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“It is not the critic who counts; not the man who points out
how the strong man stumbles, or where the doer of deeds
could have done them better. The credit belongs to the man
who is actually in the arena, whose face is marred by dust
and sweat and blood; who strives valiantly; who errs, who
comes short again and again, because there is no effort without
error and shortcoming; but who does actually strive to do the
deeds; who knows great enthusiasms, the great devotions; who
spends himself in a worthy cause; who at the best knows in the
end the triumph of high achievement, and who at the worst,
if he fails, at least fails while daring greatly...”

The Man in the Arena - April 23, 1910
Theodore Roosevelt
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Abstract

Over the past years, many researchers in the field of inverse problems have
concentrated on the efficiency of solving ill-posed problems both in sciences and
industry. The main goal is to develop so-called regularisation methods to cope
with numerical instabilities due to lack of measurements or unavoidable noise
in practical problems. However, the operator is often also not known exactly,
e.g., due to the discretisation error or the approximation of the mathematical
model.

Therefore, to achieve reasonable results in the case where both the data
and the operator are contaminated by some noise, one may be interested in
reconstructing the total least squares (TLS) solution, which is a successful
approach for well-posed linear problems. Additionally, many regularised TLS
approaches have been considered to stabilise ill-posed problems.

In this thesis we consider operator equations in the infinite-dimensional
setting where the operator can be characterised mainly by a function. For the
stable reconstruction we propose the use of a Tikhonov-type functional with a
generalised misfit term based on TLS and one additional penalty term which
promotes sparsity. We refer to the novel technique as double regularised total
least squares, or shortly, dbl-RTLS. Using an appropriate parameter choice
rule for the two regularisation parameters we are able to derive convergence
rates not only for the function, but also for the operator.

Moreover, we discuss computational aspects and we focus on the efficient
numerical implementation with particular emphasis on the alternating min-
imisation strategy for solving not only the proposed method, but a vast class
of optimisation problems: the minimisation of a bilinear nonconvex functional
over two variables. The performance of this approach is illustrated for convo-
lution problems.

Keywords: ill-posed problems, noisy operator, noisy data, regularised total
least squares, alternating minimisation, wavelets, soft-shrinkage operator, sub-
gradients, integral equation, convolution.
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Kurzfassung

Sowohl in Wissenschaft als auch Industrie haben in letzter Zeit viele For-
schende im Gebiet der “Inversen Probleme” ihr Hauptaugenmerk auf die ef-
fiziente Lösung schlecht gestellter Probleme gelegt. Das Hauptziel ist, so ge-
nannte Regularisierungsverfahren zu entwickeln, welche es ermöglichen, nume-
rische Instabilitäten zu beherrschen, zum Beispiel bedingt durch unzureichende
Messwerte oder in der Praxis unvermeidliches Rauschen. Oft ist jedoch auch
der Operator nicht exakt bekannt, beispielsweise durch Diskretisierungsfehler
oder der Approximation des Problems durch das mathematische Modell.

Sind sowohl Daten als auch der Operator selbst verrauscht, stellt die Me-
thode der “Totalen kleinsten Quadrate” eine Möglichkeit dar, sinnvolle Ergeb-
nisse zu erhalten. Dies wurde bereits für gut gestellte Probleme angewendet.
Zudem wurden regularisierte “TLS-”Varianten bereits in Betracht gezogen um
schlecht gestellte Probleme zu stabilisieren.

In dieser Dissertation betrachten wir Operatorgleichungen in unendlichdi-
mensionalen Räumen, bei denen der Operator hauptsächlich durch eine Funk-
tion charakterisiert werden kann. Zur stabilen Rekonstruktion nutzen wir ein
Tikhonov-Funktional mit auf TLS basierendem, verallgemeinertem Fehlerterm
und einem zusätzlichem Strafterm, der eine sogenannte “sparse” Lösung be-
günstigt. Wir bezeichnen dieses neuartige Verfahren “double regularised TLS”,
kurz “dbl-RTLS”. Mittels geeigneter Methoden zur Wahl der beiden Regula-
risierungsparameter sind wir im Stande Konvergenzraten nicht nur für die
Funktion, sondern auch für den Operator herzuleiten.

Überdies und mit Fokus auf effiziente numerische Implementation. Beson-
dere Betonung liegt auf der alternierenden Minimierungs-Strategie, die nicht
nur zur Lösung des vorgestellten Problems, sondern auch einer weiten Klasse
von Optimierungsproblemen dient, der Minimierung bilinearer konvexer Funk-
tionale über zwei Variablen. Die Leistungsfähigkeit dieses Vorgehens wird an
Faltungsproblemen verdeutlicht.
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Chapter 1
A Tour on Inverse Problems

“As far as the laws of mathematics refer to reality, they are
not certain; and as far as they are certain, they do not refer
to reality.”

Albert Einstein

In this chapter we invite you to join our tour on inverse problems. We
introduce a few names and their contribution to the nowadays called “Inverse
Problems” research field, as well as the milestones in mathematics history.

Elementary definitions and the basic idea behind regularisation techniques
are found in the fist part of this chapter, as a matter of introduction.

The reader familiar with the basic concepts can jump to Section 1.3. Here
we summarise what has been done and what is missing in the literature, in
order to allocate our work among the competitive approaches. Subsequently
we list the main contribution found in this thesis and how the results are
organised by chapters.

1.1 Inverse Problems

The field of inverse problems was first discovered and introduced by Soviet-
Armenian physicist, and one of the founders of theoretical astrophysics, Viktor
Amazaspovich Hambardzumyan (1908-1996), according to [17].

While still a student, Hambardzumyan thoroughly studied the theory of
atomic structure, the formation of energy levels, and the Schrödinger equation
and its properties. When he mastered the theory of eigenvalues of differential
equations, he pointed out the apparent analogy between discrete energy levels
and the eigenvalues of differential equations. He then asked

“Given a family of eigenvalues, is it possible to find the form of the
equations whose eigenvalues they are?”

1



Chapter 1

Figure 1.1: Viktor Hambardzumyan

Essentially Hambardzumyan was examining the inverse Sturm-Liouville prob-
lem, which dealt with determining the equations of a vibrating string. This
paper was published in 1929 in the German physics journal Zeitschrift für
Physik and remained in oblivion for a rather long time.

Furthermore, the usage of the term inverse problem leads to a natural ques-
tion “inverse of what?”. Quoting [49], one calls two problems inverse to each
other if the formulation of each of them requires full or partial knowledge of
the other. For mostly historic reasons, one might call one of the problems (usu-
ally the simpler one or the one which was studied earlier) the direct problem,
whereas the other one is the inverse problem.

There are two different motivations, pointed in [28], for studying such in-
verse problems: first, one wants to know past states or parameters of a physical
system. Second, one wants to find out how to influence a system via its present
state or via parameters in order to steer it to a desired state in the future. In
summary, one might say that

inverse problems are concerned with determining causes for a de-
sired or an observed effect.

Another name to play an important role here is Hadamard. The major
contribution in our field from the French mathematician Jacques Salomon
Hadamard (1865 - 1963) is found in [39]. Hadamard introduced the concept

2



A Tour on Inverse Problems

of a well-posed problem, originally called “correct set” as the discussions in
Chapter I of his Lectures on Cauchy’s Problem in Linear Partial Differential
Equations. It represented a significant step forward not only in the classi-
fication of problems associated with differential equation, singling out those
with sufficient general properties of existence, uniqueness and (by implication)
stability of solutions. Hadamard observes:

“But it is remarkable, on the other hand, that a sure guide is
found in physical interpretation: an analytic problem always being
correctly set, in our use of the phrase, when it is the translation of
some mechanical or physical question.”

Figure 1.2: Jacques Hadamard

The concept of well-posedness have been extensively studied over the last
years (see e.g., [91, 28, 51]). To be more accurate, we consider an forward
operator F (linear or non-linear) defined between two metric1 spaces U and
H, so that the concept of solution of any quantitative problem usually ends in
finding the “solution” u from given “initial data” g which belongs to the range
of F (u). The fundamental terminology of determining the solution is said to

1this definition remains valid for topological spaces.

3



Chapter 1

be well-posed on the pair of metric spaces (U,H) if the following three
conditions are satisfied:

existence: for every element g ∈ H, there exists a solution u in the space U;

uniqueness: for all admissible data, the solution is unique;

stability: the problem is stable on the spaces (U,H), i.e., the solution depends
continuously on the data.

Problems that do not satisfy (at least one of) the statements listed above
are said to be ill-posed.

It should be pointed out that the definition of an ill-posed problem is stated
with respect to a given pair of metric spaces (U,H) since the same problem
may be well-posed in other metrics.

The major issue raises whenever the underlying problem is not exactly
known, e.g., we only know approximately the right-hand side g. This is often
the case in practical problems, where the initial data is obtained from measure-
ments, which either lacks in precision or may contain additionally undesirable
noise.

The authors of [28] add the following remark for ill-posed problems:

One is usually not too much concerned with the violation of ex-
istence, although of course also existence of a solution (for exact
data) is an important requirement. It can usually be enforced by
relaxing the notion of a solution at least for exact data, while for
perturbed data, the problem has to be “regularised” and hence
changed anyway.

Violation of uniqueness is considered to be a little more serious.
If a problem has several solutions, one either has to decide which
one is of interest (e.g., the one with smallest norm, which is appro-
priate for some, but not all application). Even if this property is
fulfilled when the data are measured “everywhere”, non-uniqueness
is usually introduced by the need for discretisation.

For restoring stability, however, one has to change the topology of
the spaces, which is in many cases impossible because of the pres-
ence of measurement. At first glance, it seems to be impossible
to compute the solution of a problem numerically if the solution
of the problem does not depend continuously on the data, then
one has to expect that the numerical method (as one would use
for a well-posed problem) becomes unstable. One has to keep in
mind that no mathematical trick can make an inherently unstable
problem stable. All that a regularisation method can do is to re-
cover partial information about the solution as stably as possible,
providing the right compromise between accuracy and stability.

4



A Tour on Inverse Problems

It is very important to mention that many interesting and important in-
verse problems in science lead to ill-posed problems, while the corresponding
direct problems are well-posed.

Examples of archetypal well-posed problems include the Dirichlet problem
for Laplace’s equation, and the heat equation with specified initial conditions.
These might be regarded as ‘natural’ problems in that there are physical pro-
cesses that solve these problems. By contrast the inverse heat equation, dedu-
cing a previous distribution of temperature from final data is not well-posed in
that the solution is highly sensitive to changes in the final data. More examples
can be found in classical books as [91, 70, 28, 51].

1.2 Regularisation Methods

The general methods of mathematical analysis were best adapted to the
solution of well-posed problems and they are no longer meaningful in most ap-
plications in the sense of ill-posed problems. One of the earliest works in this
field and the most outstanding was done by Andrey Nikolayevich Tikhonov
(1906-1993). He succeeded in giving a precise mathematical definition of ap-
proximated solution for general classes of such problems and in constructing
“optimal” solutions.

Figure 1.3: Andrey Tikhonov

5



Chapter 1

Tikhonov was a Soviet and Russian mathematician. He made important
contributions in a number of different fields in mathematics, e.g., in topo-
logy, functional analysis, mathematical physics, and certain classes of ill-posed
problems. Certainly, Tikhonov regularisation, the most widely used method to
solve ill-posed inverse problems, is named in his honour.

Nevertheless, we should make a note that Tikhonov regularisation has been
invented independently in many different contexts. It became widely known
from its application to integral equations from the work of Tikhonov [90] and
David L. Phillips [75]. Some authors use the term Tikhonov-Phillips regular-
isation. The finite dimensional case was expounded by Arthur E. Hoerl [43],
who took a statistical approach, and by Manus Foster [31], who interpreted
this method as a Wiener-Kolmogorov filter. Following Hoerl, it is known in
the statistical literature as ridge regression.

Obviously, the equation

F (u) = g (1.1)

has a solution on U only for those elements g that belong to the set R(F ). In
the case that we only know an approximation or measurement gδ instead of g,
we can only speak of finding an approximate solution for F (u) ≈ gδ.

For now we consider only noise on the right-hand side and we call such
problems genuinely ill-posed problems. Moreover, for theoretical results, we
assume that the measurement gδ differs from the exact initial data g by no
more than δ, that is,

‖g − gδ‖ ≤ δ (1.2)

and we call the numerical parameter noise level.

Generally the measurement gδ does not belong to the range of F . Even if
does, due the ill-posedness of the problem, the generalised2 inverse operator
F † is unbounded and therefore F †(gδ) is not a good approximation of the
best-approximated solution u† := F †(g). Under these conditions we have to
build an approximation to the (generalised) inverse operator which is stable
under small perturbation on the initial data and still provides a reasonable
approximated solution.

In mathematical terms, a regularisation of F † is the approximation of an
ill-posed problem by a parameter-dependent family {Rα} of neighbouring well-
posed problems and we replace, intuitively, the approximation given from the
unbounded operator F † by the regularised solution uαδ := Rα(gδ). Further we
shall exemplify such family.

The parameter α introduced above is called regularisation parameter. It
has a crucial play on the regularisation method, the “art” of finding the right
compromise between accuracy and stability. If it is properly chosen, we can

2also called pseudo-inverse, e.g., the most widely known type of matrix pseudo-inverse is
the Moore-Penrose.

6



A Tour on Inverse Problems

guarantee the most desirable convergence result: as the noise level δ decreases
to zero, uαδ tends to u†. On the upcoming Section 1.2.1 we shall give more
details about how to choose it “appropriately”.

In order to give a proper definition of regularisation method, as in [28] we
restrict to the case of a linear operator A and we want to solve the linear
system Au = g from noisy data gδ.

Definition 1.2.1. Let A : U → H be a bounded linear operator between the
Hilbert spaces U and H, α0 ∈ (0,∞), let

Rα : H → U

be a continuous (not necessarily linear) operator. The family {Rα} is called a
regularisation or a regularisation operator (for A†), if, for all g ∈ D(A†),
there exists a parameter choice rule α = α(δ, gδ) such that

lim sup
δ→0

{
∥

∥Rα(δ,gδ)gδ − A†g
∥

∥ | gδ ∈ H, ‖g − gδ‖ ≤ δ
}

= 0 (1.3)

holds. Here,
α : R+ ×H → (0, α0)

in such that

lim sup
δ→0

{α(δ, gδ) | gδ ∈ H, ‖g − gδ‖ ≤ δ} = 0. (1.4)

For specific g ∈ D(A†), a pair (Rα, α) is called a (convergent) regularisation
method (for solving Au = g) if (1.3) and (1.4) hold.

We want the convergence u† as Rα(gδ) → A†g for a specific parameter
choice, which will be described with more details shortly. On the following
we shall give an example of a regularisation method, namely, the Tikhonov
regularisation.

The two most popular regularisation methods are spectral cut-off regu-
larisation (also called truncated singular value decomposition) and Tikhonov
regularisation (also called ridge regression or Wiener filtering in certain con-
texts). The latter method essentially consists of two parts: one discrepancy
term which minimises the residue (e.g., based on least squares method) and
one regularisation term which selects among all possible solutions one with de-
sirable properties while adding stabilisation to the procedure. More precisely,
the Tikhonov regularised solution uαδ is given by the minimiser of the following
functional

Jδ
α (u) :=

1

2
‖Au− gδ‖2 +

α

2
‖Lu‖2 (1.5)

where L is a continuous and boundedly invertible operator. Often L is assumed
to be the identity operator.

7



Chapter 1

The first order optimality condition reads as

A∗(Au− gδ) + αL∗Lu = 0. (1.6)

This formula can be recast as a normal equation (of second kind) and therefore
the solution uαδ has the close form

uαδ := (A∗A + αL∗L)−1A∗gδ (1.7)

or more explicitly, this regularisation method is defined as Rα := (A∗A +
αL∗L)−1A∗ for a given parameter choice rule.

By now two questions would naturally arise:

• How accurate is the regularised solution?

• How fast will it converge towards the limit of the sequence of solutions?

and we shall answer them on the upcoming sections, when we study two im-
portant topics: parameter choice and regularisation term.

1.2.1 Parameter Choice

In the literature on regularisation, many different parameter choice meth-
ods have been proposed in both stochastic and deterministic settings, we focus
on the latter. However, based on the available information, it is not always
easy to know how well a particular method will perform in a given situation
and how it compares to other methods.

We can classify the parameter choice principle essentially into two groups,
those depending (heavily) on the noisy level or noise variance and those
without taking it into account. The latter, called heuristic, noise level free
or quasi-optimality criterion, α := α(gδ) depends only on the measurement; it
has been studied primarily in [91, 89, 3, 50].

The noise free criterion might look a very appealing choice for practical
problems, as it does not use any knowledge on the solution and the noise
level which cannot be computed from the data. However, the main problem
with noise level free parameter choice rules is that it can be proven, that they
never yield a convergent regularisation method in the worst case for ill-posed
problems. This result goes back to [3] and we recall as the follows

Theorem 1.2.2 (Bakushinskii veto). If the problem (1.1) is ill-posed then
any noise level free parameter choice rule cannot give rise to convergence in
the worst case.

In our study we assume the noise level to be available. The parameter
choice rules in this group can be classified as

8



A Tour on Inverse Problems

• a priori, i.e. α := α(δ) using the noise level and information about the
a priori smoothness of the solution;

• a posteriori, i.e., α := α(δ, gδ) using both noise level and noisy data.

One can derive theoretical results easily choosing an a priori parameter.
But in the other hand they are not much practical if one needs to obtain
convergence rates, because they need some information about the true solution
u. This assumption is called source condition and it is generally not known.

Classical results found in [28, thm 5.2] guarantee, if (1.1) is solvable and
if the regularisation parameter α = α(δ) satisfies α → 0 and that δ2/α → 0
as δ → 0, then the regularised solution uαδ converges to a solution of (1.1). In
general, this convergence can be arbitrarily slow [85].

One can answer the question raised in the previous section, in another
words, derive convergence rates by assuming the following source condition:

u ∈ R((A∗A)µ) or equivalently, u = (A∗A)µω (1.8)

where µ is the smoothness parameter and ‖ω‖ ≤ ρ. Therefore, the best possible
convergence rate obtainable with this choice is that for µ = 1, where

α ∼
(

δ

ρ

)2/3

or ‖uαδ − u‖ = O
(

δ2/3
)

.

and for the case of data free error the same assumption yields the convergence
rate ‖uα − u‖ = O (α), as [28, thm 4.11].

For the practical point of view a posteriori parameter choice is more
desirable. One example is the discrepancy principle of Morozov [69]. Here we
are interested in choosing α = α(δ, gδ) which incorporates the data (available
with noise) such that

τ1δ ≤
∥

∥Auαδ − gδ
∥

∥ ≤ τ2δ (1.9)

for constants 1 < τ1 ≤ τ2. In other words, we select a regularised solution that,
on the one side, the error of the defect is the same order as the noise level δ
and, on the other side, α is not too small.

This approach is a variation of the original problem of determining α such
that the equality ‖Auαδ − gδ‖ = δ is satisfied. Moreover, the author [51] com-
mented this equation has a unique solution, provided ‖g − gδ‖ ≤ δ < ‖gδ‖.
Furthermore, the function α 7→ ‖Auαδ − gδ‖ is continuous and strictly increas-
ing, since by [51, thm 2.16]

lim
α→∞

‖Auαδ − gδ‖ = ‖gδ‖ > δ

and
lim
α→0

‖Auαδ − gδ‖ = 0 < δ.

9



Chapter 1

We shortly introduced the Morozov discrepancy for linear operators, though
it has been extended into non-linear operators in a more general setting.
For such generalisation and recent achievement we refer [1, 2] and references
therein. We also recommend to the reader [4] for an extensive comparison
among several parameter choice methods.

1.2.2 Regularisation Term Choice

The main drawback concerning the quadratic regularisation term on the
classical Tikhonov method is to select a solution which is rather (over-) smooth,
what is not desirable for image processing. Observing this many researches
have drawn their attention towards norms or functionals with desirable prop-
erties to guarantee the existence of a solution awhile imposing stability. In
this context the quadratic term have been replaced by a general convex, lower
semi-continuous and coercive functional. This work was popularised under the
papers [12, 79, 80].

The two most successful frameworks in the nineties featuring sharp edges
are Mumford and Shah [71] and ROF [83]. The first one usually leads to
various difficulties in the analysis and numerical realisation due to the explicit
treatment of edges and arising non-convexity (cf. [68]). The second one con-
sists in minimising total variation (TV) among all functions within a variance
bound; see [13].

As motivation we follows [95] defining of the total variation of a function
u defined on the interval [0, 1]:

TV (u) = sup
∑

i

|u(xi)− u(xi−1)| (1.10)

where the supremum is taken over all partitions 0 = x0 < x1 < · · · < xn =
1 of the interval. If u is piecewise constant with a finite number of jump
discontinuities, then TV (u) gives the sum of magnitudes of the jumps. If
u is smooth, one can multiply and dived the right-hand side of (1.10) by
∆xi := xi−xi−1 and take the limit as the ∆xi → 0 to obtain the representation

TV (u) =

∫ 1

0

∣

∣

∣

∣

du

dx

∣

∣

∣

∣

dx. (1.11)

An obvious generalisation into two space dimension is

TV (u) =

∫ 1

0

∫ 1

0

|∇u| dxdy

where ∇u is the standard gradient definition.
TV (u) can be interpreted geometrically as the lateral surface area of the

graph of u. If u has many large amplitude oscillations, then it has large lateral
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surface area, and hence TV (u) is large. This is a property that TV shares with
the more standard Sobolev H1 “squared norm of the gradient” regularisation
functionals. Unlike H1 functional, with total variation one can effectively
reconstruct functions with jump discontinuities (cf. [95]).

An extension of this representation valid even when u is not smooth needs
a little more mathematical background in measure theory and we recommend
to the reader the book [29, Chapter 5]. We start introducing BV (Ω) to denote
the space of functions of bounded variation: a function u ∈ L1(Ω) has bounded
variation in Ω if

sup

{
∫

Ω

u divϕ | ϕ ∈ C∞
0 (Ω)d, ‖ϕ‖ ≤ 1

}

<∞.

So, a more rigorous definition of TV is based on the dual form (i.e., essen-
tially the weakest measure theoretic sense in which a function can be differen-
tiable)

TV (u) = sup
ϕ∈C∞

0
(Ω)d

∫

Ω

u divϕ.

Finally, the TV regularisation method is defined

min
u

‖Au− gδ‖2 + αTV (u).

A new trend in our community is sparsity. It refers, usually, to the expan-
sion of a solution uα with respect to some given orthonormal basis (Ψγ)γ∈Γ
which only finitely many coefficients are different from zero.

To be more precise, the milestone article [23] has shifted our attention
towards the penalisation term with a weighted ℓp-norm for the case 1 ≤ p < 2,
namely,

‖u‖ω,p =
∑

γ∈Γ

ωγ |〈u,Ψγ〉|p.

Daubechies et al also showed that the minimisation of the Tikhonov-type
functional with weighted ℓ1 penalisation promotes sparsity. According to [77]
the functional

min
u

‖Au− gδ‖2 + α
∑

γ∈Γ

ωγ|〈u,Ψγ〉|

yields a regularisation method.
A heuristic explanation is that this penalisation term give a higher weight

to small coefficients and a lower weight to large coefficients. Moreover, error
estimates on [23] were derived in a particular wavelet setting [22, 63]. A
broader analysis of error estimates and convergence rates under different source
conditions have been derived few years later [36, 55].

One common algorithm applied to find the (candidates) minimisers of
the Tikhonov-type functional considered is done iteratively. The iterative

11
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thresholding procedure turns out to be defined through the so called soft-
shrinkage operator [23, 47].

Beyond the far most analysed regularisation with promotes sparsity, i.e.,
with weighted ℓ1-norm, is the case 0 ≤ p < 1. For such choice of p, the
regularisation is no longer convex and therefore the lack of well-established
results and definitions still makes its analysis and converge rates a challenge,
see [100, 56] and references therein.

Either approaches introduced above are examples of convex regularisation.
In the upcoming Chapter 2 we shall summarise the qualitative and quantit-
ative results for a broader class of regularisation strategies in both linear and
non-linear setting, which supplies convergence theorems and convergence rates
missing in this section.

1.3 Motivation

From the point of view of Tikhonov and Arsenin’s book [91] in many applied
problems we have to get along without a precise knowledge of the causes, and
in others we are really trying to find “causes” that will produce a desired effect,
i.e., we are then led to ill-posed problems.

Furthermore, in practical problems, we often know only approximately the
right-hand side g0 and the elements of the matrix3 A0, that is, the coefficients
in the system

A0f = g0 . (1.12)

In such cases, we are dealing not with the system (1.12) but with some
other system Aǫf ≈ gδ such that ‖A0 − Aǫ‖ ≤ ǫ and ‖g0 − gδ‖ ≤ δ, where the
meaning of the norm is usually determined by the nature of the problem; more
details shall be given in the Chapter 3. Having the matrix Aǫ instead of the
matrix A0, we are even less able than before to draw a definite conclusion as to
whether the system (1.12) is singular or not, which is a condition for existence
and uniqueness of solution.

All we know regarding to the exact system is the approximation (Aǫ, gδ)
and noise levels (ǫ, δ). But the approximate system may be unsolvable - inde-
pendently if the original one is solvable (stable and well-posed) or not. The
question then arises as to what we are to understand by an approximate solu-
tion of the underlying equation. It must also be stable under small changes in
the pair (A, g).

To the best of our knowledge there are only two books considering the
original setting exposed by Tikhonov. Both references [70, 92] have appeared
about the same time. The first one took ten years to be translated into English
and we can find two sections with results and proofs for linear case. The latter

3Tikhonov work takes place in the finite dimensional setup.
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has an entire chapter devoted to solve the underlying problem in Hilbert spaces,
but unfortunately is only available in Russian and thus is not easily accessible.

Additionally, over the last decades several approaches have been proposed
that consider the inversion of an equation (1.12) with both noise in the data
and in the operator. Most of the papers published in journals focus on the
finite dimensional setup; to list only a few [57, 60].

In the other hand there are two approaches to the solution of infinite-
dimensional optimisation problems: discretise-then-optimise and optimise-then-
discretise. Each approach has advantages and disadvantages. We can observe
that the first one has been taken as standard in the literature cited above.

The lack of methods which take advantage of the problem in its original
formulation has driven our attention to the study, for instance, of integral
equations whether the kernel comes from some noisy measurement (like the
right hand-side function of (1.12) ) or some of the parameters which describe
the kernel function are not precisely known, as if we could only guess the
belonging interval or roughly expect its values.

A typical example from imaging is a deconvolution problem with approxim-
ately known or unknown convolution kernel, as, e.g., it was the case for early
Hubble images [14, 48, 15, 8]. Another example is connected to inverse scat-
tering, where the linear sampling method involves the solution of an integral
equation with approximately known kernel, see [16] and references therein.

1.4 Contribution of our Work

In our approach, we would like to restrict our attention to linear operat-
ors that can be mainly characterised by a function, as it is, e.g., the case for
linear integral operators, where the kernel function determines the behaviour
of the operator. Moreover, we will assume that the noise in the operator is
due to an incorrect characterising function. This approach will allow us to
treat the problem of finding a solution of (1.12) from incorrect data and oper-
ator in the framework of Tikhonov regularisation rather than as a constrained
minimisation problem.

We introduce a new approach and formulation for the underlying problem
with noisy data and incorrectly operator. Moreover, we propose a new method
for solving the unconstrained minimisation problem, namely, double regularised
total least squares (dbl-RTLS). One of the most important result achieved due
the novel approach is an extended convergence rate: for both operator and
solution.

The main results of this thesis is a collection of the work published in [6, 7]
and presented in conferences worldwide.
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1.5 Organisation

The rest of the thesis is organised as follows: Chapter 2 contains a sum-
mary of the convergence analysis available in the literature for Tikhonov-type
methods. This is the most general formulation found and it is described in
details. In addition we organize the chapter into two parts: linear and non-
linear problems. For each convergence rates are given in two types of source
condition. Chapter 3 contains a background on the regularised least squares
problems, the main technique which inspired our work. Moreover, we describe
shortly some variances of the original R-TLS method and the main results of
each on convergence rates.

Our main contribution to the inverse problems community is presented in
the last two chapters. In the Chapter 4 we introduce and propose the new
double regularised total least squares approach used to solve a class of bilinear
operators, recovering the characterising function and finding the approxim-
ated pair solution. We prove its well-posedness and give convergence rates
within this chapter. The second part of the novelty in this thesis is given in
the Chapter 5. In this last part we focus on minimising the functional pro-
posed previously (Chapter 4) and introduce an algorithm based on alternating
minimisation strategy. Its convergence proof is given and additionally we il-
lustrate the theoretical achievements with numerical experiments in one and
two dimensional problems.

Some mathematical preliminaries and background in functional analysis,
optimisation and non-smooth analysis can be found in the Appendices A and
B.
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Chapter 2
Tikhonov Heritage

“There is nothing more practical than a good theory.”

Kurt Lewin

In this chapter we present the Tikhonov-type regularisation method and
we summarise the main convergence results available in the literature. The ad-
jective “type” refers to the extension of the classical Tikhonov method mainly
by setting the penalisation term to be a general convex functional (instead of
the usual quadratic norm) while the discrepancy term base on LS is preserved.

This variation allow us not only to reconstruct a solution with special
properties, but also to extend theoretical results for both linear and non-linear
operators defined between general topological spaces, e.g., Banach spaces. In
the other hand we need to be acquainted with more sophisticated concepts
and tools brought from non-smooth optimisation and functional analysis. For
a review we recommend the reader to survey the Appendices A and B.

On the following we shall display a collection of results from [12, 79, 80,
45, 5], organised in a schematic way.

2.1 Tikhonov-type Methods

We focus on the non-quadratic regularisation methods for solving ill-posed
operator equations of the form

F (u) = g , (2.1)

where F : D(F ) ⊂ U → H is an operator between infinite dimensional Banach
spaces. Both linear and non-linear problems are considered.

The Tikhonov-type regularisation consists of minimising

Jδ
α (u) =

1

2
‖F (u)− gδ‖2 + αR(u) , (2.2)
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where α ∈ R+ is the regularisation parameter and R is a proper convex func-
tional. Moreover, we assume the noisy data gδ is available under the determ-
inistic assumption

‖g − gδ‖ ≤ δ . (2.3)

If the underlying equation has (infinite) many solutions, we select one
among all admissible solutions which minimises the functional R; we call it
the R-minimising solution.

The functional Jδ
α presented above represents a generalisation of the clas-

sical Tikhonov regularisation [90, 37]. Consequently, the following questions
should be considered on the new approach:

• For α > 0, does a solution of (2.2) exist? Does the solution depends
continuously on the data gδ?

• Is the method convergent? (i.e., if the data g is exact and α→ 0, do the
minimisers of (2.2) converge to a solution of (2.1)?)

• Is the method stable in the following sense: if α = α(δ) is chosen ap-
propriately, do the minimisers of (2.2) converge to a solution of (2.1) as
δ → 0?

• What is the rate of convergence? How should the parameter α = α(δ)
be chosen in order to get optimal convergence rates?

Existence and stability results can be found in the original articles cited
above. In this chapter we focus on the last question and we repeat theorems
(combined with a short proof) of error estimates and convergence rates.

To accomplish our task we assume throughout this chapter the following
assumptions:

Assumption A.

(A1) Given the Banach spaces U and H one associates the topologies τU and
τH, respectively, which are weaker than the norm topologies;

(A2) The topological duals of U andH are denoted by U∗ andH∗, respectively;

(A3) The norm ‖·‖
U
is sequentially lower semi-continuous with respect to τH,

i.e., for uk → u with respect to the τU topology, R(u) ≤ lim infk R(uk);

(A4) D(F ) has non-empty interior with respect to the norm topology and is
τU-closed. Moreover1, D(F ) ∩ dom R 6= ∅;

1on the following dom R denotes the effective domain, i.e., the set of elements where the
functional R is bounded.
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(A5) F : D(F ) ⊆ U → H is continuous from (U, τU) to (H, τH);

(A6) The functional R : U → [0,+∞] is proper, convex, bounded from below
and τU lower semi-continuous;

(A7) For every M > 0 , α > 0, the sets

Mα (M) =
{

u ∈ U | Jδ
α (u) ≤M

}

are τU compact, i.e. every sequence (uk) in Mα (M) has a subsequence,
which is convergent in U with respect to the τU topology.

Convergence rates and error estimates with respect to the generalised Breg-
man distances were derived originally introduced in [11]; further details can
be found on Appendix B.3. Even though this tool does not satisfy neither
symmetry nor triangle inequality, it is still the key ingredient whenever we
consider convex penalisation.

2.2 Collection of Convergence Rates for Lin-

ear Problems

In this section we consider the linear case. Therefore the Equation (2.1)
shall be denoted by Fu = g, where the operator F is defined from a Banach
space into a Hilbert space. The main results of this section were proposed
originally in [12, 79].

2.2.1 Rates of Convergence for SC of Type I

First of all we have to decide which “solution” we aim to recover for the
underlying problem. Therefore in this section we assume that the noise free
data g is attainable, i.e., g ∈ R(F ) and so we define u an admissible solution
if u satisfies

Fu = g. (2.4)

In particular, among all admissible solutions, we denote u the R-minimising
solution of (2.4).

Secondly, error estimates between the regularised solution uαδ and u can
be obtained only under additional smoothness assumption. This assumption,
also called source condition, can be stated in the following (slightly) different
ways:

1. there exist at least one element ξ in ∂R (u) which belongs to the range
of the adjoint operator of F ;
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2. there exists an element ω ∈ H such that

F ∗ω =: ξ ∈ ∂R (u) . (2.5)

In summary we say the Source Condition of type I (SC-I) is satisfied if
there is an element ξ ∈ ∂R (u) ⊆ U∗ in the range of the operator F ∗, i.e.,

R(F ∗) ∩ ∂R (u) 6= ∅. (2.6)

This assumption enable us to derive the upcoming stability result.

Theorem 2.2.1 ([12, Thm 2]). Let (2.3) hold and let u be a R-minimising
solution of (2.1) such that the source condition (2.6) and (2.4) are satisfied.
Then, for each minimiser uαδ of (2.2) the estimate

DF ∗ω
R

(

uαδ , u
)

≤ 1

2α
(α ‖ω‖+ δ)2 (2.7)

holds for α > 0. In particular, if α ∼ δ, then DF ∗ω
R

(

uαδ , u
)

= O (δ).

Proof. We note that
∥

∥Fu − gδ
∥

∥ ≤ δ2, by (2.4) and (2.3). Since uαδ is a
minimiser of the regularised problem (2.2), we have

1

2

∥

∥Fuαδ − gδ
∥

∥+ αR(uαδ ) ≤ δ2

2
+ αR(u) .

Let DF ∗ω
R

(

uαδ , u
)

the Bregman distance between uαδ and u, so the above in-
equality becomes

1

2

∥

∥Fuαδ − gδ
∥

∥+ α
(

DF ∗ω
R

(

uαδ , u
)

+
〈

F ∗ω , uαδ − u
〉)

≤ δ2

2
.

Hence, using (2.3) and Cauchy-Schwarz inequality we can derive the estimate

1

2

∥

∥Fuαδ − gδ
∥

∥+ 〈αω , Fuαδ − gδ〉H + αDF ∗ω
R

(

uαδ , u
)

≤ δ2

2
+ α ‖ω‖ δ .

Using the the equality ‖a+ b‖ = ‖a‖+ 2
〈

a , b
〉

+ ‖b‖, it is easy to see that

1

2

∥

∥Fuαδ − gδ + αω
∥

∥+ αDF ∗ω
R

(

uαδ , u
)

≤ α2

2
‖ω‖+ αδ ‖ω‖+ δ2

2
,

which yields (2.7) for α > 0.

Theorem 2.2.2 ([12, Thm 1]). If u is a R-minimising solution of (2.1) such
that the source condition (2.6) and (2.4) are satisfied, then for each minimiser
uα of (2.2) with exact data, the estimate

DF ∗ω
R

(

uα, u
)

≤ α

2
‖ω‖2

holds true.

Proof. The proof is analogous to the proof of Theorem 2.2.1, taking δ = 0.
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2.2.2 Rates of Convergence for SC of Type II

In this section we use another type of source condition, which is stronger
than the one assumed in previous subsection. We relax the definition of ad-
missible solution, where it is understood in the context of least-squares2, i.e.,

F ∗Fu = F ∗g . (2.8)

Note that we do not require g ∈ R(F ). Moreover, we still denote u the R-
minimising solution, but instead with respect to (2.8).

Likewise in the previous section, we introduce the Source Condition of type
II (SC-II)3 as follows: there exists one element ξ ∈ ∂R (u) ⊂ U∗ in the range
of the operator F ∗F ,

ξ ∈ R(F ∗F ) ∩ ∂R (u) 6= ∅ . (2.9)

This condition is equivalent to the existence of ω ∈ U\ {0} such that ξ =
F ∗Fω, where F ∗ is the adjoint operator of F and F ∗F : U → U∗.

Theorem 2.2.3 ([79, Thm 2.2]). Let (2.3) hold and let u be a R-minimising
solution of (2.1) such that the source condition (2.9) as well as (2.8) are sat-
isfied. Then the following inequalities hold for any α > 0:

DF ∗Fω
R

(

uαδ , u
)

≤ DF ∗Fω
R

(

u− αω, u
)

+
δ2

α
+
δ

α

√

δ2 + 2αDF ∗Fω
R

(

u− αω, u
)

,

(2.10)

‖Fuαδ − Fu‖ ≤ α ‖Fω‖+ δ +
√

δ2 + 2αDF ∗Fω
R

(

u− αω, u
)

. (2.11)

Proof. Since uαδ is a minimiser of (2.2), it follows from algebraic manipula-
tion and from the definition of Bregman distance that

0 ≥ 1

2

[
∥

∥Fuαδ − gδ
∥

∥−
∥

∥Fu− gδ
∥

∥

]

+ αR(uαδ )− αR(u)

=
1

2

[
∥

∥Fuαδ
∥

∥−
∥

∥Fu
∥

∥

]

− 〈F (uαδ − u) , gδ〉H − αDF ∗Fω
R

(

u, u
)

+ α 〈Fω , F (uαδ − u)〉
H
+ αDF ∗Fω

R

(

uαδ , u
)

. (2.12)

Notice that

∥

∥Fuαδ
∥

∥−
∥

∥Fu
∥

∥ =
∥

∥F (uαδ − u+ αω)
∥

∥−
∥

∥F (u− u+ αω)
∥

∥

+ 2 〈Fuαδ − Fu , Fu− αFω〉
H
.

2in the literature this definition of generalised solution is also known as best-approximate

solution.
3also called source condition of second kind.
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Moreover, by (2.8), we have 〈F (uαδ − u) , gδ − Fu〉
H
= 〈F (uαδ − u) , gδ − g〉

H
.

Therefore, it follows from (2.12) that

1

2

∥

∥F (uαδ − u+ αω)
∥

∥+ αDF ∗Fω
R

(

uαδ , u
)

≤ 〈F (uαδ − u) , gδ − g〉
H
+ αDF ∗Fω

R

(

u, u
)

+
1

2

∥

∥F (u− u+ αω)
∥

∥

for every u ∈ U, α ≥ 0 and δ ≥ 0.

Replacing u by u−αω in the last inequality, using (2.3), relations
〈

a , b
〉

≤
|
〈

a , b
〉

| ≤ ‖a‖ ‖b‖, and defining γ = ‖F (uαδ − u+ αω)‖ we obtain

1

2
γ2 + αDF ∗Fω

R

(

uαδ , u
)

≤ δγ + αDF ∗Fω
R

(

u− αω, u
)

.

We estimate separately each term on the left-hand side by right-hand side.
One of the estimates is an inequality in the form of a polynomial of the second
degree for γ, which gives us the inequality

γ ≤ δ +
√

δ2 + 2αDF ∗Fω
R

(

u− αω, u
)

.

This inequality together with the other estimate, gives us (2.10). Now, (2.11)
follows from the fact that ‖F (uαδ − u)‖ ≤ γ + α ‖Fω‖.

Theorem 2.2.4 ([79, Thm 2.1]). Let α ≥ 0 be given. If u is a R-minimising
solution of (2.1) satisfying the source condition (2.9) as well as (2.8), then the
following inequalities hold true:

DF ∗Fω
R

(

uα, u
)

≤ DF ∗Fω
R

(

u− αω, u
)

,

‖Fuα − Fu‖ ≤ α ‖Fω‖+
√

2αDF ∗Fω
R

(

u− αω, u
)

.

Proof. The proof is analogous to the proof of Theorem 2.2.3, taking δ = 0.
Notice that here α can be taken equal to zero.

Corollary 2.2.5 ([79]). Let the assumptions of the Theorem 2.2.3 hold true.
Further, assume that R is twice differentiable in a neighbourhood U of u and
there exists a number M > 0 such that for any v ∈ U and u ∈ U the inequality

〈

R′′(u)v , v
〉

≤ M ‖v‖2 (2.13)

hold true. Then, for the parameter choice α ∼ δ
2

3 we have Dξ
R

(

uαδ , u
)

=

O

(

δ
4

3

)

. Moreover, for exact data we have Dξ
R

(

uα, u
)

= O (α2).
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Proof. Using Taylor’s expansion at the element u we obtain

R(u) = R(u) +
〈

R′(u) , u− u
〉

+
1

2

〈

R′′(µ)(u− u) , u− u
〉

for some µ ∈ [u, u]. Let u = u − αω in the above equality. For sufficiently
small α, it follows from assumption (2.13) and the definition of the Bregman
distance, with ξ = R′(u), that

Dξ
R

(

u− αω, u
)

=
1

2

〈

R′′(µ)(−αω) , − αω
〉

≤ α2M

2
‖ω‖2

U
.

Note that Dξ
R

(

u − αω, u
)

= O (α2), so the desired rates of convergence follow
from Theorems 2.2.3 and 2.2.4.

2.3 Collection of Convergence Rates for Non-

linear Problems

This section displays a collection the convergence analysis for the non-linear
problems. In contrast with other classical conditions, the following analysis
covers the case when both U and H are Banach spaces.

Back to [27] we learn through two examples of non-linear problems the
interesting effect: ill-posedness of a non-linear problem need not imply ill-
posedness of its linearisation. Also that the converse implication need not be
true. A well-posed non-linear problem may have ill-posed linearisation. Hence
we need additional assumptions concerning both operator and its linearisation.

This assumption is known as non-linearity condition and it is based on
first-order Taylor expansion of the operator F around u. The non-linearity
condition assumed in this section is given originally in [80] and stated as fol-
lows.

Assumption B. Assume that a R-minimising solution u of (2.1) exists and
that the operator F : D(F ) ⊆ U → H is Gâteaux differentiable. Moreover, we
assume that there exists ρ > 0 such that, for every u ∈ D(F ) ∩Bρ (u)

‖F (u)− F (u)− F ′ (u) (u− u)‖ ≤ cDξ
R

(

u, u
)

, c > 0 (2.14)

and ξ ∈ ∂R (u).
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2.3.1 Rates of Convergence for SC of Type I

In comparison with the source condition (2.6) introduced on previous sec-
tion, the extension of the Source Condition of type I to non-linear problems are
done with respect to the linearisation of the operator and its adjoint. Namely,
we assume that

ξ ∈ R(F ′ (u)∗) ∩ ∂R (u) 6= ∅ (2.15)

where u is a R-minimising solution of (2.1).

Note that the derivative of operator F is defined between the Banach space
U and L (U,H), the space of the linear transformations from U into H. When
we apply the derivative at u ∈ U we have a linear operator F ′ (u) : U → H

and so we define its adjoint F ′ (u)∗ : H∗ → U∗.

The source condition (2.15) is stated equivalently as follows: there exists
an element ω ∈ H∗ such that

ξ = F ′ (u)∗ ω ∈ ∂R (u) . (2.16)

Theorem 2.3.1 ([80, Thm 3.2]). Let the Assumptions A, B and relation (2.3)
hold true. Moreover, assume that there exists ω ∈ H∗ such that (2.16) is
satisfied and c ‖ω‖

H∗ < 1. Then, the following estimates hold:

‖F (uαδ )− F (u)‖ ≤ 2α ‖ω‖
H∗ + 2

(

α2 ‖ω‖2
H∗ + δ2

)

1

2 ,

D
F ′(u)∗ω
R

(

uαδ , u
)

≤ 2

1− c ‖ω‖
H∗

[

δ2

2α
+ α ‖ω‖2

H∗ + ‖ω‖
H∗

(

α2 ‖ω‖2
H∗ + δ2

)

1

2

]

.

In particular, if α ∼ δ, then ‖F (uαδ )− F (u)‖ = O (δ) and D
F ′(u)∗ω
R

(

uαδ , u
)

=
O (δ).

Proof. Since uαδ is the minimiser of (2.2), it follows from the definition of
the Bregman distance that

1

2

∥

∥F (uαδ )− gδ
∥

∥ ≤ 1

2
δ2 − α

(

D
F ′(u)∗ω
R

(

uαδ , u
)

+
〈

F ′ (u)∗ ω , uαδ − u
〉

)

.

By using (2.3) and (2.1) we obtain

1

2

∥

∥F (uαδ )− F (u)
∥

∥ ≤
∥

∥F (uαδ )− gδ
∥

∥+ δ2 .

Now, using the last two inequalities above, the definition of Bregman dis-
tance, the non-linearity condition and the assumption (c ‖ω‖

H∗ − 1) < 0, we
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obtain

1

4

∥

∥F (uαδ )− F (u)
∥

∥ ≤ 1

2

(
∥

∥F (uαδ )− gδ
∥

∥+ δ2
)

≤ δ2 − αD
F ′(u)∗ω
R

(

uαδ , u
)

+ α
〈

ω , − F ′ (u) (uαδ − u)
〉

≤ δ2 − αD
F ′(u)∗ω
R

(

uαδ , u
)

+ α ‖ω‖
H∗ ‖F (uαδ )− F (u)‖

+α ‖ω‖
H∗ ‖F (uαδ )− F (u)− F ′ (u) (uαδ − u)‖

= δ2 + α (c ‖ω‖
H∗ − 1)D

F ′(u)∗ω
R

(

uαδ , u
)

+ α ‖ω‖
H∗ ‖F (uαδ )− F (u)‖ (2.17)

≤ δ2 + α ‖ω‖
H∗ ‖F (uαδ )− F (u)‖ (2.18)

From (2.18) we obtain an inequality in the form of a polynomial of second
degree for the variable γ = ‖F (uαδ )− F (u)‖. This gives us the first estimate
stated by the theorem. For the second estimate we use (2.17) and the previous
estimate for γ.

Theorem 2.3.2. Let the Assumptions A and B hold true. Moreover, assume
the existence of ω ∈ H∗ such that (2.16) is satisfied and c ‖ω‖

H∗ < 1. Then,
the following estimates hold:

‖F (uα)− F (u)‖ ≤ 4α ‖ω‖
H∗ ,

D
F ′(u)∗ω
R

(

uα, u
)

≤ 4α ‖ω‖2
H∗

1− c ‖ω‖
H∗

.

Proof. The proof is analogous to the proof of Theorem 2.3.1, taking δ = 0.

2.3.2 Rates of Convergence for SC of Type II

Similarly as in the previous subsection, the extension of the Source Condi-
tion of type II (2.9) to non-linear problems is given as:

ξ ∈ R(F ′ (u)∗ F ′ (u)) ∩ ∂R (u) 6= ∅

where u is a R-minimising solution of (2.1).
The assumption above has the following equivalent formulation: there ex-

ists an element ω ∈ U such that

ξ = F ′ (u)∗ F ′ (u)ω ∈ ∂R (u) . (2.19)

Theorem 2.3.3 ([80, Thm 3.4]). Let the Assumptions A, B hold as well as
estimate (2.3). Moreover, let H be a Hilbert space and assume the existence of
a R-minimising solution u of (2.1) in the interior of D(F ). Assume also the
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existence of ω ∈ U such that (2.19) is satisfied and c ‖F ′ (u)ω‖ < 1. Then, for
α sufficiently small the following estimates hold:

‖F (uαδ )− F (u) ‖ ≤ α ‖F ′ (u)ω‖+ h(α, δ) ,

Dξ
R

(

uαδ , u
)

≤ αs+ (cs)2/2 + δh(α, δ) + cs (δ + α ‖F ′ (u)ω‖)
α (1− c ‖F ′ (u)ω‖) , (2.20)

where h(α, δ) := δ +
√

(δ + cs)2 + 2αs (1 + c ‖F ′ (u)ω‖) and s = Dξ
R

(

u −
αω, u

)

.

Proof. Since uαδ is the minimiser of (2.2), it follows that

0 ≥ 1

2

∥

∥F (uαδ )− gδ
∥

∥− 1

2

∥

∥F (u)− gδ
∥

∥+ α (R(uαδ )− R(u))

=
1

2

∥

∥F (uαδ )
∥

∥− 1

2

∥

∥F (u)
∥

∥+ 〈F (u)− F (uαδ ) , gδ〉H
+ α (R(uαδ )− R(u))

= ̺ (uαδ )− ̺ (u) . (2.21)

where ̺ (u) =
1

2

∥

∥F (u) − q
∥

∥ + αDξ
R

(

u, u
)

− 〈F (u) , gδ − q〉
H

+ α
〈

ξ , u
〉

,

q = F (u)− αF ′ (u)ω and ξ is given by source condition (2.19).
From (2.21) we have ̺ (uαδ ) ≤ ̺ (u). By the definition of ̺ (·), taking

u = u− αω and setting v = F (uαδ )− F (u) + αF ′ (u)ω we obtain

1

2
‖v‖+ αDξ

R

(

uαδ , u
)

≤ αs+ T1 + T2 + T3 , (2.22)

where s is given in the theorem, and

T1 =
1

2

∥

∥F (u− αω)− F (u) + αF ′ (u)ω
∥

∥ ,

T2 = |〈F (uαδ )− F (u− αω) , gδ − g〉
H
| ,

T3 = α 〈F ′ (u)ω , F (uαδ )− F (u− αω)− F ′ (u) (uαδ − (u− αω))〉
H
.

The next step is to estimate each one of the constants Tj above, j = 1, 2 and 3.
We use the non-linear condition (2.14), Cauchy-Schwarz, and some algebraic
manipulation to obtain T1 ≤ c2s2

2
,

T2 ≤ |〈v , gδ − g〉
H
|+ |〈F (u− αω)− F (u) + αF ′ (u)ω − , gδ − g〉

H
|

≤ ‖v‖ ‖gδ − g‖+ cDξ
R

(

u− αω, u
)

‖gδ − g‖
≤ δ ‖v‖+ δcs ,
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and

T3 = α 〈F ′ (u)ω , F (uαδ )− F (u)− F ′ (u) (uαδ − u)〉
H

+α 〈F ′ (u)ω , − (F (u− αω)− F (u) + αF ′ (u)ω)〉
H

≤ α ‖F ′ (u)ω‖ ‖F (uαδ )− F (u)− F ′ (u) (uαδ − u)‖
+α ‖F ′ (u)ω‖ ‖F (u− αω)− F (u) + αF ′ (u)ω‖

≤ α ‖F ′ (u)ω‖ cDξ
R

(

uαδ , u
)

+ α ‖F ′ (u)ω‖ cDξ
R

(

u− αω, u
)

= αc ‖F ′ (u)ω‖Dξ
R

(

uαδ , u
)

+ αcs ‖F ′ (u)ω‖ .

Using these estimates in (2.22), we obtain

‖v‖+ 2αDξ
R

(

uαδ , u
)

[1− c ‖F ′ (u)ω‖] ≤ 2δ ‖v‖+ 2αs+ (cs)2

+2δcs+ 2αcs ‖F ′ (u)ω‖ .

Analogously as in the proof of Theorem 2.2.3, each term on the left-hand side of
the last inequality is estimated separately by the right-hand side. This allows
the derivation of an inequality described by a polynomial of second degree.
From this inequality, the theorem follows.

Theorem 2.3.4. Let Assumptions A, B hold and assume H to be a Hilbert
space. Moreover, assume the existence of a R-minimising solution u of (2.1) in
the interior of D(F ), also the existence of ω ∈ U such that (2.19) is satisfied
and c ‖F ′ (u)ω‖ < 1. Then, for α sufficiently small the following estimates
hold:

‖F (uα)− F (u)‖ ≤ α ‖F ′ (u)ω‖+
√

(cs)2 + 2αs (1 + c ‖F ′ (u)ω‖) ,

Dξ
R

(

uα, u
)

≤ αs+ (cs)2/2 + αcs ‖F ′ (u)ω‖
H

α (1− c ‖F ′ (u)ω‖
H
)

, (2.23)

where s = Dξ
R

(

u− αω, u
)

.

Proof. The proof is analogous to the proof of Theorem 2.3.3, taking δ = 0.

Corollary 2.3.5 ([80, Prop 3.5]). Let assumptions of the Theorem 2.3.3 hold
true. Moreover, assume that R is twice differentiable in a neighbourhood U
of u, and that there exists a number M > 0 such that for all u ∈ U and for
all v ∈ U, the inequality

〈

R′′(u)v , v
〉

≤ M ‖v‖ holds. Then, for the choice

of parameter α ∼ δ
2

3 we have Dξ
R

(

uαδ , u
)

= O

(

δ
4

3

)

, while for exact data we

obtain Dξ
R

(

uαδ , u
)

= O (α2) .

Proof. The proof is similar to the proof of Corollary 2.2.5 and is based on
Theorems 2.3.3 and 2.3.4.
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2.4 Advances in Convergence Rates

We briefly comment on two new trends for deriving convergences rates,
namely, variational inequalities and approximated source condition.

Since the first convergence rates results for non-linear problems given in [27]
until the results [12, 79, 80] presented previously, the results of Engl and co-
workers seems to be fully generalised. Nevertheless another paper concerning
convergence rates came out [45] bringing new insights. The authors observed
the following:

In all these papers relatively strong regularity assumptions are
made. However, it has been observed numerically that violations of
the smoothness assumptions of the operator do not necessarily af-
fect the convergence rate negatively. We take this observation and
weaken the smoothness assumptions on the operator and prove a
novel convergence rate result. The most significant difference in
this result from the previous ones is that the source condition is
formulated as a variational inequality and not as an equation as
previously.

We display the variational inequality (VI) proposed in [45, Assumption
4.1], regardless auxiliary assumptions found in the paper.

Assumption C. There exist numbers c1, c2 ∈ [0,∞), where c1 < 1, and
ξ ∈ ∂R

(

u
)

such that

〈

ξ , u− u
〉

≤ c1D
ξ
R

(

u, u
)

+ c2 ‖F (u)− F (u)‖

for all u ∈ Mαmax
(ρ) where ρ > αmax

(

R(u) + δ2

α

)

.

Additionally, it was proved that standard non-linearity conditions imply the
new VI. Under this assumption one can derive the same rate of convergence
obtained in Section 2.3. For more details see [45, 30, 46].

In [44] an alternative concept for proving convergence rates for linear prob-
lems in Hilbert spaces is presented, when the source condition

u = F ∗ω, ω ∈ H∗ (2.24)

is injured.
Instead we have an approximated source condition like u = F ∗ω + r,

where r ∈ U. The theory is based on the decay rate of so-called distance
functions which measures the degree of violation of the solution with respect
to a prescribed benchmark source condition, e.g. (2.24). For the linear case
the distance function is defined intuitively as

d(ρ) = inf {‖u− F ∗ω‖ | ω ∈ H∗, ‖ω‖ ≤ ρ} .
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The article [41] points out that this approach can be generalised to Banach
spaces, as well as to non-linear operators. Afterwards, with the aid of this
distance functions, the authors of [42] presented error bounds and convergence
rates for regularised solutions of non-linear problems for Tikhonov-type func-
tionals when the reference source condition is not satisfied.

27
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Chapter 3
Least Squares Revolution

“Each problem that I solved became a rule, which served af-
terwards to solve other problems.”

René Descartes

In the classical Least Squares approach the system matrix is assumed to
be free from error and all the errors are confined to the observation vector.
However in many applications this assumption is often unrealistic. Therefore
a new technique was proposed: Total Least Squares, or shortly, TLS1. This
concept has been independently develop in various literatures, namely, error-
in-variables, rigorous least squares, or (in a special case) orthogonal regression,
listing only few in statistical literature. It also leads to a procedure investigated
in this chapter named regularised total least squares.

In this chapter we shall introduce the TLS fitting technique and the regular-
ised TLS. Additionally we compare them, respectively, with the least squares
and standard Tikhonov regularisation. We conclude this chapter with a general
overview on competitive approaches to related problems.

3.1 Total Least Squares

Gene Howard Golub (1932–2007) was an American mathematician with re-
markable work in the field of numerical linear algebra; listing only a few topics:
least-squares problems, singular value decomposition, domain decomposition,
differentiation of pseudo-inverses, inverse eigenvalue problem, conjugate gradi-
ent method, Gauss quadrature.

In 1980 Golub and Van Loan [34] investigated a fitting technique based on
the least squares problem for solving a matrix equation with incorrect matrix

1We hope to not mislead to truncate least squares notation.
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Figure 3.1: Gene H. Golub

and data vector, named total least squares (TLS) method. On the following
we presented the TLS method and we compare it briefly with another classical
approach; more details can be found in [93, 65] and references therein.

Let A0 be a matrix in Rm×n and y0 a vector in Rm×1, obtained after the
discretisation of the linear operator equation Fu = g, where F : U → H is a
mapping between two Hilbert spaces. We then consider2 solving the equation

A0x = y0 (3.1)

where both A0 and y0 information out of inaccurate measurement or inherent
some roundoff errors. More precisely, it is available only the following pair

∥

∥y0 − yδ
∥

∥

2
≤ δ (3.2)

and
∥

∥A0 −Aǫ

∥

∥

F
≤ ǫ. (3.3)

In particular the classical least squares (LS) approach, proposed by Carl
Friedrich Gauss (1777-1855), the measurements A0 are assumed to be free of
error; hence, all the errors are confined to the observation vector yδ. The LS
solution is given by solving the following minimisation problem

minimisey
∥

∥y − yδ
∥

∥

2

subject to y ∈ R(A0)

or equivalently
minimise

x

∥

∥A0x− yδ
∥

∥

2
. (3.4)

Solutions of the ordinary LS problem are characterised by the following
theorem.

Theorem 3.1.1 ([93, Cor 2.1]). If rank(A0) = n then (3.4) has a unique LS
solution, given by

xLS = (AT
0A0)

−1AT
0 yδ. (3.5)

the corresponding LS correction is given by the residual

r = yδ −A0x
LS = yδ − yLS, yLS = PA0

yδ

where PA0
= A0(A

T
0A0)

−1AT
0 is the orthogonal projector onto R(A0).

2We introduce the problem only for the one dimensional case Ax = y, i.e., when x and
y are vectors. In the book [93, Chap 3] it is also considered the multidimensional case
AX = Y , where all elements are matrices.
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This approach is frequently unrealistic: sampling errors, human errors and
instrument errors may imply inaccuracies of the data matrix A0 as well (e.g.,
due discretisation, approximation of differential or integral models).

Therefore the need of an approach which amounts to fitting a “best” sub-
space to the measurement data (Aǫ, yδ) leads to the TLS approach. In compar-
ison to LS method the new minimisation problem is with respect to the pair
(A, y). The element paring ÃxTLS = ỹ is then called the total least squares
solution, where Ã and ỹ are the arguments which minimises the following con-
strained problem3

minimise(A,y)

∥

∥[A, y]− [Aǫ, yδ]
∥

∥

F

subject to y ∈ R(A)
. (3.6)

The basic principle of TLS is that the noisy data [Aǫ, yδ], while not satis-
fying a linear relation, are modified with minimal effort, as measured by the
Frobenius norm, in a “nearby” matrix [Ã, ỹ] that is rank-deficient so that the
set Ãx = ỹ is compatible. This matrix [Ã, ỹ] is a rank one modification of the
data matrix [Aǫ, yδ].

The foundation is the singular value decomposition (SVD), an important
role in a number of matrix approximation problems [35]; see its definition in
the upcoming theorem.

Theorem 3.1.2 ([35, Thm 2.5.1]). If A ∈ Rm×n then there exist orthonormal
matrices U = [u1, . . . , um] ∈ Rm×m and V = [v1, . . . , vn] ∈ Rn×n such that

UTAV = Σ = diag(σ1, . . . , σp), σ1 ≥ · · · ≥ σp ≥ 0

where p = min {m,n}.
The triplet (ui, σi, vi) reveals a great deal about the structure of A. For

instance, defining r as the number of nonzeros singular values, i.e., σ1 ≥ · · · ≥
σr > σr+1 = · · ·σp = 0 it is known that

rank(A) = r and A = UrΣrVr
T =

r
∑

i=1

σiuivi
T (3.7)

where Ur (equivalently Σr and Vr) denotes the first r columns of the matrix
U (equivalently Σ and V ). The Equation (3.7) displays the decomposition of
the matrix A of rank r in a sum of r matrices of rank one.

Through SVD we can define the Frobenious norm of a matrix A as

‖A‖2F :=
m
∑

i=1

n
∑

j=1

a2ij = σ2
1 + · · ·+ σ2

p , p = min{m,n}

3we use the same Matlab’s notation to add the vector y as a new column to the matrix
A and so create an extended matrix [A, y] ∈ Rm×(n+1)
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while the 2-norm

‖A‖2 := sup
x 6=0

‖Ax‖2
‖x‖2

= σ1.

The core of matrix approximation problem is stated by Eckart-Young ([25]
with Frobenious norm) and Mirsky ([66] with 2-norm) and summarised on the
next result, known as Eckart-Young-Mirsky (matrix approximation) theorem.

Theorem 3.1.3 ([93, Thm 2.3]). Let the SVD of A ∈ Rm×n be given by
A =

∑r
i=1 σiuivi

T with r = rank(A). If k < r and Ak =
∑k

i=1 σiuivi
T , then

min
rank(D)=k

‖A−D‖2 = ‖A− Ak‖2 = σk+1

and

min
rank(D)=k

‖A−D‖F = ‖A−Ak‖F =

√

√

√

√

p
∑

i=k+1

σ2
i , p = min {m,n}

On the following we give a close form characterising the TLS solution,
similar as (3.5) for the LS solution.

Theorem 3.1.4 ([93, Thm 2.7]). Let Aǫ = U ′Σ′V ′T (respectively, [Aǫ, yδ] =
UΣV T ) be the SVD decomposition of Aǫ (respectively, [Aǫ, yδ]). If σ′

n > σn+1,
then

xTLS = (AT
ǫ Aǫ − σ2

n+1I)
−1AT

ǫ yδ (3.8)

and

σ2
n+1

[

1 +

n
∑

i=1

(u′i
Tyδ)

2

σ′
i
2 − σ2

n+1

]

= min
∥

∥Aǫx− yδ
∥

∥

2

2
(3.9)

In order to illustrate the effect of the use of TLS as opposed to LS, we
consider here the simplest example of parameter estimation in 1D.

Example 1. Find the slope m of the linear equation

xm = y

for given a set of eight pairs measurements (xi, yi), where xi = yi for 1 ≤
i ≤ 8. It is easy to find out that the slop (solution) is m = 1. Although this
example is straightforward and well-posed, we can learn the following geometric
interpretation: the LS solution displayed on Figure 3.2 with measurements on
the left-hand side fits the curve on the horizontal direction, since the axis
y is free of noise; meanwhile, the LS solution displayed on Figure 3.3 with
measurements on the right-hand side fits the curve on the vertical direction,
since the axis x is fixed (free of noise).
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−3 −2 −1 0 1 2 3 4
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LS−2 Noisy Operator

 

 

LS2 Solution

noisy left side

true data

Figure 3.2: Solution for the data
(xǫ, y0), i.e., only noise on the left-hand
side.

−3 −2 −1 0 1 2 3 4
−4
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−2

−1

0

1

2

3

4

5

slope 45.7666

LS Noisy Data

 

 

Ls solution

noisy right side

true data

Figure 3.3: Solution for the data
(x0, yδ), i.e., only noise on the right-
hand side.

The TLS solution on Figure 3.4 illustrates the estimation with noise on
both directions and now the deviations are orthogonal to the fitted line, i.e.,
it minimises the sum of squares of their lengths. Therefore, this estimation
procedure is sometimes called as orthogonal regression.

Van Loan commented on her book [93] that in typical applications, gains
of 10–15 percent in accuracy can be obtained using TLS over the standard LS
method, almost at no extra computational cost. Moreover, it becomes more
effective when more measurements can be made.

Another formulation for the TLS, investigate e.g. in [57], of the set Aǫx ≈ yδ
is given through the following constrained problem

minimise
∥

∥A−Aǫ

∥

∥

2

F
+
∥

∥y − yδ
∥

∥

2

2

subject to Ax = y
. (3.10)

This formulation emphasises the perpendicular distance by minimising the
sum of squared misfit in each direction. One can also recast this constrained
minimisation as an unconstrained problem, by replacing y = Ax in the second
term of Equation (3.10).

In the upcoming section we extend this approach to the regularised version,
that is, adding a stabilisation term.

3.2 Regularised Total Least Squares

Since our focus is on very ill-posed problems the approach introduced in the
previous section is no longer efficient. We can observe from the discretisation
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slope 45.9078

TLS Noisy Data + Noisy Operator

 

 

TLS solution

noisy right + left side

true data

Figure 3.4: Solution for the data (xǫ, yδ), i.e., noise on the both sides.

of ill-posed problems, such as integral equations of the first kind, that the
singular values of the discrete operator decay gradually to zero. The need
of a stabilisation term leads us to regularisation methods, e.g., the Tikhonov
method already defined in (1.5). We introduce now one equivalent formulation
( see commentaries on [33]) called regularised least squares problem, as the
following constrained optimisation problem

minimise
∥

∥A0x− yδ
∥

∥

2

2

subject to
∥

∥Lx
∥

∥

2 ≤M
. (3.11)

This idea can be carried over when both sides of the underlying Equation
(3.1) are contaminated with some noise, i.e., using TLS instead of the LS misfit
term.

So was Tikhonov regularisation recast as a TLS formulation and the result-
ing was coined regularised total least squares method (R-TLS), see [34, 40, 33].
Intuitively it is added some constrained to the TLS problem (3.10). Con-
sequently, in a finite dimensional setting4, the R-TLS method can be formu-

4we keep the same notation as in the infinite dimensional setup.
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lated as
minimise

∥

∥A− Aǫ

∥

∥

2

F
+
∥

∥y − yδ
∥

∥

2

2

subject to

{

Ax = y
∥

∥Lx
∥

∥

2

2
≤M .

(3.12)

The optimal pair (Â, ŷ) minimises the residual in the operator and in the
data, measured by Frobenius and Euclidian norm, respectively. Moreover,
the solution pair is connected via the equation Âx = ŷ, where the element x
belongs to a ball in V of radius M . The “size” of the ball is measured by a
linear and invertible operator L (often the identity). Any element xR satisfying
these constraineds defines a R-TLS solution.

The Karush-Kuhn-Tucker (KKT5) condition for the optimisation problem
introduced in (3.12) are summarised in the upcoming result.

Theorem 3.2.1 ([33, Thm 2.1]). If the inequality constrained is active, then

(

AT
ǫ Aǫ + αLTL+ βI

)

xR = AT
ǫ yδ and

∥

∥LxR
∥

∥ =M

with α = µ(1 +
∥

∥xR
∥

∥

2
), β = −

∥

∥Aǫx
R − yδ

∥

∥

2

1 + ‖xR‖2
and µ > 0 is the Lagrange

multiplier. The two parameters are related by

αM2 = yTδ (yδ − Aǫx
R) + β.

Moreover, the TLS residual satisfies

∥

∥[Aǫ, yδ]− [Â, ŷ]
∥

∥

2

F
= −β (3.13)

The main drawback on this approach is the following: the method requires

a reliable boundM for the norm
∥

∥Lxtrue
∥

∥

2
, where such estimation for the true

solution is not known. In [57] there is an example showing the dependence
and instability of the method for different values of M .

Observe that the R-TLS residual given in (3.13) is a weighted LS misfit
term. In other words, it is minimised the LS error with weight

w(x) =
1

1 + ‖x‖2
. (3.14)

Moreover, the solution of both problems are the same, as stated in the next
theorem.

5KKT are first order necessary conditions for a solution in non-linear programming to
be optimal, provided that some regularity conditions are satisfied; see more details in [73].
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Theorem 3.2.2 ([57, Thm 2.3]). The R-TLS problem solution of the problem
(3.12) is the solution of the constrained minimisation problem

minimise
x

∥

∥Aǫx− yδ
∥

∥

2

1 +
∥

∥x
∥

∥

2 subject to
∥

∥Lx
∥

∥ ≤M (3.15)

In the next section we comment on another approach to deal with this class
of problems. Moreover, this approach leads to error bounds.

3.3 Dual Regularised Total Least Squares

The accuracy of the R-TLS depends heavily on the right choice ofM , which
is usually difficult to obtain, as commented previously.

An alternative is the dual regularised total least square (D-RTLS) method
proposed few years ago [57, 61, 60]. When some reliable bounds for the noise
levels δ and ǫ are known it makes sense to look for approximations (Â, x̂, ŷ)
which satisfy the side conditions

Ax = y,
∥

∥y − yδ
∥

∥ ≤ δ and
∥

∥A−Aǫ

∥

∥ ≤ ǫ.

The solution set characterised by these three side conditions is non-empty,
according to [57]. This is the major advantage of the dual method over the
R-TLS, because we can avoid the dependence of the bound M .

Selecting from the solution set the element which minimises ‖Lx‖ leads us
to a problem in which some estimate (Â, x̂, ŷ) for (A0, x

true, y0) is determined
by solving the constrained minimisation problem

minimise ‖Lx‖22

subject to











Ax = y

‖y − yδ‖22 ≤ δ

‖A−Aǫ‖2F ≤ ǫ ,

(3.16)

where ‖·‖F still denotes again the Frobenius norm. Please note that most of
the available results on this method do again require a finite dimensional setup,
see, e.g., [57, 61, 88].

Theorem 3.3.1 ([57, Thm 3.2]). If the two inequalities constraineds are active,
then the dual R-TLS solution xD of the problem (3.16) is a solution of the
equation

(

AT
ǫ Aǫ + αLTL+ βI

)

xD = AT
ǫ yδ
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with α =
ν + µ

∥

∥xD
∥

∥

2

νµ
, β = −µ

∥

∥Aǫx
D − yδ

∥

∥

2

ν + µ
∥

∥xD
∥

∥

2 and ν, µ > 0 are Langrange

multipliers. Moreover,

∥

∥Aǫx
D − yδ

∥

∥ = δ + ǫ
∥

∥xD
∥

∥ and β = −ǫ
(

δ + ǫ
∥

∥xD
∥

∥

)

‖xD‖ (3.17)

As result of the above theorem (see [57, Remark 3.4]), if the two con-
straineds of the dual problem are active, then we can also characterise either
by the constrained minimisation problem

minimise ‖Lx‖
subject to ‖Aǫx− yδ‖ = δ + ǫ ‖x‖

or by the unconstrained minimisation problem

minimise
x

‖Aǫx− yδ‖2 + α ‖Lx‖2 − (δ + ǫ
∥

∥x
∥

∥)2

wiht α chosen by the nonlinear equation ‖Aǫx− yδ‖ = δ + ǫ ‖x‖.
The relation of constrained and unconstrained minimisation problems is

essential for understanding the new regularisation method proposed in the
upcoming Chapter 4.

Additionally to this short revision we list two important theorems concern-
ing error bounds for both R-TLS and D-RTLS method, for the standard case
L = I (identity operator). As indicated in the article [57] these are the first
results to prove order optimal error bounds so far given in the literature and
they depend on the following classical source condition

x† = A∗
0ω ω ∈ U. (3.18)

This SC-I is the same type assumed on the previous chapter, see (2.5) and
(2.16), respectively, for the linear and non-linear case.

Theorem 3.3.2 ([57, Thm 6.2]). Assume that the exact solution x† of the
problem (3.1) satisfies the SC (3.18) and let xD be the D-RTLS solution of the
problem (3.16). Then

∥

∥xD − x†
∥

∥ ≤ 2 ‖ω‖1/2
√

δ + ǫ ‖x†‖.

In contrast we present also convergence rate for the R-TLS solution, that
is to say, both of order O

(√
δ + ǫ

)

.

Theorem 3.3.3 ([57, Thm 6.1]). Assume that the exact solution x† of the
problem (3.1) satisfies the SC (3.18) and the side condition

∥

∥x†
∥

∥ =M . Let in
addition xR be the R-TLS solution of the problem (3.12), then

∥

∥xR − x†
∥

∥ ≤ (2 + 2
√
2)1/2 ‖ω‖max

{

1,M1/2
}
√
δ + ǫ.
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3.4 Comments on Related Problems

Heretofore we listed only few approaches to treat ill-posed problems with
error in both operator and data, namely, the first regularised version of TLS
(R-TLS) method proposed in 1999 and the D-RTLS, which was the first ap-
proach given with rates of convergence.

One efficient algorithm for solving the R-TLS problem was developed in
[78], based on the minimisation of the Rayleigh quotient

φ(x) :=

∥

∥Aǫx− yδ
∥

∥

2

1 +
∥

∥x
∥

∥

2 .

To be more precise, it solves the equivalent problem (3.15), also known as
weighted LS or normalised residual problem, instead of minimising the con-
strained functional (3.12). Usually one refers to this formulation as regularised
Rayleigh quotient form for total least squares (RQ-RTLS).

Adding a quadratic constrained to the TLS minimisation problem can be
solved via a quadratic eigenvalue problem [32]. It results in an iterative pro-
cedure for solving the R-TLS proposed in [86], named as regularised total least
squares solved by quadratic eigenvalue problem (RTLSQEP). The authors of
[54] also analysed the same problem, focusing in the efficiency of solving the R-
TLS in mainly two different approaches: via a sequence of quadratic eigenvalue
problems and via a sequence of linear eigenvalue problems.

A typical algorithm for solving the D-RTLS is based on model function, see
e.g., [61, 60]. The D-RTLS solution xD has a close form given in the Theorem
3.3.1, but it depends on two variables, i.e., xD = x(α, δ). The parameters α
and β are found to be the solution of the (highly) non-linear system (3.17).
The main idea is to approximate the unconstrained minimisation problem by
a simple function which relates the derivatives of this functional with respect
to each parameter. The “simple” function is called model function and it is
denoted by m(α, β), to emphasise its parametrisation, and it should solve a
differential equation. We skip further comments and formulas, recommending
to the reader the article [61] and references therein for more details.

Finally we cite a very new approach towards non-linear operators [58]. In
this article is considered a standard Tikhonov-type functional for solving a
non-linear operator equation of the form F0(u) = g0, where additionally to the
noisy data gδ it is assumed the noisy operator Fǫ holds

sup
u

∥

∥F0(u)− Fǫ(u)
∥

∥ ≤ ǫ

with a known constant ǫ referring to the operator noise level. A regularised
solution is obtained, as well as convergence rates.
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Double Regularised Total Least Squares

“The mere formulation of a problem is far more often essen-
tial than its solution, which may be merely a matter of math-
ematical or experimental skill. To raise new questions, new
possibilities, to regard old problems from a new angle requires
creative imagination and marks real advances in science.”

Albert Einstein

In our approach, we would like to restrict our attention to linear operators
that can be mainly characterised by a function, as it is, e.g., the case for
linear integral operators, where the kernel function determines the behaviour
of the operator. Moreover, we will assume that the noise in the operator is
due to an incorrect characterising function. This approach will allow us to
treat the problem of finding a solution of an operator equation from incorrect
data and operator in the framework of Tikhonov regularisation rather than as
a constrained minimisation problem.

In this chapter we introduce the proposed method as well as its mathem-
atical setting. We focus on analysing its regularisation properties: existence,
stability and convergence. Additionally we study source condition and derive
convergence rates with respect to Bregman distance.

4.1 Problem Formulation

We aim at the inversion of linear operator equation

A0f = g0

from noisy data gδ and incorrect operator Aǫ. Additionally we assume that
the operators A0, Aǫ : V → H, V,H Hilbert spaces, can be characterised by
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functions k0, kǫ ∈ U. To be more specific, we consider operators

Ak : V −→ H

v 7−→ B(k, v) ,

i.e., Akv := B(k, v), where B is a bilinear operator

B : U× V → H

fulfilling, for some C > 0,

∥

∥B(k, f)
∥

∥

H
≤ C

∥

∥k
∥

∥

U

∥

∥f
∥

∥

V
. (4.1)

From (4.1) follows immediately

∥

∥B(k, ·)
∥

∥

V→H
≤ C

∥

∥k
∥

∥

U
. (4.2)

Associated with the bilinear operator B, we also define the linear operator

Cf : U −→ H

u 7−→ B(u, f) ,

i.e., Cfu := B(u, f).

From now on, let us identify A0 with Ak0 and Aǫ with Akǫ. From (4.2) we
deduce immediately

‖A0 −Aǫ‖ ≤ C‖k0 − kǫ‖ , (4.3)

i.e., the operator error norm is controlled by the error norm of the character-
ising functions. Now we can formulate our problem as follows:

Solve A0f = g0 (4.4a)

from noisy data gδ with ‖g0 − gδ‖ ≤ δ (4.4b)

and noisy function kǫ with ‖k0 − kǫ‖ ≤ ǫ . (4.4c)

Please note that the problem with explicitly known k0 (or the operator A0)
is often ill-posed and needs regularisation for a stable inversion. Therefore we
will also propose a regularising scheme for the problem (4.4a)-(4.4c). Now let
us give some examples.

Example 2. Consider a linear integral operator A0 defined through

(A0f) (s) :=

∫

Ω

k0(s, t)f(t)dt = B(k0, f)
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with V = H = L2(Ω) and let k0 be a function in U = L2(Ω
2). Then the

bilinear operator B yields

‖B(k0, f)‖ ≤ ‖k0‖U ‖f‖V.

The considered class of operators also contains deconvolution problems,
which are important in imaging, as well as blind deconvolution problems [53,
14, 48], where it is assumed that also the exact convolution kernel is unknown.

Example 3. In medical imaging, the data of Single Photon Emission Com-
puted Tomography (SPECT) is described by the attenuated Radon transform
[72, 24, 76]:

Af(s, ω) =

∫

R

f(sω⊥ + tω) · e
−

∞∫

t

µ(sω⊥+τω) dτ
dt .

The function µ is the density distribution of the body. In general, the density
distribution is also unknown. Modern scanner, however, perform a CT scan in
parallel. Due to measurement errors, the reconstructed density distribution is
also incorrect. Setting

kǫ(s, t, ω) = e
−

∞∫

t

µǫ(sω⊥+τω) dτ
,

we have
Aǫf = B(kǫ, f) ,

and similar estimates as in (4.1) can be obtained.

4.2 Proposed Method

Due to our assumptions on the structure of the operator A0, the inverse
problem of identifying the function f true from noisy measurements gδ and inex-
act operator Aǫ can now be rewritten as the task of solving the inverse problem

B(k0, f) = g0 (4.5)

from noisy measurements (kǫ, gδ) fulfilling

∥

∥g0 − gδ
∥

∥

H
≤ δ, (4.6a)

and
∥

∥k0 − kǫ
∥

∥

U
≤ ǫ. (4.6b)
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In most applications, the “inversion” of B will be ill-posed (e.g., if B is
defined via a Fredholm integral operator), and a regularisation strategy is
needed for a stable solution of the problem (4.5).

The structure of our problem allows to reformulate (4.4a)-(4.4c) as an un-
constrained Tikhonov-type problem:

minimise
(k,f)

Jδ,ε
α,β

(

k, f
)

:=
1

2
T δ,ε (k, f) +Rα,β (k, f) , (4.7a)

where
T δ,ε (k, f) =

∥

∥B(k, f)− gδ
∥

∥

2
+ γ
∥

∥k − kǫ
∥

∥

2
(4.7b)

and
Rα,β (k, f) =

α

2

∥

∥Lf
∥

∥

2
+ βR(k). (4.7c)

Here, α and β are the regularisation parameters which have to be chosen
properly, γ is a scaling parameter, L is a bounded linear and continuously
invertible operator and R : X ⊂ U → [0,+∞] is proper, convex and weakly
lower semi-continuous functional . We wish to note that most of the available
papers assume that L is a densely defined, unbounded self-adjoint and strictly
positive operator, see, e.g. [57, 59]. For our analysis, however, boundedness is
needed and it is an open question whether the analysis could be extended to
cover unbounded operators, too.

We call this scheme the double regularised total least squares method (dbl-
RTLS). Please note that the method is closely related to the total least squares

method, as the term
∥

∥k−kǫ
∥

∥

2
controls the error in the operator. The functional

Jδ,ε
α,β is composed as the sum of two terms: one which measures the discrepancy

of data and operator, and one which promotes stability. The functional T δ,ε is
a data-fidelity term based on the TLS technique, whereas the functional Rα,β

acts as a penalty term which stabilizes the inversion with respect to the pair
(k, f). As a consequence, we have two regularisation parameters, which also
occurs in double regularisation, see, e.g., [98].

The domain of the functional Jδ,ε
α,β :

(

U ∩ X
)

× V −→ R can be extended
over U × V by setting R(k) = +∞ whenever k ∈ U \ X . Then R is proper,
convex and weak lower semi-continuous functional in U.

4.3 Regularisation Properties

In this section we shall analyse some analytical properties of the proposed
dbl-RTLS method. In particular, we prove its well-posedness as a regular-
isation method, i.e., the minimisers of the regularisation functional Jδ,ε

α,β exist
for every α, β > 0, depend continuously on both gδ and kǫ, and converge to
a solution of B(k0, f) = g0 as both noise level approaches zero, provided the
regularisation parameters α and β are chosen appropriately.
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For the pair (k, f) ∈ U× V we use the canonical inner product

〈(k1, f1), (k2, f2)〉U×V := 〈k1, k2〉U + 〈f1, f2〉V ,

i.e., convergence is defined componentwise. For the upcoming results, we need
the following assumption on the operator B:

Assumption D.

(D1) B is strongly continuous, i.e., if (kn, fn) ⇀ (k̄, f̄) then B(kn, fn) →
B(k̄, f̄).

Proposition 4.3.1. Let Jδ,ε
α,β be the functional defined in (4.7). Assume that L

is a bounded linear and continuously invertible operator and B fulfills Assump-
tion D1. Then Jδ,ε

α,β is a positive, weakly lower semi-continuous and coercive
functional.

Proof. By the definition of T δ,ε, R and Assumption D1, Jδ,ε
α,β is positive

and w-lsc. As the operator L is continuously invertible, there exists a constant
c > 0 such that

c
∥

∥f
∥

∥ ≤
∥

∥Lf
∥

∥

for all f ∈ D(L). We get

Jδ,ε
α,β

(

k, f
)

≥ γ‖k − kǫ‖2 +
αc

2
‖f‖2 → ∞

as
∥

∥(k, f)
∥

∥

2
:=
∥

∥k
∥

∥

2
+
∥

∥f
∥

∥

2 → ∞ and therefore Jδ,ε
α,β is coercive.

We point out here that the problem (4.5) may not even have a solution for
any given noisy measurements (kǫ, gδ) whereas the regularised problem (4.7)
does, as stated below:

Theorem 4.3.2 (Existence). Let the assumptions of Proposition 4.3.1 hold.
Then the functional Jδ,ε

α,β

(

k, f
)

has a global minimiser.

Proof. By Proposition 4.3.1, Jδ,ε
α,β

(

k, f
)

is positive, proper and coercive, i.e.,

there exists (k, f) ∈ D(Jδ,ε
α,β) such that Jδ,ε

α,β

(

k, f
)

<∞.

Let ν = inf{ Jδ,ε
α,β

(

k, f
)

| (k, f) ∈ dom Jδ,ε
α,β}. Then, there exists M > 0

and a sequence (kj , f j) ∈ dom Jδ,ε
α,β such that J(kj , f j) → ν and

Jδ,ε
α,β

(

kj, f j
)

≤ M ∀j.

In particular we have

1

2
α
∥

∥Lf j
∥

∥

2 ≤M and
1

2
γ
∥

∥kj − kǫ
∥

∥

2 ≤M.
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Using
∥

∥kj
∥

∥−
∥

∥kǫ
∥

∥ ≤
∥

∥kj − kǫ
∥

∥ ≤
(

2M

γ

)1/2

it follows

∥

∥kj
∥

∥ ≤
(

2M

γ

)1/2

+
∥

∥kǫ
∥

∥ and
∥

∥f j
∥

∥ ≤
(

2M

αc2

)1/2

,

i.e., the sequences (kj) and (f j) are bounded. Thus there exist subsequences
of (kj), (f j) (for simplicity, again denoted by (kj) and (f j)) s.t.

kj ⇀ k̄ and f j ⇀ f̄,

and thus
(kj , f j)⇀ (k̄, f̄) ∈ (U ∩X)× V.

By the w-lsc of the functional Jδ,ε
α,β we obtain

ν ≤ Jδ,ε
α,β

(

k̄, f̄
)

≤ lim inf Jδ,ε
α,β

(

kj, f j
)

= lim Jδ,ε
α,β

(

kj , f j
)

= ν

Hence ν = Jδ,ε
α,β

(

k̄, f̄
)

is the minimum of the functional and (k̄, f̄) is a global
minimiser,

(k̄, f̄) = argmin{ Jδ,ε
α,β

(

k, f
)

| (k, f) ∈ D(Jδ,ε
α,β)}.

The stability property of the standard Tikhonov regularisation strategy for
problems with noisy right hand side is well known. We next investigate this
property for the Tikhonov-type regularisation scheme (4.7) for perturbations
on both (kǫ, gδ).

Theorem 4.3.3 (Stability). Let α, β > 0 be fixed the regularisation para-
meters, L a bounded and continuously invertible operator and (gδj )j, (kǫj)j

sequences with gδj → gδ and kǫj → kǫ. If (kj , f j) denote minimisers of J
δj ,εj
α,β

with data gδj and characterising function kǫj , then there exists a convergent
subsequence of (kj, f j)j. The limit of every convergent subsequence is a min-

imiser of the functional Jδ,ε
α,β.

Proof. By the definition of (kj, f j) as minimisers of J
δj ,εj
α,β we have

J
δj ,εj
α,β

(

kj, f j
)

≤ J
δj ,εj
α,β

(

k, f
)

∀(k, f) ∈ D(Jδ,ε
α,β), (4.8)

With (k̃, f̃) := (kδ,ǫα,β, f
δ,ǫ
α,β) we get J

δj ,εj
α,β

(

k̃, f̃
)

→ Jδ,ε
α,β

(

k̃, f̃
)

. Hence, there

exists a c̃ > 0 so that J
δj ,εj
α,β

(

k̃, f̃
)

≤ c̃ for j sufficiently large. In particular,
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we observe with (4.8) that
(
∥

∥kj − kǫj
∥

∥

)

j
as well as

(
∥

∥Lf j
∥

∥

)

j
are uniformly

bounded.
Analogous to the proof of Theorem 4.3.2 we conclude that the sequence

(kj, f j)j is uniformly bounded. Hence there exists a subsequence (for simplicity
also denoted by(kj , f j)j) such that

kj ⇀ k̄ and f j ⇀ f̄.

By the weak lower semicontinuity (w-lsc) of the norm and continuity of B
we have

∥

∥B(k̄, f̄)− gδ
∥

∥ ≤ lim inf
j

∥

∥B(kj , f j)− gδj
∥

∥

and
∥

∥k̄ − kǫ
∥

∥ ≤ lim inf
j

∥

∥kj − kǫj
∥

∥ .

Moreover, (4.8) implies

Jδ,ε
α,β

(

k̄, f̄
)

≤ lim inf
j

J
δj ,εj
α,β

(

kj, f j
)

≤ lim sup
j

J
δj ,εj
α,β

(

k, f
)

= lim
j
J
δj ,εj
α,β

(

k, f
)

= Jδ,ε
α,β

(

k, f
)

for all (k, f) ∈ D(Jδ,ε
α,β). In particular, Jδ,ε

α,β

(

k̄, f̄
)

≤ Jδ,ε
α,β

(

k̃, f̃
)

. Since (k̃, f̃) is

by definition a minimiser of Jδ,ε
α,β, we conclude J

δ,ε
α,β

(

k̄, f̄
)

= Jδ,ε
α,β

(

k̃, f̃
)

and thus

lim
j→∞

J
δj ,εj
α,β

(

kj , f j
)

= Jδ,ε
α,β

(

k̄, f̄
)

. (4.9)

It remains to show
kj → k̄ and f j → f̄ .

As the sequences are weakly convergent, convergence of the sequences holds
if

∥

∥kj
∥

∥→
∥

∥k̄
∥

∥ and
∥

∥f j
∥

∥→
∥

∥f̄
∥

∥.

The norms on U and V are w-lsc, thus it is sufficient to show

∥

∥k̄
∥

∥ ≥ lim sup
∥

∥kj
∥

∥ and
∥

∥f̄
∥

∥ ≥ lim sup
∥

∥f j
∥

∥.

The operator L is bounded and continuously invertible, therefore f j → f̄ if
and only if Lf j → Lf̄ . Therefore, we accomplish the prove for the sequence
(Lf j)j . Now suppose there exists τ1 as

τ1 := lim sup
∥

∥Lf j
∥

∥ >
∥

∥Lf̄
∥

∥
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and there exists a subsequence (fn)n of (f j)j such that Lfn ⇀ Lf̄ and
∥

∥Lfn
∥

∥→ τ1.
From the first part of this proof (4.9), it holds

lim
j→∞

J
δj ,εj
α,β

(

kj , f j
)

= Jδ,ε
α,β

(

k̄, f̄
)

.

Using (4.7) we observe

lim
n→∞

(

1

2

∥

∥B(kn, fn)− gδn
∥

∥

2
+
γ

2

∥

∥kn − kǫn
∥

∥

2
+ βR(kn)

)

=
1

2

∥

∥B(k̄, f̄)− gδ
∥

∥

2
+
γ

2

∥

∥k̄ − kǫ
∥

∥

2
+ βR(k̄) +

α

2

(

∥

∥Lf̄
∥

∥

2 − lim
n→∞

∥

∥Lfn
∥

∥

2
)

=
1

2

∥

∥B(k̄, f̄)− gδ
∥

∥

2
+
γ

2

∥

∥k̄ − kǫ
∥

∥

2
+ βR(k̄) +

α

2

(

∥

∥Lf̄
∥

∥

2 − τ1
2
)

<
1

2

∥

∥B(k̄, f̄)− gδ
∥

∥

2
+
γ

2

∥

∥k̄ − kǫ
∥

∥

2
+ βR(k̄) ,

which is a contradiction to the w-lsc property of the involved norms and the
functional R. Thus Lf j → Lf̄ and

f j → f̄ .

The same idea can be used in order to prove convergence of the character-
ising functions. Suppose there exists τ2 s.t.

τ2 := lim sup
∥

∥kj − kǫ
∥

∥ >
∥

∥k̄ − kǫ
∥

∥

and there exists a subsequence (kn)n of (kj)j such that (kn − kǫ) ⇀ (k̄ − kǫ)
and

∥

∥kn − kǫ
∥

∥→ τ2.
By the triangle inequality we get

∥

∥kn − kǫ
∥

∥−
∥

∥kǫn − kǫ
∥

∥ ≤
∥

∥kn − kǫn
∥

∥ ≤
∥

∥kn − kǫ
∥

∥+
∥

∥kǫn − kǫ
∥

∥ ,

and thus
lim
n→∞

∥

∥kn − kǫn
∥

∥ = lim
n→∞

∥

∥kn − kǫ
∥

∥ .

Therefore

lim
n→∞

(

1

2

∥

∥B(kn, fn)− gδn
∥

∥

2
+ βR(kn)

)

=
1

2

∥

∥B(k̄, f̄)− gδ
∥

∥

2
+
γ

2

(

∥

∥k̄ − kǫ
∥

∥

2 − lim
n→∞

∥

∥kn − kǫn
∥

∥

2
)

+ βR(k̄)

=
1

2

∥

∥B(k̄, f̄)− gδ
∥

∥

2
+
γ

2

(

∥

∥k̄ − kǫ
∥

∥

2 − τ2
2
)

+ βR(k̄)

<
1

2

∥

∥B(k̄, f̄)− gδ
∥

∥

2
+ βR(k̄) ,
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which is again a contradiction to the w-lsc of the involved norms and function-
als.

In the following, we investigate the regularisation property of our approach,
i.e., we show, under an appropriate parameter choice rule, that the minimisers
(kδ,ǫα,β, f

δ,ǫ
α,β) of the functional (4.7) converge to an exact solution as the noise

level (δ, ǫ) goes to zero.

Let us first clarify our notion of a solution. In principle, the equation

B(k, f) = g

might have different pairs (k, f) as solution. However, as kǫ → k0 as ǫ→ 0, we
get k0 for free in the limit, that is, we are interested in reconstructing solutions
of the equation

B(k0, f) = g.

In particular, we want to reconstruct a solution with minimal value of ‖Lf‖,
and therefore define:

Definition 4.3.4. We call f † a minimum-norm solution if

f † = argmin
f

{‖Lf‖ | B(k0, f) = g0} .

The definition above is the standard minimum-norm solution for the clas-
sical Tikhonov regularisation (see for instance [28]).

Furthermore, we have to introduce a regularisation parameter choice which
depends on both noise level, defined through (4.10) in the upcoming theorem.

Theorem 4.3.5 (convergence). Let the sequences of data gδj and kǫj with
∥

∥gδj − g0
∥

∥ ≤ δj and
∥

∥kǫj − k0
∥

∥ ≤ ǫj be given with ǫj → 0 and δj → 0.
Assume that the regularisation parameters αj = α(ǫj , δj) and βj = β(ǫj , δj)
fulfill αj → 0, βj → 0, as well as

lim
j→∞

δ2j + γǫ2j
αj

= 0 and lim
j→∞

βj
αj

= η (4.10)

for some 0 < η <∞.
Let the sequence

(kj , f j)j :=
(

k
δj ,ǫj
αj ,βj

, f
δj ,ǫj
αj ,βj

)

j

be the minimiser of (4.7), obtained from the noisy data gδj and kǫj , regular-
isation parameters αj and βj and scaling parameter γ.

Then there exists a convergent subsequence of (kj , f j)j with kj → k0 and
the limit of every convergent subsequence of (f j)j is a minimum-norm solution
of (4.5).
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Proof. The minimising property of (kj , f j) guarantees

J
δj ,εj
αj ,βj

(kj, f j) ≤ J
δj ,εj
αj ,βj

(k, f), ∀(k, f) ∈ D(Jδ,ε
α,β).

In particular,

0 ≤ J
δj ,εj
αj ,βj

(kj , f j) ≤ J
δj ,εj
αj ,βj

(k0, f
†) ≤

δ2j + γǫ2j
2

+
αj

2

∥

∥Lf †
∥

∥

2
+ βjR(k0), (4.11)

where f † denotes a minimum-norm solution of the equation B(k0, f) = g0, see
Definition 4.3.4.

Combining this estimate with the assumptions on the regularisation para-
meters, we conclude that the sequences

∥

∥B(kj , f j)− gδj
∥

∥

2
,
∥

∥kj − kǫj
∥

∥

2
,
∥

∥Lf j
∥

∥

2
,R(kj)

are uniformly bounded and by the invertibility of L, the sequence (kj , f j)j is
uniformly bounded.

Therefore it exists a weakly convergent subsequence (km, fm)m := (kjm, f jm)jm
of (kj, f j)j with

(km, fm)⇀ (k̄, f̄) .

In the following we will prove that for the weak limit (k̄, f̄) holds k̄ = k0
and f̄ is a minimum-norm solution.

By the weak lower semi-continuity of the norm we have

0 ≤ 1

2

∥

∥B(k̄, f̄)− g0
∥

∥

2
+
γ

2

∥

∥k̄ − k0
∥

∥

2

≤ lim inf
m→∞

{1

2

∥

∥B(km, fm)− gδm
∥

∥

2
+
γ

2

∥

∥km − kǫm
∥

∥

2
}

(4.11)

≤ lim inf
m→∞

{δ2m + γǫ2m
2

+
αm

2

∥

∥Lf †
∥

∥

2
+ βmR(k0)

}

= 0,

where the last equality follows from the parameter choice rule.

In particular, we have

k̄ = k0 and B(k̄, f̄) = g0.

From (4.11) follows

1

2

∥

∥Lfm
∥

∥

2
+
βm
αm

R(km) ≤ δ2m + γǫ2m
2αm

+
1

2

∥

∥Lf †
∥

∥

2
+
βm
αm

R(k0) .
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Again, weak lower semi-continuity of the norm and the functional R result
in

1

2

∥

∥Lf̄
∥

∥

2
+ ηR(k̄) ≤ lim inf

m→∞

{1

2

∥

∥Lfm
∥

∥

2
+ ηR(km)

}

= lim inf
m→∞

{1

2

∥

∥Lfm
∥

∥

2
+
βm
αm

R(km)
}

≤ lim inf
m→∞

{δ2m + γǫ2m
2αm

+
1

2

∥

∥Lf †
∥

∥

2
+
βm
αm

R(k0)
}

(4.10)
=

1

2

∥

∥Lf †
∥

∥

2
+ ηR(k0) .

As k̄ = k0 we conclude that f̄ is a minimum-norm solution and

1

2

∥

∥Lf̄
∥

∥

2
+ ηR(k̄) = lim

m→∞

{

1

2

∥

∥Lfm
∥

∥

2
+
βm
αm

R(km)

}

(4.12)

=
1

2

∥

∥Lf †
∥

∥

2
+ ηR(k0).

So far we showed the existence of a subsequence (km, fm)m which converges
weakly to (k0, f̄), where f̄ is a minimising solution. It remains to show that
the sequence also converges in the strong topology of U× V.

In order to show fm → f̄ in V, we prove Lfm → Lf̄ . Since is Lfm ⇀ Lf̄
it is sufficient to show

∥

∥Lfm
∥

∥→
∥

∥Lf̄
∥

∥,

or, as the norm is w.-l.s.c.,

lim sup
m→∞

∥

∥Lfm
∥

∥ ≤
∥

∥Lf̄
∥

∥.

Assume that the above inequality does not hold. Then there exists a con-
stant τ1 such that

τ1 := lim sup
m→∞

∥

∥Lfm
∥

∥

2
>
∥

∥Lf̄
∥

∥

2

and there exists a subsequence of (Lfm)m denoted by (Lfn)n := (Lfmn)mn

such that
Lfn ⇀ Lf̄ and

∥

∥Lfn
∥

∥

2 → τ1.

From (4.12) and the hypothesis stated above

lim sup
n→∞

βn
αn

R(kn) = ηR(k0) +
1

2

(

∥

∥Lf̄
∥

∥

2 − lim sup
n→∞

∥

∥Lfn
∥

∥

2
)

< ηR(k0),

which is a contradiction to the w.-l.s.c. of R. Thus

lim sup
m→∞

∥

∥Lfm
∥

∥ ≤
∥

∥Lf̄
∥

∥,
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i.e., fm → f̄ in V.
The convergence of the sequence (km)m in the topology ofU follows straight-

forward by

∥

∥km − k0
∥

∥ ≤
∥

∥km − kǫm
∥

∥+
∥

∥kǫm − k0
∥

∥

≤
∥

∥km − kǫm
∥

∥+ ǫm
(4.11)−→ 0 as m→ ∞.

Moreover, if f † is unique, the assertion about the convergence of the whole
sequence (kj, f j)j follows from the fact that then every subsequence of the
sequence converges towards the same limit (k0, f

†).

Remark 4.3.6. Note that the easiest parameter choice rule fulfilling condition
(4.10) is given by

β = ηα, η > 0.

For this specific choice, we only have one regularisation parameter left, and
the problem (4.7) reduces to

minimise
(k,f)

Jα
(

k, f
)

:=
1

2
T δ,ε (k, f) + αΦ(k, f) , (4.13)

where T δ,ε is defined in (4.7b) and

Φ(k, f) :=
1

2

∥

∥Lf
∥

∥

2
+ ηR(k). (4.14)

It is well known that, under the general assumptions, the rate of conver-
gence of (kj, f j)j → (k0, f

†) for (δj, ǫj) → 0 can be in general arbitrarily slow.
For linear and nonlinear inverse problems convergence rates were obtained if
source conditions are satisfied (see [27, 28, 12, 79] and Chapter 2).

For our analysis, we will use the following source condition:

R(B′(k0, f
†)∗) ∩ ∂Φ

(

k0, f
†
)

6= ∅,

where ∂Φ denotes the subdifferential of the functional Φ defined in (4.14).
This condition says there exists a subgradient (ξk0, ξf†) of Φ s.t. (ξk0, ξf†) =
B′(k0, f

†)∗ω, ω ∈ H.
Convergence rates are often given with respect to the Bregman distance

generated by the regularisation functional Φ. In our setting, the distance is
defined by

D
(ξū,ξv̄)
Φ

(

(u, v), (ū, v̄)
)

= Φ(u, v)− Φ(ū, v̄)−
〈

(ξū, ξv̄) , (u, v)− (ū, v̄)
〉

(4.15)

for (ξū, ξv̄) ∈ ∂Φ
(

ū, v̄
)

.
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Lemma 4.3.7. Let Φ be the functional defined in (4.14) with L = I. Then
the Bregman distance is given by

D
(ξū,ξv̄)
Φ

(

(u, v), (ū, v̄)
)

=
1

2

∥

∥v − v̄
∥

∥

2
+ ηDζ

R

(

u, ū
)

, (4.16)

with ζ ∈ ∂R
(

ū
)

.

Proof. By definition of Bregman distance we have

D
(ξū,ξv̄)
Φ

(

(u, v), (ū, v̄)
)

=

(

1

2
‖v‖2 + ηR(u)

)

−
(

1

2
‖v̄‖2 + ηR(ū)

)

−
〈

(ξū, ξv̄) , (u− ū, v − v̄)
〉

=
1

2
‖v‖2 − 1

2
‖v̄‖2 −

〈

ξv̄ , v − v̄
〉

+ηR(u)− ηR(ū)−
〈

ξū , u− ū
〉

=
1

2
‖v − v̄‖2 + ηDζ

R

(

u, ū
)

with ζ = 1
η
ξū. Note that the functional Φ is composed as a sum of a differenti-

able and a convex functional. Therefore, the subgradient of the first functional
is an unitary set and it holds (see, e.g.,[19])

∂Φ
(

ū, v̄
)

= ∂
(

‖v̄‖2 + ηR(ū)
)

=
{

(ξū, ξv̄) ∈ U∗ × V∗ | ξv̄ ∈ ∂‖v̄‖2 and ξū ∈ η∂R
(

ū
)}

For the convergence rate analysis, we need the following result:

Lemma 4.3.8. Let B : U × V → H be a bilinear operator with ‖B(k, f)‖ ≤
C ‖k‖ ‖f‖. Then its Fréchet derivative at point (k, f) is given by

B′(k, f)(u, v) = B(u, f) +B(k, v),

(u, v) ∈ U × V. Moreover, the remainder of the Taylor expansion can be
estimated by

‖B(k + u, f + v)− B(k, f)−B′(k, f)(u, v)‖ ≤ C

2

∥

∥(u, v)
∥

∥

2
. (4.17)

Proof. The proof is straightforward and follows from the bilinearity of the
operator and its boundedness.

The following theorem gives an error estimate within an infinite dimen-
sional setting, similar to the results found in [57, 88]. Please note that we have
not only an error estimate for the solution f , but also for the characterising
function k, i.e., we are able to derive convergence rate for the operator via
(4.3).
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Theorem 4.3.9 (Convergence rates). Let gδ ∈ H with
∥

∥g0−gδ
∥

∥ ≤ δ, kǫ ∈ U

with
∥

∥k0−kǫ
∥

∥ ≤ ǫ and let f † be a minimum norm solution. For the regularisa-
tion parameter 0 < α < ∞, let (kα, fα) denote the minimiser of (4.13) with
L = I. Moreover, assume that the following conditions hold:

(i) There exists ω ∈ H satisfying

(ξk0, ξf†) = B′(k0, f
†)∗ω,

with (ξk0, ξf†) ∈ ∂Φ
(

k0, f
†
)

.

(ii) C
∥

∥ω
∥

∥

H
< min

{

1, γ
2α

}

, where C is the constant in (4.17).

Then, for the parameter choice α ∼ (δ + ǫ) holds

∥

∥B(kα, fα)− B(k0, f
†)
∥

∥

H
= O (δ + ǫ)

and

Dξ
Φ

(

(kα, fα), (k0, f
†)
)

= O (δ + ǫ) .

Proof. Since (kα, fα) is a minimiser of Jα, defined in (4.13), it follows

Jα
(

kα, fα
)

≤ Jα
(

k, f
)

∀(k, f) ∈ U× V.

In particular,

Jα
(

kα, fα
)

≤ Jα
(

k0, f
†
)

≤ δ2

2
+
γǫ2

2
+ αΦ(k0, f

†). (4.18)

Using the definition of the Bregman distance (at the subgradient (ξk0, ξf†) ∈
∂Φ
(

k0, f
†
)

), we rewrite (4.18) as

1

2

∥

∥B(kα, fα)− gδ
∥

∥

2
+
γ

2

∥

∥kα − kǫ
∥

∥

2
(4.19)

≤ δ2 + γǫ2

2
+ α

(

Φ(k0, f
†)− Φ(kα, fα)

)

=
δ2 + γǫ2

2
− α

[

Dξ†

Φ

(

(kα, fα), (k0, f
†)
)

+
〈

(ξk0, ξf†) , (kα, fα)− (k0, f
†)
〉

]

.

Using

1

2

∥

∥B(kα, fα)− B(k0, f
†)
∥

∥

2 ≤
∥

∥B(kα, fα)− gδ
∥

∥

2
+
∥

∥gδ − g0
∥

∥

2

≤
∥

∥B(kα, fα)− gδ
∥

∥

2
+ δ2
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and

γ

2

∥

∥kα − k0
∥

∥

2 ≤ γ
∥

∥kα − kǫ
∥

∥

2
+ γ
∥

∥kǫ − k0
∥

∥

2

≤ γ
∥

∥kα − kǫ
∥

∥

2
+ γǫ2,

we get

1

4

∥

∥B(kα, fα)−B(k0, f
†)
∥

∥

2
+
γ

4

∥

∥kα − k0
∥

∥

2

≤ 1

2

∥

∥B(kα, fα)− gδ
∥

∥

2
+
γ

2

∥

∥kα − kǫ
∥

∥

2
+

(

δ2 + γǫ2

2

)

(4.19)

≤ (δ2 + γǫ2)− α
[

Dξ†

Φ

(

(kα, fα), (k0, f
†)
)

+
〈

(ξk0, ξf†) , (kα, fα)− (k0, f
†)
〉

]

.

Denoting r := B(kα, fα) − B(k0, f
†) − B′(k0, f

†)((kα, fα) − (k0, f
†)) and

using the source condition (i), the last term in the above inequality can be
estimated as

−
〈

(ξk0 , ξf†) , (kα, fα)− (k0, f
†)
〉

= −
〈

B′(k0, f
†)∗ω , (kα, fα)− (k0, f

†)
〉

=
〈

ω , − B′(k0, f
†)
(

(kα, fα)− (k0, f
†)
)〉

=
〈

ω , B(k0, f
†)−B(kα, fα) + r

〉

≤ ‖ω‖
∥

∥B(kα, fα)− B(k0, f
†)
∥

∥+ ‖ω‖ ‖r‖
(4.17)

≤ ‖ω‖
∥

∥B(kα, fα)− B(k0, f
†)
∥

∥+
C

2
‖ω‖

∥

∥(kα, fα)− (k0, f
†)
∥

∥

2
.

Thus, we obtain

1

4

∥

∥B(kα, fα)− B(k0, f
†)
∥

∥

2
+
γ

4

∥

∥kα − k0
∥

∥

2
+ αDξ†

Φ

(

(kα, fα), (k0, f
†)
)

(4.20)

≤ (δ2 + γǫ2) + α ‖ω‖
∥

∥B(kα, fα)−B(k0, f
†)
∥

∥+ αC
2
‖ω‖

∥

∥(kα, fα)− (k0, f
†)
∥

∥

2
.

Using (4.16) and the definition of the norm on U×V, (4.20) can be rewritten
as

1

4

∥

∥B(kα, fα)− B(k0, f
†)
∥

∥

2
+
α

2
(1− C ‖ω‖)

∥

∥fα − f †
∥

∥

2
+ αηDζ

R

(

kα, k0
)

≤ (δ2 + γǫ2) + α ‖ω‖
∥

∥B(kα, fα)−B(k0, f
†)
∥

∥+ 1
2

(

αC ‖ω‖ − γ
2

)
∥

∥kα − k0
∥

∥

2

≤
(

δ2 + γǫ2
)

+ α ‖ω‖
∥

∥B(kα, fα)−B(k0, f
†)
∥

∥, (4.21)

as
(

C ‖ω‖ − γ
2α

)

≤ 0 according to (ii). As (1− C ‖ω‖) as well as the Bregman
distance are non-negative, we derive
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1

4

∥

∥B(kα, fα)− B(k0, f
†)
∥

∥

2 − α ‖ω‖
∥

∥B(kα, fα)− B(k0, f
†)
∥

∥−
(

δ2 + γǫ2
)

≤ 0,

which only holds for

∥

∥B(kα, fα)− B(k0, f
†)
∥

∥ ≤ 2α ‖ω‖+ 2

√

α2 ‖ω‖2 + (δ2 + γǫ2).

Using the above inequality to estimate the right-hand side of (4.21) yields

∥

∥fα−f †
∥

∥

2 ≤ 2

1− C ‖ω‖

(

δ2 + γǫ2

α
+ 2α ‖ω‖2 + 2 ‖ω‖

√

α2 ‖ω‖2 + (δ2 + γǫ2)

)

and

Dζ
R

(

kα, k0
)

≤ δ2 + γǫ2

ηα
+

2 ‖ω‖
η

(

α ‖ω‖+
√

α2 ‖ω‖2 + (δ2 + γǫ2)

)

,

and for the parameter choice α ∼ (δ+ǫ) follows the convergence rate O (δ + ǫ).

Remark 4.3.10. The assumptions of Theorem 4.3.9 include the condition

C
∥

∥ω
∥

∥

H
< min

{

1,
γ

2α

}

.

Note that γ
(2α)

< 1 for α small enough (i.e., for small noise level δ and ǫ), and

thus (ii) reduces to the standard smallness assumption common for convergence
rates for nonlinear ill-posed problems, see [28].

4.4 Numerical Example

In order to illustrate our analytical results we present first reconstruc-
tions from a convolution operator. That is, the kernel function is defined
by k0(s, t) := k0(s− t) over Ω = [0, 1], see also Example 2 in Section 4.1, and
we want to solve the integral equation

∫

Ω

k0(s− t)f(t)dt = g0(s)

from given measurements kǫ and gδ satisfying (4.6). For our test, we defined
k0 and f as

k0 =

{

1 x ∈ [0.1, 0.4]

0 otherwise
and f =

{

1− 5|t− 0.3| t ∈ [0.1, 0.5]

0 otherwise
,
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Figure 4.1: Simulated measurements for k0 (left) and g0 (right), both with
10% relative error.

respectively, the characteristic and the hat function. An example of noisy
measurements kǫ and gδ is displayed in Figure 4.1.

The functions k and f were expanded in a wavelet basis, as for example,

k =
∑

l∈Z

〈

k , φ0,l

〉

φ0,l +

∞
∑

j=0

∑

l∈Z

〈

k , ψj,l

〉

ψj,l ,

where {φλ}λ and {ψλ}λ are the pair of scaling and wavelet function associated
to Haar wavelet basis. The convolution operator was implemented in terms of
the wavelet basis as well. For our numerical tests, we used the Haar wavelet.
The integration interval Ω = [0, 1] was discretized into N = 28 points, the
maximum level considered by the Haar wavelet is J = 6. The functional R
was defined as

R(k) := ‖k‖ℓ1 =
∑

λ∈Λ

|
〈

k , ψλ

〉

|,

where Λ = {{l} ∪ (j, l) | j ∈ N0, l ≤ 2j − 1}.
In order to find the optimal set of coefficients minimising (4.7) we used

Matlab’s internal function fminsearch.
Figure 5.4 displays the numerical solutions for three different (relative)

error levels: 10%, 5% and 1%. The scaling parameter was set to γ = 1
and the regularisation parameters are chosen according to the noise level, i.e.,
α = 0.01(δ+ε) and β = 0.2(δ+ε), (η = 20) was chosen. Our numerical results
confirm our analysis. In particular it is observed that the reconstruction quality
increases with decreasing noise level, see also Table 4.1.

Please note that the optimisation with the fminsearch routine is by no
means efficient. In the upcoming chapter we shall propose a fast iterative
optimisation routine for the minimisation of (4.7).
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Figure 4.2: Reconstruction of the characterising function k0, the signal f (solu-
tion) and the data g0. From top to bottom: reconstruction with 10%, 5% and
1% relative error ( both for gδ and kǫ). The reconstructions are colored.

∥

∥krec − k0
∥

∥

1

∥

∥f rec − f true
∥

∥

1

∥

∥krec − k0
∥

∥

2

∥

∥f rec − f true
∥

∥

2

10% 6.7543e-02 1.8733e-01 8.1216e-03 1.7436e-02
5% 4.0605e-02 1.7173e-01 6.9089e-03 1.5719e-02
1% 2.0139e-02 1.1345e-01 6.5219e-03 8.0168e-03

Table 4.1: Relative error measured by the L1- and L2-norm.
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Chapter 5
An Alternating Minimisation Algorithm

“The essence of mathematics is not to make simple things
complicated, but to make complicated things simple.”

Stanley Gudder

The task of solving the optimisation problem proposed previously seems,
at first sight, not a trivial task, since the regarded functional is most likely
nonconvex and nonlinear. Therefore our main focus is on efficient numerical
implementation with particular emphasis on alternating minimisation strategy.
It solves not only the dbl-RTLS, but a vast class of optimisation problems: on
the minimisation of a bilinear functional over two variables.

Initially we determine the optimality condition for the underlying problem.
Subsequently we develop an algorithm based on an alternating minimisation
strategy and we study its convergence properties. Finally, some numerical
examples for the proposed algorithm are provided and the efficiency of the
method is discussed.

5.1 Optimality Condition

The first-order necessary condition for critical points of the functional Jδ,ε
α,β

given in (4.7) requires in particular the derivative of the bilinear operator B.
It is well known that the study of local behaviour of nonsmooth functions

can be achieved handled by the concept of sub-differentiality which replaces
the classical derivative at non-differentiable points.

Therefore the first-order necessary condition based on sub-differentiability
is stated as the following: if (k̄, f̄) minimises the functional Jδ,ε

α,β then

(0, 0) ∈ ∂Jδ,ε
α,β

(

k̄, f̄
)

. (5.1)
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We denote the set of all sub-derivatives of the functional Jδ,ε
α,β at (k, f) by

∂Jδ,ε
α,β

(

k, f
)

and we name it the sub-differential of Jδ,ε
α,β at (k, f). For a quick

revision on sub-differentiability we refer to Appendix B.2.
The first result gives us the derivative of a bilinear operator B.

Lemma 5.1.1. Let B be a bilinear operator and assume that (4.1) holds. Then
the Fréchet derivative of B at (k, f) ∈ U× V is given by

B′
(

k, f
)

(u, v) = B(k, v) +B(u, f)

= Akv + Cfu.

Moreover, the derivative is Lipschitz continuous with constant
√
2C.

Proof. We have to show

B(k + u, f + v) = B(k, f) +B′
(

k, f
)

(u, v) + o (‖(u, v)‖) .

Since B is bilinear, we have

B(k + u, f + v)−B(k, f) = B(k, v) +B(u, f) +B(u, v),

and we observe ‖B(u, v)‖ = o (‖(u, v)‖): As B fulfils (4.1), we have

‖B(u, v)‖
‖(u, v)‖ ≤ C ‖u‖ ‖v‖

(‖u‖2 + ‖v‖2)1/2
≤ C√

2
(‖u‖ ‖u‖)1/2,

which converges to zero as (u, v) → 0.
We further observe

B′
(

k, f
)

(u, v)− B′
(

k̃, f̃
)

(u, v) = B(k, v) +B(u, f)−
(

B(k̃, v) +B(u, f̃)
)

= B(u, f − f̃) +B(k − k̃, v)

which implies

∥

∥B′
(

k, f
)

(u, v)−B′
(

k̃, f̃
)

(u, v)
∥

∥ =
∥

∥B(u, f − f̃) +B(k − k̃, v)
∥

∥

≤
∥

∥B(u, f − f̃)
∥

∥+
∥

∥B(k − k̃, v)
∥

∥

≤ C
∥

∥u
∥

∥

∥

∥f − f̃
∥

∥+ C
∥

∥k − k̃
∥

∥

∥

∥v
∥

∥

Using the inequality (a+ b)2 ≤ 2(a2 + b2) we get

∥

∥B′
(

k, f
)

(u, v)− B′
(

k̃, f̃
)

(u, v)
∥

∥

2 ≤ 2C2
(

∥

∥u
∥

∥

2∥
∥f − f̃

∥

∥

2
+
∥

∥k − k̃
∥

∥

2∥
∥v
∥

∥

2
)

≤ 2C2
(

∥

∥u
∥

∥

2
+
∥

∥v
∥

∥

2
)(

∥

∥k − k̃
∥

∥

2
+
∥

∥f − f̃
∥

∥

2
)

= 2C2
∥

∥(u, v)
∥

∥

2∥
∥(k − k̃, f − f̃)

∥

∥

2
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and thus

∥

∥B′(k, f)− B′(k̃, f̃)
∥

∥ = sup
‖(u,v)‖=1

∥

∥B′
(

k, f
)

(u, v)− B′
(

k̃, f̃
)

(u, v)
∥

∥

≤
√
2C
∥

∥(k − k̃, f − f̃)
∥

∥.

Note that the adjoint operator (B′(k, f))∗ of the Frechét derivative B′(k, f)
exists and is a bounded linear operator whenever bothH and U×V are Hilbert
spaces.

In order to analyse the optimality condition (5.1) we shall compute the
sub-differential of a functional over two variables. As pointed out in the
book [19, Proposition 2.3.15] for a general function h the set-valued mapping
∂h : U ⇒ U∗ the set ∂h(x1, x2) and the product set ∂1h(x1, x2) × ∂2h(x1, x2)
are not necessarily contained in each other. Here, ∂ih denotes the partial sub-
gradient with respect to xi for i = 1, 2. However this is not the case for the
functional we are interested in as will be shown in the following Theorem.

Theorem 5.1.2. Let J : U× V → R be a functional with the structure

J(u, v) = ϕ(u) +Q(u, v) + ψ(v), (5.2)

where Q is a (nonlinear) differentiable term and ϕ : U → R, ψ : V → R are
proper convex functions, u ∈ domϕ and v ∈ domψ . Then

∂J(u, v) = {∂ϕ
(

u
)

+Q′
u(u, v)} × {∂ψ

(

v
)

+Q′
v(u, v)}

= {∂uJ(u, v)} × {∂vJ(u, v)}.

Proof. In general the sub-differential of a sum of functions does not equal
the sum of its sub-differentials. However, if Q is differentiable, ϕ and ψ are
convex some inclusions and even equalities hold true (combining [19, Prop
2.3.3; Cor 3; Prop 2.3.6]), as for instance,

∂J(u, v) = ∂ (ϕ(u) + ψ(v)) + ∂Q(u, v).

Since Q is differentiable, calling the previous results, the (partial) sub-
derivative is unique [19, Prop 2.3.15] and therefore

∂Q(u, v) = ∂uQ(u, v)× ∂vQ(u, v)

= (Q′
u(u, v), Q

′
v(u, v)) .

Note that for the special case where the functional ψ(u) + ϕ(v), the sub-
derivative of separable convex functions [99, Corollary 2.4.5] satisfies

∂ (ϕ(u) + ψ(v)) =
(

∂ϕ
(

u
)

, ∂ψ
(

v
))
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Altogether, we can compute the sub-derivative as follows

∂J(u, v) =
(

∂ϕ
(

u
)

, ∂ψ
(

v
))

+ (Q′
u(u, v), Q

′
v(u, v))

= {∂uϕ(u) +Q′
u(u, v)} × {∂vψ(v) +Q′

v(u, v)}. (5.3)

The last implication of this theorem,

∂J(u, v) = {∂uJ(u, v)} × {∂vJ(u, v)}

follows straightforward by definition of partial sub-derivative and (5.3).

Please note that the above proof holds for all definitions of sub-differential
introduced in the Appendix B.2, as for convex functionals all the definitions are
equivalent, and for differentiable (possibly nonlinear) terms the sub-differential
is a unitary set and the sub-derivative equals the derivative. Based on The-
orem 5.1.2 we can now calculate the derivative of the functional is the gist for
building up the upcoming algorithm; please give heed to the structure of (5.2)
and the proposed functional Jδ,ε

α,β:

Corollary 5.1.3. Let Jδ,ε
α,β the functional defined in (4.7), then

∂Jδ,ε
α,β

(

k, f
)

= {C∗
f (Cfk − gδ) + γ(k − kǫ) + βζ} × {A∗

k(Akf − gδ) + αL∗Lf}

where ζ ∈ ∂R(k).

Proof. The result follows straightforward from Lemma 5.1.1 and Theorem
5.1.2. Observe that the sum C∗

f (Cfk − gδ) + γ(k − kǫ) + βζ is well-defined in
the Hilbert space U, since the sub-derivative ζ∂R(k) is also an element of U.

Up to now, we did not specify the functional R, it is only required to be
convex and lower semi-continuous. We are in particular interested in, e.g.,
the Lp norm or the weighted ℓp norm, denoted by R(k) =

∥

∥k
∥

∥

w,p
. Its sub-

differential is given in Section 5.3. An easy way to compute the sub-derivatives
of functionals R with a specific structure is given by the following Lemma.

Lemma 5.1.4 ([10, Lemma 4.4]). Let H = L2(Ω, dµ) where Ω is a σ-finite
measure space. Let R : H → (−∞,+∞] be defined by

R(u) =

{

∫

Ω
h(u)dµ if the integral is finite

∞ else,
(5.4)

where h : C → R is a convex function. Then ξ ∈ H is an element of ∂R
(

u
)

if and only if ξ(x) ∈ ∂h
(

u(x)
)

for almost every x ∈ Ω (with the identification
C2 = R).
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5.2 Proposed Algorithm

The computation of a solution of dbl-RTLS is not straightforward, as the
minimum of the functional (4.7) with respect to both parameters is a nonlinear
and nonconvex problem over two variables. Nevertheless, there is a simple
algorithm that has been successfully used for optimisation problems over two
variables: alternating minimisation (AM). This procedure has been studied by
several authors, see, e.g., [14, 98, 96].

In the following we shall denote the dbl-RTLS functional by J instead of
Jδ,ε
α,β, as the parameters of the functionals are kept fix for the minimisation

process.
In the AM algorithm, the functional is minimised iteratively with two al-

ternating minimisation steps. Each step minimises the problem over one vari-
able while keeping the second variable fixed:

fn+1 ∈ argmin
f∈V

J(k, f |kn) (5.5a)

kn+1 ∈ argmin
k∈U

J(k, f |fn+1). (5.5b)

The notation J(k, f |u) means we minimise the function J with u fixed,
where u can be either k or f . Thus we minimise in each cycle the functionals

J(k, f |kn) =
∥

∥Aknf − gδ
∥

∥

2
+ α

∥

∥Lf
∥

∥

2
,

and
J(k, f |fn+1) =

∥

∥Cfn+1k − gδ
∥

∥

2
+ γ
∥

∥k − kǫ
∥

∥

2
+ βR(k).

We highlight some important facts:

1. For each subproblem, the considered operators are linear, and the func-
tional is convex. Thus a local minimum is global.

2. The first step is a standard quadratic minimisation problem.

First we will show a monotonicity result for the sequence {(kn, fn)}n of
iterates:

Proposition 5.2.1. The functional J is non-increasing on the AM iterates,

J(kn+1, fn+1) ≤ J(kn, fn+1) ≤ J(kn, fn).

Proof. The iterates are defined as

fn+1 ∈ argmin
f∈V

J(k, f |kn)
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and
kn+1 ∈ argmin

k∈U
J(k, f |fn+1).

Therefore,
J(kn, fn+1) ≤ J(kn, f) ∀f ∈ V

and

J(kn+1, fn+1) ≤ J(k, fn+1) ∀k ∈ U,

and in particular, setting f = fn and k = kn,

J(kn, fn+1) ≤ J(kn, fn)

J(kn+1, fn+1) ≤ J(kn, fn+1),

and
J(kn+1, fn+1) ≤ J(kn, fn+1) ≤ J(kn, fn).

The existence of minimiser of the the functional J has already been proven
in [6, Thm 4.2]. The goal of the following results is to prove that the sequence
generated by the alternating minimisation algorithm has at least a subsequence
which converges towards to a critical point of the functional. Throughout this
Section, let us take the following assumptions.

Assumption E.

(E1) B is strongly continuous, i.e., if (kn, fn)⇀ (k̄, f̄) then B(kn, fn) → B(k̄, f̄).

(E2) The adjoint of the Fréchet derivative B′ of B is strongly continuous, i.e.,
if (kn, fn)⇀ (k̄, f̄) then B′(kn, fn)∗z → B′(k̄, f̄)∗z, ∀z ∈ D(B′)

Additionally to the standard norm for the pair (k, f) ∈ U× V

∥

∥(k, f)
∥

∥

2
=
∥

∥k
∥

∥

2
+
∥

∥f
∥

∥

2

we define the weighted norm for given γ > 0 as

∥

∥(k, f)
∥

∥

2

γ
= γ

∥

∥k
∥

∥

2
+
∥

∥f
∥

∥

2
.

Proposition 5.2.2. For given regularisation parameters 0 < α and β, the
sequence {(kn+1, fn+1)}n+1 of iterates generated by the AM algorithm has at
least a weakly convergent subsequence (knj+1, fnj+1) ⇀ (k̄, f̄), and its limit
fulfils

J(k̄, f̄) ≤ J(k̄, f) and J(k̄, f̄) ≤ J(k, f̄) (5.6)

for all f ∈ V and for all k ∈ U.
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Proof. As the iterates of the AM algorithm can be characterised as the
minimisers of a reduced dbl-RTLS functional, see (5.5a), (5.5b) we observe

α
∥

∥Lfn+1
∥

∥

2
+ γ
∥

∥kn − kǫ
∥

∥

2
+ βR(kn) ≤ J(kn, fn+1)

= min
f
J(k, f |kn)

≤ J(kn, 0)

=
∥

∥gδ
∥

∥

2
+ γ
∥

∥kn − kǫ
∥

∥

2
+ βR(kn)

and

α
∥

∥Lfn+1
∥

∥

2
+ γ
∥

∥kn+1 − kǫ
∥

∥

2 ≤ J(kn+1, fn+1)

= min
k
J(k, f |fn+1)

≤ J(0, fn+1)

=
∥

∥gδ
∥

∥

2
+ γ
∥

∥kǫ
∥

∥

2
+ α

∥

∥Lfn+1
∥

∥

2
.

Keeping in mind that the operator L is continuously invertible, the first in-
equality gives

∥

∥fn+1
∥

∥

2 ≤ 1

‖L−1‖2 α
∥

∥gδ
∥

∥

2
.

Using the second estimate above and the standard inequality ‖a+ b‖2 ≤
2(‖a‖2 + ‖b‖2) we have

γ
∥

∥kn+1
∥

∥

2 ≤ 2
∥

∥gδ
∥

∥

2
+ 4γ

∥

∥kǫ
∥

∥

2
.

Thus, the sequence {(kn+1, fn+1)}n+1 is bounded

∥

∥(kn+1, fn+1)
∥

∥

2

γ
= γ

∥

∥kn+1
∥

∥

2
+
∥

∥fn+1
∥

∥

2

≤ 2
∥

∥gδ
∥

∥

2
+ 4γ

∥

∥kǫ
∥

∥

2
+

1

c2α

∥

∥gδ
∥

∥

2

=

(

2 +
1

‖L−1‖2 α

)

∥

∥gδ
∥

∥

2
+ 4γ

∥

∥kǫ
∥

∥

2

and by Alaoglu’s theorem, it has a weakly convergent subsequence
{(knj+1, fnj+1)}nj+1 ⇀ (k̄, f̄) .

Since fnj+1 minimises the functional J(knj , f) for a fixed knj , it holds

J(knj , fnj+1) ≤ J(knj , f) ∀f ∈ V

and thus

∥

∥B(knj , fnj+1)− gδ
∥

∥

2
+ α

∥

∥Lfnj+1
∥

∥

2 ≤
∥

∥B(knj , f)− gδ
∥

∥

2
+ α

∥

∥Lf
∥

∥

2
.
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Using the fact that J is w-lsc and the strong continuity of B, we observe
∥

∥B(k̄, f̄)− gδ
∥

∥

2
+ α

∥

∥Lf̄
∥

∥

2

≤ lim inf
nj→∞

{

∥

∥B(knj+1, fnj+1)− gδ
∥

∥

2
+ α

∥

∥Lfnj+1
∥

∥

2
}

≤ lim inf
nj→∞

{

∥

∥B(knj , fnj+1)− gδ
∥

∥

2
+ α

∥

∥Lfnj+1
∥

∥

2
}

≤ lim inf
nj→∞

{

∥

∥B(knj , f)− gδ
∥

∥

2
+ α

∥

∥Lf
∥

∥

2
}

≤ lim sup
nj→∞

∥

∥B(knj , f)− gδ
∥

∥

2
+ α

∥

∥Lf
∥

∥

2

= lim
nj→∞

∥

∥B(knj , f)− gδ
∥

∥

2
+ α

∥

∥Lf
∥

∥

2

(E1)
=
∥

∥B(k̄, f)− gδ
∥

∥

2
+ α

∥

∥Lf
∥

∥

2
(5.7)

Therefore,
J(k̄, f̄) ≤ J(k̄, f) ∀f ∈ V.

The second inequality in (5.6) is proven similarly: Since knj+1 minimises
the functional J(k, fnj+1) for fixed fnj+1 it is

J(knj+1, fnj+1) ≤ J(k, fnj+1) ∀k ∈ U,

which is equivalent to
∥

∥B(knj+1, fnj+1)− gδ
∥

∥

2
+γ
∥

∥knj+1 − kǫ
∥

∥

2
+ βR(knj+1)

≤
∥

∥B(k, fnj+1)− gδ
∥

∥

2
+ γ
∥

∥k − kǫ
∥

∥

2
+ βR(k).

Again, we observe
∥

∥B(k̄, f̄)− gδ
∥

∥

2
+ γ
∥

∥k̄ − kǫ
∥

∥

2
+ βR(k̄)

≤ lim infnj→∞

{

∥

∥B(knj+1, fnj+1)− gδ
∥

∥

2
+ γ
∥

∥knj+1 − kǫ
∥

∥

2
+ βR(knj+1)

}

≤ lim inf
nj→∞

∥

∥B(k, fnj+1)− gδ
∥

∥

2
+ γ
∥

∥k − kǫ
∥

∥

2
+ βR(k)

= lim
nj→∞

∥

∥B(k, fnj+1)− gδ
∥

∥

2
+ γ
∥

∥k − kǫ
∥

∥

2
+ βR(k)

=
∥

∥B(k, f̄)− gδ
∥

∥

2
+ γ
∥

∥k − kǫ
∥

∥

2
+ βR(k), (5.8)

and thus
J(k̄, f̄) ≤ J(k, f̄), ∀k ∈ U.

In summary, the alternating minimisation (AM) algorithm yields a bound-
ed sequence {(kn+1, fn+1)}n and hence a weakly convergent subsequence. The
next result extends the convergence on the strong topology, for both {knj+1}nj

and {fnj+1}nj
.
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Proposition 5.2.3. Let {(knj+1, fnj+1)}nj
be a weakly convergent (sub-) se-

quence generated by the AM algorithm (5.5), where knj+1 ⇀ k̄ and fnj+1 ⇀ f̄ .
Then there exists a subsequence {knjm+1}njm

of {knj+1}nj
such that knjm+1 → k̄

and 0 ∈ ∂kJ(k̄, f̄).

Proof. Inequalities (5.8) in the Proposition 5.2.2’s proof reads

lim inf
nj→∞

{

∥

∥B(knj+1, fnj+1)− gδ
∥

∥

2
+ γ
∥

∥knj+1 − kǫ
∥

∥

2
+ βR(knj+1)

}

=
∥

∥B(k, f̄)− gδ
∥

∥

2
+ γ
∥

∥k − kǫ
∥

∥

2
+ βR(k).

for any k. Setting k = k̄ yields in particular

lim inf
nj→∞

{

∥

∥B(knj+1, fnj+1)− gδ
∥

∥

2
+ γ
∥

∥knj+1 − kǫ
∥

∥

2
+ βR(knj+1)

}

=
∥

∥B(k̄, f̄)− gδ
∥

∥

2
+ γ
∥

∥k̄ − kǫ
∥

∥

2
+ βR(k̄).

As the limes inferior exists, we can in particular extract a subsequence
(knjm+1, fnjm+1)njm

of (knj+1, fnj+1)nj
such that

lim
njm→∞

{

∥

∥B(knjm+1, fnjm+1)− gδ
∥

∥

2
+ γ
∥

∥knjm+1 − kǫ
∥

∥

2
+ βR(knjm+1)

}

=
∥

∥B(k̄, f̄)− gδ
∥

∥

2
+ γ
∥

∥k̄ − kǫ
∥

∥

2
+ βR(k̄).

(5.9)

For the sake of notation simplicity we denote for the remainder of the proof
the index njm + 1 by m+ 1. By (E1) we observe

lim
m→∞

∥

∥B(km+1, fm+1)− gδ
∥

∥

2 (E1)
=
∥

∥B(k̄, f̄)− gδ
∥

∥

2

As all summands in (5.9) are positive, we have thus and

lim
m→∞

{

γ
∥

∥km+1 − kǫ
∥

∥

2
+ βR(km+1)

}

= γ limm→∞

∥

∥km+1 − kǫ
∥

∥

2
+ β limm→∞R(km+1)

= γ
∥

∥k̄ − kǫ
∥

∥

2
+ βR(k̄). (5.10)

Now let us show that km+1 converges strongly. As the sequence converges
weakly, it is enough to show

lim
m→∞

∥

∥km+1
∥

∥

2
=
∥

∥k̄
∥

∥

2

Equivalently, we can also show limm→∞

∥

∥km+1 − kǫ
∥

∥

2
=
∥

∥k̄ − kǫ
∥

∥

2
. Again due

to the weak convergence of km+1 it is sufficient to prove

lim sup
m→∞

∥

∥km+1 − kǫ
∥

∥

2 ≤
∥

∥k̄ − kǫ
∥

∥

2
.

65



Chapter 5

Let us assume that

µ := lim sup
m→∞

∥

∥km+1 − kǫ
∥

∥

2
>
∥

∥k̄ − kǫ
∥

∥

2
.

holds. Rewriting (5.10) yields

β lim sup
m→∞

{

R(km+1)
}

= γ

(

∥

∥k̄ − kǫ
∥

∥

2 − lim sup
m→∞

∥

∥km+1 − kǫ
∥

∥

2
)

+ βR(k̄)

= γ
(

∥

∥k̄ − kǫ
∥

∥

2 − µ
)

+ βR(k̄)

< β R(k̄). (5.11)

However, since R is w-lsc, we observe

R(k̄) ≤ lim inf
m→∞

R(km+1) ≤ lim sup
m→∞

R(km+1),

which is in contradiction to (5.11). Thus we have shown the convergence of
km+1 to k̄ in norm.

The last part of this proof focus on the convergence of the partial sub-dif-
ferential of J with respect to k.

Since km+1 solves the sub-minimisation problem (5.5b), the optimality con-
dition reads as 0 ∈ ∂kJ(k

m+1, fm+1), or equivalently, there exists an element

ξm+1
k := − 1

β

(

C∗
fm+1(Cfm+1km+1 − gδ) + γ(km+1 − kǫ)

)

(5.12)

such that ξm+1
k ∈ ∂R

(

km+1
)

⊂ U; see Corollary 5.1.3.

Now, on the limit, 0 ∈ ∂kJ(k̄, f̄), means that

ξ̄ := − 1

β

(

C∗
f̄ (Cf̄ k̄ − gδ) + γ(k̄ − kǫ)

)

and ξ̄ ∈ ∂R
(

k̄
)

holds, i.e., the right hand-side of (5.12) converges and the limit of the sequence
of sub-derivatives belongs also to the sub-differential set ∂R

(

k̄
)

.
The first part of the statement above can be seeing by using condition

(E2). Whereas the second part is obtained by the assumption that R is a
convex functional, because in this case the Fenchel sub-differential coincides
with the limiting sub-differential, which is a strong-weakly closed mapping (see
Appendix B.2).

Proposition 5.2.4. Let {m} be a subsequence of N such that the (sub-) se-
quence {(km+1, fm+1)}m generated by AM algorithm (5.5) satisfies km+1 → k̄
and fm+1 ⇀ f̄ . Then there is a subsequence of {fm+1}m such that fmj+1 → f̄
and 0 ∈ ∂fJ(k̄, f̄).
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Proof. Similarly as the previous theorem, by setting f = f̄ at (5.7) in the
Proposition 5.2.2’s proof we obtain

lim inf
m→∞

{

∥

∥B(km+1, fm+1)− gδ
∥

∥

2
+ α

∥

∥Lfm+1
∥

∥

2
}

=
∥

∥B(k̄, f̄)− gδ
∥

∥

2
+ α

∥

∥Lf̄
∥

∥

2
.

As the limes inferior exists, we can in particular extract a subsequence
(kmj+1, fmj+1)mj

of (km+1, fm+1)m such that

lim
mj→∞

{

∥

∥B(kmj+1, fmj+1)− gδ
∥

∥

2
+ α

∥

∥Lfmj+1
∥

∥

2
}

=
∥

∥B(k̄, f̄)− gδ
∥

∥

2
+ α

∥

∥Lf̄
∥

∥

2
.

Since both summands in the limit above are positive and due to (E1), we
conclude that

lim
mj→∞

∥

∥Lfmj+1
∥

∥

2
=
∥

∥Lf̄
∥

∥

2
.

Moreover, as L is a bounded and continuously invertible operator we have

lim
mj→∞

∥

∥fmj+1
∥

∥

2
=
∥

∥f̄
∥

∥

2
,

which in combination with the weak convergence of the subsequence gives its
strong convergence fmj+1 → f̄ .

The second half of this proof refers to the convergence of the partial sub-
differential of J with respect to f and its limit.

Since fm+1 solves the sub-minimisation problem (5.5a), the optimality con-
dition reads as 0 ∈ ∂fJ(k

m, fm+1). However we are interested on the partial
sub-derivate at the pair (kmj+1, fmj+1). Namely, with help of Corollary 5.1.3

the sub-derivative (which is a unique element) ξ
mj+1
f ∈ ∂fJ(k

mj+1, fmj+1) is
computed1 as

ξm+1
f := A∗

km+1(Akm+1fm+1 − gδ) + αL∗Lfm+1,

which may not be necessarily null for each cycle of the AM algorithm (5.5),
otherwise the stoping criteria would be satisfied and nothing would be left to
be proven. Therefore we shall prove that it converges towards zero.

So far we have strong convergence of both sequences {km+1}m and {fm+1}m.
Additionally, the Assumption E implies that both linear operators Ak and A∗

k

are also strongly continuous, therefore

lim
m→∞

ξm+1
f = lim

m→∞
{A∗

km+1(Akm+1fm+1 − gδ) + αL∗Lfm+1}
= A∗

k̄(Ak̄f̄ − gδ) + αL∗Lf̄ . (5.13)

1For sake of notation we continue to denote the subsequence’s indices by m + 1 instead
of mj + 1.
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Our goal is to show that the limit given in (5.13) is zero. Let’s suppose by
contradiction that 0 /∈ ∂fJ(k̄, f̄). Since this set is unitary we conclude that

A∗
k̄(Ak̄f̄ − gδ) + αL∗Lf̄ 6= 0.

This means that f̄ does not fulfil the normal equation associated to the
standard Tikhonov problem

minimise
f

∥

∥Ak̄f − gδ
∥

∥

2
+ α

∥

∥Lf
∥

∥

2
,

which is a necessary condition to be a minimiser candidate to the underlying
functional.

Therefore the functional J(k̄, ·) for a given fixed k̄ does not attain its min-
imum value at f̄ and there is at least one element f such that J(k̄, f) < J(k̄, f̄).

Moreover this functional is convex and it has a global solution, here denoted
by f̃ . By definition

J(k̄, f̃) ≤ J(k̄, f)

for all f ∈ V .
In particular, since f̄ is not a minimiser for J(k̄, ·), the inequality above is

strict,
J(k̄, f̃) < J(k̄, f̄). (5.14)

On the other hand, from Propostion 5.2.2 it also holds

J(k̄, f̄) ≤ J(k̄, f)

for all f ∈ V . Setting f := f̃ in this inequality we get

J(k̄, f̄) ≤ J(k̄, f̃),

which leads to an absurd to (5.14).
Therefore for f̄ the optimality condition holds true, i.e., in the limit the

source condition is fulfilled and the limit of the partial sub-derivative sequence
is zero, i.e., 0 ∈ ∂fJ(k̄, f̄), which completes the proof.

Remark 5.2.5. One alternative proof would be assuming that the sequence
{km+1}m fulfils

∥

∥km+1 − km
∥

∥→ 0. (5.15)

More specifically, we have

A∗
km(Akmf

m+1 − gδ) + αL∗Lfm+1 = 0

from the optimality condition, but we would like to show

lim
m→∞

{A∗
km+1(Akm+1fm+1 − gδ) + αL∗Lfm+1} = 0.
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Subtracting the latter expression from the first one, we get

(A∗
kmAkm − A∗

km+1Akm+1)fm+1 + (A∗
km −A∗

km+1)gδ.

Note that by assuming the condition (5.15) the expression above converges
to zero and the proof would be complete. Nevertheless we cannot guarantee that
subsequent elements of the original sequence will be selected for the subsequence.
As an alternative one can verify numerically if the sequence provided from the
AM algorithm satisfies this assumption. Moreover, if we restrict the problem to
the simple case that the characterising function is known, then the assumption
(5.15) is trivial, the problem becomes the standard Tikhonov regularisation and
the theory is carried on.

The forthcoming and most substantial result within this section shows that
the limit (k̄, f̄) of the sequence generated by the AM algorithm is a critical
point (pair) of the functional J .

Theorem 5.2.6 (Main result). Let {m} a index set of N such that the sequence
generated by AM algorithm {(km+1, fm+1)}m → (k̄, f̄) and (ξm+1

k , ξm+1
f ) ⇀

(0, 0). Then there is subsequence converging towards to a critical point of J ,
i.e.,

(0, 0) ∈ ∂J
(

k̄, f̄
)

.

Proof. The Proposition 5.2.3 guarantees that km+1 → k̄ and ξkm+1 ∈
∂R(km+1) (or equivalently, 0 ∈ ∂kJ(k

m+1, fm+1)) such that 0 ∈ ∂kJ(k̄, f̄).
Likewise, Proposition 5.2.4 guarantees that the sequence fm+1 → f̄ and ξfm+1 ∈
∂J(km+1, fm+1) such that 0 ∈ ∂fJ(k̄, f̄). Combining this with the strong-
weakly closedness property of the sub-derivative (see Appendix B.2) and The-
orem 5.1.2 we have

(0, 0) ∈ ∂J
(

k̄, f̄
)

= ∂kJ(k̄, f̄)× ∂fJ(k̄, f̄)

on the limit.

5.3 Computational Remarks

On the previous section we proposed an algorithm to minimise the func-
tional J over two variables. Each cycle of the alternating minimisation problem
(5.5) consists of two steps. In each step we solve instead a linear and convex
minimisation over one variable, while the other one is fixed. In this section we
discuss few ideas for a practical implementation.

Within an extensive choices for the regularisation term R, we elect the
weighted ℓp norm of the coefficients of k with respect to an orthonormal basis
{φλ}λ of U, so

∥

∥k
∥

∥

p

w,p
:=
∑

λ

wλ|kλ|p, (5.16)
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where kλ = |
〈

k , φλ

〉

|.
It is well known [23] this choice promotes sparsity for p = 1. Furthermore,

this functional it is nondifferentiable and its subdifferential is the the set-value
function Sgn(k), i.e.,

∂R
(

k
)

= Sgn(k)

= {ξ ∈ L2(Ω
2) | ξ(s, t) ∈ sgn(k(s, t)) a.e. (s, t) ∈ Ω2},

where the set-value sign-function sgn(k(s, t)) is the subgradient of the function
z 7→ |z| at z = k(s, t). We can see that ∂|z| = sgn(z), where

sgn(z) =







{

z

|z|

}

, if z 6= 0 ,

{ζ ∈ C | |ζ | ≤ 1} , otherwise .

The first step consists on solving (5.5a), which is a linear, quadratic and
convex minimisation problem. We skip further comments, since it can be easily
done, recalling many techniques well known for solving a classical Tikhonov
regularisation.

The second step is the minimisation on k of (5.5b): given fn+1 from the
previous step we solve

minimise
k

∥

∥Cfn+1k − gδ
∥

∥

2

L2(Ω)
+ γ
∥

∥k − kǫ
∥

∥

2

L2(Ω2)
+ β

∥

∥k
∥

∥

p

w,p
.

This problem can be recast as a Tikhonov type functional with augmented
misfit (discrepancy) term. For this purpose we define a γ-norm as

∥

∥(x, y)
∥

∥

2

γ
=
∥

∥x
∥

∥

2
+ γ
∥

∥y
∥

∥

2
(5.17)

for a given γ > 0, related with the inner product

〈

(x1, y1) , (x2, y2)
〉

γ
=
〈

x1 , x2
〉

+ γ
〈

y1 , y2
〉

(5.18)

We also define the operator

B̃ : U× V −→ L2(Ω)
(k, f) 7−→ (B(k, f), k)

and the data zδ,ǫ = (gδ, kǫ).

Under this notation we rewrite the augmented discrepancy term as

∥

∥B̃(k, f)− zδ,ǫ
∥

∥

2

γ
=

∥

∥(B(k, f), k)− (gδ, kǫ)
∥

∥

2

γ

=
∥

∥B(k, f)− gδ
∥

∥

2
+ γ
∥

∥k − kǫ
∥

∥

2
.
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For a fixed f we can straightforward define C̃f as B̃ for a fixed f . Therefore
we look at the following minimisation problem

J(k) = minimise
k

∥

∥C̃fk − zδ,ǫ
∥

∥

2

γ
+ β

∥

∥k
∥

∥

p

w,p
. (5.19)

For solving (5.19) under regularisation choice as (5.16) we construct a sur-
rogate functional that removes the nonlinear term Cf

∗Cfk. We follow the ideas
of [23], adding a functional which depends of an auxiliary element u,

Ξ(k; u) = η
∥

∥k − u
∥

∥

2 −
∥

∥C̃fk − C̃fu
∥

∥

2

γ
.

For a suitable choice of η > 0, discussed later on, the whole functional is
strictly convex. Therefore the surrogate functional - extended functional is

JSur(k; u) = J(k) + Ξ(k; u)

=
∥

∥C̃fk − zδ,ǫ
∥

∥

2

γ
+ β

∥

∥k
∥

∥

p

w,p
+ η
∥

∥k − u
∥

∥

2 −
∥

∥C̃fk − C̃fu
∥

∥

2

γ

=
∥

∥C̃fk
∥

∥

2

γ
+
∥

∥zδ,ǫ
∥

∥

2

γ
− 2
〈

C̃fk , zδ,ǫ
〉

γ
+ β

∥

∥k
∥

∥

p

w,p
+ η
∥

∥k
∥

∥

2
+ η
∥

∥u
∥

∥

2

−2η
〈

k , u
〉

−
∥

∥C̃fk
∥

∥

2

γ
−
∥

∥C̃fu
∥

∥

2

γ
+ 2
〈

C̃fk , C̃fu
〉

γ
.

Defining the constants c1 :=
∥

∥(gδ, kǫ)
∥

∥

2

γ
, c2 := η

∥

∥u
∥

∥

2 −
∥

∥C̃fu
∥

∥

2

γ
and c3 :=

c1 + c2, applying (5.17) and (5.18)

JSur(k; u) = η
∥

∥k
∥

∥

2 − 2
〈

Cfk , gδ
〉

− 2γ
〈

k , kǫ
〉

− 2η
〈

k , u
〉

+ 2
〈

Cfk , Cfu
〉

+2γ
〈

k , u
〉

+ β
∥

∥k
∥

∥

p

w,p
+ c1 + c2

= η
∥

∥k
∥

∥

2 − 2
〈

k , ηu− γ(u− kǫ)− C∗
f (Cfu− gδ)

〉

+ β
∥

∥k
∥

∥

p

w,p
+ c3.

Under (5.16) and writing k as a linear combination of an ONB {φλ}λ

JSur(k; u) =
∑

λ

η(kλ)
2 − 2kλ

(

ηu− γ(u− kǫ)− C∗
f (Cfu− gδ)

)

λ

+βwλ|kλ|p + c3.

We can explicitly compute the minimiser of JSur(k; u) with respect to k for
a given auxiliary element u computing its derivative. For a choice p = 1 the
optimality condition is translated as

2ηkλ = 2
(

ηu− γ(u− kǫ)− C∗
f (Cfu− gδ)

)

λ
− βwλ sgn(kλ).

Under definition of soft-shrinkage operator

Sβ (x) = max{‖x‖ − β, 0} x

‖x‖ ,
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or equivalently,

Sβ (x) =

{

x− β x
‖x‖

if ‖x‖ > β

0 if ‖x‖ ≤ β
,

we end up with the explicit expression

kλ = Swλ
η

β
2

(

u− γ

η
(u− kǫ)λ −

1

η
[C∗

f (Cfu− gδ)]λ

)

.

An iterative approach can be done setting u = kn and so

kn+1 = argmin
k

JSur(k; kn)

for a initial guess k0.
Therefore the minimisation subproblem on k can be solved by an iterative

soft-shrinkage. It is done in two steps: first we update k with the negative
direction of the gradient from the augmented discrepancy term and then we
shrinkage it in the wavelet domain. More precisely

kn+1
λ = Swλ

η
β
2

(

knλ − γ

η
(kn − kǫ)λ −

1

η
[C∗

f (Cfk
n − gδ)]λ

)

. (5.20)

In the following we show how to choose the constant η in order to guarantee
that Ξ is strictly positive on k and so JSur(k; u).

Lemma 5.3.1. Let η = 2(γ +
∥

∥f
∥

∥

2
), where f is a fixed function in this step.

Then
Ξ(k; u) ≥ 0 and JSur(k; u) ≥ J(k)

Proof. It is easy to see that

Ξ(k; u) = (η − γ)
∥

∥k − u
∥

∥

2 −
∥

∥Cfk − Cfu
∥

∥

2
.

Since F is linear and bounded

∥

∥Cfk − Cfu
∥

∥

2
=
∥

∥Cf(k − u)
∥

∥

2 ≤
∥

∥f
∥

∥

2∥
∥k − u

∥

∥

2
.

Therefore,

(η − γ)
∥

∥k − u
∥

∥

2 −
∥

∥Cfk − Cfu
∥

∥

2 ≥ (η − γ)
∥

∥k − u
∥

∥

2 −
∥

∥f
∥

∥

2∥
∥k − u

∥

∥

2

= η
∥

∥k − u
∥

∥

2 − (γ +
∥

∥f
∥

∥

2
)
∥

∥k − u
∥

∥

2

= η
∥

∥k − u
∥

∥

2 − η

2

∥

∥k − u
∥

∥

2

=
η

2

∥

∥k − u
∥

∥

2
.
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This concludes the first part, i.e. Ξ(k; u) ≥ 0.
Consequently, the second estimate follows easily,

J
Sur(k; u) = J(k) + Ξ(k; u)

≥ J(k) +
η

2

∥

∥k − u
∥

∥

2

≥ J(k).

We conclude this chapter and thesis with a numerical example in order to
illustrate the proposed method and algorithm.

5.4 Numerical Example

In this section we shall test the performance of the proposed method and
AM algorithm through the two dimensional convolution operator equation.
More precisely we convolve an image2 composed by three levels of grey with a
blurring kernel described by a Gaussian function (see the Figure 5.1 for more
details).
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Figure 5.1: From left to right: true image f true, blurring Gaussian kernel k0
and convolved data g0.

One cycle of the alternating minimisation problem (5.5) consists of two
steps, each one solves instead a linear and convex minimisation over one vari-
able, while the other one is fixed. Firstly, solving (5.5a) we fix kn and find the
solution fn+1 through, e.g., a conjugate gradient method. Secondly, solving
(5.5b) we fix fn+1 from the previous step and solve the Shrinkage minimisa-
tion problem described on [23] and we get kn+1. We shortly remark that this
optimisation problem has to be first recast in a Tikhonov-type with an aug-
mented misfit (discrepancy) term, so we can construct a surrogate functional

2DK Computational Mathematics’ logo from JKU Linz.
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to remove some nonlinear term. The algorithm starts with an initial guess k0

and one cycle ends when we have the pair solution (kn+1, fn+1).
Numerical experiments are performed from given measurements not only

for the data, but also for the kernel. An example of the initial noisy data and
noisy kernel is illustrated on Figure 5.2, where we add 8% of white noise.
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Figure 5.2: Measurements: noisy kernel (left) and noisy data (right), both
with 8% relative white noise error.

The numerical results are given in the Figure 5.4, which displays in each
row three graphics: the approximated image, the reconstructed kernel and its
convolution. It plots a collection of numerical solutions computed from four
samples with 8%, 4%, 2% and 1% noise level on both measurements, respect-
ively in each row from top to bottom. Moreover, we compare the numerical
reconstruction with the true image and kernel; the errors are displayed in the
Table 5.1. Either numerically or visually one can conclude that dbl-RTLS is
indeed a regularisation method, since its reconstruction and computed data
improve as the noise level decreases.

The Figure 5.3 illustrates the significant improvement from the initial given
noisy data (with 8% relative noise) compared to the one obtained from the
dbl-RTLS solution. We also remark that for higher noise levels the dbl-RTLS
reconstruction gives more than 10% accuracy than the standard Tikhonov re-
construction. On the other hand, for small noise levels, numerical experiments
suggest that the improvement obtained from the dbl-RTLS method maynot
payoff its computational cost.
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Figure 5.3: Firs row: noisy data (left) and true data (right). Second row: data
attainability obtained from Tikhonov method (left) and dbl-RTLS method
(right).

ε δ
∥

∥kn − k̄
∥

∥

2

∥

∥fn − f̄
∥

∥

2
SNR fn SNR kn β α

8% 8% 3.64384e-01 1.73112e-01 8.62762 10.5621 0.45254 0.12466
4% 4% 2.41851e-01 1.50364e-01 12.1164 12.2723 0.22627 0.07841
2% 2% 2.15457e-01 1.36483e-01 13.0996 13.1291 0.11313 0.04937
1% 1% 1.67541e-01 1.25965e-01 15.1905 13.6879 0.05656 0.03109

Table 5.1: Error with L2-norm and SNR (signal-to-noise ratio).
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Figure 5.4: From left to right columns: deconvolution solution fn, the recon-
struction of the characterising function kn and the attained data gn. From the
top to bottom each row is the solution given by the AM algorithm initiated
with 8%, 4%, 2% and 1% relative error for both gδ and kǫ.
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Conclusions and Future Work

In this thesis we have explored an inverse problem in a different level,
that is to say, instead of considering only noise on the data we also took into
account the case where also the operator, or the function which characterises
the operator, is contaminated with some noise.

Our approach to the problem combined the essential elements of both de-
terministic and theoretical interpretation of Tikhonov regularisation. Specific-
ally, we designed a method not only to find a stable solution for the underlying
ill-posed problem, but also to capture important features of the characterising
function to be recovered. Observe that most of the approaches available in
the literature also modify the discrepancy term in oder to improve the quality
of the pair data and operator. Nonetheless our strategy stands up by adding
an additional regularisation term to the characterising function and so we are
able to give a complete qualitative and quantitative convergence results.

In detail, the first part of this thesis is intended for an overview about
inverse problems which covers the most fundamental definitions and concepts.
Following, we added a survey on Tikhonov-type methods also found in the
literature, but here they were conveniently classified according the nature of
the operator and source condition. Finally, we reviewed the most influential
technique which enlightens our work, namely, the regularised total least squares
problems.

In the second part of this thesis, the core of this dissertation, was dedicated
to introduce the new methodology to solve the underlying ill-posed problem,
the so called double regularised total least squares.

This novel scheme was presented in the Chapter 4 and also published
in the most influential journal for the inverse problems community, see [6].
More explicitly we provided convergence and stability results which classify the
dbl-RTLS as a regularisation method. In particular we would like to point
out once more the remarkable result presented in the same chapter, namely,
the convergence rates for both solution and operator reconstructions. Note
that similar methods found in the literature can provide at most convergence
results only for the regularised solution. The rates of convergence was achieved
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by combining key ingredients as source condition and sub-differentiability with
the concept of Bregman distances. Nonetheless, the outcomes are still compre-
hensible and comparable with advanced results well known, also summarised
for convenience of the reader in the Chapter 2.

This dissertation would not be complete without a detailed study on nu-
merical implementation. One of main drawbacks to our approach is that the
minimisation problem to be solved becomes nonlinear even when the operator
is linear. Jointly with non-convexity and non-differentiability that may ap-
pear, depending of the regularisation term, the most natural strategy to tackle
this problem was applying an alternating minimisation algorithm.

Experimental results showed that our algorithm brought out restoration
to the characterising function while finding a stable solution for the problem.
Once compared against traditional techniques, where is sought only a recon-
struction of the solution, the total signal-to-noise ratio (SNR) for the pair is
improved. Although the computational efforts associated to the alternating
minimisation algorithm are relatively low, since we solved in each step a linear
problem, numerical experiments are more likely to payoff for problems with lar-
ger noise levels than for problems with relative low noise in the characterising
functional. In the latter case, similar results are also given by Tikhonov-type
regularisation method; which is common feature found in the classical RTLS.
Indeed, as the noise level decreases, the dbl-RTLS solution converges to the
(standard) regularised solution.

The work proposed in this thesis provided not only new perspectives on
finding a stable solution while dealing with the instability issues mentioned,
but also gave the theoretical and numerical tools required. Even though our
main target problem has been solved, the main issues we dealt with now suggest
numerous venues for possible extensions and future work. Therefore we list a
few interesting future directions that require further investigation:

• extending the theory to a general class of nonlinear operators;

• extending the theory for Banach spaces and topological spaces;

• learn from the finite dimensional case and extend the idea of using the

weighted least squares term, namely,
‖Af − gδ‖2

1 + ‖f‖2
, as a generalised misfit

(discrepancy) term;

• extending the regularisation properties for f , e.g., deriving rates of con-
vergence for the non-identity operator in case of quadratic regularisation;

• extending the regularisation functional of f to a general convex and
weakly lower semi-continuous functional;
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• studying and adapting the discrepancy principle to choose the regular-
isation parameter for multiple parameter case;

• studying the variational inequality condition (VI) for the case of aug-
mented (non-standard) discrepancy term and deriving also rates of con-
vergence;

• finding new techniques to minimise the dbl-RTLS functional and compare
it against the AM algorithm.
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Appendix A
Preliminaries and Related Topics in

Functional Analysis

“A mathematician is a person who can find analogies between
theorems; a better mathematician is one who can see analogies
between proofs and the best mathematician can notice ana-
logies between theories. One can imagine that the ultimate
mathematician is one who can see analogies between analo-
gies.”

Stefan Banach

Functional analysis plays an important role in the applied sciences as well
as in the inverse problems itself. Therefore we aim in this chapter to collect few
essential concepts and results from classical literature; for a complete survey
we recommend the following books [84, 97, 52, 87].

A.1 Normed and Banach Spaces

A normed space is a vector space with a metric defined by a norm (gener-
alisation of the elementary concept of the length of a vector). A Banach space
is a complete normed space.

A mapping from a normed space X into a normed space Y is called an
operator. Of particular importance are so-called bounded linear operators
since they are continuous and take advantage of the vector space structure.

Definition A.1.1. Let X and Y be normed spaces and L : D(L) → Y a linear
operator, where D(L) ⊂ X. The operator L is said to be bounded if there is a
real number c such that for all x ∈ D(L),

∥

∥Lx
∥

∥ ≤ c
∥

∥x
∥

∥
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A mapping from X into the scaler filed R or C is called a functional.
In particular they are operators and all definitions and theorems for linear
operators still hold.

It is of basic importance that the set of all linear functionals defined on a
vector space X can itself be made into a vector space. This space is denoted
by X∗ and is called the algebraic dual space of X.

We can go a step further and consider the algebraic dual (X∗)∗ of X∗,
whose elements are the linear functionals defined on X∗. We denote by X∗∗

and call it the second algebraic dual space of X.

The main point to consider X∗∗ is that we can obtain an interesting and
important relation between X and X∗∗. First mind the notation

Space General element Value at a point
X x -
X∗ f f(x)
X∗∗ g g(f)

To each x ∈ X there corresponds a gx ∈ X∗∗, defined as gx(f) = f(x) for
f ∈ X∗ variable. This defines a mapping C : X → X∗∗ as x 7→ gx, called the
canonical mapping.

It can be shown that C is injective, see [52]. Since C is linear, it is an
isomorphism of X onto the range R(C) ⊂ X∗∗. If C is surjective (hence
bijective), so that R(C) = X∗∗, then X is said to be algebraically reflexive.

Some desirable properties of finite dimensional normed spaces are related
to the concept of compactness.

Definition A.1.2. A metric space X is said to be compact if every sequence
in X has a convergent subsequence. A subset M of X is said to be compact if
M is compact considered as a subsapce of X, that is, if every sequence in M
has a convergent subsequence whose limit is an element of M .

Compacts sets are important since they are “well-behaved”, i.e., they have
several basic properties similar to those of finite sets and not shared by non-
compact sets.

Theorem A.1.3 ([52, Thm 2.5-6]). Let X and Y be metric spaces and T :
X → Y a continuous mapping. Then the image of a compact subset M of X
under T is compact

Corollary A.1.4 ([52, Cor 2.5-7]). A continuous mapping T of a compact
subset M of a metric space X into R assumes a maximum and a minimum at
some point of M .
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Let us restrict to the case of bounded linear operators from X into Y (both
real or both complex normed spaces) and we denote this set by B(X, Y ). By
defining the norm

‖T‖ = sup
x∈X,x 6=0

‖Tx‖
‖x‖ = sup

x∈X,‖x‖=1

‖Tx‖

B(X, Y ) is a normed space. Moreover, it is a Banach space if Y is a Banach
space.

Comparing with the algebraic dual space defined previously, we define have
the following similar definition.

Definition A.1.5. Let X be a normed space. Then the set of all bounded
linear functionals on X constitutes a normed space with norm defined by

‖f‖ = sup
x∈X,x 6=0

|f(x)|
‖x‖ = sup

x∈X,‖x‖=1

|f(x)|

which is called the dual space of X and is denoted by X ′.

Since a linear functional on X maps X into R or C(which are complete
with the usual metric), we see that X ′ is B(X, Y ), with Y = R or Y = C.
Hence the following result is basic.

Theorem A.1.6 ([52, Thm 2.10-4]). The dual space X ′ of a normed space X
is a Banach space (whether or not X is).

We can defined, as previously, X ′′ the second dual space of X or bidual
space of X . Moreover we also define C the canonical embedding of X into X ′′

in order to define reflexive spaces, but mind that now the element f is bounded
(not only linear) and therefore gx is also bounded.

Definition A.1.7. A normed space X is said to be reflexive if R(C) = X ′′

where C : X → X ′′ is the canonical mapping given by x 7→ gx and gx(f) =
f(x), f ∈ X ′ variable.

Usually we refer to spaces with infinite dimension, because it is known that
every finite dimensional (vector) normed space is reflexive, [52, Thm 4.6-5].

A.2 Hilbert Spaces

In a general normed space is missing some condition for orthogonality (per-
pendicularity) which is important tool in many applications. Therefore in this
section we shall review Hilbert spaces, i.e., a complete inner product space
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An inner product on X is a mapping of X × X into the scalar field K of
X , i.e., every pair of vectors x and y is associated a scalar denoted by

〈

x , y
〉

.
This mapping is conjugate symmetric, linear in the first argument and positive
definite.

They are the most natural generalisation of Euclidean space, also a special
normed spaces. For instance, an inner product on X defines a norm on X
given by

‖x‖ =
√

〈

x , x
〉

and a metric on X given by

d(x, y) = ‖x− y‖ .

Not all normed spaces are inner product spaces. However, a norm on an
inner space satisfies the parallelogram equality

‖x+ y‖2 + ‖x− y‖2 = 2
(

‖x‖2 + ‖y‖2
)

. (A.1)

We can also add the Apollonius’ identity

‖z − x‖2 + ‖z − y‖2 = 1

2
‖x− y‖2 + 2

∥

∥

∥

∥

z − 1

2
(x+ y)

∥

∥

∥

∥

2

. (A.2)

An element x ∈ X is said to be orthogonal to a element y ∈ X if
〈

x , y
〉

= 0
and we write x ⊥ y. Note that under this assumption we can define the dual
pairing for (ψ, u) ∈ U∗ × U, where ψ ∈ R(F ∗) as

〈

ψ , u
〉

=
〈

F ∗ν , u
〉

:= 〈ν , Fu〉
H
,

for some ν ∈ H.

A.3 Fourier Transform

The continuous Fourier Transform (FT), more precisely non-unitary defin-
ition, for a given function f and its inverse Fourier Transform (IFT) are given
respectively as follows

f̂(w) =

∫ +∞

−∞

f(t) exp(−iwt)dt (A.3)

and

f(t) =
1

(2π)n

∫ +∞

−∞

f̂(w) exp(iwt)dw.
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Since the numerical experiments given in this thesis are conducted via
MATLAB, we should compare its internal discrete function with the FT and
IFT given above, namely:

F [l] =
N
∑

n=1

f [n] exp

(

−2π

N
i(l − 1)(n− 1)

)

(A.4)

and

f [n] =
1

N

N
∑

l=1

F [l] exp

(

2π

N
i(l − 1)(n− 1)

)

(A.5)

where 1 ≤ l ≤ N and 1 ≤ n ≤ N .
An exact relationship between the FT and the discrete Fourier Transform

(DFT) was established by Cooley, Lewis and Welch in 1967 [20]: let f(x)
and f̂(w) be the FT pair and let fX(x) and f̂Ω(w) be their periodic versions
with period 2X and 2Ω respectively; then, if one takes N equispaced samples
of these functions in the interval [−X,X ] and [−Ω,Ω], these samples form a
DFT pair provided that

ΩX = π
N

2
.

Following ideas given in [20] and [94] we shall find an explicit formula to
relate the continuous definition with the discrete one, respectively for both FT
and IFT.

A.3.1 Computational Remarks

Given a function f : [a, b] → R, which is periodic of the interval [a, b] one
can transform the definition

f̂(w) =

∫ +∞

−∞

f(t) exp(−iwt)dt

=

∫ b

a

f(t) exp(−iwt)dt

=

∫ b−a
2

− b−a
2

f

(

x+
a+ b

2

)

exp

(

−iw
(

x+
a + b

2

))

dx

= exp

(

−iw
(

a+ b

2

))
∫ b−a

2

− b−a
2

f

(

x+
a+ b

2

)

exp (−iwx) dx

with the change of variable x = t− (a+ b)/2.
Therefore we have a function f : [−X,X ] → R, where X = (b−a)/2. Now

we can define the compute a periodic function f̂(w) choosing w ∈ [−Ω,Ω],
where

Ω = π
N

2X
= π

N

b− a
=

π

∆x
.
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We have N equispaced samples of these functions in the intervals [−X,X ]
and [−Ω,Ω], with

X =
b− a

2
and Ω =

πN

b− a
.

Then we shall approximate the integral by the trapezoidal rule using the
following sampling points:

xn = −X + (n− 1)∆x : n = 1, . . . , N and ∆x =
2X

N
=
b− a

N
(A.6)

with the notation xn := x[n] and

wl = −Ω + (l − 1)∆w : l = 1, . . . , N and ∆w =
2Ω

N
=

2π

b− a
(A.7)

with the notation wl := w[l].

Let us remind that the trapezoidal rule for a function φ(x) given N + 1
points

∫

φ(x)dx =
N
∑

n=1

φ(xn) + φ(xn+1)

2
∆x

=

(

φ(x1)

2
+

N
∑

n=2

φ(xn) +
φ(xN+1)

2

)

∆x

= ∆x

N
∑

n=1

φ(xn)

where we assume without loss of generality φ(x1) = φ(xN+1).

Then, we can compute f̂(wl), i.e., on the N discretisation samples

f̂(wl) = exp

(

−iwl

(

a + b

2

))
∫ b−a

2

− b−a
2

f

(

x+
a + b

2

)

exp (−iwlx) dx

≈ exp

(

−iwl

(

a + b

2

))

∆x
N
∑

n=1

f

(

xn +
a + b

2

)

exp (−iwlxn)

for 1 ≤ l ≤ N .

Let us comment on the previous equation, namely we shall divide into three
parts.
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First, due the discretisation (A.6) and (A.7), the term exp (−iwlxn) be-
comes

exp (−i (−Ω + (l − 1)∆w) (−X + (n− 1)∆x))

= exp (−i(ΩX − Ω(n− 1)∆x− (l − 1)X∆w + (l − 1)(n− 1)∆x∆w))

= exp

(

−i
(

N
π

2
− (n− 1)π − (l − 1)π + (l − 1)(n− 1)

2π

N

))

= exp

(

−iπN
2

)

exp
(

i(n− 1)π + (l − 1)π
)

exp

(

−i(l − 1)(n− 1)
2π

N

)

for 1 ≤ l ≤ N and 1 ≤ n ≤ N .
Which leads to the following exponentials, with N = 2p where p ≥ 2

exp

(

−iπN
2

)

= exp
(

−iπ2p−1
)

= cos(π2p−1)− i sin(π2p−1) = 1

for all p ≥ 2.

exp (i(n− 1)π + (l − 1)π) = exp (i(n− 1)π) exp (i(l − 1)π) = (−1)l−1(−1)n−1

Therefore, we summarize

exp (−iwlxn) = (−1)l−1(−1)n−1 exp

(

−i(l − 1)(n− 1)
2π

N

)

(A.8)

Second remark,

f

(

xn +
a+ b

2

)

= f

(

(−X + (n− 1)∆x) +
a+ b

2

)

= f

(

−b− a

2
+ (n− 1)∆x+

a+ b

2

)

= f (a+ (n− 1)∆x)

= f [n]

it is the function on the original sampling within the interval [a, b], that is,
f [n] := f(tn) where tn = a+ (n− 1)∆t, ∆t = b−a

N
= ∆x, for 1 ≤ n ≤ N .

All together we have

f̂(wl) = exp

(

−iwl

(

a+ b

2

))
∫ b−a

2

− b−a
2

f

(

x+
a+ b

2

)

exp (−iwlx) dx

≈ exp

(

−iwl

(

a+ b

2

))

∆x(−1)l−1

N
∑

n=1

f [n](−1)n−1 exp

(

−i(l − 1)(n− 1)
2π

N

)
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where 1 ≤ l ≤ N .
We can compute the Fourier transform F [l] of the function f [n](−1)n−1

through (A.4) and therefore the approximation of the continuous Fourier trans-
form is given by

f̂(wl) ≈ exp

(

−iwl

(

a+ b

2

))

(−1)l−1∆xF [l]

where 1 ≤ l ≤ N .
Following the previous idea, we can reconstruct the function f through its

inverse Fourier transform

f(t) =
1

2π

∫ +∞

−∞

f̂(w) exp(iwt)dw

=
1

2π

∫ +Ω

−Ω

f̂(w) exp(iwt)dw

≈ 1

2π

N
∑

l=1

f̂(wl) exp(iwlt)∆w.

Applying the same change of variable before, namely x = t− (a+ b)/2, we
can compute this approximation at each discrete point tn for 1 ≤ n ≤ N

f(tn) = f

(

xn +
a + b

2

)

≈ 1

2π

N
∑

l=1

f̂(wl) exp

(

iwl

(

xn +
a + b

2

))

∆w

=
1

2π

N
∑

l=1

f̂(wl) exp

(

iwl

(

a+ b

2

))

exp(iwlxn)∆w

(A.8)
=

1

2π
∆w

∑N
l=1 f̂(wl) exp

(

iwl

(

a + b

2

))

(−1)n−1(−1)l−1 exp
(

i(l − 1)(n− 1)2π
N

)

= (−1)n−1 1

∆x

1

N

N
∑

l=1

G[l] exp

(

i(l − 1)(n− 1)
2π

N

)

(A.5)
= (−1)n−1 1

∆x
g[n]

where

G[l] := f̂(wl)(−1)l−1 exp

(

iwl

(

a + b

2

))

and g[n] is the DFT1 of the function G defined above.

1The MATLAB’s routine is know as fft.
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A.3.2 Numerical Example

On the following we illustrate (see Figure A.1) the FT of the rectangular
function, also called unit pulse,

f(x) =

{

1 |x| ≤ 1

0 elsewhere
(A.9)

and its known IFT, called Sinc function

f̂(w) =
2 sin(w)

w
. (A.10)
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Figure A.1: (Left) Rectangular function and its reconstruction with IFT.
(Right) Sinc function and FT.

A.4 Convolution Operator

One of the most important concepts in Fourier theory is related to the
convolution operator. Convolutions arise in many applications. Because of a
mathematical property of the Fourier transform, referred to as the convolution
theorem, it is convenient to carry out calculations involving convolutions.

For a k ∈ L and f ∈ L2 one can define the convolution operator as

(k ∗ f)(x) :=
∫

R

k(x− t)f(t)dt (A.11)

where k ∗ f ∈ L2. Moreover it holds ‖k ∗ f‖ ≤ ‖k‖‖f‖.

101



Appendix A

Theorem A.4.1. The Fourier transform of a convolution is the product of the
Fourier transforms, i.e.,

k̂ ∗ f = k̂f̂

Proof. The proof follows straightforward as

(̂k ∗ f)(w) (A.3)
=

∫

R

(k ∗ f) (x) exp(−iwx)dx

(A.11)
=

∫

R

(
∫

R

k(x− t)f(t)dt

)

exp(−iwx)dx

=

∫

R

f(t)

∫

R

k(x− t) exp(−iwx)dxdt

=

∫

R

f(t)

∫

R

k(y) exp(−iw(y + t))dydt

=

∫

R

f(t) exp(−iwt)
∫

R

k(y) exp(−iwy)dydt

= k̂f̂

For further information on its theory and applications we recommend to
the reader the book [9].

A.5 Wavelets and Multi-Resolution Analysis

For the matter of brevity, in this appendix we comment on Haar wavelet
on 1 dimensional case, historically, the first orthonormal wavelet basis, con-
structed long before the term “wavelet” was coined, [22].

The key here is multi-resolution analysis (MRA). The theory was intro-
duced in the eighties by Stephane Mallat and Yves Meyer. The basic idea
consists a sequence of nested subspaces of L2(R) such that

1. {0} ⊂ . . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . ⊂ L2(R) ,

2.
⋃

j Vj = L2(R) ,

3.
⋂

j Vj = {0},

4. φ(·) ∈ Vj if and only if φ(2−j·) ∈ V0 ,

5. there exists a function φ(·) ∈ V0, such that the system {φ(· − l)}l∈Z is an
orthonormal basis in V0.
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There are many sequences of subspaces which satisfies the first three con-
ditions and they are not MRA. We emphasize last two statements. First one,
all subspaces are scaled version of V0. Second, V0 is invariant under integer
translation and there exists an orthonormal basis (ONB) in V0.

Given a function φ ∈ L2(R) we define

φj,l(t) = 2j/2φ(2jt− l) j, l ∈ Z

where j is the scaling (or dilation) parameter and l is the shift (or translation)
parameter.

One can show if {φ0,l} is an ONB for V0, so {φj,l} is an ONB for Vj, ie,

Vj = span{φj,l | l ∈ Z}.
The most important remark comes from the nested subspaces assumption

Vj ⊂ Vj+1.

For a fixed level j one element on the refined space Vj+1 can be decomposed
into two parts, one in the coarse space Vj and then in an orthogonal subspace
Wj. Therefore,

Vj+1 = Vj ⊕Wj. (A.12)

In this decomposition, from a coarse to a refined level j, we keep information
on the previous subspace and add new details are attached on Wj. The space
Wj is called detail space or wave space.

From second assumption of MRA, given f ∈ L2(R) it is easy to see

lim
j→∞

Pjf = f

where Pj is the projection operator onto Vj. Let J be the level which we want
to approximate some function, by the refinement equation (A.12)

VJ = VJ−1 ⊕WJ−1

= (VJ−2 ⊕WJ−2)⊕WJ−1

= (VJ−3 ⊕WJ−3)⊕WJ−2 ⊕WJ−1

...

= V0 ⊕
J−1
⊕

j=0

Wj .

Therefore, taking the limit for J going to infinite, we decompose

L2(R) = V0 ⊕
∞
⊕

j=0

Wj. (A.13)
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We can imagine with this decomposition one starts at the coarse level 0
and one improves the result adding successively a finer level and so adding
more details.

One possible choice for a function which satisfies MRA is

φ(t) =

{

1 if 0 ≤ t < 1

0 otherwise .
(A.14)

This function is called father wavelet, generating function or usually scaling
function, Figure A.2.
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Figure A.2: Haar scaling.
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Figure A.3: Haar wavelet.

Associated with the scaling function, we define the mother Haar wavelet
function (Figure A.3)

ψ(t) =











1 if 0 ≤ t < 1
2

−1 if 1
2
≤ t < 1

0 otherwise

and the Haar wavelets (see Figure A.4)

ψj,l(t) = 2j/2ψ(2jt− l) j, l ∈ Z. (A.15)

This sequence was proposed in 1909 by Alfréd Haar, [38].

By the orthogonal decomposition of L2 in (A.13), given any function f ∈
L2(R)

f =
∑

l∈Z

〈

f , φ0,l

〉

φ0,l +

∞
∑

j=0

∑

l∈Z

〈

f , ψj,l

〉

ψj,l (A.16)

We highlight this decomposition holds in general MRA in 1D case for a
pair of scaling and wavelet family function, for instance, Daubechies wavelets
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Figure A.4: Example of the Haar family with J = 1

[22]. For upward dimensions it also holds adapting the formula in a proper
way, see the books [22, 64] for further details.

In our particular case, discrete Haar wavelet are considered on the interval
[0, 1]. Considering the support of φj,l and ψj,l, namely 0 ≤ 2jt − l < 1, it
is straightforward to conclude that is enough to select the shifts between 0
and 2j − 1. In the Equation (A.16) the summation wrt l for wavelet function
regards

0 ≤ l < 2j − 1.

It is clear the first summation where j = 0, the Haar scaling function when
shifted is entirely outside of the interval [0, 1]. Therefore we do not take any
translations from scaling functions, l = 0.

A.5.1 Wavelet Representation

From now on we setup the following notation: the family {ϕλ}λ∈Λ consti-
tutes an orthonormal basis of Hilbert space X , where

Λ = {1} ∪
{

(j, l) | j ∈ N0, 0 ≤ 2j − 1
}

and

ϕ =

{

φ if λ = 1

ψj,l if λ = (j, l).
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Given a signal represented as a function f ∈ L2(R), we can decompose as

f =
∑

λ∈Λ

〈

f , ϕλ

〉

ϕλ, where
〈

f , ϕλ

〉

=

∫ 1

0

ϕλ(s)f(s)ds.

Denoting F (f) the coefficient sequence of f ∈ X with respect to the Haar
wavelets, i.e.,

F : X −→ ℓ2
f 7−→ F (f) = {

〈

f , ϕλ

〉

}λ∈Λ, (A.17)

we can represent the signal f by the sequence x = F (f) which belongs to ℓ2.
On account of numerical reasons we have to truncate the summation on

j up to a certain fixed index J , called maximal level for wavelet. Ideally J
should be taken as large as possible, however it is possible only in theory.

For instance, the function given as discrete vector with N = 213 samples
(Figure A.5 left), the coefficient representation has length 512 (Figure A.5
right), which 216 entries are nonzero, this means a sparse representation on
the wavelet basis.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
function

0 100 200 300 400 500 600
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
coefficient sequence w.r.t Haar wavelet

 

 

coefficients

Figure A.5: Function in time domain (left) and the coefficient of its wavelet
decomposition (right).

On this example we picked out J = 8. By combining the indices l and j for
the wavelet family up to maximal index J , plus the first entry of the coefficients
vector, one can compute the length of the coefficients, namely 2J+1.

An important relation between the coefficients x := F (f) and the function
f is

∥

∥f
∥

∥

2

L2
=
∥

∥x
∥

∥

2

ℓ2
.

With the coefficients x we can reconstruct the function via

f =
∑

λ∈Λ

xλϕλ.

This theory is extremely useful for solving inverse problems whenever one
is interested in a sparse reconstruction. Also it has desirable properties for
imaging analysis.
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A.6 Derivatives

In the theory of nonlinear problems the assumptions are with respect to
the linearisation of the operator, or more precisely, to its derivative. On the
following we define the Gâteaux and Frechét derivates.

Definition A.6.1. Let u ∈ Ω ⊂ U and d be arbitrary in U. If the limit

dF (u; d) = lim
t→0

1

t
[F (u+ td)− F (u)]

exists, it is called the Gâteaux differential of F at u with increment d. If
the limit exists for each d ∈ U, the transformation F is said to be Gâteaux
differentiable at u.

Definition A.6.2. Let F be a transformation defined on an open domain Ω
in a normed space U and having range in a normed space H. If for fixed u ∈ Ω
and each d ∈ U there exists DF (u; d) ∈ U which is linear and continuous with
respect to d such that

lim
‖d‖→0

‖F (u+ d)− F (u)−DF (u; d)‖
‖d‖ = 0

then F is said to be Frechét differential at u and DF (u; d) is said to be the
Frechét differential of F at u with increment d.

Commonly we use the same symbol F ′(u; d) for the Frechét and Gâteaux
differential since generally it is apparent from the context which is meant.

Proposition A.6.3 ([62, Prop 1, §7.2]). If the transformation F has a Frechét
differential, it is unique.

Proposition A.6.4 ([62, Prop 2, §7.2]). If the Frechét differential of F exists
at u, then the Gâteaux differential exists at u and they are equal.

It is relatively simple to apply the concepts of Gâteaux and Frechét differ-
ential to the task of minimising a functional on a linear space, which is a topic
in the Appendix B.
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Appendix B
Optimisation and Non-smooth Analysis

“Nothing at all takes place in the universe in which some rule
of maximum or minimum does not appear.”

Leonhard Euler

In this chapter we consider optimisation of more general objective function-
als. However, much of the theory and geometry insight are based on elements
of functional analysis, provided on the previous chapter, and classical results
on smooth functions. In the literature we find mostly two common geometric
representation of non-linear functionals. The first one, and the most obvious,
is in terms of its graph. Suppose the functional h : U → R, so we look at
elements of the space U × R consisting of ordered pairs (u, r). The graph of
h is the surface in U× R consisting of the points (u, h(u)) with u ∈ U.

The second representation is an extension of representing a linear functional
by a hyperplane. The functional is described by its contours in the space U. A
contour line (also called isoline) of a function of two variables is a curve along
which the function has a constant value. More generally, a contour line for a
function of two variables is a curve connecting points where the function has
the same particular value. The gradient of the function is always perpendicular
to the contour lines. When the lines are close together the magnitude of the
gradient is large: the variation is steep. A level set is a generalisation of a
contour line for functions of any number of variables, see more details in [74].

Unfortunately we do not cover both representation here, for further details
we recommend to the reader to check out the books [82, 19, 26]. On the
following we display a brief collection of classical theorems and definitions.
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B.1 General Theory

Mathematically speaking, optimisation is the minimisation or maximisa-
tion of a function over its variables, which may be subject to some constraints.

Since in the appendix we aim only a short revision for a general setting we
should first of all introduce the following notation:

• u is the vector of variables, also called unknowns or parameters ;

• h is the objective function, a functional of u that we want to maximise
or minimise;

• ci are constraint functions of u, usually they are separated into equations
(where we denote by i ∈ E) and inequalities (where we denote by i ∈ I)

Therefore a general minimisation problem can be written as follows:

minimise h(u)
subject to ci(u) = 0, i ∈ E

ci(u) ≥ 0, i ∈ I

(B.1)

Without loss of generality we restrict to minimisation problems, since we
maximisation can be obtained by minimising −h.

Once the model is defined as above, one algorithm can be used to find the
variables that optimise the objective functional. After succeeding in the task
of finding a solution we have to check if it is indeed a solution of the problem,
which leads us to optimality condition.

The general problem (B.1) can be classified as linear, non-linear, convex,
differentiable or non-differentiable depending on the objective function and
constraints.

If E = I = ∅ then (B.1) is called unconstrained problem, otherwise it is
called constrained problem. It is also very important to highlight that un-
constrained problems arise also as reformulations of constrained optimisation
problems, in which the constraints are replaced by penalisation terms added
to objective function that have the effect of discouraging constraint violations,
e.g., the Tikhonov functional is mostly considered as an unconstrained problem
[33].

In general, for non-linear problems, both constrained and unconstrained,
may possess local solutions that are not global solutions. Algorithms may not
always find global solutions. Therefore convex problems are becoming very
popular, in particular linear problems, where local solutions are also global
solutions.
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B.1.1 Unconstrained Optimisation

For a general unconstrained optimisation problem we refer to

minimise
u

h(u) (B.2)

where u belongs to the entire space U and h is assumed to be differentiable
until further remark.

We say u is a global solution of h if h(u) ≤ h(u) for all u ∈ U. Since the
task of finding a global solution is not always an easy task, we can accept a
local solution. Namely, u is a local solution if there is a neighbourhood Ω of u
such that h(u) ≤ h(u) for all u ∈ Ω.

On the following we cite the so called, respectively, First-Order Necessary
Conditions, Second-Order Necessary Conditions and Second-Order Sufficient
Conditions.

Theorem B.1.1 ([73, Thm 2.2]). If u is a local minimiser and h is continu-
ously differentiable in an open neighbourhood of u, then h′(u) = 0.

Theorem B.1.2 ([73, Thm 2.3]). If u is a local minimiser of h and h′′ exists
and is continuous in an open neighbourhood of u, then h′(u) = 0 and h′′(u) is
positive semidefinite.

Theorem B.1.3 ([73, Thm 2.4]). Suppose that h′′ is continuous in an open
neighbourhood of u and that h′(u) = 0 and h′′(u) is positive definite. Then u
is a strict local minimiser of h.

The necessary and sufficient condition are essential tools for designing an
efficient algorithm, however the smoothness assumption is not always ful-
filled. Therefore we shall see in Section B.2 a more general definition of sub-
derivatives and generalisation of the results given above.

B.1.2 Constrained Optimisation

A general formulation for this problem is given as (B.1), where E and I are
two finite sets of indices. We define the feasible set Ω to be the set of points u
that satisfy the constraints; that is

Ω = {u | ci(u) = 0, i ∈ E; ci(u) ≥ 0, i ∈ I}
As in the previous subsection, we also discuss necessary and sufficient con-

ditions. For that we need another definition, and one of the most important
terminology, is the following:

The active set A(u) at any feasible u consists of the equality constraint
induces from E together with the indices of the inequality constraints i for
which ci(u) = 0; that is,

A(u) = E ∪ {i ∈ I | ci(u) = 0}
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Definition B.1.4 (LICQ). Given the point u and the active set A(u) defined
above, we say theta the linear independence constraint qualification (LICQ)
holds if the set of active constraint gradients {∇ci(u), i ∈ A(u)} is linearly
independent.

As a preliminary to stating the necessary conditions, we have to define the
Lagrangian function for the general problem (B.1)

L(u, λ) = h(u)−
∑

i∈E∪I

λici(u)

The necessary condition defined In the following are called first-order ne-
cessary conditions, because they are concerned with properties of the gradients
(first derivatives) of the objective and constraint functions.

Theorem B.1.5 ([73, Thm 12.1]). Suppose that u is a local solution of (B.1),
that the functions h and ci are continuously differentiable, and the LICQ holds
at u. Then there is a Lagrange multiplier vector λ̄ with components i ∈ E ∪ I,
such that the following conditions are satisfied at (u, λ̄)

∇uL(u, λ̄) = 0, (B.3a)

ci(u) = 0, ∀i ∈ E (B.3b)

ci(u) ≥ 0, ∀i ∈ I (B.3c)

λ̄i ≥ 0, ∀i ∈ I (B.3d)

λ̄ici(u) = 0, ∀i ∈ E ∪ I (B.3e)

The conditions (B.3) are often known as the Karush-Kuhn-Tacker condition
or KKT condition for short.

There are more results which depend on new definitions and special sub-
spaces called cones, also further qualification conditions. However we left them
to the read to check them in the book [73]. We continue in the next Section
with the case where smoothness is not required.

B.2 Generalised Derivatives

The definition of subdifferential for convex functions appeared first in 1960
by Moreau and Rockafellar [81]. The Fenchel subdifferential of a functional
h : U → R (or [−∞,+∞]) at ū ∈ U is the set

∂Fh (ū) = {ξ ∈ U∗ | h(ū+ d)− h(ū) ≥
〈

ξ , d
〉

∀d ∈ U}.

For nonconvex function the extension of this definition is due Frank Clarke
on 1973. It is based on generalised directional derivative for locally Lipschitzian
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functions on Banach spaces. He performed pioneering work in the area of
nonsmooth analysis spread far beyond the scope of convexity, [19]. The Clark
subdifferential of h at ū is defined by

∂Ch (ū) = {ξ ∈ U∗ | h◦(ū; d) ≥
〈

ξ , d
〉

∀d ∈ U}

where

h◦(ū; d) = lim sup
u→ū
t↓0

h(u+ td)− h(u)

t

is the generalised directional derivative.
We add to this list two more definitions of subdifferentials. As preliminary,

for a set-valued mapping G : U ⇒ U∗ between a Banach space U and its
topological dual U∗, the set

Lim sup
u→ū

G(ū) = {ξ ∈ U∗ | ∃ un → ū and ξn
∗
⇀ ξ with ξn ∈ G(un) ∀n ∈ N}

denotes the sequential Painlevé-Kuratowski upper/outer limit of a set-value
mapping. In another words, it is the set of limits on U∗ with desirable conver-
gence property.

On between the previous two definitions is the Fréchet subdifferential.
Given a lower semicontinuous function h, the ε-Fréchet subdifferential of h
at ū is defined by

∂̂εh (ū) =

{

ξ ∈ U
∗ | lim inf

‖d‖→0

h(ū+ d)− h(ū)−
〈

ξ , d
〉

‖d‖ ≥ ε

}

.

If |h(ū)| = ∞ then ∂̂εh (ū) = ∅. When ε = 0 the set ∂̂0h (ū) will be denoted
by ∂̂h (ū).

The limiting subdifferential or Mordukhovich subdifferential of h at ū is
defined as

∂̂h (ū) = Lim sup
u

h
→ū
ε↓0

∂̂εh (ū)

where the notation u
h→ ūmeans u→ ū with h(u) → h(ū). This subdifferential

corresponds to the collection of weak-star sequential limiting points of the so-
called ε-Fréchet subdifferential.

On [21] the authors emphasize the following inclusion property between the
sets

∂Fh (ū) ⊂ ∂̂h (ū) ⊂ ∂Ch (ū) .

The intermediary set of subgradients ∂̂h (ū) can be nonconvex and therefore
it is hard for some analysis, while Clark subdifferential is always nonempty
convex subset of U∗ whenever ū ∈ domh. A very important remark found in
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[18] says the subdifferential definitions generate the same set if the function is
convex. Some basic proprieties of differentiable functions in the classical sense,
like linearity, may be not hold in the subdifferentiable case. More details can
be found in [19, 67].

Another very important fact pointed out in the book [19, Proposition
2.3.15] is: for a general function neither of the set ∂h(x1, x2) and the product
set ∂1h(x1, x2)×∂2h(x1, x2) need be contained in the other, where ∂ih denotes
the partial subderivative with respect to xi for i = 1, 2.

Proposition B.2.1. Optimality condition: If ū minimises h then

0 ∈ ∂Fh (ū)

Example 4. Consider the function R(u) = |u|

0

1

−1

Figure B.1: Function (left) and its subdifferential (right).

B.2.1 Basic Properties

Let M be a subset of the Banach space U. A function h : M → R is said
to satisfy a Lipschitz condition (on M) provided that for some non-negative
scalar K, one has

|h(u)− h(ũ)| ≤ K ‖u− ũ‖ (B.4)

Proposition B.2.2 ([19, Prop 2.1.1]). Let h be Lipschitz of rank K near u.
Then

(a) then function d → h◦(u; d) is finite, positively homogeneous, subadditive
on U and satisfies

|h◦(u; d)| ≤ K ‖d‖

(b) h◦(u; d) is upper semi-continuous as a function of (u, d) and, as a function
of d alone, is Lipschitz of rank K on U.
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(c) h◦(u;−d) = (−h)◦(u; d)

‖ξ‖∗ = sup
{〈

ξ , u
〉

| u ∈ U, ‖u‖ ≤ 1
}

(B.5)

Proposition B.2.3 ([19, Prop 2.1.2 and 2.1.5]). Let h be Lipschitz of rank K
near u. Then

(a) ∂Ch (u) is non-empty, convex, weak*-compact subset of U∗ and ‖ξ‖∗ ≤ K
for every ξ ∈ ∂Ch (u).

(b) for every u ∈ U, one has

h◦(u; d) = max
{〈

ξ , u
〉

| ξ ∈ ∂Ch (u)
}

(c) Let ui and ξi be sequences in U and U∗ such that ξi ∈ ∂Ch (ui). Suppose
that ui → ū and that ξ̄ is a cluster point of ξi in the weak* topology. then
one has ξ̄ ∈ ∂Ch (ū)

The last item states the multifunctional ∂Ch (u) is weak*-closed.

Now we introduce the most natural concept of differentiability linked to
the theory of this chapter: strictly differentiability (Bourbaki).

Definition B.2.4. Let F : U → V be map between Banach spaces. F admits
a strict derivative at ū, an element of L (U,V) denoted DsF (ū), provided that
for each d it holds

lim
u→ū
t↓0

F (u+ td)− F (u)

t
=
〈

DsF (ū) , d
〉

(B.6)

Proposition B.2.5 ([19, Prop 2.2.4]). If h is strictly differentiable at u, then
h is Lipschitz near u and ∂Ch (u) = {Dsh(u)}. Conversely, if h is Lipschitz
near u and ∂Ch (u) reduces to a singleton {ξ}, then h is strictly differentiable
at u and Dsh(u) = ξ.

Monotonicity of sub-gradient: add some comments pointed by Resmerita

Proposition B.2.6 ([19, Prop 2.2.9]). Let h be Lipschitz near each point of
an open convex subset X of U. Then h is convex on U iff the multifunction
∂Ch (·) is monotone on U; that is, iff

〈

u− ũ , ξ − ξ̃
〉

≥ 0 for all u, ũ ∈ U, ξ ∈ ∂Ch (u) , ξ̃ ∈ ∂Ch (ũ) (B.7)
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B.2.2 Basic Calculus

Proposition B.2.7 ([19, Prop 2.3.1]). For any scalar s, one has

∂C
(

sh
)

(u) = s∂C
(

h
)

(u) (B.8)

Proposition B.2.8 ([19, Prop 2.3.2]). If h attains a local minimum or max-
imum at ū, then 0 ∈ ∂Ch (ū).

If hi for i = 1, 2, . . . , n is a finite family of functions each of which is
Lipschitz near u, it follows easily that their sum h =

∑

hi is also Lipschitz
near u. Moreover the following two results hold true.

Proposition B.2.9 ([19, Prop 2.3.3]).

∂C
(

∑

hi

)

(u) ⊂
∑

∂Chi (u)

Corollary B.2.10 ([19, Cor 1]). Equality holds in Proposition B.2.13 if all
but at most one of the functional hi are strictly differentiable at u.

It is often the case that calculus formulas for generalised gradients involve
inclusions, such as in Proposition B.2.13. For instance, equality certainly holds
if all the functions in question are continuously differentiable. However, one
would wish for a less extreme condition: one that would cover the convex case.
A class of functions is

Definition B.2.11. h is said to be regular at u provided

(a) For all d, the usual one-sided directional derivative h′(u; d) exists.

(b) Fora all d, h′(u; d) = h◦(u; d)

This class of function is very useful and mainly contributes as stated in the
following result

Corollary B.2.12 ([19, Cor 3]). If each hi is regular at u, equality holds in
Proposition B.2.13.

Proposition B.2.13 ([19, Prop 2.3.6]). Let h be Lipschitz near u

(a) If h is strictly differentiable at u, then h is regular at u.

(b) If h is convex, then h is regular at u.

(c) A finite linear combination (by non-negative scalars) of functions regular
at u is regular at u.

(d) If h admits a Gâteaux derivative Dh(u) and is regular at u, then ∂Ch (u) =
{Dh(u)}
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Now we introduce the partial generalised gradients or partial sub-gradients.
If U = U1 × U2, are Banach spaces, an let h(u1, u2) on U be Lipschitz near
(u1, u2). We denote by ∂1h(u1, u2) the partial generalised gradient of h(·, u2)
at u1, and respectively, ∂2h(u1, u2) the partial generalised gradient of h(u1, ·)
at u2.

It is a fact that in general neither of the sets ∂h(u1, u2) and ∂1h(u1, u2)×
∂2h(u1, u2) need to be contained in the other. For regular functions, however, a
general relationship does hold between these sets, as presented in the following.

Proposition B.2.14 ([19, Prop 2.3.15]). If h is regular at h(u1, u2), then

∂h(u1, u2) ⊂ ∂1h(u1, u2)× ∂2h(u1, u2)

For non-regular functions we need to define a projection operator, however
we will not cover this case; for more details [19, Sec 2.3].

B.3 Bregman Distance

In this last Section we introduce quickly the so called Bregman distance.

Definition B.3.1. Let Ω ⊂ U a convex set from a Banach space U and h :
Ω → R+ a convex functional, the generalised Bregman distance of h between
the elements u, v ∈ Ω is

Dh

(

v, u
)

=
{

Dξ
h

(

v, u
)

| ξ ∈ ∂h
(

u
)

}

where Dξ
h

(

v, u
)

:= h(v)− h(u)−
〈

ξ , v − u
〉

.

For a visual illustration of the Bregman distance see the Figure B.2

Example 5. Let h be a differentiable functional defined as h(u) = 1
2
‖u‖2.

Therefore the sub-derivative set is unitary ξ = {u} and so the Bregman dis-
tance coincides with the standard metric distance

Dh

(

u, ū
)

=
1

2
‖u− ū‖2 .
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R(u)

u v

R(u) +
〈

h′(u) , v − u
〉

R(v)

U

R

Dh

(

v, u
)

Figure B.2: Bregman distance illustration.
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