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Abstract

This thesis deals with the construction and analysis of efficient solution methods for a class of opti-
mization problems with constraints in terms of partial differential equations (PDEs). In detail, we
consider the following three optimal control problems with a quadratic cost functional and a linear
PDE-constraint, namely the distributed optimal control of elliptic equations, the distributed optimal
control of multiharmonic-parabolic equations and the distributed optimal control of the Stokes equa-
tions. Those three problems appear in various applications in practice: the optimal control of elliptic
equations arises in the field of optimal stationary heating, the optimal control of multiharmonic-
parabolic equations arises in the field of control of eddy current problems in electromagnetics and the
optimal control of the Stokes equations arises in the field of velocity tracking in flow control. Their
efficient and fast solution is of prime importance.
Usually, in practical problems the control variable and the state variable have to fulfill various ad-
ditional conditions. In this thesis we focus on pointwise inequality constraints on the control and
Moreau-Yosida regularized constraints on the state.
These additional constraints render the resulting first-order optimality system nonlinear. In order
to cope with this nonlinearity, a primal-dual active set method is applied. It turns out that, after
discretization, the resulting linear system to be solved in each step of this linearization method
is a large scale saddle point system that depends on various model and discretization parameters.
This parameter-dependence badly influences the convergence of iterative methods if directly applied
to those systems. Therefore, in order to obtain fast solution methods, appropriate preconditioners
are needed, that improve the spectral properties of the saddle point systems with respect to the
parameter-dependencies and are efficiently realizable.
The main focus of this thesis is the construction and analysis of such efficient preconditioners for the
three mentioned problem classes. For each of the three model problems, we propose preconditioners
and compare them with other preconditioners available in literature.
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Kurzfassung

Diese Arbeit beschäftigt sich mit der Konstruktion und Analyse von effizienten Lösungsverfahren für
eine Gruppe von Optimierungsproblemen mit Nebenbedingungen in Form von partiellen Differential-
gleichungen (PDEs). Im Detail behandeln wir die folgenden drei optimalen Steuerungsprobleme mit
quadratischem Zielfunktional und linearen PDE-Nebenbedingungen: das optimale Steuerungsproblem
für elliptische Gleichungen, das optimale Steuerungsproblem für multiharmonisch-parabolische Glei-
chungen und das optimale Steuerungsproblem für die Stokes Gleichungen. Diese drei Probleme treten
häufig in verschiedensten Anwendungen in der Praxis auf: das optimale Steuerungsproblem für ellip-
tische Gleichungen im Bereich von stationären Aufheizproblemen, das optimale Steuerungsproblem
für multiharmonisch-parabolische Gleichungen im Bereich der Steuerung von Wirbelstromproblemen
in der Elektromagnetik und das optimale Steuerungsproblem für die Stokes Gleichungen im Bereich
der Flusssteuerung. Die effiziente Lösung dieser Probleme ist von größter Bedeutung.
In praktischen Anwendungen müssen die Zustandsvariable und die Steuerungsvariable üblicherweise
zusätzliche Bedingungen erfüllen. In dieser Arbeit liegt der Fokus auf punktweise Ungleichungsbedin-
gungen an die Steuerung und Moreau-Yosida regularisierte Bedingungen an den Zustand.
Diese zusätzlichen Nebenbedingungen haben die Nichtlinearität des resultierenden Optimalitätssy-
stems zur Folge. Für die Linearisierung dieser Systeme verwenden wir eine primal-duale aktive Men-
genstrategie. Es wird sich herausstellen, dass die in jedem Schritt dieser Mengenstrategie zu lösenden
linearen Systeme, großdimensionierte Sattelpunktsysteme sind, die von mehreren Modell - und Dis-
kretisierungsparametern abhängen. Dies hat zur Folge, dass die Konvergenz iterativer Verfahren zur
Lösung dieser Systeme von eben diesen Parametern beeinflusst wird. Um also schnelle Lösungsver-
fahren erlangen zu können, benötigen wir entsprechende Vorkonditionierer, welche die Spektraleigen-
schaften der Sattelpunktsysteme in Bezug auf die Parameterabhängigkeit verbessern. Zusätzlich soll
eine effiziente praktische Realisierung der Vorkonditionierer gewährleistet sein.
Das Hauptaugenmerk dieser Arbeit liegt auf der Konstruktion und Analyse eben solcher effizienten
Vorkonditionierer für die drei erwähnten Modellprobleme. In jedem der drei erwähnten Probleme
werden wir Vorkonditionierer präsentieren und diese mit anderen, in der Literatur verfügbaren, Vor-
konditionierern vergleichen.
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Chapter 1

Introduction

The mathematical modeling of complex processes and systems arising in natural sciences and other
disciplines typically results in partial differential equations (PDEs) or systems of PDEs. In many
applications, the ultimate goal is not only the modeling of such processes, but rather their optimization
or optimal control. This is where PDE-constrained optimization comes into play. PDE-constrained
optimization problems are characterized by a cost functional, that has to be minimized, and a PDE
(or a system of PDEs) subject to which the minimization procedure has to take place. In this thesis,
we focus on optimal control problems with a quadratic tracking type cost functional, see, e.g., [66, 96].
There the aim is to steer the state variable, say y, to some certain given desired value and control
this by some cost term, i.e., a term that reflects the costs of a control variable, say u. Additionally,
the PDE-constraint, in general called the state equation, which models the underlying process to be
controlled, couples the state and the control variable. Usually, the control variable and/or the state
variable should satisfy additional conditions. Some examples of optimal control problems are the
optimal control of heating processes, fluid flows, wave propagation and deformation of media, for a
wide range of additional examples we refer to the books [16, 43, 54, 96]. In this thesis, we focus on
optimal control problems with linear state equations.
Among many techniques for imposing constraints on the control and state, like requiring that some
norm of the control or state be bounded by a given constant, cf. [44], we consider pointwise inequality
constraints, see, e.g., [11, 12, 31, 33, 49, 51, 53, 56, 64] as a by far not exhaustive list, where optimal
control problems with inequality constraints are studied. In contrast to problems with pointwise
inequality constraints on the control, problems with pointwise state constraints feature regularity
problems that have a strong impact on the solution techniques applied for their solving, see [27] for
details. In order to overcome this problem, several regularizations have been introduced in literature.
In [71] the pure state constraints are regularized by mixed control-state constraints. We follow
an approach introduced in [56] and used in, e.g., [10, 32, 49, 52] where the state constraints are
regularized using the Moreau-Yosida penalty function, i.e., the inequality constraints on the state are
incorporated into the cost functional using a special regularization technique.
In order to solve such optimization problems, there are basically two categories of methods avail-
able. The first ones are the so-called sensitivity- and adjoint-based optimization methods, cf. [43].
These methods require the gradient of the functional to be minimized with respect to the involved
parameters and the imposed constraints. The gradient can either be computed using sensitivities
or adjoint equations. The second category of methods available are the so-called one-shot methods.
These methods are based on computing the solution of the optimization problem via the first-order
optimality conditions, also just called optimality system or Karush-Kuhn-Tucker (KKT) system. For
an overview of solution methods see, e.g., [43, 48], for more details see [38, 75]. We focus on solving
the optimal control problems using the KKT system.
In order to tackle the KKT system numerically there are basically two approaches available: the
optimize-then-discretize approach and the discretize-then-optimize approach. In the optimize-then-
discretize approach one first computes the infinite-dimensional KKT system and then discretizes this
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2 CHAPTER 1. INTRODUCTION

system. In the latter approach, one first discretizes the optimal control problem and then computes
the finite-dimensional optimality system. As discussed in [29], the first technique leads to a linear
system that is strongly consistent, i.e., the discretized system is also satisfied if the discretized variables
are replaced by the corresponding continuous ones. In contrast to that, the second technique leads
to a linear system that is not strongly consistent in general. In this thesis we consider the optimize-
then-discretize approach.
In addition to the state y and the control u the first-order optimality conditions involve extra un-
knowns: a Lagrange multiplier, say p, usually called the dual variable or adjoint state and, if inequality
constraints on the control are imposed, another Lagrange multiplier, say ξ. Note that no additional
Lagrange multipliers for the pointwise inequality constraints on the state are introduced, since those
constraints are incorporated into the cost functional using the Moreau-Yosida approach.
In the control constrained and/or regularized state constrained case, the optimality system attains a
nonlinear structure, see, e.g., [66, 96]. In order to linearize this system, usually Newton-type methods
are applied. We consider a primal-dual active set method as introduced in [11], which is, as shown
in [53], equivalent to a semi-smooth Newton method. Applying this method results in solving a linear
saddle point system at each step. Note that, if no additional constraints on the control and state are
imposed, the optimality system is linear and of saddle point form right from the beginning.
In the model problems of consideration in this thesis, we always reduce the linearized (or linear) opti-
mality systems such that the only unknowns left are the state variable and the adjoint state variable,
i.e., all the other unknowns like the control and additional Lagrange parameters are eliminated. The
resulting linear system attains again a saddle point structure and is called the reduced form of the
linearized (or linear) optimality system. After discretization we end up with large scale linear saddle
point problems and, therefore, efficient solvers for such systems are needed.
The field of optimal control is by far not the only mathematical area, where linear saddle point
systems are of importance. Saddle point problems arise in a lot of other mathematical fields, some
examples are linear elasticity, cf. [17], fluid dynamics, cf. [97], and mixed formulations of elliptic
boundary value problems, cf. [24].
The construction of efficient iterative solvers for (discretized) saddle point problems is, due to their
indefiniteness and bad spectral properties, a challenging topic and subject to discussion in many books
and articles in literature. For a detailed discussion of solution methods for saddle point problems we
refer to the survey article [8].
As a first iterative technique we want to mention multigrid methods. Multigrid techniques are well
developed for elliptic problems, see [19, 47]. They have gained growing interest also as all-at-once
techniques for saddle point problems, see, e.g., [13, 14, 15, 89, 92, 93, 94]. The key issue in multigrid
methods is the construction of appropriate smoothers.
Another iterative method specially designed for saddle point problems is the Uzawa method and
deduced versions, see [2]. Usually, such an iterative method is accelerated by a Krylov subspace
method, see, e.g., [86] for a comprehensive introduction to these methods. The most popular and
best-understood Krylov subspace method is the conjugate gradient (CG) method, cf. [50], designed
for symmetric and positive definite problems. There are generalizations of CG, like the Bramble
Pasciak CG, cf. [20], and the variants introduced in [90] and [84], which, if the needed ingredients are
appropriately chosen, work for saddle point problems. Alternative Krylov subspace methods are the
minimal residual (MinRes) method, cf. [80], which works for symmetric and nonsingular problems
and the generalized minimal residual (GMRes) method, cf. [87], designed for general nonsingular
problems.
In order to obtain efficient solvers involving Krylov subspace methods, these methods are usually
combined with a preconditioning strategy that improves the spectral properties of the saddle point
matrix. These two ingredients can be balanced in the following way: the preconditioner is constructed
such that it tackles certain parts of the difficulties and the Krylov subspace method is modified in
such a way that it tackles the remaining difficulties. Such an approach is presented in [78]. Therein
it is assumed that a quasi-optimal preconditioner is available, where quasi-optimal means that the
preconditioner only partially improves the spectral properties, i.e., it produces well-clustered spectra,
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except for a few isolated eigenvalues which may tend to approach zero. Such outliers usually affect
the convergence of any Krylov subspace solver in a bad way. In [78] it is shown that this bad influence
can be disabled using the spectral information associated with the outliers and injecting it, by means
of an augmentation procedure, into the Krylov subspace solver.
Our focus is not on such balanced approaches, instead we consider standard Krylov subspace methods
without any modifications and leave all the difficulties to tackle to the construction of preconditioners.
There are many techniques around in order to construct efficient preconditioners for linear saddle point
systems, see, e.g., [8].
A widely-used preconditioner construction technique is the so-called operator preconditioning as dis-
cussed in [55] and used in, e.g., [6, 49, 74, 88]. There, symmetric and positive definite block-diagonal
preconditioners are constructed based on exploiting the mapping properties of the involved opera-
tors in Sobolev spaces equipped with appropriate norms. It is clear that beside the standard norms
in the Sobolev spaces also non-standard norms can be used. A technique for the construction of
non-standard norms that result in efficient preconditioners is presented in [99], where characterizing
conditions on these norms are formulated.
Another popular preconditioning strategy is the Schur complement preconditioning which can be
applied completely on the algebraic level under certain restrictions. Due to the analysis in [65, 72],
exact Schur complement preconditioners achieve perfect spectral properties, but, in general, it is
inefficient to work with the exact Schur complements, since their inverses applied to a vector are very
expensive to compute. Therefore, one seeks approximations of the Schur complement that should
keep the nice spectral properties, but their inversion should be inexpensive. Typical examples of such
approximations are block-diagonal preconditioners see, e.g., [85, 91], block-triangular preconditioners
see, e.g., [22, 36], and symmetric indefinite preconditioners see, e.g., [7, 35].
Another strategy for constructing preconditioners for saddle point systems, which fits into the general
concept of operator preconditioning, is the so-called operator interpolation technique which is used
in [70] and [99]. There the idea is as follows: if there are two preconditioners available then the
interpolation between these two yields a family of preconditioners, where within this family one may
be able to find a particular one, that fits best with respect to some certain criteria.
The aim of this thesis is to contribute to the construction and analysis of efficient preconditioners
for the following three optimal control problem classes: the distributed optimal control of elliptic
equations, the distributed optimal control of multiharmonic-parabolic equations and the distributed
optimal control of the Stokes equations. In each of the three problem classes we additionally consider
pointwise inequality constraints on the control and Moreau-Yosida regularized state constraints. We
focus on symmetric and positive definite block-diagonal preconditioners and our Krylov subspace
method of choice is the MinRes method.
For a distributed elliptic optimal control problem without constraints on the control and state, efficient
symmetric and positive definite block-diagonal preconditioners are proposed in [83, 90]. In [90] the
preconditioner is constructed based on operator preconditioning with non-standard norms. In [83] an
approximation of the Schur complement preconditioner is constructed based on a suitable and easier
to invert factorization of the Schur complement. Efficient approximations of the Schur complement
for optimal control problems with pointwise inequality constraints on the control and Moreau-Yosida
regularized state constraints are proposed in [88] and, for a distributed elliptic optimal control problem
with Moreau-Yosida regularization, in [82]. For an elliptic boundary optimal control problem an
efficient approximation of the Schur complement is presented in [41], where multilevel methods for
negative Sobolev norms that are associated with the Schur complement matrix are used. An efficient
preconditioner for the distributed optimal control problem of the Stokes equations without constraints
on the control and state is derived in [99]. It is constructed based on operator preconditioning with
non-standard norms.
The proposed preconditioners for the three problem classes with additional constraints on the control
or state are constructed based on the mapping properties of the involved operators in Sobolev spaces
equipped with non-standard norms, that are motivated by already existing preconditioners for related
model problems.
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For each of the three model problems, we compare several symmetric and positive definite block-
diagonal preconditioners used in a MinRes setting with respect to their improvement of the spectral
properties of the saddle point matrix and their efficiency in practical realization. In detail, depending
on the considered problem class, we compare our proposed preconditioners with preconditioners
resulting from the operator preconditioning technique with standard norms and already available
Schur complement approximation preconditioners.

Organization of the thesis Chapter 2 provides the basic mathematical concepts for the thesis.
Therein we introduce basic operators, Sobolev spaces and the functional analytic background needed
in the next chapters. We introduce abstract variational methods including existence theory, the basics
of finite elements and give a brief introduction in optimal control problems.

Chapter 3 is devoted to iterative solvers and preconditioning. Therein we report on solution methods
for saddle point problems. We discuss the idea of preconditioning and give a brief introduction to
preconditioned Krylov subspace methods. The second part of this chapter is devoted to the con-
struction of preconditioners for saddle point systems. We focus on symmetric and positive definite
block-diagonal preconditioners and discuss how their construction can be traced back to the choice
of norms for a well-posedness result. Among the large class of preconditioning strategies available,
we consider the following three approaches: the operator preconditioning technique, the Schur com-
plement technique and the interpolation technique.

The central part of this thesis are Chapters 4, 5 and 6. Therein we discuss the three optimal control
model problems of interest: the distributed optimal control of elliptic equations, the distributed op-
timal control of multiharmonic-parabolic equations and the distributed optimal control of the Stokes
equations, respectively. After formulating the problem, we compute the first-order optimality con-
ditions and derive the reduced (discretized) linear saddle point system. We propose preconditioners
for each of the three problem classes and compare them with preconditioners resulting from the
operator preconditioning technique with standard norms and already available Schur complement
approximation preconditioners.

In Chapter 7 we present a series of numerical experiments for each of the three considered model
problems including a practical comparison of the presented preconditioners.

Finally, in Chapter 8, we end with some conclusions.

Parts of this work have already been published by the author and co-authors in reviewed international
journal papers or proceedings of international conferences:

• Parts of Chapter 5 have been addressed in [57, 58].

• Parts of Chapter 6 have been addressed in [59].



Chapter 2

Preliminaries

This chapter provides the basic mathematical concepts for the thesis. First, in Section 2.1, we
introduce the basic operators. Then, in Section 2.2, we give an introduction to Sobolev spaces and
provide the functional analytic background that is necessary for the analysis of partial differential
equations. After discussing the concept of variational methods including existence and uniqueness
results in Section 2.3, we turn to the discretization in Section 2.4. Therein, the Galerkin finite element
method (FEM) is introduced. Finally, Section 2.5 is devoted to optimal control problems, including
results for existence and uniqueness and first-order optimality conditions. Additionally, we introduce
the primal-dual active set method as a method for linearizing nonlinear optimality systems.
Throughout the thesis, we do not distinguish between scalars and vectors in characters. Moreover,
let Ω ⊂ Rd, d ∈ {1, 2, 3}, be an open and bounded domain with Lipschitz continuous boundary Γ.

2.1 Basic Operators

For two vectors u = (u1, · · · , ud)T ∈ Rd and v = (v1, · · · , vd)T ∈ Rd the scalar product is defined as

(u, v)l2 := u · v =

d∑
i=1

uivi ∈ R.

For a scalar field u : Ω→ R the gradient operator is defined as

∇u :=

(
∂u

∂x1
, · · · , ∂u

∂xd

)T
∈ Rd,

and the Laplace operator as

∆u :=

d∑
i=1

∂2u

∂x2
i

∈ R.

For a vector field u : Ω→ Rd, u = (u1, · · · , ud)T , the gradient operator is defined as

∇u :=


∂u1

∂x1
· · · ∂u1

∂xd
... · · ·

...
∂ud
∂x1

· · · ∂ud
∂xd

 ∈ Rd×d,

the divergence operator as

div u := ∇ · u =

d∑
i=1

∂ui
∂xi
∈ R,

5
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and the vector Laplace operator as

∆u := (∆u1, · · · ,∆ud)T ∈ Rd.

2.2 Function spaces
A comprehensive introduction to Sobolev spaces can be found in [1].

Linear operators and dual spaces Let X and Y be normed spaces with norms ‖ · ‖X and ‖ · ‖Y .
The set of all linear and bounded operators from X to Y is denoted by L(X,Y ).
For a Banach space Z with norm ‖ · ‖Z the space Z∗ := L(Z,R) is called dual space and is equipped
with the norm

‖u∗‖Z∗ := sup
06=u∈Z

〈u∗, u〉Z∗,Z
‖u‖Z

,

where 〈u∗, u〉Z∗,Z is the duality pairing of Z∗ and Z which is given by

〈u∗, u〉Z∗,Z = u∗(u).

Let Z1 and Z2 be Banach spaces. For an operator T ∈ L(Z1, Z
∗
2 ) we define its dual operator

T ∗ ∈ L(Z2, Z
∗
1 ) by

〈T ∗v, u〉Z∗1 ,Z1
= 〈Tu, v〉Z∗2 ,Z2

, ∀u ∈ Z1,∀v ∈ Z2.

Let T1, T2 ∈ L(Z1, Z
∗
1 ) be two self-adjoint operators, i.e., T ∗1 = T1 and T ∗2 = T2. Then T1 and T2 are

called spectrally equivalent, in notation T1 ∼ T2, if and only if

c〈T2u, u〉Z∗1 ,Z1 ≤ 〈T1u, u〉Z∗1 ,Z1 ≤ c〈T2u, u〉Z∗1 ,Z1 , ∀u ∈ Z1,

with constants c, c ≥ 0.

Lebesgue and Sobolev spaces The Lebesgue space Lp(Ω) for p ∈ [1,∞] is defined as follows

Lp(Ω) := {u : Ω→ R Lebesgue measurable : ‖u‖Lp <∞} ,

with the norm

‖u‖Lp :=


(∫

Ω
|u(x)|p dx

)1/p for p ∈ [1,∞),

ess sup
x∈Ω

|u(x)| for p =∞.

In the case p = 2 this is a Hilbert space with inner product

(u, v)L2(Ω) :=

∫
Ω

u(x)v(x) dx.

In order to define the notion of weak derivatives, we need the space of locally integrable functions

Lploc(Ω) := {u : Ω→ R Lebesgue measurable : u ∈ Lp(K), ∀K ⊂ Ω, K compact} ,

and the notion of the |α|-th order partial derivative Dα of a function u for a multi-index α =

(α1, α2, ..., αd) ∈ Nd0 with order |α| :=
d∑
i=1

αi

Dαu(x) :=
∂|α|u

∂xα1
1 · · · ∂x

αd
d

.
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The α-th weak derivative of a function u ∈ L1
loc(Ω) is now defined as follows: if there exists a function

v ∈ L1
loc(Ω) such that∫

Ω

v(x)φ(x) dx = (−1)
|α|
∫

Ω

u(x)Dαφ(x) dx, ∀φ ∈ C∞0 (Ω),

then Dαu := v is called the α-th weak derivative of u. Here C∞0 (Ω) denotes the space of infinitely
differentiable functions on Ω which have compact support in Ω.
The Sobolev space W k

p (Ω) for k ∈ N0 and p ∈ [1,∞] is now defined as

W k
p (Ω) := {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω), ∀|α| ≤ k} ,

equipped with the following norm

‖u‖Wk
p

:=


( ∑
|α|≤k

‖Dαu‖pLp

)1/p

for p ∈ [1,∞),

max
|α|≤k

‖Dαu‖L∞ for p =∞.

The Sobolev seminorm |u|Wk
p
is given by

|u|Wk
p

:=


( ∑
|α|=k

‖Dαu‖pLp

)1/p

for p ∈ [1,∞),

max
|α|=k

‖Dαu‖L∞ for p =∞,

i.e., the Lp norms of the highest derivatives. For the case p = 2 the space W k
2 (Ω) is a Hilbert space,

also denoted by Hk(Ω), with inner product

(u, v)Hk :=
∑
|α|≤k

(Dαu,Dαv)L2(Ω) .

Among the whole family of spaces introduced, the Hilbert spaces L2(Ω) and H1(Ω) are of particular
importance in the thesis.
In order to incorporate homogeneous boundary conditions in the function space H1(Ω) we define

the space H1
0 (Ω) = C∞0 (Ω)

‖·‖H1(Ω) , i.e., the closure of C∞0 (Ω) in H1(Ω). Using the trace operator
γ0 : H1(Ω)→ H1/2(Γ) , where Ω denotes the closure of Ω and, for 0 < s < 1, Hs(Γ) is defined by

Hs(Γ) :=
{
u ∈ L2(Γ) : ‖u‖Hs(Γ) <∞

}
,

with

‖u‖Hs(Γ) :=

(
‖u‖L2(Γ) +

∫
Γ

∫
Γ

|u(x)− u(y)|2

|x− y|d−1+2s
dsxdsy

)1/2

,

the following characterization holds

H1
0 (Ω) =

{
u ∈ H1(Ω) : γ0u := u|Γ = 0

}
.

This is again a Hilbert space and equipped with the inner product

(u, v)H1
0 (Ω) = (∇u,∇v)L2(Ω) ,

and the associated norm ‖u‖H1
0 (Ω) = |u|H1(Ω). This norm is spectrally equivalent to the standard

Sobolev norm ‖ · ‖H1(Ω). The dual space of H1
0 (Ω) is denoted by H−1(Ω).
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For vector-valued functions u : Ω → Rd, u = (u1, · · · , ud)T , the Hilbert space L2(Ω)d is equipped
with the inner product

(u, v)L2(Ω) =

d∑
i=1

(ui, vi)L2(Ω) ,

and the associated norm ‖u‖L2(Ω) =
√

(u, u)
L2(Ω)

. Note that, for ease of notation, here and in the
sequel we use the symbols (·, ·)L2(Ω) and ‖ · ‖L2(Ω) not only for scalar functions but also for vector-
valued functions and, in addition, also for matrix-valued functions: for two matrices σ, τ ∈ L2(Ω)d×d

with components σij and τij the inner product is given by

(σ, τ)L2(Ω) =

d∑
i,j=1

(σij , τij)L2(Ω),

with associated norm ‖σ‖L2(Ω) =
√

(σ, σ)
L2(Ω)

.
The Hilbert space H1(Ω)d is equipped with the inner product

(u, v)H1(Ω) = (∇u,∇v)L2(Ω) + (u, v)L2(Ω) ,

and with the seminorm |u|H1(Ω) and norm ‖u‖H1(Ω) given by

|u|2H1(Ω) = (∇u,∇u)L2(Ω), ‖u‖2H1(Ω) = |u|2H1(Ω) + ‖u‖2L2(Ω),

where, as for L2(Ω), we use the symbols (·, ·)H1(Ω), | · |H1(Ω) and ‖ · ‖H1(Ω) also for the vector-valued
case. In order to incorporate homogeneous boundary conditions in the function space H1(Ω)d we
define the Hilbert space H1

0 (Ω)d as vector-valued version of the space H1
0 (Ω) in the scalar case. Its

dual space is denoted by H−1(Ω)d. For the norm in H−1(Ω)d we use the same symbol as in the scalar
case, i.e., ‖ · ‖H−1(Ω).
We end this section with two important inequalities, that are essential for the analysis of the varia-
tional problems later on: the Friedrichs’ inequality and the Lemma of Nečas.

Lemma 2.1 (Friedrichs’ inequality). Let Ω be a bounded Lipschitz domain and let ΓD ⊂ Γ with
positive surface measure. Then there exists a constant cF > 0 such that

‖u‖2L2(Ω) ≤ cF |u|
2
H1(Ω), ∀u ∈ H1(Ω)d with u|ΓD = 0. (2.1)

Proof. See [39, 95].

Lemma 2.2 (Nečas). Let Ω be a bounded Lipschitz domain. Then there exists a constant cN > 0
such that

cN‖p‖L2(Ω) ≤ ‖p‖H−1(Ω) + ‖∇p‖H−1(Ω), ∀p ∈ L2(Ω). (2.2)

Proof. See [73], under stronger assumptions also [34].

Now we have the following consequence of Lemma 2.2:

Theorem 2.3. Let Ω be a bounded Lipschitz domain. Then there exists a constant cÑ > 0 such that

cÑ‖p‖L2(Ω) ≤ ‖∇p‖H−1(Ω), ∀p ∈ L2
0(Ω), (2.3)

where the space L2
0(Ω) is defined as

L2
0(Ω) :=

{
p ∈ L2(Ω) :

∫
Ω

p(x) dx = 0

}
.

Proof. See [34].
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2.3 Variational methods
The main purpose of this section is to provide existence and uniqueness results for abstract variational
problems.

2.3.1 General setting and existence results
Let X be a real Hilbert space with inner product (·, ·)X and associated norm ‖ · ‖X =

√
(·, ·)X . We

consider the following abstract variational problem on X ×X: find x ∈ X such that

B(x, y) = F(y), ∀y ∈ X, (2.4)

with a bilinear form B : X × X → R and a linear form F ∈ X∗. We associate a linear operator
A ∈ L(X,X∗) to the bilinear form B, given by

〈Ax, y〉X∗,X = B(x, y). (2.5)

Then problem (2.4) reads in operator notation

Ax = F , in X∗. (2.6)

The following result is due to Babuška and Aziz and guarantees existence and uniqueness of a solution
of (2.6) and, consequently, (2.4):

Theorem 2.4 (Babuška and Aziz). Let X be a real Hilbert space, A ∈ L(X,X∗) be a linear operator
and F ∈ X∗ be a linear form. Assume that there exist constants c, c > 0 such that the following
condition is satisfied

c‖z‖X ≤ ‖Az‖X∗ ≤ c‖z‖X , ∀z ∈ X. (2.7)

Additionally, assume that

KerA∗ = {0} , (2.8)

where KerA∗ := {y ∈ X : A∗y = 0}. Then the problem (2.6) has a unique solution x ∈ X and the
following estimate holds

1

c
‖F‖X∗ ≤ ‖x‖X ≤

1

c
‖F‖X∗ . (2.9)

Proof. See [3, 4].

Condition (2.7) is equivalent to the following two conditions: the inf-sup condition

inf
06=z∈X

sup
0 6=y∈X

〈Az, y〉X∗,X
‖z‖X‖y‖X

≥ c,

and the sup-sup condition

sup
06=z∈X

sup
0 6=y∈X

〈Az, y〉X∗,X
‖z‖X‖y‖X

≤ c.

In the case that the bilinear form B is symmetric, i.e.,

B(x, y) = B(y, x), ∀x, y ∈ X,

Theorem 2.4 reads:
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Corollary 2.5 (Babuška and Aziz in the symmetric case). Let X be a real Hilbert space, A ∈
L(X,X∗) be a self-adjoint linear operator and F ∈ X∗ be a linear form. Assume that there exist
constants c, c > 0 such that the inf-sup condition and the sup-sup condition are satisfied, i.e.,

c‖z‖X ≤ ‖Az‖X∗ ≤ c‖z‖X , ∀z ∈ X. (2.10)

Then the problem (2.6) has a unique solution x ∈ X and the following estimate holds

1

c
‖F‖X∗ ≤ ‖x‖X ≤

1

c
‖F‖X∗ . (2.11)

Proof. Follows immediately from Theorem 2.4.

So far, we considered general variational problems. Now we turn to symmetric mixed variational
problems. Therefore, let V and Q be Hilbert spaces with inner products (·, ·)V and (·, ·)Q and
associated norms ‖ · ‖V =

√
(·, ·)V and ‖ · ‖Q =

√
(·, ·)Q. Consider the following mixed variational

problem: find u ∈ V and p ∈ Q such that{
a(u, v) + b(v, p) = f(v), ∀v ∈ V,
b(u, q)− c(p, q) = g(q), ∀q ∈ Q,

(2.12)

where a(·, ·) : V × V → R, b(·, ·) : V ×Q→ R and c(·, ·) : Q×Q→ R are bilinear forms and f ∈ V ∗
and g ∈ Q∗ are linear forms. Additionally, we assume a(·, ·) and c(·, ·) to be non-negative, i.e.,

a(v, v) ≥ 0, ∀v ∈ V, c(q, q) ≥ 0, ∀q ∈ Q,

and symmetric.

Remark 2.6. Due to the assumption that a(·, ·) and c(·, ·) are symmetric and non-negative, the mixed
variational problem (2.12) can be formulated as a saddle point problem: find (u, p) ∈ V ×Q such that

L(u, q) ≤ L(u, p) ≤ L(v, p),

with the saddle function

L(v, q) =
1

2
a(v, v) + b(v, q)− 1

2
c(q, q)− f(v)− g(q).

Now, the mixed variational problem (2.12) can be reformulated as a non-mixed variational problem
as follows: let X be the product space X = V ×Q equipped with the inner product ((u, p), (v, q))X =

(u, v)V + (p, q)Q and the associated norm ‖(u, p)‖X =
√

((u, p), (u, p))X . Then the non-mixed varia-
tional problem reads: find x = (u, p) ∈ X such that

B(x, y) = F(y), ∀y = (v, q) ∈ X, (2.13)

with

B(z, y) = a(w, v) + b(v, r) + b(w, q)− c(r, q), F(y) = f(v) + g(q), (2.14)

for y = (v, q) and z = (w, r). As in (2.5) we associate a linear operator A ∈ L(X,X∗) to the
bilinear form B and, therefore, (2.13) can be rewritten in operator notation as in (2.6). For variational
problems of this form, the following result due to Zulehner provides necessary and sufficient conditions
for (2.10):

Theorem 2.7 (Zulehner). Assume that there exist constants cv, cv, cq, cq > 0 such that

c2v‖w‖2V ≤ sup
0 6=v∈V

a(w, v)2

‖v‖2V
+ sup

06=q∈Q

b(w, q)2

‖q‖2Q
≤ c2v‖w‖2V , ∀w ∈ V, (2.15)
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and

c2q‖r‖2Q ≤ sup
06=q∈Q

c(r, q)2

‖q‖2Q
+ sup

06=v∈V

b(v, r)2

‖v‖2V
≤ c2q‖r‖2Q, ∀r ∈ Q. (2.16)

Then (2.10) is satisfied with constants c, c > 0 that depend only on cv, cv, cq, cq:

c =
3−
√

5

4

min
{
c2v, c

2
q

}
max {cv, cq}

, c =
√

2 max{cv, cq}. (2.17)

And, vice versa, if (2.10) is satisfied with constants c, c > 0, then the estimates (2.15) and (2.16)
are satisfied with constants cv, cv, cq, cq > 0 that depend only on c, c:

cv = cq = c, cv = cq = c. (2.18)

Proof. See [99].

The existence and uniqueness of a solution of variational problems of the form (2.13) is an immediate
consequence of Theorem 2.7 and Corollary 2.5 and is summarized in the following corollary:

Corollary 2.8. Let V and Q be real Hilbert spaces and let X be the product space X = V × Q.
Furthermore, let B(·, ·) : X × X → R and F ∈ X∗ be as in (2.14). Let A ∈ L(X,X∗) be the
associated linear operator to the bilinear form B. Assume that there exist constants cv, cv, cq, cq > 0
such that (2.15) and (2.16) are satisfied. Then (2.13) and, consequently, (2.12) has a unique solution
x = (u, p) ∈ X and the estimate (2.11) holds.

Proof. The result is an immediate consequence of Theorem 2.7 and Corollary 2.5.

The following lemma shows that the conditions (2.15) and (2.16) of Theorem 2.7 are equivalent to
two other conditions:

Lemma 2.9. 1. If there are constants γ
v
, γv > 0 such that

γ
v
‖w‖2V ≤ a(w,w) + sup

06=q∈Q

b(w, q)2

‖q‖2Q
≤ γv‖w‖2V , ∀w ∈ V, (2.19)

then (2.15) is satisfied with constants cv, cv > 0 that depend only on γ
v
, γv:

c2v = min

{
γ
v
,

1

2

}
γ
v
, c2v = max {γv, 1} γv. (2.20)

And, vice versa, if there are constants cv, cv > 0 such that (2.15) is satisfied, then (2.19) is
satisfied with constants γ

v
, γv > 0 that depend only on cv, cv:

γ
v

= min

{
1,

1

cv

}
c2v, γv = c2v +

1

4
. (2.21)

2. If there are constants γ
q
, γq > 0 such that

γ
q
‖r‖2Q ≤ c(r, r) + sup

06=v∈V

b(v, r)2

‖v‖2V
≤ γq‖r‖2Q, ∀r ∈ Q, (2.22)

then (2.16) is satisfied with constants cq, cq > 0 that depend only on γ
q
, γq:

c2q = min

{
γ
q
,

1

2

}
γ
q
, c2q = max

{
γq, 1

}
γq. (2.23)
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And, vice versa, if there are constants cq, cq > 0 such that (2.16) is satisfied, then (2.22) is
satisfied with constants γ

q
, γq > 0 that depend only on cq, cq:

γ
q

= min

{
1,

1

cq

}
c2q, γq = c2q +

1

4
. (2.24)

Proof. See [99].

As stated in [99, Remark 2], for the special case c(·, ·) = 0, Theorem 2.7 simplifies to the classical
Theorem of Brezzi:

Theorem 2.10 (Brezzi). Assume that there exist constants α1, α2, β1, β2 > 0 such that the following
conditions are satisfied:

1. Boundedness of a(·, ·):

a(w, v) ≤ α2‖w‖V ‖v‖V , ∀w, v ∈ V. (2.25)

2. Boundedness of b(·, ·):

b(v, q) ≤ β2‖v‖V ‖q‖Q, ∀v ∈ V,∀q ∈ Q. (2.26)

3. Ellipticity of a(·, ·) on the kernel of b(·, ·):

a(v, v) ≥ α1‖v‖2V , ∀v ∈ Ker b = {v ∈ V : b(v, q) = 0 ,∀q ∈ Q} . (2.27)

4. Inf-sup condition of b(·, ·):

inf
06=q∈Q

sup
06=v∈V

b(v, q)

‖v‖V ‖q‖Q
≥ β1. (2.28)

Then (2.10) is satisfied with constants c, c > 0 that depend only on α1, α2, β1, β2:

c =
α1

1 +
(
α2

β1

)2 , c =
α2 +

√
α2

2 + 4β2
2

2
. (2.29)

Proof. See [24, 25] for the classical result; the stated improved estimates have been derived in [63].

The existence and uniqueness of a solution of variational problems of the form (2.13) with c(·, ·) = 0 is
now an immediate consequence of Theorem 2.10 and Corollary 2.5 and is summarized in the following
corollary:

Corollary 2.11. Let V and Q be real Hilbert spaces and let X be the product space X = V × Q.
Furthermore, let B(·, ·) : X ×X → R and F ∈ X∗ be as in (2.14) with c(·, ·) = 0. Let A ∈ L(X,X∗)
be the associated linear operator to the bilinear form B. Assume that there exist constants α1, α2,
β1, β2 > 0 such that (2.25)-(2.28) is satisfied. Then (2.13) and, consequently, (2.12) has a unique
solution x = (u, p) ∈ X and the estimate (2.11) holds.

Proof. The result is an immediate consequence of Theorem 2.10 and Corollary 2.5.

2.3.2 Examples
In this subsection we discuss the existence and uniqueness of a solution for three different problem
classes: an elliptic problem, a multiharmonic-parabolic problem and the Stokes problem. Those three
act as state equations in the considered optimal control model problems later on.
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The elliptic problem We consider the Poisson equation in the domain Ω with homogeneous
Dirichlet boundary conditions, which is given by{

−∆y = u, in Ω,

y = 0, on Γ,
(2.30)

with y : Ω→ R and given right hand side u : Ω→ R.
The variational formulation (or weak formulation) is obtained by multiplying the first equation in
(2.30) with a test function z : Ω→ R, integrating over the domain Ω and applying Gauss’ Theorem.
The resulting variational problem reads: find y ∈ H1

0 (Ω) such that for given u ∈ L2(Ω)

a(y, z) = f(z), ∀z ∈ H1
0 (Ω), (2.31)

with the symmetric bilinear form

a(y, z) := (∇y,∇z)L2(Ω),

and the linear form

f(z) := (u, z)L2(Ω).

Now we have the following result, see, e.g., [17]. Note that, for later reference, we also present its
proof.

Lemma 2.12. Problem (2.36) has a unique solution that depends continuously on the data.

Proof. We have

a(y, y) = ‖y‖2H1
0 (Ω),

and, by Cauchy’s inequality,

a(y, z) ≤ ‖y‖H1
0 (Ω)‖z‖H1

0 (Ω).

Additionally, by Cauchy’s inequality and Friedrichs’ inequality we have

f(z) ≤
√
cF ‖u‖L2(Ω)‖z‖H1

0 (Ω).

Now the result follows with Corollary 2.5.

The multiharmonic-parabolic problem We consider the following time-periodic parabolic prob-
lem in the space-time domain Ω× (0, T ) with homogeneous Dirichlet boundary conditions

σ
∂

∂t
y − div (ν∇y) = u, in Ω× (0, T ),

y = 0, on Γ× (0, T ),

y(0) = y(T ), in Ω,

(2.32)

with time period T > 0, y : Ω× (0, T )→ R and given right hand side u : Ω× (0, T )→ R.
Additionally, the two time-independent coefficients ν ∈ L∞(Ω) and σ ∈ L∞(Ω) fulfill

0 < νmin ≤ ν ≤ νmax, 0 ≤ σ ≤ σmax, a.e. in Ω.

In practical applications, e.g., for 2D eddy current problems in computational electromagnetics,
cf. [5, 6], σ(·) is the conductivity, ν(·) is the reluctivity, y represents the magnetic field in some
domain and u the given impressed current.
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Now we make the very crucial assumption that the right hand side is multiharmonic, i.e., it has the
form

u =

N∑
k=0

uck cos(kωt) + usk sin(kωt),

with some given N ∈ N, frequency ω = 2π
T and given amplitudes uck, u

s
k : Ω → R. We seek y of the

same form, i.e., we make the ansatz

y =

N∑
k=0

yck cos(kωt) + ysk sin(kωt),

with the unknowns yck, y
s
k : Ω → R. Note that this multiharmonic representation guarantees the

time-periodicity of y.
We mention that the assumption that the right hand side is multiharmonic is very reasonable in
practical applications, e.g., in electromagnetics, and has been used by many authors in different
applications for time-periodic problems , see, e.g., [5, 6, 46, 60, 62, 61, 81, 98].
Now, the variational formulation of (2.32) is obtained by inserting the multiharmonic ansatz for y
and u, multiplying the first equation by a test function z of the form

z =

N∑
k=0

zck cos(kωt) + zsk sin(kωt),

with zck, z
s
k : Ω → R and integrating over the space-time domain Ω × (0, T ). Then we make use of

the fact that the functions cos(kωt) and sin(kωt) are orthogonal with respect to the scalar product
(·, ·)L2((0,T )), which yields a decoupling with respect to the modes k. After applying Gauss’ Theorem,
we end up with the following variational formulation: for each mode k = 1, 2, · · · , N find yk =
(yck, y

s
k)T ∈ H1

0 (Ω)2 such that for given uk = (uck, u
s
k)T ∈ L2(Ω)2

ak (yk, zk) = fk (zk) , ∀zk = (zck, z
s
k)T ∈ H1

0 (Ω)2, (2.33)

with the bilinear form

ak (yk, zk) := (ν∇yk,∇zk)L2(Ω) + kω(σy⊥k , zk)L2(Ω),

and the linear form

fk (zk) := (uk, zk)L2(Ω).

where we use the notation y⊥k = (ysk,−yck). Additionally, for the mode k = 0 we obtain the following
variational formulation: find yc0 ∈ H1

0 (Ω) such that for given uc0 ∈ L2(Ω)

a0 (yc0, z
c
0) = f0 (zc0) , ∀zc0 ∈ H1

0 (Ω), (2.34)

with the symmetric bilinear form

a0 (yc0, z
c
0) := (ν∇yc0,∇zc0)L2(Ω),

and the linear form

f0 (zc0) := (uc0, z
c
0)L2(Ω).

Now we have the following result:

Lemma 2.13. Problems (2.33) and (2.34) have unique solutions that depend continuously on the
data.
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Proof. We have

ak (yk, yk) = (ν∇yk,∇yk)L2(Ω) ≥ νmin‖yk‖2H1
0 (Ω),

and similarly

a0(yc0, y
c
0) ≥ νmin‖yc0‖2H1

0 (Ω).

By Cauchy’s inequality and Friedrichs’ inequality we get

ak (yk, zk) ≤ νmax‖yk‖H1
0 (Ω)‖zk‖H1

0 (Ω) + kωσmax‖yk‖L2(Ω)‖zk‖L2(Ω)

≤ max {νmax, cF kωσmax} ‖yk‖H1
0 (Ω)‖zk‖H1

0 (Ω),

and

a0(yc0, z
c
0) ≤ νmax‖yc0‖H1

0 (Ω)‖zc0‖H1
0 (Ω).

Additionally, by Cauchy’s inequality and Friedrichs’ inequality we have

fk (zk) ≤
√
cF ‖uk‖L2(Ω)‖zk‖H1

0 (Ω),

and similarly

f0 (zc0) ≤
√
cF ‖uc0‖L2(Ω)‖zc0‖H1

0 (Ω).

Now the results for (2.33) and (2.34) follow with Theorem 2.4 and Corollary 2.5, respectively.

The Stokes problem The Stokes equations for stationary and highly viscous flows of incompress-
ible media in the domain Ω with homogeneous Dirichlet boundary conditions are given by

−∆u+∇p = f, in Ω,

div u = 0, in Ω,

u = 0, on Γ.

(2.35)

Here, u : Ω → Rd denotes the velocity vector, p : Ω → R the pressure and f : Ω → Rd the given
external force vector.
The mixed variational formulation is obtained by multiplying the first line of (2.35) with a test
function v : Ω → Rd, the second line with a test function q : Ω → R, integrating over the domain Ω
and applying Gauss’ Theorem. The resulting mixed variational problem reads: find u ∈ H1

0 (Ω)d and
p ∈ L2

0(Ω) such that for given f ∈ L2(Ω)d{
a(u, v) + b(v, p) = F (v), ∀v ∈ H1

0 (Ω)d,

b(u, q) = 0, ∀q ∈ L2
0(Ω),

(2.36)

with the bilinear forms

a(u, v) := (∇u,∇v)L2(Ω),

b(v, q) := −(q,div v)L2(Ω),

and the linear form

F (v) := (f, v)L2(Ω).

Or, written as a non-mixed variational problem: find (u, p) ∈ H1
0 (Ω)d × L2

0(Ω) such that for given
f ∈ L2(Ω)d

B((u, p), (v, q)) = F (v), ∀(v, q) ∈ H1
0 (Ω)d × L2

0(Ω), (2.37)
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with the bilinear form

B((u, p), (v, q)) := a(u, v) + b(v, p) + b(u, q).

Now we have the following result, see, e.g., [25]. Note that, for later reference, we also present its
proof.

Lemma 2.14. Problem (2.37), and consequently (2.36), has a unique solution that depends contin-
uously on the data.

Proof. In order to proof this result, we use Corollary 2.11 and check conditions (2.25)-(2.28) (the
conditions of Brezzi):
The boundedness of the bilinear forms a(·, ·) and b(·, ·) follows by Cauchy’s inequality:

a(u, v) ≤ ‖u‖H1
0 (Ω)‖v‖H1

0 (Ω),

and

b(v, q) ≤ ‖q‖L2(Ω)‖div v‖L2(Ω) ≤ ‖q‖L2(Ω)‖v‖H1
0 (Ω).

Since

a(u, u) = ‖u‖2H1
0 (Ω),

it follows that a(·, ·) is coercive on H1
0 (Ω)d and, therefore, also coercive on Ker b ⊂ H1

0 (Ω)d. The
inf-sup condition of b(·, ·) follows with Theorem 2.3:

sup
0 6=v∈H1

0 (Ω)d

b(v, p)

‖v‖H1
0 (Ω)

= ‖∇p‖H−1(Ω) ≥ cÑ‖p‖L2(Ω).

Additionally, by Cauchy’s inequality and Friedrichs’ inequality we have

F (v) ≤
√
cF ‖f‖L2(Ω)‖v‖H1

0 (Ω).

2.4 Discretization

2.4.1 Triangulation

Recall that Ω ⊂ Rd, d ∈ {1, 2, 3}, is assumed to be an open and bounded domain with Lipschitz
continuous boundary Γ. For simplicity, we additionally assume Ω to be polygonal.
A triangulation Th is a subdivision of the domain Ω into finitely many, non-overlapping elements T .
These elements are assumed to be line segments in the case d = 1, triangles in the case d = 2 and
tetrahedra in the case d = 3. For an element T ∈ Th we define its diameter by hT :=diam T . The
mesh size of the triangulation Th is then defined as h := max

T∈Th
hT . Furthermore, we assume Th to be

admissible, shape-regular and quasi-uniform, see [28].

2.4.2 The finite element method

The aim of this subsection is to give a brief introduction to the Galerkin finite element method. For
more details see, e.g., [17, 23, 28].
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General variational problems Recall the general variational problem (2.4): find x ∈ X such
that

B(x, y) = F(y), ∀y ∈ X.

The Galerkin method for discretization works as follows: first one has to choose an appropriate finite-
dimensional subspace Xh ⊂ X. Then one computes an approximate solution xh ∈ Xh as the solution
of the following finite-dimensional variational problem

B(xh, yh) = F(yh), ∀yh ∈ Xh. (2.38)

The next step is to choose appropriate basis functions φi for the finite-dimensional subspace Xh, i.e.,
Xh = span {φi : i = 1, · · · , n} where n denotes the dimension of the space. This basis allows a one-to-

one map between a finite element function xh =
n∑
i=1

xh,iφi ∈ Xh and the vector xh = (xh,i)
n
i=1 ∈ Rn,

which is called the Ritz isomorphism. Using the previous representation of xh and testing (2.38)
with the basis functions of Xh (this is sufficient due to linearity), we end up with the following linear
system of equations, the so-called Galerkin system

Bhxh = Fh, (2.39)

with

Bh = (B(φi, φj))
n
i,j=1 ,

Fh = (F(φi))
n
i=1 .

The linear system (2.39) is equivalent to the discrete variational problem (2.38). The existence
and uniqueness of a solution of the discrete problem (2.38) is, as for the continuous problem (2.4),
guaranteed, if the conditions of Theorem 2.4 are satisfied. Note that, due to the choice Xh ⊂ X,
the sup-sup condition in (2.7) for the finite-dimensional problem follows from the sup-sup condition
for the infinite-dimensional problem. In general this does not hold for the inf-sup condition. This
condition has to be explicitly verified for the particular choice of the finite-dimensional subspace.
Note that, in the case that the bilinear form B is symmetric, the corresponding matrix Bh is also
symmetric.

Mixed variational problems Recall the symmetric mixed variational problem (2.12): find u ∈ V
and p ∈ Q such that

a(u, v) + b(v, p) = f(v), ∀v ∈ V,
b(u, q)− c(p, q) = g(q), ∀q ∈ Q.

As before we use Galerkin’s principle for discretization and choose appropriate finite-dimensional
subspaces Vh ⊂ V and Qh ⊂ Q. Then the approximate solutions uh ∈ Vh and ph ∈ Qh solve the
finite-dimensional mixed variational problem{

a(uh, vh) + b(vh, ph) = f(vh), ∀vh ∈ Vh,
b(uh, qh)− c(ph, qh) = g(qh), ∀qh ∈ Qh.

(2.40)

Choosing a basis (φi)
n
i=1 of Vh and a basis (ψi)

m
i=1 of Qh and using the representations uh =

n∑
i=1

uh,iφi

and ph =
m∑
i=1

ph,iψi yields the following linear system of equations

(
Ah BTh
Bh −Ch

)(
uh
p
h

)
=

(
f
h
g
h

)
, (2.41)
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with

uh = (uh,i)
n
i=1 , p

h
= (ph,i)

m
i=1 ,

Ah = (a(φi, φj))
n
i,j=1 , Bh = (b(φi, ψj))

m,n
j,i=1 , Ch = (c(ψi, ψj))

m
i,j=1 ,

f
h

= (f(φi))
n
i=1 , g

h
= (g(ψi))

m
i=1 ,

and BTh denoting the transpose of Bh. Due to the symmetry and non-negativity of the bilinear forms
a(·, ·) and c(·, ·), the matrices Ah and Ch are symmetric and positive semidefinite. Therefore, the
system matrix in (2.41) is of saddle point structure, it is symmetric and indefinite. As before, the
linear system (2.41) and the discrete variational problem (2.40) are equivalent.
The existence and uniqueness analysis of the discrete problem (2.40) is done analogously to the
continuous problem (2.12), i.e., using Corollary 2.8. Note that the validity of the conditions (2.15)
and (2.16) for the continuous problem in general do not imply their validity for the discrete problem.
They have to be explicitly verified for the particular choice of the finite-dimensional subspaces.
In the sequel, we will only consider finite-dimensional subspaces that are build of functions which are
continuous and piecewise polynomial with respect to a given triangulation Th, i.e., spaces of the form

Skh(Th) :=
{
v ∈ C(Ω) : v|T ∈ Pk, ∀T ∈ Th

}
,

where, for k ∈ N, Pk denotes the set of polynomials up to order k. Additionally, for incorporating
homogeneous boundary conditions, we define the finite element space Sk,0h (Th) given by

Sk,0h (Th) :=
{
v ∈ C0(Ω) : v|T ∈ Pk, ∀T ∈ Th

}
,

where C0(Ω) denotes the space of continuous functions on Ω that vanish at the boundary. Each finite
element function is well-defined by its values at some nodes, whose distribution have to guarantee the
continuity of the finite element function. As a basis of these finite-dimensional spaces we always use
the standard nodal basis: for each node a unique basis function is defined by prescribing the value 1
at this node and the value 0 at all other nodes.

2.4.3 Examples
In this subsection we apply the finite element method to the three problems discussed in Subsec-
tion 2.3.2.

The elliptic problem Recall the variational formulation (2.31) of the Poisson problem (2.30):
Find y ∈ X such that

a(y, z) = f(z), ∀z ∈ X,

with

a(y, z) = (∇y,∇z)L2(Ω),

f(z) = (u, z)L2(Ω).

and X = H1
0 (Ω). Choosing the finite-dimensional space Xh as Xh = S1,0

h (Th), also called Courant
finite element space, we arrive at the following discrete problem: find yh ∈ S1,0

h (Th) such that

a(yh, zh) = f(zh), ∀zh ∈ S1,0
h (Th). (2.42)

A finite element function vh ∈ S1,0
h (Th) is uniquely determined by its values on the vertices of the

elements. Indeed, it can be shown that S1,0
h (Th) ⊂ H1

0 (Ω) and we have the following lemma:

Lemma 2.15. The discrete problem (2.42) is stable, i.e., has a unique solution that depends contin-
uously on the data with constants independent of the mesh size h.

Proof. The proof is done by repeating the proof of Lemma 2.12 step by step for the finite element
functions.
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The multiharmonic-parabolic problem Recall the variational formulations (2.33) and (2.34) for
the time-periodic parabolic problem (2.32): for each mode k = 1, 2, · · · , N find yk = (yck, y

s
k)T ∈ X1

such that

ak (yk, zk) = fk (zk) , ∀zk = (zck, z
s
k)T ∈ X1,

with

ak (yk, zk) = (ν∇yk,∇zk)L2(Ω) + kω(σy⊥k , zk)L2(Ω),

fk (zk) = (uk, zk)L2(Ω),

and for the mode k = 0 find yc0 ∈ X2 such that

a0 (yc0, z
c
0) = f0 (zc0) , ∀zc0 ∈ X2,

with

a0 (yc0, z
c
0) = (ν∇yc0,∇zc0)L2(Ω),

f0 (zc0) = (uc0, z
c
0)L2(Ω).

and X1 = X2
2 with X2 = H1

0 (Ω). Using again the finite-dimensional space S1,0
h (Th) (now as X2,h) we

arrive at the following discrete problems: find yk,h ∈ S1,0
h (Th)2 such that

ak (yk,h, zk,h) = fk (zk,h) , ∀zk,h = (zck,h, z
s
k,h)T ∈ S1,0

h (Th)2, (2.43)

and, find yc0 ∈ S
1,0
h (Th) such that

a0

(
yc0,h, z

c
0,h

)
= f0

(
zc0,h

)
, ∀zc0,h ∈ S

1,0
h (Th). (2.44)

Now we have the following result:

Lemma 2.16. The discrete problems (2.43) and (2.44) are stable.

Proof. The proof is done by repeating the proof of Lemma 2.13 step by step for the finite element
functions.

The Stokes problem Recall the mixed variational formulation (2.36) of the Stokes problem (2.35):
find u ∈ V and p ∈ Q such that

a(u, v) + b(v, p) = F (v), ∀v ∈ V,
b(u, q) = 0, ∀q ∈ Q,

with

a(u, v) = (∇u,∇v)L2(Ω),

b(v, q) = −(q,div v)L2(Ω),

F (v) = (f, v)L2(Ω),

and V = H1
0 (Ω)d and Q = L2

0(Ω). As before, we are looking for appropriate finite-dimensional
subspaces Vh ⊂ V and Qh ⊂ Q such that the discrete problem{

a(uh, vh) + b(vh, ph) = F (vh), ∀vh ∈ Vh,
b(uh, qh) = 0, ∀qh ∈ Qh,

(2.45)
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is stable. In Lemma 2.14 the conditions of Brezzi (2.25)-(2.28) are shown for the continuous case.
The boundedness of the bilinear forms a(·, ·) and b(·, ·) carries over to the discrete case with the same
constants. Since it was shown that the bilinear form a(·, ·) is coercive on the whole space V , the
discrete kernel ellipticity of a(·, ·) holds with the same h-independent constant. It remains to show
the discrete inf-sup condition of b(·, ·) with an h-independent constant. This is subject to discussion
in many articles, see, e.g., [25, 30, 40].
We briefly present one example of a stable element for the Stokes equations: the Taylor-Hood element.
For a given triangulation Th of the domain Ω, the finite-dimensional subspaces Vh and Qh are given
by

Vh = S2,0
h (Th)d, (2.46)

and

Qh = S1
h,0(Th) := S1

h(Th) ∩ L2
0(Ω). (2.47)

A finite element function vh ∈ Vh is uniquely determined by its values on the vertices and on the
midpoints of the edges of the elements and a finite element function qh ∈ Qh is uniquely determined
by its values on the vertices of the elements.
Indeed, it can be shown that Vh ⊂ V and Qh ⊂ Q. Now, the discrete inf-sup condition is summarized
in the following theorem:

Theorem 2.17. Let Th be a triangulation of Ω with the property that each element T ∈ Th has at
least two internal edges (in the case d = 2) or at least three internal faces (in the case d = 3). Then
there exists a constant cD independent of h such that

sup
0 6=vh∈Vh

b(vh, ph)

‖vh‖H1
0 (Ω)

≥ cD‖ph‖L2(Ω).

Proof. See [25].

Therefore, we have the following lemma:

Lemma 2.18. The discrete problem (2.45) is stable for Vh and Qh as in (2.46) and (2.47).

Proof. The proof follows from the considerations above and with Theorem 2.17 and Corollary 2.11.

2.5 Optimal control problems
This section is devoted to general linear-quadratic optimal control problems. Results for the existence
of an optimal solution and for the first-order optimality conditions are presented. Additionally, we
introduce the primal-dual active set method as a method for linearizing nonlinear optimality systems.
A detailed analysis of optimal control problems can be found, e.g., in [54, 66, 96].
We examine the following general linear-quadratic optimal control problem on the domain Ω min

(y,u)∈Y×U
J(y, u) =

1

2
‖Ey − yd‖2H +

α

2
‖u‖2U ,

subject to Dy − Tu = g, u ∈ Uad, y ∈ Yad,
(2.48)

where H and U are Hilbert spaces, Y and Z are Banach spaces, α > 0 is a cost or regularization
parameter and yd ∈ H, g ∈ Z, D ∈ L(Y,Z), T ∈ L(U,Z), E ∈ L(Y,H). Here, y denotes the state
variable, u the control variable and yd the desired state. The operator equation Dy−Tu = g is called
state equation and represents a PDE or a system of coupled PDEs.
The existence and uniqueness of an optimal solution is covered by the following theorem:
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Theorem 2.19. Let Uad ⊂ U and Yad ⊂ Y be nonempty, convex and closed, such that (2.48) has a
feasible point. Assume that D ∈ L(Y, Z) has a bounded inverse. Then problem (2.48) has a unique
optimal solution (y, u).

Proof. See [54].

The conditions u ∈ Uad and y ∈ Yad in problem (2.48) act as a constraint on the control u and the
state y, respectively. In the case Uad = U and Yad = Y we speak about the unconstrained case.
We will focus on problems, where either pure control constraints (Y = Yad) or pure state constraints
(U = Uad) are imposed.

Control constraints For the case of pure control constraints the following theorem provides the
first-order optimality conditions for (2.48):

Theorem 2.20. Let Uad ⊂ U be nonempty, convex and closed and assume that D ∈ L(Y,Z) has a
bounded inverse. Then (y, u) is an optimal solution of (2.48) if and only if there exists an adjoint
state (or Lagrange multiplier) p ∈ P = Z∗ such that the following conditions are satisfied

Dy − Tu = g, (2.49a)
D∗p = −E∗(Ey − yd), (2.49b)

u ∈ Uad, (αu− T ∗p, u− u)U ≥ 0, ∀u ∈ Uad. (2.49c)

Proof. See [54].

Observe that the conditions (2.49) are necessary and sufficient for optimality.

Remark 2.21. In the unconstrained case, i.e., Uad = U , condition (2.49c) reduces to

αu− T ∗p = 0. (2.50)

Our focus is on problems where U = L2(Ω) and Uad has the following special structure

Uad = {u ∈ U : ua ≤ u ≤ ub almost everywhere (a.e.) in Ω} , (2.51)

where ua, ub ∈ L2(Ω) and ua ≤ ub a.e. in Ω. For such inequality constraints, condition (2.49c) can
be expressed in a more convenient form and the resulting optimality conditions are summarized in
the following theorem:

Theorem 2.22. Let U = L2(Ω), Uad be as in (2.51) and assume that D ∈ L(Y,Z) has a bounded
inverse. Then (y, u) is an optimal solution of (2.48) if and only if there exists an adjoint state (or
Lagrange multiplier) p ∈ P = Z∗ and Lagrange multipliers ξa, ξb ∈ U∗ = L2(Ω) such that the
following conditions

Dy − Tu = g, (2.52a)
D∗p = −E∗(Ey − yd), (2.52b)

αu− T ∗p+ ξ = 0, (2.52c)

ξ −max
{

0, ξ + c(u− ub)
}
−min

{
0, ξ − c(ua − u)

}
= 0, (2.52d)

are satisfied for any c > 0 where ξ = ξb − ξa.

Proof. See [54].
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State constraints In the pure state constrained case we focus on optimal control problems with
inequality constraints

ya ≤ y ≤ yb,

that are regularized by the Moreau-Yosida penalty function (cf. [56]). The necessity to regularize
problems with state constraints is due to the fact that they admit Lagrange multipliers with very low
function space regularity, see [27].
Our focus is on problems where Y ⊂ L2(Ω) is a Hilbert space, U = H = L2(Ω) and the Moreau-Yosida
penalty function has the form

PMY (y) =
1

2ε
‖max {0, Ey − yb} ‖2L2(Ω) +

1

2ε
‖min {0, Ey − ya} ‖2L2(Ω), (2.53)

with a penalization parameter ε > 0 and ya, yb ∈ L2(Ω). Therefore we face the following regularized
version of (2.48)  min

(y,u)∈Y×U
JMY (y, u),

subject to Dy − Tu = g.
(2.54)

with JMY (y, u) = J(y, u) +PMY (y). For this setting, the following theorem covers the existence and
uniqueness of an optimal solution of (2.54) and provides the first-order optimality conditions:

Theorem 2.23. Assume that D ∈ L(Y, Z) has a bounded inverse. Then problem (2.54) has a unique
optimal solution (y, u). Moreover, (y, u) is an optimal solution of (2.54) if and only if there exists an
adjoint state (or Lagrange multiplier) p ∈ P = Z∗ such that the following conditions are satisfied

Dy − Tu = g, (2.55a)
D∗p = −E∗ (Ey − yd + ζ) , (2.55b)

αu− T ∗p = 0, (2.55c)

where ζ = 1
ε max {0, Ey − yb}+ 1

ε min {0, Ey − ya}.

Proof. As stated in [32], the proof is similar to the proof of the pure control constrained case, therefore
see [54].

Observe that the conditions (2.55) are necessary and sufficient for optimality.

The primal-dual active set method In both cases, the inequality constrained control and the
Moreau-Yosida regularized state constrained case, the resulting first-order optimality conditions are
nonlinear. In order to linearize these problems, a primal-dual active set method as introduced in [11] is
used. Under certain conditions, this method is equivalent to a semi-smooth Newton method (cf. [53]).
Note that the optimality system in the unconstrained case is linear right from the beginning.
The basic idea of the primal-dual active set method is as follows: first, an index set is prescribed
for which it is assumed that the inequality constraints are active. Then the corresponding equality
constrained optimality system is solved and, if necessary, the active set is updated. This procedure
is repeated until some appropriate convergence criterion is met.
The primal-dual active set algorithm applied to the optimality system of the inequality constrained
control case, i.e., applied to (2.52), is given in Algorithm 1. Similarly, the primal-dual active set
algorithm applied to the optimality system of the Moreau-Yosida regularized state constrained case,
i.e., applied to (2.55), is given in Algorithm 2.
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Input: c > 0, initial guess y0, u0, p0 and ξ0.
Output: solution of (2.52).
for j = 0 until convergence do

- Determine the active sets{
E+
j = {x ∈ Ω : ξj(x) + c (uj(x)− ub(x)) > 0} ,
E−j = {x ∈ Ω : ξj(x)− c (ua(x)− uj(x)) < 0} ,

(2.56)

and the inactive set

Ij = Ω\
(
E+
j ∪ E

−
j

)
, (2.57)

- Compute yj+1, uj+1, pj+1 and ξj+1 as the solution of
D∗pj+1 = −E∗(Eyj+1 − yd),

αuj+1 − T ∗pj+1 + ξj+1 = 0,

Dyj+1 − Tuj+1 = g,

cχEjuj+1 + χIjξj+1 = c
(
χE+

j
ub + χE−j

ua

)
,

(2.58)

where χE+
j
, χE−j , χEj and χIj denote the characteristic functions of E+

j , E
−
j , Ej = E+

j ∪ E
−
j

and Ij , respectively,
- Test for convergence,

end
Algorithm 1: The primal-dual active set method for the inequality constrained control case.

Input: initial guess y0, u0 and p0.
Output: solution of (2.55).
for j = 0 until convergence do

- Determine the active sets{
E+
j = {x ∈ Ω : yj(x)− yb(x) > 0} ,
E−j = {x ∈ Ω : yj(x)− ya(x) < 0} ,

(2.59)

- Compute yj+1, uj+1 and pj+1 as the solution of
D∗pj+1 = −E∗

(
Eyj+1 − yd +

1

ε

(
χEjEyj+1 − χE+

j
yb − χE−j ya

))
,

αuj+1 − T ∗pj+1 = 0,

Dyj+1 − Tuj+1 = g,

(2.60)

where χE+
j
, χE−j and χEj denote the characteristic functions of E+

j , E
−
j and Ej = E+

j ∪ E
−
j ,

respectively,
- Test for convergence,

end
Algorithm 2: The primal-dual active set method for the Moreau-Yosida regularized state con-
strained case.

The following theorem states a convergence result for Algorithm 1 and Algorithm 2:

Theorem 2.24. 1. If there exists j ∈ N such that Ej+1 = Ej in Algorithm 1, then the algorithm
stops and the last iterate is the solution of (2.52).

2. If there exists j ∈ N such that Ej+1 = Ej in Algorithm 2, then the algorithm stops and the last
iterate is the solution of (2.55).
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Proof. See [11] and [56] for Algorithm 1 and Algorithm 2, respectively.

In the model problems later on, we always reduce the linearized optimality systems (2.58) and (2.60)
such that the only unknowns left are the state variable y and the adjoint state variable p, i.e., all the
other unknowns (the control u and the additional Lagrange parameter ξ) are eliminated.
In the control constrained case this is done by first eliminating the control u using the second equation
in (2.58). Then the Lagrange multiplier ξ is eliminated using the last equation in (2.58) and we end
up with the following system(

E∗E D∗

D − 1
αTχIjT

∗

)(
yj+1

pj+1

)
=

(
E∗yd

g + T
(
χE+

j
ub + χE−j

ua

))
. (2.61)

In the Moreau-Yosida regularized state constrained case we use the second equation in (2.60) to
eliminate the control u and arrive at the following reduced system(

E∗
(
1 + 1

εχEj
)
E D∗

D − 1
αTT

∗

)(
yj+1

pj+1

)
=

(
E∗
(
yd + 1

ε

(
χE+

j
yb + χE−j

ya

))
g

)
. (2.62)

The problems (2.61) and (2.62) (in the variational sense) are of the form (2.12), i.e., of saddle point
structure.
As already stated, the optimality system in the unconstrained case, given by (2.49a), (2.49b) and
(2.50), is linear right from the beginning. Similar as in the constrained cases, we derive the reduced
optimality system given by (

E∗E D∗

D − 1
αTT

∗

)(
yj+1

pj+1

)
=

(
E∗yd
g

)
. (2.63)

Also this problem has a saddle point structure.
The next chapter discusses solution methods for the discretized version of such general saddle point
problems.



Chapter 3

Iterative methods and preconditioning

As we have seen at the end of the last chapter, the reduced linear(ized) optimality systems of optimal
control problems are mixed variational problems. As discussed in Subsection 2.4.2, the discretization
of such mixed problems leads to linear saddle point systems: for given f ∈ Rk, find x ∈ Rk such that

Ax = f, (3.1)

with the nonsingular system matrix

A =

(
A BT

B −C

)
∈ Rk×k,

where A and C are symmetric and positive semidefinite matrices, which makes A a symmetric and
indefinite matrix, i.e., it has both positive and negative eigenvalues. In this chapter we discuss so-
lution methods for such general saddle point problems. First, in Section 3.1, we discuss the need of
preconditioning and its basic idea. Therein we introduce the notion of parameter-robust precondi-
tioning. In Section 3.2 we give a brief introduction to preconditioned Krylov subspace methods and
discuss their applicability as iterative solvers for saddle point systems. Additionally, we present our
method of choice, the minimal residual method. Finally, Section 3.3 is devoted to the construction
of preconditioners for saddle point systems of the form (3.1). Constructing efficient preconditioners
for such systems is the subject of discussion in many papers, see, e.g., the survey paper [8] (and
the many references therein) for a detailed discussion of available methods. We focus on symmet-
ric and positive definite block-diagonal preconditioners and discuss how their construction can be
traced back to the well-posedness result (2.10) with appropriately chosen norms. Among the large
class of strategies available for choosing these norms, we consider the following three approaches: the
operator preconditioning technique, the Schur complement technique and the operator interpolation
technique.

3.1 Preconditioning

Let us first define the spectral condition number of a matrix: let Σ ∈ Rk×k be symmetric and positive
definite in order to define an inner product as follows

(x, y)Σ = (Σx, y)l2 , ∀x, y ∈ Rk,

with the corresponding norm

‖x‖Σ =
√

(x, x)Σ.

25
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Then the spectral condition number of A ∈ Rk×k with respect to Σ is defined as

κΣ(A) := ‖A‖Σ‖A−1‖Σ, (3.2)

where for a matrixM∈ Rk×k the matrix norm ‖M‖Σ is defined by

‖M‖Σ := sup
06=x∈Rk

‖Mx‖Σ
‖x‖Σ

.

Note that the condition number of a matrix depends on the used norm, i.e., on the choice of the
matrix Σ. If Σ = I, where I denotes the identity matrix, we neglect the subscript Σ and just write
κ(·).
Usually, problems of the form (3.1) are ill-conditioned, i.e., the condition number of the system matrix
A is very high, i.e.,

κΣ(A)� 1.

This ill-conditionedness results in a very high number of iterations of iterative methods used for the
solution of (3.1). Therefore, preconditioning, as a technique of improving the spectral properties of
the matrix and, consequently, improving the convergence rate of iterative methods, is an important
issue.

3.1.1 Basic idea

The idea of preconditioning is to construct a nonsingular matrix P ∈ Rk×k, called the preconditioner,
such that the following two conditions are satisfied:

• The condition number of the preconditioned system matrix P−1A is small, i.e., as close as
possible to 1.

• The application of P−1 to a vector is inexpensive, i.e., of optimal complexity O(k).

The construction of preconditioners is always based on making a compromise between these two
conditions.
When a preconditioner P is chosen, the iterative method is applied to the following preconditioned
system

P−1Ax = P−1f, (3.3)

instead of the original system (3.1).

3.1.2 The concept of parameter-robust preconditioning

As already stated, the system matrix A in (3.1) is ill-conditioned. This is due to the dependence on
the discretization parameter h coming from the discretization process. However, in addition to that,
the matrix may also depend on other parameters appearing in the underlying model problem (like the
cost parameter α, the penalization parameter ε and the active set E as introduced in Subsection 2.5).
This additional parameters can strengthen the ill-conditionedness, i.e., the condition number of A
grows with respect to these parameters. Therefore, appropriate preconditioners are needed, that
improve the spectral properties of the system matrix with respect to these parameter-dependencies.
This is where parameter-robust preconditioning comes into play:

Definition 3.1. Let the system matrix A depend on some parameters. A preconditioner P for A is
called parameter-robust (with respect to these parameters) if the condition number of the preconditioned
matrix P−1A can be bounded from above by a constant that is independent of these parameters.
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3.2 Preconditioned Krylov subspace methods

Preconditioned Krylov subspace methods are considered to be the most important techniques for
solving large scale linear systems. A comprehensive introduction to Krylov subspace methods and
their preconditioned versions can be found, e.g., in [86].
We motivate preconditioned Krylov subspace methods using a simple fixed point iteration: for solving
the preconditioned equation (3.3) we first transform it into fixed point form

x =
(
I − τP−1A

)
x+ τP−1f,

with some relaxation parameter τ > 0 and then apply the fixed point iteration

xj+1 =
(
I − τP−1A

)
xj + τP−1f, (3.4)

with some initial guess x0. Using the j-th preconditioned residual rj = P−1 (f −Axj) we can rewrite
(3.4) as follows

xj+1 = xj + τrj . (3.5)

Multiplying (3.5) by −P−1A from the left and adding P−1f on both sides we obtain the following
recursion for the preconditioned residual

rj+1 = rj − τP−1Arj .

From this we get by induction

rj ∈ span
{
r0,P−1Ar0,

(
P−1A

)2
r0, · · · ,

(
P−1A

)j
r0

}
.

Due to (3.5) it follows that

xj ∈ x0 +Kj ,

where Kj denotes the j-th Krylov subspace defined by

Kj := Kj
(
P−1A, r0

)
:= span

{
r0,P−1Ar0,

(
P−1A

)2
r0, · · · ,

(
P−1A

)j−1
r0

}
.

The aim of Krylov subspace methods is to find a better choice for xj in the affine space x0 +Kj than
the one generated by the fixed point iteration (3.4), where better means that for a j � k a good
approximation of the exact solution is found. One of the most popular Krylov subspace methods is
the conjugate gradient method, cf. [50], which is applicable for problems with symmetric and positive
definite system matrix. There are generalizations of CG, like the Bramble Pasciak CG, cf. [20], and
the variants introduced in [90] and [84], designed for symmetric and indefinite problems, where a
symmetric and indefinite preconditioner and appropriate inner products have to be constructed such
that the preconditioned matrix P−1A is self-adjoint and positive definite with respect to this inner
product. Alternative Krylov subspace methods are the minimal residual method, cf. [80], which
works for symmetric and nonsingular problems and the generalized minimal residual method, cf. [87],
designed for general nonsingular problems.
Due to the symmetry and indefiniteness of the matrix A in (3.1) and the fact that additional scaling
conditions have to be ensured in the mentioned generalizations of CG, the preconditioned MinRes
method is our method of choice.

The preconditioned minimal residual method The preconditioned MinRes method is designed
for symmetric and nonsingular problems and requires a preconditioner that is symmetric and positive
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definite. Therefore, let P be symmetric and positive definite. Note that the preconditioned matrix
P−1A is self-adjoint with respect to the P-inner product, i.e.,(

P−1Ax, y
)
P =

(
x,P−1Ay

)
P , ∀x, y ∈ Rk.

In the preconditioned MinRes method the approximate solution xj ∈ x0 + Kj is chosen such that it
minimizes the P-norm of the preconditioned residual rj , i.e.,

xj = arg min
y∈x0+Kj

‖rj‖2P .

This minimization problem is solved by constructing an orthonormal basis for the Krylov subspace
using the Lanczos method. The solution can be calculated by a three-term recurrence relation. The
algorithm for the preconditioned MinRes method is given in Algorithm 3 (cf. [37, Algorithm 6.1]).

Input: A ∈ Rk×k symmetric and nonsingular, P ∈ Rk×k symmetric and positive definite, right
hand side f ∈ Rk, initial guess x0 ∈ Rk.

Output: approximate solution xj .
- v0 = 0, w0 = 0, w1 = 0, γ0 = 1,
- Compute v1 = f −Ax0,
- Solve Pz1 = v1, set γ1 =

√
〈z1, v1〉,

- Set η = γ1, s0 = s1 = 0, c0 = c1 = 1,
for j = 1 until convergence do

- zj = zj/γj ,
- δj = 〈Azj , zj〉,
- vj+1 = Azj − (δj/γj)vj − (γj/γj−1)vj−1,
- Solve Pzj+1 = vj+1,
- γj+1 =

√
〈zj+1, vj+1〉,

- α0 = cjδj − cj−1sjγj ,
- α1 =

√
α2

0 + γ2
j+1,

- α2 = sjδj + cj−1cjγj ,
- α3 = sj−1γj ,
- cj+1 = α0/α1, sj+1 = γj+1/α1,
- wj+1 = (zj − α3wj−1 − α2wj) /α1,
- uj = uj−1 + cj+1ηwj+1,
- η = −sj+1η,
- Test for convergence,

end
Algorithm 3: The preconditioned MinRes method.

A convergence result for the preconditioned MinRes method is summarized in the following theorem:

Theorem 3.2. The preconditioned MinRes method applied to the preconditioned system P−1Ax =
P−1f with symmetric and nonsingular matrix A and symmetric and positive definite preconditioner
P, converges to the solution of this system for an arbitrary initial guess x0. More precisely, the
preconditioned residual rj = P−1(f − Axj) after j iterations can be estimated by the preconditioned
initial residual r0 as follows:

‖r2j‖P ≤
2qj

1 + q2j
‖r0‖P , with q =

κP(P−1A)− 1

κP(P−1A) + 1
. (3.6)

Proof. See [42].

3.3 Block-diagonal preconditioners for saddle point systems
In order to construct symmetric and positive definite block-diagonal preconditioners for saddle point
problems of the form (3.1), we recall the corresponding mixed finite-dimensional variational problem
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(2.40): find uh ∈ Vh and ph ∈ Qh such that

a(uh, vh) + b(vh, ph) = f(vh), ∀vh ∈ Vh,
b(uh, qh)− c(ph, qh) = g(qh), ∀qh ∈ Qh,

with finite-dimensional Hilbert spaces Vh and Qh. Or, in operator notation: find xh = (uh, ph) ∈
Xh = Vh ×Qh such that

Axh = F , in X∗h, (3.7)

with A ∈ L(Xh, X
∗
h) and F ∈ X∗h given by

〈Azh, yh〉X∗h,Xh = a(wh, vh) + b(vh, rh) + b(wh, qh)− c(rh, qh), F(yh) = f(vh) + g(qh),

for yh = (vh, qh) and zh = (wh, rh). Note that we use the same notation for the operator as for the
corresponding matrix in the linear system. Problem (3.7) is said to be well-posed if the inf-sup and
the sup-sup condition of the Theorem of Babuška and Aziz, cf. Corollary 2.5 for the symmetric case,
are satisfied, i.e., if there exist constants c, c > 0 such that

c‖zh‖Xh ≤ ‖Azh‖X∗h ≤ c‖zh‖Xh , ∀zh ∈ Xh. (3.8)

Using the representations wh =
n∑
i=1

wh,iφi and rh =
m∑
i=1

rh,iψi with respect to the bases (φi)
n
i=1 of Vh

and (ψi)
m
i=1 of Qh, equation (3.8) reads

c‖z‖P ≤ ‖Az‖P−1 ≤ c‖z‖P , ∀z ∈ Rn+m, (3.9)

with

z =

(
(wh,i)

n
i=1

(rh,i)
m
i=1

)
,

and the symmetric and positive definite block-diagonal matrix

P =

(
((φi, φj)V )

n
i,j=1 0

0 ((ψi, ψj)Q)
m
i,j=1

)
.

This can be seen as follows: since the inner product of Xh is defined as ((u, p), (v, q))Xh = (u, v)Vh +
(p, q)Qh , we have

‖zh‖Xh =
√

(Pz, z)l2 ,

and

‖Azh‖X∗h = sup
06=yh∈Xh

〈Azh, yh〉X∗h,Xh
‖yh‖Xh

= sup
06=y∈Rn+m

(Az, y)l2
‖y‖P

=
√

(P−1Az,Az)l2 .

An immediate consequence of (3.9) is the following bound on the condition number κP(P−1A)

κP(P−1A) ≤ c

c
,

since

‖P−1A‖P = sup
06=z∈Rn+m

‖Az‖P−1

‖z‖P
≤ c,
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and

‖A−1P‖P = sup
06=y∈Rn+m

‖A−1Py‖P
‖y‖P

= sup
06=z∈Rn+m

‖z‖P
‖Az‖P−1

≤ 1

c
,

where in the last equation we used z = A−1Py.
Therefore, the norm for the Hilbert space Xh for satisfying the well-posedness result (3.8) immedi-
ately yields a preconditioner P for the corresponding discrete linear system. If the matrix A depends
on some parameters and the constants in (3.8) are independent of these parameters, then the corre-
sponding preconditioner is parameter-robust (with respect to these parameters).
Consecutively, we discuss the operator preconditioning technique, the Schur complement technique
and the interpolation technique as approaches for choosing these norms.
Note that the conditions (2.15) and (2.16) of Theorem 2.7 are characterizing conditions for such norms,
i.e., they can be used to check whether a particular norm is parameter-robust. However, the resolving
of these conditions, i.e., how to find norms that satisfy (2.15) and (2.16) with parameter-independent
constants, is a much harder problem.

3.3.1 Operator preconditioning technique
The operator preconditioning technique as discussed in [55] and used in, e.g., [6, 49, 74, 88], is a
method for choosing the norms in the Hilbert space Xh for satisfying the well-posedness result (3.8),
that is based on exploiting the mapping properties of the involved operators.
Acting on the continuous level it yields a norm in the infinite-dimensional Hilbert space X. Note
that, beside using the standard norm also non-standard norms can be used. Now, one way to obtain a
norm in the finite-dimensional case is to use the norm in X also in Xh. The other way is to use mesh-
dependent norms in Xh whose construction is conducted by the norms in the infinite-dimensional
setting.

3.3.2 Schur complement preconditioners
The Schur complement technique is a widespread approach for the construction of block-diagonal
preconditioners for saddle point problems that can be applied completely on the algebraic level.
Under the additional assumption that A and/or C in (3.1) is positive definite, one forms the negative
Schur complement

S = C +BA−1BT , (3.10)

and/or

R = A+BTC−1B. (3.11)

Then we have the following result:

Theorem 3.3. Let A be as in (3.1).

1. Assume that A is positive definite. Then the negative Schur complement S as defined in (3.10)
is symmetric and positive definite. Additionally, the inequality

c‖z‖P0
≤ ‖Az‖P−1

0
≤ c‖z‖P0

,

is valid for all z ∈ Rk, with c =
√

5−1
2 and c =

√
5+1
2 where P0 denotes the Schur complement

preconditioner given by

P0 =

(
A 0
0 S

)
. (3.12)
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2. Assume that C is positive definite. Then the negative Schur complement R as defined in (3.11)
is symmetric and positive definite. Additionally, the inequality

c‖z‖P1
≤ ‖Az‖P−1

1
≤ c‖z‖P1

,

is valid for all z ∈ Rk, with c =
√

5−1
2 and c =

√
5+1
2 where P1 denotes the Schur complement

preconditioner given by

P1 =

(
R 0
0 C

)
. (3.13)

Proof. See [65, 72].

Note that the preconditioners can easily be reinterpreted as norms in the finite-dimensional Hilbert
space Xh. Therefore, this technique can be seen as an approach for the construction of appropriate
norms for Xh for the well-posedness result (3.8).
Due to Theorem 3.3, using Schur complement preconditioners, the following quantitative bound on
the condition number is achieved

κPj (P−1
j A) ≤

√
5 + 1√
5− 1

≈ 2.62, j ∈ {0, 1} ,

i.e., they are parameter-robust.

3.3.3 Preconditioners based on interpolation
The interpolation technique as used in [70] and [99] is another strategy for constructing precondition-
ers for saddle point systems. Here the idea is as follows: if there are two preconditioners available
then the interpolation between these two yields a family of preconditioners, where within this family
one may be able to find a particular one, that fits best with respect to some certain criteria.
For doing this interpolation we use the space respectively operator interpolation technique that can
be found, e.g., in [1, 9].

Definition 3.4. For i ∈ {0, 1} let Xi = Yi = Rk with norms ‖ · ‖Xi =
√

(Mi·, ·)l2 and ‖ · ‖Yi =√
(Ni·, ·)l2 given by symmetric positive definite matrices Mi, Ni ∈ Rk×k, respectively.

Then the norms ‖ · ‖Xθ = [‖ · ‖X0
, ‖ · ‖X1

]θ and ‖ · ‖Yθ = [‖ · ‖Y0
, ‖ · ‖Y1

]θ with θ ∈ [0, 1] are defined as

‖ · ‖Xθ =
√

(Mθ·, ·)l2 , with Mθ = [M0,M1]θ = M
1
2

0

(
M
− 1

2
0 M1M

− 1
2

0

)θ
M

1
2

0 ,

‖ · ‖Yθ =
√

(Nθ·, ·)l2 , with Nθ = [N0, N1]θ = N
1
2

0

(
N
− 1

2
0 N1N

− 1
2

0

)θ
N

1
2

0 ,

where for a symmetric and positive definite matrix M its root M
1
2 is defined as M = M

1
2M

1
2 .

The following theorem presents a matrix version of the interpolation that follows easily from the
general operator interpolation theory:

Theorem 3.5. a) Let A ∈ Rk×k be nonsingular with

c0‖z‖X0
≤ ‖Az‖Y0

≤ c1‖z‖X0
, and c2‖z‖X1

≤ ‖Az‖Y1
≤ c3‖z‖X1

, ∀z ∈ Rk.

Then, for ‖ · ‖Xθ = [‖ · ‖X0
, ‖ · ‖X1

]θ and ‖ · ‖Yθ = [‖ · ‖Y0
, ‖ · ‖Y1

]θ with θ ∈ [0, 1], we have

c1−θ0 cθ2‖z‖Xθ ≤ ‖Az‖Yθ ≤ c
1−θ
1 cθ3‖z‖Xθ , ∀z ∈ Rk. (3.14)

b) The following relations hold true

[‖ · ‖X0 , ‖ · ‖X1 ]θ = [‖ · ‖X1 , ‖ · ‖X0 ]1−θ , [‖ · ‖Y0 , ‖ · ‖Y1 ]θ = [‖ · ‖Y1 , ‖ · ‖Y0 ]1−θ .
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Proof. See [1].

This interpolation technique can, e.g., be applied to the Schur complement preconditioners from the
last subsection. Therefore, let A be as in (3.1) with A and C positive definite, in order to guarantee
the well-definedness of the Schur complement preconditioners P0 and P1. Using the interpolation
technique we can construct a family of preconditioners Pθ = [P0,P1]θ for θ ∈ [0, 1]. Within this
family one may be able to find a particular θ such that the interpolation can be computed efficiently
and the resulting preconditioner fits best with respect to some certain criteria.
Note that the preconditioner constructed according to this method can easily be reinterpreted as a
norm in the finite-dimensional Hilbert space Xh. Therefore, this technique can be seen as an approach
for the construction of appropriate norms for Xh for the well-posedness result (3.8).

3.3.4 Realization of the diagonal blocks
The application of the constructed preconditioners requires a robust and efficient evaluation of the
inverses of the diagonal blocks applied to a given vector. Usually, these inverses are not computed
exactly but the diagonal blocks are replaced by appropriate and easily realizable preconditioners.
Therefore, let

P =

(
P1 0
0 P2

)
,

be a symmetric and positive definite block-diagonal preconditioner for the saddle point matrix A
from (3.1). The aim is to replace the symmetric and positive definite matrices P1 and P2 by more
cost efficient symmetric and positive definite matrices P̃1 and P̃2, that are spectrally equivalent to P1

and P2, i.e.,

cP1
(w,w)P̃1

≤ (w,w)P1
≤ cP1 (w,w)P̃1

, ∀w ∈ Rn,

and

cP2
(r, r)P̃2

≤ (r, r)P2
≤ cP2

(r, r)P̃2
, ∀r ∈ Rm,

with constants cP1
, cP1

, cP2
, cP2

. Then the practical block-diagonal preconditioner given by

P̃ =

(
P̃1 0

0 P̃2

)
,

is spectrally equivalent to P, i.e.,

min
{
cP1

, cP2

}
(z, z)P̃ ≤ (z, z)P ≤ max {cP1

, cP2
} (z, z)P̃ , ∀z ∈ Rk, k = n+m.

Hence, the condition number of the preconditioned system can be estimated by

κP̃

(
P̃−1A

)
≤ κP

(
P−1A

) max {cP1 , cP2}
min

{
cP1

, cP2

} .
In the case that the matrix A depends on some parameters and the constants cP1

, cP1
, cP2

, cP2
are

independent of these parameters, the preconditioner P̃ is parameter-robust (with respect to these
parameters) if the preconditioner P is.



Chapter 4

Optimal control of elliptic equations

This chapter is devoted to the development of efficient block-diagonal preconditioners for the following
distributed elliptic optimal control problem: find the state y ∈ H1

0 (Ω) and the control u ∈ L2(Ω) that
minimize the cost functional

J(y, u) =
1

2
||y − yd||2L2(Ω) +

α

2
||u||2L2(Ω), (4.1)

subject to the elliptic state equation

−∆y = u, in Ω,

y = 0, on Γ,

or, more precisely, subject to the state equation in its variational form, given by

(∇y,∇z)L2(Ω) = (u, z)L2(Ω), ∀z ∈ H1
0 (Ω).

Here yd ∈ L2(Ω) is the given desired state and α > 0 is a cost parameter. Recall that Ω ⊂ Rd, d ∈
{1, 2, 3}, is assumed to be an open and bounded polygonal domain with Lipschitz continuous boundary
Γ. Additionally, pointwise inequality constraints on the control u or Moreau-Yosida regularized
constraints on the state y are imposed.
Problems of this form typically arise in the field of optimal stationary heating. There, the state
corresponds to the temperature distribution in some domain, the desired state to some given (desired)
temperature distribution and the control to the heat source distributed over the domain. In optimal
stationary heating problems, the aim is to determine the optimal heat source in order to reach the
desired temperature distribution. Such problems are of prime importance in practice and, therefore,
also their efficient solving.
While the construction of efficient solvers for the distributed elliptic optimal control problem (4.1)
without additional constraints on the control or state is well-understood meanwhile, see [83, 90, 99],
the case of control and/or state constraints is still a topic of ongoing research. Preconditioners for
control constraints and Moreau-Yosida regularized state constraints, that are based on operator pre-
conditioning with standard norms, are constructed in [49]. In [82] a preconditioner for Moreau-Yosida
regularized state constraints is proposed based on an efficient approximation of the Schur complement.
This preconditioner fits into the general framework proposed in [88], where preconditioners for prob-
lems with pointwise inequality constraints on the control and Moreau-Yosida regularized constraints
on the state are presented.
After formulating the problem, we compute the first-order optimality conditions, apply a primal-dual
active set method and derive the reduced (discretized) linear saddle point systems. We propose block-
diagonal preconditioners, based on the mapping properties of the involved operators in Sobolev spaces
equipped with non-standard norms. We compare them with preconditioners resulting from the oper-
ator preconditioning technique with standard norms and with the Schur complement approximation
preconditioners from [88]. Additionally, we discuss their efficient practical realization.

33
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4.1 Control constraints

4.1.1 Problem formulation
We consider the distributed elliptic optimal control problem (4.1) with pointwise inequality constraints
on the control, i.e., we consider the problem: find the state y ∈ H1

0 (Ω) and the control u ∈ L2(Ω)
that minimize the cost functional

J(y, u) =
1

2
||y − yd||2L2(Ω) +

α

2
||u||2L2(Ω), (4.2)

subject to

−∆y = u, in Ω,

y = 0, on Γ,

ua ≤ u ≤ ub a.e. in Ω,

where ua, ub ∈ L2(Ω) are the lower and upper bounds for the control variable u, respectively.
This optimal control problem is of the general form (2.48) with H = U = L2(Ω), Y = H1

0 (Ω),
Z = Y ∗ = H−1(Ω), D ∈ L(Y,Z) given by 〈Dy, z〉Y ∗,Y = (∇y,∇z)L2(Ω), T ∈ L(U,Z) given by
〈Tu, z〉Y ∗,Y = (u, z)L2(Ω), E ∈ L(Y,H) given by Ey = y, Uad = {u ∈ U : ua ≤ u ≤ ub a.e. in Ω},
Yad = Y and g = 0.
Due to Theorem 2.19, problem (4.2) admits a unique solution.

4.1.2 Discrete optimality conditions
Optimality conditions According to Theorem 2.22, the first-order optimality conditions of (4.2)
can be expressed as follows: find y ∈ Y = H1

0 (Ω), u ∈ U = L2(Ω), p ∈ P = H1
0 (Ω) and ξ ∈ L2(Ω)

such that the system

−∆y = u, in Ω, y = 0, on Γ, (4.3a)
−∆p = −(y − yd), in Ω, p = 0, on Γ, (4.3b)

αu− p+ ξ = 0, a.e. in Ω, (4.3c)
ξ −max {0, ξ + c(u− ub)} −min {0, ξ − c(ua − u)} = 0, a.e. in Ω, (4.3d)

holds for any c > 0. Note that the conditions (4.3a) and (4.3b) have to be understood in the
variational sense.
As stated in Section 2.5, we apply the primal-dual active set strategy as given in Algorithm 1 in
order to linearize (4.3). For this particular problem, the strategy reads as follows: given an iterate
(yj , uj , pj , ξj), the active sets are determined by

E+
j = {x ∈ Ω : ξj(x) + c (uj(x)− ub(x)) > 0} ,
E−j = {x ∈ Ω : ξj(x)− c (ua(x)− uj(x)) < 0} ,

and the inactive set is

Ij = Ω\Ej ,

where Ej = E+
j ∪ E

−
j . The next iterate is given as the solution of the following system (cf. (2.58))

−∆pj+1 = −(yj+1 − yd), in Ω, pj+1 = 0, on Γ,

αuj+1 − pj+1 + ξj+1 = 0, a.e. in Ω,

−∆yj+1 = uj+1, in Ω, yj+1 = 0, on Γ,

cχEjuj+1 + χIjξj+1 = c
(
χE+

j
ub + χE−j

ua

)
, a.e. in Ω.

(4.4)
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As also stated in Section 2.5, we reduce the linearized optimality systems (4.4) such that the only
unknowns left are the state variable y and the adjoint state variable p (cf. (2.61)). Since we focus
on the efficient solution of the linearized systems in each step of the primal-dual active set method,
we drop the iteration index j from now on and arrive at the following variational problem: find
y ∈ H1

0 (Ω) and p ∈ H1
0 (Ω) such that{

a(y, z) + b(z, p) = f(z), ∀z ∈ H1
0 (Ω),

b(y, q)− c(p, q) = g(q), ∀q ∈ H1
0 (Ω),

(4.5)

with  a(y, z) := (y, z)L2(Ω), b(z, q) := (∇z,∇q)L2(Ω), c(p, q) :=
1

α
(p, q)L2(I),

f(z) := (yd, z)L2(Ω), g(q) := (ub, q)L2(E+) + (ua, q)L2(E−).
(4.6)

The variational problem (4.5) fits into the abstract framework (2.12) of mixed variational problems
with V = Q = H1

0 (Ω), a(·, ·) being symmetric and positive and c(·, ·) being symmetric and non-
negative. It can be reformulated as a non-mixed problem (cf. (2.13)): find (y, p) ∈ X = Y × P =
H1

0 (Ω)×H1
0 (Ω) such that

B ((y, p), (z, q)) = F ((z, q)) , ∀(z, q) ∈ X, (4.7)

with

B ((w, r), (z, q)) = a(w, z) + b(z, r) + b(w, q)− c(r, q), F ((z, q)) = f(z) + g(q).

Discretization We use a Galerkin finite element method as introduced in Subsection 2.4.2 for
discretization. Therefore, let Th be a triangulation of the domain Ω with mesh size h. We choose the
finite-dimensional subspace S1,0

h (Th) of H1
0 (Ω) with the standard nodal basis (φi)

n
i=1.

Now, the variational formulation (4.5) on Xh = S1,0
h (Th)×S1,0

h (Th) yields the following linear system:

find
(
y
p

)
∈ R2n such that

(
M K
K − 1

αMI

)
︸ ︷︷ ︸

=:A

(
y
p

)
=

(
My

d
ME+ub +ME−ua

)
, (4.8)

where y and p denote the unknown coefficient vectors of the finite element solutions relative to the
nodal basis.
Here the mass matrix M , the mass matrix MI (related to the inactive set), the mass matrices ME+

and ME− (related to the active sets) and the stiffness matrix K correspond to the bilinear forms

(·, ·)L2(Ω), (·, ·)L2(I), (·, ·)L2(E+), (·, ·)L2(E−) and (∇·,∇·)L2(Ω), (4.9)

respectively. Due to the symmetry and non-negativity properties of the bilinear forms all these
matrices are symmetric and positive semidefinite. Since the bilinear forms (·, ·)L2(Ω) and (∇·,∇·)L2(Ω)

are even positive, the matrices M and K are positive definite.
The system matrix A fits into the general saddle point form (3.1) with A = M , B = BT = K
and C = 1

αMI . Its dependence on the mesh size h, the inactive set I and the cost parameter α
affects the condition number in a very bad way. Hence, the convergence rate of iterative methods,
like the MinRes method, applied to the unpreconditioned system deteriorates with respect to these
parameters. Therefore, appropriate preconditioning is an important issue.
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4.1.3 Block-diagonal preconditioning
This subsection is devoted to the construction and analysis of symmetric and positive definite block-
diagonal preconditioners for the saddle point matrix A in (4.8). Indeed, we propose and analyze
a preconditioner constructed based on the mapping properties of the involved operators in Sobolev
spaces equipped with non-standard norms and compare it with two other preconditioners: the first one
is a preconditioner constructed according to the operator preconditioning technique with standard
norms like in [49]. The second one is a Schur complement approximation preconditioner that is
presented and analyzed in [88]. Common to all of the presented preconditioners is their robustness
with respect to the mesh size h and the inactive set I. All three are not robust with respect to the
cost parameter α, but they have a different asymptotic behavior.
As stated in Section 3.3, the construction of symmetric and positive definite block-diagonal precon-
ditioners can be traced back to the choice of the norm for satisfying the inf-sup and the sup-sup
condition of Corollary 2.5. This is how we proceed in order to analyze the preconditioners.

Preconditioner based on operator preconditioning with non-standard norms For a dis-
tributed elliptic optimal control problem without constraints on the control and state, i.e., for the
case E = ∅, the following preconditioner is constructed in [90]

P =

(
M +

√
αK 0

0 1
αM + 1√

α
K

)
. (4.10)

It was shown that this preconditioner is robust with respect to the mesh size h and the cost parameter
α in this case. It corresponds to the following non-standard norm in the Hilbert space X

‖(y, p)‖2X := ‖y‖2Y + ‖p‖2P , (4.11)

with

‖y‖2Y := ‖y‖2L2(Ω) +
√
α‖y‖2H1

0 (Ω),

and

‖p‖2P :=
1

α
‖p‖2Y .

Now we modify this norm as follows: we replace ‖p‖L2(Ω) by ‖p‖L2(I) in ‖p‖P and arrive at the
following non-standard norm

‖(y, p)‖2X := ‖y‖2Y + ‖p‖2P , (4.12)

with

‖y‖2Y := ‖y‖2L2(Ω) +
√
α‖y‖2H1

0 (Ω),

and

‖p‖2P :=
1

α
‖p‖2L2(I) +

1√
α
‖p‖2H1

0 (Ω).

Using this norm, we can show the following result:

Lemma 4.1. Let the norm in X be given by (4.12). Then we have

c‖(y, p)‖X ≤ sup
06=(z,q)∈X

B ((y, p) , (z, q))

‖(z, q)‖X
≤ c‖(y, p)‖X ,
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for all (y, p) ∈ X with constants given by

c =
3−
√

5

8
√

2

(
cF√
α

+ 1

)−1

, c = 2. (4.13)

Here cF denotes the constant from the Friedrichs inequality (2.1). (Observe that the constants c and
c are independent of the inactive set I.)

Proof. Due to Theorem 2.7, it is necessary and sufficient to prove

c21‖w‖2Y ≤ sup
06=z∈H1

0 (Ω)

a(w, z)2

‖z‖2Y
+ sup

06=q∈H1
0 (Ω)

b(w, q)2

‖q‖2P
≤ c21‖w‖2Y , ∀w ∈ H1

0 (Ω), (4.14)

and

c22‖r‖2P ≤ sup
0 6=q∈H1

0 (Ω)

c(r, q)2

‖q‖2P
+ sup

0 6=z∈H1
0 (Ω)

b(z, r)2

‖z‖2Y
≤ c22‖r‖2P , ∀r ∈ H1

0 (Ω). (4.15)

with constants c1, c1, c2, c2 independent of the inactive set.
Using Cauchy’s inequality we get

sup
06=z∈H1

0 (Ω)

a(w, z)

‖z‖Y
≤ sup

0 6=z∈H1
0 (Ω)

‖w‖L2(Ω)‖z‖L2(Ω)

‖z‖L2(Ω)
= ‖w‖L2(Ω),

and

sup
0 6=q∈H1

0 (Ω)

b(w, q)

‖q‖P
≤ sup

06=q∈H1
0 (Ω)

‖w‖H1
0 (Ω)‖q‖H1

0 (Ω)

1
4
√
α
‖q‖H1

0 (Ω)

= 4
√
α‖w‖H1

0 (Ω),

which, by squaring and adding, gives the upper bound in (4.14) with

c21 = 1.

Again using Cauchy’s inequality we get

sup
06=q∈H1

0 (Ω)

c(r, q)

‖q‖P
≤ sup

06=q∈H1
0 (Ω)

1
α‖r‖L2(I)‖q‖L2(I)

‖q‖P
≤ sup

06=q∈H1
0 (Ω)

‖r‖P ‖q‖P
‖q‖P

= ‖r‖P ,

and

sup
06=z∈H1

0 (Ω)

b(z, r)

‖z‖Y
≤ sup

06=z∈H1
0 (Ω)

‖z‖H1
0 (Ω)‖r‖H1

0 (Ω)

‖z‖Y
≤ sup

06=z∈H1
0 (Ω)

‖z‖Y ‖r‖P
‖z‖Y

= ‖r‖P ,

which gives the upper bound in (4.15) with

c22 = 2.

The special choices z = w and q = w yield

sup
06=z∈H1

0 (Ω)

a(w, z)

‖z‖Y
≥
‖w‖2L2(Ω)

‖w‖Y
, (4.16)

and

sup
0 6=q∈H1

0 (Ω)

b(w, q)

‖q‖P
≥
‖w‖2

H1
0 (Ω)

‖w‖P
≥
√
α‖w‖2

H1
0 (Ω)

‖w‖Y
, (4.17)
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where in the last line we used

‖w‖P ≤
1√
α
‖w‖Y , (4.18)

which follows from the definition of the norms. Combining (4.16) and (4.17) and using the basic
inequality

(
a2 + b2

)
≥ 1

2 (a+ b)
2 for

a =
‖w‖2L2(Ω)

‖w‖Y
, b =

√
α‖w‖2

H1
0 (Ω)

‖w‖Y
,

gives the lower bound in (4.14) with

c21 =
1

2
.

Using the special choices q = r and z = r we get

sup
0 6=q∈H1

0 (Ω)

c(r, q)

‖q‖P
≥

1
α‖r‖

2
L2(I)

‖r‖P
, (4.19)

and

sup
06=z∈H1

0 (Ω)

b(z, r)

‖z‖Y
≥
‖r‖2

H1
0 (Ω)

‖r‖Y
≥
(
cF√
α

+ 1

)−1/2 1√
α
‖r‖2

H1
0 (Ω)

‖r‖P
. (4.20)

where in the last line we used

‖r‖Y ≤
((

cF√
α

+ 1

)
α

)1/2

‖r‖P , (4.21)

which follows by using Friedrichs’ inequality

‖r‖Y ≤
(
cF +

√
α
)1/2 ‖r‖H1

0 (Ω) ≤
((
cF +

√
α
)
‖r‖2H1

0 (Ω) + ‖r‖2L2(I)

)1/2

≤
((

cF√
α

+ 1

)
α

)1/2

‖r‖P .

Combining (4.19) and (4.20) and using the basic inequality
(
a2 + b2

)
≥ 1

2 (a+ b)
2 for

a =

1
α‖r‖

2
L2(I)

‖r‖P
, b =

1√
α
‖r‖2

H1
0 (Ω)

‖r‖P
,

gives the lower bound in (4.15) with

c22 =
1

2

(
cF√
α

+ 1

)−1

.

Using Theorem 2.7, the constants c and c are then given by (4.13).

An analog statement holds in the discrete setting and is given in the following lemma:

Lemma 4.2. Let the norm in Xh be given by (4.12). Then we have

c‖(yh, ph)‖X ≤ sup
0 6=(zh,qh)∈Xh

B ((yh, ph) , (zh, qh))

‖(zh, qh)‖X
≤ c‖(yh, ph)‖X ,

for all (yh, ph) ∈ Xh with c and c given by (4.13). (Observe that the constants are independent of the
inactive set I and the mesh size h.)
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Proof. The proof is done by repeating the proof of Lemma 4.1 step by step for the finite element
functions.

The norm in (4.12) is represented by the following symmetric and positive definite block-diagonal
matrix

P1 :=

(
M +

√
αK 0

0 1
αMI + 1√

α
K

)
. (4.22)

Due to Lemma 4.2, this matrix yields the following preconditioning result (cf. Section 3.3):

Proposition 4.3. The spectral condition number of the preconditioned system P−1
1 A is bounded by

a constant that is independent of the inactive set I and the mesh size h and scales like 1√
α
for small

α:

κP1

(
P−1

1 A
)
≤ c

c
,

with c and c given by (4.13).

Remark 4.4. Note that for the preconditioner (4.10) constructed in [90] one can also prove robustness
with respect to the mesh size h and the inactive set I if used in the control constrained case. However,
the upper bound on the condition number scales like 1

α for small α (which is indeed worse than
the scaling 1√

α
for the preconditioner P1). Additionally, numerical experiments confirmed its worse

behavior compared to the preconditioner P1.

Preconditioner based on operator preconditioning with standard norms Here we use the
standard norm in the Hilbert space X, i.e., the norm

‖(y, p)‖2X := ‖y‖2H1
0 (Ω) + ‖p‖2H1

0 (Ω). (4.23)

Using this norm, we can show the following result:

Lemma 4.5. Let the norm in X be given by (4.23). Then we have

c‖(y, p)‖X ≤ sup
06=(z,q)∈X

B ((y, p) , (z, q))

‖(z, q)‖X
≤ c‖(y, p)‖X ,

for all (y, p) ∈ X with constants given by

c =
3−
√

5

4

√
2

c
, c =

√
2 max

{(
c2F
α2

+ 1

)1/2

,
(
c2F + 1

)1/2}
. (4.24)

(Observe that the constants are independent of the inactive set I.)

Proof. As in the proof of Lemma 4.1 we use Theorem 2.7 and prove the conditions (4.14) and (4.15)
with ‖ · ‖Y = ‖ · ‖P = ‖ · ‖H1

0 (Ω).
We first show (4.14):
Using Cauchy’s inequality and Friedrichs’ inequality we get

sup
06=z∈H1

0 (Ω)

a(w, z)

‖z‖H1
0 (Ω)

≤ sup
06=z∈H1

0 (Ω)

‖w‖L2(Ω)‖z‖L2(Ω)

‖z‖H1
0 (Ω)

≤ sup
06=z∈H1

0 (Ω)

√
cF ‖w‖H1

0 (Ω)
√
cF ‖z‖H1

0 (Ω)

‖z‖H1
0 (Ω)

= cF ‖w‖H1
0 (Ω),
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and (by Cauchy’s inequality)

sup
06=q∈H1

0 (Ω)

b(w, q)

‖q‖H1
0 (Ω)

≤ sup
0 6=q∈H1

0 (Ω)

‖w‖H1
0 (Ω)‖q‖H1

0 (Ω)

‖q‖H1
0 (Ω)

= ‖w‖H1
0 (Ω),

which, by combination, gives the upper bound in (4.14) with

c21 = c2F + 1.

With the special choice q = w we get

sup
06=q∈H1

0 (Ω)

b(w, q)

‖q‖H1
0 (Ω)

≥
‖w‖2

H1
0 (Ω)

‖w‖H1
0 (Ω)

= ‖w‖H1
0 (Ω),

and, since

sup
0 6=z∈H1

0 (Ω)

a(w, z)

‖z‖H1
0 (Ω)

≥ 0,

the lower bound in (4.14) follows with

c21 = 1.

In a similar way (using the fact that ‖ · ‖L2(I) ≤ ‖ · ‖L2(Ω)) one can show (4.15) with

c22 = 1, c22 =
c2F
α2

+ 1.

Using Theorem 2.7, the constants c and c are then given by (4.24).

Now we again have an analog statement in the discrete setting:

Lemma 4.6. Let the norm in Xh be given by (4.23). Then we have

c‖(yh, ph)‖X ≤ sup
0 6=(zh,qh)∈Xh

B ((yh, ph) , (zh, qh))

‖(zh, qh)‖X
≤ c‖(yh, ph)‖X ,

for all (yh, ph) ∈ Xh with c and c given by (4.24). (Observe that the constants are independent of the
inactive set I and the mesh size h.)

Proof. The proof is done by repeating the proof of Lemma 4.5 step by step for the finite element
functions.

The norm in (4.23) is represented by the following symmetric and positive definite block-diagonal
matrix

P2 :=

(
K 0
0 K

)
, (4.25)

and we have the following preconditioning result:

Proposition 4.7. The spectral condition number of the preconditioned system P−1
2 A is bounded by

a constant that is independent of the inactive set I and the mesh size h and scales like 1
α2 for small

α:

κP2

(
P−1

2 A
)
≤ c

c
,

with c and c given by (4.24).
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Schur complement approximation preconditioner Since the matrix M in (4.8) is positive
definite, we can form the Schur complement (cf. (3.10))

S =
1

α
MI +KM−1K,

and therefore the symmetric and positive definite Schur complement preconditioner

P0 =

(
M 0
0 S

)
, (4.26)

as defined in Subsection 3.3.2. Note that the second Schur complement (cf. (3.11)) is not well-
defined due to the semidefiniteness of the matrix MI . The Schur complement preconditioner (4.26)
corresponds to the following mesh-dependent norm in the finite-dimensional space Xh

‖(yh, ph)‖2Xh := ‖yh‖2L2(Ω) + ‖ph‖2S ,

with the Schur complement norm

‖ph‖2S :=
1

α
‖ph‖2L2(I) + sup

06=qh∈S1,0
h (Th)

(ph, qh)
2
H1

0 (Ω)

‖qh‖2L2(Ω)

.

However, in practice, it is hard to work with this Schur complement since it is not efficiently invertible.
Therefore we mention an approach presented in [83] for the unconstrained case and developed further
in [88] for the constrained case, where the following approximation of the Schur complement S is
performed

Ŝ =

(
K +

1√
α
MI

)
M−1

(
K +

1√
α
MI

)
.

Due to its product form, the matrix Ŝ allows a factor-wise inversion. Now, the preconditioner (4.26)
with S replaced by Ŝ corresponds to the following norm in Xh

‖(yh, ph)‖2Xh := ‖yh‖2L2(Ω) + ‖ph‖2Ŝ , (4.27)

with

‖ph‖2Ŝ := sup
06=qh∈S1,0

h (Th)

(
(ph, qh)H1

0 (Ω) + 1√
α

(ph, qh)L2(I)

)2

‖qh‖2L2(Ω)

.

and the following result is shown in [88]:

Theorem 4.8. We have
1

2
‖qh‖2Ŝ ≤ ‖qh‖

2
S ≤

(
2 +

3cF
2
√
α

)
‖qh‖2Ŝ , ∀qh ∈ S1,0

h (Th). (4.28)

Proof. In [88], the result is proven in the infinite-dimensional setting and it is stated that it remains
true for the finite element functions.

From the last theorem we can derive the following result:

Lemma 4.9. Let the norm in Xh be given by (4.27). Then we have

c‖(yh, ph)‖Xh ≤ sup
0 6=(zh,qh)∈Xh

B ((yh, ph) , (zh, qh))

‖(zh, qh)‖Xh
≤ c‖(yh, ph)‖Xh ,

for all (yh, ph) ∈ Xh with constants given by

c =

√
5− 1

4
, c =

(
2 +

3cF
2
√
α

) √
5 + 1

2
. (4.29)

(Observe that the constants are independent of the inactive set I and the mesh size h.)
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Proof. Theorem 4.8 in combination with Theorem 3.3 immediately gives the result.

Therefore, the symmetric and positive definite block-diagonal matrix (representing the norm (4.27))
given by

P3 :=

(
M 0

0
(
K + 1√

α
MI

)
M−1

(
K + 1√

α
MI

))
, (4.30)

yields the following preconditioning result:

Proposition 4.10. The spectral condition number of the preconditioned system P−1
3 A is bounded by

a constant that is independent of the inactive set I and the mesh size h and scales like 1√
α
for small

α:

κP3

(
P−1

3 A
)
≤ c

c
,

with c and c given by (4.29).

Remark 4.11. As stated in [88], the constant for the upper bound in (4.28) can be improved to
2+ 3cF

2 4
√
α
if the boundary between the active and inactive set satisfies additional regularity assumptions

(see [88, Assumption 6.1]).

Summary All the presented preconditioners are robust with respect to the mesh size h and the
inactive set I but not with respect to the cost parameter α: the upper bound on the condition number
for P2 scales like 1

α2 for small α, whereas it scales like 1√
α
for P1 and P3. As stated in Remark 4.11,

the upper bound on the condition number for preconditioner P3 can be improved to a dependence of
1

4
√
α
if additional assumptions are satisfied.

How these behaviors of the proven upper bounds are reflected in numerical experiments will be shown
in Subsection 7.1.1.

4.2 State constraints

4.2.1 Problem formulation
Now we consider the elliptic optimal control problem (4.1) with Moreau-Yosida penalized constraints
on the state, i.e., we consider the problem: find the state y ∈ H1

0 (Ω) and the control u ∈ L2(Ω) that
minimize the cost functional

J(y, u) =
1

2
||y − yd||2L2(Ω) +

α

2
||u||2L2(Ω) +

1

2ε
‖max {0, y − yb} ‖2L2(Ω) (4.31)

+
1

2ε
‖min {0, y − ya} ‖2L2(Ω),

subject to

−∆y = u, in Ω,

y = 0, on Γ,

with a penalization parameter ε > 0 and ya, yb ∈ L2(Ω) being the lower and upper bounds for the
state variable y, respectively.
With the same setting for the spaces H, U , Y and Z and the operators D, T and E as in the control
constrained case, this optimal control problem is now of the general form (2.54) and admits a unique
solution due to Theorem 2.23.
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4.2.2 Discrete optimality conditions

Optimality conditions Using Theorem 2.23, the first-order optimality conditions of (4.31) are
given by: find y ∈ Y = H1

0 (Ω), u ∈ U = L2(Ω) and p ∈ P = H1
0 (Ω) such that the following system is

satisfied

−∆y = u, in Ω, y = 0, on Γ, (4.32a)

−∆p = −(y − yd)−
1

ε
max {0, y − yb} −

1

ε
min {0, y − ya} , in Ω, p = 0, on Γ, (4.32b)

αu− p = 0, a.e. in Ω. (4.32c)

Note that the conditions (4.32a) and (4.32b) have to be understood in the variational sense.
Applying the primal-dual active set method as given in Algorithm 2 for linearization results in the
following strategy: given an iterate (yj , uj , pj), the active sets are determined by

E+
j = {x ∈ Ω : yj(x)− yb(x) > 0} ,
E−j = {x ∈ Ω : yj(x)− ya(x) < 0} ,

and the next iterate is given as the solution of the following system (cf. (2.60))
−∆pj+1 = −(yj+1 − yd) +

1

ε

(
−χEjyj+1 + χE+

j
yb + χE−j

ya

)
, in Ω, pj+1 = 0, on Γ,

αuj+1 = pj+1, a.e. in Ω,

−∆yj+1 = uj+1, in Ω, yj+1 = 0, on Γ.

(4.33)

As in the control constrained case, we drop the iteration index j and reduce the linearized optimality
system (4.33) such that the only unknowns left are the state variable y and the adjoint state variable
p. Then the variational problem to be solved in each step of the active set method reads: find
y ∈ H1

0 (Ω) and p ∈ H1
0 (Ω) such that{

a(y, z) + b(z, p) = f(z), ∀z ∈ H1
0 (Ω),

b(y, q)− c(p, q) = 0, ∀q ∈ H1
0 (Ω),

(4.34)

with

a(y, z) := (y, z)L2(Ω) +
1

ε
(y, z)L2(E), c(p, q) :=

1

α
(p, q)L2(Ω),

f(z) := (yd, z)L2(Ω) +
1

ε

(
(yb, z)L2(E+) + (ya, z)L2(E−)

)
,

and b(·, ·) as in the control constrained case (cf. (4.6)), i.e.,

b(z, q) = (∇z,∇q)L2(Ω).

This variational problem fits into the abstract framework (2.12) of mixed variational problems with
V = Q = H1

0 (Ω) and a(·, ·) and c(·, ·) both being symmetric and positive and can be reformulated
(analogously to the control constrained case) as a non-mixed variational problem: find (y, p) ∈ X =
Y × P = H1

0 (Ω)×H1
0 (Ω) such that

B((y, p), (z, q)) = F((z, q)), ∀(z, q) ∈ X, (4.35)

with

B((y, p), (z, q)) = a(w, z) + b(z, r) + b(w, q)− c(r, q), F((z, q)) = f(z).
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Discretization The discretization is done as in Subsection 4.1.2 using the finite element subspace
S1,0
h (Th) of H1

0 (Ω) with the standard nodal basis (φi)
n
i=1.

Now, the variational formulation (4.34) onXh = S1,0
h (Th)×S1,0

h (Th) yields the following linear system:

find
(
y
p

)
∈ R2n such that

(
M + 1

εME K
K − 1

αM

)
︸ ︷︷ ︸

=:A

(
y
p

)
=

(
My

d
+ 1

ε

(
ME+y

b
+ME−ya

)
0

)
. (4.36)

The involved matrices are defined similarly as in (4.9).
With the setting A = M + 1

εME , B = BT = K and C = 1
αM , the system matrix A fits into the

general saddle point form (3.1). As in the control constrained case, the matrix depends on the mesh
size h, the active set E and the cost parameter α. In addition to that, the matrix here also depends
on the penalization parameter ε.

4.2.3 Block-diagonal preconditioning
This subsection is devoted to the construction and analysis of symmetric and positive definite block-
diagonal preconditioners for the saddle point matrix A in (4.36). As in Subsection 4.1.3, we propose
and analyze a preconditioner based on non-standard norms and compare it with a preconditioner
constructed according to the operator preconditioning technique with standard norms and a Schur
complement approximation preconditioner from [88]. All the presented preconditioners are robust
with respect to the mesh size h and the active set E . Additionally, our proposed preconditioner is
robust with respect to the cost parameter α.
As in Subsection 4.1.3, the preconditioners are analyzed by using the corresponding norm for satisfying
the inf-sup and the sup-sup condition of Corollary 2.5.

Preconditioner based on operator preconditioning with non-standard norms As in the
control constrained case, we propose a modification of the norm (4.11) constructed in [90] for a
distributed elliptic optimal control problem without constraints on the control and state.
We replace ‖y‖2L2(Ω) by ‖y‖

2
L2(Ω)+

1
ε ‖y‖

2
L2(E) in ‖y‖Y in (4.11) and arrive at the following non-standard

norm in the Hilbert space X

‖(y, p)‖2X := ‖y‖2Y + ‖p‖2P , (4.37)

with

‖y‖2Y := ‖y‖2L2(Ω) +
1

ε
‖y‖2L2(E) +

√
α‖y‖2H1

0 (Ω),

and

‖p‖2P :=
1

α
‖p‖2L2(Ω) +

1√
α
‖p‖2H1

0 (Ω).

Now we can show the following result:

Lemma 4.12. Let the norm in X be given by (4.37). Then we have

c‖(y, p)‖X ≤ sup
06=(z,q)∈X

B ((y, p) , (z, q))

‖(z, q)‖X
≤ c‖(y, p)‖X ,

for all (y, p) ∈ X with constants given by

c =
3−
√

5

8

(
1 +

1

ε

)−1

, c =
√

2. (4.38)

(Observe that the constants are independent of the active set E and the cost parameter α.)
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Proof. As in the proof of Lemma 4.1 we use Theorem 2.7 and prove the conditions (4.14) and (4.15)
with a(·, ·), b(·, ·), c(·, ·) and ‖ · ‖Y , ‖ · ‖P as in (4.34) and (4.37), respectively.
Using Cauchy’s inequality we get

a(w, z) ≤
(
‖w‖2L2(Ω) +

1

ε
‖w‖2L2(E)

)1/2(
‖z‖2L2(Ω) +

1

ε
‖z‖2L2(E)

)1/2

,

and, since

‖z‖Y ≥
(
‖z‖2L2(Ω) +

1

ε
‖z‖2L2(E)

)1/2

,

we have

sup
06=z∈H1

0 (Ω)

a(w, z)

‖z‖Y
≤
(
‖w‖2L2(Ω) +

1

ε
‖w‖2L2(E)

)1/2

. (4.39)

Again using Cauchy’s inequality we get

sup
0 6=q∈H1

0 (Ω)

b(w, q)

‖q‖P
≤ sup

06=q∈H1
0 (Ω)

‖w‖H1
0 (Ω)‖q‖H1

0 (Ω)

1
4
√
α
‖q‖H1

0 (Ω)

= 4
√
α‖w‖H1

0 (Ω). (4.40)

Combining (4.39) and (4.40) gives the upper bound in (4.14) with

c21 = 1.

In a similar way one can show the upper bound in (4.15) with

c22 = 1.

The special choices z = w and q = w yield

sup
0 6=z∈H1

0 (Ω)

a(w, z)

‖z‖Y
≥
‖w‖2L2(Ω) + 1

ε ‖w‖
2
L2(E)

‖w‖Y
, (4.41)

and

sup
0 6=q∈H1

0 (Ω)

b(w, q)

‖q‖P
≥
‖w‖2

H1
0 (Ω)

‖w‖P
≥
√
α‖w‖2

H1
0 (Ω)

‖w‖Y
, (4.42)

where in the last line we used

‖w‖P ≤
1√
α
‖w‖Y , (4.43)

which follows from the definition of the norms. Combining (4.41) and (4.42) and using the basic
inequality

(
a2 + b2

)
≥ 1

2 (a+ b)
2 for

a =
‖w‖2L2(Ω) + 1

ε ‖w‖
2
L2(E)

‖w‖Y
, b =

√
α‖w‖2

H1
0 (Ω)

‖w‖Y
,

gives the lower bound in (4.14) with

c21 =
1

2
.
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Using the special choices q = r and z = r we get

sup
06=q∈H1

0 (Ω)

c(r, q)

‖q‖P
≥

1
α‖r‖

2
L2(Ω)

‖r‖P
, (4.44)

and

sup
0 6=z∈H1

0 (Ω)

b(z, r)

‖z‖Y
≥
‖r‖2

H1
0 (Ω)

‖r‖Y
≥
(

1

ε
+ 1

)−1/2 1√
α
‖r‖2

H1
0 (Ω)

‖r‖P
, , (4.45)

where in the last line we used

‖r‖Y ≤
((

1

ε
+ 1

)
α

)1/2

‖r‖P , (4.46)

which follows from the definition of the norms. Combining (4.44) and (4.45) and using the basic
inequality

(
a2 + b2

)
≥ 1

2 (a+ b)
2 for

a =

1
α‖r‖

2
L2(Ω)

‖r‖P
, b =

1√
α
‖r‖2

H1
0 (Ω)

‖r‖P
,

gives the lower bound in (4.15) with

c22 =
1

2

(
1

ε
+ 1

)−1

.

Using Theorem 2.7, the constants c and c are then given by (4.38).

An analog statement holds in the discrete setting:

Lemma 4.13. Let the norm in Xh be given by (4.37). Then we have

c‖(yh, ph)‖X ≤ sup
0 6=(zh,qh)∈Xh

B ((yh, ph) , (zh, qh))

‖(zh, qh)‖X
≤ c‖(yh, ph)‖X ,

for all (yh, ph) ∈ Xh with c and c given by (4.38). (Observe that the constants are independent of the
active set E, the cost parameter α and the mesh size h.)

Proof. The proof is done by repeating the proof of Lemma 4.12 step by step for the finite element
functions.

The norm in (4.37) is now represented by the following symmetric and positive definite block-diagonal
matrix

P1 :=

(
M + 1

εME +
√
αK 0

0 1
αM + 1√

α
K

)
, (4.47)

and we have the following preconditioning result:

Proposition 4.14. The spectral condition number of the preconditioned system P−1
1 A is bounded

by a constant that is independent of the active set E, the cost parameter α and the mesh size h and
scales like 1

ε for small ε:

κP1

(
P−1

1 A
)
≤ c

c
,

with c and c given by (4.38).

Remark 4.15. As in the control constrained case, one could use the preconditioner (4.10) from [90]
also in this case. As for the preconditioner P1, robustness with respect to the mesh size h, the active set
E and the cost parameter α can be shown. However, the upper bound on the condition number scales
like 1

ε2 for small ε (which is indeed worse than the scaling 1
ε for the preconditioner P1). Additionally,

numerical experiments confirmed its worse behavior compared to the preconditioner P1.
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Preconditioner based on operator interpolation with standard norms Here we again use
the standard norm in the Hilbert space X, i.e., the norm given by (4.23):

‖(y, p)‖2X := ‖y‖2H1
0 (Ω) + ‖p‖2H1

0 (Ω). (4.48)

Using this norm, we can show the following result:

Lemma 4.16. Let the norm in X be given by (4.48). Then we have

c‖(y, p)‖X ≤ sup
06=(z,q)∈X

B ((y, p) , (z, q))

‖(z, q)‖X
≤ c‖(y, p)‖X ,

for all (y, p) ∈ X with constants given by

c =
3−
√

5

4

√
2

c
, c =

√
2 max


(
c2F
α2

+ 1

)1/2

,

((
1 +

1

ε

)2

c2F + 1

)1/2
 . (4.49)

(Observe that the constants are independent of the active set E.)

Proof. Analogous to the proof of Lemma 4.5.

We again have an analog statement in the discrete setting:

Lemma 4.17. Let the norm in Xh be given by (4.48). Then we have

c‖(yh, ph)‖X ≤ sup
0 6=(zh,qh)∈Xh

B ((yh, ph) , (zh, qh))

‖(zh, qh)‖X
≤ c‖(yh, ph)‖X ,

for all (yh, ph) ∈ Xh with c and c given by (4.49). (Observe that the constants are independent of the
active set E and the mesh size h.)

Proof. The proof is done by repeating the proof of Lemma 4.16 (cf. proof of Lemma 4.5) step by step
for the finite element functions.

The norm in (4.48) is represented by the following symmetric and positive definite block-diagonal
matrix (cf. (4.25))

P2 :=

(
K 0
0 K

)
, (4.50)

and we have the following preconditioning result:

Proposition 4.18. The spectral condition number of the preconditioned system P−1
2 A is bounded by

a constant that is independent of the active set E and the mesh size h and scales like
max

{
1
α2 ,
(
1 + 1

ε

)2}:
κP2

(
P−1

2 A
)
≤ c

c
,

with c and c given by (4.49).
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Schur complement approximation preconditioner As in the case with control constraints, we
form the Schur complement (cf. (3.10))

S =
1

α
M +K

(
M +

1

ε
ME

)−1

K,

and the symmetric and positive definite Schur complement preconditioner

P0 =

(
M + 1

εME 0
0 S

)
, (4.51)

as defined in Subsection 3.3.2. The Schur complement preconditioner (4.51) corresponds to the
following mesh-dependent norm in the finite-dimensional space Xh

‖(yh, ph)‖2Xh := ‖yh‖2L2(Ω) +
1

ε
‖yh‖2L2(E) + ‖ph‖2S ,

with the Schur complement norm

‖ph‖2S :=
1

α
‖ph‖2L2(Ω) + sup

06=qh∈S1,0
h (Th)

(ph, qh)
2
H1

0 (Ω)

‖qh‖2L2(Ω) + 1
ε ‖qh‖

2
L2(E)

.

As before, it is hard to work with this Schur complement in practice. Therefore, we introduce the
following product form approximation that is proposed in [88]

Ŝ =

(
K +

1√
α
Mψ

)(
M +

1

ε
ME

)−1(
K +

1√
α
Mψ

)
.

whereMψ is the matrix arising from the finite element discretization of the bilinear form
(√
ψ·, ·

)
L2(Ω)

,

with ψ = 1 + 1
εχE . Now, the preconditioner (4.51) with S replaced by Ŝ corresponds to the following

norm in Xh

‖(yh, ph)‖2Xh := ‖yh‖2L2(Ω) +
1

ε
‖yh‖2L2(E) + ‖ph‖2Ŝ , (4.52)

with

‖ph‖2Ŝ := sup
06=qh∈S1,0

h (Th)

(
(ph, qh)H1

0 (Ω) + 1√
α

(√
ψph, qh

)
L2(Ω)

)2

‖qh‖2L2(Ω) + 1
ε ‖qh‖

2
L2(E)

.

and the following result is shown in [88]:

Theorem 4.19. We have
1

2
‖qh‖2Ŝ ≤ ‖qh‖

2
S ≤

(
2 +

3cF
2
√
α
‖ψ‖1/2L∞(Ω)

)
‖qh‖2Ŝ , ∀qh ∈ S1,0

h (Th). (4.53)

Proof. In [88], the result is proven in the infinite-dimensional setting and it is stated that it remains
true for the finite element functions.

From the last theorem we can derive the following result:

Lemma 4.20. Let the norm in Xh be given by (4.52). Then we have

c‖(yh, ph)‖Xh ≤ sup
0 6=(zh,qh)∈Xh

B ((yh, ph) , (zh, qh))

‖(zh, qh)‖Xh
≤ c‖(yh, ph)‖Xh ,

for all (yh, ph) ∈ Xh with constants given by

c =

√
5− 1

4
, c =

(
2 +

3cF
2
√
α
‖ψ‖1/2L∞(Ω)

) √
5 + 1

4
. (4.54)

(Observe that the constants are independent of the active set E and the mesh size h.)
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Proof. Analogous to the proof of Lemma 4.9.

Therefore, the symmetric and positive definite block-diagonal matrix (representing the norm (4.52))
given by

P3 :=

(
M + 1

εME 0

0
(
K + 1√

α
Mψ

) (
M + 1

εME
)−1

(
K + 1√

α
Mψ

))
, (4.55)

yields the following preconditioning result:

Proposition 4.21. The spectral condition number of the preconditioned system P−1
3 A is bounded by

a constant that is independent of the active set E and the mesh size h and scales like 1√
αε

for small
α, ε:

κP3

(
P−1

3 A
)
≤ c

c
,

with c and c given by (4.54).

Remark 4.22. As stated in [88], similar to the control constrained problem, the constant for the
upper bound in (4.53) can be improved to 2 + 3cF

2 4
√
α
‖ψ‖1/4L∞(Ω) if the boundary between the active and

inactive set satisfies additional regularity assumptions (see [88, Assumption 6.1]).

Summary All the presented preconditioners are robust with respect to the mesh size h and the
active set E but not with respect to the penalty parameter ε: the upper bound on the condition
number for P2 scales like 1

ε2 for small ε, whereas it scales like 1√
ε
for P3 and like 1

ε for P1. As stated
in Remark 4.22, the upper bound on the condition number for preconditioner P3 can be improved
to a dependence of 1

4
√
ε
if additional assumptions are satisfied. Note that the preconditioner P1 is

additionally robust with respect to the cost parameter α, while P2 and P3 are not.
How these behaviors of the proven upper bounds are reflected in numerical experiments will be shown
in Subsection 7.1.2.

4.3 Practical realization of the preconditioners
As already stated, the improvement of the spectral properties is not the only criterion a preconditioner
has to satisfy, efficiency in practical realization is just as important. Therefore, this section is devoted
to the practical realization of the stated preconditioners.
We first recall and summarize the diagonal blocks that appear in the presented preconditioners. We
divide them into the blocks that correspond to zero order differential operators, the ones corresponding
to second order differential operators and the ones corresponding to fourth order differential operators.

• zero order differential operators:

– M

– M + 1
εME

• second order differential operators:

– K

– M +
√
αK

– MI +
√
αK

– M + 1
εME +

√
αK

• fourth order differential operators:
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–
(
K + 1√

α
MI

)
M−1

(
K + 1√

α
MI

)
–
(
K + 1√

α
Mψ

) (
M + 1

εME
)−1

(
K + 1√

α
Mψ

)
The application of the preconditioners would require the multiplication of vectors from the left by
the inverses of these matrices. Now the aim is to replace those actions by more cost efficient ones
such that the behavior of the proven upper bounds on the condition numbers is preserved, i.e., we
are looking for spectrally equivalent actions (as discussed in Subsection 3.3.4) where the equivalence
constants are independent of h, α, ε and E .
Partial results for parameter-robust (with respect to h, α, ε and E) replacements of the inverses of
the above stated matrices are known. In detail, the replacement of the inverse of the mass matrix
M by a symmetric Gauss-Seidel iteration is parameter-robust. Due to the analysis in [47] and [77],
the inverses of the matrices K and M +

√
αK corresponding to second order differential operators

can be parameter-robustly replaced by a V-cycle multigrid iteration with a symmetric Gauss-Seidel
iteration as smoother. Also for the fourth order operators, partial results are known (for the case
E = ∅). In order to discuss this, we need the following theorem:

Theorem 4.23. Let M and K be two symmetric and positive definite matrices. Assume that there
exists another symmetric and positive definite matrix K̃ and q ∈ R, q < 1, such that∥∥∥I − K̃−1K

∥∥∥
M
≤ q, (4.56)

with I denoting the identity matrix, then

K̃M−1K̃ ∼ KM−1K, (4.57)

with constants that depend only on q.

Proof. See [18].

In the case E = ∅ the above stated matrices corresponding to fourth order operators both read(
K +

1√
α
M

)
M−1

(
K +

1√
α
M

)
. (4.58)

Now we apply Theorem 4.23 forM = M and K = K + 1√
α
M . Due to the analysis in [47] and [77],

W-cycle multigrid methods as K̃−1 satisfy condition (4.56) in this case. Note that this is not known
for V-cycle multigrid methods. Now, the inverse of the matrix in (4.58) can be parameter-robustly
replaced by acting out the following steps: first, a W-cycle multigrid iteration with a symmetric
Gauss-Seidel iteration as smoother as parameter-robust replacement of the action of the inverse of
the second order matrix K + 1√

α
M applied to a vector is performed. Then the resulting vector is

multiplied by the mass matrix M and finally, again a W-cycle multigrid iteration is applied.
To the best of our knowledge, parameter-robust replacements for the other matrices listed above
are not know. However, we use the replacements stated for zero order, second order and fourth
order matrices also for the remaining matrices in these classes. In detail, for the matrix M + 1

εME
corresponding to a zero order operator we use a symmetric Gauss-Seidel iteration. For the matrices
MI+

√
αK andM+ 1

εME+
√
αK corresponding to second order operators we use a V-cycle multigrid

iteration with a symmetric Gauss-Seidel iteration as smoother. And finally for the fourth order
matrices

(
K + 1√

α
MI

)
M−1

(
K + 1√

α
MI

)
and

(
K + 1√

α
Mψ

) (
M + 1

εME
)−1

(
K + 1√

α
Mψ

)
we use

a W-cycle multigrid iteration with a symmetric Gauss-Seidel iteration as smoother for the involved
second order parts K + 1√

α
MI and K + 1√

α
Mψ, respectively.

Table 4.1 gives a summarized overview of the practical realization of the diagonal blocks appearing
in the presented preconditioners.
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M symmetric Gauss-Seidel iteration
M + 1

εME

K
V-cycle with symmetric Gauss-Seidel as pre-

and post-smoothing
M +

√
αK

MI +
√
αK

M + 1
εME +

√
αK(

K + 1√
α
MI

)
M−1

(
K + 1√

α
MI

)
W-cycle with symmetric Gauss-Seidel as pre-
and post-smoothing for each of the second

order terms
(
K + 1√

α
Mψ

) (
M + 1

εME
)−1

(
K + 1√

α
Mψ

)
Table 4.1: Practical realization of the diagonal blocks.

Now, by comparing the preconditioners with respect to their efficiency in practical realization we
can conclude the following: the realization of our proposed preconditioners (4.22) and (4.47) and the
one constructed according to the operator preconditioning technique with standard norms ((4.25)
and (4.50)) require two V-cycles each. Therefore, their realization is equally expensive. However,
the realization of the Schur complement approximation preconditioners (4.30) and (4.55) is more
costly since it requires two W-cycles, which are indeed more expensive than V-cycles. Additionally,
Gauss-Seidel iterations are involved for the zero order terms, but those do not effect the costs at all.
As discussed above, some of the replacements do not influence the behavior of the proven upper
bounds on the condition number (due to spectral equivalence with constants independent of the
mentioned parameters) but some others may do. This will be subject to further discussion in the
numerical experiments later on (see Section 7.1).
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Chapter 5

Optimal control of
multiharmonic-parabolic equations

This chapter is devoted to the development of efficient block-diagonal preconditioners for the following
distributed time-periodic parabolic optimal control problem: find the state y : Ω × (0, T ) → R and
the control u : Ω× (0, T )→ R that minimize the cost functional

J(y, u) =
1

2
||y − yd||2L2(Ω×(0,T )) +

α

2
||u||2L2(Ω×(0,T )),

subject to the time-periodic parabolic equation

σ
∂

∂t
y − div (ν∇y) = u, in Ω× (0, T ),

y = 0, on Γ× (0, T ),

y(0) = y(T ), in Ω,

where yd : Ω× (0, T )→ R is some given desired state, α > 0 is the cost parameter and T > 0 is the
time period. Recall that Ω ⊂ Rd, d ∈ {1, 2, 3}, is assumed to be an open and bounded polygonal
domain with Lipschitz continuous boundary Γ.
Additionally, the two time-independent coefficients ν ∈ L∞(Ω) and σ ∈ L∞(Ω) fulfill

0 < νmin ≤ ν ≤ νmax, 0 ≤ σ ≤ σmax, a.e. in Ω.

By a simple scaling argument it can always be achieved that the lower bound for ν is equal to 1:
for arbitrary ν we scale the state equation with ν−1

min to obtain the equivalent minimization problem:
find the state y : Ω × (0, T ) → R and the control u = u

νmin
: Ω × (0, T ) → R that minimize the cost

functional

J(y, u) =
1

2
||y − yd||2L2(Ω×(0,T )) +

α

2
||u||2L2(Ω×(0,T )), (5.1)

subject to the state equation

σ
∂

∂t
y − div (ν∇y) = u, in Ω× (0, T ),

y = 0, on Γ× (0, T ),

y(0) = y(T ), in Ω,

with the new parameters σ = σ
νmin

, ν = ν
νmin

and α = αν2
min. In the remainder of this chapter we

consider the scaled optimal control problem (5.1) with

1 ≤ ν ≤ νmax, 0 ≤ σ ≤ σmax, a.e. in Ω.

53
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where

νmax =
νmax

νmin
, σmax =

σmax

νmin
.

As already mentioned in Subsection 2.3.2 (for the state equation), problems of the form (5.1) typically
arise in the field of electromagnetics. Recall that there the coefficients σ(·) and ν(·) correspond to the
conductivity and reluctivity, respectively, the state y represents the magnetic field in some domain and
the control u the impressed current. The desired state yd represents some given (desired) magnetic
field in the domain. In such problems, the aim is to determine the optimal current in order to reach
the desired magnetic field.
As in Subsection 2.3.2, we use a multiharmonic ansatz, i.e., we assume that the desired state has the
form

yd =

N∑
k=0

ycd,k cos(kωt) + ysd,k sin(kωt),

with some given N ∈ N, frequency ω = 2π
T and given amplitudes ycd,k, y

s
d,k : Ω → R and, we seek y

and u of the same form, i.e.,

y =

N∑
k=0

yck cos(kωt) + ysk sin(kωt), u =

N∑
k=0

uck cos(kωt) + usk sin(kωt),

with the unknowns yck, y
s
k, u

c
k, u

s
k : Ω→ R.

Now, these multiharmonic representations yield a decoupling (with respect to the modes k) of the cost
functional and, as already shown in Subsection 2.3.2, of the state equation. Therefore, we end up with
the following decoupled time-independent optimal control problems: for each mode k = 1, 2, · · · , N
find yk = (yck, y

s
k)T ∈ H1

0 (Ω)2 and uk = (uck, u
s
k)T ∈ L2(Ω)2 that minimize the cost functional

Jk(yk, uk) =
1

2
||yk − yd,k||2L2(Ω) +

α

2
||uk||2L2(Ω), (5.2)

subject to the state equation

kωσy⊥k − div (ν∇yk) = uk, in Ω,

yk = 0, on Γ.

or, more precisely, subject to the state equation in its variational form, given by

(ν∇yk,∇zk)L2(Ω) + kω(σy⊥k , zk)L2(Ω) = (uk, zk)L2(Ω), ∀zk = (zck, z
s
k)T ∈ H1

0 (Ω)2,

where yd,k = (ycd,k, y
s
d,k)T ∈ L2(Ω)2 and y⊥k = (ysk,−yck). Additionally, for the mode k = 0 we obtain

the following problem: find yc0 ∈ H1
0 (Ω) and uc0 ∈ L2(Ω) that minimize the cost functional

J0(yc0, u
c
0) =

1

2
||yc0 − ycd,0||2L2(Ω) +

α

2
||uc0||2L2(Ω), (5.3)

subject to the state equation

− div (ν∇yc0) = uc0, in Ω,

yc0 = 0, on Γ.

or, again more precisely, subject to the state equation in its variational form, given by

(ν∇yc0,∇zc0)L2(Ω) = (uc0, z
c
0)L2(Ω), ∀zc0 ∈ H1

0 (Ω).
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In this chapter we concentrate on the optimal control problem (5.2) for one fixed mode k 6= 0 and
therefore omit the subindex k. In contrast to the model problem from the last chapter where the
state equation was a scalar second order term, here the state equation is a system of two second
order equations that are coupled through a non-symmetric zero order term. Also note that the state
equation of consideration in this chapter depends on additional parameters (the mode number k, the
frequency ω, the conductivity σ and the reluctivity ν).
We first consider the case without additional constraints and then add pointwise inequality constraints
on the control coefficients uc, us or Moreau-Yosida regularized constraints on the state coefficients
yc, ys. In all the problems, we compute the first-order optimality conditions, apply a primal-dual
active set method (in the nonlinear case) and derive the reduced (discretized) linear saddle point
system.
In the case without additional constraints we propose a block-diagonal preconditioner that is based
on operator interpolation. As in the previous chapter, we propose block-diagonal preconditioners
that are based on the mapping properties of the involved operators in Sobolev spaces equipped with
non-standard norms for the linearized systems in the control and Moreau-Yosida regularized state
constrained cases. We compare them with preconditioners resulting from the operator preconditioning
technique with standard norms and discuss their efficient practical realization.
The (1, 1)-block of the resulting saddle point systems in the control constrained and in the Moreau-
Yosida regularized state constrained case is positive definite and therefore, the Schur complement
preconditioner as defined in (3.12) is well-defined. Additionally, in the Moreau-Yosida case, the
(2, 2)-block is also positive definite, so the second Schur complement preconditioner as in (3.13) is
well-defined, too. However, as far as we know, there is no literature available discussing efficient
approximations of these Schur complements. Therefore we will not discuss such preconditioners in
this chapter.
Note that the problem for the mode k = 0 is almost identical to the distributed elliptic optimal con-
trol problem (4.1). The only difference is, that instead of the bilinear form (∇·,∇·) the ν-dependent
bilinear form (ν∇·,∇·) appears. However, taking a closer look to the analysis in [99] yields, that
the proofs therein can be repeated step by step with (∇·,∇·) replaced by (ν∇·,∇·). Therefore, a
parameter-robust preconditioner for this problem is available. Additionally, if constraints on the con-
trol or state coefficients are imposed, the analysis in [88] and all the proofs from the Subsections 4.1.3
and 4.2.3 can also be repeated step by step with (∇·,∇·) replaced by (ν∇·,∇·). Therefore, the
optimal control problem for the mode k = 0 needs no further investigation.

5.1 The case without additional constraints

5.1.1 Problem formulation

We consider the optimal control problem (5.2): find y = (yc, ys)T ∈ H1
0 (Ω)2 and u = (uc, us)T ∈

L2(Ω)2 that minimize the cost functional

J(y, u) =
1

2
||y − yd||2L2(Ω) +

α

2
||u||2L2(Ω), (5.4)

subject to

kωσy⊥ − div (ν∇y) = u, in Ω,

y = 0, on Γ.

This optimal control problem is of the general form (2.48) with H = U = L2(Ω)2, Y = H1
0 (Ω)2, Z =

Y ∗ = H−1(Ω)2, D ∈ L(Y,Z) given by 〈Dy, z〉Y ∗,Y = (ν∇y,∇z)L2(Ω) + kω(σy⊥, z)L2(Ω), T ∈ L(U,Z)
given by 〈Tu, z〉Y ∗,Y = (u, z)L2(Ω), E ∈ L(Y,H) given by Ey = y, Uad = U , Yad = Y and g = 0. It
admits a unique solution due to Theorem 2.19.
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5.1.2 Discrete optimality conditions
According to Theorem 2.20 and Remark 2.21, the first-order optimality conditions of (5.4) can be
expressed as follows: find y = (yc, ys)T ∈ Y = H1

0 (Ω)2, u = (uc, us)T ∈ U = L2(Ω)2 and p =
(pc, ps)T ∈ P = H1

0 (Ω)2 such that the following system is satisfied

−kωσp⊥ − div (ν∇p) = −(y − yd), in Ω, p = 0, on Γ, (5.5a)

kωσy⊥ − div (ν∇y) = u, in Ω, y = 0, on Γ, (5.5b)
αu− p = 0, a.e. in Ω. (5.5c)

Note that the conditions (5.5a) and (5.5b) have to be understood in the variational sense.
As stated in Section 2.5, we reduce the linear optimality system (5.5) such that the only unknowns
left are the state coefficients yc, ys and the adjoint state coefficients pc, ps. Therefore, we arrive at
the following variational problem: find y ∈ H1

0 (Ω)2 and p ∈ H1
0 (Ω)2 such that{

a (y, z) + b (z, p) = f (z) , ∀z = (zc, zs)T ∈ H1
0 (Ω)2,

b (y, q)− c (p, q) = 0, ∀q = (qc, qs)T ∈ H1
0 (Ω)2,

(5.6)

with  a (y, z) := (y, z)L2(Ω), b (z, q) := (ν∇z,∇q)L2(Ω) + kω(σz⊥, q)L2(Ω),

c(p, q) :=
1

α
(p, q)L2(Ω), f(z) := (yd, z)L2(Ω).

(5.7)

The variational problem (5.6) fits into the abstract framework (2.12) of mixed variational problems
with V = Q = H1

0 (Ω)2 and a(·, ·) and c(·, ·) both being symmetric and positive. It can be reformulated
as a non-mixed problem (cf. (2.13)): find (y, p) ∈ X = Y × P = H1

0 (Ω)2 ×H1
0 (Ω)2 such that

B ((y, p), (z, q)) = F ((z, q)) , ∀(z, q) ∈ X, (5.8)

with

B ((w, r), (z, q)) = a(w, z) + b(z, r) + b(w, q)− c(r, q), F ((z, q)) = f(z).

Discretization As in the last chapter, we use a Galerkin finite element method for discretization
and choose the finite-dimensional subspace S1,0

h (Th) of H1
0 (Ω) with the standard nodal basis (φi)

n
i=1.

Now, the variational formulation (5.6) on Xh = S1,0
h (Th)2 × S1,0

h (Th)2 yields the following linear

system: find


yc

ys

pc

ps

 ∈ R4n such that


M 0 Kν −kωMσ

0 M kωMσ Kν

Kν kωMσ − 1
αM 0

−kωMσ Kν 0 − 1
αM


︸ ︷︷ ︸

=:A


yc

ys

pc

ps

 =


Myc

d
Mys

d
0
0

 , (5.9)

where yc, ys, pc and ps denote the unknown coefficient vectors of the finite element solutions relative
to the nodal basis. Here the mass matrix M (defined similarly as in (4.9)), the weighted mass matrix
Mσ and the weighted stiffness matrix Kν correspond to the bilinear forms

(·, ·)L2(Ω), (σ·, ·)L2(Ω) and (ν∇·,∇·)L2(Ω), (5.10)

respectively. Due to the symmetry and non-negativity properties of the bilinear forms all these ma-
trices are symmetric and positive semidefinite. Since the bilinear forms (·, ·)L2(Ω) and (ν∇·,∇·)L2(Ω)

are even positive, the matrices M and Kν are positive definite.
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The system matrix A fits into the general saddle point form (3.1) with

A =

(
M 0
0 M

)
, B =

(
Kν kωMσ

−kωMσ Kν

)
, C =

1

α
A.

Its dependence on the mesh size h, the mode frequency kω, the conductivity σ, the reluctivity ν
and the cost parameter α affects the condition number in a very bad way, therefore appropriate
preconditioning is an important issue.

5.1.3 Block-diagonal preconditioning
This subsection is devoted to the construction and analysis of a symmetric and positive definite
block-diagonal preconditioner for the saddle point matrix A in (5.9). We start with a special case
and therefore assume the conductivity σ to be constant. In this case, we construct a preconditioner
that is robust with respect to all mentioned parameters. This is done by applying the operator
interpolation technique to the Schur complement preconditioners. However, in practical applications,
the conductivity is usually piecewise constant due to different materials of which electrical devices
are made of. Therefore, we present a parameter-robust preconditioner also in the case of general σ.

Case of constant σ Assuming the conductivity σ to be constant yields

Mσ = σM.

Since the matrix M in (5.9) is positive definite, we can form both Schur complements (cf. (3.10) and
(3.11))

S = C +BA−1BT =

((
1
α + k2ω2σ2

)
M +KνM

−1Kν 0
0

(
1
α + k2ω2σ2

)
M +KνM

−1Kν

)
,

R = A+BTC−1B = αS,

and therefore the symmetric and positive definite Schur complement preconditioners

P0 =

(
A 0
0 S

)
, P1 =

(
R 0
0 C

)
,

as defined in Subsection 3.3.2. As already stated in the last chapter, it is hard to work with these Schur
complements in practice. Therefore, we use the operator interpolation strategy from Subsection 3.3.3
in order to construct a preconditioner, that can be inverted more efficiently. We apply Theorem 3.5
with M0 = P0, M1 = P1, N0 = P−1

0 , N1 = P−1
1 and the choice θ = 1

2 to obtain the symmetric and
positive definite block-diagonal preconditioner

P 1
2

=

(
[A,R] 1

2
0

0 [S,C] 1
2

)
,

with the block-diagonal matrices

[A,R] 1
2

= A
1
2

(
A−

1
2RA−

1
2

) 1
2

A
1
2 , [S,C] 1

2
= S

1
2

(
S−

1
2CS−

1
2

) 1
2

S
1
2 .

Using the spectral inequality

1√
2

((
I +H

1
2

)
y, y
)
l2
≤
(

(I +H)
1
2 y, y

)
l2
≤
((
I +H

1
2

)
y, y
)
l2
, ∀y ∈ Rn,

holding for arbitrary symmetric and positive definite matrices H ∈ Rn×n, for

H =
α

1 + αk2ω2σ2
M−

1
2KνM

−1KνM
− 1

2 , y = M
1
2x,
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the diagonal entries [A,R]
(1,1)
1
2

= [A,R]
(2,2)
1
2

can be estimated as follows

(
[A,R]

(1,1)
1
2

x, x
)
l2

=

(
M

1
2

((
1 + αk2ω2σ2

)
I + αM−

1
2KνM

−1KνM
− 1

2

) 1
2

M
1
2x, x

)
l2

=
√

1 + αk2ω2σ2

(
M

1
2

(
I +

α

1 + αk2ω2σ2
M−

1
2KνM

−1KνM
− 1

2

) 1
2

M
1
2x, x

)
l2

≤
((√

αM
1
2

(
M−

1
2KνM

−1KνM
− 1

2

) 1
2

M
1
2 +

√
1 + αk2ω2σ2M

)
x, x

)
l2

=
((√

αKν +
√

1 + αk2ω2σ2M
)
x, x

)
l2
, ∀x ∈ Rn,

and(
[A,R]

(1,1)
1
2

x, x
)
l2

=
√

1 + αk2ω2σ2

(
M

1
2

(
I +

α

1 + αk2ω2σ2
M−

1
2KνM

−1KνM
− 1

2

) 1
2

M
1
2x, x

)
l2

≥
(

1√
2

(√
αM

1
2

(
M−

1
2KνM

−1KνM
− 1

2

) 1
2

M
1
2 +

√
1 + αk2ω2σ2M

)
x, x

)
l2

=

(
1√
2

(√
αKν +

√
1 + αk2ω2σ2M

)
x, x

)
l2

, ∀x ∈ Rn.

Analogously, since S = 1
αR and C = 1

αA, we have(
[S,C]

(2,2)
1
2

x, x
)
l2

=
(

[S,C]
(1,1)
1
2

x, x
)
l2

=

(
1

α
[R,A]

(1,1)
1
2

x, x

)
l2

=

(
1

α
[A,R]

(1,1)
1
2

x, x

)
l2

≤
(

1

α

(√
αKν +

√
1 + αk2ω2σ2M

)
x, x

)
l2

, ∀x ∈ Rn,

and (
[S,C]

(1,1)
1
2

x, x
)
l2
≥ 1√

2

(
1

α

(√
αKν +

√
1 + αk2ω2σ2M

)
x, x

)
l2

, ∀x ∈ Rn.

Therefore, defining the preconditioner

P̃ :=

(
P̃Y 0

0 P̃P

)

with

P̃Y :=

(√
αKν +

√
1 + αk2ω2σ2M 0

0
√
αKν +

√
1 + αk2ω2σ2M

)
, P̃P :=

1

α
P̃Y ,

yields the following result:

Lemma 5.1. The spectral condition number of the preconditioned system P̃−1A is bounded by a
constant that is independent of the mesh size h, the mode frequency kω, the conductivity σ, the
reluctivity ν and the cost parameter α:

κP̃

(
P̃−1A

)
≤
√

2

√
5 + 1√
5− 1

.

Proof. Follows immediately from the Theorems 3.3 and 3.5 and the considerations above.
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Remark 5.2. Using the basic inequality 1√
2

(1 +
√
a) ≤

√
1 + a ≤ (1 +

√
a), holding for non-negative

a ∈ R, for a = αk2ω2σ2, it follows that

1√
2
P ≤ P̃ ≤ P,

where

P :=

(
PY 0
0 PP

)
, (5.11)

with

PY :=

(√
αKν + (1 +

√
αkωσ)M 0

0
√
αKν + (1 +

√
αkωσ)M

)
, PP :=

1

α
PY .

Therefore, also this preconditioner is parameter-robust.
In fact, the introduction of the preconditioner P is irrelevant in the case of constant conductivity σ,
however, P allows an extension to a parameter-robust preconditioner in the case of general σ as can
be seen in the next paragraph.

Case of general σ We now consider the case of general conductivity σ, e.g., σ vanishes in some
regions of the computational domain Ω, which is a typical situation in electromagnetics in non-
conducting regions. Since now Mσ 6= σM , it is not easy to compute the interpolated matrices
[A,R] 1

2
and [S,C] 1

2
explicitly. However, we get an inspiration for choosing a suitable block-diagonal

preconditioner according to the block-diagonal preconditioner P from Remark 5.2. Replacing σM by
Mσ in (5.11), we arrive at the new preconditioner

P :=

(
PY 0
0 PP

)
, (5.12)

with

PY :=

(√
αKν +

√
αkωMσ +M 0
0

√
αKν +

√
αkωMσ +M

)
, PP :=

1

α
PY .

As in the previous chapter, we analyze the preconditioner by using the corresponding norm for satis-
fying the inf-sup and the sup-sup condition of Corollary 2.5. Therefore, we return to the variational
formulation (5.8) and define the following norm in the Hilbert space X

‖(y, p)‖2X := ‖y‖2Y + ‖p‖2P , (5.13)

with

‖y‖2Y :=
√
α‖
√
ν∇y‖2L2(Ω) +

√
αkω‖

√
σy‖2L2(Ω) + ‖y‖2L2(Ω),

and

‖p‖2P :=
1

α
‖p‖2Y ,

for y = (yc, ys)T and p = (pc, ps)T . Using this norm, we can show the following result:

Lemma 5.3. Let the norm in X be given by (5.13). Then we have

c‖(y, p)‖X ≤ sup
06=(z,q)∈X

B ((y, p) , (z, q))

‖(z, q)‖X
≤ c‖(y, p)‖X ,

for all (y, p) ∈ X with constants given by

c =
3−
√

5

16
, c =

√
2. (5.14)

(Observe that the constants are parameter-independent.)
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Proof. Due to Theorem 2.7 it is necessary and sufficient to prove

c21‖w‖2Y ≤ sup
06=z∈H1

0 (Ω)2

a(w, z)2

‖z‖2Y
+ sup

0 6=q∈H1
0 (Ω)2

b(w, q)2

‖q‖2P
≤ c21‖w‖2Y , ∀w ∈ H1

0 (Ω)2, (5.15)

and

c22‖r‖2P ≤ sup
0 6=q∈H1

0 (Ω)2

c(r, q)2

‖q‖2P
+ sup

06=z∈H1
0 (Ω)2

b(z, r)2

‖z‖2Y
≤ c22‖r‖2P , ∀r ∈ H1

0 (Ω)2, (5.16)

with parameter-independent constants c1, c1, c2, c2 where z = (zc, zs)T , q = (qc, qs)T , w = (wc, ws)T

and r = (rc, rs)T .
We first show (5.15):
Using Cauchy’s inequality we get

b(w, q) ≤
(
‖
√
ν∇w‖2L2(Ω) + kω‖

√
σw‖2L2(Ω)

)1/2 (
‖
√
ν∇q‖2L2(Ω) + kω‖

√
σq‖2L2(Ω)

)1/2

,

and, since

‖q‖P ≥
1

4
√
α

(
‖
√
ν∇q‖2L2(Ω) + kω‖

√
σq‖2L2(Ω)

)1/2

,

we have

sup
06=q∈H1

0 (Ω)2

b(w, q)

‖q‖P
≤ 4
√
α
(
‖
√
ν∇w‖2L2(Ω) + kω‖

√
σw‖2L2(Ω)

)1/2

. (5.17)

Again using Cauchy’s inequality we get

sup
06=z∈H1

0 (Ω)2

a(w, z)

‖z‖Y
≤ sup

0 6=z∈H1
0 (Ω)2

‖w‖L2(Ω)‖z‖L2(Ω)

‖z‖L2(Ω)
= ‖w‖L2(Ω). (5.18)

Combining (5.18) and (5.17) gives the upper bound in (5.15) with

c21 = 1.

With the special choices z = w and q = w + w⊥ we get

sup
06=z∈H1

0 (Ω)2

a(w, z)

‖z‖Y
≥
‖w‖2L2(Ω)

‖w‖Y
, (5.19)

and

sup
06=q∈H1

0 (Ω)2

b(w, q)

‖q‖P
≥
‖
√
ν∇w‖2L2(Ω) + kω‖

√
σw‖2L2(Ω)√

2‖w‖P
=

1√
2

√
α
(
‖
√
ν∇w‖2L2(Ω) + kω‖

√
σw‖2L2(Ω)

)
‖w‖Y

.

(5.20)

Combining (5.19) and (5.20) and using the basic inequality
(
a2 + b2

)
≥ 1

2 (a+ b)
2 for

a =
‖w‖2L2(Ω)

‖w‖Y
, b =

√
α
(
‖
√
ν∇w‖2L2(Ω) + kω‖

√
σw‖2L2(Ω)

)
‖w‖Y

,

gives the lower bound in (5.15) with

c21 =
1

4
.
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Completely analogous, one can show (5.16) with

c22 =
1

4
, c22 = 1.

Using Theorem 2.7, the constants c and c are then given by (5.14).

An analog statement holds in the discrete setting and is given in the following lemma:

Lemma 5.4. Let the norm in Xh be given by (5.13). Then we have

c‖(yh, ph)‖X ≤ sup
0 6=(zh,qh)∈Xh

B ((yh, ph) , (zh, qh))

‖(zh, qh)‖X
≤ c‖(yh, ph)‖X ,

for all (yh, ph)Xh with c and c given by (5.14). (Observe that the constants are parameter - indepen-
dent.)

Proof. The proof is done by repeating the proof of Lemma 5.3 step by step for the finite element
functions.

From the considerations made in Section 3.3 we conclude that the symmetric and positive definite
block-diagonal matrix P (representing the norm (5.13)) as defined in (5.12) yields the following
preconditioning result:

Proposition 5.5. The spectral condition number of the preconditioned system P−1A is bounded by
a constant that is independent of the mesh size h, the mode frequency kω, the conductivity σ, the
reluctivity ν and the cost parameter α:

κP
(
P−1A

)
≤ c

c
,

with c and c given by (5.14).

5.2 Control constraints

5.2.1 Problem formulation
Now we consider the optimal control problem (5.2) with pointwise inequality constraints on the control
coefficients uc, us, i.e., we consider the problem: find y = (yc, ys)T ∈ H1

0 (Ω)2 and u = (uc, us)T ∈
L2(Ω)2 that minimize the cost functional

J(y, u) =
1

2
||y − yd||2L2(Ω) +

α

2
||u||2L2(Ω), (5.21)

subject to

kωσy⊥ − div (ν∇y) = u, in Ω,

y = 0, on Γ,

ua ≤ u ≤ ub a.e. in Ω,

where ua = (uca, u
s
a)T , ub = (ucb, u

s
b) ∈ L2(Ω)2 are the lower and upper bounds for the control variable

u, respectively.
With the same setting for the spaces H, U , Y and Z and the operators D, T and E as in the
unconstrained case and with Uad =

{
u = (uc, us)T ∈ U : ua ≤ u ≤ ub a.e. in Ω

}
and Yad = Y , this

optimal control problem is of the general form (2.48) and, due to Theorem 2.19, admits a unique
solution.
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5.2.2 Discrete optimality conditions

Optimality conditions According to Theorem 2.22 (in the vector-valued case), the first-order
optimality conditions of (5.21) can be expressed as follows: find y = (yc, ys)T ∈ Y = H1

0 (Ω)2,
u = (uc, us)T ∈ U = L2(Ω)2, p = (pc, ps)T ∈ P = H1

0 (Ω)2 and ξ = (ξc, ξs)T ∈ L2(Ω)2 such that the
system

kωσy⊥ − div (ν∇y) = u, in Ω, y = 0, on Γ, (5.22a)

−kωσp⊥ − div (ν∇p) = −(y − yd), in Ω, p = 0, on Γ, (5.22b)
αu− p+ ξ = 0, a.e. in Ω, (5.22c)

ξ −max {0, ξ + c(u− ub)} −min {0, ξ − c(ua − u)} = 0, a.e. in Ω, (5.22d)

holds for any c > 0. Note that the conditions (5.22a) and (5.22b) have to be understood in the
variational sense.
Similar as in Subsection 4.1.2 for the elliptic optimal control problem with control constraints, we
apply the primal-dual active set strategy as given in Algorithm 1 for linearization and reduce the
resulting linearized optimality systems such that the only unknowns left are the state coefficients
yc, ys and the adjoint state coefficients pc, ps. Then the variational problem to be solved in each step
of the active set method reads: find y ∈ H1

0 (Ω)2 and p ∈ H1
0 (Ω)2 such that{

a (y, z) + b (z, p) = f(z), ∀z = (zc, zs)T ∈ H1
0 (Ω)2,

b (y, q)− c (p, q) = g(q), ∀q = (qc, qs)T ∈ H1
0 (Ω)2,

(5.23)

with

c(p, q) :=
∑

j∈{c,s}

1

α
(pj , qj)L2(Ij),

g(q) :=
∑

j∈{c,s}

(ujb, q
j)L2(Ej,+) + (uja, q

j)L2(Ej,−),

and a(·, ·), b(·, ·) and f(·) as in the unconstrained case (cf. (5.7)), i.e.,

a (y, z) = (y, z)L2(Ω), b (z, q) = (ν∇z,∇q)L2(Ω) + kω(σz⊥, q)L2(Ω), f(z) = (yd, z)L2(Ω).

The active and inactive sets for the control coefficients uc and us are defined similarly as in Subsec-
tion 4.1.2.
Note that, besides the fact that here we cope with vector valued quantities, the only difference between
this variational problem and the variational problem (4.5) which we derived for the elliptic optimal
control problem with control constraints is the bilinear form b(·, ·) coming from the state equation.
Here, the state equation is non-symmetric, whereas it was symmetric in the other problem. Another
difference is the dependence on additional parameters.
The variational problem (5.23) fits into the abstract framework (2.12) of mixed variational problems
with V = Q = H1

0 (Ω)2, a(·, ·) being symmetric and positive and c(·, ·) being symmetric and non-
negative and can be reformulated (analogously to the unconstrained case) as a non-mixed problem
(cf. (2.13)): find (y, p) ∈ X = Y × P = H1

0 (Ω)2 ×H1
0 (Ω)2 such that

B ((y, p), (z, q)) = F ((z, q)) , ∀(z, q) ∈ X, (5.24)

with

B ((w, r), (z, q)) = a(w, z) + b(z, r) + b(w, q)− c(r, q), F ((z, q)) = f(z) + g(q).
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Discretization The discretization is done as in Subsection 5.1.2 using the finite element subspace
S1,0
h (Th) of H1

0 (Ω) with the standard nodal basis (φi)
n
i=1.

Now, the variational formulation (5.23) on Xh = S1,0
h (Th)2 × S1,0

h (Th)2 yields the following linear

system: find


yc

ys

pc

ps

 ∈ R4n such that


M 0 Kν −kωMσ

0 M kωMσ Kν

Kν kωMσ − 1
αMIc 0

−kωMσ Kν 0 − 1
αMIs


︸ ︷︷ ︸

=:A


yc

ys

pc

ps

 =


Myc

d
Mys

d
MEc,+u

c
b +MEc,−u

c
a

MEs,+u
s
b +MEs,−u

s
a

 . (5.25)

The involved matrices are defined similarly as in (4.9) and (5.10).
With the setting

A =

(
M 0
0 M

)
, B =

(
Kν kωMσ

−kωMσ Kν

)
, C =

(
− 1
αMIc 0

0 − 1
αMIs

)
,

the system matrix A fits into the general saddle point form (3.1).
As in the elliptic optimal control problem with control constraints from the previous chapter, the
matrix depends on the mesh size h, the cost parameter α and the inactive sets Ic, Is. In addition to
that, the matrix here depends on the mode frequency kω, the conductivity σ and the reluctivity ν.

5.2.3 Block-diagonal preconditioning
This subsection is devoted to the construction and analysis of symmetric and positive definite block-
diagonal preconditioners for the saddle point matrix A in (5.25). We propose and analyze a precon-
ditioner constructed based on the mapping properties of the involved operators in Sobolev spaces
equipped with non-standard norms and compare it with a preconditioner constructed according to
the operator preconditioning technique with standard norms.
As in the elliptic optimal control problem with control constraints, both preconditioners are robust
with respect to the mesh size h and the inactive sets Ic, Is. Additionally, our proposed preconditioner
is robust with respect to the mode frequency kω, the conductivity σ and the reluctivity ν in this case.
As in Subsection 5.1.3, the preconditioners are analyzed by using the corresponding norm for satisfying
the inf-sup and the sup-sup condition of Corollary 2.5.

Preconditioner based on operator preconditioning with non-standard norms As in the
elliptic case, we propose a modification of the non-standard norm (5.13) stated in the unconstrained
case. In detail, we replace ‖p‖2L2(Ω) by

∑
j∈{c,s}

‖pj‖2L2(Ij) in ‖p‖P in (5.13) and arrive at the following

non-standard norm in the Hilbert space X

‖(y, p)‖2X := ‖y‖2Y + ‖p‖2P , (5.26)

with

‖y‖2Y :=
√
α‖
√
ν∇y‖2L2(Ω) +

√
αkω‖

√
σy‖2L2(Ω) + ‖y‖2L2(Ω),

and

‖p‖2P :=
1√
α
‖
√
ν∇p‖2L2(Ω) +

1√
α
kω‖
√
σp‖2L2(Ω) +

1

α

∑
j∈{c,s}

‖pj‖2L2(Ij),

for y = (yc, ys)T and p = (pc, ps)T . Using this norm we can show the following result:
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Lemma 5.6. Let the norm in X be given by (5.26). Then we have

c‖(y, p)‖X ≤ sup
06=(z,q)∈X

B ((y, p) , (z, q))

‖(z, q)‖X
≤ c‖(y, p)‖X ,

for all (y, p) ∈ X with constants given by

c =
3−
√

5

16
√

2

(
cF√
α

+ 1

)−1

, c = 2. (5.27)

Here cF denotes the constant from the Friedrichs inequality. (Observe that the constants c and c are
independent of the mode frequency kω, the conductivity σ, the reluctivity ν and the inactive sets Ic,
Is.)

Proof. As in the proof of Lemma 5.3 we use Theorem 2.7 and prove the conditions (5.15) and (5.16)
with a(·, ·), b(·, ·), c(·, ·) and ‖ · ‖Y , ‖ · ‖P as in (5.23) and (5.26), respectively.
The upper bounds for (5.15) and (5.16) are satisfied with

c21 = 1, c22 = 2,

which can be shown completely analogous as in the proof of Lemma 4.1 (using Cauchy’s inequality).
The lower bounds for the sup-expression involving the bilinear form a(·, ·) and the sup-expression
involving the bilinear form c(·, ·) can also be derived completely analogous to the proof of Lemma 4.1
(using the special choices z = w and q = r).
In order to show the lower bounds for the sup-expressions involving b(·, ·) we use the special choices
q = w + w⊥ and z = r + r⊥ to get

sup
0 6=q∈H1

0 (Ω)2

b(w, q)

‖q‖P
≥
‖
√
ν∇w‖2L2(Ω) + kω‖

√
σw‖2L2(Ω)√

2‖w‖P
,

and

sup
0 6=z∈H1

0 (Ω)

b(z, r)

‖z‖Y
≥
‖
√
ν∇r‖2L2(Ω) + kω‖

√
σr‖2L2(Ω)√

2‖r‖Y
.

Due to the fact that ν ≥ 1, the inequalities

‖w‖P ≤
1√
α
‖w‖Y ,

and

‖r‖Y ≤
((

cF√
α

+ 1

)
α

)1/2

‖r‖P ,

also hold true here (cf. (4.18) and (4.21)). Therefore, the rest of the proof completely follows the
proof of Lemma 4.1 and results in the following constants

c21 =
1

4
, c22 =

1

4

(
cF√
α

+ 1

)−1

.

Using Theorem 2.7, the constants c and c are then given by (5.27).

An analog statement holds in the discrete setting:
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Lemma 5.7. Let the norm in Xh be given by (5.26). Then we have

c‖(yh, ph)‖X ≤ sup
0 6=(zh,qh)∈Xh

B ((yh, ph) , (zh, qh))

‖(zh, qh)‖X
≤ c‖(yh, ph)‖X ,

for all (yh, ph) ∈ Xh with c and c given by (5.27). (Observe that the constants are independent of the
mode frequency kω, the conductivity σ, the reluctivity ν, the inactive sets Ic, Is and the mesh size
h.)

Proof. The proof is done by repeating the proof of Lemma 5.6 step by step for the finite element
functions.

The norm in (5.26) is represented by the following symmetric and positive definite block-diagonal
matrix

P1 :=

(
PY 0
0 PP

)
, (5.28)

with

PY :=

(√
αKν +

√
αkωMσ +M 0
0

√
αKν +

√
αkωMσ +M

)
,

PP :=

(
1√
α
Kν + 1√

α
kωMσ + 1

αMIc 0

0 1√
α
Kν + 1√

α
kωMσ + 1

αMIs

)
.

and we have the following preconditioning result:

Proposition 5.8. The spectral condition number of the preconditioned system P−1
1 A is bounded by

a constant that is independent of the mesh size h, the mode frequency kω, the conductivity σ, the
reluctivity ν and the inactive sets Ic, Is and scales like 1√

α
for small α:

κP1

(
P−1

1 A
)
≤ c

c
,

with c and c given by (5.27).

Remark 5.9. One can show that the preconditioner (5.12) is also robust with respect to h, kω, σ, ν
and Ic, Is in this case with an upper bound on the condition number scaling like 1

α for small α (which
is indeed worse than the scaling 1√

α
for the preconditioner P1). Additionally, numerical experiments

confirmed its worse behavior compared to the preconditioner P1.

Remark 5.10. Note that the preconditioner (5.28) differs from the one we analyzed in [57]. Therein
we presented the following preconditioner for the system matrix A in (5.25)

P =


Kν + kωMσ 0 0 0

0 Kν + kωMσ 0 0
0 0 Kν + kωMσ 0
0 0 0 Kν + kωMσ

 ,

and proved its robustness with respect to h, kω, σ, ν and Ic, Is. However, the therein shown upper
bound on the condition number scales like 1

α2 for small α (which is indeed worse than the scaling
1√
α

for the preconditioner P1). Additionally, numerical experiments confirmed its worse behavior
compared to the preconditioner P1.
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Preconditioner based on operator preconditioning with standard norms Here we use the
standard norm in the Hilbert space X, i.e., the norm

‖(y, p)‖2X := ‖y‖2H1
0 (Ω) + ‖p‖2H1

0 (Ω), (5.29)

for y = (yc, ys)T and p = (pc, ps)T . Using this norm, we can show the following result:

Lemma 5.11. Let the norm in X be given by (5.29). Then we have

c‖(y, p)‖X ≤ sup
06=(z,q)∈X

B ((y, p) , (z, q))

‖(z, q)‖X
≤ c‖(y, p)‖X ,

for all (y, p) ∈ X with constants given by
c =

3−
√

5

4

√
2

c
,

c =
√

2 max

{(
c2F
α2

+ (νmax + cF kωσmax)
2

)1/2

,
(
c2F + (νmax + cF kωσmax)

2
)1/2

}
.

(5.30)

(Observe that the constants are independent of the inactive sets Ic, Is.)

Proof. As in the proof of Lemma 5.3 we use Theorem 2.7 and prove the conditions (5.15) and (5.16)
with a(·, ·), b(·, ·) and c(·, ·) as in (5.23) and ‖ · ‖Y = ‖ · ‖P = ‖ · ‖H1

0 (Ω).
The upper and lower bounds for the sup-expression involving the bilinear form a(·, ·) and the sup-
expression involving the bilinear form c(·, ·) as well as the lower bound for the sup-expression involving
the bilinear form b(·, ·) can be derived completely analogous to the proof of Lemma 4.5 (using the
fact that ν ≥ 1).
In order to show the upper bound for the sup-expression involving b(·, ·) we use Cauchy’s inequality
and Friedrichs’ inequality to get

b(w, q) ≤ νmax‖w‖H1
0 (Ω)‖q‖H1

0 (Ω) + kωσmax‖w‖L2(Ω)‖q‖L2(Ω)

≤ νmax‖w‖H1
0 (Ω)‖q‖H1

0 (Ω) + kωσmax
√
cF ‖w‖H1

0 (Ω)

√
cF ‖q‖H1

0 (Ω)

= (νmax + cF kωσmax) ‖w‖H1
0 (Ω)‖q‖H1

0 (Ω),

and therefore,

sup
06=q∈H1

0 (Ω)2

b(w, q)

‖q‖H1
0 (Ω)

≤ (νmax + cF kωσmax) ‖w‖H1
0 (Ω).

The rest completely follows the proof of Lemma 4.5 and the resulting constants are given by

c21 = 1, c21 = c2F + (νmax + cF kωσmax)
2
,

c22 = 1, c22 =
c2F
α2

+ (νmax + cF kωσmax)
2
.

Using Theorem 2.7, the constants c and c are then given by (5.30).

Now we again have an analog statement in the discrete setting:

Lemma 5.12. Let the norm in Xh be given by (5.29). Then we have

c‖(yh, ph)‖X ≤ sup
0 6=(zh,qh)∈Xh

B ((yh, ph) , (zh, qh))

‖(zh, qh)‖X
≤ c‖(yh, ph)‖X ,

for all (yh, ph) ∈ Xh with c and c given by (5.30). (Observe that the constants are independent of the
inactive sets Ic, Is and the mesh size h.)
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Proof. The proof is done by repeating the proof of Lemma 5.11 step by step for the finite element
functions.

The norm in (5.29) is represented by the following symmetric and positive definite block-diagonal
matrix

P2 :=


K 0 0 0
0 K 0 0
0 0 K 0
0 0 0 K

 . (5.31)

and we have the following preconditioning result:

Proposition 5.13. The spectral condition number of the preconditioned system P−1
2 A is bounded by

a constant that is independent of the mesh size h and the inactive sets Ic, Is and scales like
(νmax + cF kωσmax)

2
+ c2F max

{
1
α2 , 1

}
:

κP2

(
P−1

2 A
)
≤ c

c
,

with c and c given by (5.30).

Summary Both presented preconditioners are robust with respect to the mesh size h and the
inactive sets Ic, Is but not with respect to the cost parameter α: the upper bound on the condition
number for P2 scales like 1

α2 for small α, whereas it scales like 1√
α
for P1. Note that the preconditioner

P1 is additionally robust with respect to the mode frequency kω, the conductivity σ and the reluctivity
ν, while P2 is not.
How these behaviors of the proven upper bounds are reflected in numerical experiments will be shown
in Subsection 7.2.1.

5.3 State constraints

5.3.1 Problem formulation

Now we consider the optimal control problem (5.2) with Moreau-Yosida penalized constraints on
the state coefficients yc, ys, i.e., we consider the problem: find y = (yc, ys)T ∈ H1

0 (Ω)2 and u =
(uc, us)T ∈ L2(Ω)2 that minimize the cost functional

J(y, u) =
1

2
||y − yd||2L2(Ω) +

α

2
||u||2L2(Ω) +

1

2ε
‖max {0, y − yb} ‖2L2(Ω) (5.32)

+
1

2ε
‖min {0, y − ya} ‖2L2(Ω),

subject to

kωσy⊥ − div (ν∇y) = u, in Ω,

y = 0, on Γ,

with the penalization parameter ε > 0 and ya = (yca, y
s
a)T , yb = (ycb , y

s
b) ∈ L2(Ω)2 being the lower and

upper bounds for the state variable y, respectively.
With the same setting for the spaces H, U , Y and Z and the operators D, T and E as in the
unconstrained case, this optimal control problem is now of the general form (2.54) and admits a
unique solution due to Theorem 2.23 (in the vector-valued case).
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5.3.2 Discrete optimality conditions

Optimality conditions Using Theorem 2.23, the first-order optimality conditions of (5.32) are
given by: find y = (yc, ys)T ∈ Y = H1

0 (Ω)2, u = (uc, us)T ∈ U = L2(Ω)2 and p = (pc, ps)T ∈ P =
H1

0 (Ω)2 such that the following system is satisfied

kωσy⊥ − div (ν∇y) = u, in Ω, (5.33a)
y = 0, on Γ,

−kωσp⊥ − div (ν∇p) = −(y − yd)−
1

ε
max {0, y − yb} −

1

ε
min {0, y − ya} , in Ω, (5.33b)

p = 0, on Γ,

αu− p = 0, a.e. in Ω, (5.33c)

Note that the conditions (5.33a) and (5.33b) have to be understood in the variational sense.
Similar as in Subsection 4.2.2 for the elliptic optimal control problem with Moreau-Yosida penalized
state constraints, we apply the primal-dual active set strategy as given in Algorithm 2 for linearization
and reduce the resulting linearized optimality systems such that the only unknowns left are the state
coefficients yc, ys and the adjoint state coefficients pc, ps. Then the variational problem to be solved
in each step of the active set method reads: find y ∈ H1

0 (Ω)2 and p ∈ H1
0 (Ω)2 such that{

a (y, z) + b (z, p) = f (z) , ∀z = (zc, zs)T ∈ H1
0 (Ω)2,

b (y, q)− c (p, q) = 0, ∀q = (qc, qs)T ∈ H1
0 (Ω)2,

(5.34)

with

a(y, z) := (y, z)L2(Ω) +
1

ε

∑
j∈{c,s}

(yj , zj)L2(Ej),

f(z) := (yd, z)L2(Ω) +
1

ε

∑
j∈{c,s}

(yjb , z
j)L2(Ej,+) + (yja, z

j)L2(Ej,−),

and b(·, ·) and c(·, ·) as in the unconstrained case (cf. (5.7)), i.e.,

b (z, q) = (ν∇z,∇q)L2(Ω) + kω(σz⊥, q)L2(Ω), c(p, q) =
1

α
(p, q)L2(Ω).

The active sets for the state coefficients yc and ys are defined similarly as in Subsection 4.2.2. As
in the control constrained case, the only difference between this variational problem and the varia-
tional problem (4.34) which we derived for the elliptic optimal control problem with Moreau-Yosida
penalized state constraints is the bilinear form b(·, ·) coming from the state equation.
The variational problem (5.34) fits into the abstract framework (2.12) of mixed variational problems
with V = Q = H1

0 (Ω)2 and a(·, ·) and c(·, ·) both being symmetric and positive and can be refor-
mulated (analogously to the unconstrained or control constrained case) as a non-mixed problem (cf.
(2.13)): find (y, p) ∈ X = Y × P = H1

0 (Ω)2 ×H1
0 (Ω)2 such that

B ((y, p), (z, q)) = F ((z, q)) , ∀(z, q) ∈ X, (5.35)

with

B ((w, r), (z, q)) = a(w, z) + b(z, r) + b(w, q)− c(r, q), F ((z, q)) = f(z).

Discretization The discretization is done as in Subsection 5.1.2 using the finite element subspace
S1,0
h (Th) of H1

0 (Ω) with the standard nodal basis (φi)
n
i=1.
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Now, the variational formulation (5.34) on Xh = S1,0
h (Th)2 × S1,0

h (Th)2 yields the following linear

system: find


yc

ys

pc

ps

 ∈ R4n such that


M + 1

εMEc 0 Kν −kωMσ

0 M + 1
εMEs kωMσ Kν

Kν kωMσ − 1
αM 0

−kωMσ Kν 0 − 1
αM


︸ ︷︷ ︸

=:A


yc

ys

pc

ps

 =


Myc

d
+ 1

ε

(
MEc,+y

c
b

+MEc,−y
c
a

)
Mys

d
+ 1

ε

(
MEs,+y

s
b

+MEs,−y
s
a

)
0
0

 .

(5.36)

The involved matrices are defined similarly as in (4.9) and (5.10).
The system matrix A fits into the general saddle point form (3.1) with

A =

(
M + 1

εMEc 0
0 M + 1

εMEs

)
, B =

(
Kν kωMσ

−kωMσ Kν

)
, C =

(
− 1
αM 0
0 − 1

αM

)
,

As in the elliptic optimal control problem with Moreau-Yosida penalized state constraints from the
previous chapter, the matrix depends on the mesh size h, the cost parameter α, the penalization
parameter ε and the active sets Ec, Es. In addition to that, it depends on the mode frequency kω,
the conductivity σ and the reluctivity ν.

5.3.3 Block-diagonal preconditioning
This subsection is devoted to the construction and analysis of symmetric and positive definite block-
diagonal preconditioners for the saddle point matrix A in (5.36). As in Subsection 5.2.3, we propose
and analyze a preconditioner based on non-standard norms and compare it with a preconditioner
constructed according to the operator preconditioning technique with standard norms.
As in the elliptic optimal control problem with Moreau-Yosida penalized constraints, both presented
preconditioners are robust with respect to the mesh size h and the active sets Ec, Es. Additionally,
our proposed preconditioner is robust with respect to the mode frequency kω, the conductivity σ,
the reluctivity ν and the cost parameter α.
As in Subsection 5.1.3, the preconditioners are analyzed by using the corresponding norm for satisfying
the inf-sup and the sup-sup condition of Corollary 2.5.

Preconditioner based on operator preconditioning with non-standard norms As before,
we propose a modification of the non-standard norm (5.13) stated in the unconstrained case. In detail,
we replace ‖y‖2L2(Ω) by ‖y‖2L2(Ω) + 1

ε

∑
j∈{c,s}

‖yj‖2L2(Ej) in ‖y‖Y in (5.13) and arrive at the following

non-standard norm in the Hilbert space X

‖(y, p)‖2X := ‖y‖2Y + ‖p‖2P , (5.37)

with

‖y‖2Y :=
√
α‖
√
ν∇y‖2L2(Ω) +

√
αkω‖

√
σy‖2L2(Ω) + ‖y‖2L2(Ω) +

1

ε

∑
j∈{c,s}

‖yj‖2L2(Ej),

and

‖p‖2P :=
1√
α
‖
√
ν∇p‖2L2(Ω) +

1√
α
kω‖
√
σp‖2L2(Ω) +

1

α
‖p‖2L2(Ω),

for y = (yc, ys)T and p = (pc, ps)T . Now we can show the following result:
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Lemma 5.14. Let the norm in X be given by (5.37). Then we have

c‖(y, p)‖X ≤ sup
06=(z,q)∈X

B ((y, p) , (z, q))

‖(z, q)‖X
≤ c‖(y, p)‖X ,

for all (y, p) ∈ X with constants given by

c =
3−
√

5

16

(
1

ε
+ 1

)−1

, c =
√

2. (5.38)

(Observe that the constants are independent of the mode frequency kω, the conductivity σ, the reluc-
tivity ν, the active sets Ec, Es and the cost parameter α.)

Proof. As in the proof of Lemma 5.3 we use Theorem 2.7 and prove the conditions (5.15) and (5.16)
with a(·, ·), b(·, ·), c(·, ·) and ‖ · ‖Y , ‖ · ‖P as in (5.34) and (5.37), respectively.
The upper bounds for (5.15) and (5.16) are satisfied with

c21 = 1, c22 = 1,

which can be shown completely analogous as in the proof of Lemma 4.12 (using Cauchy’s inequality).
The lower bounds for the sup-expression involving the bilinear form a(·, ·) and the sup-expression
involving the bilinear form c(·, ·) can also be derived completely analogous to the proof of Lemma 4.12
(using the special choices z = w and q = r).
In order to show the lower bounds for the sup-expressions involving b(·, ·) we use the special choices
q = w + w⊥ and z = r + r⊥ to get

sup
0 6=q∈H1

0 (Ω)2

b(w, q)

‖q‖P
≥
‖
√
ν∇w‖2L2(Ω) + kω‖

√
σw‖2L2(Ω)√

2‖w‖P
,

and

sup
0 6=z∈H1

0 (Ω)

b(z, r)

‖z‖Y
≥
‖
√
ν∇r‖2L2(Ω) + kω‖

√
σr‖2L2(Ω)√

2‖r‖Y
.

Since the inequalities

‖w‖P ≤
1√
α
‖w‖Y ,

and

‖r‖Y ≤
((

1

ε
+ 1

)
α

)1/2

‖r‖P ,

also hold true here (cf. (4.43) and (4.46)), the rest of the proof completely follows the proof of
Lemma 4.12 and results in the following constants

c21 =
1

4
, c22 =

1

4

(
1

ε
+ 1

)−1

.

Using Theorem 2.7, the constants c and c are then given by (5.38).

An analog statement holds in the discrete setting:
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Lemma 5.15. Let the norm in Xh be given by (5.37). Then we have

c‖(yh, ph)‖X ≤ sup
0 6=(zh,qh)∈Xh

B ((yh, ph) , (zh, qh))

‖(zh, qh)‖X
≤ c‖(yh, ph)‖X ,

for all (yh, ph) ∈ Xh with c and c given by (5.38). (Observe that the constants are independent of the
mode frequency kω, the conductivity σ, the reluctivity ν, the active sets Ec, Es, the cost parameter α
and the mesh size h.)

Proof. The proof is done by repeating the proof of Lemma 5.14 step by step for the finite element
functions.

The norm in (5.37) is now represented by the following symmetric and positive definite block-diagonal
matrix

P1 :=

(
PY 0
0 PP

)
, (5.39)

with

PY :=

(√
αKν +

√
αkωMσ +M + 1

εMEc 0
0

√
αKν +

√
αkωMσ +M + 1

εMEs

)
,

PP :=

(
1√
α
Kν + 1√

α
kωMσ + 1

αM 0

0 1√
α
Kν + 1√

α
kωMσ + 1

αM

)
,

and we have the following preconditioning result:

Proposition 5.16. The spectral condition number of the preconditioned system P−1
1 A is bounded by

a constant that is independent of the mesh size h, the mode frequency kω, the conductivity σ, the
reluctivity ν, the cost parameter α and the active sets Ec, Es and scales like 1

ε for small ε:

κP1

(
P−1

1 A
)
≤ c

c
,

with c and c given by (5.38).

Remark 5.17. As in the control constrained case, one could use the preconditioner (5.12) also here.
As for the preconditioner P1, one can prove its robustness with respect to mesh size h, the mode
frequency kω, the conductivity σ, the reluctivity ν, the cost parameter α and the active sets Ec, Es.
However, the upper bound on the condition number scales like 1

ε2 for small ε (which is indeed worse
than the scaling 1

ε for the preconditioner P1). Additionally, numerical experiments confirmed its
worse behavior compared to the preconditioner P1.

Preconditioner based on operator preconditioning with standard norms Here we again
use the standard norm in the Hilbert space X, i.e., the norm given by (5.29):

‖(y, p)‖2X := ‖y‖2H1
0 (Ω) + ‖p‖2H1

0 (Ω), (5.40)

for y = (yc, ys)T and p = (pc, ps)T . Using this norm, we can show the following result:

Lemma 5.18. Let the norm in X be given by (5.40). Then we have

c‖(y, p)‖X ≤ sup
06=(z,q)∈X

B ((y, p) , (z, q))

‖(z, q)‖X
≤ c‖(y, p)‖X ,
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for all (y, p) ∈ X with constants given by
c =

3−
√

5

4

√
2

c
,

c =
√

2 max


(
c2F
α2

+ (νmax + cF kωσmax)
2

)1/2

,

((
1 +

1

ε

)2

c2F + (νmax + cF kωσmax)
2

)1/2
 .

(5.41)
(Observe that the constants are independent of the active sets Ec, Es.)

Proof. Analogous to the proof of Lemma 5.11.

We again have an analog statement in the discrete setting:

Lemma 5.19. Let the norm in Xh be given by (5.40). Then we have

c‖(yh, ph)‖X ≤ sup
0 6=(zh,qh)∈Xh

B ((yh, ph) , (zh, qh))

‖(zh, qh)‖X
≤ c‖(yh, ph)‖X ,

for all (yh, ph) ∈ Xh with c and c given by (5.41). (Observe that the constants are independent of the
active sets Ec, Es and the mesh size h.)

Proof. The proof is done by repeating the proof of Lemma 5.18 (cf. proof of Lemma 5.11) step by
step for the finite element functions.

The norm in (5.40) is represented by the following symmetric and positive definite block-diagonal
matrix (cf. (5.31))

P2 :=


K 0 0 0
0 K 0 0
0 0 K 0
0 0 0 K

 , (5.42)

and we have the following preconditioning result:

Proposition 5.20. The spectral condition number of the preconditioned system P−1
2 A is bound-

ed by a constant that is independent of the mesh size h and the active sets Ec, Es and scales like
(νmax + cF kωσmax)

2
+ c2F max

{
1
α2 ,
(
1 + 1

ε

)2}:
κP2

(
P−1

2 A
)
≤ c

c
,

with c and c given by (5.41).

Summary Both presented preconditioners are robust with respect to the mesh size h and the active
sets Ec, Es but not with respect to the penalization parameter ε: the upper bound on the condition
number for P2 scales like 1

ε2 for small ε, whereas it scales like 1
ε for P1. Note that the preconditioner

P1 is additionally robust with respect to the mode frequency kω, the conductivity σ, the reluctivity
ν and the cost parameter α, while P2 is not.
How these behaviors of the proven upper bounds are reflected in numerical experiments will be shown
in Subsection 7.2.2.
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5.4 Practical realization of the preconditioners
This section is devoted to the practical realization of the stated preconditioners.
As in Section 4.3, we first recall and summarize the diagonal blocks that appear in the presented
preconditioners. The blocks are

• K

•
√
αKν +

√
αkωMσ +M

•
√
αKν +

√
αkωMσ +MIj

•
√
αKν +

√
αkωMσ +M + 1

εMEj

with j ∈ {c, s}. Note that all these blocks correspond to second order differential operators. Again,
we are looking for cost efficient and spectrally equivalent replacements of the inverses of these matrices
(as discussed in Subsection 3.3.4), where the equivalence constants are independent of h, α, ε, kω, σ,
ν and Ej .
As already stated in Section 4.3, the inverse of the stiffness matrix K can be parameter-robustly
(with respect to h, α, ε, kω, σ, ν and Ej) replaced by a V-cycle multigrid iteration with a symmetric
Gauss-Seidel iteration as smoother. To the best of our knowledge, parameter-robust replacements for
the other matrices listed above are not know. However, we use a V-cycle multigrid iteration with a
symmetric Gauss-Seidel iteration as smoother also for them.
Table 5.1 gives a summarized overview of the practical realization of the diagonal blocks appearing
in the presented preconditioners.

K
V-cycle with a symmetric Gauss-Seidel
iteration as pre- and post-smoothing

√
αKν +

√
αkωMσ +M

√
αKν +

√
αkωMσ +MIj√

αKν +
√
αkωMσ +M + 1

εMEj

Table 5.1: Practical realization of the diagonal blocks.

Now, by comparing the preconditioners with respect to their efficiency in practical realization we can
conclude the following: the realization of our proposed preconditioners (5.12), (5.28) and (5.39) and
the one constructed according to the operator preconditioning technique with standard norms ((5.31)
and (5.42)) require four V-cycles each. Therefore, their realization is equally expensive.
As discussed above, some of the replacements do not influence the behavior of the proven upper
bounds on the condition number (due to spectral equivalence with constants independent of the
mentioned parameters) but some others may do. This will be subject to further discussion in the
numerical experiments later on (see Section 7.2).
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Chapter 6

Optimal control of Stokes equations

This chapter is devoted to the development of efficient block-diagonal preconditioners for the following
distributed optimal control problem for the Stokes equations: find the velocity u ∈ H1

0 (Ω)d, the
pressure p ∈ L2

0(Ω) and the force f ∈ L2(Ω)d that minimize the cost functional

J(u, f) =
1

2
||u− ud||2L2(Ω) +

α

2
||f ||2L2(Ω), (6.1)

subject to the state equations

−∆u+∇p = f, in Ω,

div u = 0, in Ω,

u = 0, on Γ,

or, more precisely, subject to the state equations in its variational form, given by

(∇u,∇v)L2(Ω) − (p, div v)L2(Ω) = (f, v)L2(Ω), ∀v ∈ H1
0 (Ω)d,

−(q,div u)L2(Ω) = 0, ∀q ∈ L2
0(Ω).

Here ud ∈ L2(Ω)d is the given desired velocity and α > 0 is the cost parameter. Recall that
Ω ⊂ Rd, d ∈ {1, 2, 3}, is assumed to be an open and bounded polygonal domain with Lipschitz
continuous boundary Γ. Additionally, pointwise inequality constraints on the force f or Moreau-
Yosida regularized constraints on the velocity u are imposed.
Problems of this form are called velocity tracking problems and typically arise in the field of flow
control with stationary and highly viscous flows of incompressible media that are modeled by the
Stokes equations. The aim is to determine the optimal force in order to steer the velocity to the desired
or target velocity distribution. Such problems are of particular interest in relation to electrically
conducting fluids that can be influenced by magnetic fields.
While the construction of efficient solvers for the distributed optimal control problem for the Stokes
equations (6.1) without additional constraints is well-understood meanwhile, see [99], the case with
additional constraints on the force and/or the velocity is still a topic of ongoing research.
In this chapter we concentrate on the distributed optimal control problem for the Stokes equations
(6.1) with pointwise inequality constraints on the force or Moreau-Yosida regularized constraints on
the velocity. In contrast to the model problems from the previous two chapters where the state
equations were coercive, here we face an optimal control problem where the state equation has a
saddle point form and therefore is not coercive.
After formulating the problem, we compute the first-order optimality conditions, apply a primal-
dual active set method and derive the reduced (discretized) linear saddle point system. As in the
previous chapters, we propose block-diagonal preconditioners, based on the mapping properties of
the involved operators in Sobolev spaces equipped with non-standard norms and compare them
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with preconditioners resulting from the operator preconditioning technique with standard norms.
Additionally, we discuss their efficient practical realization.
Note that the Schur complement preconditioners as defined in Subsection 3.3.2 do not exist for the
problems studied in this chapter since in both cases, the control constrained and the Moreau-Yosida
regularized state constrained case, the (1, 1)- and the (2, 2)-block of the resulting saddle point matrix
are singular.

6.1 Control constraints

6.1.1 Problem formulation
We consider the distributed optimal control problem (6.1) with pointwise inequality constraints on
the force, i.e., we consider the problem: find the velocity u ∈ H1

0 (Ω)d, the pressure p ∈ L2
0(Ω) and

the force f ∈ L2(Ω)d that minimize the cost functional

J(u, f) =
1

2
||u− ud||2L2(Ω) +

α

2
||f ||2L2(Ω), (6.2)

subject to

−∆u+∇p = f, in Ω,

div u = 0, in Ω,

u = 0, on Γ,

fa ≤ f ≤ fb a.e. in Ω,

where fa, fb ∈ L2(Ω)d are the lower and upper bounds for the force variable f , respectively.
This optimal control problem is of the general form (2.48) with f ∈ U = L2(Ω)d being the control
variable, (u, p) ∈ Y = H1

0 (Ω)d × L2
0(Ω) being the state variables, ud ∈ H = L2(Ω)d being the desired

state (for u), Z = Y ∗ = H−1(Ω)d × L2
0(Ω), D ∈ L(Y, Z) given by

〈D(u, p), (v, q)〉Y ∗,Y = (∇u,∇v)L2(Ω) − (p, div v)L2(Ω) − (q,div u)L2(Ω),

T ∈ L(U,Z) given by 〈Tf, (v, q)〉Y ∗,Y =
(
(f, v)L2(Ω), 0

)
, E ∈ L(Y,H) given by E(u, p) = u,

Uad = {f ∈ U : fa ≤ f ≤ fb a.e. in Ω}, Yad = Y and g = 0. It admits a unique solution due to
Theorem 2.19.

6.1.2 Discrete optimality conditions
Optimality conditions According to Theorem 2.22 (in the vector-valued case), the first-order
optimality conditions of (6.2) can be expressed as follows: find (u, p) ∈ Y = H1

0 (Ω)d × L2
0(Ω),

f ∈ U = L2(Ω)d, (û, p̂) ∈ P = H1
0 (Ω)d × L2

0(Ω) and ξ ∈ L2(Ω)d such that the system

−∆u+∇p = f, in Ω, u = 0, on Γ, (6.3a)
div u = 0, in Ω, (6.3b)

−∆û+∇p̂ = −(u− ud), in Ω, û = 0, on Γ, (6.3c)
div û = 0, in Ω, (6.3d)

αf − û+ ξ = 0, a.e. in Ω, (6.3e)
ξ −max {0, ξ + c(u− ub)} −min {0, ξ − c(ua − u)} = 0, a.e. in Ω, (6.3f)

holds for any c > 0. Note that the conditions (6.3a)-(6.3d) have to be understood in the variational
sense.
Similar as in the previous chapters, we apply the primal-dual active set strategy as given in Algo-
rithm 1 for linearization and reduce the resulting linearized optimality systems such that the only
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unknowns left are the state variables (u, p) and the adjoint state variables (û, p̂). Then the variational
problem to be solved in each step of the active set method reads: find (u, p) ∈ H1

0 (Ω)d × L2
0(Ω) and

(û, p̂) ∈ H1
0 (Ω)d × L2

0(Ω) such that{
a((u, p), (v, q)) + b((v, q), (û, p̂)) = f((v, q)), ∀(v, q) ∈ H1

0 (Ω)d × L2
0(Ω),

b((u, p), (v̂, q̂))− c((û, p̂), (v̂, q̂)) = g((v̂, q̂)), ∀(v̂, q̂) ∈ H1
0 (Ω)d × L2

0(Ω),
(6.4)

with 
a((u, p), (v, q)) := (u, v)L2(Ω), c((û, p̂), (v̂, q̂)) :=

1

α
(û, v̂)L2(I),

b((v, q), (v̂, q̂)) := (∇v,∇v̂)L2(Ω) − (div v, q̂)L2(Ω) − (div v̂, q)L2(Ω),

f((v, q)) := (ud, v)L2(Ω), g((v̂, q̂)) := (fb, v̂)L2(E+) + (fa, v̂)L2(E−).

(6.5)

The active and inactive sets for the control f are defined similarly as in Subsection 4.1.2.
Now we have the following differences between this variational problem and the variational problems
(4.5) and (5.23) derived in the elliptic case and the multiharmonic-parabolic case, respectively. Firstly,
the bilinear form a(·, ·) is non-negative whereas it was positive in the other two problems and, secondly,
the bilinear form b(·, ·) coming from the state equation is of saddle point form, whereas it was coercive
there.
The variational problem (6.4) fits into the abstract framework (2.12) of mixed variational problems
with V = Q = H1

0 (Ω)d × L2
0(Ω) and a(·, ·) and c(·, ·) being symmetric and non-negative. It can be

reformulated as a non-mixed problem (cf. (2.13)): find (u, p, û, p̂) ∈ X = Y ×P = H1
0 (Ω)d×L2

0(Ω)×
H1

0 (Ω)d × L2
0(Ω) such that

B ((u, p, û, p̂), (v, q, v̂, q̂)) = F ((v, q, v̂, q̂)) , ∀(v, q, v̂, q̂) ∈ X, (6.6)

with

B ((w, r, ŵ, r̂), (v, q, v̂, q̂)) = a((w, r), (v, q)) + b((v, q), (ŵ, r̂)) + b((w, r), (v̂, q̂))− c((ŵ, r̂), (v̂, q̂)),
F ((v, q, v̂, q̂)) = f((v, q)) + g((v̂, q̂)).

Discretization As in the previous chapters, we use a Galerkin finite element method for dis-
cretization and choose the Taylor-Hood element as defined in (2.46) and (2.47). Therefore we use
the finite-dimensional subspace S2,0

h (Th) of H1
0 (Ω) with the standard nodal basis (φi)

n
i=1 and the

finite-dimensional subspace S1
h,0(Th) of L2

0(Ω) with the standard nodal basis (ψi)
m
i=1.

Now, the variational formulation (6.4) on Xh = S2,0
h (Th)d×S1

h,0(Th)×S2,0
h (Th)d×S1

h,0(Th) yields the

following linear system: find


u
p
û
p̂

 ∈ R2dn+2m such that


M 0 K −DT

0 0 −D 0
K −DT − 1

αMI 0
−D 0 0 0


︸ ︷︷ ︸

=:A


u
p
û
p̂

 =


Mud

0
ME+ub + ME−ua

0

 , (6.7)

where u, p, û and p̂ denote the unknown coefficient vectors of the finite element solutions relative to
the nodal basis. Here the vector mass matrix M , the vector mass matrix MI (related to the inactive
set), the vector mass matrices ME+ and ME− (related to the active sets), the vector stiffness matrix
K and the divergence matrix D correspond to the bilinear forms

(·, ·)L2(Ω), (·, ·)L2(I), (·, ·)L2(E+), (·, ·)L2(E−), (∇·,∇·)L2(Ω) and (div ·, ·)L2(Ω), (6.8)
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respectively. All but the divergence matrix are symmetric and positive semidefinite due to the sym-
metry and non-negativity properties of the corresponding bilinear forms. Since the bilinear forms
(·, ·)L2(Ω) and (∇·,∇·)L2(Ω) are even positive, the matrices M and K are positive definite. Addi-
tionally, the divergence matrix D is of full rank, since the Taylor-Hood element satisfies the discrete
inf-sup condition (cf. Theorem 2.17).
The system matrix A fits into the general saddle point form (3.1) with

A =

(
M 0
0 0

)
, B = BT =

(
K −DT

−D 0

)
, C =

(
− 1
αMI 0
0 0

)
.

As in the elliptic optimal control problem with control constraints from Chapter 4, the matrix depends
on the mesh size h, the inactive set I and the cost parameter α. Since these parameter dependencies
affect the condition number in a very bad way, appropriate preconditioning is an important issue.

6.1.3 Block-diagonal preconditioning
This subsection is devoted to the construction and analysis of symmetric and positive definite block-
diagonal preconditioners for the saddle point matrix A in (6.7). We propose and analyze a precon-
ditioner constructed based on the mapping properties of the involved operators in Sobolev spaces
equipped with non-standard norms and compare it with a preconditioner constructed according to
the operator preconditioning technique with standard norms.
As in the elliptic optimal control problem with control constraints, both preconditioners are robust
with respect to the mesh size h and the inactive set I but not with respect to the cost parameter α,
but they have a different asymptotic behavior.
As in the last two chapters, the preconditioners are analyzed by using the corresponding norm for
satisfying the inf-sup and the sup-sup condition of Corollary 2.5.

Preconditioner based on operator preconditioning with non-standard norms As in the
previous two chapters we propose a norm that is based on a preconditioner for the optimal control
problem in the unconstrained case: For the distributed optimal control problem for the Stokes equa-
tions without constraints on the control and state, i.e., for the case E = ∅, the following preconditioner
is constructed in [99]

P =


M +

√
αK 0 0 0

0 αD (M +
√
αK)

−1
DT 0 0

0 0 1
αM + 1√

α
K 0

0 0 0 D (M +
√
αK)

−1
DT

 . (6.9)

It was shown that this preconditioner is robust with respect to h and α in this case. It corresponds
to the following non-standard norm in the Hilbert space X

‖(u, p, û, p̂)‖2X := ‖(u, p)‖2Y + ‖(û, p̂)‖2P , (6.10)

with

‖(u, p)‖2Y := ‖u‖2V + ‖p‖2Q,

‖(û, p̂)‖2P :=
1

α
‖(û, p̂)‖2Y ,

where

‖u‖2V := ‖u‖2L2(Ω) +
√
α‖u‖2H1

0 (Ω),

‖p‖2Q := α sup
06=v∈H1

0 (Ω)d

(div v, p)2
L2(Ω)

‖v‖2V
.
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Now we modify this norm as follows: we replace ‖û‖L2(Ω) by ‖û‖L2(I) in ‖(û, p̂)‖P and arrive at the
following non-standard norm

‖(u, p, û, p̂)‖2X := ‖(u, p)‖2Y + ‖(û, p̂)‖2P , (6.11)

with

‖(u, p)‖2Y := ‖u‖2V + ‖p‖2Q,
‖(û, p̂)‖2P := ‖û‖2

V̂
+ ‖p̂‖2

Q̂
,

where

‖u‖2V := ‖u‖2L2(Ω) +
√
α‖u‖2H1

0 (Ω),

‖p‖2Q := α sup
06=v∈H1

0 (Ω)d

(div v, p)2
L2(Ω)

‖v‖2V
,

‖û‖2
V̂

:=
1

α
‖û‖2L2(I) +

1√
α
‖û‖2H1

0 (Ω),

‖p̂‖2
Q̂

:= sup
06=v̂∈H1

0 (Ω)d

(div v̂, p̂)2
L2(Ω)

‖v̂‖2V
.

Using this norm, we can show the following result:

Lemma 6.1. Let the norm in X be given by (6.11). Then we have

c‖(u, p, û, p̂)‖X ≤ sup
06=(v,q,v̂,q̂)∈X

B ((u, p, û, p̂) , (v, q, v̂, q̂))

‖(v, q, v̂, q̂)‖X
≤ c‖(u, p, û, p̂)‖X ,

for all (u, p, û, p̂) ∈ X with constants given by

c =
3−
√

5

64

√
2 min

{
α
c2F
, 1
}

c
, c =

√
2

(
1 +

(1 +
√

5)2

4

(
cF√
α

+ 1

))1/2

. (6.12)

Here cF denotes the constant from the Friedrichs inequality (2.1). (Observe that the constants c and
c are independent of the inactive set I.)

Proof. Due to Theorem 2.7 it is necessary and sufficient to prove

c21‖(w, r)‖2Y ≤ sup
06=(v,q)∈Y

a((w, r), (v, q))2

‖(v, q)‖2Y
+ sup

06=(v̂,q̂)∈P

b((w, r), (v̂, q̂))2

‖(v̂, q̂)‖2P
≤ c21‖(w, r)‖2Y , ∀(w, r) ∈ Y,

(6.13)

and

c22‖(ŵ, r̂)‖2P ≤ sup
0 6=(v̂,q̂)∈P

c((ŵ, r̂), (v̂, q̂))2

‖(v̂, q̂)‖2P
+ sup

06=(v,q)∈Y

b((ŵ, r̂), (v, q))2

‖(v, q)‖2Y
≤ c22‖(ŵ, r̂)‖2P , ∀(ŵ, r̂) ∈ P,

(6.14)

with constants c1, c1, c2, c2 independent of the inactive set.
For proving (6.13) we first show

cB‖(w, r)‖Y ≤ sup
06=(v̂,q̂)∈P

b((w, r), (v̂, q̂))

‖(v̂, q̂)‖Y
≤ cB‖(w, r)‖Y , (6.15)
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for all (w, r) ∈ Y , by verifying the conditions of Brezzi, cf. Theorem 2.10, applied to the bilinear
form

b((w, r), (v̂, q̂)) = b1(w, v̂) + b2(w, q̂) + b2(v̂, r),

where

b1(w, v̂) := (∇w,∇v̂)L2(Ω),

b2(w, q̂) := −(div w, q̂)L2(Ω).

The boundedness of the bilinear form b1(·, ·) follows with Cauchy’s inequality

b1(w, v̂) ≤ ‖w‖H1
0 (Ω)‖v̂‖H1

0 (Ω) ≤
1√
α︸︷︷︸

=α2

‖w‖V ‖v̂‖V .

Since

b2(w, q̂) = ‖w‖V
b2(w, q̂)

‖w‖V
≤ ‖w‖V sup

06=v∈H1
0 (Ω)d

b2(v, q̂)

‖v‖V
=

1√
α︸︷︷︸

=β2

‖w‖V ‖q̂‖Q.

also the boundedness of b2(·, ·) follows. Using Friedrichs’ inequality we can show the coercivity of
b1(·, ·)

b1(w,w) = ‖w‖2H1
0 (Ω) ≥

1

2cF
‖w‖2L2(Ω) +

1

2
‖w‖2H1

0 (Ω) ≥
1

2
min

{
1

cF
,

1√
α

}
︸ ︷︷ ︸

=α1

‖w‖2V .

Since

sup
06=v∈H1

0 (Ω)

b2(v, q̂)

‖v‖V
=

1√
α︸︷︷︸

=β1

‖q̂‖Q,

the inf-sup condition of b2(·, ·) is satisfied. Therefore, using Theorem 2.10 for the Brezzi constants
α1, α2, β1 and β2 gives (6.15) with

cB =
1

4
min

{
1

cF
,

1√
α

}
, cB =

1√
α

1 +
√

5

2
.

Now, from (6.15) and the fact that the inequalities

‖(w, r)‖P ≤
1√
α
‖(w, r)‖Y ,

and

‖(w, r)‖Y ≤
((

cF√
α

+ 1

)
α

)1/2

‖(w, r)‖P ,

(as in the proof of Lemma 4.1) also hold true here, we get

1

4
min

{√
α

cF
, 1

}
‖(w, r)‖Y ≤ sup

06=(v̂,q̂)∈P

b((w, r), (v̂, q̂))

‖(v̂, q̂)‖P
≤ 1 +

√
5

2

(
cF√
α

+ 1

)1/2

‖(w, r)‖Y . (6.16)
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Using Cauchy’s inequality we get

sup
06=(v,q)∈Y

a((w, r), (v, q))

‖(v, q)‖Y
≤ sup

06=(v,q)∈Y

‖w‖L2(Ω)‖v‖L2(Ω)

‖(v, q)‖Y
≤ sup

06=(v,q)∈Y

‖(w, r)‖Y ‖(v, q)‖Y
‖(v, q)‖Y

= ‖(w, r)‖Y ,

which by combination with the upper bound in (6.16) gives the upper bound in (6.13) with

c21 = 1 +
(1 +

√
5)2

4

(
cF√
α

+ 1

)
.

Using the lower bound in (6.16) and the fact that

sup
06=(v,q)∈Y

a((w, r), (v, q))

‖(v, q)‖Y
≥ 0

the lower bound in (6.13) follows with

c21 =
1

16
min

{
α

c2F
, 1

}
.

In a similar way one can show (6.14) with

c22 =
1

16
min

{
α

c2F
, 1

}
, c22 = 1 +

(1 +
√

5)2

4

(
cF√
α

+ 1

)
.

Using Theorem 2.7, the constants c and c are then given by (6.12).

Conducted by the norm (6.11) for the infinite-dimensional case we define the following norm in the
finite-dimensional space Xh

‖(uh, ph, ûh, p̂h)‖2Xh := ‖(uh, ph)‖2Yh + ‖(ûh, p̂h)‖2Ph , (6.17)

with

‖(uh, ph)‖2Yh := ‖uh‖2Vh + ‖ph‖2Qh ,
‖(ûh, p̂h)‖2Ph := ‖ûh‖2V̂h + ‖p̂h‖2Q̂h ,

where

‖uh‖2Vh := ‖uh‖2L2(Ω) +
√
α‖uh‖2H1

0 (Ω),

‖ph‖2Qh := α sup
06=vh∈S2,0

h (Th)d

(div vh, ph)2
L2(Ω)

‖vh‖2Vh
,

‖ûh‖2V̂h :=
1

α
‖ûh‖2L2(I) +

1√
α
‖ûh‖2H1

0 (Ω),

‖p̂h‖2Q̂h := sup
06=v̂h∈S2,0

h (Th)d

(div v̂h, p̂h)2
L2(Ω)

‖v̂h‖2Vh
.

In contrast to the norm (6.11) where the suprema are taken over H1
0 (Ω)d, here they are taken over

the finite-dimensional space S2,0
h (Th)d.

Using this mesh-dependent norm we have the following result in the discrete setting:

Lemma 6.2. Let the norm in Xh be given by (6.17). Then we have

c‖(uh, ph, ûh, p̂h)‖Xh ≤ sup
0 6=(vh,qh,v̂h,q̂h)∈Xh

B ((uh, ph, ûh, p̂h) , (vh, qh, v̂h, q̂h))

‖(vh, qh, v̂h, q̂h)‖Xh
≤ c‖(uh, ph, ûh, p̂h)‖Xh ,

for all (uh, ph, ûh, p̂h) ∈ Xh with c and c given by (6.12). (Observe that the constants are independent
of the inactive set I and the mesh size h.)
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Proof. The proof is done by repeating the proof of Lemma 6.1 step by step for the finite element
functions.

The norm in (6.17) is represented by the following symmetric and positive definite block-diagonal
matrix

P1 :=


M +

√
αK 0 0 0

0 αD (M +
√
αK)

−1
DT 0 0

0 0 1
αMI + 1√

α
K 0

0 0 0 D (M +
√
αK)

−1
DT

 . (6.18)

From the considerations made in Section 3.3 we conclude that this matrix yields the following pre-
conditioning result:

Proposition 6.3. The spectral condition number of the preconditioned system P−1
1 A is bounded by

a constant that is independent of the inactive set I and the mesh size h and scales like 1√
α3

for small
α:

κP1

(
P−1

1 A
)
≤ c

c
,

with c and c given by (6.12).

Remark 6.4. In [59] we discussed efficient solution methods for the optimal control problem for the
Stokes equations with control constraints. However, therein we did not analyze the preconditioner P1,
but rather the preconditioner (6.9) from [99] that was originally constructed for the unconstrained case.
In [59] we proved its robustness with respect to the mesh size h and the inactive set E and showed
an upper bound on the condition number scaling like 1

α for small α. In contrast to the problems
with control constraints from the previous two chapters, where the scaling of the upper bound on the
condition number with the preconditioner constructed for the unconstrained case (cf. (4.10) and (5.12)
for the elliptic and multiharmonic problem, respectively) was worse than the scaling for the modified
one (cf. (4.22) and (5.28) for the elliptic and multiharmonic problem, respectively), cf. Remark 4.4
and 5.9, here the situation is the other way round. The proven upper bound for the preconditioner
P1 scales like 1√

α3
, which is indeed worse than the scaling 1

α for the preconditioner (6.9). However,
as we will show in the numerical experiments later on, the preconditioner P1 behaves much better in
practice.

Preconditioner based on operator preconditioning with standard norms Here we use the
standard norm in the Hilbert space X, i.e., the norm

‖(u, p, û, p̂)‖2X := ‖(u, p)‖2Y + ‖(û, p̂)‖2P , (6.19)

with

‖(u, p)‖2Y := ‖u‖2H1
0 (Ω) + ‖p‖2L2(Ω),

and

‖(û, p̂)‖2P := ‖(û, p̂)‖2Y ,

Using this norm, we can show the following result:

Lemma 6.5. Let the norm in X be given by (6.19). Then we have

c‖(u, p, û, p̂)‖X ≤ sup
06=(v,q,v̂,q̂)∈X

B ((u, p, û, p̂) , (v, q, v̂, q̂))

‖(v, q, v̂, q̂)‖X
≤ c‖(u, p, û, p̂)‖X ,
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for all (u, p, û, p̂) ∈ X with constants given by

c =
3−
√

5

4

√
2c4
Ñ(

1 + c2
Ñ

)2

c
,

c =
√

2 max


(
c2F
α2

+
(1 +

√
5)2

4

)1/2

,

(
c2F +

(1 +
√

5)2

4

)1/2
 .

(6.20)

Here cÑ denotes the constant from Theorem 2.3. (Observe that the constants c and c are independent
of the inactive set I.)

Proof. As in the proof of Lemma 6.1 we use Theorem 2.7 and prove the conditions (6.13) and (6.14)
with ‖ · ‖Y and ‖ · ‖P as in (6.19).
The upper and lower bounds for the sup-expression involving the bilinear form a(·, ·) and the sup-
expression involving the bilinear form c(·, ·) can be derived completely analogous to the proof of
Lemma 4.5.
In order to show the upper and lower bound for the sup-expression involving b(·, ·), i.e.,

cB‖(w, r)‖Y ≤ sup
06=(v̂,q̂)∈P

b((w, r), (v̂, q̂))

‖(v̂, q̂)‖Y
≤ cB‖(w, r)‖Y , (6.21)

for all (w, r) ∈ Y , we verify the conditions of Brezzi (cf. Theorem 2.10). As in the proof of Lemma 6.1
we use the notation

b((w, r), (v̂, q̂)) = b1(w, v̂) + b2(w, q̂) + b2(v̂, r),

where

b1(w, v̂) = (∇w,∇v̂)L2(Ω),

b2(w, q̂) = −(div w, q̂)L2(Ω).

The boundedness of the bilinear forms b1(·, ·) and b2(·, ·) follows with Cauchy’s inequality

b1(w, v̂) ≤ 1︸︷︷︸
=α2

‖w‖H1
0 (Ω)‖v̂‖H1

0 (Ω),

and

b2(w, q̂) ≤ ‖div w‖L2(Ω)‖q̂‖L2(Ω) ≤ 1︸︷︷︸
=β2

‖w‖H1
0 (Ω)‖q̂‖L2(Ω).

Since

b1(w,w) = 1︸︷︷︸
=α1

‖w‖2H1
0 (Ω),

the coercivity of b1(·, ·) is guaranteed. The inf-sup condition of b2(·, ·) follows with Theorem 2.3

sup
0 6=v∈H1

0 (Ω)d

b2(v, q̂)

‖v‖H1
0 (Ω)

= ‖∇q̂‖H−1(Ω) ≥ cÑ︸︷︷︸
=β1

‖q̂‖L2(Ω). (6.22)

Therefore, using Theorem 2.10 for the Brezzi constants α1, α2, β1 and β2 gives (6.21) with

cB =
c2
Ñ

1 + c2
Ñ

, cB =
1 +
√

5

2
.
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The rest completely follows the proof of Lemma 4.5 and results in the following constants for the
conditions (6.13) and (6.14)

c21 =
c4
Ñ(

1 + c2
Ñ

)2 , c21 = c2F +

(
1 +
√

5
)2

4
,

c22 =
c4
Ñ(

1 + c2
Ñ

)2 , c22 =
c2F
α2

+

(
1 +
√

5
)2

4
.

Using Theorem 2.7, the constants c and c are then given by (6.20).

Now we have the following statement in the discrete setting:

Lemma 6.6. Let the norm in Xh be given by (6.19). Then we have

c̃‖(uh, ph, ûh, p̂h)‖X ≤ sup
0 6=(vh,qh,v̂h,q̂h)∈Xh

B ((uh, ph, ûh, p̂h) , (vh, qh, v̂h, q̂h))

‖(vh, qh, v̂h, q̂h)‖X
≤ c‖(uh, ph, ûh, p̂h)‖X ,

for all (uh, ph, ûh, p̂h) ∈ Xh with c̃ given by

c̃ =
3−
√

5

4

√
2c4D

(1 + c2D)
2
c
, (6.23)

and c given by (6.20). Here cD denotes the constant of Theorem 2.17. (Observe that the constants c̃
and c are independent of the inactive set I and the mesh size h.)

Proof. The proof of Lemma 6.5 can be repeated for the finite element functions in all but one step.
This step is (6.22) where we use Theorem 2.3. Now we use instead Theorem 2.17, which states the
discrete inf-sup condition with the h-independent constant cD.

The norm in (6.19) is represented by the following symmetric and positive definite block-diagonal
matrix

P2 =


K 0 0 0
0 Mp 0 0
0 0 K 0
0 0 0 Mp

 , (6.24)

where Mp denotes the mass matrix for the pressure element, i.e., the matrix arising from the finite
element discretization of the bilinear form (·, ·)L2(Ω) in S1

h,0(Th), and we have the following precondi-
tioning result:

Proposition 6.7. The spectral condition number of the preconditioned system P−1
2 A is bounded by

a constant that is independent of the inactive set I and the mesh size h and scales like 1
α2 for small

α:

κP2

(
P−1

2 A
)
≤ c

c̃
,

with c̃ and c given by (6.23) and (6.20), respectively.

Summary Both presented preconditioners are robust with respect to the mesh size h and the
inactive set I but not with respect to the cost parameter α: the upper bound on the condition
number for P2 scales like 1

α2 for small α, whereas it scales like 1√
α3

for P1.
How these behaviors of the proven upper bounds are reflected in numerical experiments will be shown
in Subsection 7.3.1.
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6.2 State constraints

6.2.1 Problem formulation
Now we consider the distributed optimal control problem for the Stokes equations (6.1) with Moreau-
Yosida penalized constraints on the velocity, i.e., we consider the problem: find the velocity u ∈
H1

0 (Ω)d, the pressure p ∈ L2
0(Ω) and the force f ∈ L2(Ω)d that minimize the cost functional

J(u, f) =
1

2
||u− ud||2L2(Ω) +

α

2
||f ||2L2(Ω) +

1

2ε
‖max {0, u− ub} ‖2L2(Ω) (6.25)

+
1

2ε
‖min {0, u− ua} ‖2L2(Ω),

subject to

−∆u+∇p = f, in Ω,

div u = 0, in Ω,

u = 0, on Γ,

where ε > 0 is the penalization parameter and ua, ub ∈ L2(Ω)d are the lower and upper bounds for
the velocity variable u, respectively.
With the same setting for the spaces H, U , Y and Z and the operators D, T and E as in the control
constrained case, this optimal control problem is now of the general form (2.54) and admits a unique
solution due to Theorem 2.23 (in the vector-valued case).

6.2.2 Discrete optimality conditions
Optimality conditions Using Theorem 2.23, the first-order optimality conditions of (6.25) are
given by: find (u, p) ∈ Y = H1

0 (Ω)d×L2
0(Ω), f ∈ U = L2(Ω)d and (û, p̂) ∈ P = H1

0 (Ω)d×L2
0(Ω) such

that the following system is satisfied

−∆u+∇p = f, in Ω, (6.26a)
u = 0, on Γ,

div u = 0, in Ω, (6.26b)

−∆û+∇p̂ = −(u− ud)−
1

ε
max {0, u− ub} −

1

ε
min {0, u− ua} , in Ω, (6.26c)

û = 0, on Γ,

div û = 0, in Ω, (6.26d)
αf − û = 0, a.e. in Ω. (6.26e)

Note that the conditions (6.26a)-(6.26d) have to be understood in the variational sense.
Similar as in the previous chapters, we apply the primal-dual active set strategy as given in Algo-
rithm 2 for linearization and reduce the resulting linearized optimality systems such that the only
unknowns left are the state variables (u, p) and the adjoint state variables (û, p̂). Then the variational
problem to be solved in each step of the active set method reads: find (u, p) ∈ H1

0 (Ω)d × L2
0(Ω) and

(û, p̂) ∈ H1
0 (Ω)d × L2

0(Ω) such that{
a((u, p), (v, q)) + b((v, q), (û, p̂)) = f((v, q)), ∀(v, q) ∈ H1

0 (Ω)d × L2
0(Ω),

b((u, p), (v̂, q̂))− c((û, p̂), (v̂, q̂)) = 0, ∀(v̂, q̂) ∈ H1
0 (Ω)d × L2

0(Ω),
(6.27)

with

a((u, p), (v, q)) := (u, v)L2(Ω) +
1

ε
(u, v)L2(E), c((û, p̂), (v̂, q̂)) :=

1

α
(û, v̂)L2(Ω),

f((v, q)) := (ud, v)L2(Ω) +
1

ε

(
(ub, v)L2(E+) + (ua, v)L2(E−)

)
,
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and b(·, ·) as in the control constrained case (cf. (6.5)), i.e.,

b((v, q), (v̂, q̂)) = (∇v,∇v̂)L2(Ω) − (div v, q̂)L2(Ω) − (div v̂, q)L2(Ω).

The active set for the velocity u is defined similarly as in Subsection 4.2.2.
We have the following differences between this variational problem and the variational problems (4.34)
and (5.34) derived in the elliptic case and the multiharmonic-parabolic case, respectively. Firstly, the
bilinear forms a(·, ·) and c(·, ·) are non-negative whereas both where positive in the other two problems
and, secondly, as in the control constrained case, the different bilinear form b(·, ·) coming from the
state equation.
The variational problem (6.27) fits into the abstract framework (2.12) of mixed variational problems
with V = Q = H1

0 (Ω)d × L2
0(Ω) and a(·, ·) and c(·, ·) being symmetric and non-negative. It can be

reformulated as a non-mixed problem (cf. (2.13)): find (u, p, û, p̂) ∈ X = Y ×P = H1
0 (Ω)d×L2

0(Ω)×
H1

0 (Ω)d × L2
0(Ω) such that

B ((u, p, û, p̂), (v, q, v̂, q̂)) = F ((v, q, v̂, q̂)) , ∀(v, q, v̂, q̂) ∈ X, (6.28)

with

B ((w, r, ŵ, r̂), (v, q, v̂, q̂)) = a((w, r), (v, q)) + b((v, q), (ŵ, r̂)) + b((w, r), (v̂, q̂))− c((ŵ, r̂), (v̂, q̂)),
F ((v, q, v̂, q̂)) = f((v, q)).

Discretization The discretization is done as in Subsection 6.1.2 using the finite-dimensional sub-
space S2,0

h (Th) of H1
0 (Ω) with the standard nodal basis (φi)

n
i=1 and the finite-dimensional subspace

S1
h,0(Th) of L2

0(Ω) with the standard nodal basis (ψi)
m
i=1 (Taylor-Hood element).

Now, the variational formulation (6.27) on Xh = S2,0
h (Th)d × S1

h,0(Th) × S2,0
h (Th)d × S1

h,0(Th) yields

the following linear system: find


u
p
û
p̂

 ∈ R2dn+2m such that


M + 1

εME 0 K −DT

0 0 −D 0
K −DT − 1

αM 0
−D 0 0 0


︸ ︷︷ ︸

=:A


u
p
û
p̂

 =


Mud + 1

ε

(
ME+ub + ME−ua

)
0
0
0

 . (6.29)

The involved matrices are defined similarly as in (6.8).
With the setting

A =

(
M + 1

εME 0
0 0

)
, B = BT =

(
K −DT

−D 0

)
, C =

(
− 1
αM 0
0 0

)
,

the system matrix A fits into the general saddle point form (3.1). As in the elliptic optimal control
problem with Moreau-Yosida penalized state constraints from Chapter 4, the matrix depends on the
mesh size h, the active set E , the cost parameter α and the penalization parameter ε.

6.2.3 Block-diagonal preconditioning

This subsection is devoted to the construction and analysis of symmetric and positive definite block-
diagonal preconditioners for the saddle point matrix A in (6.29). As in Subsection 6.1.3, we propose
and analyze a preconditioner based on non-standard norms and compare it with a preconditioner
constructed according to the operator preconditioning technique with standard norms.
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As in the elliptic optimal control problem with Moreau-Yosida penalized constraints, both precondi-
tioners are robust with respect to the mesh size h and the active set E . Additionally, our proposed
preconditioner is robust with respect to the cost parameter α.
As in Subsection 6.1.3, the preconditioners are analyzed by using the corresponding norm for satisfying
the inf-sup and the sup-sup condition of Corollary 2.5.

Preconditioner based on operator preconditioning with non-standard norms As in the
control constrained case, we propose a modification of the norm (6.10) constructed in [99] for the
distributed optimal control problem for the Stokes equations without constraints on the control and
state.
We replace ‖u‖2L2(Ω) by ‖u‖2L2(Ω) + 1

ε ‖u‖
2
L2(E) in ‖(u, p)‖Y in (6.10) and arrive at the following non-

standard norm in the Hilbert space X

‖(u, p, û, p̂)‖2X := ‖(u, p)‖2Y + ‖(û, p̂)‖2P , (6.30)

with

‖(u, p)‖2Y := ‖u‖2V + ‖p‖2Q,
‖(û, p̂)‖2P := ‖û‖2

V̂
+ ‖p̂‖2

Q̂
,

where

‖u‖2V := ‖u‖2L2(Ω) +
1

ε
‖u‖2L2(E) +

√
α‖u‖2H1

0 (Ω),

‖û‖2
V̂

:=
1

α
‖û‖2L2(Ω) +

1√
α
‖û‖2H1

0 (Ω),

‖p‖2Q := sup
06=v∈H1

0 (Ω)d

(div v, p)2
L2(Ω)

‖v‖2
V̂

,

‖p̂‖2
Q̂

:=
1

α
sup

06=v̂∈H1
0 (Ω)d

(div v̂, p̂)2
L2(Ω)

‖v̂‖2
V̂

.

In order to proof a result that claims that the inf-sup and the sup-sup condition of Corollary 2.5 are
fulfilled in this norm, we need the following result from [99]:

Lemma 6.8. We have

cZ‖(w, r)‖2P ≤ c((w, r), (w, r)) + sup
0 6=(v,q)∈Y

b((w, r), (v, q))2

α‖(v, q)‖2P
≤ cZ‖(w, r)‖2P , ∀(w, r) ∈ Y, (6.31)

with constants cZ , cZ that are independent of the cost parameter α.

Proof. In [99], a complete proof for the finite-dimensional case is presented, i.e., the following result
is shown

c̃Z‖(wh, rh)‖2Ph ≤ c((wh, rh), (wh, rh)) + sup
06=(vh,qh)∈Yh

b((wh, rh), (vh, qh))2

α‖(vh, qh)‖2Ph
≤ c̃Z‖(wh, rh)‖2Ph , (6.32)

for all (wh, rh) ∈ Yh = S2,0
h (Th)× S1

h,0(Th) with constants c̃Z , c̃Z independent of the cost parameter
α and the mesh size h. Here ‖ · ‖Ph denotes the following mesh-dependent norm

‖(wh, rh)‖2Ph := ‖wh‖2V̂h + ‖rh‖2Q̂h , (6.33)
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with

‖wh‖2V̂h :=
1

α
‖wh‖2L2(Ω) +

1√
α
‖wh‖2H1

0 (Ω),

‖rh‖2Q̂h :=
1

α
sup

06=vh∈S2,0
h (Th)

(div vh, rh)2
L2(Ω)

‖vh‖2V̂h
.

However, as stated in [99, Remark 10], the same analysis can also be carried out on the continuous
level leading to the result (6.31).

Now, we can show the following result:

Lemma 6.9. Let the norm in X be given by (6.30). Then we have

c‖(u, p, û, p̂)‖X ≤ sup
06=(v,q,v̂,q̂)∈X

B ((u, p, û, p̂) , (v, q, v̂, q̂))

‖(v, q, v̂, q̂)‖X
≤ c‖(u, p, û, p̂)‖X ,

for all (u, p, û, p̂) ∈ X with constants given by c =
3−
√

5

4

√
2 min

{(
1 + 1

ε

)−1
min

{
c2Z ,

cZ
2

}
,min {1, cZ}min

{
1
2 , cZ

}}
c

,

c =
√

2 max
{

1,
√
cZ , cZ

}
.

(6.34)

Here, cZ , cZ denote the constants from Lemma 6.8. (Observe that the constants c and c are indepen-
dent of the active set E and the cost parameter α.)

Proof. As in the proof of Lemma 6.1 we use Theorem 2.7 and prove the conditions (6.13) and (6.14)
with a(·, ·), b(·, ·), c(·, ·) and ‖ · ‖Y , ‖ · ‖P as in (6.27) and (6.30), respectively.
We first show (6.13):
Since

a((w, r), (w, r)) = αc((w, r), (w, r)) +
1

ε
‖w‖2L2(E),

and

‖(w, r)‖2Y = α‖(w, r)‖2P +
1

ε
‖w‖2L2(E),

we can use Lemma 6.8 to get

a((w, r), (w, r)) + sup
0 6=(v̂,q̂)∈P

b((w, r), (v̂, q̂))2

‖(v̂, q̂)‖2P
≤ 1

ε
‖w‖2L2(E) + αcZ‖(w, r)‖2P ≤ max {1, cZ} ‖(w, r)‖2Y ,

(6.35)

and

a((w, r), (w, r)) + sup
06=(v̂,q̂)∈P

b((w, r), (v̂, q̂))2

‖(v̂, q̂)‖2P
≥ 1

ε
‖w‖2L2(E) + αcZ‖(w, r)‖2P ≥ min {1, cZ} ‖(w, r)‖2Y .

(6.36)

Now we can use Lemma 2.9, which states the equivalence of (6.35) and (6.36) to (6.13) with the
following constants

c21 = min {1, cZ}min

{
1

2
, cZ

}
, c21 = max

{
1, c2Z

}
.
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For proving (6.14) we first directly apply Lemma 2.9 to (6.31) to get the following equivalent statement

min
{
c2Z ,

cZ
2

}
‖(w, r)‖2P ≤ sup

06=(v,q)∈Y

c((w, r), (v, q))2

‖(v, q)‖2P
(6.37)

+ sup
06=(v,q)∈Y

b((w, r), (v, q))2

α‖(v, q)‖2P
≤ max

{
c2Z , cZ

}
‖(w, r)‖2P , ∀(w, r) ∈ Y,

Due to the fact that the inequalities

‖(w, r)‖P ≤
1√
α
‖(w, r)‖Y ,

and

‖(w, r)‖Y ≤
((

1 +
1

ε

)
α

)1/2

‖(w, r)‖P ,

(as in the proof of Lemma 4.12) also hold true here, we get

sup
06=(v,q)∈Y

b((ŵ, r̂), (v, q))((
1 + 1

ε

)
α
)1/2 ‖(v, q)‖P ≤ sup

06=(v,q)∈Y

b((ŵ, r̂), (v, q))

‖(v, q)‖Y
≤ sup

0 6=(v,q)∈Y

b((ŵ, r̂), (v, q))√
α‖(v, q)‖P

,

and therefore,

sup
06=(v̂,q̂)∈P

c((ŵ, r̂), (v̂, q̂))2

‖(v̂, q̂)‖2P
+ sup

0 6=(v,q)∈Y

b((ŵ, r̂), (v, q))2

‖(v, q)‖2Y

≤ sup
0 6=(v̂,q̂)∈P

c((ŵ, r̂), (v̂, q̂))2

‖(v̂, q̂)‖2P
+ sup

06=(v,q)∈Y

b((ŵ, r̂), (v, q))2

α‖(v, q)‖2P
,

and

sup
06=(v̂,q̂)∈P

c((ŵ, r̂), (v̂, q̂))2

‖(v̂, q̂)‖2P
+ sup

06=(v,q)∈Y

b((ŵ, r̂), (v, q))2

‖(v, q)‖2Y

≥
(

1 +
1

ε

)−1
(

sup
06=(v̂,q̂)∈P

c((ŵ, r̂), (v̂, q̂))2

‖(v̂, q̂)‖2P
+ sup

0 6=(v,q)∈Y

b((ŵ, r̂), (v, q))2

α‖(v, q)‖2P

)
.

Now using (6.37) gives (6.14) with

c22 = min
{
c2Z ,

cZ
2

}(
1 +

1

ε

)−1

, c22 = max
{
c2Z , cZ

}
.

Using Theorem 2.7, the constants c and c are then given by (6.34).

With the following mesh-dependent norm in the finite-dimensional space Xh

‖(uh, ph, ûh, p̂h)‖2Xh := ‖(uh, ph)‖2Yh + ‖(ûh, p̂h)‖2Ph , (6.38)

with

‖(uh, ph)‖2Yh := ‖uh‖2Vh + ‖ph‖2Qh ,

where

‖uh‖2Vh := ‖uh‖2L2(Ω) +
1

ε
‖uh‖2L2(E) +

√
α‖uh‖2H1

0 (Ω),

‖ph‖2Qh := sup
06=vh∈S2,0

h (Th)

(div vh, ph)2
L2(Ω)

‖vh‖2V̂h
,

and ‖(·, ·)‖2Ph = ‖ · ‖2
V̂h

+‖ · ‖2
Q̂h

as defined in (6.33), an analog statement holds in the discrete setting:
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Lemma 6.10. Let the norm in Xh be given by (6.38). Then we have

c̃‖(uh, ph, ûh, p̂h)‖Xh ≤ sup
0 6=(vh,qh,v̂h,q̂h)∈Xh

B ((uh, ph, ûh, p̂h) , (vh, qh, v̂h, q̂h))

‖(vh, qh, v̂h, q̂h)‖Xh
≤ c̃‖(uh, ph, ûh, p̂h)‖Xh ,

for all (uh, ph, ûh, p̂h) ∈ Xh with constants given by
c̃ =

3−
√

5

4

√
2 min

{(
1 + 1

ε

)−1
min

{
c̃2Z ,

c̃Z
2

}
,min {1, c̃Z}min

{
1
2 , c̃Z

}}
c̃

,

c̃ =
√

2 max

{
1,

√
c̃Z , c̃Z

}
.

(6.39)

Here, c̃Z , c̃Z denote the constants mentioned in the proof of Lemma 6.8. (Observe that the constants
c̃, c̃ are independent of the active set E and the mesh size h.)

Proof. As stated in the proof of Lemma 6.8, its result is also true in the discrete setting. Therefore,
the proof of Lemma 6.9 can be repeated step by step for the finite element functions.

The norm in (6.38) is represented by the following symmetric and positive definite block-diagonal
matrix

P1 :=


M + 1

εME +
√
αK 0 0 0

0 αD (M +
√
αK)

−1
DT 0 0

0 0 1
αM + 1√

α
K 0

0 0 0 D (M +
√
αK)

−1
DT

 ,

(6.40)

and we have the following preconditioning result:

Proposition 6.11. The spectral condition number of the preconditioned system P−1
1 A is bounded

by a constant that is independent of the active set E, the cost parameter α and the mesh size h and
scales like 1

ε for small ε:

κP1

(
P−1

1 A
)
≤ c̃

c̃
,

with c̃ and c̃ given by (6.39).

Remark 6.12. As in the control constrained case, one could use the preconditioner (6.9) from [99]
also in this case. As for the preconditioner P1, robustness with respect to the mesh size h, the active set
E and the cost parameter α can be shown. However, the upper bound on the condition number scales
like 1

ε2 for small ε (which is indeed worse than the scaling 1
ε for the preconditioner P1). Additionally,

numerical experiments confirmed its worse behavior compared to the preconditioner P1.

Preconditioner based on operator preconditioning with standard norms Here we again
use the standard norm in the Hilbert space X, i.e., the norm given by (6.19):

‖(u, p, û, p̂)‖2X := ‖(u, p)‖2Y + ‖(û, p̂)‖2P , (6.41)

with

‖(u, p)‖2Y := ‖u‖2H1
0 (Ω) + ‖p‖2L2(Ω).

and

‖(û, p̂)‖2P := ‖(û, p̂)‖2Y .

Using this norm, we can show the following result:
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Lemma 6.13. Let the norm in X be given by (6.41). Then we have

c‖(u, p, û, p̂)‖X ≤ sup
06=(v,q,v̂,q̂)∈X

B ((u, p, û, p̂) , (v, q, v̂, q̂))

‖(v, q, v̂, q̂)‖X
≤ c‖(u, p, û, p̂)‖X ,

for all (u, p, û, p̂) ∈ X with constants given by

c =
3−
√

5

4

√
2c4
Ñ(

1 + c2
Ñ

)2

c
,

c =
√

2 max


(
c2F
α2

+
(1 +

√
5)2

4

)1/2

,

((
1 +

1

ε

)2

c2F +
(1 +

√
5)2

4

)1/2
 .

(6.42)

(Observe that the constants are independent of the active set E.)

Proof. Analogous to the proof of Lemma 6.5.

Now we have the following statement in the discrete setting:

Lemma 6.14. Let the norm in Xh be given by (6.41). Then we have

c̃‖(uh, ph, ûh, p̂h)‖X ≤ sup
0 6=(vh,qh,v̂h,q̂h)∈Xh

B ((uh, ph, ûh, p̂h) , (vh, qh, v̂h, q̂h))

‖(vh, qh, v̂h, q̂h)‖X
≤ c‖(uh, ph, ûh, p̂h)‖X ,

for all (uh, ph, ûh, p̂h) ∈ Xh with c̃ given by

c̃ =
3−
√

5

4

√
2c4D

(1 + c2D)
2
c
, (6.43)

and c given by (6.42). (Observe that the constants are independent of the active set E and the mesh
size h.)

Proof. Analogous to the proof of Lemma 6.6.

The norm in (6.41) is represented by the following symmetric and positive definite block-diagonal
matrix (cf. (6.24))

P2 :=


K 0 0 0
0 Mp 0 0
0 0 K 0
0 0 0 Mp

 , (6.44)

and we have the following preconditioning result:

Proposition 6.15. The spectral condition number of the preconditioned system P−1
2 A is bounded by

a constant that is independent of the active set E and the mesh size h and scales like
max

{
1
α2 ,
(
1 + 1

ε

)2}:
κP2

(
P−1

2 A
)
≤ c

c̃
,

with c̃ and c given by (6.43) and (6.42), respectively.
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Summary Both presented preconditioners are robust with respect to the mesh size h and the active
set E but not with respect to the penalization parameter ε: the upper bound on the condition number
for P2 scales like 1

ε2 for small ε, whereas it scales like 1
ε for P1. Note that the preconditioner P1 is

additionally robust with respect to the cost parameter α, while P2 is not.
How these behaviors of the proven upper bounds are reflected in numerical experiments will be shown
in Subsection 7.3.2.

6.3 Practical realization of the preconditioners
This section is devoted to the practical realization of the stated preconditioners.
As in the Sections 4.3 and 5.4, we first recall and summarize the diagonal blocks that appear in the
presented preconditioners by dividing them into zero order differential operators and second order
differential operators.

• zero order differential operators:

– Mp

– D (M +
√
αK)

−1
DT

• second order differential operators:

– K

– M +
√
αK

– MI +
√
αK

– M + 1
εME +

√
αK

Again, we are looking for cost efficient and spectrally equivalent replacements of the inverses of these
matrices (as discussed in Subsection 3.3.4), where the equivalence constants are independent of h, α,
ε and E .
First we replace the matrix D (M +

√
αK)

−1
DT by the matrix

(√
αM−1

p +K−1
p

)−1 where Kp de-
notes the stiffness matrix for the pressure element, i.e., the matrix arising from the finite element
discretization of the bilinear form (∇·,∇·)L2(Ω) in S1

h,0(Th). Note that these two matrices are spec-
trally equivalent (with equivalence constants independent of h, α, ε and E) due to the analysis
in [21, 26, 67, 68, 69, 76].
As already stated in Section 4.3, the inverse of the matrixMp can be parameter-robustly (with respect
to h, α, ε and E) replaced by a symmetric Gauss-Seidel iteration and the inverses of the matrices
K, Kp and M +

√
αK by a V-cycle multigrid iteration with a symmetric Gauss-Seidel iteration as

smoother. To the best of our knowledge, parameter-robust replacements for the other second order
matrices listed above are not know. However, we use a V-cycle multigrid iteration with a symmetric
Gauss-Seidel iteration as smoother also for them.
Table 6.1 gives a summarized overview of the practical realization of the diagonal blocks appearing
in the presented preconditioners.

Mp symmetric Gauss-Seidel iteration

K

V-cycle with symmetric Gauss-Seidel
iteration as pre- and post-smoothing

Kp

M +
√
αK

MI +
√
αK

M + 1
εME +

√
αK

Table 6.1: Practical realization of the diagonal blocks.
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Now, by comparing the preconditioners with respect to their efficiency in practical realization we can
conclude the following: the realization of our proposed preconditioners (6.18) and (6.40) requires four
V-cycles for the second order terms and additional Gauss-Seidel iterations for the zero order terms,
which do not effect the costs at all. The realization of the preconditioner constructed according to
the operator preconditioning technique with standard norms ((6.24) and (6.44)) requires only two
V-cycles for the second order terms and also additional Gauss-Seidel iterations for the zero order
terms.
As discussed above, some of the replacements do not influence the behavior of the proven upper
bounds on the condition number (due to spectral equivalence with constants independent of the
mentioned parameters) but some others may do. This will be subject to further discussion in the
numerical experiments later on (see Section 7.3).
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Chapter 7

Numerical experiments

In this chapter we perform several numerical experiments for the problem classes stated in the previous
three chapters and address the following two issues:

• A comparison of the proven analytic bounds for the different preconditioners for the linear(ized)
saddle point systems (in each step of the primal-dual active set method) with the practical
behavior (for a fixed active set), and

• the overall performance of the preconditioners within a primal-dual active set strategy.

In order to address the first issue, we chose typical values for the involved parameters and set up the
saddle point problem in the unconstrained case. Using its solution we determine the first saddle point
system that appears in the active set strategy used for the constrained cases, i.e., we calculate the
active set in the first step of the primal-dual active set method. Now we keep the active set fixed and
perform the parameter studies for this saddle point system. The estimation of the condition numbers
of the preconditioned systems is done by using harmonic Ritz values, see [79].
For the second issue we present examples where we use the primal-dual active set method for lin-
earization of the corresponding nonlinear optimality system (in the case of control and Moreau-Yosida
regularized state constraints) and the preconditioned MinRes method for the solution of the linearized
problems in each step of the active set method. In these examples we take the solution of the par-
ticular problems in the unconstrained case as initial guess for the primal-dual active set method.
This method is stopped whenever the active sets stay unchanged (cf. Theorem 2.24). The MinRes
method uses the preconditioner-norm of the relative preconditioned residual (10−6) as stopping cri-
terion. We report on the number of steps of the active set method, the overall number of MinRes
iterations, the average number of MinRes iterations per step of the primal-dual active set method
and the computational times for the particular problems with the different preconditioners.
All computations are carried out on a Gentoo Linux machine with Intel(R) Xeon(R) CPU W3680 @
3.33GHz.

7.1 The elliptic case

7.1.1 Numerical study for control constraints
Here we present some numerical experiments for the distributed elliptic optimal control problem with
control constraints (as given in (4.2)) on the unit square domain, i.e., Ω = (0, 1)2 ⊂ R2. The desired
state is chosen as (cf. [14])

yd(x, y) = sin(2πx) sin(πy), (7.1)

and the constraints on the control u are given by ua = −30 and ub = 30.

95
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The problem was discretized by a finite element space consisting of continuous piecewise linear poly-
nomials for the state y as well as for the adjoint state p on a triangulation of Ω, see Subsection 4.1.2.
The initial mesh contains four triangles obtained by connecting the two diagonals. In all the tables
presented in this subsection, l denotes the number of uniform refinement steps (corresponding to a
mesh size h = 2−l) and N the total number of degrees of freedom.

The theoretical preconditioners Pj , j ∈ {1, 2, 3}, defined in (4.22), (4.25) and (4.30) are practically
realized as summarized in Table 4.1 in Section 4.3. In detail, we use 1 step of the symmetric Gauss-
Seidel iteration for the zero order terms, 1 V-cycle with 1 symmetric Gauss-Seidel iteration as pre- and
post-smoothing for the second order terms and 1 W-cycle with 1 symmetric Gauss-Seidel iteration as
pre- and post-smoothing for the second order parts appearing in the fourth order terms. Therefore,
we end up with practical preconditioners denoted by P̃j .

The next pictures show the desired state and solutions for the state y and the control u computed at
the finest mesh (l = 8) for α = 10−5 with and without control constraints.

Figure 7.1: The desired state yd.

Figure 7.2: The state y (left) and the control u (right) at grid level l = 8 for α = 10−5 without control
constraints.
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Figure 7.3: The state y (left) and the control u (right) at grid level l = 8 for α = 10−5 with control
constraints.

Now we analyze how the behaviors of the proven upper bounds on the condition numbers are reflected
in practice (using the practical preconditioners) and therefore, first recall the behavior for the three
theoretical preconditioners Pj , j ∈ {1, 2, 3}:

small h small α

P1 robust
1√
α

P2 robust
1

α2

P3 robust
1√
α
, using Remark 4.11:

1
4
√
α

Table 7.1: Behaviour of the upper bounds on the condition numbers.

We provide condition numbers of the preconditioned systems P̃−1
j A, j ∈ {1, 2, 3}, where A is the

saddle point matrix (cf. (4.8)) appearing in the first step of the primal-dual active set method applied
for the control constrained problem with α = 10−5 and the unconstrained solution (computed for
α = 10−5) as initial guess. With the active set kept fixed, the results for various values of α and h
are given in the Tables 7.2-7.4.

α
l N 1e-10 1e-9 1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1
5 3970 252.47 78.27 26.93 10.5 4.65 2.67 2.09 1.65 1.33 1.23 1.22
6 16130 229.51 78.4 28.15 11.01 5.05 2.98 2.05 1.65 1.33 1.24 1.24
7 65026 231.09 79.7 27.92 10.71 4.97 2.99 2.04 1.64 1.33 1.25 1.25
8 261122 234.46 80.38 28.15 10.79 5.01 3.0 2.03 1.65 1.33 1.25 1.25

Table 7.2: Condition number of the preconditioned system P̃−1
1 A.
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α
l N 1e-4 1e-3 1e-2 1e-1 1
5 3970 1.26e4 240.6 4.99 1.24 1.22
6 16130 1.05e4 254.04 5.18 1.25 1.24
7 65026 1.02e4 257.81 5.24 1.25 1.24
8 261122 1.02e4 259.12 5.26 1.25 1.25

Table 7.3: Condition number of the preconditioned system P̃−1
2 A.

α
l N 1e-10 1e-9 1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1
5 3970 63.25 35.58 20.23 12.63 8.07 5.33 4.6 4.19 4.03 3.98 3.97
6 16130 69.11 38.64 22.29 12.94 7.7 4.9 4.5 4.14 3.97 3.93 3.93
7 65026 64.22 34.95 20.07 11.43 6.98 4.66 4.48 4.16 3.98 3.92 3.91
8 261122 55.83 31.2 17.6 10.49 6.66 4.66 4.49 4.19 3.98 3.93 3.93

Table 7.4: Condition number of the preconditioned system P̃−1
3 A.

Additionally, in the Figures 7.4-7.6, the condition numbers at grid level l = 8 are plotted as functions
of α. The triangles sketched therein represent the behavior of the theoretical bounds as summarized
in Table 7.1, i.e., the triangle in Figure 7.4 has slope − 1

2 , the triangle in Figure 7.5 has slope −2 and
the triangle in Figure 7.6 has slope − 1

4 (the improved bound).

Figure 7.4: Condition number of the preconditioned system P̃−1
1 A at grid level l = 8.

Figure 7.5: Condition number of the preconditioned system P̃−1
2 A at grid level l = 8.
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Figure 7.6: Condition number of the preconditioned system P̃−1
3 A at grid level l = 8.

Now, from these results we can conclude the following. The robustness of the condition numbers with
respect to the mesh-size h for all three practical preconditioners can be seen in the Tables 7.2-7.4.
From Figure 7.4 we see that the practical preconditioner P̃1 seems to reflect the behavior of the
theoretical preconditioner P1 with respect to the cost parameter α. Figure 7.5 indicates that the
practical preconditioner P̃2 performs better than the stated theoretical bound (with respect to α).
Finally, from Figure 7.6 we conclude that the practical preconditioner P̃3 seems to reflect the stated
improved α-dependent bound.
Now we compare the three different practical preconditioners P̃1, P̃2 and P̃3 with respect to their
performance in the overall primal-dual active set method. The results for various values of h and α
are given in the Tables 7.5-7.10.

l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
7 65026 4 74 19 8.1s
8 261122 4 74 19 44.6s

Table 7.5: Results with preconditioner P̃1 for α = 10−4.

l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
7 65026 5 132 27 13.3s
8 261122 5 128 26 75.2s

Table 7.6: Results with preconditioner P̃1 for α = 10−5.

l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
7 65026 4 2325 582 168.3s
8 261122 4 2287 572 917.8s

Table 7.7: Results with preconditioner P̃2 for α = 10−4.

l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
7 65026 5 12469 2494 871.6s
8 261122 5 12673 2535 4659.1s

Table 7.8: Results with preconditioner P̃2 for α = 10−5.
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l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
7 65026 4 96 24 12.7s
8 261122 4 96 24 73.2s

Table 7.9: Results with preconditioner P̃3 for α = 10−4.

l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
7 65026 5 142 29 17.7s
8 261122 5 143 29 99.6s

Table 7.10: Results with preconditioner P̃3 for α = 10−5.

A comparison with respect to the computational times clearly favors the preconditioner P̃1 in all
these test cases.

7.1.2 Numerical study for state constraints

Here we present some numerical experiments for the distributed elliptic optimal control problem with
Moreau-Yosida regularized state constraints (as given in (4.31)) on Ω = (0, 1)2. The desired state is
chosen as in the control constrained case, i.e., (cf. (7.1))

yd(x, y) = sin(2πx) sin(πy),

and the constraints on the state y are given by ya = −0.02 and yb = 0.02.
The problem was discretized analogously to the control constrained case, see Subsection 4.2.2, and,
also as in the control constrained case, the initial mesh contains four triangles obtained by connecting
the two diagonals. Again l denotes the number of uniform refinement steps (corresponding to a mesh
size h = 2−l) and N the total number of degrees of freedom.
The theoretical preconditioners Pj , j ∈ {1, 2, 3}, defined in (4.47), (4.50) and (4.55) are practically
realized as summarized in Table 4.1 in Section 4.3. In detail, we use 1 step of the symmetric Gauss-
Seidel iteration for the zero order terms, 1 V-cycle with 1 symmetric Gauss-Seidel iteration as pre- and
post-smoothing for the second order terms and 1 W-cycle with 1 symmetric Gauss-Seidel iteration as
pre- and post-smoothing for the second order parts appearing in the fourth order terms. Therefore,
we end up with practical preconditioners denoted by P̃j .
The next pictures show solutions for the state y and the control u computed at the finest mesh (l = 8)
for α = 10−2 with and without state constraints.

Figure 7.7: The state y (left) and the control u (right) at grid level l = 8 for α = 10−2 without state
constraints.
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Figure 7.8: The state y (left) and the control u (right) at grid level l = 8 for α = 10−2 and ε = 10−5

with state constraints.

Now we analyze how the behaviors of the proven upper bounds on the condition numbers are reflected
in practice (using the practical preconditioners) and therefore, first recall the behavior for the three
theoretical preconditioners Pj , j ∈ {1, 2, 3}:

small h small α small ε

P1 robust robust
1

ε

P2 robust
1

α2

1

ε2

P3 robust
1√
α
, using Remark 4.22:

1
4
√
α

1√
ε
, using Remark 4.22:

1
4
√
ε

Table 7.11: Behaviour of the upper bounds on the condition numbers.

We provide condition numbers of the preconditioned systems P̃−1
j A, j ∈ {1, 2, 3}, where A is the

system matrix (cf. (4.36)) appearing in the first step of the primal-dual active set method applied
for the Moreau-Yosida regularized state constrained problem with α = 10−2, ε = 10−5 and the
unconstrained solution (computed for α = 10−2) as initial guess. With the active set kept fixed, the
results for various values of α, ε and h are given in the Tables 7.12-7.17.

α
l N 1e-10 1e-5 1
5 3970 1.39 1.69 1.21
6 16130 1.59 1.71 1.23
7 65026 1.59 1.72 1.24
8 261122 1.64 1.72 1.24

Table 7.12: Condition number of the preconditioned system P̃−1
1 A with ε = 1.

ε
l N 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1
5 3970 1.19e3 182.34 51.52 16.75 2.98 1.41 1.21
6 16130 1.14e3 167.14 52.15 16.76 2.99 1.35 1.23
7 65026 1.11e3 171.13 52.87 16.93 2.99 1.35 1.24
8 261122 1.12e3 178.12 53.75 17.02 2.99 1.35 1.24

Table 7.13: Condition number of the preconditioned system P̃−1
1 A with α = 1.
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α
l N 1e-4 1e-3 1e-2 1e-1 1
5 3970 2.01e4 584.82 11.78 1.25 1.21
6 16130 2.05e4 585.86 11.8 1.25 1.23
7 65026 2.04e4 585.63 11.61 1.25 1.24
8 261122 2.18e4 585.57 11.81 1.25 1.24

Table 7.14: Condition number of the preconditioned system P̃−1
2 A with ε = 1.

ε
l N 1e-4 1e-3 1e-2 1e-1 1
5 3970 1.11e4 390.47 7.11 1.25 1.21
6 16130 1.11e4 392.34 7.13 1.25 1.23
7 65026 1.17e4 395.6 7.19 1.25 1.24
8 261122 1.04e4 396.54 7.2 1.25 1.24

Table 7.15: Condition number of the preconditioned system P̃−1
2 A with α = 1.

α
l N 1e-10 1e-9 1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1
5 3970 2.36 3.04 3.46 3.72 4.25 4.68 4.78 4.79 4.66 4.29 4.21
6 16130 3.07 3.42 3.8 4.39 4.6 5.05 5.02 4.91 4.75 4.42 4.35
7 65026 3.47 3.9 4.43 4.82 4.91 5.24 5.12 4.97 4.8 4.53 4.49
8 261122 4.03 4.51 4.83 5.09 5.06 5.33 5.19 5.01 4.84 4.62 4.61

Table 7.16: Condition number of the preconditioned system P̃−1
3 A with ε = 1.

ε
l N 1e-4 1e-3 1e-2 1e-1 1
5 3970 1.09e3 65.02 9.25 4.68 4.21
6 16130 1.3e3 108.44 12.29 5.08 4.35
7 65026 1.06e3 130.56 13.16 5.28 4.49
8 261122 1.02e3 133.24 13.67 5.39 4.61

Table 7.17: Condition number of the preconditioned system P̃−1
3 A with α = 1.

From these tables the robustness of the condition numbers with respect to the mesh-size h for all
three practical preconditioners can be seen. The robustness of the practical preconditioner P̃1 with
respect to α can be seen from Table 7.12. Additionally, Table 7.16 indicates that the practical
preconditioner P̃3 is also robust with respect to α, contrary to the shown upper bound for the
theoretical preconditioner, cf. Table 7.11.
In order to clarify the remaining parameter dependencies (as summarized in Table 7.11) we present
several additional figures. In Figure 7.9 the condition number of the preconditioned system P̃−1

1 A at
grid level l = 8 is plotted as a function of ε where the sketched triangle has slope −1 representing the
behavior of the upper bound on the condition number for the theoretical preconditioner. Figures 7.10
and 7.11 show the condition number of P̃−1

2 A at grid level l = 8 as a function of α and ε, respectively.
The triangles therein both have slope −2. Figure 7.12 shows the condition number of P̃−1

3 A at grid
level l = 8 as a function of ε with a triangle indicating the non-improved bound, i.e., the slope is − 1

2 .
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Figure 7.9: Condition number of the preconditioned system P̃−1
1 A at grid level l = 8 with α = 1.

Figure 7.10: Condition number of the preconditioned system P̃−1
2 A at grid level l = 8 with ε = 1.

Figure 7.11: Condition number of the preconditioned system P̃−1
2 A at grid level l = 8 with α = 1.
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Figure 7.12: Condition number of the preconditioned system P̃−1
3 A at grid level l = 8 with α = 1.

From Figure 7.9 we see that the behavior of the practical preconditioner P̃1 seems to be better than
the stated bound for the theoretical preconditioner P1 with respect ε. Figures 7.10 and 7.11 indicate
that the practical preconditioner P̃2 performs also better than the stated theoretical bound (both,
with respect to α and ε). From Figure 7.12 we see that the behavior with respect to ε for the practical
preconditioner P̃3 is worse than the stated bound for the theoretical one. In order to improve it we
increase the number of used W-cycles from 1 to 4. As before, we use 1 symmetric Gauss-Seidel
iteration as pre- and post-smoothing in each of the cycles. The obtained results are given in the
Tables 7.18 and 7.19. Additionally, Figure 7.13 shows the condition number of the preconditioned
system P̃−1

3 A at grid level l = 8 as a function of ε where the plotted triangle reflects the non-improved
bound, i.e., it has slope − 1

2 .

α
l N 1e-10 1e-9 1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1
5 3970 2.33 3.04 3.46 3.67 3.85 3.87 3.9 3.95 3.59 3.1 2.94
6 16130 3.07 3.42 3.7 3.85 3.94 3.9 3.91 3.96 3.6 3.11 2.93
7 65026 3.46 3.73 3.85 3.93 3.97 3.91 3.91 3.96 3.6 3.1 2.93
8 261122 3.57 3.82 3.95 4.01 4.05 3.91 3.9 3.95 3.61 3.1 2.93

Table 7.18: Condition number of the preconditioned system P̃−1
3 A with ε = 1.

ε
l N 1e-10 1e-9 1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1
5 3970 115.06 22.23 14.29 9.48 6.27 4.32 4.01 4.01 3.39 3.03 2.94
6 16130 112.21 23.85 15.13 9.55 6.27 4.31 4.02 4.01 3.39 3.03 2.93
7 65026 108.98 27.08 15.25 9.79 6.25 4.29 4.02 4.01 3.39 3.03 2.93
8 261122 110.63 29.14 15.31 9.87 6.25 4.3 4.02 4.01 3.39 3.03 2.93

Table 7.19: Condition number of the preconditioned system P̃−1
3 A with α = 1.
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Figure 7.13: Condition number of the preconditioned system P̃−1
3 A at grid level l = 8 with α = 1.

Now, from Figure 7.13 it seems that the stated non-improved bound for small ε is achieved with the
practical preconditioner P̃3.
Now we compare the three different practical preconditioners P̃1, P̃2 and P̃3 with respect to their
performance in the overall primal-dual active set method. The results for various values of h and ε
with α = 10−2 are given in the Tables 7.5-7.10. Note that we use the improved preconditioner P̃3,
i.e., 4 W-cycles instead of 1.

l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
7 65026 8 656 82 62.9s
8 261122 8 678 85 360.8s

Table 7.20: Results with preconditioner P̃1 for ε = 10−4 and α = 10−2.

l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
7 65026 11 1471 134 135.5s
8 261122 12 1719 144 898s

Table 7.21: Results with preconditioner P̃1 for ε = 10−5 and α = 10−2.

l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
7 65026 8 1050 132 75.2s
8 261122 8 1065 134 428.8s

Table 7.22: Results with preconditioner P̃2 for ε = 10−4 and α = 10−2.

l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
7 65026 11 7310 665 498.2s
8 261122 12 7882 657 2906.3s

Table 7.23: Results with preconditioner P̃2 for ε = 10−5 and α = 10−2.
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l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
7 65026 8 234 30 106.0s
8 261122 8 235 30 606.4s

Table 7.24: Results with preconditioner P̃3 for ε = 10−4 and α = 10−2.

l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
7 65026 11 459 42 208.6s
8 261122 12 538 45 1311.4s

Table 7.25: Results with preconditioner P̃3 for ε = 10−5 and α = 10−2.

A comparison with respect to the computational times clearly favors the preconditioner P̃1 in these
test cases.

7.2 The parabolic case

7.2.1 Numerical study without constraints

Here we present some numerical experiments for the distributed multiharmonic-parabolic optimal
control problem (5.4) on Ω = (0, 1)2. The desired state is chosen as

yd(x, y) = sin(2πx) sin(πy) cos(t) + 10xy(1− x)(1− y) sin(t), (7.2)

with k = 1, ω = 1 and T = 2π.

The problem was discretized by a finite element space consisting of continuous piecewise linear poly-
nomials for the state coefficients y = (yc, ys)T as well as for the adjoint state coefficients p = (pc, ps)T

on a triangulation of Ω, see Subsection 5.1.2. The initial mesh contains four triangles obtained by
connecting the two diagonals. In all the tables presented in this subsection, l denotes the number of
uniform refinement steps (corresponding to a mesh size h = 2−l) and N the total number of degrees
of freedom.

The theoretical preconditioner P defined in (5.12), is practically realized as summarized in Table 5.1
in Section 5.4. In detail, we use 1 V-cycle with 1 symmetric Gauss-Seidel iteration as pre- and post-
smoothing for the second order terms. Therefore, we end up with a practical preconditioner denoted
by P̃.

Throughout this subsection let ν1, σ1 and ν2, σ2 denote the values of the conductivity σ and the
reluctivity ν in the domains {(x, y) : y ≤ 1− x} ⊂ Ω and {(x, y) : y > 1− x} ⊂ Ω, respectively.

The next pictures show the desired state and solutions for the state y and the control u computed at
the finest mesh (l = 8) for α = 10−5, ν1 = 1, ν2 = 2, σ1 = 0 and σ2 = 10 at different time t.
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Figure 7.14: The desired state yd at different time t.
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Figure 7.15: The state y at grid level l = 8 for different time t for α = 10−5, ν1 = 1, ν2 = 2, σ1 = 0
and σ2 = 10.
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Figure 7.16: The control u at grid level l = 8 for different time t for α = 10−5, ν1 = 1, ν2 = 2, σ1 = 0
and σ2 = 10.

Now we analyze if the proven parameter-independent bound on the condition number with the precon-
ditioner P for the linear saddle point system in (5.9), i.e., the system resulting from the discretization
of the optimality conditions of the distributed multiharmonic-parabolic optimal control problem (5.4),
is reflected in practice. Therefore, we provide condition numbers of the preconditioned saddle point
system P̃−1A where A is the system matrix from (5.9). The results for various values of h, kω, α, σ
and ν are given in the Tables 7.26-7.29.

kω
l N 0 1e-10 1e-5 1 1e5 1e10
5 7940 1.22 1.22 1.22 1.25 1.39 1.03
6 32260 1.24 1.24 1.24 1.25 1.4 1.03
7 130052 1.25 1.25 1.25 1.25 1.48 1.03
8 522244 1.24 1.24 1.24 1.25 1.52 1.03

Table 7.26: Condition number of the preconditioned system P̃−1A with α = ν = σ = 1.

α
l N 1e-10 1e-5 1
5 7940 1.39 1.51 1.25
6 32260 1.4 1.52 1.25
7 130052 1.44 1.52 1.25
8 522244 1.48 1.52 1.25

Table 7.27: Condition number of the preconditioned system P̃−1A with kω = ν = σ = 1.
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σ2

l N 0 1e-10 1e-5 1 1e5 1e10
5 7940 1.23 1.23 1.23 1.25 1.42 1.2
6 32260 1.24 1.24 1.24 1.25 1.46 1.21
7 130052 1.24 1.24 1.24 1.25 1.49 1.22
8 522244 1.24 1.24 1.24 1.25 1.5 1.21

Table 7.28: Condition number of the preconditioned system P̃−1A with α = kω = ν = σ1 = 1.

ν2

l N 1 1e5 1e10
5 7940 1.25 1.22 1.22
6 32260 1.25 1.25 1.25
7 130052 1.25 1.26 1.26
8 522244 1.25 1.25 1.25

Table 7.29: Condition number of the preconditioned system P̃−1A with α = kω = σ = ν1 = 1.

Tables 7.26-7.29 seem to reflect the parameter-independent upper bound on the condition number
for the practical preconditioner P̃.

7.2.2 Numerical study for control constraints

Here we present some numerical experiments for the distributed multiharmonic-parabolic optimal
control problem with control constraints (as given in (5.21)) on Ω = (0, 1)2. The desired state is
chosen as in the unconstrained case, i.e., (cf. (7.2))

yd(x, y) = sin(2πx) sin(πy) cos(t) + 10xy(1− x)(1− y) sin(t),

with k = 1, ω = 1 and T = 2π and the constraints on the control coefficients uc, us are given by
(uca, u

s
a)T = (−40, 0)T and (ucb, u

s
b)
T = (40, 25)T .

The problem was discretized analogously to the unconstrained case, see Subsection 5.2.2, and, also
as in the unconstrained case, the initial mesh contains four triangles obtained by connecting the two
diagonals. Again l denotes the number of uniform refinement steps (corresponding to a mesh size
h = 2−l) and N the total number of degrees of freedom.

The theoretical preconditioners Pj , j ∈ {1, 2}, defined in (5.28) and (5.31) are practically realized as
summarized in Table 5.1 in Section 5.4. In detail, we use 1 V-cycle with 1 symmetric Gauss-Seidel
iteration as pre- and post-smoothing for the second order terms. Therefore, we end up with practical
preconditioners denoted by P̃j .
The next pictures show solutions for the state y and the control u computed at the finest mesh (l = 8)
for ν1 = 1, ν2 = 2, σ1 = 0, σ2 = 10 and α = 10−5 at different time t with control constraints.

Note that, as in the previous subsection, ν1, σ1 and ν2, σ2 denote the values of the conductivity σ and
the reluctivity ν in the domains {(x, y) : y ≤ 1− x} ⊂ Ω and {(x, y) : y > 1− x} ⊂ Ω, respectively.
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Figure 7.17: The state y at grid level l = 8 for different time t for ν1 = 1, ν2 = 2, σ1 = 0, σ2 = 10
and α = 10−5 with control constraints.
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Figure 7.18: The control u at grid level l = 8 for different time t for ν1 = 1, ν2 = 2, σ1 = 0, σ2 = 10
and α = 10−5 with control constraints.
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Now we analyze how the behaviors of the proven upper bounds on the condition numbers are reflected
in practice (using the practical preconditioners) and therefore, first recall the behavior for the two
theoretical preconditioners Pj , j ∈ {1, 2}:

small h large kω small α large σ large ν

P1 robust robust
1√
α

robust robust

P2 robust k2ω2 1

α2
σ2
max ν2

max

Table 7.30: Behaviour of the upper bounds on the condition numbers.

We provide condition numbers of the preconditioned systems P̃−1
j A, j ∈ {1, 2}, where A is the system

matrix (cf. (5.25)) appearing in the first step of the primal-dual active set method applied for the
control constrained problem with ν1 = 1, ν2 = 2, σ1 = 0, σ2 = 10, α = 10−5 and the unconstrained
solution (computed for ν1 = 1, ν2 = 2, σ1 = 0, σ2 = 10 and α = 10−5) as initial guess. With the active
set kept fixed, the results for various values of h, kω, α, σ and ν are given in the Tables 7.31-7.38.

kω
l N 0 1e-10 1e-5 1 1e5 1e10
5 7940 1.21 1.21 1.21 1.25 1.33 1.05
6 32260 1.23 1.23 1.23 1.25 1.41 1.05
7 130052 1.24 1.24 1.24 1.25 1.4 1.05
8 522244 1.24 1.24 1.24 1.25 1.42 1.05

Table 7.31: Condition number of the preconditioned system P̃−1
1 A with α = ν = σ = 1.

α
l N 1e-10 1e-9 1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1
5 7940 176.18 90.85 32.31 12.22 5.39 3.16 2.29 1.71 1.57 1.34 1.25
6 32260 253.5 89.95 32.61 12.39 5.37 3.12 2.27 1.71 1.57 1.34 1.25
7 130052 236.38 94.91 33.56 12.53 5.38 3.1 2.26 1.7 1.57 1.34 1.25
8 522244 245.9 94.73 33.68 12.58 5.39 3.09 2.25 1.7 1.57 1.34 1.25

Table 7.32: Condition number of the preconditioned system P̃−1
1 A with kω = ν = σ = 1.

σ2

l N 0 1e-10 1e-5 1 1e5 1e10
5 7940 1.23 1.23 1.23 1.25 1.33 1.05
6 32260 1.24 1.24 1.24 1.25 1.44 1.05
7 130052 1.23 1.23 1.23 1.25 1.45 1.05
8 522244 1.23 1.23 1.23 1.25 1.46 1.05

Table 7.33: Condition number of the preconditioned system P̃−1
1 A with kω = α = ν = σ1 = 1.
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ν2

l N 1 1e5 1e10
5 7940 1.25 1.21 1.21
6 32260 1.25 1.23 1.23
7 130052 1.25 1.24 1.24
8 522244 1.25 1.24 1.24

Table 7.34: Condition number of the preconditioned system P̃−1
1 A with kω = α = σ = ν1 = 1.

kω
l N 0 1e-10 1e-5 1 1e1 1e2 1e3 1e4 1e5 1e6
5 7940 1.22 1.22 1.22 1.22 1.22 5.42 45.14 440.12 4.4e3 4.4e4
6 32260 1.24 1.24 1.24 1.24 1.24 5.51 48.58 440.17 4.4e3 4.4e4
7 130052 1.24 1.24 1.24 1.24 1.25 5.54 49.97 440.18 4.4e3 4.4e4
8 522244 1.25 1.25 1.25 1.25 1.25 5.56 50.37 440.18 4.4e3 4.4e4

Table 7.35: Condition number of the preconditioned system P̃−1
2 A with α = ν = σ = 1.

α
l N 1e-4 1e-3 1e-2 1e-1 1
5 7940 1.96e4 654.79 19.07 1.51 1.22
6 32260 1.44e4 658.58 19.24 1.51 1.24
7 130052 1.63e4 659.66 19.29 1.51 1.24
8 522244 1.48e4 660.14 19.31 1.51 1.25

Table 7.36: Condition number of the preconditioned system P̃−1
2 A with kω = ν = σ = 1.

σ2

l N 0 1e-10 1e-5 1 1e1 1e2 1e3 1e4 1e5 1e6
5 7940 1.22 1.22 1.22 1.22 1.22 3.67 34.51 289.71 2.91e3 2.91e4
6 32260 1.24 1.24 1.24 1.24 1.24 3.72 34.73 290.89 2.91e3 2.91e4
7 130052 1.24 1.24 1.24 1.24 1.25 3.74 34.72 290.89 2.91e3 2.91e4
8 522244 1.25 1.25 1.25 1.25 1.25 3.74 34.83 291.0 2.91e3 2.91e4

Table 7.37: Condition number of the preconditioned system P̃−1
2 A with kω = α = ν = σ1 = 1.

ν2

l N 1 1e1 1e2 1e3 1e4
5 7940 1.22 12.01 118.67 1.16e3 1.15e4
6 32260 1.24 12.16 119.48 1.18e3 1.22e4
7 130052 1.24 12.19 119.56 1.17e3 1.25e4
8 522244 1.25 12.23 119.64 1.18e3 1.25e4

Table 7.38: Condition number of the preconditioned system P̃−1
2 A with kω = α = σ = ν1 = 1.

From these tables the robustness of the condition numbers with respect to the mesh-size h for both
practical preconditioners can be seen. The robustness of the practical preconditioner P̃1 with respect
to kω, σ and ν can be seen from the Tables 7.31, 7.33 and 7.34, respectively.
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In order to clarify the remaining parameter dependencies (as summarized in Table 7.30) we present
several additional figures. In Figure 7.19 the condition number of the preconditioned system P̃−1

1 A at
grid level l = 8 is plotted as a function of α where the sketched triangle has slope − 1

2 representing the
behavior of the upper bound on the condition number for the theoretical preconditioner. Figures 7.20-
7.23 show the condition number of P̃−1

2 A at grid level l = 8 as a function of kω, α, σ2 and ν2,
respectively. Representing the upper bounds for the theoretical preconditioner as summarized in
Table 7.30, the triangles in the Figures 7.20, 7.22 and 7.23 have slope 2 and the triangle in Figure 7.21
has slope −2.

Figure 7.19: Condition number of the preconditioned system P̃−1
1 A at grid level l = 8 with kω = ν =

σ = 1.

Figure 7.20: Condition number of the preconditioned system P̃−1
2 A at grid level l = 8 with α = ν =

σ = 1.
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Figure 7.21: Condition number of the preconditioned system P̃−1
2 A at grid level l = 8 with kω = ν =

σ = 1.

Figure 7.22: Condition number of the preconditioned system P̃−1
2 A at grid level l = 8 with kω =

α = ν = σ1 = 1.

Figure 7.23: Condition number of the preconditioned system P̃−1
2 A at grid level l = 8 with kω =

α = σ = ν1 = 1.

From Figure 7.19 we see that the practical preconditioner P̃1 seems to reflect the behavior of the
theoretical preconditioner P1 with respect to α. The Figures 7.20-7.23 indicate that the behavior of
P̃2 with respect to kω, α, σ and ν, respectively, is also better than the stated bound for the theoretical
preconditioner.
Now we compare the two practical preconditioners P̃1 and P̃2 with respect to their performance in
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the overall primal-dual active set method. The results for various values of h and α with ν1 = 1,
ν2 = 2, σ1 = 0 and σ2 = 10 are given in the Tables 7.39-7.42.

l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
7 130052 4 77 20 15.4s
8 522244 4 74 19 84.6s

Table 7.39: Results with preconditioner P̃1 for α = 10−4, ν1 = 1, ν2 = 2, σ1 = 0 and σ2 = 10.

l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
7 130052 5 140 28 27.2s
8 522244 6 166 28 187.9s

Table 7.40: Results with preconditioner P̃1 for α = 10−5, ν1 = 1, ν2 = 2, σ1 = 0 and σ2 = 10.

l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
7 130052 4 4876 1219 626.9s
8 522244 4 4758 1190 3582.5s

Table 7.41: Results with preconditioner P̃2 for α = 10−4, ν1 = 1, ν2 = 2, σ1 = 0 and σ2 = 10.

l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
7 130052 5 28442 5689 3684.3s
8 522244 6 32857 5477 18925.2s

Table 7.42: Results with preconditioner P̃2 for α = 10−5, ν1 = 1, ν2 = 2, σ1 = 0 and σ2 = 10.

A comparison with respect to the computational times clearly favors the preconditioner P̃1 in these
test cases.

7.2.3 Numerical study for state constraints
Here we present some numerical experiments for the distributed multiharmonic-parabolic optimal
control problem with Moreau-Yosida regularized state constraints (as given in (5.32)) on Ω = (0, 1)2.
The desired state is chosen as in the unconstrained case, i.e., (cf. (7.2))

yd(x, y) = sin(2πx) sin(πy) cos(t) + 10xy(1− x)(1− y) sin(t),

with k = 1, ω = 1 and T = 2π and the constraints on the state coefficients yc, ys are given by
(yca, y

s
a)T = (−0.02, 0)T and (ycb , y

s
b)
T = (0.02, 0.05)T .

The problem was discretized analogously to the unconstrained case, see Subsection 5.3.2, and, also
as in the unconstrained case, the initial mesh contains four triangles obtained by connecting the two
diagonals. Again l denotes the number of uniform refinement steps (corresponding to a mesh size
h = 2−l) and N the total number of degrees of freedom.
The theoretical preconditioners Pj , j ∈ {1, 2}, defined in (5.39) and (5.42) are practically realized as
summarized in Table 5.1 in Section 5.4. In detail, we use 1 V-cycle with 1 symmetric Gauss-Seidel
iteration as pre- and post-smoothing for the second order terms. Therefore, we end up with practical
preconditioners denoted by P̃j .
The next pictures show solutions for the state y and the control u computed at the finest mesh
(l = 8) for ν1 = 1, ν2 = 2, σ1 = 0, σ2 = 10 and α = 10−2 at different time t with and without state
constraints.
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Note that, as in the previous subsections, ν1, σ1 and ν2, σ2 denote the values of the conductivity σ
and the reluctivity ν in the domains {(x, y) : y ≤ 1−x} ⊂ Ω and {(x, y) : y > 1−x} ⊂ Ω, respectively.
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Figure 7.24: The state y at grid level l = 8 for different time t for ν1 = 1, ν2 = 2, σ1 = 0, σ2 = 10
and α = 10−2 without state constraints.
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Figure 7.25: The control u at grid level l = 8 for different time t for ν1 = 1, ν2 = 2, σ1 = 0, σ2 = 10
and α = 10−2 without state constraints.
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Figure 7.26: The state y at grid level l = 8 for different time t for ν1 = 1, ν2 = 2, σ1 = 0, σ2 = 10,
α = 10−2 and ε = 10−5 with state constraints.
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Figure 7.27: The control u at grid level l = 8 for different time t for ν1 = 1, ν2 = 2, σ1 = 0, σ2 = 10,
α = 10−2 and ε = 10−5 with state constraints.

Now we analyze how the behaviors of the proven upper bounds on the condition numbers are reflected
in practice (using the practical preconditioners) and therefore, first recall the behavior for the two
theoretical preconditioners Pj , j ∈ {1, 2}:

small h large kω small α small ε large σ large ν

P1 robust robust robust
1

ε
robust robust

P2 robust k2ω2 1

α2

1

ε2
σ2
max ν2

max

Table 7.43: Behaviour of the upper bounds on the condition numbers.

We provide condition numbers of the preconditioned systems P̃−1
j A, j ∈ {1, 2}, where A is the system

matrix (cf. (5.36)) appearing in the first step of the primal-dual active set method applied for the
Moreau-Yosida state constrained problem with ν1 = 1, ν2 = 2, σ1 = 0, σ2 = 10, α = 10−2, ε = 10−5

and the unconstrained solution (computed for ν1 = 1, ν2 = 2, σ1 = 0, σ2 = 10 and α = 10−2) as
initial guess. With the active set kept fixed, the results for various values of h, kω, α, ε, σ and ν are
given in the Tables 7.44-7.53.
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kω
l N 0 1e-10 1e-5 1 1e5 1e10
5 7940 1.24 1.24 1.24 1.27 1.33 1.05
6 32260 1.24 1.24 1.24 1.28 1.41 1.05
7 130052 1.24 1.24 1.24 1.28 1.4 1.05
8 522244 1.24 1.24 1.24 1.28 1.42 1.05

Table 7.44: Condition number of the preconditioned system P̃−1
1 A with α = ε = ν = σ = 1.

α
l N 1e-10 1e-5 1
5 7940 1.39 1.67 1.27
6 32260 1.59 1.69 1.28
7 130052 1.59 1.64 1.28
8 522244 1.62 1.7 1.28

Table 7.45: Condition number of the preconditioned system P̃−1
1 A with kω = ε = ν = σ = 1.

ε
l N 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1
5 7940 1.29e3 196.98 56.08 19.25 4.55 1.58 1.27
6 32260 1.22e3 198.73 61.05 19.82 4.58 1.58 1.28
7 130052 1.18e3 222.68 66.31 20.25 4.6 1.58 1.28
8 522244 1.17e3 247.05 68.86 20.43 4.61 1.58 1.28

Table 7.46: Condition number of the preconditioned system P̃−1
1 A with kω = α = ν = σ = 1.

σ2

l N 0 1e-10 1e-5 1 1e5 1e10
5 7940 1.26 1.26 1.26 1.27 1.33 1.05
6 32260 1.26 1.26 1.26 1.28 1.45 1.05
7 130052 1.26 1.26 1.26 1.28 1.45 1.05
8 522244 1.26 1.26 1.26 1.28 1.46 1.05

Table 7.47: Condition number of the preconditioned system P̃−1
1 A with kω = α = ε = ν = σ1 = 1.

ν2

l N 1 1e5 1e10
5 7940 1.27 1.21 1.21
6 32260 1.28 1.22 1.22
7 130052 1.28 1.23 1.23
8 522244 1.28 1.23 1.23

Table 7.48: Condition number of the preconditioned system P̃−1
1 A with kω = α = ε = σ = ν1 = 1.
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kω
l N 0 1e-10 1e-5 1 1e1 1e2 1e3 1e4 1e5 1e6
5 7940 1.21 1.21 1.21 1.21 1.21 5.18 44.13 440.12 4.4e3 4.4e4
6 32260 1.23 1.23 1.23 1.23 1.22 5.24 47.45 440.17 4.4e3 4.4e4
7 130052 1.23 1.23 1.23 1.23 1.22 5.26 49.02 440.18 4.4e3 4.4e4
8 522244 1.23 1.23 1.23 1.23 1.22 5.26 49.65 440.19 4.4e3 4.4e4

Table 7.49: Condition number of the preconditioned system P̃−1
2 A with α = ε = ν = σ = 1.

α
l N 1e-4 1e-3 1e-2 1e-1 1
5 7940 1.74e4 715.11 20.85 1.54 1.21
6 32260 1.86e4 715.67 20.84 1.54 1.23
7 130052 1.84e4 715.77 20.83 1.54 1.23
8 522244 1.84e4 715.83 20.83 1.54 1.23

Table 7.50: Condition number of the preconditioned system P̃−1
2 A with kω = ε = ν = σ = 1.

ε
l N 1e-4 1e-3 1e-2 1e-1 1
5 7940 1.26e4 452.01 11.85 1.4 1.21
6 32260 1.25e4 455.98 11.98 1.41 1.23
7 130052 1.25e4 457.74 12.04 1.41 1.23
8 522244 1.25e4 458.89 12.08 1.41 1.23

Table 7.51: Condition number of the preconditioned system P̃−1
2 A with kω = α = ν = σ = 1.

σ2

l N 0 1e-10 1e-5 1 1e1 1e2 1e3 1e4 1e5 1e6
5 7940 1.21 1.21 1.21 1.21 1.21 3.66 34.39 331.46 2.91e3 2.91e4
6 32260 1.23 1.23 1.23 1.23 1.22 3.69 34.58 329.79 2.91e3 2.91e4
7 130052 1.23 1.23 1.23 1.23 1.22 3.7 34.75 334.81 2.91e3 2.91e4
8 522244 1.23 1.23 1.23 1.23 1.23 3.7 34.65 336.03 2.91e3 2.91e4

Table 7.52: Condition number of the preconditioned system P̃−1
2 A with kω = α = ε = ν = σ1 = 1.

ν2

l N 1 1e1 1e2 1e3 1e4
5 7940 1.21 12.01 118.82 1.18e3 1.14e4
6 32260 1.23 12.13 119.46 1.18e3 1.16e4
7 130052 1.23 12.18 119.81 1.17e3 1.15e4
8 522244 1.23 12.2 120.09 1.17e3 1.15e4

Table 7.53: Condition number of the preconditioned system P̃−1
2 A with kω = α = ε = σ = ν1 = 1.

From these tables the robustness of the condition numbers with respect to the mesh-size h for both
practical preconditioners can be seen. The robustness of the practical preconditioner P̃1 with respect
to kω, α, σ and ν can be seen from the Tables 7.44, 7.45, 7.47 and 7.48, respectively.
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In order to clarify the remaining parameter dependencies (as summarized in Table 7.43) we present
several additional figures. In Figure 7.28 the condition number of the preconditioned system P̃−1

1 A at
grid level l = 8 is plotted as a function of ε where the sketched triangle has slope −1 representing the
behavior of the upper bound on the condition number for the theoretical preconditioner. Figures 7.29-
7.33 show the condition number of P̃−1

2 A at grid level l = 8 as a function of kω, α, ε, σ2 and ν2,
respectively. Representing the upper bounds for the theoretical preconditioner as summarized in
Table 7.43, the triangles in the Figures 7.29, 7.32 and 7.33 have slope 2 and the triangles in the
Figures 7.30 and 7.31 have slope −2.

Figure 7.28: Condition number of the preconditioned system P̃−1
1 A at grid level l = 8 with kω =

α = ν = σ = 1.

Figure 7.29: Condition number of the preconditioned system P̃−1
2 A at grid level l = 8 with α = ε =

ν = σ = 1.
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Figure 7.30: Condition number of the preconditioned system P̃−1
2 A at grid level l = 8 with kω = ε =

ν = σ = 1.

Figure 7.31: Condition number of the preconditioned system P̃−1
2 A at grid level l = 8 with kω =

α = ν = σ = 1.

Figure 7.32: Condition number of the preconditioned system P̃−1
2 A at grid level l = 8 with kω =

α = ε = ν = σ1 = 1.
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Figure 7.33: Condition number of the preconditioned system P̃−1
2 A at grid level l = 8 with kω =

α = ε = σ = ν1 = 1.

From Figure 7.28 we see that the behavior of the practical preconditioner P̃1 seems to be better than
the stated bound for the theoretical preconditioner P1 with respect ε. The Figures 7.29-7.33 indicate
that the behavior of P̃2 with respect to kω, α, ε, σ and ν, respectively, is also better than the stated
bound for the theoretical preconditioner.
Now we compare the two practical preconditioners P̃1 and P̃2 with respect to their performance in
the overall primal-dual active set method. The results for various values of h and ε with ν1 = 1,
ν2 = 2, σ1 = 0, σ2 = 10 and α = 10−2 are given in the Tables 7.54-7.57.

l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
7 130052 9 808 90 142.5s
8 522244 9 832 93 842.1s

Table 7.54: Results with preconditioner P̃1 for ε = 10−4, ν1 = 1, ν2 = 2, σ1 = 0, σ2 = 10 and
α = 10−2.

l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
7 130052 14 2051 147 354.8s
8 522244 15 2308 154 2271.6s

Table 7.55: Results with preconditioner P̃1 for ε = 10−5, ν1 = 1, ν2 = 2, σ1 = 0, σ2 = 10 and
α = 10−2.

l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
7 130052 9 1851 206 240.6s
8 522244 9 1878 209 1409.8s

Table 7.56: Results with preconditioner P̃2 for ε = 10−4, ν1 = 1, ν2 = 2, σ1 = 0, σ2 = 10 and
α = 10−2.

l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
7 130052 14 12558 897 1585.2s
8 522244 15 13547 904 9591.5s

Table 7.57: Results with preconditioner P̃2 for ε = 10−5, ν1 = 1, ν2 = 2, σ1 = 0, σ2 = 10 and
α = 10−2.
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A comparison with respect to the computational times clearly favors the preconditioner P̃1 in these
test cases.

7.3 The Stokes case

7.3.1 Numerical study for control constraints

Here we present some numerical experiments for the distributed optimal control problem for the
Stokes equations with control constraints (as given in (6.2)) on Ω = (0, 1)2. Following Example 1

in [45] we choose the desired velocity ud(x, y) = (U(x, y), V (x, y))
T as

U(x, y) = 10
∂

∂y
(φ(x)φ(y)) and V (x, y) = −10

∂

∂x
(φ(x)φ(y)) , (7.3)

with

φ(z) = (1− cos(0.8πz)) (1− z)2
.

The constraints on the force (control) f are given by fa = (−40,−40)T and fb = (40, 40)T . Note
that, contrary to the problem considered here, in [45] a distributed optimal control problem for the
time-dependent Navier-Stokes equations was discussed.
The problem was discretized by the Taylor-Hood pair of finite element spaces consisting of continuous
piecewise quadratic polynomials for the velocity u (and û) and continuous piecewise linear polynomials
for the pressure p (and p̂) on a triangulation of Ω, see Subsection 6.1.2. The initial mesh contains four
triangles obtained by connecting the two diagonals. In all the tables presented in this subsection, l
denotes the number of uniform refinement steps (corresponding to a mesh size h = 2−l) and N the
total number of degrees of freedom.
The theoretical preconditioners Pj , j ∈ {1, 2}, defined in (6.18) and (6.24) are practically realized
as summarized in Table 6.1 in Section 6.3. In detail, we use 1 step of the symmetric Gauss-Seidel
iteration for the zero order terms and 1 V-cycle with 1 symmetric Gauss-Seidel iteration as pre-
and post-smoothing for the second order terms. Therefore, we end up with practical preconditioners
denoted by P̃j .
The next pictures show the desired velocity and solutions for the velocity u, the pressure p and the
force f computed at the finest mesh (l = 7) for α = 10−5 with and without control constraints.

Figure 7.34: The desired velocity ud.

Figures 7.35 and 7.36 show the solution for the velocity u, the pressure p and the force f computed
at the finest mesh (l = 7) for α = 10−5 without control constraints.
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Figure 7.35: The velocity u (left) and the pressure p (right) at grid level l = 7 for α = 10−5 without
control constraints.

Figure 7.36: The force f at grid level l = 7 for α = 10−5 without control constraints.

Figure 7.37: The velocity u (left) and the pressure p (right) at grid level l = 7 for α = 10−5 with
control constraints.
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Figure 7.38: The force f at grid level l = 7 for α = 10−5 with control constraints.

Now we analyze how the behaviors of the proven upper bounds on the condition numbers are reflected
in practice (using the practical preconditioners) and therefore, first recall the behavior for the two
theoretical preconditioners Pj , j ∈ {1, 2}:

small h small α

P1 robust
1√
α3

P2 robust
1

α2

Table 7.58: Behaviour of the upper bounds on the condition numbers.

We provide condition numbers of the preconditioned systems P̃−1
j A, j ∈ {1, 2}, where A is the system

matrix (cf. (6.7)) appearing in the first step of the primal-dual active set method applied for the
control constrained problem with α = 10−5 and the unconstrained solution (computed for α = 10−5)
as initial guess. With the active set kept fixed, the results for various values of h and α are given in
the Tables 7.59-7.60.

α
l N 1e-10 1e-9 1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1
4 9030 184.58 39.66 16.07 7.45 5.73 6.67 7.37 8.05 8.65 9.17 9.51
5 36486 166.7 38.1 16.04 7.85 6.26 7.62 8.16 8.76 9.26 9.68 9.97
6 146694 161.94 38.17 15.89 8.57 6.44 8.36 8.84 9.35 9.76 10.1 10.32
7 588294 165.82 38.15 15.97 8.63 6.87 8.74 9.23 9.85 10.17 10.42 10.6

Table 7.59: Condition number of the preconditioned system P̃−1
1 A.

α
l N 1e-3 1e-2 1e-1 1
4 9030 4.99e3 60.01 10.1 9.76
5 36486 4.97e3 59.82 10.45 10.17
6 146694 5.0e3 60.18 10.71 10.49
7 588294 5.01e3 60.24 10.92 10.74

Table 7.60: Condition number of the preconditioned system P̃−1
2 A.
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Additionally, in the Figures 7.39-7.40, the condition numbers at grid level l = 7 are plotted as
functions of α. The triangles sketched therein represent the behavior of the theoretical bounds as
summarized in Table 7.58, i.e., the triangle in Figure 7.39 has slope − 3

2 and the triangle in Figure 7.40
has slope −2.

Figure 7.39: Condition number of the preconditioned system P̃−1
1 A at grid level l = 7.

Figure 7.40: Condition number of the preconditioned system P̃−1
2 A at grid level l = 7.

Now, from these results we can conclude the following. The robustness of the condition numbers
with respect to the mesh-size h for all three practical preconditioners can be seen in the Tables 7.59-
7.60. As already announced in Remark 6.4, Figure 7.39 shows that the behavior of the practical
preconditioner P̃1 with respect to α is much better than the stated bound for the theoretical one.
Finally, from Figure 7.40 we see that the practical preconditioner P̃2 seems to reflect the behavior of
the theoretical preconditioner P2 with respect to α.
Now we compare the two practical preconditioners P̃1 and P̃2 with respect to their performance in
the overall primal-dual active set method. The results for various values of h and α are given in the
Tables 7.61-7.64.

l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
6 146694 2 139 70 36.9s
7 588294 2 151 76 216.2s

Table 7.61: Results with preconditioner P̃1 for α = 10−4.



128 CHAPTER 7. NUMERICAL EXPERIMENTS

l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
6 146694 4 269 68 69.5s
7 588294 5 335 67 448.2s

Table 7.62: Results with preconditioner P̃1 for α = 10−5.

l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
6 146694 2 8223 4112 1326.3s
7 588294 2 8451 4226 7240.9s

Table 7.63: Results with preconditioner P̃2 for α = 10−4.

l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
6 146694 4 86584 21646 9848.3s
7 588294 5 112754 22552 62253.3s

Table 7.64: Results with preconditioner P̃2 for α = 10−5.

A comparison with respect to the computational times clearly favors the preconditioner P̃1 in these
test cases.

7.3.2 Numerical study for state constraints

Here we present some numerical experiments for the distributed optimal control problem for the
Stokes equations with Moreau-Yosida regularized state constraints (as given in (6.25)) on Ω = (0, 1)2.
The desired velocity ud(x, y) = (U(x, y), V (x, y))

T is chosen as in the control constrained case, i.e.,
(cf. (7.3))

U(x, y) = 10
∂

∂y
(φ(x)φ(y)) and V (x, y) = −10

∂

∂x
(φ(x)φ(y)) ,

with

φ(z) = (1− cos(0.8πz)) (1− z)2
,

and the constraints on the velocity u are given by ua = (−0.025,−0.025)T and ub = (0.025, 0.025)T .
The problem was discretized analogously to the control constrained case, see Subsection 6.2.2, and,
also as in the control constrained case, the initial mesh contains four triangles obtained by connecting
the two diagonals. Again l denotes the number of uniform refinement steps (corresponding to a mesh
size h = 2−l) and N the total number of degrees of freedom.
The theoretical preconditioners Pj , j ∈ {1, 2}, defined in (6.40) and (6.44) are practically realized
as summarized in Table 6.1 in Section 6.3. In detail, we use 1 step of the symmetric Gauss-Seidel
iteration for the zero order terms and 1 V-cycle with 1 symmetric Gauss-Seidel iteration as pre-
and post-smoothing for the second order terms. Therefore, we end up with practical preconditioners
denoted by P̃j .
The next pictures show solutions for the velocity u, the pressure p and the force f computed at the
finest mesh (l = 7) for α = 10−2 with and without state constraints.
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Figure 7.41: The velocity u (left) and the pressure p (right) at grid level l = 7 for α = 10−2 without
state constraints.

Figure 7.42: The force f at grid level l = 7 for α = 10−2 without state constraints.

Figure 7.43: The velocity u (left) and the pressure p (right) at grid level l = 7 for α = 10−2 and
ε = 10−5 with state constraints.
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Figure 7.44: The force f at grid level l = 7 for α = 10−2 and ε = 10−5 with state constraints.

Now we analyze how the behaviors of the proven upper bounds on the condition numbers are reflected
in practice (using the practical preconditioners) and therefore, first recall the behavior for the three
theoretical preconditioners Pj , j ∈ {1, 2}:

small h small α small ε

P1 robust robust
1

ε

P2 robust
1

α2

1

ε2

Table 7.65: Behaviour of the upper bounds on the condition numbers.

We provide condition numbers of the preconditioned systems P̃−1
j A, j ∈ {1, 2}, where A is the system

matrix (cf. (6.29)) appearing in the first step of the primal-dual active set method applied for the
Moreau-Yosida state constrained problem with α = 10−2, ε = 10−5 and the unconstrained solution
(computed for α = 10−2) as initial guess. With the active set kept fixed, the results for various values
of h, α and ε are given in the Tables 7.66-7.69.

α
l N 1e-10 1e-5 1
4 9030 3.76 4.57 9.52
5 36486 3.41 4.86 9.97
6 146694 3.95 4.95 10.32
7 588294 4.46 5.21 10.6

Table 7.66: Condition number of the preconditioned system P̃−1
1 A with ε = 1.

ε
l N 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1
4 9030 3.76e4 3.71e3 538.82 58.27 10.9 9.56 9.52
5 36486 3.61e4 4.01e3 573.71 60.54 11.19 10.0 9.97
6 146694 3.21e4 4.07e3 573.13 60.31 11.31 10.35 10.32
7 588294 3.37e4 4.08e3 572.68 62.14 11.98 10.71 10.6

Table 7.67: Condition number of the preconditioned system P̃−1
1 A with α = 1.
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α
l N 1e-3 1e-2 1e-1 1
4 9030 6.5e3 74.71 10.19 9.76
5 36486 6.51e3 74.88 10.49 10.17
6 146694 6.51e3 74.93 10.75 10.48
7 588294 6.51e3 74.96 10.95 10.73

Table 7.68: Condition number of the preconditioned system P̃−1
2 A with ε = 1.

ε
l N 1e-4 1e-3 1e-2 1e-1 1
4 9030 2.98e4 538.08 14.58 9.82 9.76
5 36486 2.94e4 567.16 15.06 10.22 10.17
6 146694 2.9e4 563.65 15.17 10.53 10.48
7 588294 2.92e4 568.49 15.31 10.76 10.73

Table 7.69: Condition number of the preconditioned system P̃−1
2 A with α = 1.

From these tables the robustness of the condition numbers with respect to the mesh-size h for both
practical preconditioners can be seen. The robustness of the practical preconditioner P̃1 with respect
to α can be seen from Table 7.66.

In order to clarify the remaining parameter dependencies (as summarized in Table 7.65) we present
several additional figures. In Figure 7.45 the condition number of the preconditioned system P̃−1

1 A at
grid level l = 7 is plotted as a function of ε where the sketched triangle has slope −1 representing the
behavior of the upper bound on the condition number for the theoretical preconditioner. Figures 7.46
and 7.47 show the condition number of P̃−1

2 A at grid level l = 7 as a function of α and ε, respectively.
The triangles therein both have slope −2.

Figure 7.45: Condition number of the preconditioned system P̃−1
1 A at grid level l = 7 with α = 1.
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Figure 7.46: Condition number of the preconditioned system P̃−1
2 A at grid level l = 7 with ε = 1.

Figure 7.47: Condition number of the preconditioned system P̃−1
2 A at grid level l = 7 with α = 1.

From the Figures 7.45-7.47 we see that both, the practical preconditioner P̃1 and the practical pre-
conditioner P̃2, seem to reflect the behavior of the corresponding theoretical preconditioners.

Now we compare the two practical preconditioners P̃1 and P̃2 with respect to their performance in
the overall primal-dual active set method. The results for various values of h and ε with α = 10−2

are given in the Tables 7.70-7.72.

l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
6 146694 7 2459 352 571.9s
7 588294 7 2503 358 2988.1s

Table 7.70: Results with preconditioner P̃1 for ε = 10−4 and α = 10−2.

l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
6 146694 9 5234 582 987.4s
7 588294 10 5776 578 6991.6s

Table 7.71: Results with preconditioner P̃1 for ε = 10−5 and α = 10−2.
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l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
6 146694 7 2865 410 457.5s
7 588294 7 2947 421 2638s

Table 7.72: Results with preconditioner P̃2 for ε = 10−4 and α = 10−2.

l N primal-dual steps MinRes iterations MinRes per primal-dual overall time
6 146694 9 13849 1539 2105.8s
7 588294 10 16732 1674 13825.6s

Table 7.73: Results with preconditioner P̃2 for ε = 10−5 and α = 10−2.

By comparing the Tables 7.70 and 7.72 with respect to the computational time we see that the
preconditioner P̃2 is preferable to P̃1 in the case where ε = 10−4. However, a comparison of the
Tables 7.71 and 7.73 with respect to the computational time clearly favors the preconditioner P̃1 in
the case where ε = 10−5.
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Chapter 8

Conclusions

In this thesis we constructed efficient solution methods for the following three optimal control
problems: the distributed optimal control of elliptic equations, the distributed optimal control of
multiharmonic-parabolic equations and the distributed optimal control of the Stokes equations. In all
these problems we additionally imposed pointwise inequality constraints on the control and Moreau-
Yosida regularized constraints on the state.
The imposition of those constraints had the affect that the resulting first-order optimality systems
gained a nonlinear structure. In order to cope with this nonlinearity, a primal-dual active set method
was applied. The resulting (discretized) linear systems to be solved in each step of this lineariza-
tion method were large scale saddle point systems that depend on various model and discretization
parameters (like α and h).
We constructed and analyzed efficient preconditioners for these saddle point systems. In detail, in all
the model problems, the constructed preconditioners are robust with respect to the mesh size h and
the involved active set E . In the Moreau-Yosida regularized cases additional robustness with respect
to the cost parameter α could be shown.
In addition to the parameters appearing in the elliptic and the Stokes case, in the optimal control of
multiharmonic-parabolic equations we had to deal with the following model parameters: the mode
frequency kω, the conductivity σ and the reluctivity ν. We could show robustness of our proposed
preconditioners with respect to these parameters.
Note that the proposed preconditioners in the control constrained cases are not robust with respect
to the cost parameter α and the ones proposed in the Moreau-Yosida penalized state constrained
cases not with respect to the penalization parameter ε. However, we could analyze how the upper
bounds on the condition numbers of the preconditioned systems depend on these parameters.
In the multiharmonic-parabolic case without constraints on the control or state we constructed a
parameter-robust preconditioner in the case of constant conductivity σ by using the interpolation
technique as used in [70] and [99]. With little modification, this preconditioner could be carried over
to the case of general σ and remained parameter-robust there.
The proposed preconditioners for the problems with additional constraints on the control or state
were motivated by parameter-robust preconditioners available for the unconstrained cases. In detail,
some of the mass matrices appearing in those parameter-robust preconditioners were replaced by
the occurring active or inactive mass matrices in a suitable way. We compared our constructed
preconditioners with other ones available in literature, like the Schur complement approximation
preconditioners from [88] and preconditioners constructed according to the operator preconditioning
technique with standard norms. Also these preconditioners are robust with respect to the mesh size
h and the involved active set E in all the model problems. Additionally, the dependence of the upper
bounds on the condition numbers of the preconditioned systems on other parameters (like α, ε, kω,
σ and ν) could be figured out or was already available from literature.
Since all these preconditioners are usually not realized exactly in practice, we also discussed their
practical realization. In the numerical experiments we compared the practical versions of the theo-
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retical preconditioners. We saw that some of the practical preconditioners reflect the behavior of the
proven upper bound on the condition number while some others do not.
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