ∈ ℒ is called integral over 𝑆
if 𝑐𝑥 ∈ 𝑆 for some 𝑐 ∈ N. �

Definition 1.12 (Integral Closure)
Given a lattice ℒ and a semigroup 𝑆 of ℒ, the set of all elements of ℒ that are integral
over 𝑆 is called the integral closure of 𝑆 in ℒ and is denoted by 𝑆𝐿. �

A semigroup 𝑆 is called integrally closed over (or saturated in) a lattice ℒ if 𝑆 = 𝑆ℒ .
Thus, the question above becomes “is 𝑆 saturated?”. When we say that 𝑆 is saturated,
without specifying the lattice, we mean that it is saturated in Z𝑑. Note that most authors
would mean that the semigroup is saturated in its group of differences Z𝑆, rather than
Z𝑑.

The following proposition provides the connection between a saturated semigroup
and its cone.

Proposition 1 (2.1.1. in [20]). Let 𝑆 be an affine semigroup of the lattice ℒ generated
by 𝑔1, 𝑔2, . . . , 𝑔𝑛. Then

∙ 𝑆ℒ = ℒ ∩ 𝒞R (𝑔1, 𝑔2, . . . , 𝑔𝑛)

∙ ∃𝑠1, 𝑠2, . . . , 𝑠𝑘 such that 𝑆ℒ =
⋃︀𝑘

𝑖=1 𝑠𝑖 + 𝑆

∙ 𝑆ℒ is an affine semigroup.

�

Now it is clear that there are three objects we could think of as cones, namely the
polyhedral cone, the lattice points contained in the polyhedral cone and the semigroup
generated by the generators of the cone. This already shows that we need some notation
to distinguish these cases, but before establishing it, we will examine cones whose apices
are not the origin and cones that have open faces.

Let 𝐶 ∈ R𝑑 be the cone 𝒞R (𝑔1, 𝑔2, . . . , 𝑔𝑛) and let 𝐶 ′ ∈ R𝑑 be the cone 𝐶 translated
by the vector 𝑞 ∈ R𝑑. Then we have a bijection 𝜑 : R𝑑 → R𝑑 given by 𝜑(𝑥) = 𝑞 + 𝑥,
where addition is the vector space addition, such that 𝐶 ′ = 𝜑(𝐶). As long as 𝑞 is in the
lattice ℒ, then lattice points are mapped to lattice points. Although 𝜑 is a semigroup
homomorphism, it is not a monoid homomorphism. This is why we prefer to view the
monoids coming from cones with apex at the origin as semigroups and not monoids. It is
important to note that any unimodular transformation, i.e., a linear transformation given
by a square matrix with determinant ±1, preserves the lattice point structure. 1 Thus

1for translation we have to homogenize in order to have a square matrix with determinant ±1 giving
the transformation. Otherwise we can allow transformations given by a unimodular matrix plus a
translation.
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there exists a bijection between the lattice points of the original and the transformed
cone. This fact will be used later in order to enumerate lattice points in the fundamental
parallelepiped of a cone.

Translation of cones.

Assume 𝐶 is a simplicial cone and let [𝑘] = 𝐼 ⊂ N be the index set for its generators.
Then each face of 𝐶 can be identified with a set 𝐼𝐹 ⊆ 𝐼, since a face has the form{︃

𝑥 ∈ R𝑑

⃒⃒⃒⃒
⃒ 𝑥 =

𝑘∑︁
𝑖=1

ℓ𝑖𝑎𝑖, ℓ𝑖 ∈ R, ℓ𝑖 > 0 for 𝑖 /∈ 𝐼𝐹 , ℓ𝑗 = 0 for 𝑗 ∈ 𝐼𝐹

}︃
.

Essentially, this means that the face is generated by a subset of the generators. Note
that 𝐼𝐹 contains the indices of the generators of the simplicial cone 𝐶 that are not used
to generate 𝐹 . A facet is identified with the index of the single generator not used to
generate it.

𝑥

𝑦

𝑎1

𝑎2

𝑎3
{2}

{1, 2}

Half-open cones

Given a cone 𝐶, removing from 𝐶 the points lying on a facet 𝐹 of 𝐶, we obtain
a cone 𝐶 ′ that has the same faces as 𝐶 except for the faces included in 𝐹 . From the
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previous discussion, for each facet we need only to mention the generator corresponding
to that facet. We will use a 0 − 1 vector 𝑜 to express the openess of a cone, i.e., the
openess vector has an entry of 1 in the position 𝑘 if the facet corresponding to the 𝑘-th
generator is open. If 𝐼 = [𝑘] then the cone is open and if ∅ ≠ 𝐼 ⊂ [𝑘] then the cone is
half-open.

The above discussion motivates an updated definition of polyhedral cones and related
notation.

Definition 1.13
Given 𝑎1, 𝑎2, . . . , 𝑎𝑘, 𝑞 ∈ Z𝑑 and an index set 𝐼 ⊆ [𝑘], we define:

∙ the (real) cone generated by 𝑎1, 𝑎2, . . . , 𝑎𝑘 at 𝑞 as

𝒞𝐼R (𝑎1, 𝑎2, . . . , 𝑎𝑘; 𝑞) =

{︃
𝑥 ∈ R𝑑 : 𝑥 = 𝑞 +

𝑘∑︁
𝑖=1

ℓ𝑖𝑎𝑖, ℓ𝑖 ≥ 0, ℓ𝑖 ∈ R, ℓ𝑗 > 0 for 𝑗 ∈ 𝐼

}︃

∙ the semigroup generated by 𝑎1, 𝑎2, . . . , 𝑎𝑘 at 𝑞 as

𝒞𝐼Z (𝑎1, 𝑎2, . . . , 𝑎𝑘; 𝑞) =

{︃
𝑥 ∈ R𝑑 : 𝑥 = 𝑞 +

𝑘∑︁
𝑖=1

ℓ𝑖𝑎𝑖, ℓ𝑖 ≥ 0, ℓ𝑖 ∈ Z, ℓ𝑗 > 0 for 𝑗 ∈ 𝐼

}︃

∙ given a lattice ℒ, the saturated semigroup generated by 𝑎1, 𝑎2, . . . , 𝑎𝑘 at 𝑞 as

𝒞𝐼R,ℒ (𝑎1, 𝑎2, . . . , 𝑎𝑘; 𝑞) = 𝒞𝐼R (𝑎1, 𝑎2, . . . , 𝑎𝑘; 𝑞) ∩ ℒ

𝒞R ((1, 1), (2, 0)) 𝒞Z ((1, 1), (2, 0)) 𝒞R,Z𝑑 ((1, 1), (2, 0))

𝒞R ((1, 1), (2, 0); (1, 3)) 𝒞Z ((1, 1), (2, 0); (1, 3)) 𝒞R,Z𝑑 ((1, 1), (2, 0); 1, 3))
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𝒞{1}R ((1, 1), (2, 0); (1, 3)) 𝒞{1}Z ((1, 1), (2, 0); (1, 3)) 𝒞{1}R,Z𝑑 ((1, 1), (2, 0); (1, 3))

Illustration of the definitions.

�

An important tool in polyhedral geometry is triangulation. A polyhedral object
with complicated geometry can be decomposed into simpler ones. The building block is
the simplex. Since we are interested mostly in cones, we present the definition for the
triangulation of a cone.

Definition 1.14 (Triangulation of a cone)
We define a triangulation of a real cone 𝐶 = 𝒞R (𝑔1, 𝑔2, . . . , 𝑔𝑘) as a finite collection of
simplicial cones Γ = {𝐶1, 𝐶2, . . . , 𝐶𝑡} such that:

∙
⋃︀
𝐶𝑖 = 𝐶,

∙ If 𝐶 ′ ∈ Γ then every face of 𝐶 ′ is in Γ,

∙ 𝐶𝑖 ∩ 𝐶𝑗 is a common face of 𝐶𝑖 and 𝐶𝑗 .

�

The following proposition says that we can triangulate a cone without introducing new
rays.

Proposition 2 (see [17]). A pointed convex polyhedral cone 𝐶 admits a triangulation Γ
whose 1-dimensional cones are the extreme rays of 𝐶. �

A concept that we will use heavily in later chapters is that of the vertex cone.

Definition 1.15 (Tangent and Feasible Cone)
Let 𝑃 ⊆ R𝑑 be a polyhedron and 𝑣 a vertex of 𝑃 , the tangent cone 𝒦𝑣 and the feasible
cone ℱ𝑣 of 𝑃 at 𝑣 are defined by

ℱ𝑣 := {𝑢 | ∃𝛿 > 0 : 𝑣 + 𝛿𝑢 ∈ 𝑃} ,
𝒦𝑣 := 𝑣 + ℱ𝑣.

�

We will call 𝒦𝑣 a vertex cone.
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1.2 Formal Power Series and Generating Functions

1.2.1 Formal Power Series

Starting from the univariate polynomial ring, we will climb up an hierarchy of algebraic
structures that are related to polyhedral geometry and partition analysis. For a more
detailed exposition see [34, 37] and references therein.

Let K be a field, that we can assume is the field of complex numbers. As usual, we
denote by K[𝑧] the polynomial ring in the variable 𝑧. We will generalize polynomials in
four ways, namely by considering fractions of polynomials, allowing an infinite number
of terms, allowing negative exponents and considering more than one variables.

The polynomial ring K[𝑧] contains no zero-divisors, thus it is an integral domain.
Since K[𝑧] is an integral domain, we can define its fraction field, i.e., the field of univariate
rational functions, denoted by K(𝑧). A polynomial can be considered as a formal sum∑︁

𝑖∈𝐼
𝑎𝑖𝑧

𝑖 for some finite index set 𝐼 ⊆ N and 𝑎𝑖 ∈ K.

If we allow as index sets infinite subsets of the natural numbers, then we obtain formal
powerseries

𝑎(𝑧) =

∞∑︁
𝑖=0

𝑎𝑖𝑧
𝑖 for 𝑎𝑖 ∈ K.

Another way to see formal powerseries is as sequences. Given an infinite sequence 𝐴 =
[𝑎1, 𝑎2, . . .] with elements from K and a formal variable 𝑧, then 𝑎(𝑧) represents 𝐴. The
usual definition of formal powerseries is as sequences. Define the following two operations
of addition and (Cauchy) multiplication for two formal powerseries 𝑎(𝑧) and 𝑏(𝑧):

𝑎(𝑧) + 𝑏(𝑧) =

∞∑︁
𝑖=0

(𝑎𝑖 + 𝑏𝑖) 𝑧
𝑖,

𝑎(𝑧)𝑏(𝑧) =
∞∑︁
𝑖=0

⎛⎝ 𝑖∑︁
𝑗=0

𝑎𝑗𝑏𝑖−𝑗

⎞⎠ 𝑧𝑖.

The ring of formal powerseries is the set

KJ𝑧K =

{︃ ∞∑︁
𝑖=0

𝑎𝑖𝑧
𝑖

⃒⃒⃒⃒
⃒ 𝑎𝑖 ∈ K

}︃

equipped with the above defined addition and multiplication. Note that the ring of
polynomials is a subring of the ring of formal powerseries. If we allow for polynomials
containing negative exponents (but only finitely many terms), then we obtain the ring of
Laurent polynomials. We denote this ring by K

[︀
𝑧, 𝑧−1

]︀
or K

[︀
𝑧±1
]︀
. Next, we construct

the polynomial ring K[𝑥, 𝑦] as (K[𝑦]) [𝑥], i.e., the ring of polynomials in 𝑥 with coefficients
in the ring K[𝑦] . We define recursively the polynomial ring in 𝑑 variables, denoted by
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K[𝑧1, 𝑧2, . . . , 𝑧𝑑]. The fraction field of K[𝑧1, 𝑧2, . . . , 𝑧𝑑], which is the multivariate version
of the rational function field, is denoted by K(𝑧1, 𝑧2, . . . , 𝑧𝑑). As in the univariate case,
allowing for negative exponents, we obtain the multivariate Laurent polynomial ring,
denoted by K[𝑧±1

1 , 𝑧±1
2 , . . . , 𝑧±1

𝑑 ]. Like we did with polynomials, we can construct the
ring KJ𝑥, 𝑦K of formal powerseries in 𝑥 and 𝑦 as the ring of formal powerseries in 𝑥
with coefficients in KJ𝑦K. A ring that we will use extensively in the next chapters is
that of multivariate formal powerseries in 𝑑 variables, defined recursively and denoted
by KJ𝑧1, 𝑧2, . . . , 𝑧𝑑K.

An important property of the ring of formal powerseries is given by the following

Lemma 3 (see [27]). If 𝐷 is an integral domain then 𝐷J𝑧K is an integral domain as
well. �

Now, let us define the field of univariate Laurent series, which can be thought of
either as the fraction field of the ring of univariate formal powerseries or as Laurent
polynomials with finitely many terms of negative exponent but possibly infinitely many
terms of positive exponent. More formally

Definition 1.16 (Univariate formal Laurent series)
The set of formal expressions

KL𝑧M =

{︃∑︁
𝑘∈Z

𝑎𝑘𝑧
𝑘

⃒⃒⃒⃒
⃒ 𝑎𝑘 ∈ K, 𝑎𝑘 = 0 for all but finitely many negative values of 𝑘

}︃

equipped with the usual addition and (Cauchy) multiplication is the field of univariate
formal Laurent series. �

The multivariate equivalent is much harder to deal with. In particular, there are
many candidates as appropriate generalizations. We will explore some of them.

In [37], Xin presents two generalizations of formal Laurent series. The first and more
straightforward is that of iterated Laurent series.

Definition 1.17 (Iterated Laurent series, Section 2.1 in [37])
The field of iterated Laurent series in 𝑘 variables is defined recursively as

K⟨⟨𝑧1, 𝑧2, . . . , 𝑧𝑘⟩⟩ = K⟨⟨𝑧1, 𝑧2, . . . , 𝑧𝑘−1⟩⟩L𝑧𝑘M

where K⟨⟨𝑧1⟩⟩ = L𝑧1M. �

Next he presents Malcev-Neuman series, which allow the most general setting among
the ones presented here.

Definition 1.18 (Malcev-Neuman series, Theorem 3-1.6 in [37])
Let 𝐺 be a totally ordered monoid and 𝑅 a commutative ring with unit. A formal series
𝜂 on 𝐺 has the form

𝜂 =
∑︁
𝑔∈𝐺

𝑎𝑔𝑔
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where 𝑎𝑔 ∈ 𝑅 and 𝑔 is regarded as a symbol. The support of 𝜂 is defined to be the
set {𝑔 ∈ 𝐺 | 𝑎𝑔 ̸= 0}. A Malcev-Neumann series is a formal series on 𝐺 that has a well-
ordered support. We define 𝑅𝑤[𝐺] to be the set of all such MN-series. Then 𝑅𝑤[𝐺] is a
ring. �

In [34], Aparicio-Monforte and Kauers introduce three algebraic structures related
to multivariate formal Laurent series. They use polyhedral cones and the notion of a
compatible additive ordering for their definitions.

Definition 1.19 (Compatible additive ordering [34])
Given a pointed simplicial cone 𝐶 ∈ R𝑑 with apex at the origin, a total order ≤ on Z𝑑 is
called additive if for all 𝑎, 𝑏, 𝑐 ∈ Z𝑑 we have 𝑎 ≤ 𝑏→ 𝑎+𝑐 ≤ 𝑏+𝑐. It is called compatible
with the cone 𝐶 if 0 ≤ 𝑘 for all 𝑘 ∈ 𝐶. �

First they define the ring of multivariate formal Laurent series supported in a cone.

Definition 1.20 (Multivariate Laurent series from cones [34])
Given a pointed cone 𝐶 ∈ R𝑑, the set

K𝐶 J𝑧1, 𝑧2, . . . , 𝑧𝑑K =

{︃∑︁
𝑘∈𝐶

𝑎𝑘𝑧
𝑘

⃒⃒⃒⃒
⃒ 𝑎𝑘 ∈ K

}︃

equipped with the usual addition and Cauchy multiplication forms a ring . �

A larger ring is obtained if we fix an ordering and consider the collection 𝒞 of all cones
that are compatible with this ordering ≤. Then

K≤ J𝑧1, 𝑧2, . . . , 𝑧𝑑K =
⋃︁
𝐶∈𝒞

K𝐶 J𝑧1, 𝑧2, . . . , 𝑧𝑑K

is a ring.

Finally, Aparicio-Monforte and Kauers construct a field of multivariate formal Lau-
rent series by taking the union of translates of K≤ J𝑧1, 𝑧2, . . . , 𝑧𝑑K to all lattice points.

K≤L𝑧1, 𝑧2, . . . , 𝑧𝑑M =
⋃︁
𝑒∈Z𝑑

𝑧𝑒K≤ J𝑧1, 𝑧2, . . . , 𝑧𝑑K .

The lattice points of a pointed cone form a well-ordered set. Moreover, given the
additive compatible ordering, required by the construction of K≤ J𝑧1, 𝑧2, . . . , 𝑧𝑑K, the sup-
port of each object in K≤ J𝑧1, 𝑧2, . . . , 𝑧𝑑K is well-ordered (and 0 is the minimum). Finally,
in the construction of K≤L𝑧1, 𝑧2, . . . , 𝑧𝑑M the supports appearing in K≤J𝑧1, 𝑧2, . . . , 𝑧𝑑K may
be translated, but this does not affect the fact that they are well-ordered. This means
that these three constructions are examples of Malcev-Neuman series, as noted in [34].

Now we will put into the picture of the algebraic structures the sets of power series
and rational functions occurring in the geometric context. The generating function for
the lattice points of a rational simplicial polyhedral cone is a rational function, see next
section.
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Definition 1.21 (Polyhedral Laurent Series [16])
The space 𝑃𝐿 of polyhedral Laurent series is the K[𝑧±1

1 , 𝑧±1
2 , . . . , 𝑧±1

𝑑 ]-submodule of
K[[𝑧±1

1 , 𝑧±1
2 , . . . , 𝑧±1

𝑑 ]] generated by the set of formal series⎧⎪⎨⎪⎩
∑︁

𝑠∈(𝐶∩Z𝑑)

𝑧𝑠

⃒⃒⃒⃒
⃒⃒⃒ 𝐶 is a simplicial rational cone

⎫⎪⎬⎪⎭ .

�

Since any cone can be triangulated by using only simplicial cones, we have that PL
contains the formal power series expressions of the generating functions of all rational
cones. Due to the vertex cone decomposition of polyhedra (see Section 1.3.2), 𝑃𝐿 also
contains the generating functions of all polyhedra.

The following diagram presents the relations of the structures discussed above.
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[𝑧±1 , 𝑧±2 , . . . , 𝑧±𝑛 ]

Malcev-Neuman

K⟨⟨𝑧1, 𝑧2, . . . , 𝑧𝑛⟩⟩ K≥L𝑧1, 𝑧2, . . . , 𝑧𝑛M

K𝐶J𝑧1, 𝑧2, . . . , 𝑧𝑛KK (𝑧1, 𝑧2, . . . , 𝑧𝑛)

KJ𝑧1, 𝑧2, . . . , 𝑧𝑛K

KL𝑧M

K[𝐺]

𝑃𝐿

K[𝑧±1
1 , 𝑧±1

2 , . . . , 𝑧±1
𝑑 ]

Generating
functions of

cones

K(𝑧)

K[𝑧1, 𝑧2, . . . , 𝑧𝑛]

KJ𝑧K

K[𝑧±1]

K[𝑧]

Relations of algebraic structures related to polynomials, formal power series and
rational functions.
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1.2.2 Generating Functions

One of the most important tools in combinatorics and number theory, when dealing
with infinite sequences, is that of generating functions. The hope is that a generating
function, although encoding full information of an infinite object, has a short (or at least
finite) representation. We will restrict the definitions presented here in a way that covers
our use of generating functions without introducing generality that reduces clarity. For
a detailed introduction see [27, 36].

The generating function is a tool for representing infinite sequences in a handy way.
A sequence is a map from N to a set of values. We will assume that our values come
from a field K, but we note that for the most part of the thesis, the only possible values
are 0 and ±1. The usual notation for a sequence is 𝐴 = [𝑎0, 𝑎1, 𝑎2, . . .] = (𝑎𝑖)𝑖∈N. We
define the generating function of 𝐴 as the formal sum

Φ𝐴 =
∞∑︁
𝑖=0

𝑎𝑖𝑧
𝑖

This is a formal powerseries in KJ𝑧K.
If we want to compute the generating function of a set 𝑆, subset of the natural

numbers, we can use the above definition by considering the sequence 𝐴 = [𝑎0, 𝑎1, 𝑎2, . . .],
where 𝑎𝑖 = 1 if 𝑖 ∈ 𝑆 and 𝑎𝑖 = 0 otherwise. More formally, we consider the indicator
function of the set 𝑆, defined as

[𝑆](𝑥) =

{︂
1 : 𝑥 ∈ 𝑆,
0 : 𝑥 /∈ 𝑆.

and then 𝐴 = ([𝑆](𝑖))𝑖∈N. We will use the notation Φ𝑆 for the generating function of
the set 𝑆, where Φ𝑆 = Φ𝐴 for 𝐴 = ([𝑆](𝑖))𝑖∈N. Naturally, the first example is the natural
numbers:

ΦN(𝑧) =
∑︁
𝑖∈N

[N](𝑖)𝑧𝑖 =
∑︁
𝑖∈N

𝑧𝑖 =
1

(1− 𝑧)
.

A slight variation is the sequence of even natural numbers. Then we have

Φ2N(𝑧) =
∑︁
𝑖∈N

[2N](𝑖)𝑧𝑖 =
∑︁
𝑗∈N

𝑧2𝑗 =
1

(1− 𝑧2)
.

Although these two examples look too simple, it is their multivariate versions that cover
the majority of the cases we are interested in.

With the above definition we can use generating functions to deal with subsets of
the natural numbers, but this is not sufficient for our purposes. We need to be able to
describe sets containing negative integers. Thus, we extend the definition for subsets of
Z. Given a set 𝑆 ⊆ Z, we define

Φ𝑆 =
∑︁
𝑖∈𝑆

𝑧𝑖.
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This is not a formal powerseries anymore and depending on the set 𝑆 it may not be a
formal Laurent series either.

Although univariate generating functions are very useful for counting, for our pur-
poses multivariate ones are essential. The generalization is straightforward.

Definition 1.22 (Generating Function)
Given a set 𝑆 ⊂ Z𝑑, we define the generating function of 𝑆 as the formal sum

Φ𝑆 =
∑︁
𝑖∈Z𝑑

[𝑆](𝑖)𝑧𝑖.

�

The formal sum representation of a set is no more than syntactic sugar. The represen-
tation of a set of numbers or of its formal sum representation have the same (potentially)
infinite number of terms. As already stated, the expectation is to have a more condensed
representation. A glimpse on that was given in the example of the generating function
of the natural numbers, through the use of the geometric series expansion formula. We
proceed now more formally and setting the necessary notation, defining what a rational
generating function is.

Definition 1.23 (Rational Generating Function)
Let 𝑆 ⊂ Z𝑑. If there exists a rational function in K(𝑧1, 𝑧2, . . . , 𝑧𝑑), which has a series
expansion equal to Φ𝑆 , then we denote that rational function by 𝜌𝑆 (𝑧1, 𝑧2, . . . , 𝑧𝑑) and
call it a rational generating function of 𝑆. �

Here one should note that we make no assumptions on the form of the rational
function (e.g. reduced, the denominator has a specific form etc.). This means that a
formal powerseries (or formal Laurent series) may have more than one rational function
forms. In the other way, the same rational function can have more than one series
expansions. In other words, although the formal sum generating function of a set is a well
defined object, the rational generating function of a set is subject to more parameters.
It is not well defined (yet), but extremely useful. We will heavily use rational generating
functions and in Section 1.3 we will explain why we are on safe ground.

1.2.3 Generating Functions for Semigroups

In this thesis we deal with generating functions related to polyhedra. For this, it is suffi-
cient to compute with generating functions of cones. There are two types of semigroups
that are of interest for us, the discrete semigroup generated by a set of integer vectors
and the corresponding saturated semigroup. We first compute the generating function
of the semigroup 𝑆 = 𝒞Z ((1, 3), (1, 0)).
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𝒞Z (N) ((1, 3), (1, 0)).
The generating function as a formal power series is

Φ𝑆(z) =
∑︁

i∈{𝑘(1,3)+ℓ(1,0)|𝑘,ℓ∈N}

zi =
∑︁
𝑘,ℓ∈N

z𝑘(1,3)+ℓ(1,0) =

(︃∑︁
𝑘∈N

z𝑘(1,3)

)︃(︃∑︁
ℓ∈N

zℓ(1,0)

)︃
.

Thus, by the geometric series expansion formula we have

𝜌𝑆(z) =

(︂
1

1− z(1,3)

)︂(︂
1

1− z(1,0)

)︂
=

1(︀
1− 𝑧1𝑧32

)︀
(1− 𝑧1)

.

In general it is easy to see that if a1,a2, . . . ,an are linearly independent, then for the
semigroup 𝑆 = 𝒞Z (a1,a2, . . . ,an) we have

𝜌𝑆(z) =
1

(1− za1) (1− za2) · · · (1− zan)
.

This is true because in the expansion of 1
(1−za1 )(1−za2 )···(1−zan ) we get as exponents all

non-negative integer combinations of the exponents in the denominator.
Observe that if we translate the semigroup to a lattice point, then the structure does

not change at all.

𝒞Z (N) ((1, 3), (1, 0); (1, 1)).
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There is a bijection between 𝒞Z ((1, 3), (1, 0)) and 𝒞Z ((1, 3), (1, 0; (1, 1)), given by 𝑓(s) =
s+ (1, 1). Translating this to generating functions we have that

Φ𝒞Z((1,3),(1,0);(1,1))
(z) =

∑︁
i∈{𝑘(1,3)+ℓ(1,0)+(1,1)|𝑘,ℓ∈N}

zi

=
∑︁
𝑘,ℓ∈N

z𝑘(1,3)+ℓ(1,0)+(1,1)

= z(1,1)

(︃∑︁
𝑘∈N

z𝑘(1,3)

)︃(︃∑︁
ℓ∈N

zℓ(1,0)

)︃
.

Now it is clear that the generating function for 𝒞Z ((1, 3), (1, 0; (1, 1)) is rational , namely

𝜌𝒞Z((1,3),(1,0);(1,1))
(z) = z(1,1)

(︂
1

1− z(1,3)

)︂(︂
1

1− z(1,0)

)︂
=

𝑧1𝑧2(︀
1− 𝑧1𝑧32

)︀
(1− 𝑧1)

.

In general for a semigroup 𝑆 = 𝒞Z (a1,a2, . . . ,an;q) we have

𝜌𝑆(z) =
zq

(1− za1) (1− za2) · · · (1− zan)
.

Saturated Semigroup

Let’s consider the saturated semigroup 𝑆 = 𝒞R,Z𝑑 ((1, 3), (1, 0)), and compute its gener-

ating function as a formal powerseries Φ𝑆 =
∑︁
𝑠∈𝑆

z𝑠.

𝒞R,Z𝑑 ((1, 3), (1, 0)).

We observe in the following figure that 𝑆 can be partitioned in three sets. The blue
points are reachable starting from the origin and using only the cone generators. The
red points are reachable by using only the cone generators if we start from the point
(1, 1). And similarly for the green ones if we start from (1, 2).
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The saturated semigroup separated in three subsets.

This provides a direct sum decomposition

𝒞R,Z𝑑 ((1, 3), (1, 0)) = 𝒞Z ((1, 3), (1, 0))
⊕ 𝒞Z ((1, 3), (1, 0); (1, 1))
⊕ 𝒞Z ((1, 3), (1, 0); (1, 2)) .

In general we have the following relation:

𝒞R,Z𝑑 (a1,a2, . . . ,an) = ⊕q∈Π
Z𝑑(𝒞R(a1,a2,...,an))𝒞Z (a1,a2, . . . ,an;q) .

If the apex 𝑞 of the cone of the saturated semigroup is not the origin, we have to translate
every lattice point by 𝑞, thus multiply the generating function by zq.
From the relation above and the form of the rational generating function of a discrete
semigroup 𝒞Z (a1,a2, . . . ,an;q) we immediately deduce the lemma:

Lemma 4. For a saturated semigroup 𝑆 = 𝒞R,Z𝑑 (a1,a2, . . . ,an; 𝑞) we have

𝜌𝑆(z) =
𝑧𝑞
∑︀

𝛼∈Π
Z𝑑(𝒞R(a1,a2,...,an)) z

𝛼

(1− za1) (1− za2) · · · (1− zan)
.

�

Generating Functions of Open Cones

Given a simplicial cone

𝒞𝐼R (a1,a2, . . . ,ak;q) =

{︃
𝑥 ∈ R𝑑 : 𝑥 = 𝑞 +

𝑘∑︁
𝑖=1

ℓ𝑖a𝑖, ℓ𝑖 ∈ N, ℓ𝑗 > 0 for 𝑗 ∈ 𝐼

}︃
we can apply the inclusion exclusion principle to get an expression of the open cone as
a signed sum of closed cones

𝒞𝐼R (a1,a2, . . . ,ak;q) =
∑︁
𝑀⊂𝐼

(−1)|𝑀 |𝒞R
(︁
(ai)𝑖∈𝐼∖𝑀 ;q

)︁
.
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Example 1. Given the half-open cone 𝒞{1,2}R ((1, 0, 0), (0, 1, 0), (0, 0, 1)) we have

𝒞{1,2}R ((1, 0, 0), (0, 1, 0), (0, 0, 1)) = 𝒞R ((1, 0, 0), (0, 1, 0), (0, 0, 1))

− (𝒞R ((1, 0, 0), (0, 0, 1)) + 𝒞R ((0, 1, 0), (0, 0, 1)))

+ 𝒞R ((0, 0, 1)) .

𝑥

𝑦

𝑎1

𝑎2

𝑎3

{1}

⟨(1, 0, 0), (0, 0, 1)⟩

{2}

{1, 2}

Inclusion-exclusion for 𝒞{1,2}R ((1, 0, 0), (0, 1, 0), (0, 0, 1); 0).

�
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1.3 Formal Series, Rational Functions and Geometry

In this section we review some facts from polyhedral geometry and generating functions
of polyhedra. The main goal is to arrive to a consistent correspondence between ratio-
nal generating functions for polyhedra and formal powerseries. This is done through
the definition of expansion directions. In the end of the section we present two funda-
mental theorems from polyhedral geometry for the decomposition of rational generating
functions and shortly review Barvinok’s algorithm.

1.3.1 Indicator and rational generating functions

We start by the definition of the space of indicator functions of rational polyhedra.

Definition 1.24 (from [11])
The real vector space spanned by indicator functions [𝑃 ] of rational polyhedra 𝑃 ∈ R𝑑

is called the algebra of rational polyhedra in R𝑑 and is denoted by 𝒫Q
(︀
R𝑑
)︀
. �

Theorem 3.3 in [11] is essential for the connection of geometry with rational functions.

Theorem 1.2 (VIII.3.3 in [11])
There exists a map

𝜏 : 𝒫Q
(︁
R𝑑
)︁
→ C (𝑧1, 𝑧2, . . . , 𝑧𝑑)

such that

∙ 𝜏 is a linear transformation (valuation).

∙ If 𝑃 ∈ R𝑑 is a rational polyhedron without lines, then 𝜏 [𝑃 ] = 𝜌𝑃 (z) such that
𝜌
𝑃∩Z𝑑(z) = Φ

𝑃∩Z𝑑(z), provided that Φ
𝑃∩Z𝑑(z) converges absolutely.

∙ For a function 𝑔 ∈ 𝒫Q
(︀
R𝑑
)︀
and q ∈ Z𝑑, let ℎ(z) = 𝑔(z− q) be a shift of 𝑔. Then

𝜏ℎ = zq𝜏𝑔.

∙ If 𝑃 ∈ R𝑑 is a rational polyhedron containing a line, then 𝜏 [𝑃 ] ≡ 0.

�

Let us see how this map works in an example.

Example 2. Let 𝑑 = 1. We consider the polyhedra:

∙ 𝑃+ = R+ (including the origin)

∙ 𝑃− = R− (including the origin)

∙ 𝑃 = R (the real line)

∙ 𝑃0 = {0}

The associated generating functions (converging in appropriate regions) are:
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∙ Φ𝑃+∩Z(𝑧) =
∑︁

𝑚∈𝑃+∩Z
𝑧𝑚 =

∞∑︁
𝑚=0

𝑧𝑚 =
1

1− 𝑧
= 𝜌𝑃+∩Z(𝑧)

∙ Φ𝑃−∩Z(𝑧) =
∑︁

𝑚∈𝑃−∩Z
𝑧𝑚 =

0∑︁
𝑚=−∞

𝑧𝑚 =
1

1− 𝑧−1
= 𝜌𝑃−∩Z(𝑧)

∙ Φ𝑃0∩Z(𝑧) =
∑︁

𝑚∈𝑃0∩Z
𝑧𝑚 = 𝑥0 = 1 = 𝜌𝑃0∩Z(𝑧)

From Theorem 1.2 we have that:

∙ 𝜏 [𝑃+] =
1

1−𝑧

∙ 𝜏 [𝑃−] =
1

1−𝑧−1

∙ 𝜏 [𝑃0] = 1

By inclusion-exclusion we have

[𝑃 ] = [𝑃+] + [𝑃−]− [𝑃0]

Thus one expects that

0 = 𝜏 [𝑃 ] = 𝜏 [𝑃+] + 𝜏 [𝑃−]− 𝜏 [𝑃0] =
1

1− 𝑧
+

1

1− 𝑧−1
− 1

which is indeed the case. In other words

𝜌𝑃∩Z(𝑧) = 𝜌𝑃+∩Z(𝑧) + 𝜌𝑃−∩Z(𝑧)− 𝜌𝑃0∩Z(𝑧).

�

Example 3. Compute the integer points of 𝑃 = [𝑘, 𝑛] ⊂ R for 𝑘 < 𝑛. Let 𝑃1 = [−∞, 𝑛]
and 𝑃2 = [𝑘,∞]. Then

[𝑃 ] = [𝑃1] + [𝑃2]− [R]

and

∙ Φ𝑃1∩Z(𝑧) =
∑︀∞

𝑚=𝑘 𝑧
𝑚 = 𝑧𝑘

1−𝑧 → 𝜏 [𝑃1] =
𝑧𝑘

1−𝑧 = 𝜌𝑃1∩Z(𝑧)

∙ Φ𝑃2∩Z(𝑧) =
∑︀𝑛

𝑚=−∞ 𝑧𝑚 = 𝑧𝑛

1−𝑧−1 → 𝜏 [𝑃2] =
𝑧𝑛

1−𝑧−1 = 𝜌𝑃2∩Z(𝑧)

∙ 𝜏 [R] = 0 = 𝜌R∩Z(𝑧)

Thus

𝜌𝑃∩Z =
𝑧𝑘

1− 𝑧
+

𝑧𝑛

1− 𝑧−1
=

𝑧𝑘 − 𝑧𝑛+1

1− 𝑧
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This is expected because
𝑧𝑘

1− 𝑧
is the generating function of the ray starting at 𝑘, while

𝑧𝑛+1

1− 𝑧
is the generating function of the ray starting at 𝑛+1. Subtracting the second from

the first we obtain the segment 𝑃 .
If we evaluate 𝜌𝑃∩Z(𝑧) at 𝑧 = 1 (using de l’Hospital’s rule) we get 𝑛 − 𝑘 + 1, the

number of lattice points in 𝑃 . �

Theorem 1.2 provides a correspondence between different representations of gener-
ating functions of polyhedra.

Given an indicator function 𝑔 : R𝑑 → {0, 1}, 𝑔 ∈ 𝒫Q
(︀
R𝑑
)︀
, we consider its restriction

𝑔′ : Z𝑑 → {0, 1}. We denote by 𝒫Q
(︀
Z𝑑
)︀
the set of restricted indicator functions.

𝒫𝑑
R 𝒫Q

(︀
R𝑑
)︀

𝒫𝑑
Z 𝒫Q

(︀
Z𝑑
)︀

K≥J𝑧K K(𝑧)

𝑓1

𝑓2

𝑓3

𝑓4

𝑓5

𝜏

𝑓6

𝑓7

𝑓8

Figure 1.1: Polyhedra, indicator functions, Laurent and rational generating functions.

The arrows in Figure 1.1 have the following meaning:

𝑓1 Bijection between polyhedra in R𝑑 and their indicator functions.

𝑓2 Map a polyhedron 𝑃 ∈ R𝑑 to 𝑃 ∩ Z𝑑 .

𝑓3 Bijection between sets of lattice points of polyhedra and their Laurent series gen-
erating functions.

𝑓4 Bijection between lattice points in polyhedra and their restricted indicator func-
tions.

𝑓5 Bijection between restricted indicator function of polyhedra and their Laurent
series generating functions.

𝑓6 Map the restricted indicator function of a polyhedron to a rational function.

𝑓7 Restriction.

𝑓8 Map a Laurent series with support in a polyhedron to a rational function.
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In order to be able to map multivariate Laurent series to rational functions we restrict
to series in K≥J𝑧K, i.e., we assume that the series have support in a pointed cone [34].
The most important maps are 𝑓8 and 𝑓6, but unfortunately they are not bijective. We
will first see why and then fix this bijection.

When trying to establish the connection between formal powerseries, rational func-
tions and polyhedral geometry we encounter problems due to the one-to-many relation
between rational functions and their Laurent expansions.

Example 4 ([23]). Consider the finite set 𝑆 = {0, 1, 2, . . . , 𝑎} ⊂ N. Its rational gener-
ating function is the truncated geometric series

𝜌𝑆(𝑧) =
1− 𝑧𝑎+1

1− 𝑧

Now we can rewrite this expression as

𝜌𝑆(𝑧) =
1

(1− 𝑧)
− 𝑧𝑎+1

(1− 𝑧)

=
1

(1− 𝑧)
+

𝑧𝑎

(1− 𝑧−1)

and we can expand each summand using the geometric series expansion formula.

𝜌𝑆(𝑧) =
1

(1− 𝑧)
+

𝑧𝑎

(1− 𝑧−1)

=
(︀
𝑧0 + 𝑧1 + 𝑧2 + . . .

)︀
+
(︀
𝑧𝑎 + 𝑧𝑎−1 + 𝑧𝑎−2 + . . .

)︀
= 2Φ𝑆(𝑧) +

∞∑︁
𝑖=𝑎+1

𝑧𝑖 +
−1∑︁

𝑖=−∞
𝑧𝑖.

If we interpret each of the summands geometrically we end up with the required segment
counted twice and the rest of the line counted once, which is not what we expected. This
is due to the fact that the power series expansions around 0 and∞ of the two summands,
viewed as analytic functions, have disjoint regions of convergence. In particular we have:

1

(1− 𝑧)
=

{︂
𝑧0 + 𝑧1 + 𝑧2 + · · · for|𝑧| < 1,
−𝑧−1 − 𝑧−2 − 𝑧−3 · · · for|𝑧| > 1

and

𝑧𝑎

1− 𝑧−1
=

{︂
−𝑧𝑎+1 − 𝑧𝑎+2 − 𝑧𝑎+3 · · · for|𝑧| < 1,
𝑧𝑎 + 𝑧𝑎−1 + 𝑧𝑎−2 · · · for|𝑧| > 1.

Thus, only the choices where the region of convergence coincide seem natural:
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𝜌𝑆(𝑧) =
1

(1− 𝑧)
+

𝑧𝑎

(1− 𝑧−1)

=
(︀
𝑧0 + 𝑧1 + 𝑧2 + · · ·

)︀
+
(︀
−𝑧𝑎+1 − 𝑧𝑎+2 − 𝑧𝑎+3 · · ·

)︀
= Φ𝑆(𝑧)

or

𝜌𝑆(𝑧) =
1

(1− 𝑧)
+

𝑧𝑎

(1− 𝑧−1)

=
(︀
−𝑧−1 − 𝑧−2 − 𝑧−3 · · ·

)︀
+
(︀
𝑧𝑎 + 𝑧𝑎−1 + 𝑧𝑎−2 · · ·

)︀
= Φ𝑆(𝑧).

�

Moving from the rational generating function of a set to its geometric representation,
we are fixing an expansion direction. This is implicitly done through choosing the
Laurent expansion we will interpret geometrically. In Example 4 essentially we pick a
direction (either towards positive infinity of negative infinity) and consistently take series
expansions with respect to this direction. Even if each of the summands have a perfectly
meaningful expansion with respect to any direction, when we want to make sense out of
their sum (or simultaneously consider their geometry) we need a consistent choice. The
following example shows how this is important for our purposes.

Example 5. Consider the rational function 𝑓(𝑧) = 𝑧3

(1−𝑧) . One can take either the
“forward” or the “backward” expansion of 𝑓 as Laurent power series corresponding to
expansions around 0 or ∞.

𝑧3

(1− 𝑧)
=

{︂
𝑧3 + 𝑧4 + 𝑧5 + 𝑧6 + · · · = 𝐹1

−𝑧2 − 𝑧1 − 𝑧0 − 𝑧−1 − · · · = 𝐹2

If we denote by 𝐹 ′
𝑖 the power series having only the terms of 𝐹𝑖 that have non-negative

exponents then
𝐹 ′
1 = 𝑧3 + 𝑧4 + 𝑧5 + 𝑧6 + · · · = Φ[3,∞](𝑧)

and
𝐹 ′
2 = −𝑧2 − 𝑧1 − 𝑧0 = −Φ[0,2](𝑧)

Observe that the two resulting rational functions 𝜌[3,∞](𝑧) and −𝜌[0,2](𝑧) are different,
one is a polynomial and the other is not, although 𝐹1 and 𝐹2 are expansions of the same
rational function. �

The operation of keeping only the terms with non-negative exponents is a special
kind of taking intersections in terms of geometry. Moreover, it is an essential part of the
computation of Ω≥ in a geometric way (see Section 3.1).
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Now we will define the notion of forward expansion direction more formally. For
bi ∈ R𝑛, let 𝐵 = {b1,b2, . . . ,bn} be an ordered basis of R𝑛 and

𝐻𝐵 =

{︃∑︁
𝑖

ℓ𝑖bi : ℓ𝑖 ∈ R, if 𝑗 ∈ [𝑛] is minimal such that ℓ𝑗 ̸= 0 then ℓ𝑗 > 0

}︃
∪ {0}.

We need the notion of the recession cone in order to define directions.

Definition 1.25 (Recession Cone)
Given a polyhedron 𝑃 , its recession cone is defined as

rec(𝑃 ) = {𝑦 ∈ R𝑛 : 𝑥+ 𝑡𝑦 ∈ 𝑃 for all 𝑥 ∈ 𝑃 and for all 𝑡 ≥ 0}

�

In order for a Laurent series with support 𝑆 to be well defined we require that there
exists a polyhedron 𝑃 such that 𝑆 ⊂ 𝑃 and rec(𝑃 ) ⊂ 𝐻𝐵, for some ordered basis 𝐵. We
say that 𝐻𝐵 defines the “forward directions”, in the following sense.

Definition 1.26 (Forward Direction)
For any ordered basis 𝐵 of R𝑛 we call 𝑣 ∈ R𝑛 forward if and only if 𝑣 ∈ 𝐻𝐵. �

Note that for every 𝑣 ∈ Z𝑛 − {0} either 𝑣 or −𝑣 is forward. Now we can fix the
problem we had in the diagram about correspondence of generating functions.

Lemma 5. Fix an ordered basis. If Laurent series expansions are taken, consistently,
only with respect to forward directions, then there is a bijection between Laurent series
generating functions of lattice points of polyhedra and the respective rational generating
functions. �

From now on, we will use series expansions using only forward directions.

Example 6. Let 𝑃1 = [𝑘,∞] and 𝑃2 = [−∞, 𝑛]. We want to compute Φ𝑃1+𝑃2
(𝑧) and

𝜌𝑃1+𝑃2
(𝑧).

The forward directions are given by the basis 𝐵 = {1} of R and thus 𝐻𝐵 contains
all vectors that have positive first coordinate, i.e., 𝑣 ∈ R with 𝑣 > 0. In other words, we
accept any Laurent series that are (possibly) infinite towards ∞, but not towards −∞.

We have

Φ𝑃1∩Z(𝑧) =

∞∑︁
𝑚=𝑘

𝑧𝑚 =
𝑧𝑘

1− 𝑧
⇒ 𝜏 [𝑃1] =

𝑧𝑘

1− 𝑧
= 𝜌𝑃1∩Z(𝑧)

but for the second cone, the expansion should be consistent, i.e., towards ∞. Thus we
will use 𝑃3 = [𝑛+ 1,∞] and the fact that 𝑃2 = R− 𝑃3. We know that [𝑃2] = [R]− [𝑃3]
since 𝑃2 ∩ 𝑃3 = ∅. From Theorem 1.2 we know that 𝜏 [R] = 0, thus [𝑃2] = −[𝑃3]. This
implies that in the computation of the rational generating function we can ignore R.

Φ𝑃2∩Z(𝑧) = ΦR∩Z(𝑧)− Φ𝑃3∩Z(𝑧) =

∞∑︁
𝑚=−∞

𝑧𝑚 −
∞∑︁

𝑚=𝑛+1

𝑧𝑚
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∼ −
∞∑︁

𝑚=𝑛+1

𝑧𝑚 = − 𝑧𝑛+1

1− 𝑧
⇒ 𝜏 [𝑃2] = −

𝑧𝑛+1

1− 𝑧
= 𝜌𝑃2∩Z(𝑧).

∼ means that the two Laurent series correspond to polyhedra with the same rational
function. Geometrically this means to “flip” the ray from pointing to −∞ to pointing to
∞.

Thus

𝜌𝑃∩Z(𝑧) =
𝑧𝑘

1− 𝑧
− 𝑧𝑛+1

1− 𝑧
=

𝑧𝑘 − 𝑧𝑛+1

1− 𝑧
.

�

The reason why this phenomenon is not a problem for the classical Ω≥ algorithms (see
Section 3.1) is that by the construction of the crude generating function, we make a choice
of expansion directions for all 𝜆 variables. In particular, when converting the multisum
expression into a rational function, we chose to consider only “forward” expansions for
all variables (where forward is defined with respect to the standard basis).

1.3.2 Vertex cone decompositions

We present two theorems that provide formulas for writing the rational generating func-
tion of a polyhedron as a sum of rational generating functions of vertex cones. The main
difference between the two formulas is that in the Lawrence-Varchenko formula all cones
involved are considered as forward expansions, while in Brion’s formula this is not true.

As a matter of fact, Brion’s formula holds true in the indicator functions level moding
out lines, which is equivalent to changing the direction of a ray. When reading the
formula in the rational function level though, this is not visible since the generating
functions of cones obtained by flipping directions are different as Laurent series but the
same as rational functions.

Theorem 1.3 (Brion, 4.5 in [11])
Let 𝑃 ⊂ R𝑑 be a rational polyhedron and 𝒦𝑣 be the tangent cone of 𝑃 at vertex 𝑣. Then

[𝑃 ] =
∑︁

𝑣 vertex of 𝑃

[𝒦𝑣] mod polyhedra containing lines

�

Observe that from a general inclusion exclusion formula for indicator functions of tangent
cones, if we mod out polyhedra containing lines, then only the vertex cones survive. As
a corollary, applying the map of Theorem1.2, we obtain

Proposition 3 (see [17]). If 𝑃 is a rational polyhedron, then

𝜌𝑃 (z) =
∑︁

𝑣 vertex of 𝑃

𝜌𝒦𝑣
(z)

�
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A similar theorem is given by Lawrence and Varchenko (independently), see [16].
Assume 𝑃 is a simple polytope in R𝑑 and fix a direction 𝜉 ∈ R𝑑 that is not perpendicular
to any edge of 𝑃 . Denote by 𝐸+

𝑣 (𝜉) the set of edge directions 𝑤 at the vertex 𝑣 such
that 𝑤 · 𝜉 > 0 and 𝐸−

𝑣 (𝜉) the set of edge directions 𝑤 such that 𝑤 · 𝜉 < 0. We define
the vertex cones at 𝑣 by flipping the direction of the edges that belong in 𝐸−

𝑣 (𝜉). More
precisely

𝐾𝜉
𝑣 = 𝑣 +

∑︁
𝑤∈𝐸+

𝑣 (𝜉)

R≥0𝑤 +
∑︁

𝑤∈𝐸−
𝑣 (𝜉)

R<0𝑤

Theorem 1.4 (Lawrence-Varchenko, [16])
At the rational generating functions level we have

𝜌𝑃 (z) =
∑︁

𝑣 a vertex in 𝑃

(−1)|𝐸
−
𝑣 (𝜉)|𝜌

𝐾𝜉
𝑣
(z)

�

In other words, for each flip when constructing the vertex cone we multiply the rational
generating function of the cone by −1. In the following figures, we see in action the
application of a vertex cone decomposition for a pentagon. 2

-

-

-

-

-

+

1.3.3 Barvinok’s Algorithm

Barvinok’s algorithm [12, 28], if the dimension is fixed, is a polynomial-time algorithm
that computes the rational generating function of a rational polyhedron.

The main idea behind the algorithm is to compute a unimodular decomposition of
the given polyhedron. To this end, we first triangulate in order to obtain simplicial
cones. If we try to decompose a simplicial cone 𝐶 into cones that sum up to 𝐶 (possibly
using inclusion-exclusion), in the worst case, we will need as many cones as the number
of lattice points in the fundamental parallelepiped of the cone. This means that instead
of having a potentially exponentially big numerator polynomial, we have a sum of very
simple rational functions (with numerator equal to 1), but with potentially exponentially
many summands.

2These figures were shown to me by Felix Breuer.
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Barvinok proposed the use of signed decompositions. Instead of decomposing the
cone 𝐶 into unimodular cones that are contained in 𝐶, one can find a unimodular
decomposition where cones with generators in the exterior of 𝐶 are involved. In that
case, the generating functions of the unimodular cones involved in the sum will have a
sign. The advantage of such a signed unimodular decomposition is that it is computable
in polynomial time (in fixed dimension), which implies that the number of unimodular
cones is not exponential as well.

Algorithm 1 Summary of Barvinok’s algorithm

Require: 𝑃 ⊂ R𝑑 is a rational polyhedron in h-representation

1: Compute the vertices of 𝑃 , denoted by 𝑣𝑖.
2: Compute the vertex cones 𝑃𝑣𝑖 .
3: If necessary, triangulate 𝑃𝑣𝑖 .
4: Compute a signed unimodular decomposition (find a shortest vector).
5: Compute the lattice points in the fundamental parallelepiped of each cone.
6: return

∑︀
𝑖=1,2...,(number of cones) 𝜖𝑖

1∏︀𝑑
𝑗=1

(︁
1−zb

]
ij
)︁ , where 𝜖𝑖 is the sign of the 𝑖-th cone

in the signed decomposition and 𝑏𝑖1, 𝑏𝑖2 . . . , 𝑏𝑖𝑑 are the generators of the 𝑖-th cone.
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Chapter 2

Linear Diophantine Systems

’Here lies Diophantus,’ the wonder
behold. Through art algebraic, the
stone tells how old: ’God gave him his
boyhood one-sixth of his life, One
twelfth more as youth while whiskers
grew rife; And then yet one-seventh
ere marriage begun; In five years
there came a bouncing new son. Alas,
the dear child of master and sage
After attaining half the measure of
his father’s life chill fate took him.
After consoling his fate by the science
of numbers for four years, he ended
his life.’

Diophantus tombstone

The main focus of this thesis is on the solution of linear Diophantine systems. In
this chapter, we introduce some of their properties and provide a classification that is
useful when considering algorithms for solving linear Diophantine systems.

2.1 Introduction

Definition

As the name suggests we have a linear system of equations/inequalities. From linear
algebra, the standard representation of linear systems is in matrix notation. Since we
respect Diophantus’ viewpoint, our matrices will always be in Z𝑚×𝑑. In addition, there
is the restriction that the solutions are non-negative integers.

Let M be the set Z × [𝑡1, 𝑡2, . . . , 𝑡𝑘], where [𝑡1, 𝑡2, . . . , 𝑡𝑘] denotes the multiplicative
monoid generated by 𝑡1, 𝑡2, . . . , 𝑡𝑘. In other words, M is the set of monomials in the

51
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variables 𝑡𝑖 with integer coefficients. We first give the definition of a linear Diophantine
system.

Definition 2.1
Given 𝐴 ∈ Z𝑚×𝑑, 𝑏 ∈ M𝑚 and ♦ ∈ {≥,=}, the triple (𝐴, 𝑏,♦) is called a linear Dio-
phantine system. Note that the relation is considered componentwise (one inequal-
ity/equation per row). Let 𝑆 = {𝑥 ∈ N𝑑|𝐴𝑥♦𝑏}. �

We denote the family of solution sets 𝑆 as 𝑆(t) in order to indicate the dependence
on the parameters. Moreover, we will denote by |𝑆(t)| the function on t mapping each
set in the family to its cardinality. We will refer to the family of sets 𝑆(t) as the solution
set of the linear Diophantine system.

Assuming that 𝑏 lives in (Z× [𝑡1, 𝑡2, . . . , 𝑡𝑘])
𝑚 is essential for the understanding of a

certain category of problems, but for many interesting problems one can restrict to
having constant right-hand side, i.e., 𝑏 ∈ Z𝑚. In the latter case, we use 𝑆 and |𝑆|, since
the family contains only one member.

Characteristics

A linear Diophantine system has two important characteristics. These are related to
its geometry and influence greatly the algorithmic treatment. A linear Diophantine
system defines a polyhedron, whose lattice points are the solutions to the system. If the
polyhedron is bounded, i.e, it is a polytope, then we say that the linear Diophantine
system is bounded. If the polyhedron is parametric, we say that the linear Diophantine
system is parametric. We will clarify the notion of parametric with two examples.

The (vector partition function) problem(︂(︂
1 3
2 1

)︂
,

(︂
𝑏1
𝑏2

)︂
,≥
)︂

is parametric, since the right hand side contains (honest) elements of Z × [𝑏1, 𝑏2]. The
choice of 𝑏1 and 𝑏2 can change considerably the geometry of the problem. The change
in geometry is apparent for 𝑏1 = 4, 𝑏2 = 9 and 𝑏1 = 4, 𝑏2 = 3 in the following figures.
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On the other hand, the problem (of symmetric 3× 3 magic squares with magic sum 𝑡)⎛⎝⎛⎝ 1 1 1 0 0 0
0 1 0 1 1 0
0 0 1 0 1 1

⎞⎠ ,

⎛⎝ 𝑡
𝑡
𝑡

⎞⎠ ,=

⎞⎠
is not a parametric problem, since the (positive integer) parameter 𝑡 does not change
the geometry of the problem (every element of the right hand side is a non-constant
univariate monomial in 𝑡). In other words, we can consider the polytope 𝑃 , defined by
the linear Diophantine system⎛⎝⎛⎝ 1 1 1 0 0 0

0 1 0 1 1 0
0 0 1 0 1 1

⎞⎠ ,

⎛⎝ 1
1
1

⎞⎠ ,=

⎞⎠
and the problem is restated as counting (or listing) lattice points in 𝑡𝑃 , i.e., in dilations
of 𝑃 . Thus 𝑡 is a dilation parameter and is not changing the geometry of the problem.

It is important for any further analysis to define properly the size of a linear Dio-
phantine problem. There are three input size quantities that are all relevant concerning
the size of a problem:

∙ 𝐵 is the number of bits needed to represent the matrix 𝐴.

∙ 𝑑 is the number of variables.

∙ 𝑚 is the number of relations (equations/inequalities).

In the number of relations we do not count the non-negativity constraints for the
variables. In the number of variables we do not count parameters in parametric problems.
These two rules are essential in order to differentiate between problems and to define
problem equivalence.

Counting vs Listing

Given a linear Diophantine system, one can ask two questions:

∙ How many solutions are there?

∙ What are the solutions?

The first is called the counting problem, while the second is the listing problem.
We are interested in solving these two problems in an efficient way. The listing of the
solutions may be exponentially big in comparison to the input size 𝐵 (or even infinite),
thus we need a representation of the answer that encodes the solutions in an efficient
way. We resort to the use of generating functions for that reason. More precisely, the
solution to the listing problem is a full (or multivariate) generating function, while for
the counting problem is a counting generating function.
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In the literature, depending on the motivation of each author, the problem specifi-
cation is (sometimes silently) altered. In order to tackle the problem in an algorithmic
way, we have to first resolve the specification issue. The formal definitions we use for
the two problems we are interested in are

Definition 2.2 (Listing Linear Diophantine Problem)
Given a linear Diophantine system (𝐴, 𝑏,♦) ∈ Z𝑚×𝑑×M𝑚×{=,≥}, denote by 𝑆(t) the
solution set of the linear Diophantine system. Compute the generating function

ℒ𝐴,𝑏,♦(z,q) =
∑︁
t∈Z𝑚

⎛⎝ ∑︁
x∈𝑆(t)

zx

⎞⎠qt.

�

Definition 2.3 (Counting Linear Diophantine Problem)
Given a linear Diophantine system (𝐴, 𝑏,♦) ∈ Z𝑚×𝑑×M𝑚×{=,≥}, denote by 𝑆(t) the
solution set of the system. Compute the generating function

𝒞𝐴,𝑏,♦(t) =
∑︁
t∈Z𝑚

|𝑆(t)|qt.

�

Complexity

The reason why we restrict to linear systems is that algorithmic treatment of the general
(polynomial) problem is not feasible. This is the celebrated Hilbert’s 10th problem, which
Matiyasevich [32] solved in the negative direction. In other words, there is no algorithm
to decide if a polynomial has integer solutions.

Although the restriction to linear systems makes the problem algorithmically solv-
able, it does not make it efficiently solvable. The problem remains NP-hard.

Reduction

The decision problem of linear Diophantine systems (LDS) is

decide if there exists 𝑥 ∈ N𝑑

such that 𝐴𝑥 ≥ 𝑏

In order to show that LDS is NP-hard we reduce from 3-SAT [26]:

given a boolean expression 𝐵(𝑥) =
⋀︀𝑚

𝑖=1𝐶𝑖 in 𝑑-variables,
where 𝐶𝑖 is a disjunction of three literals
decide if there exists 𝑥 ∈ {0, 1}𝑑 such that 𝐵(𝑥) = 1
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For each clause 𝑌𝑖 ∨𝑌𝑗 ∨𝑌𝑘, where 𝑌𝑢 is either 𝑦𝑢 or ¬𝑦𝑢, we construct an inequality
𝑋𝑖 +𝑋𝑗 +𝑋𝑘 ≥ 1 where 𝑋𝑢 is 𝑥𝑢 or (1− 𝑥𝑢) accordingly.

Let 𝑎𝑖𝑥 ≥ 𝑏𝑖 be the inequality corresponding to the 𝑖-th clause of 𝐵(𝑥). Moreover,

let 𝑄 =

⎡⎢⎢⎢⎣
𝑎1
𝑎2
...
𝑎𝑚

⎤⎥⎥⎥⎦ ∈ Z𝑚×𝑑 , 𝑏+ =

⎡⎢⎢⎢⎣
𝑏1
𝑏2
...
𝑏𝑚

⎤⎥⎥⎥⎦ ∈ Z𝑚 , 𝑏− =

⎡⎢⎢⎢⎣
−1
−1
...
−1

⎤⎥⎥⎥⎦ ∈ Z𝑑 and 𝐼𝑑 be the rank

𝑑 unit matrix.

Then if 𝐴 =

[︂
𝑄
−𝐼𝑑

]︂
and 𝑏 =

[︂
𝑏+

𝑏−

]︂
we have

𝑥 ∈ N𝑑 such that 𝐴𝑥 ≥ 𝑏⇔ 𝐵(𝑥) = 1.

We note that this reduction is polynomial.
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2.2 Classification

We examine the hierarchy of problems related to linear Diophantine systems from the
perspective of the nature of the problem. Although many problems admit the same
algorithmic solution, their nature may be very diverse. Similarly, problems that look
similar may differ a lot when it comes to their algorithmic solution. There is a twofold
motivation for this classification. On one hand, it clarifies (by refining) the specifications
of the linear Diophantine problems. On the other hand, it provides useful insight con-
cerning the algorithmics, by providing base, degenerate or special cases for the “general”
problems.

Moreover, since many problems are equivalent, it is useful to have an overview of the
alternatives one has for solving a particular instance of a problem by reformulating it as
an instance of another.

Another important aspect is that a problem (and its solution) may change a lot
depending on whether one is interested in the full generating function ℒ (listing problem)
or the counting generating function 𝒞 (counting problem).

Each of these two types of problems contains several subproblems, depending on the
domain of the coefficients and the relation involved (equation or inequality).

2.2.1 Classification

For a problem (𝐴, 𝑏,♦), we will use a four letter notation MHRT, where M is the domain
of the matrix 𝐴, H is M if the problem is parametric with respect to 𝑏, O if the problem is
homogeneous or the domain of 𝑏 if the problem is inhomogeneous, R is ≥ or = depending
on whether we have inequalities or equations and T is B for bounded or U for unbounded
problems.

In the diagram we see the inclusion relations (if a class A is included in class B, then
an instance from A is also an instance of B).

The following list gives some rules eliminating some of the cases:

1. *𝑂 *𝐵 has {0} as its solution set.

2. N* ≥ * is unbounded.

3. N𝑂 * * is trivially satisfied (N𝑑 is its solution set).

4. NZ ≥ * is trivially satisfied (N𝑑 is its solution set).

5. NZ=* is infeasible.

We note that a problem is assumed to belong to one of the above classes and not
any of its subclasses in order to apply the rules. For example, the last rule means that
the inhomogeneous part has a negative entry, otherwise we would consider the problem
in the class of problems with inhomogeneous part in N.

Omitting the cases covered above, we obtain the following diagram:
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Z,M,=, 𝑈 Z,M,≥, 𝑈

N,M,≥, 𝑈

Z,M,=, 𝐵 Z,M,≥, 𝐵

N,M,=, 𝐵

Z,Z,=, 𝑈 Z,Z,≥, 𝑈

Z,Z,=, 𝐵 Z,Z,≥, 𝐵

Z,N,=, 𝑈 Z,N,≥, 𝑈

N,N,≥, 𝑈

Z,N,=, 𝐵

N,N,=, 𝐵

Z, 0,=, 𝑈 Z, 0,≥, 𝑈

We now present examples for some of the cases and provide names and references
used in literature when available.
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N,N,=, 𝐵

Name: Magic Squares

References: [4], Ch.4. Prop 4.6.21 in [35], S6.2 in [17]

Description: 3× 3 symmetric matrices of row and column sum equal to 𝑛

Matrix 𝐴 vector 𝑏 Parameters⎛⎜⎜⎜⎝
1 1 1 0 0 0

0 1 0 1 1 0

0 0 1 0 1 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1

1

1

⎞⎟⎟⎟⎠ 𝑛

Listing (𝑧0𝑧1𝑧2𝑧3𝑧4𝑧5𝑞3−1)
(𝑧1𝑧5𝑞−1)(𝑧0𝑧4𝑞−1)(𝑧2𝑧3𝑞−1)(𝑧0𝑧3𝑧5𝑞−1)(𝑧1𝑧2𝑧4𝑞2−1)

Counting (1+𝑞+𝑞2

(1−𝑞)4(1+𝑞)

Name: Magic Pentagrams

References: S3, page 14 in [5]

Description: Partitions of 𝑛 into parts satisfying relations given by a pentagram with
the parts as vertices and inequalities given by the edges.

Matrix 𝐴 vector 𝑏⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 1 0 0 0 1

1 0 1 0 0 0 1 1 0 0

0 1 0 0 1 1 1 0 0 0

0 0 1 0 1 0 0 0 1 1

0 1 0 1 0 0 0 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2

2

2

2

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Listing

𝑞𝑧210𝑧
2
3𝑧

3
7𝑧

3
4

(−𝑧3𝑧6+𝑧7𝑧10)(−𝑧3𝑧4+𝑧8𝑧10)(𝑧4𝑧27𝑧9𝑧10𝑞−1)(𝑧2𝑧3𝑧4𝑧7𝑧10𝑞−1)
·

1
(𝑧3𝑧24𝑧5𝑧7𝑞−1)(𝑧3𝑧24𝑧

2
7𝑧10𝑞−𝑧1)

Counting (𝑞2+3𝑞+1)(𝑞2+13𝑞+1)
(𝑞−1)6
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Z,Z,≥, 𝐵

Name: Solid Partitions on a Cube

References: S4.1 in [4]

Description: Partitions of 𝑛 subject to relations given by a cube where the vertices are
the parts and the directed edges indicate the inequalities.

Matrix 𝐴 vector 𝑏⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 0 0 0 0

1 0 −1 0 0 0 0 0

1 0 0 0 −1 0 0 0

0 1 0 −1 0 0 0 0

0 1 0 0 0 −1 0 0

0 0 1 −1 0 0 0 0

0 0 1 0 0 0 −1 0

0 0 0 1 0 0 0 −1

0 0 0 0 1 −1 0 0

0 0 0 0 1 0 −1 0

0 0 0 0 0 1 0 −1

0 0 0 0 0 0 1 −1

1 1 1 1 1 1 1 1

−1 −1 −1 −1 −1 −1 −1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0

1

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Listing 𝑧4𝑧2𝑧1𝑞3

(1−𝑧6𝑞)(𝑧5𝑞−1)(𝑧1𝑞−1)(𝑧1𝑧2𝑞2−1)(𝑧1𝑧2𝑧4𝑞3−1)(𝑧1𝑧2𝑧3𝑧4𝑞4−1)
·

1
(𝑧1𝑧2𝑧3𝑧4𝑧5𝑧7𝑞6−1)(𝑧1𝑧2𝑧3𝑧4𝑧5𝑧6𝑧7𝑧8𝑞8−1)

Counting (𝑞16+2𝑞14+2𝑞13+3𝑞12+3𝑞11+5𝑞10+4𝑞9+8𝑞8+4𝑞7+5𝑞6+3𝑞5+3𝑞4+2𝑞3+2𝑞2+1)
(𝑞−1)8(𝑞+1)4(𝑞2+1)2(𝑞2+𝑞+1)2(𝑞2−𝑞+1)(𝑞4+1)(𝑞4+𝑞3+𝑞2+𝑞+1)

·
1

(𝑞6+𝑞5+𝑞4+𝑞3+𝑞2+𝑞+1)
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N,M,=, 𝐵

Name: Vector Partition Function

References: Section 4 in [15]

Description: Non-negative integer counts the natural solutions of

𝑥1 + 2𝑥2 + 𝑥3 = 𝑏1

𝑥1 + 𝑥2 + 𝑥4 = 𝑏2

Matrix 𝐴 vector 𝑏 Parameters⎛⎝1 2 1 0

1 1 0 1

⎞⎠ ⎛⎝ 𝑏1

𝑏2

⎞⎠ 𝑏1, 𝑏2

Counting

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑏21
4 + 𝑏1 +

7+(−1)𝑏1

8 , 𝑏1 ≤ 𝑏2

𝑏1𝑏2 −
𝑏21
4 −

𝑏22
2 + 𝑏1+𝑏2

2 + 7+(−1)𝑏1

8 , 𝑏1 > 𝑏2 >
𝑏1−3
2

𝑏22
2 −

3·𝑏2
2 + 1 , 𝑏2 ≤ 𝑏1−3

2

Z, 0,≥, 𝐵

Name: Lecture Hall Partitions

References: [18]

Description: Partitions of 𝑛 where 2𝑎 ≤ 𝑏, 3𝑏 ≤ 2𝑐 and 4𝑐 ≤ 3𝑑.

Matrix 𝐴 vector 𝑏⎛⎜⎜⎜⎝
2 −1 0 0

0 3 −2 0

0 0 4 −3

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

0

0

0

⎞⎟⎟⎟⎠
Listing

−𝑧1𝑧32𝑧
4
3𝑧

5
4𝑞

13

(𝑧2𝑧3𝑧4𝑞3−1)(𝑧1𝑧22𝑧
2
3𝑧

2
4𝑞

7−1)(𝑧1𝑧22𝑧
3
3𝑧

3
4𝑞

9−1)(𝑧1𝑧22𝑧
3
3𝑧

4
4𝑞

10−1)

Counting (𝑞2−𝑞+1)(𝑞4+1)
(𝑞−1)4(𝑞2+𝑞+1)(𝑞4+𝑞3+𝑞2+𝑞+1)
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Z,M,≥, 𝐵

Name: Vector Partition Function

References: Section 4 in [15]

Description: Non-negative integer solutions of
−𝑥1 − 2𝑥2 ≥ 𝑏1

−𝑥1 − 𝑥2 ≥ 𝑏2

Matrix 𝐴 vector 𝑏 Parameters⎛⎝−1 −2

−1 −1

⎞⎠ ⎛⎝ 𝑏1

𝑏2

⎞⎠ 𝑏1, 𝑏2

Counting

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑏21
4 + 𝑏1 +

7+(−1)𝑏1

8 , 𝑏1 ≤ 𝑏2

𝑏1𝑏2 −
𝑏21
4 −

𝑏22
2 + 𝑏1+𝑏2

2 + 7+(−1)𝑏1

8 , 𝑏1 > 𝑏2 >
𝑏1−3
2

𝑏22
2 −

3·𝑏2
2 + 1 , 𝑏2 ≤ 𝑏1−3

2

Z,Z,≥, 𝑈

Matrix 𝐴 vector 𝑏⎛⎝1 −1

1 −2

⎞⎠ ⎛⎝ 3

−2

⎞⎠

0 2 4 6 8 10

0

2

4

6

8

Listing
−𝑧21

(𝑧1−1)(−𝑧21+𝑞)(𝑧21𝑧2−1)

Counting 5𝑞(2𝑞+3)
(𝑞−1)3
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N,M,≥, 𝑈

Name: Vector Partition Function

Matrix 𝐴 vector 𝑏⎛⎝1 3

2 1

⎞⎠ ⎛⎝ 𝑏1

𝑏2

⎞⎠

0 2 4 6 8 10

0

2

4

6

8

0 2 4 6 8 10

0

2

4

6

8

Listing 𝑁
(1−𝑧1)(1−𝑧2)(1−𝑞1𝑧1)(1−𝑞22𝑧1)(1−𝑞1𝑞22𝑧1)(1−𝑞31𝑧2)(1−𝑞2𝑧2)(1−𝑞31𝑞2𝑧2)
where 𝑁 = 𝑞52𝑧

3
1𝑧

3
2𝑞

7
1 + 𝑞42𝑧

3
1𝑧

3
2𝑞

7
1 − 𝑞42𝑧

3
1𝑧

2
2𝑞

7
1 − 𝑞32𝑧

2
1𝑧

2
2𝑞

7
1 + 𝑞52𝑧

3
1𝑧

3
2𝑞

6
1 + 𝑞42𝑧

3
1𝑧

3
2𝑞

6
1 −

𝑞52𝑧
2
1𝑧

3
2𝑞

6
1 − 𝑞42𝑧

2
1𝑧

3
2𝑞

6
1 − 𝑞32𝑧

2
1𝑧

3
2𝑞

6
1 − 𝑞22𝑧

2
1𝑧

3
2𝑞

6
1 − 𝑞42𝑧

3
1𝑧

2
2𝑞

6
1 + 𝑞42𝑧

2
1𝑧

2
2𝑞

6
1 − 𝑞32𝑧

2
1𝑧

2
2𝑞

6
1 +

𝑞22𝑧
2
1𝑧

2
2𝑞

6
1 + 𝑞32𝑧1𝑧

2
2𝑞

6
1 + 𝑞2𝑧1𝑧

2
2𝑞

6
1 + 𝑞52𝑧

3
1𝑧

3
2𝑞

5
1 + 𝑞42𝑧

3
1𝑧

3
2𝑞

5
1 − 𝑞52𝑧

2
1𝑧

3
2𝑞

5
1 − 𝑞42𝑧

2
1𝑧

3
2𝑞

5
1 −

𝑞32𝑧
2
1𝑧

3
2𝑞

5
1 − 𝑞22𝑧

2
1𝑧

3
2𝑞

5
1 + 𝑞32𝑧1𝑧

3
2𝑞

5
1 + 𝑞22𝑧1𝑧

3
2𝑞

5
1 − 𝑞42𝑧

3
1𝑧

2
2𝑞

5
1 + 𝑞42𝑧

2
1𝑧

2
2𝑞

5
1 − 𝑞32𝑧

2
1𝑧

2
2𝑞

5
1 +

𝑞22𝑧
2
1𝑧

2
2𝑞

5
1 −𝑞2𝑧

2
2𝑞

5
1 +𝑞32𝑧1𝑧

2
2𝑞

5
1 −𝑞22𝑧1𝑧

2
2𝑞

5
1 +𝑞2𝑧1𝑧

2
2𝑞

5
1 −𝑞42𝑧

3
1𝑧

2
2𝑞

4
1 −𝑞52𝑧

2
1𝑧

2
2𝑞

4
1 −𝑞42𝑧

2
1𝑧

2
2𝑞

4
1 −

3𝑞32𝑧
2
1𝑧

2
2𝑞

4
1 − 𝑞22𝑧

2
1𝑧

2
2𝑞

4
1 − 𝑞2𝑧

2
1𝑧

2
2𝑞

4
1 − 𝑞2𝑧

2
2𝑞

4
1 + 2𝑞32𝑧1𝑧

2
2𝑞

4
1 + 𝑞22𝑧1𝑧

2
2𝑞

4
1 + 2𝑞2𝑧1𝑧

2
2𝑞

4
1 +

𝑞42𝑧
2
1𝑧2𝑞

4
1 + 2𝑞32𝑧

2
1𝑧2𝑞

4
1 + 2𝑞22𝑧

2
1𝑧2𝑞

4
1 + 𝑞2𝑧

2
1𝑧2𝑞

4
1 − 𝑞22𝑧1𝑧2𝑞

4
1 − 𝑞2𝑧1𝑧2𝑞

4
1 − 𝑞42𝑧

3
1𝑧

2
2𝑞

3
1 +

𝑞42𝑧
2
1𝑧

2
2𝑞

3
1−𝑞32𝑧

2
1𝑧

2
2𝑞

3
1+𝑞22𝑧

2
1𝑧

2
2𝑞

3
1−𝑞2𝑧

2
2𝑞

3
1+2𝑞32𝑧1𝑧

2
2𝑞

3
1+𝑞22𝑧1𝑧

2
2𝑞

3
1+2𝑞2𝑧1𝑧

2
2𝑞

3
1+𝑞32𝑧

2
1𝑧2𝑞

3
1+

𝑞22𝑧
2
1𝑧2𝑞

3
1−𝑞32𝑧1𝑧2𝑞

3
1−2𝑞22𝑧1𝑧2𝑞

3
1−2𝑞2𝑧1𝑧2𝑞

3
1−𝑧1𝑧2𝑞

3
1−𝑞42𝑧

3
1𝑧

2
2𝑞

2
1+𝑞42𝑧

2
1𝑧

2
2𝑞

2
1−𝑞32𝑧

2
1𝑧

2
2𝑞

2
1+

𝑞22𝑧
2
1𝑧

2
2𝑞

2
1 − 𝑞2𝑧

2
2𝑞

2
1 + 𝑞32𝑧1𝑧

2
2𝑞

2
1 − 𝑞22𝑧1𝑧

2
2𝑞

2
1 + 𝑞2𝑧1𝑧

2
2𝑞

2
1 + 𝑞32𝑧

2
1𝑧2𝑞

2
1 + 𝑞22𝑧

2
1𝑧2𝑞

2
1 + 𝑞2𝑧2𝑞

2
1 −

𝑞32𝑧1𝑧2𝑞
2
1 − 𝑞22𝑧1𝑧2𝑞

2
1 − 𝑞2𝑧1𝑧2𝑞

2
1 −𝑧1𝑧2𝑞

2
1 +𝑧2𝑞

2
1 − 𝑞32𝑧

2
1𝑞1 − 𝑞22𝑧

2
1𝑞1 − 𝑞2𝑧

2
1𝑞1 − 𝑞32𝑧

2
1𝑧

2
2𝑞1 −

𝑞2𝑧
2
2𝑞1 + 𝑞32𝑧1𝑧

2
2𝑞1 + 𝑞2𝑧1𝑧

2
2𝑞1 + 𝑞2𝑧1𝑞1 + 𝑞42𝑧

2
1𝑧2𝑞1 +2𝑞32𝑧

2
1𝑧2𝑞1 +2𝑞22𝑧

2
1𝑧2𝑞1 + 𝑞2𝑧

2
1𝑧2𝑞1 +

𝑞2𝑧2𝑞1 − 𝑞32𝑧1𝑧2𝑞1 − 2𝑞22𝑧1𝑧2𝑞1 − 2𝑞2𝑧1𝑧2𝑞1 − 𝑧1𝑧2𝑞1 + 𝑧2𝑞1 + 𝑞2𝑧1 − 𝑞22𝑧1𝑧2 − 𝑞2𝑧1𝑧2 +1



Chapter 3

Partition Analysis

3.1 Partition Analysis Revisited

Partition analysis is a general methodology for the treatment of linear Diophantine
systems. The methodology is commonly attributed to MacMahon [31], since he was
the first to apply it in a way similar to the one used today, that is, for the solution of
combinatorial problems subject to linear Diophantine systems.

MacMahon’s motivation was the proof of his conjectures about plane partitions. This
was his declared goal in Combinatory Analysis. The fact that he failed to actually give
an answer to the problem was like signing the death certificate of his own child. In
combination with other reasons, including the lack of interest for computational proce-
dures in mathematics for most of the 20th century, MacMahon’s method did not become
mainstream among mathematicians.

Except for the theoretical side of the method, there is an algorithmic aspect. The
computational and algorithmic nature of the method was evident since the beginning.
MacMahon employed an algorithm of Elliott in order to turn his method into an algo-
rithm. In [24], Elliott introduced the basics of the methodology and used it to solve
linear homogeneous Diophantine equations. In particular, Elliott’s method is of inter-
est because it is algorithmic (in the strict modern sense of the term). Elliott himself,
although lacking modern terminology, is arguing on the termination of the procedure.
Naturally, given the lack of computers at that time, MacMahon resorted in finding
shortcuts (rules) for the most usual cases. This list of rules, included in Combinatory
Analysis, he expanded as needed for the problem at hand.

It was Andrews who observed the computational potential of MacMahon’s partition
analysis and waited for the right problem to apply it. In the late 1990’s, the seminal pa-
per of Bousquet–Mélou and Eriksson [18] on lecture-hall partitions appeared. Andrews
suggested to Paule to explore the capacity of partition analysis combined with sym-
bolic computation. This collaboration gave a series of papers, among which [4] and [5]
deal with implementations of two fully algorithmic versions of partition analysis, called
Omega, empowered by symbolic computation.

There are different algorithmic (and non-algorithmic) realizations of the general idea.

63
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Their relation is illustrated in the following figure. In what follows we will see in chrono-
logical order the milestones of partition analysis. Although the goal is to present the
history, we will allow for a modern view. In particular, we will see some geometric and
algebraic aspects that help understanding partition analysis.

MacMahon

Xin

Ell Ell2

Andrews
Paule
Riese

omega

omega2

Elliott

Polyhedral
Omega

3.1.1 Elliott

One of the first references relevant to partition analysis is Elliott’s article “On linear
homogeneous Diophantine equation” [24]. The work of Elliott is exciting, if not for
anything else, because it addresses mathematicians that lived a century apart. It was
of interest to MacMahon, who based his method on Elliott’s decomposition, but also to
21st century mathematicians for explicitly giving an important algorithm. Although, as
we shall see, the algorithm has very bad complexity, it can be considered as an early
algorithm for the enumeration of lattice points in cones (among other things).

The problem Elliott considers is to find all non-negative integer solutions to the
equation

𝑚∑︁
𝑖=1

𝑎𝑖𝑥𝑖 −
𝑚+𝑛∑︁

𝑖=𝑚+1

𝑏𝑖𝑥𝑖 = 0 for 𝑎𝑖, 𝑏𝑖 ∈ N. (3.1)

In other words, we consider one homogeneous linear Diophantine equation. It should be
noted that Elliott himself (as well as subsequent authors) expressed the equation in the
form Diophantus would prefer, without using negative coefficients.

The starting point for Elliott’s work is the fact that even if one computes the set of
“simple solutions”, i.e., solutions that are not combinations of others, there are syzygies
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preventing us from writing down formulas giving each and every solution of the equation
exactly once. He proceeds by explaining that his method computes a generating function
whose terms are in one-to-one correspondence with the solutions of the equation. Elliott
states that this generating function is obtained “by a finite succession of simple stages”.
This sentence exhibits an impressive insight on what an algorithm is, as well as Elliott’s
realization that he has an algorithm at hand. We quote Elliott outlining his idea in [24]:

The principle is that in the infinite expansion which is the formal product of
the infinite expansions
1 + 𝜉1𝑢

𝑎1 + 𝜉21𝑢
2𝑎1 + · · ·

1 + 𝜉2𝑢
𝑎2 + 𝜉22𝑢

2𝑎2 + · · ·
...
1 + 𝜉𝑚𝑢𝑎𝑚 + 𝜉2𝑚𝑢2𝑎𝑚 + · · ·
1 + 𝜉𝑚+1𝑢

−𝑏𝑚+1 + 𝜉2𝑚+1𝑢
−2𝑏𝑚+1 + · · ·

1 + 𝜉𝑚+2𝑢
−𝑏𝑚+2 + 𝜉2𝑚+2𝑢

−2𝑏𝑚+2 + · · ·
...
1 + 𝜉𝑚+𝑛𝑢

−𝑏𝑚+𝑛 + 𝜉2𝑚+𝑛𝑢
−2𝑏𝑚+𝑛 + · · ·

the terms free from 𝑢 are of the form 𝜉𝑥1
1 𝜉𝑥2

2 · · · 𝜉𝑥𝑚
𝑚 𝜉

𝑥𝑚+1

𝑚+1 𝜉
𝑥𝑚+2

𝑚+2 · · · 𝜉
𝑥𝑚+𝑛
𝑚+𝑛 with

1 for numerical coefficient, where 𝑥1, 𝑥2, . . . , 𝑥𝑚, 𝑥𝑚+1, . . . , 𝑥𝑚+𝑛 are a set of
positive integers (zero included), which satisfy our Diophantine equation 3.1,
and that there is just one such term for each set of solutions.

In other words, the generating function for determining the sets of solu-
tions, each once, of 3.1, as sets of exponents of the 𝜉𝑖’s in its several terms,
is the expression for the part which is free from 𝑢 of the expansion of

1

(1− 𝜉1𝑢𝑎1) · · · (1− 𝜉𝑚𝑢𝑎𝑚)(1− 𝜉𝑚+1𝑢−𝑏𝑚+1) · · · (1− 𝜉𝑚+𝑛𝑢−𝑏𝑚+𝑛)
(3.2)

in the positive powers of the 𝜉𝑖’s.
The problem is, in any case, to extract from 3.2, and to examine, this

generating function. The extraction may be effected by a finite number of
easy steps as follows.

The principle presented here by Elliott is the basis of partition analysis, i.e., intro-
ducing an extra variable, denoted by 𝑢 in Elliott and by 𝜆 in modern partition analysis.
We switch from 𝜉 and 𝑢 to 𝑧 and 𝜆 in order to conform with more modern notational
conventions. The method of Elliott computes a partial fraction decomposition of an
expression

𝑘∏︁
𝑖

1

1−𝑚𝑖
, (3.3)

where 𝑚𝑖 ∈
[︀
𝑧1, 𝑧2, . . . , 𝑧𝑘, 𝜆, 𝜆

−1
]︀
and 𝑘 ∈ N, into a sum of the form∑︁ ±1∏︀
(1− 𝑝𝑖)

+
∑︁ ±1∏︀

(1− 𝑞𝑗)
(3.4)
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with 𝑝𝑖 ∈ [𝑧1, 𝑧2, . . . , 𝑧𝑘, 𝜆] and 𝑞𝑗 ∈ [𝑧1, 𝑧2, . . . , 𝑧𝑘, 𝜆
−1].

We note that some authors refer to rational functions of the form 3.3 as Elliott rational
functions. The algorithm is based on the fact

1

(1− 𝑥𝜆𝛼)(1− 𝑦
𝜆𝛽 )

=
1

1− 𝑥𝑦𝜆𝛼−𝛽

(︃
1

1− 𝑥𝜆𝛼
+

1

1− 𝑦
𝜆𝛽

− 1

)︃
(3.5)

=
1

(1− 𝑥𝑦𝜆𝛼−𝛽)(1− 𝑥𝜆𝛼)
+

1

(1− 𝑥𝑦𝜆𝛼−𝛽)(1− 𝑦
𝜆𝛽 )
− 1

(1− 𝑥𝑦𝜆𝛼−𝛽)
.

Observe that given 𝛼 and 𝛽 positive integers, after applying 3.5, we obtain a sum of
terms where in each of them either the number of factors containing 𝜆 reduced or the
exponent of 𝜆 reduced (in absolute value) in one of the factors while it did not change
in the other. This observation is the proof of termination Elliott gives for his algorithm.

Let’s see a very simple example, where by applying (3.5) once, we obtain the desired
partial fraction decomposition.

Example 7.

1

(1− 𝑥𝜆)(1− 𝑦
𝜆)

=
1

(1− 𝑥𝑦)(1− 𝑥𝜆)
+

1

(1− 𝑥𝑦)(1− 𝑦
𝜆)
− 1

(1− 𝑥𝑦)

=

(︂
1

(1− 𝑥𝑦)(1− 𝑥𝜆)
− 1

(1− 𝑥𝑦)

)︂
+

1

(1− 𝑥𝑦)(1− 𝑦
𝜆)

.

Notice that the terms in the parenthesis contain only non-negative 𝜆 exponents, while
the last term contains only non-positive ones as requested by (3.4). �

Each of the summands in
∑︁
𝑖

±1∏︀
𝑗(1− 𝑝𝑖)

can be expanded using the geometric-series

expansion formula. It is easy to see that the summands contributing to the generating
function for the solution of Equation 3.1 are exactly the ones where in their expansion

𝜆 does not appear. This happens only for the terms
±1∏︀

𝑘(1− 𝑝𝑘)
where all 𝑝𝑘 are 𝜆-free.

Summing up only these terms we get the desired generating function.
In order to translate this rational function identity to an identity about cones we

first observe that
1

(1− 𝑥𝜆𝛼)(1− 𝑦
𝜆𝛽 )

is the generating function of the 2-dimensional cone 𝐶 = 𝒞R ((1, 0, 𝛼), (1, 0,−𝛽)), since
Lemma 2 guarantees that the numerator in the rational generating function of 𝐶 is
indeed 1.

Observe that the point (1, 1, 𝛼− 𝛽) is in the interior of the cone 𝐶. This means that
the cones 𝐴 = 𝒞R ((1, 0, 𝛼), (1, 1, 𝛼− 𝛽)) and 𝐵 = 𝒞R ((1, 0,−𝛽), (1, 1, 𝛼− 𝛽)) subdivide
the cone 𝐶. Their intersection is exactly the ray starting from the origin and passing
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through (1, 1, 𝛼 − 𝛽). By a simple inclusion-exclusion argument we have the signed
decomposition 𝐶 = 𝐴+ 𝐵 − (𝐴 ∩ 𝐵). This decomposition translated to the generating
function level is exactly the partial fraction decomposition employed by Elliott. In the
example shown below, after three applications of Elliott’s decomposition we obtain the
desired cone.

𝑥 𝑦

𝜆

𝑥 𝑦

𝜆

𝑥 𝑦

𝜆

𝑥 𝑦

𝜆

𝑥 𝑦

𝜆

𝑥 𝑦

𝜆

𝑥 𝑦

𝜆

𝑥 𝑦

𝜆

Elliott’s decomposition

The Algorithm

It is easy to see that, after a finite number of steps, we end up with a sum of cones of
three types:

1. the generators contain only zero last coordinate (𝜆-coordinate);

2. the generators contain only non-negative (but not all zero) last coordinate;

3. the generators contain only non-positive (but not all zero) last coordinate.

Note that all the cones involved are unimodular.
For equations we sum up the generating functions corresponding to cones of the 1st

type. For inequalities, we intersect each cone with the non-negative 𝜆 halfspace. This
means that we discard the cones of the 3rd type and sum up the generating functions of
the rest of the cones. Then we (orthogonally) project with respect to the 𝜆-coordinate.
The sum of rational generating functions for the lattice points in each cone we obtained
is the partial fraction decomposition obtained by Elliott’s algorithm.
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Elliott for Systems

It is important to note that Elliott’s method relies on the fact that the numerators in
all the expressions involved are equal to 1. Of course after bringing all the terms the
algorithm returns over a common denominator, there is no guarantee that the numerator
will be 1. But for each term returned the condition is preserved. Thus it is possible to
iteratively apply the algorithm to eliminate 𝜆’s in order to solve systems of equations
or inequalities. We note that Elliott proves that the numerators will always be ±1. No
repetitions occur in the computed expression.

Example 8. The system of linear homogeneous inequalities {7𝑎 − 𝑏 ≥ 0, 𝑎 − 3𝑏 ≥ 0}
can be solved by Elliott, resulting in 1

(1−𝑥)(1−𝑥3𝑦)
, if the inequality 𝑎 − 3𝑏 ≥ 0 is treated

first. If the order is reversed then the intermediate expression

−1− 𝑥𝑦6

𝜆17 − 𝑥𝑦5

𝜆14 − 𝑥𝑦4

𝜆11 − 𝑥𝑦3

𝜆8 − 𝑥𝑦2

𝜆5 − 𝑥𝑦
𝜆2

(1− 𝑥𝜆)(1− 𝑥𝑦7

𝜆20 )

is violating the condition that numerators are equal to 1.
The first inequality of the system is redundant, i.e., if we ignore it the solution set does

not change. Thus, choosing the right order, the intermediate expression 1
(1−𝑥𝜆7)(1−𝑥3𝑦𝜆20)

behaves well. We could still apply Elliott’s method if we did not bring the intermediate
expression over a common denominator. �

3.1.2 MacMahon

MacMahon presented his investigations concerning integer partition theory in a series of
seven memoirs, published between 1895 and 1916. In the second memoir [30], MacMahon
observes that the theory of partitions of numbers develops in parallel to that of linear
Diophantine equations and in his masterpiece “Combinatory Analysis” [31] he notes:

The most important part of the volume. Sections VIII et seq., arises from
basing the theory of partitions upon the theory of Diophantine inequalities.
This method is more fundamental than that of Euler, and leads directly to a
high degree of generalization of the theory of partitions, and to several inves-
tigations which are grouped together under the title of “Partition Analysis”.

In order to attack the problem of solving linear Diophantine systems, MacMahon
(like Elliott) introduced extra variables. Let 𝐴 ∈ Z𝑚×𝑑 and b ∈ Z𝑚. We want to find
all x ∈ N𝑑 satisfying 𝐴x ≥ b. The generating function of the solution set is

Φ𝐴,𝑏(z) =
∑︁
𝐴x≥b

zx.

Let’s introduce extra variables 𝜆1, 𝜆2, . . . , 𝜆𝑚 to encode the inequalities 𝐴x ≥ b, trans-
forming the generating function to ∑︁

x∈N𝑑,𝐴x≥b

𝜆𝐴xzx
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The 𝜆 variables are introduced to encode the inequalities, but the solutions we are
searching for live in dimension 𝑑. The 𝜆 dimensions are used to control that after
a certain decomposition we can filter out the solutions involving negative exponents.
Following this principle, MacMahon introduced the concept of the crude generating
function. But before that, we need to see the Ω≥ operator. MacMahon defined it in
Article 66 of [30]:

Suppose we have a function

𝐹 (𝑥, 𝑎) (3.6)

which can be expanded in ascending powers of 𝑥. Such expansion being either
finite or infinite, the coefficients of the various powers of 𝑥 are functions of
𝑎 which in general involve both positive and negative powers of 𝑎. We may
reject all terms containing negative powers of 𝑎 and subsequently put 𝑎 equal
to unity. We thus arrive at a function of 𝑥 only, which may be represented
after Cayley (modified by the association with the symbol ≥) by

Ω≥ 𝐹 (𝑥, 𝑎) (3.7)

the symbol ≥ denoting that the terms retained are those in which the power
of 𝑎 is ≥ 0.

The notation Ω≥ is now a standard and usually referred to as “MacMahon’s Omega”. It
is worth noting, at least in order to give credit where credit is due, as MacMahoon did,
that the first use of this notation is by Cayley in [22]. MacMahon extends the notation
to multivariate functions and defines the Ω= operator.

A more modern definition of the Ω≥ operator is given in [4], by Andrews,Paule and
Riese:

The Ω≥ operator is defined on functions with absolutely convergent mul-
tisum expansions

∞∑︁
𝑠1=−∞

∞∑︁
𝑠2=−∞

· · ·
∞∑︁

𝑠𝑟=−∞
𝐴𝑠1,𝑠2,...,𝑠𝑟𝜆

𝑠1
1 𝜆𝑠2

2 · · ·𝜆
𝑠𝑟
𝑟

in an open neighborhood of the complex circles |𝜆𝑖| = 1. The action of Ω≥
is given by

Ω≥

∞∑︁
𝑠1=−∞

∞∑︁
𝑠2=−∞

· · ·
∞∑︁

𝑠𝑟=−∞
𝐴𝑠1,𝑠2,...,𝑠𝑟𝜆

𝑠1
1 𝜆𝑠2

2 · · ·𝜆
𝑠𝑟
𝑟 :=

∞∑︁
𝑠1=0

∞∑︁
𝑠2=0

· · ·
∞∑︁

𝑠𝑟=0

𝐴𝑠1,𝑠2,...,𝑠𝑟 .
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This definition is concerned with convergence issues, while MacMahon considered Ω≥
acting on purely formal objects. In what follows we take the purely formal side (being
on safe ground due to geometry). But we also address the justified concerns about
convergence, relating them to the geometric issues.

In order to use the Ω≥ operator for the solution of linear Diophantine systems,
MacMahon resorts to the construction of a generating function he calls crude. This is
in principal a multivariate version of Elliott’s construction.

Definition 3.1 (Crude Generating Function)
Given 𝐴 ∈ Z𝑚×𝑑 and b ∈ Z𝑚 we define the crude generating function as

ΦΩ
𝐴,𝑏 (z;𝜆) := Ω≥

∑︁
x∈N𝑛

zx
𝑚∏︁
𝑖=1

𝜆𝐴𝑖x−𝑏𝑖
𝑖 .

�

We stress the fact that the assignment is meant formally, since it is easy to see that

Ω≥Φ𝜆
𝐴,𝑏(𝑧;𝜆) = Φ𝐴,𝑏(z)

as well as

ΦΩ
𝐴,𝑏(z;𝜆) =

∑︁
x∈N𝑛,𝐴x≥𝑏

zx = Φ𝐴,𝑏(z).

This means that Ω≥
∑︀

x∈N𝑛 zx
∏︀𝑚

𝑖=1 𝜆
𝐴𝑖x−𝑏𝑖
𝑖 is the answer to the problem of solving a

linear Diophantine system. Thus, it is expected that the computation of the action of
the Ω≥ operator is not easy.

We define the 𝜆-generating function as an intermediate step, both in order to increase
clarity in this section and because it is essential when discussing geometry later. In
principal, the 𝜆-generating function is the crude generating function without prepending
Ω≥. Given 𝐴 ∈ Z𝑚×𝑑 and b ∈ Z𝑚 we define the 𝜆 generating function as

Φ𝜆
𝐴,𝑏(z, 𝜆) =

∑︁
x∈N𝑑

zx
𝑚∏︁
𝑖=1

𝜆𝐴𝑖x−𝑏𝑖
𝑖 .

Based on the geometric series expansion formula

(1− 𝑧)−1 =
∑︁
𝑥≥0

𝑧𝑥

we can transform the series into a rational function. The rational form of Φ𝜆
𝐴,𝑏(z) is

denoted by 𝜌𝜆𝐴,𝑏(z) and it has the form

𝜌𝜆𝐴,𝑏(z, 𝜆) = 𝜆−b
𝑚∏︁
𝑖=1

1(︁
1− 𝑧𝑖𝜆(𝐴𝑇 )𝑖

)︁
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We present an example that we will also use for the geometric interpretation of Ω≥,

Let 𝐴 = [ 2 3 ] and 𝑏 = 5.

Then

Φ𝜆
𝐴,𝑏(𝑧1, 𝑧2, 𝜆) =

∑︁
𝑥1,𝑥2∈N

𝜆2𝑥1+3𝑥2−5𝑧𝑥1
1 𝑧𝑥2

2

and

𝜌𝜆𝐴,𝑏(𝑧1, 𝑧2, 𝜆) =
𝜆−5

(1− 𝑧1𝜆2)(1− 𝑧2𝜆3)

These generating functions can be directly translated to cones by examining their
rational form and recalling the form for the generating function of lattice points in cones.

In the following figure, we see the geometric steps for creating the 𝜆-cone (equivalent
of the 𝜆-generating function) and then applying the Ω≥ operator.

At first we lift the standard generators of the positive quadrant of R𝑑 by appending
the exponents of the 𝜆 variables (thus lifting the generators in R𝑑+𝑚). We translate the
lifted cone by the exponent of 𝜆 in the numerator. Then we intersect with the positive
quadrant of R𝑑+𝑚 and project the intersection to R𝑑. The generating function of the
obtained polyhedron is the result of the action of Ω≥ on the 𝜆-generating function.

𝑥
𝑦

𝜆

Consider the first quadrant and lift the
standard generators according to the

input.

𝑥
𝑦

𝜆

Shift according to the inhomogeneous
part in the negative 𝜆 direction the

cone generated by the lifted generators.
Intersect with the 𝑥𝑦-plane.
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𝑥
𝑦

𝜆

Take the part of the cone (a
polyhedron) living above the 𝑥𝑦-plane

and project its lattice points.

𝑥
𝑦

𝜆

The projected polyhedron contains the
solutions to the inequality.

Given the geometric interpretation of the crude generating function, one could argue
that it is actually a refined one. Or if we consider the generating series as a cloth-
hanging rope, then the crude generating function is a cloth-hanging grid allowing us to
parametrize the hanging.

3.1.3 MacMahon’s Rules

Although the machinery of MacMahon was very powerful, it was not very practical.
Lacking computing machines, he had to resort to lookup tables in order to solve problems
he was interested in. In his partition theory memoirs and in ”Combinatory Analysis”,
he presents a set of rules. These are adhoc rules he was inventing when needed in order
to solve some combinatorial problem he was presenting.

Here we present nine of the rules MacMahon used for the evaluation of the Ω≥
operator, taken from [4]. Most of the proofs are easy, so we restrict to observations
using geometric insight.

MacMahon Rules 1 & 2

The first two rules in MacMahon’s list are:
For 𝑠 ∈ N* :

Ω≥
1

(1− 𝜆𝑥)
(︀
1− 𝑦

𝜆𝑠

)︀ =
1

(1− 𝑥) (1− 𝑥𝑠𝑦)

and

Ω≥
1

(1− 𝜆𝑠𝑥)
(︀
1− 𝑦

𝜆

)︀ =
1 + 𝑥𝑦 1−𝑦𝑠−1

1−𝑦

(1− 𝑥) (1− 𝑥𝑦𝑠)
.
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The rules are about evaluating Ω≥
1

(1−𝜆𝑥)(1− 𝑦
𝜆𝑠 )

and Ω≥
1

(1−𝜆𝑠𝑥)(1− 𝑦
𝜆)

. There is an appar-

ent symmetry in the input, but elimination results in structurally different numerators,

i.e., 1 versus 1 + 𝑥𝑦 1−𝑦𝑠−1

1−𝑦 . This phenomenon is better understood if we look at the
saturated semigroup that is the solution set of each linear Diophantine system. These
two cases correspond to the inequalities 𝑥 − 𝑠𝑦 ≥ 0 and 𝑠𝑥 − 𝑦 ≥ 0 respectively. The
two cones generated by following the Cayley Lifting construction are

𝑥
𝑦

𝜆

𝑥

𝑦

𝜆

𝑥

𝑦

𝜆

𝑥
𝑦

𝜆

𝑥
𝑦

𝜆

𝑥
𝑦

𝜆

The geometry of the first two MacMahon rules.
The numerator in the rational generating function expresses the lattice points in the
fundamental parallelepiped. Since the first cone is unimodular, the numerator is 1. For
the second cone, we observe that the fundamental parallelepiped, except for the origin,
contains a vertical segment (truncated geometric series) at 𝑥 = 1. The length of the
segment is 𝑠 and since the fundamental parallelepiped is half-open, the lattice points of
this segment are (1, 𝑞) for 𝑞 = 1, 2, . . . , 𝑠. The rational function

𝑥𝑦
1− 𝑦𝑠−1

1− 𝑦
=

𝑥𝑦 − 𝑥𝑦𝑠

1− 𝑦

is exactly the generating function of that segment.

MacMahon Rule 4

Ω≥
1

(1− 𝜆𝑥) (1− 𝜆𝑦)
(︀
1− 𝑧

𝜆

)︀ =
1− 𝑥𝑦𝑧

(1− 𝑥) (1− 𝑦) (1− 𝑥𝑧) (1− 𝑦𝑧)
.

Although the rational function on which Ω≥ acts has three factors in the denominator,
the resulting rational generating function has four factors in the denominator. Moreover,
we observe that the numerator has terms with both positive and negative signs. We will
give a geometric view on these observations. The 𝜆-cone defined in the left hand side
of the MacMahon rule is 𝒞R ((1, 0, 0, 1), (0, 1, 0, 1), (0, 0,−1, 1)) . If we compute the
intersection of this cone with the positive quadrant of R4, we obtain a cone generated by
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(1, 0, 0, 1), (0, 1, 0, 1), (1, 0, 1, 0) and (0, 1, 1, 0). Let’s project this into R3 (by eliminating
the last coordinate). We obtain a non-simplicial cone. We provide two decompositions
of the cone into simplicial cones. We used Normaliz [21] for the computations.

The first decomposition is by triangulation as shown here:

𝑥
𝑦

𝑧

𝑥

𝑦

𝑧

𝑥

𝑦

𝑧

𝑥

𝑦

𝑧

𝑥

𝑦

𝑧

The generating function of the green cone 𝒞R ((1, 0, 0), (0, 1, 0), (1, 0, 1)) is

1

(1− 𝑥) (1− 𝑦) (1− 𝑥𝑧)

while that of the red cone 𝒞R ((0, 1, 0), (0, 1, 1), (1, 0, 1)) is

1

(1− 𝑦) (1− 𝑥𝑧) (1− 𝑦𝑧)
.

If we perform inclusion-exclusion (subtracting the purple cone), we obtain:

1

(1− 𝑥) (1− 𝑦) (1− 𝑥𝑧)
+

1

(1− 𝑦) (1− 𝑥𝑧) (1− 𝑦𝑧)
− 1

(1− 𝑦) (1− 𝑥𝑧)
=

(1− 𝑥𝑦) (1− 𝑦)

(1− 𝑥) (1− 𝑦) (1− 𝑥𝑧) (1− 𝑦𝑧)
− 1

(1− 𝑦) (1− 𝑥𝑧)
=

(1− 𝑥𝑦) (1− 𝑦)− (1− 𝑥𝑧)

(1− 𝑦) (1− 𝑦) (1− 𝑥𝑧) (1− 𝑦𝑧)
=

1− 𝑥𝑦𝑧

(1− 𝑦) (1− 𝑦) (1− 𝑥𝑧) (1− 𝑦𝑧)

The second decomposition is not a triangulation, but a signed cone decomposition (à la
Barvinok).

𝑥
𝑦

𝑧

𝑥

𝑦

𝑧

𝑥

𝑦

𝑧

𝑥

𝑦

𝑧

We first consider the whole positive quadrant and then subtract the half-open cone

𝒞(0,0,1)R ((1, 0, 1), (0, 1, 1), (0, 0, 1)) . Half-opening the cone is equivalent (as far as lattice
points are concerned) to shifting the cone by the generator (0, 0, 1). Thus we have at
the generating function level:
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1

(1− 𝑥) (1− 𝑦) (1− 𝑧)
− 𝑧

(1− 𝑥𝑧) (1− 𝑦𝑧) (1− 𝑧)
=

(1− 𝑥𝑧) (1− 𝑦𝑧)− 𝑧 (1− 𝑥) (1− 𝑦)

(1− 𝑥) (1− 𝑦) (1− 𝑧) (1− 𝑥𝑧) (1− 𝑦𝑧)
=

(1− 𝑧)− 𝑥𝑦𝑧 (1− 𝑧)

(1− 𝑦) (1− 𝑦) (1− 𝑧) (1− 𝑥𝑧) (1− 𝑦𝑧)
=

1− 𝑥𝑦𝑧

(1− 𝑦) (1− 𝑦) (1− 𝑥𝑧) (1− 𝑦𝑧)

MacMahon Rule 6

Ω≥
1

(1− 𝜆2𝑥)
(︀
1− 𝑦

𝜆

)︀ (︀
1− 𝑧

𝜆

)︀ =
1 + 𝑥𝑦 + 𝑥𝑧 + 𝑥𝑦𝑧

(1− 𝑥) (1− 𝑥𝑦2) (1− 𝑥𝑧2)
.

In this rule we observe that we have a positive sum of four terms in the numerator.
The Ω-polyhedron is a cone that is simplicial but not unimodular. Observe in the figure
the four points in the fundamental parallelepiped, corresponding to the four terms in

the sum.

𝑥

𝑦

𝑧

𝑥

𝑦

𝑧

Other MacMahon Rules

Although the list of rules is not comprehensive, in the sense that they cannot cover all
cases needed to treat linear Diophantine systems, they can solve certain combinatorial
problems. For the rest of MacMahon’s rules similar geometric observations apply, but
the geometry becomes more complicated and the reasoning behind the numerators or
the denominators appearing is not as simple anymore. A list of other MacMahon rules
is given here:

MacMahon Rule 3

Ω≥
1

(1− 𝜆𝑥)
(︀
1− 𝑦

𝜆

)︀ (︀
1− 𝑧

𝜆

)︀ =
1

(1− 𝑥) (1− 𝑥𝑦) (1− 𝑥𝑧)
.
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MacMahon Rule 5

Ω≥
1

(1− 𝜆𝑥) (1− 𝜆𝑦)
(︀
1− 𝑧

𝜆2

)︀ =
1 + 𝑥𝑦𝑧 − 𝑥2𝑦𝑧 − 𝑥𝑦2𝑧

(1− 𝑥) (1− 𝑦) (1− 𝑥2𝑧) (1− 𝑦2𝑧)
.

MacMahon Rule 7

Ω≥
1

(1− 𝜆2𝑥) (1− 𝜆𝑦)
(︀
1− 𝑧

𝜆

)︀ =
1 + 𝑥𝑧 − 𝑥𝑦𝑧 − 𝑥𝑦𝑧2

(1− 𝑥) (1− 𝑦) (1− 𝑦𝑧) (1− 𝑥𝑧2)
.

MacMahon Rule 8

1

(1− 𝜆𝑥) (1− 𝜆𝑦) (1− 𝜆𝑧)
(︀
1− 𝑤

𝜆

)︀ =

1− 𝑥𝑦𝑤 − 𝑥𝑧𝑤 − 𝑦𝑧𝑤 + 𝑥𝑦𝑧𝑤 + 𝑥𝑦𝑧𝑤2

(1− 𝑥) (1− 𝑦) (1− 𝑧) (1− 𝑥𝑤) (1− 𝑦𝑤) (1− 𝑧𝑤)
.

MacMahon Rule 9

Ω≥
1

(1− 𝜆𝑥) (1− 𝜆𝑦)
(︀
1− 𝑧

𝜆

)︀ (︀
1− 𝑤

𝜆

)︀ =

1− 𝑥𝑦𝑧 − 𝑥𝑦𝑤 − 𝑥𝑦𝑧𝑤 + 𝑥𝑦2𝑧𝑤 + 𝑥2𝑦𝑧𝑤

(1− 𝑥) (1− 𝑦) (1− 𝑥𝑧) (1− 𝑥𝑤) (1− 𝑦𝑧) (1− 𝑦𝑤)
.

3.1.4 Andrews-Paule-Riese

In 1997, Bousquet–Mélou and Eriksson presented a theorem on lecture-hall partitions
in [18]. This theorem gathered a lot of attention from the community (and it still
does, with many lecture-hall type theorems appearing still today). Andrews, who had
already studied MacMahon’s method and was aware of its computational potential,
figured that lecture-hall partitions offered the right problems to attack algorithmically
via partition analysis. At the same time he planned to spend a semester during his
sabbatical at the Research Institute for Symbolic Computation (RISC) in Austria to
work with Paule. It is only natural that the result was a fully algorithmic version
of MacMahon’s method powered by symbolic computation. This collaboration gave
a series of 10 papers [4, 1, 10, 5, 6, 7, 3, 8, 9, 2]. Many interesting theorems and
different kinds of partitions are defined and explored in this series, but for us the two
most important references are [4] and [5], which contain the algorithmic improvements
on partition analysis. Namely, in [4] the authors introduce Omega, a Mathematica
package based on a fully algorithmic partition analysis version, while in [5] they present
a more advanced partial fraction decomposition (and the related Mathematica package
Omega2) solving some of the problems appearing in Omega. While presenting the two
methods, we will see some geometric aspects of theirs.
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Omega

The main tool in Omega is the Fundamental Recurrence for the Ω≥ operator, given by
Lemma 6. Following MacMahon, or Elliott for that matter, iterative application of this
recurrence is enough for computing the action of Ω≥.

Lemma 6 (Fundamental Recurrence, Theorem 2.1 in [4]). For 𝑚,𝑛 ∈ N* and 𝑎 ∈ Z:

Ω≥
𝜆𝑎

(1− 𝑥1𝜆) · · · (1− 𝑥𝑛𝜆)(1− 𝑦1
𝜆 ) · · · (1− 𝑦𝑚

𝜆 )
=

𝑃𝑛,𝑚,𝑎(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝑦1, 𝑦2, . . . , 𝑦𝑚)∏︀𝑛
𝑖=1(1− 𝑥𝑖)

∏︀𝑛
𝑖=1

∏︀𝑚
𝑗=1(1− 𝑥𝑖𝑦𝑗)

where for 𝑛 > 1

𝑃𝑛,𝑚,𝑎(𝑥1, . . . , 𝑥𝑛; 𝑦1, . . . , 𝑦𝑚) =

1

𝑥𝑛 − 𝑥𝑛−1

⎛⎝𝑥𝑛(1− 𝑥𝑛−1)

𝑚∏︁
𝑗=1

(1− 𝑥𝑛−1𝑦𝑗)𝑃𝑛−1,𝑚,𝑎(𝑥1, . . . , 𝑥𝑛−2, 𝑥𝑛; 𝑦1, . . . , 𝑦𝑚)

−𝑥𝑛−1(1− 𝑥𝑛)
𝑚∏︁
𝑗=1

(1− 𝑥𝑛𝑦𝑗)𝑃𝑛−1,𝑚,𝑎(𝑥1, . . . , 𝑥𝑛−2, 𝑥𝑛−1; 𝑦1, . . . , 𝑦𝑚)

⎞⎠
and for 𝑛 = 1

𝑃1,𝑚,𝑎(𝑥1; 𝑦1, . . . , 𝑦𝑚) =

⎧⎪⎨⎪⎩
𝑥−𝑎
1 if 𝑎 ≤ 0

𝑥−𝑎
1 +

𝑚∏︁
𝑗=1

(1− 𝑥1𝑦𝑗)
𝑎∑︁

𝑗=0

ℎ𝑗(𝑦1, . . . , 𝑦𝑚)(1− 𝑥𝑗−𝑎
1 ) if 𝑎 > 0

�

The recurrence looks intimidating, but bear in mind that it is supposed to be a computa-
tional tool used in combination with symbolic computation. It is this power that earlier
authors did not have. Even the ones with extreme computational (by hand) abilities,
like MacMahon, had to resort to lookup tables and sets of rules for the more usual cases.

The base cases for the recurrence are when either all the terms have positive 𝜆-
exponents or all the terms have negative-𝜆 exponents. For the two base cases we recall the
definition of complete homogeneous symmetric polynomials and some related notation.

Definition 3.2 (Complete Homogeneous Symmetric Polynomials, see [5])
We define ℎ𝑖(𝑧1, 𝑧2, . . . , 𝑧𝑛) through the generating function

∞∑︁
𝑖=0

ℎ𝑖(𝑧1, 𝑧2, . . . , 𝑧𝑛)𝑡
𝑖 =

1

(1− 𝑧1𝑡)(1− 𝑧2𝑡) · · · (1− 𝑧𝑛𝑡)
.

What is needed for the base cases of the fundamental recurrence, is the partial sum of
this generating function (series). The following definition is useful to set notation.
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For 𝑎 ∈ Z, let

𝐻𝑎(𝑧1, 𝑧2, . . . , 𝑧𝑛) =

{︃∑︀𝑎
𝑖=0 ℎ𝑖(𝑧1, 𝑧2, . . . , 𝑧𝑛) if 𝑎 ≥ 0

0 if 𝑎 < 0
.

�

Now, returning to [4], we have the two base cases:

Lemma 7 (Lemma 2.1 in [4]). For any integer 𝑎,

Ω≥
𝜆𝛼

(1− 𝑥1𝜆)(1− 𝑥2𝜆) . . . (1− 𝑥𝑛𝜆)
= Ω≥

∞∑︁
𝑗=0

ℎ𝑗(𝑥1, 𝑥2, . . . , 𝑥𝑛)𝜆
𝑎+𝑗

= 1
(1−𝑥1)(1−𝑥2)...(1−𝑥𝑛)

−𝐻−𝑎−1(𝑥1, 𝑥2, . . . , 𝑥𝑛).
�

Lemma 8 (Lemma 2.2 in [4]). For any integer 𝑎,

Ω≥
𝜆𝛼

(1− 𝑦1
𝜆 )(1− 𝑦2

𝜆 ) . . . (1− 𝑦𝑚
𝜆 )

= Ω≥

∞∑︁
𝑗=0

ℎ𝑗(𝑦1, 𝑦2, . . . , 𝑦𝑚)𝜆𝑎−𝑗

= 𝐻𝑎(𝑥1, 𝑥2, . . . , 𝑥𝑛). �

The fundamental recurrence in Lemma 6 assumes that the exponents of 𝜆 in the
denominator are ±1. This is not a strong assumption, as noted in [4], since we can
always employ the following decomposition.

(1− 𝑥𝜆𝑟) =

𝑟−1∏︁
𝑗=0

(1− 𝜌𝑗𝑥
1
𝑟𝜆)

(1− 𝑦

𝜆𝑠
) =

𝑠−1∏︁
𝑗=0

(1− 𝜎𝑗𝑦
1
𝑠

𝜆
)

where 𝜌 = 𝑒
2𝜋𝑖
𝑟 and 𝜎 = 𝑒

2𝜋𝑖
𝑠 . The obvious drawback of this approach is that we introduce

complex coefficients instead of just ±1, which were the only possible coefficients before
the decomposition. This motivates the desire for a better recurrence.

Omega2

In [5] the authors introduce an improved partial fraction decomposition method, given
by the recurrence of Theorem 3.1.

Theorem 3.1 (Generalized Partial Fraction Decomposition, see [5])
Let 𝛼 ≥ 𝛽 ≥ 1, gcd(𝛼, 𝛽) = 1 and let rmd(𝑎, 𝑏) denote the division remainder of 𝑎 by 𝑏.
Then

1

(1− 𝑧1𝑧𝛼3 )(1− 𝑧2𝑧
𝛽
3 )

=
1

(𝑧𝛼2 − 𝑧𝛽1 )

(︃
𝑃 (𝑧3)

(1− 𝑧1𝑧𝛼3 )
+

�̄�(𝑧3)

(1− 𝑧2𝑧
𝛽
3 )

)︃
(3.8)
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where

𝑃 (𝑧3) :=
𝛼−1∑︁
𝑖=0

�̄�𝑖𝑧
𝑖
3 for 𝑎𝑖 =

⎧⎨⎩−𝑧𝛽1 𝑧
𝑖
𝛽

2 if 𝛽|𝑖 or 𝑖 = 0,

−𝑧rmd((𝛼−1 mod 𝛽)𝑖,𝛽)
1 𝑧

rmd((𝛽−1 mod 𝛼)𝑖,𝛼)
2 otherwise,

while

�̄�(𝑧3) :=

𝛽−1∑︁
𝑖=0

�̄�𝑖𝑧
𝑖
3 for �̄�𝑖 =

{︃
𝑧𝛼2 if 𝑖 = 0,

𝑧
rmd((𝛼−1 mod 𝛽)𝑖,𝛽)
1 𝑧

rmd((𝛽−1 mod 𝛼)𝑖,𝛼)
2 otherwise.

�

Moreover, two new base cases are introduced. As before, we define some notation for
homogeneous polynomials.

Definition 3.3 (Oblique Complete Homogeneous Polynomials, see [5])
For 𝜁1, 𝜁2, . . . , 𝜁𝑛 ∈ N*, we define ℎ𝑖(𝑧1, 𝑧2, . . . , 𝑧𝑛; 𝜁1, 𝜁2, . . . , 𝜁𝑛) through the generating
function

∞∑︁
𝑖=0

ℎ𝑖(𝑧1, 𝑧2, . . . , 𝑧𝑛; 𝜁1, 𝜁2, . . . , 𝜁𝑛)𝑡
𝑖 =

1

(1− 𝑧1𝑡𝜁1)(1− 𝑧2𝑡𝜁2) · · · (1− 𝑧𝑛𝑡𝜁𝑛)
.

�

The related partial sums are defined for 𝑎 ∈ Z, as

𝐻𝑎(𝑧1, 𝑧2, . . . , 𝑧𝑛; 𝜁1, 𝜁2, . . . , 𝜁𝑛) =

{︃∑︀𝑎
𝑖=0 ℎ𝑖(𝑧1, 𝑧2, . . . , 𝑧𝑛; 𝜁1, 𝜁2, . . . , 𝜁𝑛) if 𝑎 ≥ 0

0 if 𝑎 < 0
.

Lemma 9 (Case 𝑚 = 0, Section 2 in [5]). For any integer 𝑎,

Ω≥
𝜆𝑎

(1− 𝑥1𝜆𝑗1)(1− 𝑥2𝜆𝑗2) . . . (1− 𝑥𝑛𝜆𝑗𝑛)
= Ω≥

∞∑︁
𝑗=0

ℎ𝑗(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝑗1, 𝑗2, . . . , 𝑗𝑛)𝜆
𝑎+𝑗

=
1

(1− 𝑥1)(1− 𝑥2) . . . (1− 𝑥𝑛)

−𝐻−𝑎−1(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝑗1, 𝑗2, . . . , 𝑗𝑛).

�

Lemma 10 (Case 𝑛 = 0, Section 2 in [5]). For any integer 𝑎,

Ω≥
𝜆𝑎

(1− 𝑦1
𝜆𝑗1

)(1− 𝑦2
𝜆𝑗2

) . . . (1− 𝑦𝑚
𝜆𝑗𝑚 )

= Ω≥

∞∑︁
𝑗=0

ℎ𝑗(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝑗1, 𝑗2, . . . , 𝑗𝑛)𝜆
𝑎−𝑗

= 𝐻𝑎(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝑗1, 𝑗2, . . . , 𝑗𝑛).

�
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Lemma 11 (Case 𝑚 = 1, Section 2 in [5]). For any integer 𝑎 < 𝑗,

Ω≥
𝜆𝑎

(1− 𝑥1𝜆𝑗1) . . . (1− 𝑥𝑛𝜆𝑗𝑛)(1− 𝑦𝜆−𝑘)
=

1

(1− 𝑥1)(1− 𝑥2) . . . (1− 𝑥𝑛)(1− 𝑦)

−
∑︀𝑘−1

𝜏1,𝜏2,...,𝜏𝑛=0

∏︀
𝑥𝜏𝑖𝑖 𝑦

⌊︁∑︀
𝑗𝑖𝜏𝑖+𝑎

𝑘

⌋︁
+1

(1− 𝑥𝑘1𝑦
𝑗1) . . . (1− 𝑥𝑘𝑛𝑦

𝑗𝑛)(1− 𝑦)
.

�

Lemma 12 (Case 𝑛 = 1, Section 2 in [5]). For any integer 𝑎 > −𝑘,

Ω≥
𝜆𝑎

(1− 𝑥𝜆𝑗)(1− 𝑦1𝜆−𝑘1) . . . (1− 𝑦𝑚𝜆−𝑘𝑚)
=

∑︀𝑗−1
𝜏1,𝜏2,...,𝜏𝑛=0

∏︀
𝑦𝜏𝑖𝑖 𝑥

⌈︁∑︀
𝑘𝑖𝜏𝑖−𝑎

𝑗

⌉︁
(1− 𝑥)(1− 𝑥𝑘1𝑦𝑗1) . . . (1− 𝑥𝑘𝑚𝑦𝑗𝑚)

.

�

Omega2 was used to obtain results in a series of papers by Andrews-Paule and
their coauthors, dealing with various problems from partition theory. For the project in
general see http://www.risc.jku.at/research/combinat/software/Omega/.

Now we proceed with the geometric interpretation of the Generalized Partial Fraction
Decomposition. We first rewrite (3.8) by pulling out −𝑧𝛽1 from the denominator of

1

(𝑧𝛼2 −𝑧𝛽1 )
,i.e.,

1

(1− 𝑧1𝑧𝛼3 )(1− 𝑧2𝑧
𝛽
3 )

=
−𝑧−𝛽

1 𝑃 (𝑧3)

(1− 𝑧−𝛽
1 𝑧𝛼2 )(1− 𝑧1𝑧𝛼3 )

− 𝑧−𝛽
1 �̄�(𝑧3)

(1− 𝑧−𝛽
1 𝑧𝛼2 )(1− 𝑧2𝑧

𝛽
3 )

, (3.9)

and define 𝑃𝛼,𝛽 and 𝑄𝛼,𝛽 to be

∙ 𝑃𝛼,𝛽 := −𝑧−𝛽
1 𝑃 (𝑧3) =

∑︀𝛼−1
𝑖=0 𝑎𝑖𝑧

𝑖
3

∙ 𝑄𝛼,𝛽 := 𝑧−𝛽
1 �̄�(𝑧3) =

∑︀𝛽−1
𝑖=0 𝑏𝑖𝑧

𝑖
3

where

∙ 𝑎𝑖 =

⎧⎨⎩𝑧
𝑖
𝛽

2 if 𝛽|𝑖 or 𝑖 = 0,

𝑧
rmd((𝛼−1 mod 𝛽)𝑖,𝛽)−𝛽
1 𝑧

rmd((𝛽−1 mod 𝛼)𝑖,𝛼)
2 otherwise,

∙ 𝑏𝑖 =

{︃
𝑧−𝛽
1 𝑧𝛼2 if 𝑖 = 0,

𝑧
rmd((𝛼−1 mod 𝛽)𝑖,𝛽)−𝛽
1 𝑧

rmd((𝛽−1 mod 𝛼)𝑖,𝛼)
2 otherwise.

The following theorem provides the basis for the geometric interpretation of the
Generalized Partial Fraction Decomposition.

http://www.risc.jku.at/research/combinat/software/Omega/
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Theorem 3.2 (Polyhedral geometry interpretation of Omega2)
Application of the generalized partial fraction decomposition

1

(1− 𝑧1𝑧𝛼3 )(1− 𝑧2𝑧
𝛽
3 )

=
𝑃𝛼,𝛽

(1− 𝑧−𝛽
1 𝑧𝛼2 )(1− 𝑧1𝑧𝛼3 )

−
𝑄𝛼,𝛽

(1− 𝑧−𝛽
1 𝑧𝛼2 )(1− 𝑧2𝑧

𝛽
3 )

(3.10)

on 𝜌𝐶(z) induces a signed cone decomposition 1 of the cone 𝐶 = 𝒞R ((1, 0, 𝛼), (0, 1, 𝛽)).
�

Proof Strategy:

∙ Determine the structure of the fundamental parallelepiped of the cones 𝐴 =
𝒞R ((−𝛽, 𝛼, 0), (1, 0, 𝛼)) and 𝐵 = 𝒞R ((−𝛽, 𝛼, 0), (0, 1, 𝛽)).

∙ Prove that 𝑃𝛼,𝛽 and 𝑄𝛼,𝛽 are the generating functions of these fundamental par-
allelepipeds.

For the detailed proof of Theorem 3.2 see Appendix A. Here we provide the pic-
ture of the decomposition for the cone 𝐶 = 𝒞R ((1, 0, 3), (0, 1, 5)), into the cones 𝐴 =

𝒞R ((−5, 3, 0), (1, 0, 3)) and 𝐵 = 𝒞0,1R ((−5, 3, 0), (0, 1, 5)).

𝑥

𝑦

𝑧
(1, 0, 3)

(0, 1, 5) 𝑥

𝑦

𝑧

(−5, 3, 0)

(1, 0, 3)
(0, 1, 5)

1A decomposition into a sum where the summands may have positive or negative sign.
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𝑥

𝑦

𝑧
(1, 0, 3)

(−5, 3, 0)

(0, 1, 5)
𝑥

𝑦

𝑧
(1, 0, 3)

(−5, 3, 0)

(0, 1, 5)

The statement (from the proof in Appendix A)

𝜌Π(𝐵) = 𝑄𝛼,𝛽 + 1− 𝑧−𝛽
1 𝑧𝛼2

means that
𝑄𝛼,𝛽

(1−𝑧−𝛽
1 𝑧𝛼2 )(1−𝑧2𝑧

𝛽
3 )

is the generating function of the half-open cone 𝐵 that is

open on the ray generated by (−𝛽, 𝛼, 0).
One can see the full signed decomposition on the generating-function level as follows:

𝜌𝐶 = 𝜌𝐴 − 𝜌𝐵 + 𝜌𝒞R((0,1,𝛽))
.

According to the previous analysis 𝜌𝐴 =
𝑃𝛼,𝛽

(1−𝑧−𝛽
1 𝑧𝛼2 )(1−𝑧1𝑧𝛼3 )

.

Since 𝜌𝒞R((0,1,𝛽))
= 1

(1−𝑧2𝑧
𝛽
3 )

we have

−𝜌𝐵 + 𝜌𝒞R((0,1,𝛽))
= −

𝑄𝛼,𝛽 + 1− 𝑧−𝛽
1 𝑧𝛼2

(1− 𝑧−𝛽
1 𝑧𝛼2 )(1− 𝑧2𝑧

𝛽
3 )

+
1(︁

1− 𝑧2𝑧
𝛽
3

)︁
= −

𝑄𝛼,𝛽

(1− 𝑧−𝛽
1 𝑧𝛼2 )(1− 𝑧2𝑧

𝛽
3 )

which means

1

(1− 𝑧1𝑧𝛼3 )(1− 𝑧2𝑧
𝛽
3 )

=
𝑃𝛼,𝛽

(1− 𝑧−𝛽
1 𝑧𝛼2 )(1− 𝑧1𝑧𝛼3 )

−
𝑄𝛼,𝛽

(1− 𝑧−𝛽
1 𝑧𝛼2 )(1− 𝑧2𝑧

𝛽
3 )

.

In other words, 𝑄𝛼,𝛽 encodes the inclusion-exclusion step in the decomposition.
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3.2 Algebraic Partition Analysis

Having reviewed the history of partition analysis both from the perspective of the original
authors and from a more geometric perspective, we give now an algebraic presentation
the Ω≥ operator .

In particular, we will use graded vector spaces and rings in order to compute the
generating functions of the solutions of a linear Diophantine system.

3.2.1 Graded Rings

Let 𝑅 = K [𝑧1, 𝑧2, . . . , 𝑧𝑑] be the ring of polynomials in 𝑑 variables 𝑧1, 𝑧2, . . . , 𝑧𝑑. In what
follows we will grade this ring in a way that is useful for solving linear Diophantine
systems. Let us first define a graded vector space, as we will look at the polynomial ring
as a vector space over the coefficient field.

Definition 3.4 (Graded vector space)
Let K be a field and 𝑉 a vector space of K. If there exists a direct sum decomposition

𝑉 =
⨁︁
𝑖∈𝐼

𝑉𝑖

of 𝑉 into linear subspaces 𝑉𝑖 for some index set 𝐼, then we say that 𝑉 is 𝐼-graded
and the 𝑉𝑖’s are called homogeneous components, while the elements of 𝑉𝑘 are called
homogeneous elements of degree 𝑘. �

The most usual grading of the polynomial ring K [𝑧1, 𝑧2, . . . , 𝑧𝑑] is the one induced
by the usual polynomial degree. The homogeneous component 𝑉𝑘 is the linear span of
all monomials of degree 𝑘, i.e., the set of all homogeneous polynomials of degree 𝑘 and
the polynomial 0.

A notion that connects graded algebraic structures with generating functions is that
of the Hilbert-Poincaré series. Given a graded vector space 𝑉 =

⨁︀
𝑖∈𝐼 𝑉𝑖 for some

(appropriate) index set 𝐼, then the Hilbert-Poincaré series of 𝑉 over K is the formal
powerseries

ℋ𝒫 (𝑉 ) =
∑︁
𝑖∈𝐼

dimK (𝑉𝑖) 𝑡
𝑖.

Note that:

∙ The most usual definition of Hilbert-Poincaré series in the literature, restricts the
index set 𝐼 to be N and all linear subspaces 𝑉𝑖 to be finite-dimensional.

∙ If the index set 𝐼 is not a subset of N𝑘 for some 𝑘, but all elements of 𝐼 are bounded
from below, then the Hilbert-Poincaré series is a formal Laurent series. If the index
set contains elements that are not bounded from below, then the Hilbert-Poincaré
series is not defined.

∙ According to the definition of a graded vector space, it is possible that not all 𝑉𝑖

are finite-dimensional. In that case the Hilbert-Poincaré series is not defined.
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The algebraic approach to partition analysis has its roots in the very early work and
motivation of Cayley, MacMahon and Elliott. Their motivation to deal with the problem
stem from invariant theory, which was very fashionable these days. We will present here
a setup of algebraic structures and associated series, mostly Hilbert series, which allows
to view partition analysis algebraically. In the definition of graded vector spaces, and
as is customary in literature, we first defined the homogeneous components and then
assign to the elements of each component the corresponding degree. For our purposes
though, it is more natural to follow the reverse path. We will first define a degree on
the elements of the polynomial ring and then construct the homogeneous components as
the linear span of all elements of the same degree. In particular, we want to construct
a grading of K [𝑧1, 𝑧2, . . . , 𝑧𝑑] starting from a matrix 𝐴 in Z𝑚×𝑑. We assume that 𝐴 is
full-rank.

Let 𝑓𝑎𝑖 be the linear functionals defined by the rows of 𝐴 for 𝑖 ∈ [𝑚]. We define the
function 𝐹 : N𝑑 ↦→ Z𝑚 by

𝐹 (𝑣) = (𝑓𝑎1(𝑣), 𝑓𝑎2(𝑣), . . . , 𝑓𝑎𝑚(𝑣)) for 𝑣 ∈ N𝑑.

Since we want to use this function to grade the polynomial ring, it is necessary to
translate from vectors to monomials and back. Given a set of formal variables 𝑍 =
{𝑧1, 𝑧2, . . . , 𝑧𝑑}, we define the term monoid T to be the subset of K [𝑧1, 𝑧2, . . . , 𝑧𝑑] con-
sisting of powerproducts, i.e., {𝑧𝑎11 𝑧𝑎22 · · · 𝑧

𝑎𝑑
𝑑 |𝑎𝑖 ∈ N} and we set 1 = 𝑧0. This is a

multiplicative monoid with the standard monomial multiplication. We define 𝜑 as

𝜑 :N𝑑 → T
𝑣 ↦→ 𝑧𝑣

establishing the monoid isomorphism N𝑑 ≃ T. Now, we can define a degree in T via 𝐹 .

N𝑑

T Z𝑚

≃ 𝐹

deg

In words, let deg : T→ Z𝑚 be defined as deg(𝑧𝑣) = 𝐹
(︀
𝜑−1(𝑧𝑣)

)︀
.

Define 𝑉𝑖 for 𝑖 ∈ Z𝑚 to be the linear span over K of all elements in T with degree 𝑖, i.e.,

𝑉𝑖 =

{︃
𝑛∑︁

𝑘=0

𝑐𝑘𝑡𝑘

⃒⃒⃒⃒
⃒ 𝑛 ∈ N, 𝑐𝑘 ∈ K, 𝑡𝑘 ∈ T with deg 𝑡𝑘 = 𝑖

}︃
for 𝑖 ∈ Z𝑚

= ⟨𝑡 ∈ T : deg(𝑡) = 𝑖⟩K, for 𝑖 ∈ Z𝑚

and ⟨∅⟩K = {0}. Then we have that

ℛ = ⊕𝑖∈Z𝑚𝑉𝑖.

This means that the collection of 𝑉𝑖’s defines a grading on K [𝑧1, 𝑧2, . . . , 𝑧𝑑], which now
can be seen as a graded vector space. Let us see an example of such a grading.
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Example 9 (Total degree or ℓ1-grading). The degree function is given by 𝐹 (𝑠) = |𝑠|1,
i.e., the matrix 𝐴 is the unit matrix of rank 𝑑. This is the usual total degree for polyno-
mials in 𝑑 variables. In the figure we see the grading for 𝑑 = 2.

10

9

8

7

6

0 1 2 3 4 5

𝑉𝑖 is the vector space of homogeneous polynomials of degree 𝑖.

�

Example 10. Let the degree map be defined by 𝐹 (𝑠) = 𝑠. The grading this map induces
is called trivial because each K-vector space 𝑉𝑎 is generated by 𝑧𝑎 alone.

�

We note that some (or all) 𝑉𝑖 may be infinite dimensional depending on the matrix 𝐴
we started with, as in the following example.

Example 11. Let the degree map be defined by 𝐹 (𝑥, 𝑦) = 𝑥 − 𝑦. The grading this
map induces is infinite, because each K-vector space 𝑉𝑖 is generated by infinitely many
monomials.
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−1−2−3−4−5 0

1

2

3

4

5

�

The Hilbert-Poincaré series provide a useful, refined counting tool for the number
of solutions of linear Diophantine systems. Nevertheless, we would like to allow for
non finite-dimensional graded components as well as for a tool enumerating rather than
counting solutions.

Each 𝑉𝑖 is a vector space containing homogeneous polynomials of degree 𝑖. It is always
possible to pick a basis of 𝑉𝑖 consisting of terms of degree 𝑖, i.e., elements of T. We will
denote such a basis by ℬ𝑖. We define the basis of {0} to be the empty set.

In the direction of obtaining an enumerating generating function we define the trun-
cated multivariate Hilbert-Poincaré series,

Definition 3.5 (truncated multivariate Hilbert-Poincaré series)
Given a graded vector space 𝑉 =

⨁︀
𝑖∈Z𝑘 𝑉𝑖 over the field K and a vector 𝑏 ∈ Z𝑘 for some

𝑘 ∈ N, we define the truncated multivariate Hilbert-Poincaré series of 𝑉 as

𝑡ℋ𝒫𝑉
𝑏 (𝑧, 𝑡) =

∑︁
𝑏≤𝑖∈Z𝑘

⎛⎝∑︁
𝑒∈ℬ𝑖

𝑒

⎞⎠ 𝑡𝑖.

The truncated multivariate Hilbert-Poincaré series is a formal Laurent series in the 𝑡
variables and a formal powerseries in the 𝑧 variables. �

The truncation in the indices is necessary in order to ensure that the formal Laurent
series is well defined, while the formal sum of the basis elements avoid the problem of
infinite-dimensionality. At the same time, this formal series enumerates all solutions of
a linear Diophantine system 𝐴𝑥 ≥ 𝑏, if the vector space 𝑉 is graded via the procedure
described above for the matrix 𝐴 ∈ Z𝑚×𝑑. We note that in that case 𝑘 = 𝑚.

The following theorem provides the connection between the Ω≥ operator and Hilbert-
Poincaré series.
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Theorem 1. Given 𝐴 ∈ Z𝑚×𝑑, 𝑏 ∈ Z𝑚 and 𝑡ℋ𝒫𝑉
𝑏 (𝑧, 𝑡) as above, we have

Ω≥
∑︁
𝑥∈N𝑛

𝑧𝑥
𝑚∏︁
𝑖=1

𝜆𝐴𝑖𝑥−𝑏𝑖
𝑖 = 𝑡ℋ𝒫𝑉

𝑏 (𝑧, 𝑡)|𝑡=1.

�

Proof. Let 𝑆 be the set of solutions to the linear Diophantine system 𝐴𝑥 ≥ 𝑏. By the
definition of the Ω≥ operator, we have that Ω≥

∑︀
x∈N𝑛 zx

∏︀𝑚
𝑖=1 𝜆

𝐴𝑖x−𝑏𝑖
𝑖 is Φ𝐴,𝑏(𝑧), the

generating function of 𝑆. Now we have:

𝛼 ∈ 𝑆 ⇔ 𝐴𝛼 ≥ 𝑏

⇔ 𝐴𝛼 = 𝑖 with 𝑖 ≥ 𝑏

⇔ 𝐹 (𝛼) = 𝑖 with 𝑖 ≥ 𝑏

⇔ deg(𝑧𝛼) = 𝑖 with 𝑖 ≥ 𝑏

⇔ 𝑧𝛼 ∈ 𝑅𝑖 with 𝑖 ≥ 𝑏

⇔ 𝑧𝛼 ∈ 𝐵𝑖 with 𝑖 ≥ 𝑏.

The last equivalence implies that

[𝑧𝑥]Φ𝐴,𝑏(𝑧) = 1⇔ [𝑧𝑥]𝑡ℋ𝒫𝑉
𝑏 (𝑧, 𝑡) = 𝑡𝐹 (𝑥)

and the theorem follows.

Note that this relation is all but new. It is actually as old as Cayley who first used the
Ω≥ operator in the context of invariant theory.

The construction of the grading provides a way to describe the solutions of a linear
Diophantine system. Given a matrix 𝐴 in Z𝑚×𝑑, the solution set of the homogeneous
linear Diophantine system 𝐴𝑥 ≥ 0 is⋃︁

𝑖∈N𝑚

𝜑−1 (ℬ𝑖) ⊆ N𝑑.

For the inhomogeneous linear Diophantine system 𝐴𝑥 ≥ 𝑏 for some 𝑏 ∈ Z𝑚 we have that
the solution set is ⋃︁

𝑏≤𝑖∈N𝑚

𝜑−1 (ℬ𝑖) ⊆ N𝑑.

In other words, the solutions of a linear Diophantine system or equivalently the lattice
points of a polyhedron can be described via the construction of the appropriate grading
given by the inequality description.

We will now proceed with a different grading construction, relevant to polytopes and
Ehrhart theory.
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Ehrhart grading

As we saw, the description of the lattice points in a polytope can be given by the above
procedure. Continuing in the same direction, we will construct a grading that instead of
just describing the lattice points in a polytope, it gives the lattice points in a cone over
a polytope. The cone over a polytope is a fundamental construction in Ehrhart theory,
used to enumerate the lattice points in the dilations of a polytope. Given a polytope 𝑅
in R𝑑, we embed it in R𝑑+1 at height 1, i.e., 𝑃 ′ =

{︀
(𝑥, 1) ∈ R𝑑+1

⃒⃒
𝑥 ∈ 𝑃

}︀
.

In our grading construction, we respect the decomposition of lattice points according to
their height. Given a matrix 𝐴 in Z𝑚×𝑑 and a vector 𝑏 in Z𝑚 we construct the matrix

𝐸 =

⎡⎢⎢⎢⎢⎢⎢⎣
−𝑏1

𝐴
...

−𝑏𝑚

0 . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

This matrix has the property that if the matrix 𝐴 defines a polytope, then the first 𝑚
rows of matrix 𝐸 define the 𝑡-dilate of that polytope. The last row of 𝐸 is used to keep
track of the dilate 𝑡.

Since we allow the polytope 𝑃 to contain negative coordinates, we consider the Laurent
polynomial ring in 𝑑+1 variables K

[︀
𝑧±1
1 , 𝑧±1

2 , . . . , 𝑧±1
𝑑 , 𝑡±1

]︀
and the corresponding Lau-

rent term monoid T = [𝑧±1
1 , 𝑧±1

2 , . . . , 𝑧±1
𝑑 , 𝑡±1]. We construct the 𝑉𝑖 as before using the

matrix 𝐸.

Now, on top of the set of 𝑉𝑖 we need some extra structure. For 𝑗 in Z, define 𝐴𝑗 to be
the direct sum of all 𝑉𝑖 for which the last coordinate of 𝑖 is equal to 𝑗, i.e.,

𝐴𝑗 =
⨁︁
⟨𝑡 ∈ T | deg(𝑡) = (𝛼1, 𝛼2, . . . , 𝛼𝑚, 𝑗)⟩K

The vector space 𝑉 is now graded by the collection of 𝐴𝑖’s. One should not confuse the
deg(𝑣) of an element 𝑣 of 𝑉 , which is a vector in Z𝑚+1 and the degree of 𝑣 induced by
the grading, which is a non-negative integer indicating the height (last coordinate) of
𝜑−1(𝑣) in the cone over the polytope.
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−4

−5

Although this grading respects the height given by the cone over the polytope con-
struction, it gives no information about which lattice points lie in the polytope. Note
that we are only interested in non-negative dilations. For this reason, we define the
subspaces 𝐿𝑗 as

𝐿𝑗 = ⟨𝑡 ∈ T | deg(𝑡) = (𝛼1, 𝛼2, . . . , 𝛼𝑚, 𝑗) , 𝛼𝑘 ≥ 0 for all 𝑘 ∈ [𝑚]⟩K

for 𝑗 ∈ N, i.e., each 𝐿𝑗 is generated by the monomials of 𝐴𝑗 that correspond to lattice
points in the 𝑗-th dilation of the polytope. This is expressed by the non-negativity
condition on the first 𝑚 coordinates of the degree vector.

Contrary to the general construction from an arbitrary matrix 𝐴 ∈ Z𝑚×𝑑, the con-
struction of a cone over a polytope guarantees that the homogeneous components 𝐿𝑗

are finite-dimensional subspaces. This is because at each height 𝑘, the 𝐿𝑘 is generated
by the finitely many lattice points in th 𝑘-th dilation of the (by definition bounded)
polytope 𝑃 .

Now, the Ehrhart series of 𝑃 is given by
∑︀

𝑖∈N 𝑑𝑖𝑚K (𝐿𝑖) 𝑡
𝑖.

Oblique Graded Simplices

A useful example for truncated multivariate Hilbert-Poincaré series is the case of Oblique
Graded Simplices. Let’s see two cases:

∙ If we use the grading induced by the total degree (ℓ1 grading) on the positive
quadrant we have the following picture
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and the corresponding truncated multivariate Hilbert-Poincaré series is the gener-
ating function for the lattice points in the positive quadrant graded by the given
grading. Note that if 𝑉 is the grading constructed as above, then

ℎ′𝑖(𝑧) = [𝑡𝑖]𝑡ℋ𝒫𝑉 (𝑧, 𝑡)

are the usual complete homogeneous symmetric polynomial of degree 𝑖.

∙ If we use the degree function given by degree(𝑥, 𝑦) = 𝑥+ 2𝑦 the picture is

and then
ℎ′𝑖(𝑧) = [𝑡𝑖]𝑡ℋ𝒫𝑉 (𝑧, 𝑡)

are the oblique complete homogeneous polynomials ℎ𝑖(𝑧; 1, 2).

In [5], the authors introduce ℎ𝑖(𝑧1, 𝑧2, . . . , 𝑧𝑛; 𝜁1, 𝜁2, . . . , 𝜁𝑛) for 𝜁𝑖 ∈ N, “a variant of
the symmetric functions”, given by their generating function

∞∑︁
𝑖=0

ℎ𝑖(𝑧1, 𝑧2, . . . , 𝑧𝑛; 𝜁1, 𝜁2, . . . , 𝜁𝑛)𝑡
𝑖 =

1

(1− 𝑧1𝑡𝜁1)(1− 𝑧2𝑡𝜁2) · · · (1− 𝑧𝑛𝑡𝜁𝑛)
.



Chapter 4

Partition Analysis via Polyhedral
Geometry

The main idea behind all implementations of the Ω≥ operator is to obtain a partial-
fraction decomposition of the crude generating function and exploit the linearity of the
Ω≥ operator. In particular, we want a partial-fraction decomposition such that in the
denominator of each fraction appear either only non-negative or only non-positive powers
of 𝜆’s. Given such a partial-fraction decomposition, we can be sure that in the series
expansions of the crude generating function with respect to the 𝜆’s, the fractions with
only non-positive powers of 𝜆 cannot contribute terms with positive 𝜆 exponents. In
other words, we should only keep the fractions that have non-negative powers of 𝜆 and
the fractions that are 𝜆-free. There are different ways to compute such a partial-fraction
decomposition, like Elliott’s algorithm [24] and Omega2 [5].

In this chapter, we present an algorithmic geometric approach. The main goal of
the method presented here is to compute a cone decomposition of the Ω-polyhedron.
Instead of going directly for the rational generating function of the lattice points in the
Ω-polyhedron, we first compute a set of simplicial cones that sum up to the desired
polyhedron. This step is done by using only rational linear algebra. In order to obtain
the rational generating function, one can either use Barvinok’s algorithm or explicit
formulas. Some more custom-tailored tools will appear in [19]. Here we restrict to
computing a set of “symbolic cones”, i.e., instead of using the actual generating function
we say “the cone generated by 𝑎1, 𝑎2, . . . , 𝑎𝑘 with apex 𝑞”. This work is part of [19].

Recall the definitions of the rational form of the crude generating function

𝜌Ω𝐴,𝑏(𝑧;𝜆) = Ω≥
𝜆−𝑏∏︀𝑚

𝑖=1(1− 𝑧𝑖𝜆𝐴𝑖)

and of the formal Laurent series form

ΦΩ
𝐴,𝑏(𝑧;𝜆) = Ω≥

∑︁
𝑥1,...,𝑥𝑑∈N

𝜆𝐴𝑥−𝑏𝑧𝑥1
1 . . . 𝑧𝑥𝑑

𝑑 ,

91
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as well as that of the formal Laurent series form of the 𝜆-generating function

Φ𝜆
𝐴,𝑏(𝑧) =

∑︁
𝑥1,...,𝑥𝑑∈N

𝜆𝐴𝑥−𝑏𝑧𝑥1
1 . . . 𝑧𝑥𝑑

𝑑

and its rational form

𝜌𝜆𝐴,𝑏(𝑧) =
𝜆−𝑏∏︀𝑛

𝑖=1(1− 𝑧𝑖𝜆𝐴𝑖)
.

We will denote by𝐴 the matrix with𝐴1, 𝐴2, . . . , 𝐴𝑛 as columns. We note that 𝜌Π𝐶
(𝑧) and

ΦΠ𝐶
(𝑧), where Π𝐶 denotes the fundamental parallelepiped of the cone 𝐶, are identical

since the fundamental parallelepiped is finite and both objects collapse to a Laurent
polynomial.

4.1 Eliminating a single 𝜆

Elimination of a single 𝜆 amounts to the solution of a single linear Diophantine inequality.
All known implementations of the Ω≥ operator are based on the recursive elimination
of 𝜆’s for the solution of linear Diophantine systems. In order to employ polyhedral
geometry, we need to translate the problem to a problem about cones. Recall the
definitions of the 𝜆-cone and the Ω-polyhedron:

𝒞𝜆,Z (𝐴) = 𝒞R ((𝑒1 : 𝐴1), (𝑒2 : 𝐴2), . . . , (𝑒𝑑 : 𝐴𝑚))

𝒫Ω≥,R
b (𝐴) = {x ∈ R𝑑

+ : 𝐴x ≥ b}
Let 𝐻𝑏 = {(𝑥1, . . . , 𝑥𝑑, 𝑥𝑑+1) : 𝑏 ≤ 𝑥𝑑+1} be the set of vectors with last component
greater or equal to 𝑏. Since we have one 𝜆, the 𝐴𝑖 is an integer denoted by 𝑎𝑖.

Computing Ω≥
𝜆−𝑏

(1−𝑧1𝜆𝑎1 )·...·(1−𝑧𝑑𝜆
𝑎𝑑 ) amounts to computing the generating function

𝜌𝜋(𝐶∩𝐻𝑏)
(𝑧1, . . . , 𝑧𝑑), where 𝜋 denotes projection with respect to the last coordinate, as

follows:

1. Compute a vertex description of the vertex cones 𝒦𝑣 at the vertices of 𝐶 ∩𝐻𝑏.

2. Compute the generating functions 𝜌𝒦𝑣
(𝑧1, 𝑧2, . . . , 𝑧𝑑+1), either using Barvinok’s

algorithm [12] or by explicit formulas using modular arithmetic (similar to the
expressions in [5]).

3. Substitute 𝑧𝑑+1 ↦→ 1 to obtain 𝜆-free generating functions (projection of the poly-
hedron).

4. Sum all the projected generating functions for the tangent cones. By Brion’s
theorem [12], this yields the desired generating function Ω≥

𝜆−𝑏

(1−𝑧1𝜆𝑎1 )·...·(1−𝑧𝑑𝜆
𝑎𝑑 ) .

Let 𝑃 be the polyhedron 𝐶 ∩𝐻𝑏. We need to compute the vertices and vertex cones
of 𝑃 . We note that any polyhedron can be written as the Minkowski sum of a cone and
a polytope. In our case

𝑃 = conv(0, 𝑢𝑖 : 𝑖 ∈ {1, . . . , ℓ}) + 𝒞R (𝑤𝑖,𝑗 : 𝑖 ∈ {1, . . . , ℓ}, 𝑗 ∈ {ℓ+ 1, . . . , 𝑑})
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where

𝑢𝑖 =
𝑏

𝑎𝑖
𝑣𝑖 = (. . .

𝑏

𝑎𝑖
. . . 𝑏)

𝑤𝑖,𝑗 = −𝑎𝑗𝑣𝑖 + 𝑎𝑖𝑣𝑗 = (0 . . . 0 −𝑎𝑗 0 . . . 0 𝑎𝑖 0 . . . 0).

The vertices of 𝑃 , denoted by 𝑢𝑖, are the intersection points of the hyperplane at height
𝑥𝑑+1 = 𝑏 with the generators of 𝑃 that are pointing “up” (𝑎𝑖 ≥ 0). The 𝑤𝑖,𝑗 are positive
linear combinations of the generators 𝑣𝑖 that are pointing “up” and the generators 𝑣𝑗
that are pointing “down” (𝑎𝑗 < 0) such that 𝑤𝑖,𝑗 has last coordinate equal to zero.
Combinatorially, this is a cone over a product of simplices.

Next, we want to compute the tangent cones of our polyhedron 𝑃 . The tangent
cones are then given by the following lemma.

Lemma 13. The generators of the cone 𝒦𝑢𝑖 are

−𝑢𝑖 and 𝑢𝑖′ − 𝑢𝑖 for 𝑖′ ∈ {1, . . . , ℓ} ∖ {𝑖} and 𝑤𝑖,𝑗 for 𝑗 ∈ {ℓ+ 1, . . . , 𝑑}.

These are 𝑑 generators in total that are linearly independent. In particular, 𝒦𝑢𝑖 is a
simplicial cone.

�

Proof. First, we argue that 𝑤𝑖′,𝑗 is not a generator of 𝒦𝑢𝑖 for all 𝑖
′ ∈ {1, . . . , ℓ} ∖ {𝑖} and

all 𝑗 ∈ {ℓ+ 1, . . . , 𝑛}. This follows from the simple calculation

𝑢𝑖 −
𝑏

𝑎𝑖′𝑎𝑗
𝑤𝑖′,𝑗 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑏
𝑎𝑖

0

0

𝑏

⎤⎥⎥⎥⎥⎥⎥⎦−
𝑎

𝑎𝑖′𝑎𝑗

⎡⎢⎢⎢⎢⎢⎢⎣
0

−𝑎𝑗

𝑎𝑖′

0

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0

𝑏
𝑎𝑖′

0

𝑏

⎤⎥⎥⎥⎥⎥⎥⎦−
𝑎

𝑎𝑖𝑎𝑗

⎡⎢⎢⎢⎢⎢⎢⎣
−𝑎𝑗

0

𝑎𝑖

0

⎤⎥⎥⎥⎥⎥⎥⎦ = 𝑢𝑖′ −
𝑏

𝑎𝑖𝑎𝑗
𝑤𝑖,𝑗

where the four components of the vectors that are shown have indices 𝑖, 𝑖′, 𝑗, 𝑑 + 1, in
that order, all other components are zero. Note that the coefficients − 𝑏

𝑎𝑖′𝑎𝑗
and − 𝑏

𝑎𝑖𝑎𝑗
are positive rational numbers as 𝑎𝑗 is negative.
Moreover, none of the vectors 𝑢𝑖′ − 𝑢𝑘 for 𝑖′ ̸= 𝑖 ̸= 𝑘 are in the tangent cone. This can
be seen by observing that the 𝑘-th component of 𝑢𝑖′ − 𝑢𝑘 is negative, while the 𝑘-th
component of 𝑢𝑖 is zero. However, 𝑃 ⊂ R𝑑

≥0 × R.
So now we know that the only directions that can appear as generators are those given in
the lemma. That all of these are, in fact, generators follows from a dimension argument:
There are precisely 𝑑 directions given in the lemma and we know that the polyhedron
𝑃 and all of its tangent cones have dimension 𝑑 as well. So the tangent cones have to
have at least 𝑑 generators.

We denote by 𝑈𝑖 the matrix that has as columns the vectors 𝑎𝑖𝑢𝑖, lcm(𝑎𝑖, 𝑎𝑖′)(𝑢𝑖′ − 𝑢𝑖)
for 𝑖′ ∈ {1, . . . , ℓ} ∖ {𝑖} and 𝑤𝑖,𝑗 for 𝑗 ∈ {ℓ+ 1, . . . , 𝑑}. 𝑈𝑖 is a (𝑑+ 1)× 𝑑 integer matrix
that has a full-rank diagonal submatrix.
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By Brion’s theorem, the generating function for 𝜋(𝑃∩𝐻𝑏) is the sum for all 𝑖 of the gener-
ating function of the cone generated by the columns of 𝑈𝑖 and equal to 𝜌𝐶(𝑧1, 𝑧2, . . . , 𝑧𝑑).
We can now present the algorithm:

Algorithm 2 Elimination of a single 𝜆

Require: 𝑏 ∈ Z and 𝐴 ∈ Z𝑑 such that 𝑎1, 𝑎2, . . . , 𝑎ℓ > 𝑏 and 𝑎ℓ+1, 𝑎ℓ+2, . . . , 𝑎𝑑 < 𝑏

1: 𝐼+ ← {1, . . . , ℓ}
2: 𝐼+ ← {ℓ+ 1, . . . , 𝑑}
3: for 𝑖 ∈ 𝐼+ do
4: 𝑣𝑖 ← (𝑒𝑖 : 𝑎𝑖)

5: 𝑈 ← {(. . . 𝑏
𝑎𝑖
. . . 𝑏)} for 𝑖 ∈ 𝐼+

6: for 𝑖 ∈ 𝐼+ do
7: for 𝑗 ∈ 𝐼− do
8: 𝑤𝑖,𝑗 ← −𝑎𝑗𝑒𝑖 + 𝑎𝑖𝑒𝑗

9: for 𝑖 ∈ 𝐼+ do
10: 𝑈𝑖 ← {−𝑢𝑖, 𝑢𝑖′ − 𝑢𝑖, 𝑤𝑖,𝑗 : 𝑖

′ ∈ 𝐼+ ∖ {𝑖}, 𝑗 ∈ 𝐼−}
11: 𝑇𝑖 ← a triangulation of the vertex cone 𝒞R (𝑈𝑖)

12: 𝜌𝒞R(𝑈𝑖)
(𝑧1, 𝑧2, . . . , 𝑧𝑑+1) ←

∑︁
𝑠∈𝑇𝑖

𝜌𝑠(𝑧1, 𝑧2, . . . , 𝑧𝑑+1)

13: 𝜌(𝑧1, 𝑧2, . . . , 𝑧𝑑+1) ←
∑︁
𝑖∈𝐼+

𝜌𝑈𝑣
(𝑧1, 𝑧2, . . . , 𝑧𝑑+1)

14: return 𝜌(𝑧1, 𝑧2, . . . , 𝑧𝑑, 1)

To illustrate the algorithm we present an example.

Example 12. Given an inequality 2𝑥1 + 3𝑥2 − 5𝑥3 ≥ 4, we want to compute

Ω≥
𝜆−4

(1− 𝑧1𝜆2)(1− 𝑧2𝜆3)(1− 𝑧3𝜆−5)
.

We first compute the generators of 𝒞𝜆,Z (𝐴):

𝑣1 = (1, 0, 0, 2), 𝑣2 = (0, 1, 0, 3), 𝑣3 = (0, 0, 1,−5)

and construct the matrix 𝑉 :

𝑉 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 1 0

0 0 1

2 3 −5

⎤⎥⎥⎥⎥⎥⎥⎦ .

We want to compute the generating function of the intersection of 𝒞𝜆,Z (𝐴) and 𝐻4 =
{(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ R4 : 𝑥4 ≥ 4}.
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The vectors needed to construct the tangent cones are:

𝑢1 =
4

2
𝑣1 = (2, 0, 0, 4)

𝑢2 =
4

3
𝑣2 = (0,

4

3
, 0, 4)

𝑤1,3 = (−5, 0, 2, 0)

𝑤2,3 = (0,−5, 3, 0)

and the two tangent cones are:

𝐾𝑢1 = 𝒞R
(︂
(−2, 0, 0,−4), (−2, 4

3
, 0, 0), (−5, 0, 2, 0); (2, 0, 0, 4)

)︂

𝐾𝑢2 = 𝒞R
(︂
(0,−4

3
, 0,−4), (2,−4

3
, 0, 0), (0,−5, 3, 0); (0, 4

3
, 0, 4)

)︂
.

The generating functions of the lattice points in the projected cones generated by the
columns of 𝑈1 and 𝑈2 are

𝑧41
(︀
𝑧1 + 𝑧2 + 𝑧41𝑧3 + 𝑧21𝑧2𝑧3

)︀
(1− 𝑧1)

(︀
𝑧31 − 𝑧22

)︀ (︀
1− 𝑧51𝑧

2
3

)︀
and

−
𝑧22
(︀
𝑧21 + 𝑧1𝑧2 + 𝑧22 + 𝑧21𝑧

2
2𝑧3 + 𝑧32𝑧3 + 𝑧1𝑧

3
2𝑧3 + 𝑧1𝑧

4
2𝑧

2
3 + 𝑧21𝑧

4
2𝑧

2
3 + 𝑧52𝑧

2
3

)︀
(1− 𝑧2)

(︀
𝑧31 − 𝑧22

)︀ (︀
1− 𝑧52𝑧

3
3

)︀ .

By Brion their sum is the generating function for 𝜋(𝐶 ∩𝐻4), which is equal to

Ω≥
𝜆−4

(1− 𝑧1𝜆2)(1− 𝑧2𝜆3)(1− 𝑧3𝜆−5)
.

�

In the following figure we can see the Ω-polyhedron and the two vertex cones 𝐾𝑢1

and 𝐾𝑢2 . Note that in the drawing our vectors are supposed to live in R4.
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The two vertex cones. Elimination of a single 𝜆.

The discussion above and Lemma 13 give us the following theorem that summarizes
the algorithm for the elimination of one 𝜆. Note that instead of taking the halfspace
𝐻𝑏, we translate the cone by −𝑏 and use the positive halfspace with respect to the 𝜆
coordinate denoted by 𝐻𝜆. The subscript does not mean the offset but denotes the
coordinate.

Theorem 2. Let 𝑎1, . . . , 𝑎𝑘 ∈ Q𝑛 be linearly independent vectors, let 𝐴 ∈ Q𝑛×𝑘 denote
the matrix with the 𝑎𝑖 as columns, let 𝑏 ∈ Q𝑛, and let 𝐼 ⊂ [𝑘]. Then 𝒞𝐼R (𝐴; 𝑏) is
an inhomogeneous simplicial cone. Assume that the affine hull of 𝒞𝐼R (𝐴; 𝑏) contains

integer points. Let 𝜆 ∈ [𝑛] and define 𝐻≥
𝜆 = {𝑥 ∈ R𝑛 | 𝑥𝜆 ≥ 0} to be the non-negative

half-space with respect to the coordinate 𝜆. Let ℐ+, ℐ−, ℐ0 denote the sets of indices
𝑖 ∈ [𝑘] with 𝑎𝑖𝜆 > 0, 𝑎𝑖𝜆 < 0 and 𝑎𝑖𝜆 = 0, respectively. Let 𝑃 denote the polyhedron
𝑃 = 𝐻≥

𝜆 ∩ (𝒞𝐼R (𝐴; 𝑏)). Under these assumptions, the following hold.
If 𝑏𝜆 < 0, then:

1. The vertices of 𝑃 are

𝑣𝑖 = 𝑏− 𝑏𝜆
𝑎𝑖𝜆

𝑎𝑖 for 𝑖 ∈ ℐ+,

2. For every 𝑖 ∈ ℐ+, the extreme rays of the tangent cone of 𝑃 at 𝑣𝑖 are generated by
the vectors 𝑔1, . . . , 𝑔𝑘 defined by

𝑔𝑖 = 𝑎𝑖

𝑔𝑖′ = 𝑎𝑖′ − 𝑎𝑖 for all 𝑖′ ∈ ℐ+ ∖ {𝑖}

𝑔𝑗 =
1

𝑎𝑗𝜆
𝑎𝑗 −

1

𝑎𝑖𝜆
𝑎𝑖 for all 𝑗 ∈ ℐ−

𝑔𝑙 = 𝑎𝑙 for all 𝑙 ∈ ℐ0.

The vectors 𝑔𝑖 are linearly independent whence the tangent cone at 𝑣𝑖 is simplicial.
Let 𝐺𝑖 denote the matrix with these vectors as columns.
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3. The half-open tangent cone of 𝑃 at 𝑣𝑖 is

𝒦𝑣𝑖 = 𝑣𝑖 + 𝒞𝐼∖𝑖R (𝐺𝑖; 0) .

In particular, the tangent cone is “open in direction 𝑔𝑠 if and only if the cone we
started out with is open in direction 𝑎𝑠” for all 𝑠 ̸= 𝑖. It is closed in direction 𝑖,
because we intersect with a closed half-space.

4. For any vertex 𝑣𝑖, let 𝐽𝑖 denote the set of indices 𝑠 ∈ [𝑘] where 𝑠 ∈ 𝐽𝑖 if and only
if the first non-zero component of 𝑔𝑠 is negative (i.e. if 𝑔𝑠 is backward). Let 𝐺′

𝑖

denote the matrix obtained from 𝐺𝑖 by multiplying all columns with an index in 𝐽𝑖
by −1. (Now all columns of 𝐺𝑖 are forward.) Then

Φ
(𝒞𝐼

R(𝐴;𝑏))∩𝐻≥
𝜆

=
∑︁
𝑖∈ℐ+

(−1)|𝐽𝑖|Φ𝒞R()
𝐼∖𝑖Δ 𝐽𝑖 (𝐺′

𝑖)+𝑣𝑖

where Δ denotes the symmetric difference. The same identity also holds on the
level of rational functions.

5. Let 𝜋 : R𝑛 → R𝑛−1 denote the projection that forgets the 𝜆-th coordinate. If
aff(𝐶) ∩ 𝐿 = 0 for some linear subspace 𝐿 that contains ker(𝜋), then

Ω𝜆Φ𝒞𝐼
R(𝐴;𝑏)

=
∑︁
𝑖∈ℐ+

(−1)|𝐽𝑖|Φ
𝒞𝐼∖𝑖Δ 𝐽𝑖
R (�̂�𝑖;𝑣𝑖)

.

where �̂�𝑖 denotes the matrix obtained from 𝐺′
𝑖 by deleting the 𝜆th row. Moreover,

all the cones 𝐶𝑖 = 𝒞𝐼∖𝑖Δ 𝐽𝑖
R

(︁
�̂�𝑖; 𝑣𝑖

)︁
have the property that aff(𝐶𝑖) ∩ 𝜋(𝐿) = 0.

�

We note that for the case when 𝑏𝜆 > 0, the theorem is completely analogous and the
only difference is that the apex of the cone is a vertex of the polyhedron. Each other
vertex is visible from the apex, thus an extra ray is added in all vertex cones (from each
vertex to the apex of the cone). If 𝑏𝜆 = 0, then not all vertex cones are simplicial. Thus
we employ a deformation argument, presented by Fu Liu in [29] , and reduce the case
to the case 𝑏𝜆 < 0.

The following lemma says that after we project we can repeat the same procedure,
thus allowing for recursive elimination of 𝜆s in order to solve systems of inequalities.

Lemma 14. Assume ker(𝜋) ⊂ 𝐿. If 𝐽 ∩ 𝐿 = 0, then 𝜋(𝐽) ∩ 𝜋(𝐿) = 0. �

Proof. Let 𝑣 ∈ 𝜋(𝐽)∩ 𝜋(𝑙). Then there exist 𝑗 ∈ 𝐽 and 𝑙 ∈ 𝐿 such that 𝑣 = 𝜋(𝑗) = 𝜋(𝑙).
Because 𝜋 is linear, we have that 𝑗 − 𝑙 ∈ ker(𝜋) ⊂ 𝐿. Therefore 𝑗 = 𝑗 − 𝑙+ 𝑙 ∈ 𝐿 and so
𝑗 ∈ 𝐽 ∩ 𝐿 which means by assumption 𝑗 = 0. But then 𝑣 = 𝜋(𝑗) = 0.



98 CHAPTER 4. PARTITION ANALYSIS VIA POLYHEDRAL GEOMETRY

4.2 Eliminating multiple 𝜆

Using the algorithm for single 𝜆 elimination recursively (due to Lemma 14, we essentially
compute triangulations of the dual vertex cones and their generating functions. This
is an interesting fact which comes directly from the particular choice of geometry that
partition analysis makes. Nevertheless, recursive elimination may not always be the
most desirable strategy, as it is well known that the choice of the elimination order
may considerably alter the running time in the traditional partition analysis algorithms
(intermediate expressions swell).

In order to eliminate multiple 𝜆 we need to follow the same procedure, but now the
dimension of the 𝜆-cone is more than one lower than the ambient space, since we have
more than one 𝜆. This makes the computation of explicit expressions for the vertices
and the vertex cones considerably harder. In what follows we give a description of how
this could be done algorithmically.

Given 𝐴 ∈ Z𝑚×𝑑 and 𝑏 ∈ Z𝑚 for 𝑚 ≥ 1, we define the vectors 𝑣𝑖 = (𝑒𝑖 : 𝐴𝑖) ∈ R𝑑+𝑚

where 𝐴𝑖 denotes the 𝑖-th column of 𝐴 and 𝑒𝑖 the 𝑖-th standard unit vector in R𝑑. Let 𝑉
denote the matrix with the 𝑣𝑖 as columns. Then 𝑉 is a vertex description of the 𝜆-cone

𝐶 = 𝒞𝜆,ZR (𝐴) = 𝒞R (𝑉 ) .

The Ω-polyhedron we want to compute is now

𝑃 = 𝒞R (𝑉 ) ∩
{︁
(𝑧, 𝜆) ∈ R𝑑+𝑚

⃒⃒⃒
𝜆𝑖 ≥ 𝑏𝑖 for all 𝑖 = 1, . . . ,𝑚

}︁
.

Note that this definition of 𝑃 is neither a vertex-description nor a hyperplane-description.
We need to compute the vertices and the tangent cones at the vertices of our polyhedron
and we will follow a standard method for that [38].
It is straightforward to give a hyperplane-description of 𝐶. Note that 𝐶 is a simplicial
𝑑-dimensional cone. Its facets are spanned by all combinations of 𝑑−1 generators of the
cone.

Lemma 15.

span(𝐶) =

⎧⎨⎩
⎛⎝𝑥

ℓ

⎞⎠ ∈ R𝑑+𝑚

⃒⃒⃒⃒
⃒⃒ (︁𝐴 −𝐼

)︁⎛⎝𝑥

ℓ

⎞⎠ = 0

⎫⎬⎭ .

�

Proof. There exist 𝛼𝑖 such that 𝑥 =
∑︀

𝑖 𝛼𝑖𝑣𝑖 if and only if there exist 𝛼𝑖 such that
𝑥𝑖 = 𝛼𝑖 for 𝑖 = 1, . . . , 𝑑 and ℓ𝑗 =

∑︀
𝑖 𝛼𝑖𝜆𝑗,𝑖 for 𝑗 = 1, . . . ,𝑚. Such 𝛼𝑖 exist if and only if

ℓ𝑗 =
∑︀𝑑

𝑖=1 𝑥𝑖𝜆𝑗,𝑖 for all 𝑗 = 1, . . . ,𝑚.

Given the linear span of 𝐶, we can write down a hyperplane description of 𝑃 .

Lemma 16.

𝑃 =

⎧⎨⎩
⎛⎝𝑥

ℓ

⎞⎠ ∈ R𝑑+𝑚

⃒⃒⃒⃒
⃒⃒
⎛⎝𝑥

ℓ

⎞⎠ ≥
⎛⎝0

𝑏

⎞⎠ and
(︁
𝐴 −𝐼

)︁⎛⎝𝑥

ℓ

⎞⎠ = 0

⎫⎬⎭ .
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�

Proof. From the proof of the previous lemma, we see that 𝑥 =
∑︀

𝑖 𝛼𝑖𝑣𝑖 for 𝛼𝑖 ≥ 0 if and
only if 𝑥𝑖 ≥ 0 for 𝑖 = 1, . . . , 𝑑 and

(︁
𝐴 −𝐼

)︁⎛⎝𝑥

ℓ

⎞⎠ = 0.

So

𝐶 =

⎧⎨⎩
⎛⎝𝑥

ℓ

⎞⎠ ∈ R𝑑+𝑚

⃒⃒⃒⃒
⃒⃒ 𝑥 ≥ 0 and

(︁
𝐴 −𝐼

)︁⎛⎝𝑥

ℓ

⎞⎠ = 0

⎫⎬⎭
whence the theorem follows from the definition of 𝑃 .

Having the H-description of the Ω-polyhedron, what we need to do first is compute
its vertices. This is done by considering all the full-rank square subsystems of the system⎛⎝𝑥

ℓ

⎞⎠ =

⎛⎝0

𝑏

⎞⎠
(︁
𝐴 −𝐼

)︁⎛⎝𝑥

ℓ

⎞⎠ = 0.

Each system has (at most) one rational solution. If the solution satisfies the full sys-
tem (the point lies in the polyhedron), then that solution is a vertex of the Ω-polyhedron.

Unfortunately, unlike the single 𝜆 case, explicit formulas are no more easy to obtain
for the vertex cones. This is due to the fact that there are many combinations of
positive/negative entries in the inhomogeneous part. Thus, one can not simply label
generators as pointing up or down, since the same generator may be pointing up with
respect to one 𝜆 coordinate and down with respect to another.

We resort to the use of standard tools from polyhedral geometry.

∙ Compute the vertex cones, which is possible since we have both an H-description
and a V-description of the polyhedron.

∙ Triangulate if needed. The nice simplicial structure of the vertex cones is no longer
guaranteed.

∙ Use Brion’s theorem and Barvinok’s algorithm in order to compute the desired
rational generating function.

This method is algorithmic, but no closed formulas for the vertices and the vertex
cones are provided. Nevertheless, while its performance will be poorer than that of
traditional recursive elimination algorithms in general, it is expected to perform better
than traditional algorithms on problems that show intermediate expression swell. This
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latter case is very often met in combinatorial problems, which have a nice 1 generating
function due to the structure of the problem, but the intermediate expressions do not
see the overall structure. One could say that this is a difference between local or global
knowledge about the problem structure.

1this usually means that a lot of cancellations occur in the rational function.
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4.3 Improvements based on geometry

4.3.1 Lattice Points in Fundamental Parallelepipeds

In this section we develop a closed formula for the generating function of the set of lattice
points in the fundamental parallelepiped of a simplicial cone. We will first illustrate the
basic idea for finding this lattice point set using an example.

Motivating Example

Let 𝐽 ⊂ R𝑛 be a lattice and 𝐿 a sublattice with basis 𝑎1, . . . , 𝑎𝑘 ∈ 𝐽 . Our goal is to
come up with a closed formula (or simply a way of enumerating) the 𝐽-lattice points
in the fundamental parallelepiped generated by the 𝑎𝑖, i.e., we want to come up with a
generating function for the set Π(𝐴) where 𝐴 is the 𝑛× 𝑘-matrix with the vectors 𝑎𝑖 as
columns.

As an example we will take 𝐽 = Z2 and

𝐴 =

⎡⎣ 2 6

−2 2

⎤⎦ .

The fundamental parallelepiped Π(𝐴) and the lattice points contained therein are illus-
trated in Figure 4.1.

Figure 4.1: The lattice points in the fundamental parallelepiped Π(𝐴).

If Π(𝐴) were a rectangle, or, more precisely, if 𝐴 were a diagonal matrix, then
𝐽 ∩Π(𝐴) would be particularly easy to describe. For example if 𝐴 is an 𝑛× 𝑛 diagonal
matrix with diagonal entries 𝑙1, . . . , 𝑙𝑛, then we have

Π(𝐴) = [0, 𝑙1)× · · · × [0, 𝑙𝑛)

Z𝑛 ∩Π(𝐴) = {0, . . . , 𝑙1 − 1} × · · · × {0, . . . , 𝑙𝑛 − 1}

ΦΠ(𝐴)(𝑧) =
1− 𝑧𝑙11
1− 𝑧1

· . . . · 1− 𝑧𝑙𝑛𝑛
1− 𝑧𝑛

.

How can we make use of this simple observation about rectangles to handle general
matrices 𝐴 such as our example above? One idea is to transform 𝐴 into a diagonal
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matrix and control the corresponding changes to Π(𝐴). To implement this approach we
can use the Smith normal form of a matrix.

Theorem 4.1
(Smith normal form) Let 𝐴 be a non-zero 𝑛×𝑘 integer matrix. Then there exist matrices
𝑈 ∈ Z𝑛×𝑛, 𝑆 ∈ Z𝑛× 𝑘, 𝑉 ∈ Z𝑘×𝑘 such that 𝐴 = 𝑈𝑆𝑉 , the matrices 𝑈 and 𝑉 are
invertible over the integers (i.e., they are lattice transformations), and

𝑆 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑠1 0 0 · · · 0

0 𝑠2 0 · · · 0

0 0
. . .

...
... 𝑠𝑟

0

. . .

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

where 𝑟 is the rank of 𝐴 and 𝑠𝑖|𝑠𝑖+1 and 𝐴 = 𝑈𝑆𝑉 . �

In our case this can be interpreted as follows:

∙ Intuitively, multiplying 𝐴 from the left with a lattice transform 𝑈−1 means per-
forming elementary row operations on 𝐴, which corresponds to changing the basis
of 𝐽 . This simply applies a change of coordinates to the lattice points in the
fundamental parallelepiped.

∙ Multiplying 𝐴 from the right with a lattice transform 𝑉 −1 means performing el-
ementary column operation on 𝐴, which corresponds to changing the basis of 𝐿
and thus changing the fundamental parallelepiped. We will return to the question
how to relate 𝐽 ∩Π(𝐴) and 𝐽 ∩Π(𝐴𝑉 −1) in a moment.

The result of applying both of these transformations to 𝐴 is a diagonal matrix 𝑆. So
the Smith normal form presents a method of changing bases for both 𝐽 and 𝐿 such that
the fundamental parallelepiped is a rectangle with respect to the new bases.

Let’s see how this plays out in our example, see Figure 4.2. We start out with 𝑒1, 𝑒2
as a basis for Z2 and 𝑎1, 𝑎2 as our basis for 𝐿. Our first step is to change bases on 𝐿
by replacing 𝑒1 with 𝑒′1 = 𝑒1 − 𝑒2 and keeping 𝑒′2 = 𝑒2. We then have 𝑎1 = 2𝑒′1. This
corresponds to the multiplication

𝑈−1𝐴 =

⎡⎣ 1 0

1 1

⎤⎦⎡⎣ 2 6

−2 2

⎤⎦ =

⎡⎣ 2 6

0 8

⎤⎦ .

As we can see, the colums of the matrix on the right hand side give the coordinates of
𝑎1, 𝑎2 in terms of 𝑒′1, 𝑒

′
2.
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The next step is to changes bases of 𝐿 and replace 𝑎2 with 𝑎′2 = 𝑎2−3𝑎1 and keeping
𝑎′1 = 𝑎1. This corresponds to the multiplication

(𝑈−1𝐴)𝑉 −1 =

⎡⎣ 2 6

0 8

⎤⎦ .

⎡⎣ 1 −3

0 1

⎤⎦ =

⎡⎣ 2 0

0 8

⎤⎦ = 𝑆,

which gives the Smith normal form 𝑆 = 𝑈−1𝐴𝑉 −1 of 𝐴. We have now found a base
𝑎′1, 𝑎

′
2 of 𝐿 in which each basis vector is a multiple of the corresponding basis vector

𝑒′1, 𝑒
′
2. Equivalently, the matrix 𝑆 is in diagonal form, which means that with respect to

the basis 𝑒′1, 𝑒
′
2, the fundamental parallelepiped Π(𝑎′1, 𝑎

′
2) is a rectangle:

𝐽 ∩Π(𝑎′1, 𝑎
′
2) =

{︀
𝜇1𝑒

′
1 + 𝜇2𝑒

′
2

⃒⃒
𝜇1 ∈ [0, 2), 𝜇2 ∈ [0, 8), 𝜇1, 𝜇2 ∈ Z

}︀
.

Figure 4.2: By changing bases on 𝐽 and 𝐿 we can transform the parallelepiped Π(𝐴) into
a parallelepiped Π(𝑎′1, 𝑎

′
2) whose generators 𝑎

′
1, 𝑎

′
2 are multiples of the 𝑒′1, 𝑒

′
2 respectively.

The figure on the left show the bases 𝑒1, 𝑒2 of 𝐽 and 𝑎1, 𝑎2 of 𝐿 that we start out with.
In the center figure, we pass from basis 𝑒1, 𝑒2 to 𝑒′1, 𝑒

′
2, thereby lining up 𝑒′1 and 𝑎1. In

the right-hand figure, we pass from 𝑎1, 𝑎2 to 𝑎′1, 𝑎
′
2 thereby lining up 𝑒′2 and 𝑎′2. This

process corresponds to the computation of the Smith normal form of 𝐴.

We have now found a simple description of 𝐽 ∩Π(𝑎′1, 𝑎
′
2). How can we transform this

lattice-point set into the set 𝐽 ∩ Π(𝑎1, 𝑎2) that we are interested in? Since both 𝑎1, 𝑎2
and 𝑎′1, 𝑎

′
2 are bases of 𝐿, the fundamental parallelepipeds contain the same number of

lattice points. However there is no linear transformation that gives a bijection between
these lattice-point sets.

For any basis 𝐴 of 𝐿, the fundamental parallelepiped Π(𝐴) tiles the plane. This
means that for any basis 𝐴 and any point 𝑧 ∈ Z2 there is a unique 𝑦 ∈ 𝐿 such that
𝑧−𝑦 ∈ Π(𝐴). If we can find a formula for this map 𝑓 : 𝑧 ↦→ 𝑧−𝑦 for any given 𝐴, we can
use this map to transform Π(𝑎′1, 𝑎

′
2) into Π(𝑎1, 𝑎2). Fortunately this is straightforward.

We simply find the corrdinates 𝜆 of 𝑧 with respect to the basis 𝐴, i.e., we write 𝑧 =
𝜆1𝑎1 + 𝜆2𝑎2. If we now take fractional parts, we obtain

𝑓(𝑧) = {𝜆1}𝑎1 + {𝜆2}𝑎2 ∈ Π(𝑎1, 𝑎2).
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Note that 𝑦 = 𝑧 − 𝑓(𝑧) = ⌊𝜆1⌋ 𝑎1 + ⌊𝜆2⌋ 𝑎2 ∈ 𝐿. Using matrices and the fractional part
function, 𝑓 can be described simply via 𝑓 = 𝐴 ∘ frac ∘𝐴−1. This function 𝑓 is illustrated
in Figure 4.3.

Figure 4.3: The lattice points in the fundamental parallelepiped Π(𝑎′1, 𝑎
′
2) can be

mapped into Π(𝐴) by means of the map 𝑓 = 𝐴 ∘ frac ∘𝐴−1.

On the whole, this means that we can enumerate the lattice points in the fundamental
parallelepiped we are interested in via

𝐽 ∩Π(𝑎1, 𝑎2) = 𝐴 ∘ frac ∘𝐴−1(𝐽 ∩Π(𝑎′1, 𝑎
′
2))

=
{︀
(𝐴 ∘ frac ∘𝐴−1 ∘ 𝑈)𝜇

⃒⃒
𝜇 ∈ Z2 ∩ ([0, 2)× [0, 8))

}︀
where

𝐴−1 ∘ 𝑈 =

⎡⎣ 1
8 −3

8

1
8

1
8

⎤⎦ .

⎡⎣ 1 0

−1 1

⎤⎦ =

⎡⎣ 1
2 −3

8

0 1
8

⎤⎦ .

General Method

We now describe the method illustrated in the above example in full detail.
Let 𝐽 ⊂ R𝑛 be a lattice and 𝐿 a sublattice. Most of the time, we will have 𝐽 = Z𝑛. Let

𝑎1, . . . , 𝑎𝑘 be a basis for 𝐿 and let 𝐴 denote the 𝑛×𝑘-matrix with the 𝑎𝑖 as columns. We
are then interested in describing the set of 𝐽-lattice points contained in the fundamental
parallelepiped Π(𝑎1, . . . , 𝑎𝑛) of 𝐿 with respect to the generators 𝑎1, . . . , 𝑎𝑛.

The starting point for this method is the observation that Π(𝐴) is easy to describe
if the basis of 𝐿 is a multiple of a basis of 𝐽 .

Lemma 17. Let 𝐽 be a lattice with basis 𝑒1, . . . , 𝑒𝑛 and let 𝐿 be a sublattice with basis
𝑎1, . . . , 𝑎𝑘 for 𝑘 ≤ 𝑛. Let 𝐼 ⊂ [𝑘]. If 𝑎𝑖 = 𝛼𝑖𝑒𝑖 for 𝑖 = 1, . . . , 𝑘 and 𝛼𝑖 ∈ Z≥1, then the



4.3. IMPROVEMENTS BASED ON GEOMETRY 105

set of 𝐽-lattice points in the fundamental parallelepiped Π𝐼(𝐴) of 𝐿 with respect to the
basis 𝐴 is

𝐽 ∩Π𝐼(𝐴) =

{︃
𝑘∑︁

𝑖=1

𝜆𝑖𝑒𝑖

⃒⃒⃒⃒
⃒ 𝜆𝑖 ∈ Z ∀𝑖 ∈ [𝑘], 0 ≤ 𝜆𝑖 < 𝛼𝑖 ∀𝑖 ̸∈ 𝐼, 0 < 𝜆𝑖 ≤ 𝛼𝑖 ∀𝑖 ∈ 𝐼

}︃

and its generating function has the rational function representation

ΦΠ𝐼(𝐴)(𝑧) =
∏︁
𝑖∈𝐼

𝑧𝑖 ·
𝑘∏︁

𝑖=1

1− 𝑧𝛼𝑖𝑒𝑖

1− 𝑧𝑒𝑖
.

�

Proof. This follows immediately from the definition of Π𝐼(𝐴) and the fact that

𝑘∏︁
𝑖=1

1− 𝑧𝛼𝑖𝑒𝑖

1− 𝑧𝑒𝑖
=
∑︁
𝑥∈𝑆

𝑧𝑥 for 𝑆 =

{︃
𝑘∑︁

𝑖=1

𝜆𝑖𝑒𝑖

⃒⃒⃒⃒
⃒ 𝜆𝑖 ∈ {0, . . . , 𝛼𝑖 − 1} ∀𝑖

}︃
.

Changing the basis of 𝐿 changes the fundamental parallelepiped. However, the num-
ber of lattice points in the fundamental parallelepiped remains the same. Moreover there
is a natural bijection between the lattice points in the fundamental parallelepipeds. This
bijection is essentially given by the “fractional part” or the “division with remainder”.

To make this precise in the next lemma, we need some additional notation.
For any real number 𝑥 ∈ R and 𝑒 ∈ {0, 1} we define integ𝑒(𝑥) and fract𝑒(𝑥) to be the

unique real numbers such that

𝑥 = integ𝑒(𝑥) + fract𝑒(𝑥)

and

integ𝑒(𝑥) ∈ Z, 0 ≤ fract0(𝑥) < 1, 0 < fract1(𝑥) ≤ 1.

Note that integ0 𝑥 = ⌊𝑥⌋ and fract0 𝑥 = {𝑥}. For any vector of real numbers 𝑣 ∈ R𝑘 and
any set 𝐼 ⊂ [𝑘], we also write integ𝐼 𝑣 and fract𝐼 𝑣 to denote the vectors

integ𝐼(𝑣) = (integ𝑖∈𝐼(𝑣𝑖))𝑖∈[𝑘] and fract𝐼(𝑣) = (fract𝑖∈𝐼(𝑣𝑖))𝑖∈[𝑘]

where we interpret the exponent 𝑖 ∈ 𝐼 to denote 1 if 𝑖 ∈ 𝐼 and to denote 0 if 𝑖 ̸∈ 𝐼.
In analogy to the above notation we define an extension of the mod function. Let

𝑎, 𝑏 ∈ R. We define 𝑎 mod0 𝑏 to be the unique real number 0 ≤ 𝑎 mod0 𝑏 < 𝑏 such
that 𝑎 = 𝑘𝑏+ 𝑎 mod0 𝑏 for some 𝑘 ∈ Z. And we define 𝑎 mod1 𝑏 to be the unique real
number 0 < 𝑎 mod1 𝑏 ≤ 𝑏 such that 𝑎 = 𝑘𝑏+ 𝑎 mod1 𝑏 for some 𝑘 ∈ Z. Again, we will
write mod𝑖∈𝐼 to denote mod0 if 𝑖 ̸∈ 𝐼 and mod1 if 𝑖 ∈ 𝐼, etc. mod without exponent
is understood to denote mod0 . Note that fract𝑒(𝑎𝑏 ) =

𝑎 mod𝑒 𝑏
𝑏 with this notation.
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Lemma 18. Let 𝐽 be a lattice in R𝑛 with basis 𝑒1, . . . , 𝑒𝑛 and let 𝐿 be a sublattice. Let
𝑎1, . . . , 𝑎𝑘 be a basis of 𝐿 and let 𝐴 denote the corresponding 𝑛 × 𝑘-matrix. Let 𝐴−1

denote any left inverse of 𝐴, i.e., let 𝐴−1 be a matrix with the property 𝐴−1𝑧 = 𝜆 for
any 𝑧 ∈ span(𝐿) with 𝑧 =

∑︀𝑘
𝑖=1 𝜆𝑖𝑎𝑖. Let 𝐼 ⊂ [𝑘] and let 𝑞 ∈ Q𝑛.

1. For all 𝑧 ∈ 𝐽∩(𝑞+span(𝐿)) there exists a unique lattice point 𝑦 ∈ Π𝐼(𝐴, 𝑞) such that

𝑧−𝑦 ∈ 𝐿. Let 𝑧 = 𝑞+
∑︀𝑘

𝑖=1 𝜆𝑖𝑎𝑖 and let 𝜆 = (𝜆𝑖)𝑖=1,...,𝑘. Then 𝑦 = 𝑞+𝐴(fract𝐼(𝜆)).

2. 𝐽 ∩Π𝐼(𝐴, 𝑞) is empty if and only if 𝐽 ∩ (𝑞 + span(𝐿)) is empty.

3. Suppose 𝑝 ∈ 𝐽 ∩ (𝑞 + span(𝐿)). Let 𝑏1, . . . , 𝑏𝑘 be a second basis of 𝐿 and let 𝐵
denote the corresponding 𝑛× 𝑘-matrix and let 𝐼 ′ ⊂ [𝑘]. Then

𝐽 ∩Π𝐼(𝐴, 𝑞) = 𝐴(fract𝐼(𝐴−1((𝐽 ∩Π𝐼′(𝐵))− (𝑞 − 𝑝)))) + 𝑞

and the above map induces a bijection between the sets 𝐽∩Π𝐼(𝐴, 𝑞) and 𝐽∩Π𝐼′(𝐵).

�

Note that the map 𝐴 ∘ fract𝐼 ∘𝐴−1 is not linear, as we have seen in the example.

Proof. 1. Let 𝑧 ∈ 𝐽 ∩ (𝑞+ span(𝐿)). Then there exist uniquely determined 𝜆𝑖 such that

𝑧 = 𝑞 +
𝑘∑︁

𝑖=1

𝜆𝑖𝑎𝑖 = 𝑞 +
𝑘∑︁

𝑖=1

integ𝑖∈𝐼(𝜆𝑖)𝑎𝑖 +
𝑘∑︁

𝑖=1

fract𝑖∈𝐼(𝜆𝑖)𝑎𝑖.

Notice that
𝑘∑︁

𝑖=1

integ𝑖∈𝐼(𝜆𝑖)𝑎𝑖 ∈ 𝐿 ⊂ 𝐽

and

𝑦 = 𝑞 +
𝑘∑︁

𝑖=1

fract𝐼(𝜆𝑖)𝑎𝑖 = 𝑞 +𝐴(fract𝐼(𝜆)) ∈ Π𝐼(𝐴, 𝑞).

Moreover, 𝑦 ∈ 𝐽 because 𝑧 ∈ 𝐽 . Notice also that 𝑦 is uniquely determined as changing
any coefficient by an integer amount takes us out of Π𝐼(𝐴, 𝑏).

2. By the first part of the theorem, we already know that if there exists a 𝑧 ∈
𝐽 ∩ (𝑞 + span(𝐿)), then there exists a 𝑦 ∈ 𝐽 ∩ Π𝐼(𝐴, 𝑞). Conversely, if 𝑦 ∈ 𝐽 ∩ Π𝐼(𝐴, 𝑞)
then 𝑦 ∈ 𝐽 ∩ (𝑞 + span(𝐿)) because Π𝐼(𝐴, 𝑞) ⊂ 𝑞 + span(𝐿).

3. Let 𝑇1 denote the translation 𝑇1(𝑥) = 𝑥− (𝑞−𝑝) and let 𝑇2 denote the translation
𝑇2(𝑥) = 𝑥+ 𝑞. Using this notation we have to show that the map

𝑓 = 𝑇2 ∘𝐴 ∘ fract𝐼 ∘𝐴−1 ∘ 𝑇1

gives a bijection from 𝐽 ∩Π𝐼′(𝐵) to 𝐽 ∩Π𝐼(𝐴, 𝑞). We will proceed in five steps.
Step 1: The image of 𝐽 ∩ span(𝐿) under 𝑓 is contained in 𝐽 ∩ Π𝐼(𝐴, 𝑞). Let 𝑧 ∈

𝑓(𝐽 ∩ (𝑞 + span(𝐿))). Then 𝑧 has the form 𝑧 = 𝑞 +
∑︀𝑘

𝑖=1 fract
𝐼(𝜆𝑖)𝑎𝑖 where the 𝜆𝑖 are
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such that
∑︀𝑘

𝑖=1 𝜆𝑖𝑎𝑖 ∈ (𝐽 ∩ span𝐿) − (𝑞 − 𝑝). Therefore 𝑧 is contained in Π𝐼(𝐴, 𝑞) and
it remains to show 𝑧 ∈ 𝐽 . By construction, the coefficients 𝜆𝑖 have the property

𝑘∑︁
𝑖=1

𝜆𝑖𝑎𝑖 = −
𝑘∑︁

𝑖=1

𝜈𝑖𝑎𝑖 +
𝑘∑︁

𝑖=1

𝜇𝑖𝑎𝑖

where 𝑞 − 𝑝 =
∑︀𝑘

𝑖=1 𝜈𝑖𝑎𝑖 and
∑︀𝑘

𝑖=1 𝜇𝑖𝑎𝑖 ∈ 𝐽 . Therefore

𝑧 = 𝑞 +
𝑘∑︁

𝑖=1

fract𝐼(𝜆𝑖)𝑎𝑖

= 𝑝+ (𝑞 − 𝑝) +
𝑘∑︁

𝑖=1

fract𝐼(𝜆𝑖)𝑎𝑖

= 𝑝+

𝑘∑︁
𝑖=1

𝜈𝑖𝑎𝑖 +

𝑘∑︁
𝑖=1

fract𝐼(−𝜈𝑖 + 𝜇𝑖)𝑎𝑖

= 𝑝+
𝑘∑︁

𝑖=1

𝜈𝑖𝑎𝑖 +
𝑘∑︁

𝑖=1

(−𝜈𝑖 + 𝜇𝑖)𝑎𝑖 −
𝑘∑︁

𝑖=1

integ𝐼(−𝜈𝑖 + 𝜇𝑖)𝑎𝑖

= 𝑝+
𝑘∑︁

𝑖=1

𝜇𝑖𝑎𝑖 −
𝑘∑︁

𝑖=1

integ𝐼(−𝜈𝑖 + 𝜇𝑖)𝑎𝑖.

Now 𝑝 and
∑︀𝑘

𝑖=1 𝜇𝑖𝑎𝑖 are elements of 𝐽 by assumption and
∑︀𝑘

𝑖=1 integ
𝐼(−𝜈𝑖+𝜇𝑖)𝑎𝑖 is an

element of 𝐽 because the coefficients are integer and 𝐿 is a sublattice of 𝐽 . Thus 𝑧 ∈ 𝐽 .
Step 2: If 𝑢, 𝑣 ∈ 𝐽 ∩ span(𝐿) and 𝑓(𝑢) = 𝑓(𝑣), then 𝑢 − 𝑣 ∈ 𝐿. Let 𝑢 =

∑︀𝑘
𝑖=1 𝜇𝑖𝑎𝑖

and 𝑣 =
∑︀𝑘

𝑖=1 𝜈𝑖𝑎𝑖. Let 𝑞 − 𝑝 =
∑︀𝑘

𝑖=1 𝜅𝑖𝑎𝑖. Then 𝑓(𝑢) = 𝑓(𝑣) is equivalent to

𝑘∑︁
𝑖=1

fract𝐼(𝜇𝑖 − 𝜅𝑖)𝑎𝑖 =
𝑘∑︁

𝑖=1

fract𝐼(𝜈𝑖 − 𝜅𝑖)𝑎𝑖.

Then

𝑢− 𝑣 =

𝑘∑︁
𝑖=1

(𝜇𝑖 − 𝜅𝑖)𝑎𝑖 −
𝑘∑︁

𝑖=1

(𝜈𝑖 − 𝜅𝑖)𝑎𝑖

=
𝑘∑︁

𝑖=1

fract𝐼(𝜇𝑖 − 𝜅𝑖)𝑎𝑖 −
𝑘∑︁

𝑖=1

fract𝐼(𝜈𝑖 − 𝜅𝑖)𝑎𝑖 +
𝑘∑︁

𝑖=1

integ𝐼(𝜇𝑖 − 𝜅𝑖)𝑎𝑖 −
𝑘∑︁

𝑖=1

integ𝐼(𝜈𝑖 − 𝜅𝑖)𝑎𝑖

=
𝑘∑︁

𝑖=1

integ𝐼(𝜇𝑖 − 𝜅𝑖)𝑎𝑖 −
𝑘∑︁

𝑖=1

integ𝐼(𝜈𝑖 − 𝜅𝑖)𝑎𝑖

which is an integral combination of basis vectors of 𝐿 and therefore contained in 𝐿 as
claimed.
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Step 3: 𝑓 |𝐽∩Π
𝐼′ (𝐵) is injective. As 𝐵 is a basis of 𝐿, no two distinct elements of

𝐽∩Π𝐼′(𝐵) differ by an element of 𝐿. Therefore Step 2 implies that 𝑓 |𝐽∩Π
𝐼′ (𝐵) is injective.

Step 4: Both 𝐽 ∩ Π𝐼′(𝐵) and 𝐽 ∩ Π𝐼(𝐴, 𝑞) contain the same finite number of lattice
points. This follows directly from the fact that 𝐵 and 𝐴 are bases of the same lattice.

Step 5: 𝑓 |𝐽∩Π
𝐼′ (𝐵) is bijective. Combining Steps 3 and 4 yields bijectivity.

The previous lemma gives us a way to keep track of Π𝐼(𝐴, 𝑞) when we change bases
of 𝐿. Handling changes of bases of 𝐽 is far easier, as the next lemma tells us.

Lemma 19. If 𝑇 is a lattice transformation of the lattice 𝐽 , then

𝐽 ∩Π(𝐴; 𝑞) = 𝑇 (𝐽 ∩Π(𝑇−1𝐴;𝑇−1𝑞)).

�

Proof. This follows from 𝐽 = 𝑇𝐽 = 𝑇−1𝐽 and 𝐴𝜆 + 𝑞 = 𝑇 (𝑇−1𝐴𝜆 + 𝑇−1𝑞) for all
𝜆 ∈ [0, 1)𝑘.

So far, Lemma 17 tells us that lattice-point sets in “rectangular” parallelepipeds are
easy to describe and Lemmas 18 and 19 allow us to control 𝐽 ∩Π𝐼(𝐴, 𝑞) when we change
bases on 𝐿 or 𝐽 , respectively. So what is left to do is to find a way to transform an
arbitrary fundamental parallelepiped Π𝐼(𝐴, 𝑞) into a “rectangular” parallelepiped using
the transformations given in Lemmas 18 and 19. To this end we are going to use the
Smith normal form as illustrated with the above example.

Lemma 20. Let 𝐽 = Z𝑛 be a lattice and 𝐿 a sublattice of 𝐽 with basis 𝑎1, . . . , 𝑎𝑘 and
corresponding 𝑛× 𝑘-matrix 𝐴. Let 𝑞 ∈ R𝑛. If 𝑞 + span(𝐿) does not contain any integer
point, then Z𝑛 ∩Π𝐴,𝑞 is empty. Otherwise, let 𝑝 ∈ Z𝑛 ∩ span(𝐿). Then

Z𝑛 ∩Π𝐼(𝐴, 𝑞) = 𝐴 ∘ fract𝐼 ∘𝑉 −1 ∘ 𝑆−1(Z𝑘 ∩Π(𝑆)− 𝑈−1(𝑞 − 𝑝)) + 𝑞

where 𝐴 = 𝑈𝑆𝑉 is the Smith normal form of 𝐴, the numbers 𝑠1, . . . , 𝑠𝑘 are the diagonal
entries of 𝑛 × 𝑘-matrix 𝑆 and 𝑆−1 is the diagonal 𝑘 × 𝑛-matrix with diagonal entries
1
𝑠1
, . . . , 1

𝑠1
. �

Note that in the above lemma

Z𝑛 ∩Π(𝑆) = Z𝑛 ∩ [0, 𝑠1)× . . .× [0, 𝑠𝑘)× {0} × . . .× {0},

is a rectangle of lattice points.

Proof. In order to be able to apply Lemma 18 we need to pick a left inverse 𝐴−1 of 𝐴.
To this end we define 𝐴−1 := 𝑉 −1𝑆−1𝑈−1. As 𝑆−1𝑆 = 𝐼 is the identity, 𝐴−1 is indeed
a left inverse of 𝐴 since 𝐴−1𝐴 = 𝑉 −1𝑆−1𝑈−1𝑈𝑆𝑉 = 𝐼. We then have

Z𝑛 ∩Π𝐼(𝐴, 𝑞) = 𝐴 ∘ fract𝐼 ∘𝐴−1((Z𝑛 ∩Π(𝐴𝑉 −1))− (𝑞 − 𝑝)) + 𝑞

= 𝐴 ∘ fract𝐼 ∘𝐴−1 ∘ 𝑈((Z𝑛 ∩Π(𝑈−1𝐴𝑉 −1))− 𝑈−1(𝑞 − 𝑝)) + 𝑞

= 𝐴 ∘ fract𝐼 ∘𝐴−1 ∘ 𝑈((Z𝑛 ∩Π(𝑆))− 𝑈−1(𝑞 − 𝑝)) + 𝑞

= 𝐴 ∘ fract𝐼 ∘𝑉 −1 ∘ 𝑆−1((Z𝑛 ∩Π(𝑆))− 𝑈−1(𝑞 − 𝑝)) + 𝑞
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where the first identity follows from Lemma 18 using the fact that 𝐴𝑉 −1 is a lattice
basis for 𝐿, the second identity follows from Lemma 19 using the fact that 𝑈 is a lattice
transformation, the third identitiy follows from 𝐴 = 𝑈𝑆𝑉 and the last identity follows
from our choice of 𝐴−1 and 𝑆−1.

Theorem 4.2
Let 𝑎1, . . . , 𝑎𝑘 ∈ Z𝑛 be linearly independent and let 𝐴 = (𝑎𝑗𝑖)𝑗∈[𝑛],𝑖∈[𝑘] be the corre-
sponding matrix with Smith normal form 𝐴 = 𝑈𝑆𝑉 . Let 𝑞 ∈ R𝑛 and let 𝐼 ⊂ [𝑘]. Let
𝑠1, . . . , 𝑠𝑘 denote the diagonal entries of 𝑆 and define 𝑡𝑖 =

𝑠𝑘
𝑠𝑖
. Note that 𝑡𝑖 ∈ Z as 𝑠𝑖|𝑠𝑖+1.

Let 𝑉 −1 = (𝑣𝑗𝑖)𝑗𝑖 where 𝑗 is the row-index and 𝑖 the column index. If 𝑝 ∈ Z𝑛 ∩ span(𝐴),
then the generating function of the set of lattice points in the fundamental parallelepiped
Π𝐼(𝐴, 𝑞) is given by

Φ𝒞Z(𝐴;𝑞)(𝑥) =

𝑠1−1∑︁
𝜆1=0

· · ·
𝑠𝑘−1∑︁
𝜆𝑘=0

𝑥

(︁
1
𝑠𝑘

∑︀𝑘
𝑗=1 𝑎𝑙𝑗(

∑︀𝑘
𝑖=1(𝜆𝑖−𝑤𝑖)𝑣𝑗𝑖𝑡𝑖 mod𝑖∈𝐼 𝑠𝑘)+𝑞𝑙

)︁
𝑙=1,...,𝑛 ,

where 𝑤 = 𝑈−1(𝑞 − 𝑝). �

Proof. From Lemmas 17 and 20 we immediately get

𝑠1−1∑︁
𝜆1=0

· · ·
𝑠𝑘−1∑︁
𝜆𝑘=0

𝑥𝐴 fract𝐼 𝑉 −1𝑆−1((𝜆1,...,𝜆𝑘,0,...,0)
𝑡−𝑤)+𝑞.

We then calculate

𝑉 −1𝑆−1((𝜆1, . . . , 𝜆𝑘, 0, . . . , 0)
𝑡 − 𝑤) =

(︃
𝑘∑︁

𝑖=1

𝜆𝑖 − 𝑤𝑖

𝑠𝑖
𝑣𝑗𝑖

)︃
𝑗=1,...,𝑘

=
1

𝑠𝑘

(︃
𝑘∑︁

𝑖=1

(𝜆𝑖 − 𝑤𝑖)𝑡𝑖𝑣𝑗𝑖

)︃
𝑗=1,...,𝑘

where we denote the entries of 𝑉 −1 by 𝑣𝑗𝑖. Recall that for 𝑒 ∈ {0, 1} we have
fract𝑒(𝑎𝑏 ) =

𝑎 mod𝑒 𝑏
𝑏 . With this notation we get

fract𝐼

(︃
1

𝑠𝑘

𝑘∑︁
𝑖=1

(𝜆𝑖 − 𝑤𝑖)𝑡𝑖𝑣𝑗𝑖

)︃
𝑗=1,...,𝑘

=

(︃
1

𝑠𝑘

𝑘∑︁
𝑖=1

(𝜆𝑖 − 𝑤𝑖)𝑡𝑖𝑣𝑗𝑖 mod𝑖∈𝐼 𝑠𝑘

)︃
𝑗=1,...,𝑘

.

Finally, we calculate

𝐴

(︃
1

𝑠𝑘

∑︁
𝑖

(𝜆𝑖 − 𝑤𝑖)𝑣𝑗𝑖𝑡𝑖 mod𝑖∈𝐼 𝑠𝑘

)︃
𝑗=1,...,𝑘

+ 𝑞 =

⎛⎝ 1

𝑠𝑘

𝑘∑︁
𝑗=1

𝑎𝑙𝑗

(︃
𝑘∑︁

𝑖=1

(𝜆𝑖 − 𝑤𝑖)𝑣𝑗𝑖𝑡𝑖 mod𝑖∈𝐼 𝑠𝑘

)︃
+ 𝑞𝑙

⎞⎠
𝑙=1,...,𝑛

.
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4.4 Conclusions

One should note that the iterative algorithm is in the intersection of MacMahon’s ap-
proach and polyhedral geometry. During the execution of the algorithm, geometric
objects such as the vertices and the vertex cones of the Ω-polyhedron, as well as a tri-
angulation of the duals of the vertex cones, are computed, without use of any tool from
polyhedral geometry. Moreover, by using the intermediate step of computing cones sym-
bolically, some of the cones are dropped without computing their generating functions,
i.e., if all generators of a cone are pointing down and the apex lies below the intersecting
halfspace, the cone can be safely ignored.

On the other hand, the algorithm for simultaneous multiple 𝜆 elimination leans
clearly towards polyhedral geometry, using exclusively tools from that area and ignoring
the recursive 𝜆 elimination, prominent in the traditional partition analysis implemen-
tations. In the polyhedral geometry world, already for a decade, there exist tools, like
the algorithm of Barvinok-Woods [13] for computing Hadamard products, that can be
applied to perform simultaneous 𝜆 elimination. Nevertheless, in the partition analysis
world these tools are not yet widespread and they are not tested concerning possible
advantages, either practical or theoretical.

A practical implementation of the algorithms and further theoretical developments
are under preparation and will be presented in [19].



Appendix A

Proof of “Geometry of Omega2”

In what follows we assume gcd(𝛼, 𝛽) = 1 as indicated in Theorem 3.1.

Fundamental Parallelepipeds

Let Π𝜁 = Π𝐴 ∩ (Z2 × {𝜁}) and Ξ𝜁 = Π𝐵 ∩ (Z2 × {𝜁}) for 𝜁 ∈ Z. Π𝜁 (resp. Ξ𝜁) is the
intersection of Π𝐴 (resp. Π𝐵 ) with the affine subspace {(𝑥, 𝑦, 𝜁) ∈ R3}.

Lemma 21. There is at most one lattice point in each fundamental parallelepiped of
the cones 𝐴 and 𝐵 at any given height (𝑥3-value) and if there is one then its form is
determined as follows:

∙ Π𝜁 = {(𝑥1, 𝑥2, 𝜁) ∈ Z3|𝑥1 = 𝜁−𝑥2𝛽
𝛼 , 𝑥2 ∈ {0, 1, . . . , 𝛼− 1}} .

∙ Ξ𝜁 = {(𝑥1, 𝑥2, 𝜁) ∈ Z3|𝑥2 = 𝜁−𝑥1𝛼
𝛽 , 𝑥1 ∈ {−𝛽 + 1,−𝛽 + 2, . . . , 0}}.

Moreover |Π𝜁 | ≤ 1 and |Ξ𝜁 | ≤ 1. �

Proof. Let (𝑥1, 𝑥2, 𝑥3) ∈ Π𝐴 ∩ Z3. Then there exist 𝑘, 𝑙 ∈ [0, 1) such that

𝑘(−𝛽, 𝛼, 0) + 𝑙(1, 0, 𝛼) = (𝑥1, 𝑥2, 𝑥3) ∈ Z3.

This translates to the system⎧⎪⎨⎪⎩
𝑥1 = 𝑙 − 𝑘𝛽

𝑥2 = 𝑘𝛼

𝑥3 = 𝑙𝛼

→

⎧⎪⎨⎪⎩
𝑥1 =

𝜁
𝛼 − 𝑘𝛽

𝑥2 ∈ [0, 𝛼) ∩ Z
𝑙 = 𝑥3

𝛼

→

⎧⎪⎨⎪⎩
𝑥1 =

𝑥3−𝑥2𝛽
𝛼

𝑥2 ∈ {0, 1, . . . , 𝛼− 1}
𝑥3 ∈ {0, 1, . . . , 𝛼− 1}

Fix 𝑥3 = 𝜁 ∈ {0, 1, . . . , 𝛼 − 1}. Assume |Π𝜁 | > 1 and let (𝑥′1, 𝑥
′
2, 𝜁), (𝑥

′′
1, 𝑥

′′
2, 𝜁) ∈ Π𝜁 .

Then {︃
𝛼|𝜁 − 𝑥′2𝛽

𝛼|𝜁 − 𝑥′′2𝛽
→ 𝛼|𝑥′2𝛽 − 𝑥′′2𝛽 →

{︃
𝛼|𝛽(𝑥′2 − 𝑥′′2)

gcd(𝛼, 𝛽) = 1
→ 𝛼|𝑥′2 − 𝑥′′2

Since |𝑥′2 − 𝑥′′2| < 𝛼 we have a contradiction. Thus |Π𝜁 | ≤ 1.
The proof for Ξ𝜁 is completely analogous.
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The first summand

Our goal is to show that 𝜌𝐴 =
𝑃𝛼,𝛽

(1−𝑧−𝛽
1 𝑧𝛼2 )(1−𝑧1𝑧𝛼3 )

.

Proposition 4.

𝜌Π(𝐴) = 𝑃𝛼,𝛽 =

𝛼−1∑︁
𝑖=0

𝑎𝑖𝑧
𝑖
3

for

𝑎𝑖 =

⎧⎨⎩𝑧
𝑖
𝛽

2 if 𝛽|𝑖 or 𝑖 = 0,

𝑧
rmd((𝛼−1 mod 𝛽)𝑖,𝛽)−𝛽
1 𝑧

rmd((𝛽−1 mod 𝛼)𝑖,𝛼)
2 otherwise,

�

Proof. Since Π𝜁 = ∅ for 𝜁 ≥ 𝛼, we need to prove the following three statements

1. 𝜌Π𝜁
= 1 = 𝑎0.

2. Let 𝜁 ∈ {1, 2, . . . , 𝛼− 1} such that 𝛽|𝜁. Then 𝜌Π𝜁
= 𝑧

𝜆
𝛽

2 𝑧𝜁3 = 𝑎𝜁𝑧
𝜁
3 .

3. Let 𝜁 ∈ {1, 2, . . . , 𝛼− 1} such that 𝛽 - 𝜁. Then 𝜌Π𝜁
= 𝑎𝜁𝑧

𝜁
3 .

Using the equations from the proof of Lemma 21 we have⎧⎪⎨⎪⎩
𝑥1 = 𝑙 − 𝑘𝛽

𝑥2 = 𝑘𝛼

0 = 𝑙𝛼

𝑙=0−−→

{︃
𝑘𝛽 ∈ Z
𝑘𝛼 ∈ Z

∃𝑛∈N−−−→

{︃
𝑘𝛽 ∈ Z
𝑘 = 𝑛

𝛼

−→

{︃
𝑛𝛽
𝛼 ∈ Z
𝑘 = 𝑛

𝛼

−→

{︃
𝛼|𝑛 or 𝛼|𝛽
𝑘 = 𝑛

𝛼

gcd(𝛼,𝛽)=1−−−−−−−→

{︃
𝛼|𝑛
𝑛
𝛼 = 𝑘 ∈ [0, 1)

Thus 𝑘 = 0, which means 𝑥1 = 𝑥2 = 𝑥3 = 0 and 𝜌Π0
= 1.

By the definition of 𝑎0 we have that 𝑎0 = 1.
� of statement 1.

From Lemma 21 we know that |Π𝜁 | ≤ 1 and if equality holds the lattice point is

of the form ( 𝜁−𝑥2𝛽
𝛼 , 𝑥2, 𝜁) for some 𝑥2 ∈ {0, 1, . . . , 𝛼 − 1}. We will check if the desired

exponent is actually a lattice point in Π𝜁 . Let 𝑥2 = 𝜁
𝛽 . Since 𝜁 < 𝛼 we have that

𝑥2 ∈ {0, 1, . . . , 𝛼− 1}. Moreover

𝑥1 =
𝜁 − 𝑥2𝛽

𝛼
=

𝜁 − 𝜁
𝛽𝛽

𝛼
= 0 ∈ Z

which means that (0, 𝜁
𝛽 , 𝜁) ∈ Π𝜁 . Thus 𝜌Π𝜁

= 𝑧
𝜁
𝛽

2 𝑧𝜁3 , which by definition is 𝑎𝜁𝑧
𝜁
3 .

� of statement 2.
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We will proceed in two steps. First show that rmd((𝛽−1 mod 𝛼)𝜁, 𝛼) is the 𝑥2-
coordinate of a lattice point in Π𝜁 and then that rmd((𝛼−1 mod 𝛽)𝜁, 𝛽) − 𝛽 is the 𝑥1-

coordinate of a lattice point in Π𝜁 . Since |Π𝜁 | ≤ 1, we have that 𝜌Π𝜁
= 𝑎𝜁𝑧

𝜁
3 .

∙ In order to prove that rmd((𝛽−1 mod 𝛼)𝜁, 𝛼) is the 𝑥2-coordinate of a lattice point
in Π𝜁 we have to show that

1. rmd((𝛽−1 mod 𝛼)𝜁, 𝛼) ∈ {0, 1, . . . , 𝛼− 1};

2.
𝜁−(rmd((𝛽−1 mod 𝛼)𝜁,𝛼))𝛽

𝛼 ∈ Z.

Let 𝑥2 = rmd((𝛽−1 mod 𝛼)𝜁, 𝛼). By definition the remainder of division by 𝛼 is in
{0, 1, . . . , 𝛼− 1}.
By the definitions of remainder and modular inverse we have

𝑥2 = 𝑟𝜁 − 𝛼𝑚

for some 𝑚 ∈ Z and 𝑟 such that 𝑟𝛽 = 𝛼𝑛+ 1 for some 𝑛 ∈ Z.
Then

𝑥2 = 𝑟𝜁 − 𝛼𝑚⇔ 𝛽𝑥2 = 𝛽𝑟𝜁 − 𝛼𝛽𝑚

⇔ 𝛽𝑥2 = (𝛼𝑛+ 1)𝜁 − 𝛼𝛽𝑚

⇔ 𝛽𝑥2 = 𝛼𝑛𝜁 + 𝜁 − 𝛼𝛽𝑚

⇔ 𝜁 − 𝛽𝑥2 = 𝛼(𝛽𝑚− 𝑛𝜁)

⇔ 𝜁 − 𝛽𝑥2
𝛼

= 𝛽𝑚− 𝑛𝜁 ∈ Z.

∙ In order to prove that rmd((𝛼−1 mod 𝛽)𝜁, 𝛽) − 𝛽 is the 𝑥1-coordinate of a lattice
point in Π𝜁 we have to show that there exist 𝑥2 ∈ {0, 1, . . . , 𝛼 − 1} such that

rmd((𝛼−1 mod 𝛽)𝜁, 𝛽)− 𝛽 = 𝜁−𝑥2𝛽
𝛼 .

Let 𝑏 = rmd((𝛼−1 mod 𝛽)𝜁, 𝛽). By definition

𝑏 = 𝑟𝜁 − 𝛽𝑚

for some 𝑚 ∈ Z and 𝑟 such that 𝛼𝑟 = 𝛽𝑛 + 1 for some 𝑛 ∈ Z. Then we want to
prove that

𝑏− 𝛽 =
𝜁 − 𝑥2𝛽

𝛼
.

We have

𝑏− 𝛽 =
𝜁 − 𝑥2𝛽

𝛼
⇔ 𝑟𝜁 − 𝛽𝑚− 𝛽 =

𝜁 − 𝑥2𝛽

𝛼
⇔ 𝛼𝑟𝜁 − 𝛼𝛽𝑚− 𝛼𝛽 = 𝜁 − 𝑥2𝛽

⇔ 𝛽𝑛𝜁 + 𝜁 − 𝛼𝛽𝑚− 𝛼𝛽 = 𝜁 − 𝑥2𝛽

⇔ 𝑥2 = 𝛼(𝑚+ 1)− 𝑛𝜁.
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Thus we need to show that 𝛼(𝑚 + 1) − 𝑛𝜁 ∈ {0, 1, . . . , 𝛼 − 1}. First observe that
𝛼(𝑚+ 1)− 𝑛𝜁 ∈ Z.
If 𝑚 is the quotient in the division of 𝑟𝜁 by 𝛽 we have 𝑚 + 1 > 𝑟𝜁

𝛽 . In order to
show that 𝛼(𝑚+ 1)− 𝑛𝜁 > 0 we have

𝑚+ 1 >
𝑟𝜁

𝛽
⇒ 𝑚 >

𝑟𝜁

𝛽
− 1

⇒ 𝑚 >

(︁
𝛽𝑛+1
𝛼

)︁
𝜁

𝛽
− 1

⇒ 𝑚 >
𝛽𝑛𝜁 + 𝜁

𝛼𝛽
− 1

⇒ 𝑚 >
𝛽𝑛𝜁

𝛼𝛽
− 1

⇒ 𝑚 >
𝑛𝜁

𝛼
− 1

⇒ 𝛼(𝑚+ 1) > 𝑛𝜁

⇒ 𝛼(𝑚+ 1)− 𝑛𝜁 > 0.

For the other direction, i.e. 𝛼(𝑚+1)−𝑛𝜁 < 𝛼 we observe that since 𝛽 - 𝜁 we have
0 < 𝑏 = 𝑟𝜁 −𝑚𝛽. We know that 𝜁 < 𝛼 and

𝜁 < 𝛼𝑏⇒ 𝜁

𝛼
< 𝑏

⇒ 0 < 𝑏− 𝜁

𝛼

⇒ 𝑚𝛽 < 𝑚𝛽 + 𝑏− 𝜁

𝛼

⇒ 𝑚𝛽 < 𝑟𝜁 − 𝜁

𝛼

⇒ 𝑚𝛽 <
(𝑛𝛽 + 1)𝜁

𝛼
− 𝜁

𝛼

⇒ 𝑚𝛽 <
𝑛𝛽𝜁

𝛼

⇒ 𝑚 <
𝑛𝜁

𝛼
⇒ 𝛼𝑚 < 𝑛𝜁

⇒ 𝛼𝑚+ 𝛼 < 𝑛𝜁 + 𝛼

⇒ 𝛼(𝑚+ 1)− 𝑛𝜁 < 𝛼.

� of statement 3.

Corollary 1. From Proposition 4 and Lemma 4 we have that 𝜌𝐴 =
𝑃𝛼,𝛽

(1−𝑧−𝛽
1 𝑧𝛼2 )(1−𝑧1𝑧𝛼3 )

.

�
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The second summand

We want to show that 𝜌𝐵 =
𝑄𝛼,𝛽+1−𝑧−𝛽

1 𝑧𝛼2
(1−𝑧−𝛽

1 𝑧𝛼2 )(1−𝑧1𝑧𝛼3 )
.

Proposition 5.

𝜌Π(𝐵) = 𝑄𝛼,𝛽 + 1− 𝑧−𝛽
1 𝑧𝛼2 =

𝛽−1∑︁
𝑖=0

𝑏𝑖𝑧
𝑖
3 + 1− 𝑧−𝛽

1 𝑧𝛼2

for

𝑏𝑖 =

{︃
𝑧−𝛽
1 𝑧𝛼2 if 𝑖 = 0,

𝑧
rmd((𝛼−1 mod 𝛽)𝑖,𝛽)−𝛽
1 𝑧

rmd((𝛽−1 mod 𝛼)𝑖,𝛼)
2 otherwise.

�

Proof. Since Ξ𝜁 = ∅ for 𝜁 ≥ 𝛽, we need to prove the following three statements

1. 𝜌Ξ0
(z) = 1 and 𝑏0 = 𝑧−𝛽

1 𝑧𝛼2 .

2. If 𝜁 ∈ {1, 2, . . . , 𝛽 − 1}, then 𝜌Ξ𝜁
(z) = 𝑎𝜁𝑧

𝜁
3 .

The proof is analogous to that of Proposition 4⎧⎪⎨⎪⎩
𝑥1 = −𝑘𝛽
𝑥2 = 𝑙 + 𝑘𝛼

0 = 𝑙𝛽

𝑙=0−−→

{︃
𝑘𝛽 ∈ Z
𝑘𝛼 ∈ Z

∃𝑛∈N−−−→

{︃
𝑘𝛽 ∈ Z
𝑘 = 𝑛

𝛼

−→

{︃
𝑛𝛽
𝛼 ∈ Z
𝑘 = 𝑛

𝛼

−→

{︃
𝛼|𝑛 or 𝛼|𝛽
𝑘 = 𝑛

𝛼

gcd(𝛼,𝛽)=1−−−−−−−→

{︃
𝛼|𝑛
𝑛
𝛼 = 𝑘 ∈ [0, 1)

Thus 𝑘 = 0, 𝑥1 = 𝑥2 = 𝑥3 = 0 and 𝜌Ξ0
= 1.

By the definition of 𝑏0 we have that 𝑏0 = 𝑧−𝛽
1 𝑧𝛼2 .

� of statement 1.
We need to show that Π𝜁 = Ξ𝜁 for 𝜁 ∈ {1, 2, . . . , 𝛽 − 1}.
From the analysis in the proof of Proposition 4, we know that

(rmd((𝛼−1 mod 𝛽)𝜁, 𝛽)− 𝛽, rmd((𝛽−1 mod 𝛼)𝜁, 𝛼), 𝜁) ∈ Π𝜁

for 𝜁 ∈ {0, 1, . . . , 𝛽 − 1} ⊂ {0, 1, . . . , 𝛼− 1} .
The proof follows from the fact that 𝑥1 =

𝜁−𝑥2𝛽
𝛼 ⇔ 𝑥2 =

𝜁−𝑥1𝛼
𝛽 .

� of statement 2.

Now the proof of Theorem 3.2 follows from Proposition 4, Proposition 5 and consid-
ering the signs in the two summands of (3.10).
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