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Abstract

This thesis is devoted to the construction, analysis and implementation of efficient and robust nu-
merical methods for linear parabolic time-periodic simulation and optimal control problems. The
discretization of these problems is based on the multiharmonic finite element method whereas new
algebraic multilevel preconditioned minimal residual methods are developed for solving the discrete
problems, which have saddle point structure.

The mathematical and numerical analysis include existence and uniqueness results in a new variational
framework and full a priori and a posteriori error estimates in space and time. Since we consider time-
periodic problems, the multiharmonic finite element method is a very natural approach to discretize
this type of parabolic problems. More precisely, we expand all – given and unknown – functions
into Fourier series in time, truncate them, and then approximate the Fourier coefficients by the finite
element method. This method reduces a large linear time-dependent problem to a sequence of smaller
time-independent ones.

The multiharmonic finite element discretization of linear parabolic time-periodic simulation and op-
timal control problems leads to large systems of symmetric but indefinite linear algebraic equations,
which fortunately decouple into smaller linear systems each of them defining the cosine and sine
Fourier coefficients with respect to a single frequency. The resulting smaller systems have saddle
point structure and can be solved by the preconditioned minimal residual method totally in paral-
lel. Hence, we construct block-diagonal preconditioners resulting in fast converging minimal residual
solvers with parameter-independent convergence rates. The diagonal blocks of these precondition-
ers are sums of stiffness and mass matrices, which can be seen as finite element discretization of
reaction-diffusion type problems with heterogeneous reaction and diffusion coefficients.

Moreover, we present efficient preconditioners for reaction-diffusion type problems that are optimal
in terms of the computational complexity and robust with respect to the reaction and diffusion coef-
ficients. The considered preconditioners belong to the class of so-called algebraic multilevel iteration
methods, which are based on multilevel block factorization and polynomial stabilization. One of the
main achievements of this thesis is not only the construction of preconditioners via the algebraic mul-
tilevel iteration method but also the presentation of a rigorous proof of the robustness and optimal
complexity of these preconditioners. This analysis benefits from the use of symbolic techniques.

Although the main focus of this thesis is the numerical analysis of linear parabolic time-periodic
simulation and optimal control problems, we finally implement the algorithms in C++, perform many
numerical experiments and discuss numerical results which impressively confirm our theoretical find-
ings.
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Zusammenfassung

Diese Dissertation beschäftigt sich mit der Entwicklung, Analyse sowie Implementierung von effizi-
enten und robusten numerischen Verfahren zur Lösung von linearen parabolischen zeitperiodischen
Problemen. Dies beinhaltet sowohl die Simulation als auch die Steuerung dieser Probleme. Wir ver-
wenden die multiharmonische Finite Elemente Methode zur Diskretisierung der Probleme und ent-
wickeln neue algebraische Multilevel-Vorkonditionierer, um wiederum die diskreten Probleme, die
Sattelpunktstruktur haben, mittels des vorkonditionierten MINRES-Verfahrens (vom engl. minimal
residual) zu lösen.

Die detaillierte mathematische und numerische Analyse umfasst sowohl Existenz- und Eindeutigkeits-
resultate sowie a priori und a posteriori Fehlerabschätzungen in Raum und Zeit. Wir definieren hier
neue Funktionenräume im Fourierraum und schaffen somit eine neue Umgebung für entsprechende
Variationsformulierungen. Man kann die multiharmonische Finite Elemente Methode durchaus als
einen natürlichen Zugang zur Diskretisierung von zeitperiodischen Probleme bezeichnen, weil hier al-
le – sowohl gegebene als auch unbekannte – Funktionen in Fourierreihen entwickelt werden und somit
die Periodizität auf natürliche Weise erfüllt wird. Weiters werden die Fourierreihen abgebrochen und
die Fourierkoeffizienten mittels der Finiten Elemente Methode approximiert. Somit reduziert die mul-
tiharmonische Finite Elemente Methode ein großes lineares zeitabhängiges Problem auf eine Reihe
von kleineren zeitunabhängigen Problemen.

Die multiharmonische Finite Elemente Diskretisierung von linearen parabolischen zeitperiodischen
Problemen führt zu großen Systemen linearer algebraischer Gleichungen mit symmetrischen, aber
indefiniten Systemmatrizen, die glücklicherweise in kleinere lineare Systeme in den Fourierkoeffi-
zienten zerfallen und alle parallel gelöst werden können. Diese kleineren Systeme haben ebenfalls
eine Sattelpunktstruktur und können somit mittels des vorkonditionierten MINRES-Verfahrens ge-
löst werden. Wir behandeln die Konstruktion von block-diagonalen Vorkonditionierern, welche uns
ein schnell konvergierendes MINRES-Verfahren mit einer von den Problemparametern unabhängi-
gen Konvergenzrate liefern. Die Diagonalblöcke dieser Vorkonditionierer bestehen aus Summen von
Steifigkeits- und Massenmatrizen, welche man als Finite Elemente Diskretisierung von Reaktions-
Diffusions-Gleichungen mit inhomogenen Reaktions- und Diffusionskoeffizienten betrachten kann.

Weiters werden effiziente Vorkonditionierer für Reaktions-Diffusions-Probleme präsentiert, die opti-
mal in der Berechnungskomplexität und robust in Bezug auf die Reaktions- und Diffusionskoeffizi-
enten sind. Die betrachteten Vorkonditionierer gehören der Familie der sogenannten algebraischen
Multilevel-Iterationsverfahren an, welche auf einer Multilevel-Blockfaktorisierung und Stabilisierung
mittels Polynome basieren. Ein wichtiger theoretischer Beitrag dieser Dissertation ist, dass neben
der Konstruktion dieser algebraischen Multilevel-Vorkonditionierer ein detaillierter Beweis für deren
Optimalität in der Berechnungskomplexität und Robustheit in Bezug auf die Reaktions- und Diffu-
sionskoeffizienten präsentiert wird, der unter anderem auch durch das Verwenden von symbolischen
Methoden erreicht wird.

Obwohl das Hauptaugenmerk dieser Dissertation auf der numerischen Analyse von linearen para-
bolischen zeitperiodischen Problemen liegt, werden schlussendlich die theoretisch behandelten Algo-
rithmen in C++ implementiert, verschiedene numerische Experimente durchgeführt und numerische
Resultate diskutiert, welche eindrucksvoll die theoretischen Ergebnisse dieser Dissertation untermau-
ern.
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Chapter 1

Introduction

The numerical solution of evolution problems is the main building block in many simulation and op-
timization codes for time-dependent processes in different applications like heat conduction in ther-
modynamics, diffusion-convection-reaction in chemistry and biology, and eddy current diffusion in
electromagnetics. The simulation is usually based on models typically described via time-dependent
partial differential equations (PDEs) or systems of PDEs. Together with appropriate initial and
boundary conditions, we usually arrive at initial-boundary value problems (I-BVPs), the numerical
solution of which is the basis for their simulation. Their is a huge amount of publications on the
mathematical analysis and numerical solution as well as on the numerical analysis of these numerical
methods. The parabolic I-BVPs are discussed and analyzed, for instance, in the books by Ladyzhen-
skaya et al. [109], Wloka [177] or Zeidler [181, 182], whereas the numerics can be found, e.g., in the
monographs by Lang [110], Thomée [167], or, in many other books on the numerical treatment of
PDEs such as by Grossmann et al. [68] and Zulehner [188]. Optimal control problems with parabolic
I-BVPs as equality constraints have extensively been investigated, e.g., in the books by Lions [117],
Hinze et al. [81], Tröltzsch [169] or Borzì and Schulz [38]. Nevertheless, the analysis and numer-
ics of evolution equations are hot research topics. In particular, the construction and analysis of
highly parallel, fast and robust solution algorithms becomes more and more important not only in
the simulation of evolution processes but also in their optimization where one usually needs multiple
simulations including simulations of the adjoint problem that is backward in time.
Let Ω ⊂ Rd be the computational domain with the spatial dimension d ∈ {1, 2, 3} and the boundary
Γ = ∂Ω, and let (0, T ) be a prescribed time interval. A general form of a parabolic I-BVP is, for
instance, given by

σ ∂tu+ Lu = f in Ω× (0, T ),

u = gD on Γ× (0, T ),

u = u0 on Ω× {0},

with the unknown function u, which describes the temperature evolution in heat conduction or the
concentration of some substance in chemistry, and the following given data: the source term f , the
(Dirichlet) boundary data gD (other boundary conditions are possible), the coefficient σ and the
initial data u0. In heat conduction, the coefficient σ = cϱ is the product of the heat capacity c and
the density ϱ, whereas in electromagnetics, the coefficient σ refers to the (electric) conductivity which
is positive in conducting regions like iron, but zero in non-conducting regions like air. We mention
that in two space dimensions the eddy current problems turn to scalar parabolic problems as given
above. In the scalar parabolic PDE given above, the elliptic operator L can have the quite general
form

Lu(x, t) = −div (a(x)∇u(x, t)) + b(x)T ∇u(x, t) + c(x)u(x, t) (x, t) ∈ Ω× (0, T ),

1



2 CHAPTER 1. INTRODUCTION

with some coefficients a, b and c, which may depend on the function u (or on the gradient ∇u of the
function u), leading to nonlinear problems with nonlinear operators, often denoted by L(u).
A very general but often used linear parabolic model problem is the one with the operator

Lu(x, t) = −div (ν(x)∇u(x, t)) (x, t) ∈ Ω× (0, T ),

and homogeneous Dirichlet boundary conditions, i.e., gD = 0 on Γ×(0, T ). Other boundary conditions
are Neumann or Robin boundary conditions, but, for simplicity, we focus on (homogeneous) Dirichlet
boundary conditions in this work. Here, the diffusion coefficient is denoted by ν, since ν often refers
to the reluctivity, e.g., in electromagnetics, where ν = 1/µ with µ being the (magnetic) permeability.
There exist many publications on parabolic I-BVPs including their numerical treatment such as the
already mentioned books [109, 177, 181, 182, 110, 167, 68, 188], the book by Gustafsson et al. [72],
the papers [53, 56, 55] and the references therein.
During the last couple of decades, PDE-constrained optimization has become more and more impor-
tant in research and application, for which Lions has definitely paved the way with his work [117] in
1971. A typical distributed parabolic optimal control problem (OCP) is given by the minimization
of a cost functional J (y, u) with respect to a control u and the corresponding state y, e.g.,

J (y, u) =
1

2

 T

0


Ω

(y − yd)
2
dx dt+

λ

2

 T

0


Ω

u2 dx dt

subject to some PDE constraints such as

σ(x) ∂ty(x, t)− div (ν(x)∇y(x, t)) = u(x, t) (x, t) ∈ Ω× (0, T ),

y(x, t) = 0 (x, t) ∈ Γ× (0, T ),

y(x, 0) = y0(x) x ∈ Ω.

Here, yd denotes the desired state. Besides the PDE constraints, there are often inequality or box
constraints imposed on the control and the state, i.e.,

ua ≤ u ≤ ub and ya ≤ y ≤ yb a.e. in Ω× (0, T ),

respectively, where ua, ub, ya, yb are some given data leading to PDE-constrained optimization with
control or state contraints. Some recent published books considering PDE-constrained optimization
are, e.g., the books by Hinze et al. [81], Tröltzsch [169] and Borzì and Schulz [38], which have already
been mentioned in the context of I-BVPs, and, there are also many other publications on OCPs for
time-dependent I-BVPs such as [36, 125, 129, 71, 5, 65, 140, 170].

State of the art

Parabolic time-periodic boundary value and optimal control problems

Time-periodic conditions occur in many practical applications, as, e.g., in chemistry or electromag-
netics. In electromagnetics, source terms or target functions are often time-periodic or even time-
harmonic and, hence, also the solution of the problems has the corresponding property, see, e.g.,
[69, 70], where the authors consider the optimal control of so-called magnetohydrodynamic (MHD)
equations for viscous, incompressible, electrically conducting fluids. In the time-periodic case, the
initial condition is typically replaced by the periodicity condition

u(x, 0) = u(x, T ) x ∈ Ω,

and we call T the time period. Moreover, the solution of T -anti-periodic problems is closely related
to 2T -periodic ones, which is, for instance, studied in [135] by Okochi.
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Time-periodic PDEs have been discussed, e.g., in the works of Steuerwalt [163], Hackbusch [74],
Vejvoda [175], Vandewalle and Piessens [171, 172], Lieberman [116] and Pao [137]. As Steuerwalt
comments in [163], the existence of a time-periodic solution implies the solvability of the corresponding
initial-value problem and vice versa. The unique solvability of parabolic I-BVPs as well as of the
parabolic problems in the time-periodic case are also discussed by Zeidler [181, 182]. Nevertheless,
the variety of publications discussing I-BVPs is much wider than of those discussing time-periodic
BVPs. This disparity becomes even bigger in the context of PDE-constrained optimization, although
the interest in analyzing and solving time-periodic OCPs is increasing, see, e.g., [1, 88, 146, 89, 112]
and [94, 91, 90, 95, 180, 96]. The latter group of papers is devoted to the optimal control of time-
harmonic and time-periodic eddy current problems. In this context, we want to mention the theses
[24, 92, 93, 87] as well.

Fourier series and multiharmonic finite element approximation
By now, the approximation via Fourier series is commonly used for both, the space and the time
discretization of PDEs. Since we consider time-periodic problems, it is a very natural approach to
expand the given data as well as the unknown functions into Fourier series in time, i.e., to decompose
them into sums of a (infinite) set of cosine and sine functions. Fourier series approximation is also
used for space discretization. For instance, Heinrich [77] and Bernardi et al. [32] apply Fourier
series approximation on problems with axisymmetric domains reducing three-dimensional problems
to problems of several two-dimensional equations. This approach has been used and analyzed even
earlier, e.g., in Canuto et al. [44], where the authors have also presented discretization error estimates.
Fourier series are trigonometric series and are named after Jean-Baptiste Joseph Fourier (1768-1830),
a French mathematician and physicist. Although other prominent mathematicians as Leonhard Euler,
Jean le Rond d’Alembert and Daniel Bernoulli studied trigonometric series as well, Fourier introduced
them in order to solve the heat equation in a metal plate in [58], and, hence, pioneered the solution
to the heat equation in the general case and also to many other mathematical and physical problems.
The Fourier series expansion of a time-periodic function f(x, t) with time period T and with frequency
ω = 2π/T is given by

f(x, t) = f c
0(x) +

∞
k=1

[f c
k(x) cos(kωt) + fs

k(x) sin(kωt)] ,

where k ∈ N are referred as the modes, and f c
0 as well as f c

k and fs
k denote the corresponding

amplitudes and are called Fourier coefficients. They depend on the spatial variable x. For the
numerical treatment, we apply the so-called multiharmonic approximation of the Fourier series, which
means that we truncate the Fourier series at a finite index N ∈ N. The multiharmonic approximation
of a Fourier series is a trigonometric polynomial. If the boundary value and optimal control problems
are linear, then, due to the orthogonality of the cosine and sine functions, the equations decouple into
those depending only on the Fourier coefficients with respect to each single mode. The approximation
of the Fourier coefficients, which depend on the spatial variable x, can be performed by means of
the finite element method (FEM). Altogether, the method combing the multiharmonic and the finite
element discretization is called multiharmonic finite element method (MhFEM) or harmonic-balanced
finite element method. It was successfully used for simulating electromagnetic devices which can be
described by the eddy current approximation to Maxwell’s equations, see [179, 138, 52, 73, 25, 26, 27,
49]. Later it has been applied to time-periodic parabolic optimal control problems [88, 105, 89, 112]
and to time-periodic eddy current optimal control problems [91, 90, 95].

Space-time methods for parabolic problems
The MhFEM belongs to the family of space-time discretization techniques. The main idea of space-
time discretization methods is to treat the time variable simply as an additional spatial variable, i.e.,
the so-called space-time cylinder Ω × (0, T ) with Ω ⊂ Rd has dimension d+ 1. Space and time can
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contemporaneously be discretized in advance yielding very efficient solvers which can be parallelized
much easier than time-integration methods. During the last couple of years, the analysis and practical
application of space-time discretization techniques are of much interest and are now more than ever
a hot research topic due to the appearance of powerful parallel computers with several thousands or
even hundreds of thousands processors.
The rather traditional methods for solving parabolic problems are the so-called time-stepping or
time-marching methods, where the solution is computed iteratively on successive time subintervals,
see, e.g., [167]. In generel, time-stepping methods are difficult to perform in parallel. Hence, methods
were developed to overcome this difficulty. In [75], Hackbusch introduced a scheme for a simultaneous
execution of the elliptic multigrid method on successive time steps, where the time-direction is treated
as an axis in the space-time grid. Moreover, Womble [178] considered the so-called parallel time-
stepping method and another space-time method came up, which was only used for space parallelism
before, i.e., the multigrid waveform relaxation method, see, e.g., Vandewalle and Piessens [171]. In
[83], Horton and Vandewalle presented a space-time multigrid method for solving the whole space-
time parabolic problem in parallel. Other works on space-time methods are, e.g., Babuška and Janik
[21, 22], who consider the h-p version of the finite element method for parabolic equations, and
Costabel [50] studying boundary integral operators for the heat equation. Moreover, there have been
presented a lot of new techniques and results in space-time discretization in the last couple of years
as, for instance, the so-called parareal method proposed by Lions et al. [118] and further analyzed
in, e.g., [63]. For more details and further investigations regarding space-time methods, we refer the
reader to, e.g., [36, 160, 158, 131] or the recent publications [6, 7, 121, 130].

Robust and optimal solvers for parabolic problems

There are a couple of parameters involved in parabolic time-periodic simulation and optimal control
problems, e.g., the discretization parameters in space and time as well as parameters which correspond
to the conductivity and the reluctivity in electromagnetics. Moreover, the regularization or cost
parameter comes into play in the optimal control problems. Besides the discretization error analysis,
the construction of fast solvers, which are robust with respect to these ”bad” parameters, is an
important issue and a hot research topic during the last couple of years, see, e.g., [82, 157, 187, 124,
105, 141], the paper [37], which reviews research on multigrid methods for optimization problems, or
the paper [1], where the authors present a nested multigrid method for solving time-periodic parabolic
optimal control problems based on the works by Hackbusch [74, 76].
In the context of parabolic time-periodic problems, the preconditioned minimal residual (MINRES)
method proves to provide efficient solvers, since the MhFEM leads to saddle point systems of the
form 

A BT

B −C


  

=:A∈Rn×n

u = f,

where A is a regular, symmetric, but indefinite system matrix. Hence, the goal is to construct precon-
ditioners for the preconditioned MINRES method yielding robust convergence rates and optimal com-
plexity, see, e.g., [187, 88, 89, 112]. The practical implementation of the preconditioners can be done
by (algebraic) multigrid, multilevel or domain decomposition methods, see, e.g., [168, 173, 101, 142].
The (linear) algebraic multilevel iteration (AMLI) method stands out among these methods, since it
provides a basic concept for proving robustness and optimality of the method, see the fundamental
papers [14, 15] and, e.g., [13, 17, 98, 33, 126, 101]. In this context, we want to mention that in the last
couple of years the use of tools from symbolic computation for proving statements arising in numerics
have become much more popular, such as the standard tool Cylindrical Algebraic Decomposition
(CAD), see, e.g., [47, 48, 86], of which several implementations are available, see, e.g., [164, 43, 159].
For instance, applications of this tool in the context of multigrid and multilevel solvers for optimal
control problems can be found in [165, 145, 103].
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Functional a posteriori error estimation

Nowadays, a posteriori error estimation together with mesh-adaptive methods is well-established in
the numerical analysis of PDEs, see, e.g., [153, 123] and the references therein. Among many other
techniques, the class of functional a posteriori error estimates provides a useful variational approach
to a posteriori error estimation, which is based on the works by Repin, see, e.g., [150, 151, 153].
Other a posteriori error estimation techniques can be found in, e.g., the early works by Babuška and
Rheinboldt [23], Bank and Weiser [28], Zienkiewicz and Zhu [183] as well as in the books by Verfürth
[176] and Ainsworth and Oden [4]. In the context of functional a posteriori error estimates for optimal
control problems, we refer the reader to, e.g., the papers [59, 60].
In view of the a posteriori error estimates presented later in this work, we want to emphasize the
paper [152], where a method of deriving a posteriori error estimates for parabolic I-BVPs is suggested,
and provides a basic concept for deriving functional a posteriori error estimates for parabolic time-
periodic problems as well. More precisely, this a posteriori error estimation technique is a very useful
approach to the MhFE approximation of parabolic time-periodic problems.

On this work
This thesis is devoted to parabolic time-periodic simulation and optimal control problems. More
precisely, we present a complete MhFE analysis of parabolic time-periodic boundary value and the
corresponding optimal control problems and use the MhFEM as discretization technique for the
parabolic time-periodic problems. The resulting finite element systems are solved by the precondi-
tioned MINRES method, where we construct robust preconditioners of optimal complexity by the
AMLI method.

Main achievements

Existence and uniqueness results and a new variational framework. We prove the unique
solvability of a parabolic time-periodic boundary value problem in a special variational setting after
introducing function spaces and formulating variational problems in the spirit of Ladyzhenskaya et al.
[109]. Here, we introduce the space H1, 12 defined for L2-functions on the d+1-dimensional space-time
cylinder, whose spatial gradients are in [L2]d and the L2-norms of their half-time derivatives in the
Fourier space are finite. In this setting, we are able to establish inf-sup and sup-sup conditions from
which we deduce existence and uniqueness for the parabolic time-periodic problems by applying the
theorem of Babuška and Aziz.

Robust preconditioners for the MINRES method. The multiharmonic finite element dis-
cretization of both problems, the parabolic time-periodic boundary value and optimal control prob-
lem, leads to systems of linear algebraic equations which decouple into smaller systems. We construct
block-diagonal preconditioners for these systems which yield robust and fast convergence rates for
the MINRES method following the work by Zulehner in [187].

Robust algebraic multilevel preconditioners of optimal complexity. The diagonal blocks
of the MINRES preconditioners are “weighted” sums of stiffness and mass matrices, which can be
seen as finite element discretization of reaction-diffusion type problems with heterogeneous reaction
and diffusion coefficients. One of the main contributions of this work is not only to construct efficient
practical preconditioners via the AMLI method but to present a rigorous proof of the robustness and
optimal complexity of multilevel preconditioners for reaction-diffusion type problems in two space
dimensions. Of course, we present some numerical results which confirm our theoretical findings.

A priori and a posteriori error analysis. We present full a priori and a posteriori error estimates
for both, the parabolic time-periodic boundary value and optimal control problems, including the a
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priori and a posteriori error analysis for the space H1, 12 . The a posteriori error analysis is based on
the method presented in Repin [152] but contains proper changes regarding the space H1, 12 and the
special features of the MhFEM.

Outline

The thesis is organized as follows:

• Chapter 2 provides fundamental results needed in the subsequent chapters including definitions
and theorems in the field of function spaces, Fourier series, variational problems, the finite
element method as well as parabolic partial differential equations and optimal control problems.
Moreover, we present a strategy for constructing robust preconditioners for the MINRES method
in order to solve linear saddle point systems which arise in the context of parabolic time-periodic
boundary value and optimal control problems. Finally, some basic results on the AMLI method
are provided.

• In Chapter 3, we discuss parabolic time-periodic boundary value problems and present the
multiharmonic finite element analysis including existence and uniqueness as well as a priori
error estimates for these problems. Moreover, we present the construction of a block-diagonal
preconditioner for the MINRES method which yields robust and fast convergence.

• Chapter 4 is designed and organized like Chapter 3, but considers parabolic time-periodic
optimal control problems, which creates further challenges. Here, we present again the multi-
harmonic finite element analysis, a preconditioned MINRES solver and a priori error estimates
for this type of optimal control problems.

• Chapter 5 provides a very detailed discussion and proofs on the robustness and optimality of
multilevel preconditioners for reaction-diffusion type problems. This topic is strongly motivated
by the previous two chapters.

• In Chapter 6, we present a functional a posteriori error analysis for parabolic time-periodic
boundary value problems and the corresponding optimal control problems.

• Chapter 7 presents numerical experiments using the linear AMLI method which we have con-
structed and analyzed in Chapter 5 as well as numerical results on solving the boundary value
and optimal control problems of Chapters 3 and 4 by various AMLI preconditioned MINRES
solvers.

• In Chapter 8, we draw some conlusions and give an outlook on some future work in connection
with the multiharmonic finite element approach.

Parts of this thesis have already been published by the author (and co-authors) in peer-reviewed
international journals or proceedings of international conferences:

• Parts of Chapter 3 and Chapter 4 have been addressed in

[89] M. Kollmann, M. Kolmbauer, U. Langer, M. Wolfmayr, and W. Zulehner. A finite element
solver for a multiharmonic parabolic optimal control problem. Comput. Math. Appl., 65(3):469-
486, 2013.

[111] U. Langer and M. Wolfmayr. Multiharmonic finite element solvers for time-periodic
parabolic optimal control problems. Proc. Appl. Math. Mech. (PAMM), 12(1):687-688, 2012.

[112] U. Langer and M. Wolfmayr. Multiharmonic finite element analysis of a time-periodic
parabolic optimal control problem. J. Numer. Math., 21(4):265-300, 2013.
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• Parts of Chapter 5 have been addressed in

[103] J. Kraus and M. Wolfmayr. On the robustness and optimality of algebraic multilevel
methods for reaction-diffusion type problems. Comput. Vis. Sci., 2014. (to appear).

• Parts of Chapter 7 have been presented in [89, 103, 112].
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Chapter 2

Preliminaries

The purpose of this chapter is to provide definitions as well as fundamental results which are essential
for the further investigations presented in this thesis. More precisely, our preliminary results adress the
following fields of research: function spaces, Fourier series, variational problems, the finite element
method, parabolic partial differential equations and optimal control problems. Furthermore, we
present a strategy for constructing robust preconditioners for the minimal residual method in order
to solve linear saddle point systems. Finally, we also provide some basic results on the algebraic
multilevel iteration method for solving symmetric and positive definite systems of algebraic equations.
In this work, it will be step by step obvious that all these very different parts in mathematics are
important for the multiharmonic finite element analysis of time-periodic parabolic simulation and
optimal control problems.

2.1 Function spaces
In this section, we present definitions and basic results on Sobolev spaces and Bochner spaces which
are used for the treatment of parabolic partial differential equations and optimal control problems.
For more details, we mainly refer the reader to the books by Adams and Fournier [3], Evans [57],
Tröltzsch [169], Steinbach [162] and Zeidler [181, 182].

Banach and Hilbert spaces

Let Ω ⊂ Rd be a bounded Lipschitz domain, where d ∈ {1, 2, 3}, and let Ω be the closure of Ω.
We denote by a Banach space {X, ∥ · ∥X} a vector space X equipped with a norm ∥ · ∥X such that
the space X is complete with respect to this norm, i.e., every Cauchy sequence in X converges. An
example for a classical Banach space is C(Ω), the space of all bounded and uniformly continuous
functions u ∈ C(Ω) on Ω, equipped with the norm

∥u∥C(Ω) = sup
x∈Ω

|u(x)|.

If the norm ∥ · ∥X is induced by an inner product (·, ·)X : X ×X → R, i.e.,

∥u∥X = (u, u)
1/2
X ∀u ∈ X,

then {X, (·, ·)X} is called a Hilbert space. The dual X∗ of a vector space X over the set of real
numbers R is defined as the set of all bounded, linear functionals f mapping from X to R, equipped
with the norm

∥f∥X∗ = sup
u∈X\{0}

f(u)

∥u∥X
.

9
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Here, we also introduce the duality product ⟨·, ·⟩X∗,X : X∗ ×X → R and

f(u) := ⟨f, u⟩X∗,X .

We denote by Lp(Ω) the Banach space of all Lebesgue-measurable functions u defined on Ω for which

∥u∥Lp(Ω) =


Ω

|u(x)|p dx
1/p

< ∞,

where 1 ≤ p < ∞. In the following, we mean by the denotation measurable always Lebesgue-
measurable. It can be shown that ∥ · ∥Lp(Ω) is a norm on Lp(Ω) by varifying the triangle inequality

∥u+ v∥Lp(Ω) ≤ ∥u∥Lp(Ω) + ∥v∥Lp(Ω) ∀u, v ∈ Lp(Ω),

which is known as the Minkowski inequality. The other two norm axioms are trivial. For p = ∞, we
define the norm

∥u∥L∞(Ω) = ess sup
x∈Ω

|u(x)| = inf{C ≥ 0 : |u(x)| ≤ C a.e. on Ω}.

We are especially interested in the space L2(Ω) which is the set of all real-valued square-integrable
functions on Ω. It can be shown that the space {L2(Ω), (·, ·)L2(Ω)} is a Hilbert space introducing the
inner product

(u, v)L2(Ω) =


Ω

u(x) v(x) dx

and equipping with the corresponding norm ∥ · ∥L2(Ω) = (·, ·)1/2L2(Ω). In this context, we want to
mention another important inequality, namely the Cauchy-Schwarz inequality, also called Cauchy-
Bunyakowski-Schwarz (CBS) inequality, i.e.,

| (u, v) | ≤ ∥u∥ ∥v∥ ∀u, v ∈ L2(Ω), (2.1)

where, here, (·, ·) = (·, ·)L2(Ω) and ∥ · ∥ = ∥ · ∥L2(Ω).

Strong and weak convergence

Let X be a real Banach space equipped with the norm ∥ · ∥X . A sequence {un}∞n=1 ⊂ X converges
strongly to some u ∈ X, if

lim
n→∞

∥un − u∥X = 0.

A sequence {un}∞n=1 ⊂ X converges weakly to some u ∈ X, if

lim
n→∞

f(un) = f(u) ∀ f ∈ X∗.

Weak convergence in a Hilbert space {X, (·, ·)X} is equivalent to

lim
n→∞

(un, v)X = (u, v)X ∀ v ∈ X.

We denote by the symbols → and ⇀ strong and weak convergence, respectively. Hence, we write,
e.g., for weak convergence, un ⇀ u as n → ∞. Strong convergence implies weak convergence. More
precisely, if a sequence {un}∞n=1 ⊂ X converges strongly to u ∈ X, then it converges weakly to u as
well.
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Differentiability classes and weak derivatives

A function u is of class Ck with k ∈ N, if all derivatives of u up to the order k exist and are continuous.
We denote by C∞(Ω) the space of all infinitely differentiable functions, also called smooth functions,
and by C∞

0 (Ω) the space of all smooth functions that have compact support in Ω. Moreover, we call
a function u analytic, if u is smooth and if it equals its Taylor series expansion around any point in
its domain.
Let α = (α1, . . . , αd) ∈ Nd

0 be a multi-index and xα be the monomial xα1
1 . . . xαd

d with the degree
|α| =

d
i=1 αi. We define the differential operator

Dαu =
∂|α|

∂xα
u =

∂α1

∂xα1
1

. . .
∂αd

∂xαd

d

u

for all functions u ∈ C |α|(Ω). If |α| = 1 with αi = 1 for 1 ≤ i ≤ d, then we write

∂xi
u =

∂

∂xi
u.

The spaces Ck(Ω) are Banach spaces equipped with the norm

∥u∥Ck(Ω) = max
0≤|α|≤k

sup
x∈Ω

|Dαu(x)|.

Moreover, we denote by w = Dαu ∈ L2(Ω) the α-th weak derivative of u ∈ L2(Ω), if

(w, v)L2(Ω) = (−1)|α|(u,Dαv)L2(Ω) ∀ v ∈ C∞
0 (Ω).

Sobolev spaces

Let 1 ≤ p < ∞ and k ∈ N. We define the Banach space W k
p (Ω) by

W k
p (Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) with |α| ≤ k},

which is called Sobolev space and is equipped with the norm

∥u∥Wk
p (Ω) =


|α|≤k

∥Dαu∥pLp(Ω)

1/p

.

Analogously, we introduce the space W k
∞(Ω) for p = ∞ with the norm

∥u∥Wk
∞(Ω) = max

|α|≤k
∥Dαu∥L∞(Ω).

Again, we are especially interested in the case p = 2. We set

Hk(Ω) := W k
2 (Ω),

which is a Hilbert space by introducing the inner product

(u, v)Hk(Ω) =

|α|≤k

(Dαu,Dαv)L2(Ω).

In this work, we are mostly concerned with the Hilbert space H1(Ω) equipped with the norm

∥u∥H1(Ω) =

∥u∥2L2(Ω) + ∥∇u∥2L2(Ω)

1/2
.
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Here, the symbol ∇ = ∇x denotes the weak (spatial) gradient. Moreover, we have that

∥∇u∥2L2(Ω) =


Ω

|∇u(x)|2 dx =


Ω


(∂x1u(x))

2
+ · · ·+ (∂xd

u(x))
2

dx,

where we introduce the seminorm in the space H1(Ω) by

|u|H1(Ω) = ∥∇u∥L2(Ω).

Altogether, we can define the Hilbert space H1(Ω) as follows

H1(Ω) = {u ∈ L2(Ω) : ∇u ∈ [L2(Ω)]d},

where the weak gradient meets the identity
Ω

∇u · v dx = −

Ω

u divv dx ∀v ∈ [C∞
0 (Ω)]d.

Let Γ = ∂Ω be the boundary of the domain Ω. Later on, we will include homogeneous Dirichlet
boundary conditions in our partial differential equations. For that, let γΓu ∈ C(Γ) denote the
restriction of a continuous function u ∈ C(Ω) to the boundary Γ, i.e.,

(γΓu)(x) = u(x) ∀x ∈ Γ.

The operator γΓ is called (Dirichlet) trace operator, for which it can be shown the extension to a
linear and bounded operator

γΓ : Hs(Ω) → Hs−1/2(Γ)

for 1/2 < s < 3/2. So, the notation

u = 0 on Γ

stands for

γΓu = 0.

Hence, we are now in the position to introduce the space H1
0 (Ω) by

H1
0 (Ω) = {u ∈ H1(Ω) : u = 0 on Γ}.

The space H1
0 (Ω) can also be defined as the closure of the space C∞

0 (Ω) in H1(Ω), has the same norm
as H1(Ω) and is a closed subspace of this Hilbert space.
Moreover, let us define the Hilbert space H(div,Ω) as follows

H(div,Ω) = {u ∈ [L2(Ω)]d : divu ∈ L2(Ω)},

where the weak (spatial) divergence is defined by the identity
Ω

divu v dx = −

Ω

u · ∇v dx ∀ v ∈ C∞
0 (Ω).

For ease of notation, we will use the symbols (·, ·)L2(Ω) and ∥ · ∥L2(Ω) as well as the symbols (·, ·)H1(Ω)

and ∥ · ∥H1(Ω) for indicating both the scalar and the vector-valued case. We denote the L2-inner
product by

(u,v)L2(Ω) =

n
i=1

(ui, vi)L2(Ω),

where u = (u1, . . . , un)
T and v = (v1, . . . , vn)

T are vector functions. The associated norm is given by

∥u∥2L2(Ω) = (u,u)L2(Ω).

Since we are considering time-dependent problems in this work, we need to define Sobolev spaces
which include the time domain as well.
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Sobolev spaces defined in the space-time cylinder

Let QT := Ω × (0, T ) denote the space-time cylinder, where (0, T ) is a given time interval, and let
ΣT = Γ× (0, T ) be its mantle boundary. To begin with, we introduce two Sobolev spaces of functions
living on the space-time cylinder QT in the spirit of Ladyzhenskaya et al., which are used, e.g., in
the monograph [109] for studying initial-boundary value problems, i.e., the Sobolev spaces H1,0(QT )
and H1,1(QT ), see also [108]. The space H1,0(QT ) is defined as

H1,0(QT ) = {u ∈ L2(QT ) : ∇u ∈ [L2(QT )]
d} (2.2)

equipped with the norm

∥u∥H1,0(QT ) =

 T

0


Ω


u(x, t)2 + |∇u(x, t)|2


dx dt

1/2

, (2.3)

and the space H1,1(QT ) as

H1,1(QT ) = {u ∈ L2(QT ) : ∇u ∈ [L2(QT )]
d, ∂tu ∈ L2(QT )} (2.4)

with the corresponding norm

∥u∥H1,1(QT ) =

 T

0


Ω


u(x, t)2 + |∇u(x, t)|2 + |∂tu(x, t)|2


dx dt

1/2

, (2.5)

where ∇ = ∇x and ∂t denote the weak spatial gradient and the weak time derivative, respectively.
Analogously, we define the Sobolev space

H0,1(QT ) = {u ∈ L2(QT ) : ∂tu ∈ L2(QT )}.

Furthermore, we can include the condition u = 0 on ΣT by defining the Sobolev spaces

H1,0
0 (QT ) = {u ∈ H1,0(QT ) : u = 0 on ΣT } and H1,1

0 (QT ) = {u ∈ H1,1(QT ) : u = 0 on ΣT }.

In the context of time-periodic problems, we will also consider the time-periodicity condition u(x, 0) =
u(x, T ). Hence, we define the Sobolev spaces

H0,1
per(QT ) = {u ∈ H0,1(QT ) : u(x, 0) = u(x, T ) for almost all x ∈ Ω},

H1,1
per(QT ) = {u ∈ H1,1(QT ) : u(x, 0) = u(x, T ) for almost all x ∈ Ω},

H1,1
0,per(QT ) = {u ∈ H1,1

0 (QT ) : u(x, 0) = u(x, T ) for almost all x ∈ Ω}.

Bochner spaces

The concept of Lp-spaces can be generalized to functions which have values in a Banach space. Let
{X, ∥ · ∥X} be a Banach space. We denote by the Bochner space Lp(a, b;X), 1 ≤ p < ∞, the
linear space of all equivalence classes of Lebesgue-measurable functions u : (a, b) → X such that the
corresponding norm is finite, i.e.,

∥u∥Lp(a,b;X) =

 b

a

∥u(t)∥pX dt

1/p

< ∞.

The space Lp(a, b;X) is a Banach space with respect to this norm. Analogously, we define the Bochner
space for p = ∞ equipped with the norm

∥u∥L∞(a,b;X) = ess sup
t∈(a,b)

∥u(t)∥X < ∞.
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Furthermore, we define the space C([a, b];X) consisting of all functions u : [a, b] → X which are
continuous at every t ∈ [a, b]. The space C([a, b];X) is equipped with the norm

∥u∥C([a,b];X) = max
t∈[a,b]

∥u(t)∥X .

We can extend the concept of a Bochner space by defining a more general space, i.e.,

Y (a, b;X) = {u : (a, b) → X : ∥u∥Y (a,b;X) < ∞},

where {Y, ∥ · ∥Y } and {X, ∥ · ∥X} are Banach spaces.
For the treatment of parabolic problems, we are interested in the Bochner spaces Lp(a, b;X) with
(a, b) = (0, T ) being the time interval, p = 2 and either X = H1(Ω) or X = H1

0 (Ω) depending on the
boundary conditions. For example, the space L2(0, T ;H1(Ω)) is defined as

L2(0, T ;H1(Ω)) = {u : (0, T ) → H1(Ω) : ∥u∥L2(0,T ;H1(Ω)) < ∞},

where

∥u∥L2(0,T ;H1(Ω)) =

 T

0

∥u(t)∥2H1(Ω) dt

1/2

=

 T

0


Ω


u(x, t)2 + |∇u(x, t)|2


dx dt

1/2

.

Moreover, we denote by

∂tu ∈ L2(0, T ;H1(Ω)∗)

the generalized weak derivative of u ∈ L2(0, T ;H1(Ω)), if there holds T

0

u(t) ∂tϕ(t) dt = −
 T

0

∂tu(t)ϕ(t) dt ∀ϕ ∈ C∞
0 (0, T ).

Analogously, we denote by ∂tu ∈ L2(0, T ;H−1(Ω)) the generalized weak derivative of the function
u ∈ L2(0, T ;H1

0 (Ω)). Here, we can define the duality product ⟨·, ·⟩X∗,X : X∗ ×X → R by using the
definition of the generalized weak derivative, i.e., T

0

⟨∂tu(t), ϕ(t)⟩X∗,X dt =

 T

0

∂tu(t)ϕ(t) dt,

where ∂tu ∈ L2(0, T ;X∗), ϕ ∈ L2(0, T ;X) and ∂tϕ ∈ L2(0, T ;X∗), for which the integration by parts
formula T

0

⟨∂tu(t), ϕ(t)⟩X∗,X dt = (y(T ), ϕ(T ))L2(Ω) − (y(0), ϕ(0))L2(Ω) −
 T

0

⟨∂tϕ(t), u(t)⟩X∗,X dt

holds. The space W (0, T ) denotes the linear space of all u ∈ L2(0, T ;X) having a generalized weak
derivative ∂tu ∈ L2(0, T ;X∗) and equipped with the norm

∥u∥W (0,T ) =

 T

0


∥u(t)∥2X + ∥∂tu(t)∥2X∗


dt

1/2

.

In a nutshell, it can be defined as

W (0, T ) = {u ∈ L2(0, T ;X) : ∂tu ∈ L2(0, T ;X∗)},
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which is a Hilbert space equipped with the inner product

(u, v)W (0,T ) =

 T

0

(u(t), v(t))X dt+

 T

0

(∂tu, ∂tv)X∗ dt.

Note that the space W (0, T ) is continuously embedded in C([0, T ];L2(Ω)), see, e.g., [177, 181]. The
chain of dense and continuous embeddings

H1(Ω) ⊂ L2(Ω) ⊂ H1(Ω)∗

as well as

H1
0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω)

is called a Gelfand triple or evolution triple, in general, denoted by

V ⊂ H = H∗ ⊂ V ∗,

where V is a real, separable and reflexive Banach space and H a real and separable Hilbert space,
see, e.g., [177].

Relationship between the function spaces

Comparing the norms corresponding to the Sobolev spaces defined in the space-time cylinder and to
the Bochner spaces suggests the following relationships between these spaces:

L2(QT ) ∼= L2(0, T ;L2(Ω)),

H1,0(QT ) ∼= L2(0, T ;H1(Ω)),

H1,0
0 (QT ) ∼= L2(0, T ;H1

0 (Ω)),

where the symbol ∼= denotes the equivalence of the corresponding norms. In fact, one can show
that the two spaces are isometric and isomorphic, see [79]. Let us define the space H1(0, T ;L2(Ω))
consisting of all functions u : (0, T ) → L2(Ω) for which ∥u∥H1(0,T ;L2(Ω)) < ∞, where

∥u∥H1(0,T ;L2(Ω)) =

 T

0

∥u∥2L2(Ω) + ∥∂tu∥2L2(Ω) dt

1/2

.

The treatment of the norms corresponding to the spaces H1,1(QT ), H
1,1
0 (QT ) and W (0, T ) provides

that

H1,1(QT ) ∼= L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)),

H1,1
0 (QT ) ∼= L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;L2(Ω)),

and the space W (0, T ) with X = H1(Ω) or X = H1
0 (Ω) is a larger space than H1,1(QT ) or H1,1

0 (QT ),
respectively.
Finally, we introduce the function spaces H̃1,0(QT ) and H̃1,0

0 (QT ) in order to study parabolic initial-
boundary value problems following again Ladyzhenskaya [108] and Ladyzhenskaya et al. [109]. The
spaces H̃1,0(QT ) and H̃1,0

0 (QT ) are defined as

H̃1,0(QT ) = H1,0(QT ) ∩ C([0, T ];L2(Ω)) (2.6)

and

H̃1,0
0 (QT ) = H1,0

0 (QT ) ∩ C([0, T ];L2(Ω)), (2.7)
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respectively, equipped with the norm

∥u∥H̃1,0(QT ) = max
t∈[0,T ]

∥u(t)∥L2(Ω) +

 T

0


Ω

|∇u(x, t)|2 dx dt

1/2

. (2.8)

Here, the elements of H1,0(QT ) and H1,0
0 (QT ) have to be identified with abstract functions belonging

to L2(0, T ;H1(QT )) and L2(0, T ;H1
0 (QT )), respectively.

2.2 Fourier series
The aim of this section is to give an overview on Fourier series and on some convergence results for
Fourier series. For more details, we refer the reader to [85] and the references therein.

2.2.1 Fourier series expansion
Let f : R → R be a periodic function, i.e., f(0) = f(T ) with period T and with frequency ω = 2π/T .
The Fourier series expansion of f is denoted by

f(t) = f c
0 +

∞
k=1

[f c
k cos(kωt) + fs

k sin(kωt)] ,

where the Fourier coefficients of f are defined by

f c
0 =

1

T

 T

0

f(t) dt,

f c
k =

2

T

 T

0

f(t) cos(kωt) dt,

fs
k =

2

T

 T

0

f(t) sin(kωt) dt,

for k ∈ N, which are referred as the modes. The Fourier series of a function f is a trigonometric
series. The multiharmonic approximation of this Fourier series is a trigonometric polynomial, written
as

fN (t) = f c
0 +

N
k=1

[f c
k cos(kωt) + fs

k sin(kωt)] .

The following orthogonalities are valid:

1

T

 T

0

cos(0) cos(0) dt = 1,

2

T

 T

0

cos(kωt) sin(lωt) dt = 0,

2

T

 T

0

cos(kωt) cos(lωt) dt = δkl,

2

T

 T

0

sin(kωt) sin(lωt) dt = δkl,

(2.9)

where k, l ∈ N and δkl is the Kronecker delta. Due to the representation

cos(kωt) =
eikωt + e−ikωt

2
, sin(kωt) =

eikωt − e−ikωt

2i
,
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we derive a complex form for the Fourier series of f , i.e.,

f(t) = f c
0 +

∞
k=1


f c
k


eikωt + e−ikωt

2


+ fs

k


eikωt − e−ikωt

2i



= f c
0 +

∞
k=1


f c
k

2
+

fs
k

2i


eikωt +


f c
k

2
− fs

k

2i


e−ikωt



= f0 +

∞
k=1


fke

ikωt + f−ke
−ikωt


=

∞
k=−∞

fke
ikωt,

where f0 = f c
0 and, for k ∈ N, fk =

fc
k

2 +
fs
k

2i and f−k =
fc
k

2 − fs
k

2i . Now, the orthogonalities read as

1

T

 T

0

eikωteilωt dt =


1 k + l = 0,
0 k + l ̸= 0,

since eit = cos(t)+ i sin(t). Moreover, we can rewrite the complex representation of the Fourier series
of f as

∞
k=−∞

fke
ikωt =

∞
k=−∞

fk(e
iωt)k =

∞
k=−∞

fk z
k = f̃(z)

with z = eiωt.

2.2.2 Convergence of Fourier series

In the treatment of Fourier series, the question of convergence arises very early. We start with three
rather standard types of convergence results for Fourier series. More precisely, we consider pointwise
and uniform convergence as well as norm convergence. This subsection only overviews the standard
results. Proofs and more details as well as other references can be found in [85].

Pointwise and uniform convergence

Let f ∈ L1(0, T ) and t0 ∈ [0, T ]. Assume that the limit

lim
h→0

[f(t0 + h) + f(t0 − h)]

exists, then fN converges pointwise to the one-sided limits at t0, i.e.,

fN (t0) →
1

2
lim
h→0

[f(t0 + h) + f(t0 − h)] .

If f is continuous in t0, then fN (t0) converges to f(t0). Moreover, if f is continuous in every point
of the closed interval [0, T ], then fN converges uniformly to f on [0, T ], i.e.,

lim
N→∞

sup
t∈(0,T )

|f(t)− fN (t)| = 0.

Otherwise, if fN converges pointwise to f in [0, T ] and is uniformly bounded, i.e., there exists a
constant K such that |fN (t)| ≤ K for all t and for all N , then fN converges to f in the L1-norm.
Moreover, uniform convergence is a sufficient condition for interchanging integrals and limits.
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Norm convergence

The Riesz-Fischer theorem states that a Lebesgue-measurable function f on (0, T ) is square integrable
if and only if its corresponding Fourier series converges in L2. Hence, if f ∈ L2(0, T ), then

lim
N→∞

∥f − fN∥L2(0,T ) = 0.

The norm convergence (strong convergence) still holds in Lp-spaces with 1 < p < ∞, i.e., if f ∈
Lp(0, T ), then fN converges to f in the Lp-norm.

2.2.3 Fourier series expansions in the space-time cylinder
Let f ∈ L2(QT ) be a time-periodic function. Then f can be expanded into a Fourier series in time,
which is denoted by

f(x, t) = f c
0(x) +

∞
k=1

[f c
k(x) cos(kωt) + fs

k(x) sin(kωt)], (2.10)

where the Fourier coefficients f c
k(x), f

s
k(x), with k ∈ N, and f c

0(x) are all from the space L2(Ω) and
are defined as

f c
0(x) =

1

T

 T

0

f(x, t) dt,

f c
k(x) =

2

T

 T

0

f(x, t) cos(kωt) dt,

fs
k(x) =

2

T

 T

0

f(x, t) sin(kωt) dt.

(2.11)

The multiharmonic approximation fN (x, t) of f(x, t) is defined in the same way as for a function
f : R → R. Moreover, all orthogonalities (2.9) as well as the known convergence results are also valid
for space-time dependent functions, which can be expanded into Fourier series in time. According to
the Riesz-Fischer theorem functions f ∈ L2(QT ) converge strongly in the corresponding L2-norm.

Remark 2.1. The L2-norm of functions f ∈ L2(QT ) is defined in the Fourier space by

∥f∥2L2(QT ) =

 T

0


Ω

f(x, t) dx dt = T ∥f c
0∥2L2(Ω) +

T

2

∞
k=1

[∥f c
k∥2L2(Ω) + ∥fs

k∥2L2(Ω)]

due to the orthogonalities (2.9) of the cosine and sine functions and because integrals and sums can
be interchanged.

Theorem 2.2. Let f ∈ H1,0
0 (QT ). Then the Fourier series representation (2.10) of f converges

strongly in H1,0
0 (QT ).

Proof. Let us take an arbitrary test function ϕ(x) ∈ [C∞
0 (Ω)]d. Strong convergence in L2(QT ) yields

weak convergence in L2(QT ). Hence, the limit

−
 T

0


Ω

fN (x, t) divϕ(x) dx dt → −
 T

0


Ω

f(x, t) divϕ(x) dx dt (2.12)

exists, where

−
 T

0


Ω

fN (x, t) divϕ(x) dx dt = −
 T

0


Ω


N

k=0

[f c
k(x) cos(kωt) + fs

k(x) sin(kωt)]


divϕ(x) dx dt

= −
 T

0


Ω


N

k=0

[f c
k(x)divϕ(x) cos(kωt) + fs

k(x) divϕ(x) sin(kωt)]


dx dt.
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Integration by parts with respect to the spatial variable x leads to

−
 T

0


Ω


N

k=0

[f c
k(x) divϕ(x) cos(kωt) + fs

k(x) divϕ(x) sin(kωt)]


dx dt

=

 T

0


Ω


N

k=0

[∇f c
k(x) ·ϕ(x) cos(kωt) +∇fs

k(x) ·ϕ(x) sin(kωt)]


dx dt

=

 T

0


Ω


N

k=0

[∇f c
k(x) cos(kωt) +∇fs

k(x) sin(kωt)]


·ϕ(x) dx dt.

Since the limit (2.12) exists, we define the weak limit

∇fN ⇀ ∇f in [L2(Ω)]d for N → ∞. (2.13)

Moreover, since ∇f = ∇xf ∈ [L2(QT )]
d (as f ∈ H1,0

0 (QT )), ∇f can be expanded into a Fourier series
in time and its Fourier coefficients are given by

∇f c
0(x) :=

1

T

 T

0

∇f(x, t) dt,

∇f c
k(x) :=

2

T

 T

0

∇f(x, t) cos(kωt) dt,

∇fs
k(x) :=

2

T

 T

0

∇f(x, t) sin(kωt) dt,

which are all from the space [L2(Ω)]d. Hence, the limit (2.13) is also strong and can be defined as

∇f(x, t) := lim
N→∞

N
k=0

[∇f c
k(x) cos(kωt) +∇fs

k(x) sin(kωt)],

i.e., the gradient of the Fourier series expansion of a function is equal to the Fourier series expansion
of the gradient of the function.

Theorem 2.3. Let f ∈ H1,1
0 (QT ). Then the Fourier series representation (2.10) of f converges

strongly in H1,1
0 (QT ).

Proof. Due to Theorem 2.2, it remains to show that ∂tf converges strongly in L2(0, T ). Let us take
an arbitrary test function ϕ(t) from C∞

0 (0, T ). The convergence in L2(QT ) leads to

−

Ω

 T

0

fN (x, t) ∂tϕ(t) dt dx → −

Ω

 T

0

f(x, t) ∂tϕ(t) dt dx, (2.14)

where

−

Ω

 T

0

fN (x, t) ∂tϕ(t) dt dx = −

Ω

 T

0


N

k=0

[f c
k(x) cos(kωt) + fs

k(x) sin(kωt)]


∂tϕ(t) dt dx

= −

Ω

 T

0


N

k=0

[f c
k(x) cos(kωt) ∂tϕ(t) + fs

k(x) sin(kωt) ∂tϕ(t)]


dt dx.
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Then integration by parts with respect to the time variable t yields

−

Ω

 T

0


N

k=0

[f c
k(x) cos(kωt) ∂tϕ(t) + fs

k(x) sin(kωt) ∂tϕ(t)]


dt dx

=


Ω

 T

0


N

k=1

[−kω f c
k(x) sin(kωt)ϕ(t) + kω fs

k(x) cos(kωt)ϕ(t)]


dt dx

=


Ω

 T

0


N

k=1

kω [−f c
k(x) sin(kωt) + fs

k(x) cos(kωt)]


ϕ(t) dt dx

and since the limit (2.14) exists, we define the weak limit

∂tfN (x, t) ⇀ ∂tf(x, t) in L2(0, T ) for N → ∞. (2.15)

Moreover, since ∂tf ∈ L2(QT ) (as f ∈ H1,1
0 (QT )), ∂tf can be expanded into a Fourier series in time.

Due to integration by parts with respect to t, the Fourier coefficients of ∂tf are given by

(∂tf)
c
k(x) :=

2

T

 T

0

∂tf(x, t) cos(kωt) dt = − 2

T

 T

0

f(x, t)(−kω sin(kωt)) dt

= kω
2

T

 T

0

f(x, t) sin(kωt) dt = kω fs
k(x),

(∂tf)
s
k(x) :=

2

T

 T

0

∂tf(x, t) sin(kωt) dt = − 2

T

 T

0

f(x, t)(kω cos(kωt)) dt

= −kω
2

T

 T

0

f(x, t) cos(kωt) dt = −kω f c
k(x).

Hence, the limit (2.15) is also strong and can be defined as

∂tf(x, t) := lim
N→∞

N
k=1

kω[−f c
k(x) sin(kωt) + fs

k(x) cos(kωt)].

2.3 Variational problems
In this section, we provide some of the basic results on variational problems in Hilbert spaces. We
start with the Friedrichs and the Poincaré inequalities and then present some fundamental results as
the well-known Lax-Milgram theorem and the Babuška-Aziz theorem.

Theorem 2.4 (Poincaré inequality). Let Ω ⊂ Rd be a bounded Lipschitz domain with d ∈ {1, 2, 3}.
Then, there exists a constant CP > 0 depending only on Ω such that for all u ∈ H1(Ω) we have that

∥u− uΩ∥L2(Ω) ≤ CP |u|H1(Ω), (2.16)

where

uΩ =
1

|Ω|


Ω

u(x) dx

is the mean value of u over Ω and with |Ω| being the Lebesgue measure of the domain Ω.

Proof. See, e.g., [42, 142, 168].
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If the mean value of u is zero, i.e.,

Ω
u(x) dx = 0, then (2.16) reads as

∥u∥L2(Ω) ≤ CP |u|H1(Ω).

A closely related result to the Poincaré inequality is the Friedrichs inequality.

Theorem 2.5 (Friedrichs inequality). Let Ω ⊂ Rd be a bounded Lipschitz domain with d ∈ {1, 2, 3}.
Then, there exists a constant CF > 0 depending only on Ω such that for all u ∈ H1

0 (Ω) we have that

∥u∥L2(Ω) ≤ CF |u|H1(Ω) = CF ∥∇u∥L2(Ω). (2.17)

Proof. See, e.g., [42, 168].

The Friedrichs inequality is often used in order to prove that the H1-seminorm can be estimated from
below by the H1-norm. Due to

∥u∥2H1(Ω) = ∥u∥2L2(Ω) + ∥∇u∥2L2(Ω) ≤

C2

F + 1

∥∇u∥2L2(Ω),

it follows that

|u|2H1(Ω) = ∥∇u∥2L2(Ω) ≥
1

C2
F + 1

∥u∥2H1(Ω).

Remark 2.6. The proofs of Theorems 2.4 and 2.5 do not tell anything about the dependence of the
constants CF and CP on the shape of Ω. Only for certain classes of simple domains, explicit constants
can be computed. For example, explicit Poincaré constants for star-shaped domains are presented in
[42, 174]. Moreover, we can explicitly compute a very simple estimate of the Poincaré constant for
convex domains, i.e.,

CP ≤ diamΩ

π
,

where diamΩ denotes the diameter of Ω, see [29, 139]. For further information regarding the Poincaré
and Friedrichs inequalities, we refer the reader to the books, e.g., [42, 142, 168] and to the papers,
e.g., [2, 128, 143].

Now, we want to present the fundamental existence and uniqueness results of Lax and Milgram as
well as of Babuška and Aziz for variational problems. Let {V, (·, ·)V } be a Hilbert space with the
associated norm

∥ · ∥V = (·, ·)1/2V ,

and let a(·, ·) : V × V → R be a bilinear form and F : V → R be a linear form. Let us consider the
following abstract variational problem: Find u ∈ V such that

a(u, v) = ⟨F, v⟩ ∀ v ∈ V. (2.18)

We can rewrite the variational problem (2.18) as an operator equation by introducing the operator
A : V → V ∗, u →→ a(u, ·), i.e.,

⟨Au, v⟩V ∗,V := a(u, v) ∀u, v ∈ V.

Then the operator equation reads as follows: Find u ∈ V such that

Au = F in V ∗. (2.19)

The following theorem by Lax and Milgram [114] states which conditions on the bilinear form a(·, ·)
have to be satisfied in order to guarantee the existence and uniqueness of the solution to the variational
problem (2.18).



22 CHAPTER 2. PRELIMINARIES

Theorem 2.7 (Lax-Milgram). Let V be a Hilbert space and let the bilinear form a(·, ·) : V × V → R
be elliptic (coercive) and bounded (continuous), i.e.,

c∥u∥2V ≤ a(u, u) ∀u ∈ V,

|a(u, v)| ≤ c̄∥u∥V ∥v∥V ∀u, v ∈ V,

with constants c, c̄ > 0. Then, for all bounded linear functionals F ∈ V ∗, the variational problem
(2.18) has a unique solution u ∈ V , which fulfills the a priori estimate

1

c̄
∥F∥V ∗ ≤ ∥u∥V ≤ 1

c
∥F∥V ∗ .

Proof. The statement of the theorem follows directly from the linearity, ellipticity and boundedness
of the bilinear form as well as by the definition of the dual norm. For more details, we refer the reader
to the original paper by Lax and Milgram [114], see also [42, 186] and the references therein.

We present now an extension of the Lax-Milgram theorem, i.e., the theorem of Babuška and Aziz
or also known as the Babuška-Lax-Milgram (or generalized Lax-Milgram) theorem, which is due to
Babuška, see [18, 19, 20]. This generalized version of the Lax-Milgram theorem can also be applied
to the variational problem (2.18), if the solution u is not from the same space as the test functions
v, i.e., u ∈ U and v ∈ V with U ̸= V , and if the bilinear form is not elliptic (coercive), but fulfills the
weaker conditions

inf
0̸=u∈U

sup
0̸=v∈V

a(u, v)

∥v∥V ∥u∥U
≥ c > 0,

inf
0̸=v∈V

sup
0 ̸=u∈U

a(u, v)

∥u∥U∥v∥V
≥ c > 0,

which are called inf-sup conditions or weakly coercive. Bounded bilinear forms fulfilling the inf-sup
conditions are already mentioned in Nečas [132], but their use for variational boundary value problems
was presented by Babuška [18, 19] and Babuška-Aziz [20], see [134]. Note that it is obvious that the
Babuška-Aziz theorem is valid for U = V as well and that the Babuška-Aziz theorem with U = V is
not equivalent to the Lax-Milgram theorem, cf. Remark 2.9. We now state the Babuška-Aziz theorem
for U ̸= V , see, e.g., [20, 134, 149].

Theorem 2.8 (Babuška-Aziz). Let {U, ∥ · ∥U} and {V, ∥ · ∥V } be Hilbert spaces and let F : V → R be
a bounded linear form, i.e., F ∈ V ∗. Assume that there exist constants c, c̄ > 0 such that the bilinear
form a(·, ·) : U × V → R fulfills the inf-sup and sup-sup conditions

c∥u∥U ≤ sup
0 ̸=v∈V

a(u, v)

∥v∥V
≤ c̄∥u∥U ∀u ∈ U, (2.20)

c∥v∥V ≤ sup
0 ̸=u∈U

a(u, v)

∥u∥U
≤ c̄∥v∥V ∀ v ∈ V. (2.21)

Then, for any F ∈ V ∗, the variational problem

a(u, v) = ⟨F, v⟩ ∀ v ∈ V,

has a unique solution u ∈ U , which fulfills the a priori estimate

1

c̄
∥F∥V ∗ ≤ ∥u∥U ≤ 1

c
∥F∥V ∗ .

Proof. See, e.g., [20, 134].
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Remark 2.9. The inf-sup condition of (2.20) yields the definition of the inf-sup constant as follows

cinf-sup = inf
0̸=u∈U

sup
0 ̸=v∈V

|a(u, v)|
∥u∥U∥v∥V

.

In case of U = V and a(u, v) = a(v, u) for all u, v ∈ V , the inf-sup and sup-sup conditions (2.20)
and (2.21) in Theorem 2.8 simplify to one inf-sup and sup-sup condition, i.e.,

c∥u∥V ≤ sup
0̸=v∈V

a(u, v)

∥v∥V
≤ c̄∥u∥V ∀u ∈ V, (2.22)

and the inf-sup constant is given by

cinf-sup = inf
0̸=u∈V

sup
0̸=v∈V

|a(u, v)|
∥u∥V ∥v∥V

= c.

Moreover, the relation between the ellipticity constant of the Lax-Milgram theorem, which we denote
by cL-M, and the inf-sup constant cinf-sup is given by cL-M ≤ cinf-sup and can be proven by

cL-M∥u∥V ≤ |a(u, u)|
∥u∥V

≤ sup
0̸=v∈V

|a(u, v)|
∥v∥V

∀ 0 ̸= u ∈ V,

which implies

cL-M ≤ inf
0 ̸=u∈V

sup
0̸=v∈V

|a(u, v)|
∥u∥V ∥v∥V

= cinf-sup.

Hence, the bilinear form of a variational problem does not necessarily have to be elliptic (strongly
coercive), but has to satisfy the inf-sup condition (weakly coercive) in order to guarantee existence
and uniqueness.

2.4 The finite element method
In this section, we consider the finite element method (FEM), which is a numerical procedure for
finding approximate solutions of boundary value problems. The finite element method goes back to
the paper by Courant [51], where, again, the introduced method is based on the methods by Ritz [155]
and Galerkin [62], see also [64]. For more details, we refer the reader to, e.g., [40, 42, 46, 162, 168] or
the German books [41, 84, 161, 186].
Let Ω ⊂ Rd be again a bounded Lipschitz domain with d ∈ {1, 2, 3}. Moreover, we assume that Ω is a
polygonal or polyhedral domain. Such a domain can be subdivided into finitely many non-overlapping
elements τ . Domains with a curved boundary are, e.g., discussed in [46, 97, 184, 185].

Definition 2.10. We denote by Th = {τ} a mesh or triangulation of the domain Ω ⊂ Rd into finitely
many d-dimensional elements τ . Such a triangulation is called admissible if

Ω =


τ∈Th

τ and τi ∩ τj = ∅ ∀ τi ̸= τj with i ̸= j and τi, τj ∈ Th.

Moreover, we denote by Th(Ω) the family of finer and finer triangulations of Ω, cf. [46].

For d = 1, d = 2 and d = 3, the finite elements τ are, e.g., line segments, triangles and tetrahedra,
respectively. Hence, for any two elements of an admissible triangulation, the intersection is either
empty, an element vertex, edge or, for d = 3, a face. Let us denote by

hτ := diam τ
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the diameter of a finite element τ ∈ Th and by

h := max
τ∈Th

hτ

the mesh size of Th. Moreover, ρτ denotes the diameter of the largest ball contained in τ .

Definition 2.11. We call a triangulation Th shape-regular if there exists a constant C > 0, which is
independent of h, such that

hτ ≤ C ρτ ∀ τ ∈ Th.

Definition 2.12. We call a triangulation Th quasi-uniform if there exists a constant C > 0, which
is independent of h, such that

hτ ≥ C h ∀ τ ∈ Th.

Remark 2.13. From the definition of shape-regular and quasi-uniform follows that a quasi-uniform
triangulation is also shape-regular but not vice versa.

Let us consider the abstract variational problem (2.18). We want to discretize this problem by the
so-called Ritz-Galerkin finite element method. Following this method, let Vh be a finite dimensional
subspace of V . We construct the space Vh by choosing appropriate basis functions ϕi, i.e.,

Vh = span{ϕ1, . . . , ϕn},

where n = dimVh. The finite element approximation of u and its nodal parameter vector u are given
by

uh =

n
i=1

ui ϕi ∈ Vh and u = (ui)i=1,...,n ∈ Rn,

respectively, and they are related via the so-called Ritz isomorphism, a one-to-one mapping between
them. We arrive at the following discrete variational problem: Find the approximate solution uh ∈ Vh

such that

a(uh, vh) = ⟨F, vh⟩ ∀ vh ∈ Vh. (2.23)

Testing with the basis functions ϕi yields a system of linear equations which is equivalent to the
discrete variational problem, i.e.,

Au = f, (2.24)

where

A = (a(ϕi, ϕj))i,j=1,...,n and f = (⟨F,ϕi⟩)i=1,...,n .

In order to prove existence and uniqueness of the square system (2.24) and, hence, of the discrete
problem (2.23), only uniqueness has to be guaranteed since the problem is finite dimensional. For
that, it has to be shown that it does not exist a nonzero u such that Au = 0, or, in other words, the
kernel of A contains only the zero vector 0.
In the following, we are interested in the discrete spaces

V p
h = {v ∈ C(Ω) : v|τ ∈ Pp(τ) ∀ τ ∈ Th},

i.e., the spaces of continuous, piecewise polynomial functions, where Pp(τ) is the space of polynomials
up to the order p on the element τ . In particular, we will consider the space of continuous, piecewise
linear functions, where p = 1,

Vh = V 1
h = {v ∈ C(Ω) : v|τ ∈ P1(τ) ∀ τ ∈ Th},
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which is a finite dimensional subspace of the Hilbert space H1(Ω). Moreover, we can include the
homogeneous Dirichlet boundary conditions by defining the discrete space

Vh,0 = {v ∈ C0(Ω) : v|τ ∈ P1(τ) ∀ τ ∈ Th},

which can be also defined as

Vh,0 = Vh ∩H1
0 (Ω).

The following result states that the discretization error can be estimated by the best approximation
error. More precisely, the approximation uh ∈ Vh ⊂ V to the exact solution u ∈ V is only worse up
to a constant, i.e., it is quasi-optimal, see [18].

Lemma 2.14 (Céa-type estimate). Let u ∈ V be the solution of the variational problem (2.18) and
let uh ∈ Vh ⊂ V be the solution of (2.23), where the symmetric bilinear form a(·, ·) : V × V → R
fulfills the inf-sup and sup-sup condition (2.22). Moreover, we assume that there exists a constant
cd > 0 such that the so-called discrete inf-sup condition

cd∥uh∥V ≤ sup
0̸=vh∈Vh

a(uh, vh)

∥vh∥V
∀uh ∈ Vh (2.25)

is fulfilled. Then the following discretization error estimate holds:

∥u− uh∥V ≤

1 +

c

cd


inf

vh∈Vh

∥u− vh∥. (2.26)

Proof. Since Vh ⊂ V , we have that

a(u, vh) = ⟨F, vh⟩ and a(uh, vh) = ⟨F, vh⟩ ∀ vh ∈ Vh.

Subtracting yields the Galerkin orthogonality

a(u− uh, vh) = 0 ∀ vh ∈ Vh. (2.27)

By inserting an arbitrary vh ∈ Vh and using triangle inequality, the discrete inf-sup condition (2.25),
the sup-sup condition in (2.22) as well as the Galerkin orthogonality (2.27), we obtain the following
estimate:

∥u− uh∥V ≤ ∥u− vh∥V + ∥uh − vh∥V ≤ ∥u− vh∥V +
1

cd

sup
0̸=ṽh∈Vh

a(uh − vh, ṽh)

∥ṽh∥V

≤ ∥u− vh∥V +
1

cd

sup
0̸=ṽh∈Vh

a(uh − u, ṽh)

∥ṽh∥V  
=0

+
1

cd

sup
0̸=ṽh∈Vh

a(u− vh, ṽh)

∥ṽh∥V

≤ ∥u− vh∥V +
c

cd

∥u− vh∥V =


1 +

c

cd


∥u− vh∥V ,

which finally provides the discretization error estimate (2.26).

Remark 2.15. If the bilinear form a(·, ·) : V × V → R satisfies the ellipticity and boundedness
assumptions of the Lax-Milgram theorem with constants c and c, see Theorem 2.7, one can prove
another discretization error estimate, i.e.,

∥u− uh∥V ≤ c

c
inf

vh∈Vh

∥u− vh∥,

which is usually called the Céa lemma or the Céa theorem, see, e.g., [42].



26 CHAPTER 2. PRELIMINARIES

2.5 Parabolic partial differential equations

This section presents some basic results on parabolic partial differential equations, which can be found,
e.g., in [108, 109, 177, 181, 182, 188], and is a starting point for further investigations presented in
this work. We start with some variational formulations of a parabolic initial-boundary value problem
including existence and uniqueness results, and then, present a corresponding parabolic time-periodic
boundary value problem (BVP), which will particularly be discussed in Chapter 3.

2.5.1 Parabolic initial-boundary value problems

Let QT := Ω× (0, T ) denote again the space-time cylinder and ΣT := Γ× (0, T ) its mantle boundary,
where Ω ⊂ Rd, d = {1, 2, 3}, is again a bounded Lipschitz domain, and let T > 0 be a fixed final
time. We consider the parabolic initial-boundary value problem

σ(x) ∂tu(x, t)− div (ν(x)∇u(x, t)) = f(x, t) (x, t) ∈ QT ,

u(x, t) = 0 (x, t) ∈ ΣT ,

u(x, 0) = u0(x) x ∈ Ω,

(2.28)

where f(x, t) and u0(x) are some given data. Moreover, let us assume that

0 < σ ≤ σ(x) ≤ σ, 0 < ν ≤ ν(x) ≤ ν, for x ∈ Ω. (2.29)

Remark 2.16. In practical applications, as, e.g., in computational electromagnetics, σ corresponds
to the (electric) conductivity and ν to the reluctivity, where ν = 1/µ with µ being the (magnetic)
permeability. Usually, the coefficients σ and ν are piecewise constant due to different materials of
which electrical devices are made. A practical example is

Ω = Ωc ∪ Ωnc, Ωc ∩ Ωnc = ∅,

where Ω is a domain consisting of a conducting region Ωc with σ > 0 and a non-conducting region
Ωnc with σ = 0, i.e., problem (2.28) is parabolic in Ωc and elliptic in Ωnc with appropriate interface
conditions on Ωc ∩ Ωnc.

For the time being, let us consider the case σ(x) = ν(x) = 1. Then, problem (2.28) reads as follows

∂tu(x, t)−△u(x, t) = f(x, t) (x, t) ∈ QT ,

u(x, t) = 0 (x, t) ∈ ΣT ,

u(x, 0) = u0(x) x ∈ Ω.

(2.30)

In this subsection, we now present well-known existence and uniqueness results for this parabolic
initial-boundary value problem, see, e.g., [169, 181, 182]. We start with a first appropriate variational
formulation and a corresponding existence and uniqueness statement due to Ladyzhenskaya et al.,
see [109], see also [108]. Let

f ∈ L2(QT ) ∼= L2(0, T ;L2(Ω)) and u0 ∈ L2(Ω).

We multiply the first equation of problem (2.30) by a test function

v ∈ C1,1
0 (QT ) = {v ∈ C1(QT ) : v = 0 on ΣT }

and integrate over the space-time cylinder QT . So far, we argue formally according to [169], assuming



2.5. PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS 27

that u is a classical solution. Then, integration by parts yields T

0


Ω

(∂tu(x, t) v(x, t)−△u(x, t) v(x, t)) dx dt

=


Ω

(u(x, T ) v(x, T )− u(x, 0) v(x, 0)) dx−
 T

0


Ω

u(x, t) ∂tv(x, t) dx dt

+

 T

0


Ω

∇u(x, t) · ∇v(x, t) dx dt

=

 T

0


Ω

f(x, t) v(x, t) dx dt

for all v ∈ C1,1
0 (QT ). Now, we can insert the initial data and require that the test functions vanish

for the time t = T as well. Altogether, it is enough to choose test functions v ∈ H1,1
0 (QT ) with

v(·, T ) = 0. We arrive at the following variational formulation: Find u ∈ H1,0
0 (QT ) such that T

0


Ω

(−u(x, t) ∂tv(x, t) +∇u(x, t) · ∇v(x, t)) dx dt

=

 T

0


Ω

f(x, t) v(x, t) dx dt+


Ω

u0(x) v(x, 0) dx

(2.31)

for all v ∈ H1,1
0 (QT ) with v(x, T ) = 0 for almost all x ∈ Ω.

The following theorem provides existence and uniqueness for the variational problem (2.31) and was
proven by Ladyzhenskaya et al. [109], see also [108, 169].

Theorem 2.17. Let Ω ⊂ Rd, d ∈ {1, 2, 3}, be a bounded Lipschitz domain, and let QT := Ω× (0, T )
be the space-time cylinder with T > 0 fixed. Under the assumptions that f ∈ L2(QT ) and u0 ∈ L2(Ω),
the parabolic initial-boundary value problem (2.31) has a unique solution u ∈ H1,0

0 (QT ) that belongs
to H̃1,0

0 (QT ) and the stability estimate

max
t∈[0,T ]

∥u(·, t)∥L2(Ω) + ∥u∥H1,0(QT ) ≤ C

∥f∥L2(QT ) + ∥u0∥L2(Ω)


holds with a constant C > 0, which is independent of f and u0.

Proof. See, e.g., [109].

From Theorem 2.17 follows that the linear mapping (f, u0) →→ u is a continuous operator from
L2(QT )×L2(Ω) into H̃1,0

0 (QT ) = H1,0
0 (QT )∩C([0, T ];L2(Ω)) and hence, into H1,0

0 (QT ) and H1,0(QT ).
This result ensures that the solution u is from the Bochner space C([0, T ];L2(Ω)), i.e., u is a continuous
mapping from [0, T ] into L2(Ω), see [169].

Remark 2.18. As it is mentioned in the book by Tröltzsch [169], the variational formulation (2.31)
is only conditionally suitable for the study of optimal control problems since the requirements of the
solution u and of the test function v are not equal. This is a problem in the case of optimal control
problems, since the adjoint state is inserted in the place of v. So, one needs a different approach.

Let X = H1
0 (Ω). In the following, we will present a second variational formulation for the parabolic

inital-boundary value problem (2.30), which is set in the space

W (0, T ) = {u ∈ L2(0, T ;X) : ∂tu ∈ L2(0, T ;X∗)},

as defined in Section 2.1, see also [177, 181]. Moreover, weak solutions u from H1,0
0 (QT ) to the

parabolic inital-boundary value problem (2.30) also belong to W (0, T ) as it is shown in [169]. Note
that there exists a functional F ∈ L2(0, T ;X∗) such that

⟨F (t), v⟩X∗,X =


Ω

f(x, t) v(x) dx ∀ v ∈ X,
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see [169, 182]. By the definition of the generalized weak time derivative together with the variational
formulation (2.31), we arrive at the following variational problem: Find u ∈ W (0, T ) such that T

0

⟨∂tu(t), v(t)⟩X∗,X dt+

 T

0


Ω

∇u(x, t) · ∇v(x, t) dx dt =

 T

0


Ω

f(x, t) v(x, t) dx dt (2.32)

for all v ∈ L2(0, T ;X) and u(0) = u0.

Theorem 2.19. Let Ω ⊂ Rd, d ∈ {1, 2, 3}, be a bounded Lipschitz domain, and let QT := Ω× (0, T )
be the space-time cylinder with T > 0 fixed. Under the assumptions that f ∈ L2(QT ) and u0 ∈ L2(Ω),
the parabolic initial-boundary value problem (2.32) has a unique solution u ∈ W (0, T ) which satisfies
the stability estimate

∥u∥W (0,T ) ≤ C

∥f∥L2(QT ) + ∥u0∥L2(Ω)


with a constant C > 0, which is independent of f and u0.

Proof. See [169].

Theorem 2.19 concludes that the mapping (f, u0) →→ u defines a continuous linear operator from
L2(QT )×L2(Ω) into W (0, T ) and into C([0, T ];L2(Ω)) as well, since W (0, T ) is continuously embed-
ded in C([0, T ];L2(Ω)).

2.5.2 Parabolic time-periodic boundary value problems
In this subsection, we want to present the parabolic time-periodic analogon to the parabolic initial-
boundary value problem (2.28), which will be studied more detailed in Chapter 3. Instead of the
initial condition

u(x, 0) = u0(x) x ∈ Ω,

we now prescribe the time-periodic condition

u(x, 0) = u(x, T ) x ∈ Ω,

and call T > 0 the periodicity. Hence, we obtain the parabolic time-periodic problem

σ(x) ∂tu(x, t)− div (ν(x)∇u(x, t)) = f(x, t) (x, t) ∈ QT ,

u(x, t) = 0 (x, t) ∈ ΣT ,

u(x, 0) = u(x, T ) x ∈ Ω,

(2.33)

where, again, f is some given data and we suppose that the assumptions (2.29) on the coefficients σ
and ν hold.
Theorem 2.20 presents an existence and uniqueness result for the time-periodic problem (2.33), which
can be found in [182]. For that, let X = H1

0 (Ω), and let us define the space

Wper(0, T ) = {u ∈ W (0, T ) : u(x, 0) = u(x, T ) for almost all x ∈ Ω},

which includes the time-periodicity conditions. We have the following variational problem: Find
u ∈ Wper(0, T ) such that T

0

⟨∂tu(t), v(t)⟩X∗,X dt+

 T

0


Ω

∇u(x, t) · ∇v(x, t) dx dt =

 T

0


Ω

f(x, t) v(x, t) dx dt (2.34)

for all v ∈ L2(0, T ;X).
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Theorem 2.20. Let Ω ⊂ Rd, d ∈ {1, 2, 3}, be a bounded Lipschitz domain, and let QT := Ω× (0, T )
be the space-time cylinder with T > 0 fixed. Under the assumption that f ∈ L2(QT ), the parabolic
time-periodic problem (2.34) has a unique solution u ∈ Wper(0, T ).

Proof. See [182].

Time-periodic conditions occur in many practical applications, as, e.g., in electromagnetics, where we
can assume that the source term f is time-periodic and, hence, also the solution u, see, e.g., [69, 70].
A very important tool for the treatment of time-periodic problems is the multiharmonic ansatz, where
the source term f as well as the solution u (and the test function v) are expanded into Fourier series
and are approximated by corresponding truncated Fourier series, see Chapter 3.

2.6 Optimal control problems
The main focus of this section is to present well-known results on optimal control problems, especially,
on parabolic optimal control problems. For further information and a general analysis of optimal
control problems, we refer the reader, e.g., to [81, 117, 169]. These general results provide a basis
for the future discussion and analysis of parabolic time-periodic optimal control problems (OCPs),
which are presented in Chapter 4.

2.6.1 General linear-quadratic optimal control problems
Let H, U , Y and Z be Hilbert spaces and let Y be continuously embedded in H. We denote by
y ∈ Y the state variable and by u ∈ U the control variable. Hence, Y and U are also called the state
space and the control space. To begin with, let us consider a general linear-quadratic optimal control
problem of the form

min
(y,u)∈Y×U

J (y, u) =
1

2
∥EY y − yd∥2H +

λ

2
∥u∥2U ,

subject to Ay = B u+ g, u ∈ Uad,

(2.35)

where yd ∈ H is the given desired state, g ∈ Z is a given source term, and λ > 0 is the cost or
regularization parameter. The linear continuous operator

EY : Y → H

is called the embedding operator, which assigns to each y ∈ Y the same function in H. The equation
Ay = B u + g is called state equation and is a partial differential equation in our context, where
A : Y → Z and B : U → Z are continuous linear operators. Moreover, we assume that the set of
admissible controls Uad ⊂ U is nonempty, closed and convex. One could also impose constraints on
the state, i.e., y ∈ Yad ⊂ Y . However, in this work, we mainly consider the case Uad = U (and also
Yad = Y ), which is of course covered by the theory presented in this section. In order to derive the
corresponding reduced optimal control problem, we define the continuous linear operators

G : U → Y, u →→ y(u) and S : U → H, u →→ y(u)

which are called the control-to-state operator and the solution operator, respectively. Moreover, we
set S = EY G, and so, it follows that

S u = EY Gu = EY y.

Under the assumption that the operator A has a bounded inverse, i.e., the state equation has a unique
solution, we obtain

Gu = A−1 (B u+ g)
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and arrive at the following reduced optimal control problem:

min
u∈Uad

f(u) =
1

2
∥S u− yd∥2H +

λ

2
∥u∥2U , (2.36)

where f is the so-called reduced cost functional.

Theorem 2.21. Under the assumptions made above, the optimal control problem (2.35) has a unique
solution (ȳ, ū). Moreover, the corresponding reduced optimization problem (2.36) admits the unique
solution ū ∈ Uad.

Proof. See, e.g., [81], as well as [169].

The following theorem provides the first-order optimality conditions of the reduced optimal control
problem (2.36):

Theorem 2.22. The reduced optimization problem (2.36) has a unique solution ū ∈ Uad if and only
if ū solves the variational inequality

(S∗(S ū− yd) + λū, u− ū)U ≥ 0 ∀u ∈ Uad. (2.37)

Proof. See, e.g, [169].

In order to derive the first-order optimality conditions, also called the optimality system, for problem
(2.35), we introduce the so-called adjoint state (or Lagrange multiplier) p ∈ P = Z∗ and define the
Lagrange functional L : Y × U × P → R, i.e.,

L(y, u, p) = J (y, u) + ⟨p,A y −B u− g⟩P,Z . (2.38)

Using this Lagrangian based approach, we are able to state the first-order optimality conditions for
problem (2.35) in a compact form.

Theorem 2.23. The optimal control problem (2.35) has an optimal solution (ȳ, ū) if and only if
there exists a Lagrange multiplier p̄ ∈ P for the corresponding Lagrange functional (2.38) such that
the following optimality conditions hold:

Lp(ȳ, ū, p̄) = 0, (2.39)
Ly(ȳ, ū, p̄) = 0, (2.40)

ū ∈ Uad, ⟨Lu(ȳ, ū, p̄), u− ū⟩U∗,U ≥ 0 ∀u ∈ Uad. (2.41)

Proof. See, e.g., [81].

The first-order optimality conditions of Theorem 2.22 and Theorem 2.23 are necessary and also
sufficient since the minimization functional as well as the reduced functional are convex. The condition
(2.39) corresponds to the state equation, (2.41) to the variational inequality and (2.40) is referred to
as adjoint equation. The optimality system (2.39)-(2.41) of problem (2.35) takes the form

A ȳ = B ū+ g,

A∗p̄ = −E∗
Y (EY ȳ − yd) ,

ū ∈ Uad, ⟨λū−B∗p̄, u− ū⟩U∗,U ≥ 0 ∀u ∈ Uad.

In the unconstrained case, i.e., Uad = U , the variational inequality (2.41) of the optimality system,
simplifies to the equation Lu(ȳ, ū, p̄) = 0. Hence, the optimality system is given by

Lp(ȳ, ū, p̄) = 0,
∇L(ȳ, ū, p̄) = 0, or, Ly(ȳ, ū, p̄) = 0,

Lu(ȳ, ū, p̄) = 0.
(2.42)
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2.6.2 Linear-quadratic parabolic optimal control problems
Let us consider the optimal control problem

min
(y,u)

J (y, u) =
1

2
∥y − yd∥2L2(QT ) +

λ

2
∥u∥2L2(QT ) (2.43)

subject to the parabolic initial-boundary value problem

∂ty(x, t)−△y(x, t) = u(x, t) (x, t) ∈ QT ,

y(x, t) = 0 (x, t) ∈ ΣT ,

y(x, 0) = y0(x) x ∈ Ω,

(2.44)

and the control constraints

ua(x, t) ≤ u(x, t) ≤ ub(x, t) for a.e. (x, t) ∈ QT . (2.45)

Due to Theorem 2.19, the parabolic initial-boundary value problem (2.44) has a unique solution
y ∈ W (0, T ), i.e., there exists a linear continuous mapping (u, y0) →→ y from L2(QT ) × L2(Ω) into
W (0, T ). This information leads to the following existence and uniqueness result for the parabolic
optimal control problem (2.43)-(2.45):

Theorem 2.24. Let λ > 0. Under the assumption that the parabolic initial-boundary value problem
(2.44) has a unique solution in ȳ ∈ W (0, T ), there exists an optimal control ū ∈ L2(QT ) solving the
optimization problem (2.43)-(2.45).

Proof. The existence and uniqueness statement follows immediately from applying Theorem 2.19 and
Theorem 2.21, see [169].

We now state the optimality system corresponding to problem (2.43)-(2.45). Let us consider an
optimal control ū ∈ L2(QT ) with associated state ȳ solving the state equation (2.44). Then, the
corresponding adjoint state p̄ is the unique weak solution of the adjoint equation

−∂tp(x, t)−△p(x, t) = ȳ(x, t)− yd(x, t) (x, t) ∈ QT ,

p(x, t) = 0 (x, t) ∈ ΣT ,

p(x, T ) = 0 x ∈ Ω.

Moreover, p̄ and ū have to fulfill the variational inequality T

0


Ω

(λū(x, t)− p̄(x, t)) (u(x, t)− ū(x, t)) dx dt ≥ 0 ∀u ∈ Uad,

where Uad = {u ∈ L2(QT ) : ua(x, t) ≤ u(x, t) ≤ ub(x, t) for a.e. (x, t) ∈ QT }.
In case of Uad = U , the variational inequality simplifies to the equation

u(x, t) = λ−1p(x, t) (x, t) ∈ QT ,

and we obtain the reduced optimality system

∂ty(x, t)−△y(x, t) = λ−1p(x, t) (x, t) ∈ QT ,

y(x, t) = 0 (x, t) ∈ ΣT ,

y(x, 0) = y0(x) x ∈ Ω,

−∂tp(x, t)−△p(x, t) = y(x, t)− yd(x, t) (x, t) ∈ QT ,

p(x, t) = 0 (x, t) ∈ ΣT ,

p(x, T ) = 0 x ∈ Ω.
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If, in addition, the state equation is not an initial-boundary value problem but a time-periodic one,
the reduced optimality system is given by

∂ty(x, t)−△y(x, t) = λ−1p(x, t) (x, t) ∈ QT ,

y(x, t) = 0 (x, t) ∈ ΣT ,

y(x, 0) = y(x, T ) x ∈ Ω,

−∂tp(x, t)−△p(x, t) = y(x, t)− yd(x, t) (x, t) ∈ QT ,

p(x, t) = 0 (x, t) ∈ ΣT ,

p(x, 0) = p(x, T ) x ∈ Ω.

This kind of optimal control problems will particularly be discussed in Chapter 4 including exis-
tence and uniqueness results, discretization and numerical methods as well as full discretization error
estimates.

2.7 Robust block-diagonal preconditioning for the MINRES
method

In the context of simulation and optimal control of parabolic time-periodic problems, there are often
arising bilinear forms with a saddle point structure which, after discretization, lead to linear saddle
point systems of the form

Au = f, (2.46)

where

A =


A BT

B −C


∈ Rn×n (2.47)

is a regular, symmetric, but indefinite system matrix. Here, the symmetric matrices A and C are
assumed to be positive definite and positive semidefinite, respectively. Therefore, the linear system
(2.46) can be solved by a preconditioned minimal residual (MINRES) method which was introduced
by Paige and Saunders [136]. This method belongs to the class of preconditioned Krylov subspace
methods, which are very efficient iterative methods for solving large scale linear systems, see, e.g.,
[156]. A very popular Krylov subspace method is the conjugate gradient (CG) method for problems
with symmetric positive definite system matrices, see [78].
The purpose of this section is to provide the fundamental results which are needed to construct robust
preconditioned MINRES solvers for the parabolic time-periodic problems presented in Chapters 3
and 4. The construction of efficient preconditioners is subject of discussion in many papers, see, e.g.,
the survey paper [30]. In particular, we mention the so-called operator preconditioning technique
that exploits the mapping property of the underlying operator and that leads to block-diagonal
preconditioners for saddle point problems like (2.46), see [27, 82, 124, 173] and the references therein.
By applying the preconditioned MINRES method, we aim at minimizing the preconditioned residual

rm = P−1(f −Aum)

over the Krylov subspace

Km(P−1A, r0) := span{r0, (P−1A) r0, . . . , (P−1A)m r0}

where the symmetric positive definite (SPD) matrix P is a preconditioner for A. Hence, the approx-
imate solution of problem (2.46) follows from solving the minimization problem

um = argmin
u∈u0+Km(P−1A,P−1r0)

∥rm∥P
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by constructing an orthonormal basis for the Krylov subspace using the Lanczos algorithm, where its
solution can be calculated by a three-term recurrence relation. The algorithm for the preconditioned
MINRES method is presented in Algorithm 1, where the framed steps denote the action of the
preconditioner P.

Data: A ∈ Rn×n regular and symmetric, P ∈ Rn×n SPD, f ∈ Rn right-hand side, u0 ∈ Rn

intial guess.
Result: approximate solution of (2.46).
Set r0 := 0; Set w0 := 0; Set w1 := 0;
Set β0 := 1;
Set r1 := f −Au0;
Solve P q1 = r1;

Set β1 :=

(q1, r1);

Set η := β1;
Set s0 := s1 := 0; Set c0 := c1 := 1;
Set m := 1;
while not converged do

Set qm := qm
βm

;
Set αm := (A qm, qm);
Set rm+1 := A qm − αm

βm
rm − βm

βm−1
rm−1;

Solve P qm+1 = rm+1;

Set βm+1 :=

(qm+1, rm+1);

Set γ0 := cm αm − cm−1 sm βm;

Set γ1 :=

γ2
0 + β2

m+1;
Set γ2 := sm αm + cm−1 cm βm;
Set γ3 := sm−1 βm;
Set cm+1 := γ0

γ1
; Set sm+1 := βm+1

γ1
;

Set wm+1 := 1
γ1

qm − γ3

γ1
wm−1 − γ2

γ1
wm;

Set um := um−1 + cm+1 η wm+1;
Set η := −sm+1 η;
Set m := m+ 1;

end
Algorithm 1: Preconditioned minimal residual (preconditioned MINRES) method, cf. [67].

A convergence result for the preconditioned MINRES method can be found in Greenbaum [67]. It
states that the convergence rate of the preconditioned MINRES method depends on the condition
number of the preconditioned system. This convergence result is summarized in the following theorem
in detail.

Theorem 2.25. The preconditioned MINRES method applied to the system Au = f with some sym-
metric and positive definite preconditioner P, where A is a regular and symmetric system matrix,
converges to the solution of this system for an arbitrary initial guess u0. More precisely, the precon-
ditioned residual r2m = P−1(f − Au2m) after 2m iterations can be estimated by the initial residual
r0 as follows

∥r2m∥P ≤ 2qm

1 + q2m
∥r0∥P with q =

κP(P−1A)− 1

κP(P−1A) + 1
, (2.48)

where κP(P−1A) := ∥P−1A∥P ∥(P−1A)−1∥P is the condition number of the preconditioned system
matrix and ∥ · ∥P = (P ·, · )1/2 is the P-energy norm.
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Proof. Cf. Greenbaum [67].

Hence, the goal is to construct preconditioners for the preconditioned MINRES method such that
the condition number κP(P−1A) of the preconditioned system P−1A is independent of all problem
involved parameters and small, more precisely, as close as possible to one.
We start with a result on parameter robust Schur complement preconditioners for saddle point prob-
lems of the form (2.46) with the system matrix (2.47).

Theorem 2.26. Let A and C be symmetric and positive definite matrices and let

S = C +BA−1BT and R = A+BTC−1B

be the negative Schur complements. If A is preconditioned by

P0 =


A 0
0 S


or P1 =


R 0
0 C


, (2.49)

then the eigenvalues of the preconditioned matrices P−1
0 A and P−1

1 A are located in the set (−1, 1−
√
5

2 ]∪
{1} ∪ (1, 1+

√
5

2 ].

Proof. See Kuznetsov [107] and Murphy et al. [127].

Theorem 2.26 immediately yields the following norm estimates.

Corollary 2.27. The inequalities

c ∥u∥P0 ≤ ∥Au∥P−1
0

≤ c ∥u∥P0 and c ∥u∥P1 ≤ ∥Au∥P−1
1

≤ c ∥u∥P1 (2.50)

are valid for all u ∈ Rn, with c = (
√
5− 1)/2 and c = (

√
5 + 1)/2.

Proof. From Theorem 2.26 follows that the smallest and largest absolute values of the eigenvalues of
the preconditioned matrices P−1

0 A and P−1
1 A are given by

c = (
√
5− 1)/2 and c = (

√
5 + 1)/2.

Moreover, we have that

∥Au∥P−1
j

∥u∥Pj

≤ sup
u ̸=0

∥Au∥P−1
j

∥u∥Pj

= sup
u ̸=0

(P−1
j Au,Au)1/2

(Pj u, u)1/2
= sup

u ̸=0

(P−1/2
j Au,P−1/2

j Au)1/2

(P1/2
j u,P1/2

j u)1/2

= sup
v ̸=0

(P−1/2
j AP−1/2

j v,P−1/2
j AP−1/2

j v)1/2

(v, v)1/2
= sup

v ̸=0

∥P−1/2
j AP−1/2

j v∥
∥v∥

= c,

where we have set v = P1/2
j u and j ∈ {0, 1}. Analogously, we obtain

∥Au∥P−1
j

∥u∥Pj

≥ inf
u̸=0

∥Au∥P−1
j

∥u∥Pj

= inf
v ̸=0

∥P−1/2
j AP−1/2

j v∥
∥v∥

= c,

which completes the proof.

Since

∥P−1
j A∥Pj

= sup
u̸=0

∥P−1
j Au∥Pj

∥u∥Pj

= sup
u̸=0

∥Au∥P−1
j

∥u∥Pj

≤ c,

∥(P−1
j A)−1∥Pj = ∥A−1Pj∥Pj = sup

u̸=0

∥A−1Pj u∥Pj

∥u∥Pj

= sup
v ̸=0

∥v∥Pj

∥P−1
j A v∥Pj

=
1

infv ̸=0

∥A v∥
P−1
j

∥v∥Pj

≤ 1

c
,
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the block-diagonal preconditioners yield the condition number estimate

κPj
(P−1

j A) = ∥P−1
j A∥Pj

∥(P−1
j A)−1∥Pj

≤ c

c
=

√
5 + 1√
5− 1

≈ 2.618, j ∈ {0, 1}.

However, in general, the inverse of the Schur complements S and R is hard to be realized in practice.
In order to obtain parameter robust convergence rates, we construct block-diagonal preconditioners
by the operator interpolation technique presented in Zulehner [187]. The idea is to construct two
preconditioners which yield robust convergence rates for the preconditioned MINRES method and
apply the operator interpolation theorem, which is based on the construction of intermediate spaces
via the so-called real interpolation method. The ideas of the real method (J- and the K-method) are
due to Lions and Peetre, see, e.g., [119, 120]. The theory of the real method can also be found, e.g.,
in Bergh and Löfström [31], see Adams and Fournier [3]. For further information, we refer the reader
also to Tartar [166]. Theorem 2.29 presents a matrix version that follows easily from the general
operator interpolation theory. A similar notation was used by Zulehner in [187]. This notation goes
back to the general theory of matrix means, see, e.g., [35, 113, 144] and was even found before, see
[147], in a very different context. In Definition 2.28, we define the geometric mean of two symmetric
and positive definite matrices.

Definition 2.28. Let A,B ∈ Rn×n be two symmetric and positive definite matrices. Then the
geometric mean of A and B is given by

[A,B]1/2 = A1/2

A−1/2BA−1/2

1/2
A1/2.

Moreover, we define, for all θ ∈ [0, 1], the symmetric and positive definite matrix [A,B]θ, i.e.,

[A,B]θ = A1/2

A−1/2BA−1/2

θ
A1/2.

The following theorem presents a finite dimensional matrix version of the operator interpolation
theorem and uses the notation presented in Definition 2.28.

Theorem 2.29. Let A : Rn −→ Rn with

c0∥u∥X0
≤ ∥Au∥Y0

≤ c0∥u∥X0
and c1∥u∥X1

≤ ∥Au∥Y1
≤ c1∥u∥X1

∀u ∈ Rn,

where the linear vector spaces Xj = Rn and Yj = Rn with j ∈ {0, 1} are equipped with the norms
∥ · ∥Xj and ∥ · ∥Yj which are associated to the inner products

(u, v)Xj
= ⟨Mju, v⟩ and (u, v)Yj

= ⟨Nju, v⟩

given by the symmetric positive definite matrices M0,M1, N0, N1 ∈ Rn×n, respectively. Then, for

Xθ = [X0, X1]θ and Yθ = [Y0, Y1]θ

with θ ∈ [0, 1], we have

c1−θ
0 cθ1∥u∥Xθ

≤ ∥Au∥Yθ
≤ c1−θ

0 cθ1∥u∥Xθ
∀u ∈ Rn. (2.51)

The norms ∥ · ∥Xθ
and ∥ · ∥Yθ

are the norms associated to the inner products

(u, v)Xθ
= ⟨Mθu, v⟩ with Mθ = [M0,M1]θ = M

1/2
0


M

−1/2
0 M1M

−1/2
0

θ
M

1/2
0 ,

(u, v)Yθ
= ⟨Nθu, v⟩ with Nθ = [N0, N1]θ = N

1/2
0


N

−1/2
0 N1N

−1/2
0

θ
N

1/2
0 .
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Proof. The proof follows from the more general version of the space interpolation theorem, as in
Adams and Fournier [3], and is based on the general operator interpolation theorem, see also [187].

Hence, from interpolating between the block-diagonal preconditioners P0 and P1, we can obtain again
parameter independent condition number estimates for all θ ∈ [0, 1]. We choose M0 = P0, M1 = P1,
N0 = P−1

0 and N1 = P−1
1 in Theorem 2.29 and obtain the preconditioners

Pθ = [P0, P1]θ =


[A,R]θ 0

0 [S,C]θ


. (2.52)

Due to Theorems 2.26 and 2.29, we obtain the estimates

c ∥u∥Pθ
≤ ∥Au∥P−1

θ
≤ c ∥u∥Pθ

∀u ∈ Rn, (2.53)

with the constants c = (
√
5−1)/2 and c = (

√
5+1)/2. These estimates finally yield a robust estimate

of the condition number, i.e.,

κPθ
(P−1

θ A) ≤ c/c ≈ 2.618.

The practical implementation of these preconditioners can be done by various methods like (algebraic)
multigrid, multilevel or domain decomposition methods, see, e.g., [101, 142, 168, 173]. Since our focus
lies on the algebraic multilevel iteration (AMLI) method, we are going to present some basic results
regarding this method in the next section.
In this work, we use the special notation A ∼ B for the spectral equivalence of the matrices A and
B, which is defined in the following way:

Definition 2.30. Two symmetric and positive definite matrices A and B in Rn×n are called spectral
equivalent, denoted by A ∼ B, if there exist positive constants c and c which are independent of all
involved “bad” parameters such that

c uTAu ≤ uTB u ≤ c uTAu ∀u ∈ Rn.

Of course, we have to specify these “bad” parameters. Beside the discretization parameters, we
also have in mind parameters connected with the problem setting, e.g., the regularization or cost
parameter in optimal control.

2.8 The AMLI method
Let us consider algebraic systems of linear equations

Au = f, (2.54)

where A ∈ Rn×n is now a sparse, symmetric and positve definite (SPD) matrix. In this final section,
we briefly present the algebraic multilevel iteration (AMLI) method in order to solve the linear system
(2.54). For more details regarding the AMLI method, we refer the reader to, e.g., [17, 101] and the
references therein. We mainly focus on the so-called linear AMLI method, which can be used to define
preconditioners for the preconditioned conjugate gradient (PCG) method in order to solve the linear
system (2.54). Let us denote by B the preconditioner for the linear system (2.54). The pseudocode
of the PCG method is presented in Algorithm 2. Here, we denote by rm and pm the residuals and
the search directions, respectively.
The linear AMLI method is used to implement the framed preconditioning step in Algorithm 2, i.e.,

Solve B zm = rm. (2.55)

Its pseudocode is presented in Algorithm 3 at the end of Subsection 2.8.1. Moreover, we present the
so-called nonlinear AMLI method in Subsection 2.8.2.
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Data: A ∈ Rn×n regular SPD, f ∈ Rn right-hand side, u0 ∈ Rn intial guess, B preconditioner.
Result: approximate solution of (2.54).
Set m := 0;
Set r0 := f −Au0;
while not converged do

Solve B zm = rm;

Set m := m+ 1;
Set γm−1 := (rm−1, zm−1);
if m = 1 then

Set pm := zm−1;
else

Set βm := γm−1

γm−2
;

Set pm := zm−1 + βm pm−1;
end
Set qm = Apm;
Set αm = γm−1

(pm,qm) ;
Set um = um−1 + αm pm;
Set rm = rm−1 − αm qm;

end
Algorithm 2: Preconditioned conjugate gradient (PCG) method, cf. [67, 101].

2.8.1 The linear AMLI method

The classical framework of the so-called linear AMLI method can be found in [14, 15], which is based
on a multilevel block factorization and polynomial stabilization.
Let the symmetric and positive definite matrix A = A(L) in (2.54) be obtained in the course of
a regular refinement procedure, which defines a sequence of symmetric positive definite matrices
starting from a coarsest level system matrix A(0), i.e.,

{A(ℓ)}, A(ℓ) ∈ Rn(ℓ)×n(ℓ)

,

where ℓ = 0, . . . , L, and n(ℓ) > n(ℓ−1), for ℓ = 1, . . . , L, see [17]. These matrices are constructed via
the finite element method (FEM) for the sequence of nested spaces

V (0) ⊂ V (1) ⊂ · · · ⊂ V (ℓ) ⊂ · · · ⊂ V (L) = Vh, (2.56)

corresponding to nested meshes T (ℓ) for ℓ = 0, . . . , L, where T (L) = Th is the finest mesh. The spaces

V (ℓ) = span{ϕ(ℓ)
1 , . . . , ϕ

(ℓ)

n(ℓ)}

are finite element spaces spanned by the standard nodal basis functions

{ϕ(ℓ)
i : i = 1, . . . , n(ℓ)},

where we use continuous, piecewise linear conforming finite elements on triangles on a regular trian-
gulation to construct the finite element spaces and their bases, see [41, 46, 84, 161] and Section 2.4.
On each level ℓ, we partition the matrix A(ℓ) in a two-by-two block form, i.e.,

A(ℓ) =


A

(ℓ)
11 A

(ℓ)
12

A
(ℓ)
21 A

(ℓ)
22


}n(ℓ) − n(ℓ−1)

}n(ℓ−1) , (2.57)
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where the blocks A(ℓ)
22 and A

(ℓ)
11 correspond to the unknowns that are associated with the coarser mesh

T (ℓ−1) and to the unknowns that are added in the course of refining the mesh T (ℓ−1) resulting in the
mesh T (ℓ), respectively. The Schur complements

S(ℓ) = A
(ℓ)
22 −A

(ℓ)
21 (A

(ℓ)
11 )

−1A
(ℓ)
12 (2.58)

are dense symmetric and positive definite matrices. In the course of designing optimal multilevel
methods, it is important to construct a sparse approximation of S(ℓ), see [101]. More precisely, S(ℓ)

has to be spectrally equivalent to A(ℓ−1) on all levels ℓ = 1, . . . , L with spectral equivalence bounds
that neither depend on the level index ℓ− 1 nor on any problem parameters, see [17].
The efficiency of preconditioners based on two-by-two block factorization strongly depends on the
coupling of the diagonal blocks of the two-level matrix via its off-diagonal blocks. A measure for the
strength of this coupling is the constant γ in the strengthened Cauchy-Bunyakowski-Schwarz (CBS)
inequality vT1 A(ℓ)

12 v2

 ≤ γ

vT1 A

(ℓ)
11 v1

1/2 
vT2 A

(ℓ)
22 v2

1/2
∀ v1 ∈ V

(ℓ)
1 ∀ v2 ∈ V

(ℓ)
2 , (2.59)

where V
(ℓ)
1 and V

(ℓ)
2 form a splitting of the vector space V (ℓ), which is consistent with the partitioning

(2.57), cf. [54, 101]. The strengthened CBS inequality refines the usual one, cf. (2.1), by stating
the existence of a constant γ ≤ 1. The so-called CBS constant, i.e., the smallest γ for which (2.59)
holds, maybe called the cosine of the angle between the spaces V

(ℓ)
1 and V

(ℓ)
2 and can be estimated

locally, see, e.g., [115] and the references therein. Let the elements of T (ℓ) be uniform refinements of
the coarse-grid elements e ∈ T (ℓ−1). In the following, we call E ⊂ T (ℓ) a macro element. The global
CBS constant can be estimated by the maximum of the local CBS constants on the macro elements
E ⊂ T (ℓ), i.e.,

γ ≤ max
E⊂T (ℓ)

γE ≤ 1, (2.60)

and can be computed via a simple rule, i.e.,

γ2
E = 1− λmin

E , (2.61)

where λmin
E is the minimal eigenvalue of the generalized eigenvalue problem

SE vE:2 = λAe vE:2, (2.62)

and vE:2 ̸= (c, c, . . . , c)T , c is a real constant, see, e.g., [101]. The global matrices A(ℓ) and A(ℓ−1) can
be computed via the local matrices AE and Ae, respectively. The standard FEM assembling can be
written in the form

A(ℓ) =


E⊂T (ℓ)

RT
E AE RE ,

A(ℓ−1) =


e∈T (ℓ−1)

RT
e Ae Re,

(2.63)

where RE and Re are the restriction mappings of a global vector of unknowns at levels ℓ and ℓ − 1
to the local vectors corresponding to the elements E ⊂ T (ℓ) and e ∈ T (ℓ−1), respectively, cf. [101].
Hence, it suffices to consider the local matrices AE and Ae for analyzing the robustness and optimal
complexity of the linear AMLI method for solving problem (2.54).
It is well known that ensuring that the CBS constant γ in (2.59) and (2.60) is strictly less than 1 in
general requires a change of basis. Let us consider the two nested finite element spaces

V (ℓ−1) ⊂ V (ℓ),
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which correspond to the two consecutive meshes T (ℓ−1) and T (ℓ), respectively. Their standard finite
element nodal basis functions are given by

{ϕ(ℓ−1)
i : i = 1, . . . , n(ℓ−1)} and {ϕ(ℓ)

i : i = 1, . . . , n(ℓ)}.

We split the n(ℓ) meshpoints into the group containing the n(ℓ−1) nodes of the coarse mesh T (ℓ−1)

and the rest. Then by defining the hierarchical basis functions

{ϕ̃(ℓ)
i : i = 1, . . . , n(ℓ)},

the hierarchical matrix Ã(ℓ) as well as A(ℓ) (for the latter see (2.57)) are naturally partitioned in a
two-by-two block form, i.e.,

Ã(ℓ) =


Ã

(ℓ)
11 Ã

(ℓ)
12

Ã
(ℓ)
21 Ã

(ℓ)
22


}n(ℓ) − n(ℓ−1)

}n(ℓ−1) ,

see [101]. The hierarchical matrix Ã(ℓ) is more dense than A(ℓ), however, the related CBS constant
γ is typically less than 1. The nodal unknown vectors for the standard and for the hierarchical basis
functions are related by a transformation matrix of the form

J (ℓ) =


I J

(ℓ)
12

0 I


, (2.64)

where I is the corresponding identity matrix and 0 the zero matrix. In practical applications, we can
work with A(ℓ) instead of Ã(ℓ), since

Ã(ℓ) =

J (ℓ)

T
A(ℓ)J (ℓ). (2.65)

Lemma 2.31 (cf. [54, 101]). The transformation from the standard to the hierarchical basis does not
change the Schur complement, i.e.,

S(ℓ) = S̃(ℓ).

Proof. This follows from a straightforward computation:

Ã(ℓ) =


Ã

(ℓ)
11 Ã

(ℓ)
12

Ã
(ℓ)
21 Ã

(ℓ)
22


= (J (ℓ))TA(ℓ)J (ℓ)

=


I 0

(J
(ℓ)
12 )

T I


A

(ℓ)
11 A

(ℓ)
12

A
(ℓ)
21 A

(ℓ)
22


I J

(ℓ)
12

0 I



=


A

(ℓ)
11 A

(ℓ)
12

(J
(ℓ)
12 )

TA
(ℓ)
11 +A

(ℓ)
21 (J

(ℓ)
12 )

TA
(ℓ)
12 +A

(ℓ)
22


I J

(ℓ)
12

0 I



=


A

(ℓ)
11 A

(ℓ)
11 J

(ℓ)
12 +A

(ℓ)
12

(J
(ℓ)
12 )

TA
(ℓ)
11 +A

(ℓ)
21 (J

(ℓ)
12 )

TA
(ℓ)
11 J

(ℓ)
12 +A

(ℓ)
21 J

(ℓ)
12 + (J

(ℓ)
12 )

TA
(ℓ)
12 +A

(ℓ)
22


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and

S̃(ℓ) = Ã
(ℓ)
22 − Ã

(ℓ)
21 (Ã

(ℓ)
11 )

−1Ã
(ℓ)
12

=(J
(ℓ)
12 )

TA
(ℓ)
11 J

(ℓ)
12 +A

(ℓ)
21 J

(ℓ)
12 + (J

(ℓ)
12 )

TA
(ℓ)
12 +A

(ℓ)
22

−

(J

(ℓ)
12 )

TA
(ℓ)
11 +A

(ℓ)
21


(A

(ℓ)
11 )

−1

A

(ℓ)
11 J

(ℓ)
12 +A

(ℓ)
12


=(J

(ℓ)
12 )

TA
(ℓ)
11 J

(ℓ)
12 +A

(ℓ)
21 J

(ℓ)
12 + (J

(ℓ)
12 )

TA
(ℓ)
12 +A

(ℓ)
22

−

(J

(ℓ)
12 )

T +A
(ℓ)
21 (A

(ℓ)
11 )

−1


A
(ℓ)
11 J

(ℓ)
12 +A

(ℓ)
12


=(J

(ℓ)
12 )

TA
(ℓ)
11 J

(ℓ)
12 +A

(ℓ)
21 J

(ℓ)
12 + (J

(ℓ)
12 )

TA
(ℓ)
12 +A

(ℓ)
22

−

(J

(ℓ)
12 )

TA
(ℓ)
11 J

(ℓ)
12 +A

(ℓ)
21 J

(ℓ)
12 + (J

(ℓ)
12 )

TA
(ℓ)
12 +A

(ℓ)
21 (A

(ℓ)
11 )

−1A
(ℓ)
12


=A

(ℓ)
22 −A

(ℓ)
21 (A

(ℓ)
11 )

−1A
(ℓ)
12

=S(ℓ).

Remark 2.32. Note that

Ã
(ℓ)
11 = A

(ℓ)
11 and Ã

(ℓ)
22 = A(ℓ−1).

Moreover, we can compute the minimal eigenvalue of the generalized eigenvalue problem (2.62) using
the Schur complement SE , from which we obtain the local CBS constant γE via the rule (2.61).
Let us consider the following complete factorization of Ã(ℓ):

Ã(ℓ) =


A

(ℓ)
11 0

Ã
(ℓ)
21 S(ℓ)


I (A

(ℓ)
11 )

−1Ã
(ℓ)
12

0 I


, (2.66)

see [14]. There are also linear AMLI versions using complete factorizations of the form

Ã(ℓ) =


I 0

Ã
(ℓ)
21 (A

(ℓ)
11 )

−1 I


A

(ℓ)
11 0
0 S(ℓ)


I (A

(ℓ)
11 )

−1Ã
(ℓ)
12

0 I


,

see [101]. In order to construct uniform AMLI preconditioners B(ℓ) for the matrices A(ℓ) with an
asymptotically optimal order condition number, i.e.,

κ((B(ℓ))−1A(ℓ)) = O(1),

and whose application to a vector has optimal computational complexity, we combine hierarchical
basis preconditioners with polynomial stabilization techniques. Here, the symbol O denotes the big
O notation and is a member of the so-called Landau notation, also called the Bachmann-Landau or
asymptotic notation, where O(1) means constant.
Remember that A(ℓ) and Ã(ℓ) are related via (2.65). Here, we mainly present the so-called multiplica-
tive form of the AMLI method in the spirit of [14, 15], cf. [101]. Let us start at the coarsest level on
which a complete factorization of the matrix A(0) is performed. We define

B(0) := A(0).

Then the preconditioner B(ℓ) at level ℓ according to (2.66) is defined by

B(ℓ) :=


A

(ℓ)
11 0

Ã
(ℓ)
21 Z(ℓ−1)


I (A

(ℓ)
11 )

−1Ã
(ℓ)
12

0 I


, (2.67)
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where Z(ℓ−1) denotes the Schur complement approximation. More precisely, we use the following
approximation of the inverse of the Schur complements:

(Z(ℓ−1))−1 :=

I − P (ℓ)


(B(ℓ−1))−1A(ℓ−1)


(A(ℓ−1))−1. (2.68)

Here, P (ℓ)(t) = Pυℓ
(t), is a polynomial of degree

1 ≤ υℓ ≤ υ := max
0≤ℓ≤L

υℓ,

which has to satisfy the conditions

0 ≤ P (ℓ)(t) < 1, for 0 < t ≤ 1, and P (ℓ)(0) = 1,

for all ℓ = 1, . . . , L. The Schur complement approximation (2.68) is equivalent to

(Z(ℓ−1))−1 := (B(ℓ−1))−1Q(ℓ)

A(ℓ−1)(B(ℓ−1))−1


(2.69)

with

Q(ℓ)(t) =
1− P (ℓ)(t)

t
,

see [101]. The polynomial Q(ℓ)(t) = Qυℓ−1(t) is of degree υℓ − 1 and can also be written as

Q(ℓ)(t) = q
(ℓ)
0 + q

(ℓ)
1 t+ · · ·+ q

(ℓ)
υℓ−1t

υℓ−1.

Remark 2.33. Using the polynomial degree υℓ = 1 at all intermediate levels and choosing

P (ℓ)(t) = P1(t) = 1− t,

we obtain the preconditioner

B(ℓ) :=


A

(ℓ)
11 0

Ã
(ℓ)
21 B(ℓ−1)


I (A

(ℓ)
11 )

−1Ã
(ℓ)
12

0 I


,

which corresponds to the so-called (linear) AMLI V-cycle method, see [14].

More details regarding a proper choice of stabilization polynomials are provided in Chapter 5 including
condition number bounds for

κ((B(ℓ))−1A(ℓ))

following the results and ideas in [11, 14, 15]. Moreover, one can replace A
(ℓ)
11 in the definition of the

AMLI preconditioner (2.67) by an approximation C
(ℓ)
11 , i.e.,

C
(ℓ)
11 ≈ A

(ℓ)
11 ,

by which we mean that

c vT1 C
(ℓ)
11 v1 ≤ vT1 A

(ℓ)
11 v1 ≤ c vT1 C

(ℓ)
11 v1, (2.70)

with some positive constants c and c. We present an additive preconditioner C
(ℓ)
11 for A

(ℓ)
11 in the

context of heterogeneous reaction-diffusion type problems in Chapter 5.
The optimality conditions for the multiplicative variant (2.67) of the AMLI method are given by

1
1− γ2

< υ < ϱ. (2.71)

If (2.71) are fulfilled, then the AMLI preconditioner B(ℓ) defined in (2.67) is spectrally equivalent
to A(ℓ). Here, the parameter ϱ stands for the refinement factor. More precisely, in case of an m-
refinement we have ϱ = m2, which means that we subdivide one element into m2 congruent elements
in one refinement step. More results concerning the refinement factor can be found in Chapter 5.



42 CHAPTER 2. PRELIMINARIES

Remark 2.34. For the additive variant of the AMLI method, the optimality conditions read as follows
1 + γ

1− γ
< υ < ϱ.

In Algorithm 3, we provide the pseudocode for the linear AMLI method in order to implement step
(2.55), rewritten as

B(ℓ) z(ℓ) = r(ℓ) (2.72)

at a level ℓ ∈ {1, . . . , L}, using the PCG method for solving problem (2.54), see [15]. Here, B(ℓ)

denotes the algebraic multilevel preconditioner defined by (2.67) using the approximation C
(ℓ)
11 for the

pivot block A
(ℓ)
11 according to (2.70), i.e.,

B(ℓ) :=


C

(ℓ)
11 0

Ã
(ℓ)
21 Z(ℓ−1)


I (C

(ℓ)
11 )

−1Ã
(ℓ)
12

0 I


, (2.73)

and r(ℓ) is some given right-hand side. We mention that r(ℓ) and z(ℓ) can be represented as

r(ℓ) =


r
(ℓ)
1

r
(ℓ)
2


and z(ℓ) =


z
(ℓ)
1

z
(ℓ)
2


,

respectively, due to our space splitting.

Remark 2.35. The AMLI preconditioner (2.73) using the approximation C
(ℓ)
11 for the pivot block of

A(ℓ) has to fulfill the same optimality conditions (2.71) as (2.67). The AMLI preconditioner (2.73)
is spectrally equivalent to A(ℓ) if

1
1− γ2

< υ,

where γ is the CBS constant and υ the degree of the stabilization polynomial, see [15].

2.8.2 The nonlinear AMLI method
The linear AMLI method depends on a proper choice of the stabilization polynomials which are used to
construct the approximations of the inverse of the Schur complements. Variable-step AMLI methods
that result in nonlinear preconditioners have been introduced in [16] and further analyzed in [98, 133].
In contrast to the linear AMLI method, the stabilization in the nonlinear AMLI method is achieved
by performing a few inner iterations of a flexible Krylov subspace method on each or on certain
levels ℓ of the multilevel cycle. Hence, the nonlinear AMLI algorithm is parameter-free and uses
inner iterations in order to implement the approximations of the inverse of the Schur complements,
see [101]. The nonlinear AMLI methods have also been combined with additive Schur complement
approximations to obtain fully parameter-robust preconditioners for elliptic problems with highly
varying coefficients [99], and problems with a highly anisotropic diffusion tensor [100]. Although the
nonlinear AMLI methods have considerable advantages from a practical point of view, the focus of
Chapter 5 is on the construction of optimal linear AMLI methods for reaction-diffusion type problems
in the (classical) setting of hierarchical bases as presented in Subsection 2.8.2 and, most important,
we prove the robustness and optimal complexity of our linear AMLI method. Moreover, we present
numerical results using the linear and nonlinear AMLI methods in Chapter 7.
Algorithm 4 presents the pseudocode of the nonlinear AMLI method for solving the linear system
(2.54), i.e.,

A(L) u(L) = f (L).
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Data: r(L) ∈ Rn right-hand side.
Result: solution z(L) ∈ Rn of (2.72).
for 1 ≤ ℓ ≤ L do

Set σℓ := 0;
end
Set ℓ := L;
forward:
Set σℓ := σℓ + 1;
if σℓ = 1 then

Set z(ℓ) := 0;
Set w(ℓ) := qυℓ−1r

(ℓ);
else

Set w(ℓ) := qυℓ−σℓ
r(ℓ) +A(ℓ)z(ℓ);

end
Set z

(ℓ)
1 := (C

(ℓ)
11 )

−1w
(ℓ)
1 ;

Set r(ℓ−1) := w
(ℓ)
2 − Ã

(ℓ)
21 z

(ℓ)
1 ;

Set r(ℓ−1) := (J (ℓ−1))T r(ℓ−1);
Set ℓ := ℓ− 1;
if ℓ > 0 then

goto forward
end
Solve A(0)z(0) = r(0);
backward:
Set ℓ := ℓ+ 1;
Set z

(ℓ)
2 := z(ℓ−1);

Set z
(ℓ)
1 := z

(ℓ)
1 − (C

(ℓ)
11 )

−1Ã
(ℓ)
12 z

(ℓ)
2 ;

Set z(ℓ) := J (ℓ)z(ℓ);
if σℓ < υℓ then

goto forward
end
Set σℓ := 0;
if ℓ < L then

goto backward
end
Algorithm 3: Linear algebraic multilevel iteration (linear AMLI) method, cf. [15, 101].

We denote by f (ℓ), r(ℓ) and C
(ℓ)
11 the current right-hand side, residual and the preconditioner for A(ℓ)

11

at level ℓ, respectively. Moreover, υℓ and σℓ now denote the number of recursive calls and the counter
for the number of visits at level ℓ, respectively, and

p
(ℓ)
(j) =


p
(ℓ)
1,(j)

p
(ℓ)
2,(j)



is the j-th search direction at level ℓ for 1 ≤ j ≤ σℓ. Here, we implement the algorithm for applying
the two-level hierarchical basis transformation (2.65) at level L. More details regarding the nonlinear
AMLI method can be found in [101].
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Data: A(L) ∈ Rn×n regular SPD, f (L) ∈ Rn right-hand side.
Result: approximation of the solution u(L) ∈ Rn of (2.54).
for 1 ≤ ℓ ≤ L do

Set σℓ := 0; Set u(ℓ) := 0;
end
Set ℓ := L; Set f (L) := (J (L))T f (L); Set r(L) := f (L);
while not converged do

forward:
Set σℓ := σℓ + 1;
if σℓ = 1 && ℓ < L then

Set u(ℓ) := 0; Set r(ℓ) := f (ℓ);
end
Set p

(ℓ)
1(σℓ)

:= (C
(ℓ)
11 )

−1r
(ℓ)
1 ; Set f (ℓ−1) := r

(ℓ)
2 − Ã

(ℓ)
21 p

(ℓ)
1(σℓ)

;
Set ℓ := ℓ− 1;
if ℓ > 0 then

if σℓ = 0 then
f (ℓ) := (J (ℓ))T f (ℓ);

end
goto forward

end
Solve A(0)u(0) = f (0);
backward:
Set σℓ := 0; Set ℓ := ℓ+ 1; Set p

(ℓ)
2(σℓ)

:= u(ℓ−1);

Set p
(ℓ)
1(σℓ)

:= p
(ℓ)
1(σℓ)

− (C
(ℓ)
11 )

−1Ã
(ℓ)
12 p

(ℓ)
2(σℓ)

;
if υℓ = 1 then

Set u(ℓ) := p
(ℓ)
(σℓ)

;
else

Set q
(ℓ)
(σℓ)

:= Ã(ℓ)p
(ℓ)
(σℓ)

; Set γ
(ℓ)
(σℓ)

:= (q
(ℓ)
(σℓ)

, p
(ℓ)
(σℓ)

);
for 1 ≤ j ≤ σℓ − 1 do

Set β :=
(q

(ℓ)

(σℓ)
,p

(ℓ)

(j)
)

γ
(ℓ)

(j)

; Set p
(ℓ)
(σℓ)

:= p
(ℓ)
(σℓ)

− βp
(ℓ)
(j); Set q

(ℓ)
(σℓ)

:= q
(ℓ)
(σℓ)

− βq
(ℓ)
(j);

end

Set α :=
(r(ℓ),p

(ℓ)

(σℓ)
)

γ
(ℓ)

(σℓ)

; Set u(ℓ) := u(ℓ) + αp
(ℓ)
(σℓ)

; Set r(ℓ) := r(ℓ) − αq
(ℓ)
(σℓ)

;

end
if σℓ < υℓ && ℓ < L then

goto forward
end
if ℓ < L then

Set u(ℓ) := J (ℓ)u(ℓ);
goto backward

end
if σL = υL then

Set σL := 0;
end

end
Set u(L) := J (L)u(L);
Algorithm 4: Nonlinear algebraic multilevel iteration (nonlinear AMLI) method, cf. [101].



Chapter 3

Multiharmonic finite element analysis
of parabolic time-periodic boundary
value problems

3.1 A parabolic time-periodic boundary value problem

Let QT := Ω× (0, T ) denote the space-time cylinder and ΣT := Γ× (0, T ) its mantle boundary, where
Ω ⊂ Rd, d = {1, 2, 3}, is a bounded Lipschitz domain, and (0, T ) is a given time interval. We consider
the parabolic time-periodic boundary value problem (2.33), i.e.,

σ(x) ∂tu(x, t)− div (ν(x)∇u(x, t)) = f(x, t) (x, t) ∈ QT , (3.1)
u(x, t) = 0 (x, t) ∈ ΣT , (3.2)

u(x, 0) = u(x, T ) x ∈ Ω, (3.3)

where f(x, t) is some given data, and σ(·) and ν(·) satisfy the assumptions (2.29), i.e.,

0 < σ ≤ σ(x) ≤ σ, 0 < ν ≤ ν(x) ≤ ν, x ∈ Ω.

In order to study the parabolic time-periodic problem (3.1)-(3.3), we will use an approach inspired by
Ladyzhenskaya et al., see [108, 109]. Hence, we consider the Sobolev spaces H1,0(QT ) and H1,1(QT )
defined in (2.2) and (2.4), respectively, which are equipped with the norms (2.3) and (2.5), respectively.
One could imagine that the space variables x = (x1, . . . , xd) and the time variable t form a d + 1
dimensional “domain” QT and so t can be treated simply as an additional variable of the space-time
cylinder QT . This approach provides the clue to require that the time derivative is also from the
space L2(QT ). Moreover, we consider the Sobolev spaces

H1,0
0 (QT ) = {u ∈ H1,0(QT ) : u = 0 on ΣT },

and

H1,1
0,per(QT ) = {u ∈ H1,1

0 (QT ) : u(x, 0) = u(x, T ) for almost all x ∈ Ω},

which include the boundary and time-periodicity conditions. In order to derive the space-time vari-
ational formulation of the parabolic time-periodic problem (3.1)-(3.3), we multiply the parabolic
partial differential equation (3.1) by a test function v ∈ H1,1

0,per(QT ), integrate over the space-time
cylinder QT , and after integration by parts with respect to the space variables, we obtain the follow-
ing space-time variational formulation of the parabolic time-periodic problem (3.1)-(3.3): Given the

45
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right-hand side f ∈ L2(QT ), find u ∈ H1,1
0,per(QT ) such that T

0


Ω

(σ(x)∂tu(x, t) v(x, t) + ν(x)∇u(x, t) · ∇v(x, t)) dx dt =

 T

0


Ω

f(x, t) v(x, t) dx dt (3.4)

for all test functions v ∈ H1,1
0,per(QT ). Moreover, we can formulate a second space-time variational

formulation which is weaker than the space-time variational problem (3.4) by applying, in addition,
integration by parts with respect to the time variable. Since the test functions are time-periodic, i.e.,
v(x, 0) = v(x, T ), we obtain that T

0


Ω

f(x, t) v(x, t) dx dt =

 T

0


Ω

(σ(x)∂tu(x, t) v(x, t) + ν(x)∇u(x, t) · ∇v(x, t)) dx dt

=


Ω

(σ(x)u(x, T ) v(x, T )− σ(x)u(x, 0) v(x, 0)) dx−
 T

0


Ω

σ(x)u(x, t) ∂tv(x, t) dx dt

+

 T

0


Ω

ν(x)∇u(x, t) · ∇v(x, t) dx dt

=


Ω

σ(x) (u(x, T )− u(x, 0)) v(x, 0) dx−
 T

0


Ω

σ(x)u(x, t) ∂tv(x, t) dx dt

+

 T

0


Ω

ν(x)∇u(x, t) · ∇v(x, t) dx dt.

Hence, we see that the time-periodicity condition u(x, 0) = u(x, T ) of the solution can be incorporated
in a weak sense. Thus, we arrive at the following variational formulation: Given f ∈ L2(QT ), find
u ∈ H1,0

0 (QT ) such that T

0


Ω

(−σ(x)u(x, t) ∂tv(x, t) + ν(x)∇u(x, t) · ∇v(x, t)) dx dt =

 T

0


Ω

f(x, t) v(x, t) dx dt (3.5)

for all v ∈ H1,1
0,per(QT ), and the periodicity condition is incorporated in a weak sense.

Note that the space-time variational problem (3.5) is the time-periodic analogon to the variational
formulation (2.31) for initial-boundary value problems, where σ(·) and ν(·) are not only constant but
more general, i.e., fulfill the assumptions (2.29).
Since all functions are at least from L2(QT ), we can expand the functions u, v and f into Fourier
series in time. In particular, this approach makes sense due to the time-periodicity condition (for u
and v). The Fourier series expansion in time (2.10), e.g., for v, is given by

v(x, t) = vc0(x) +

∞
k=1

[vck(x) cos(kωt) + vsk(x) sin(kωt)]

with the Fourier coefficients

vc0(x) =
1

T

 T

0

v(x, t) dt,

vck(x) =
2

T

 T

0

v(x, t) cos(kωt) dt,

vsk(x) =
2

T

 T

0

v(x, t) sin(kωt) dt,

where T and ω = 2π/T denote the periodicity and the frequency, respectively. Then, the time
derivative of v is given by

∂tv(x, t) =

∞
k=1

[kω vsk(x) cos(kωt)− kω vck(x) sin(kωt)].
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In the following, we will use the notation

vk = (vck, v
s
k)

T , v⊥
k = (−vsk, v

c
k)

T and ∇vk = ((∇vck)
T , (∇vsk)

T )T ,

and the definition

v⊥(x, t) := −vc0(x) +

∞
k=1

[−vck(x) sin(kωt) + vsk(x) cos(kωt)]

= −vc0(x) +

∞
k=1

(vsk(x),−vck(x))  
=(−v⊥

k )T

·


cos(kωt)
sin(kωt)



= −vc0(x) +

∞
k=1

(vck(x), v
s
k(x)) ·


− sin(kωt)
cos(kωt)


.

Note that

(v⊥)⊥(x, t) = −vc0(x) +

∞
k=1

(vck(x), v
s
k(x)) ·


− cos(kωt)
− sin(kωt)



= −vc0(x) +

∞
k=1

[−vck(x) cos(kωt)− vsk(x) sin(kωt)] = −v(x, t).

Inserting the Fourier series ansatz into (3.5) and exploiting the orthogonality of the functions cos(kωt)
and sin(kωt) with respect to the inner product (·, ·)L2(0,T ), i.e., the orthogonalities (2.9), we arrive at
the following variational formulation corresponding to every single mode k ∈ N: Given fk ∈ (L2(Ω))2,
find uk ∈ V := V × V = (H1

0 (Ω))
2 such that

Ω


ν(x)∇uk(x) · ∇vk(x) + kω σ(x)uk(x) · v⊥

k (x)

dx =


Ω

fk(x) · vk(x) dx (3.6)

for all vk ∈ V. In the case k = 0, we obtain the following variational formulation: Given f c
0 ∈ L2(Ω),

find uc
0 ∈ V = H1

0 (Ω) such that
Ω

ν(x)∇uc
0(x) · ∇vc0(x) dx =


Ω

f c
0(x) v

c
0(x) dx (3.7)

for all vc0 ∈ V . The space V = (H1
0 (Ω))

2 for the Fourier coefficients is equipped with the norm

∥uk∥2H1(Ω) = ∥uk∥2L2(Ω) + ∥∇uk∥2L2(Ω).

Note that the following relation is valid:

∥u⊥
k ∥2L2(Ω) =


Ω

u⊥
k · u⊥

k dx =


Ω


(−us

k)
2 + (uc

k)
2

dx =


Ω

uk · uk dx = ∥uk∥2L2(Ω).

Theorem 3.1. The variational problems (3.6) and (3.7) have a unique solution.

Proof. Let us start with the variational problem (3.6) and define the bilinear form

ak(uk,vk) =


Ω


ν(x)∇uk(x) · ∇vk(x) + kω σ(x)uk(x) · v⊥

k (x)

dx. (3.8)

In order to prove existence and uniqueness of the variational problem (3.6), we have to verify the
assumptions of Theorem 2.8, i.e., the Babuška-Aziz theorem. Using triangle and Cauchy-Schwarz
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inequalities together with (2.29), i.e., the boundedness of the coefficients ν and σ, we obtain the
estimate

|ak(uk,vk)| ≤


Ω

ν(x)∇uk(x) · ∇vk(x)dx

+ 
Ω

kω σ(x)uk(x) · v⊥
k (x)dx


≤ ν


Ω

|∇uk(x)| |∇vk(x)| dx+ kω σ


Ω

uk(x)
v⊥

k (x)
dx

≤ ν∥∇uk∥L2(Ω)∥∇vk∥L2(Ω) + kω σ∥uk∥L2(Ω)∥v⊥
k ∥L2(Ω)

≤ max{ν, kω σ}

∥∇uk∥L2(Ω)∥∇vk∥L2(Ω) + ∥uk∥L2(Ω)∥v⊥

k ∥L2(Ω)


≤ c ∥uk∥H1(Ω)∥vk∥H1(Ω)

for all uk,vk ∈ V = (H1
0 (Ω))

2, where c = max{ν, kω σ} is the sup-sup constant in the conditions
(2.20) and (2.21). Now, we prove the inf-sup conditions for the bilinear form ak(·, ·). By choosing
the test function vk = uk − u⊥

k , we obtain

ak(uk,uk) =


Ω


ν(x)∇uk(x) · ∇uk(x) + kω σ(x)uk(x) · u⊥

k (x)

dx =


Ω

ν(x)∇uk(x) · ∇uk(x) dx

and

ak(uk,−u⊥
k ) =


Ω


−ν(x)∇uk(x) · ∇u⊥

k (x) + kω σ(x)uk(x) · uk(x)

dx

=


Ω

kω σ(x)uk(x) · uk(x)dx,

where we have used that (−u⊥
k )

⊥ = uk. This yields the estimate

ak(uk,uk − u⊥
k ) =


Ω

(ν(x)∇uk(x) · ∇uk(x) + kω σ(x)uk(x) · uk(x)) dx

≥ min{ν, kω σ}

Ω

(∇uk(x) · ∇uk(x) + uk(x) · uk(x)) dx = c ∥uk∥2H1(Ω)

with c = min{ν, kω σ}. Moreover, by choosing vk = uk + u⊥
k , we obtain

ak(u
⊥
k ,uk)) =


Ω


ν(x)∇u⊥

k (x) · ∇uk(x) + kω σ(x)u⊥
k (x) · u⊥

k (x)

dx

=


Ω

kω σ(x)uk(x) · uk(x)dx,

ak(uk + u⊥
k ,uk) =


Ω

(ν(x)∇uk(x) · ∇uk(x) + kω σ(x)uk(x) · uk(x)) dx ≥ c ∥uk∥2H1(Ω).

Finally, both inf-sup conditions in (2.20) and (2.21) of the Babuška-Aziz theorem are fulfilled with
the inf-sup constant c = min{ν, kω σ}.
Now, let us consider the variational problem (3.7) for the case k = 0. We define the bilinear form

a0(u
c
0, v

c
0) =


Ω

ν(x)∇uc
0(x) · ∇vc0(x) dx. (3.9)

The assumption that the coefficient ν is uniformly bounded (2.29), together with the Cauchy-Schwarz
inequality yields the boundedness of the bilinear form a0(·, ·), i.e.,

|a0(uc
0, v

c
0)| ≤ ν ∥uc

0∥H1(Ω)∥vc0∥H1(Ω).

Moreover, the Friedrichs inequality (2.5) yields the ellipticity of a0(uc
0, v

c
0), i.e.,

a0(u
c
0, u

c
0) =


Ω

ν(x)∇uc
0(x) · ∇uc

0(x) dx ≥ ν ∥∇uc
0∥2L2(Ω) ≥ ν

1

C2
F + 1

∥uc
0∥2H1(Ω).

Altogether, Theorem 2.7, i.e., the Lax-Milgram theorem, yields the existence and uniqueness of a
solution of the variational problem (3.7).
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In order to show existence and uniqueness of the space-time variational problem (3.5) and later of
(3.4), we firstly prove the existence of a unique solution of a third space-time variational formulation
of our parabolic time-periodic boundary value problem (3.1)-(3.3), which is again weaker than the
first variational formulation (3.4). De facto, it will turn out in the existence and uniqueness proof
of the second variational problem (3.5) that the third one is equivalent to the second one under the
assumption that the given data f is from L2(QT ). We now have to define additional, special function
spaces for deriving the new variational formulation.

Definition 3.2. The function spaces H0, 12 (QT ) and H1, 12 (QT ) are defined by

H0, 12 (QT ) = {u ∈ L2(QT ) :
∂1/2

t u

L2(QT )

< ∞} and

H1, 12 (QT ) = {u ∈ H1,0(QT ) :
∂1/2

t u

L2(QT )

< ∞},

respectively, where
∂1/2

t u

L2(QT )

is defined in the Fourier space by the relation

∂1/2
t u

2
L2(QT )

:= |u|2
H0, 1

2 (QT )
:=

T

2

∞
k=1

kω∥uk∥2L2(Ω).

Let us also define the corresponding inner product


∂
1/2
t u, ∂

1/2
t v


L2(QT )

:=
T

2

∞
k=1

kω(uk,vk)L2(Ω),

that is a special case of the σ-weighted inner product


σ∂

1/2
t u, ∂

1/2
t v


L2(QT )

:=
T

2

∞
k=1

kω(σuk,vk)L2(Ω).

for σ = 1. The space H
1, 12
0 (QT ) is given by

H
1, 12
0 (QT ) = {u ∈ H1, 12 (QT ) : u = 0 on ΣT }.

The seminorm and the norm of the space H1, 12 (QT ) are defined by the relations

|u|2
H1, 1

2
:= T ∥∇uc

0∥2L2(Ω) +
T

2

∞
k=1

[kω∥uk∥2L2(Ω) + ∥∇uk∥2L2(Ω)] and

∥u∥2
H1, 1

2
:= T (∥uc

0∥2L2(Ω) + ∥∇uc
0∥2L2(Ω)) +

T

2

∞
k=1

[(1 + kω)∥uk∥2L2(Ω) + ∥∇uk∥2L2(Ω)],

respectively.

Furthermore, the following identities can be shown:

Lemma 3.3. The identities
∂
1/2
t u, ∂

1/2
t v


L2(QT )

=

∂tu, v

⊥
L2(QT )

and

∂
1/2
t u, ∂

1/2
t v⊥


L2(QT )

=

∂tu, v


L2(QT )

(3.10)

are valid for all u ∈ H0,1
per(QT ) and v ∈ H0, 12 (QT ).

Proof. Due to the definition of the left hand sides and inserting the Fourier expansions

∂tu(x, t) :=

∞
k=1

[kω us
k(x) cos(kωt)− kω uc

k(x) sin(kωt)]
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as well as

v⊥(x, t) := −vc0(x) +

∞
k=1

[vsk(x) cos(kωt)− vck(x) sin(kωt)],

into the inner products, we obtain


∂
1/2
t u, ∂

1/2
t v


L2(QT )

=
T

2

∞
k=1

kω(uk,vk)L2(Ω) =
T

2

∞
k=1

kω(u⊥
k ,v

⊥
k )L2(Ω)

=
T

2

∞
k=1

kω(−u⊥
k ,−v⊥

k )L2(Ω) =

∂tu, v

⊥
L2(QT )

and


∂tu, v


L2(QT )

=
T

2

∞
k=1

kω(−u⊥
k ,vk)L2(Ω) =

T

2

∞
k=1

kω(uk,v
⊥
k )L2(Ω) =


∂
1/2
t u, ∂

1/2
t v⊥


L2(QT )

.

Furthermore, we obtain the identity

∥v⊥∥2L2(QT ) =

 T

0


Ω


−vc0(x) +

∞
k=1

[vsk(x) cos(kωt)− vck(x) sin(kωt)]

2

dx dt

= T


Ω

vc0(x)
2dx+

T

2


Ω

∞
k=1

[vsk(x)
2 + vck(x)

2] dx

= T ∥vc0∥2L2(Ω) +
T

2

∞
k=1

∥uk∥2L2(Ω) = ∥v∥2L2(QT ),

and the orthogonality relations
∂tu, u


L2(QT )

= 0 and (u⊥, u)L2(QT ) = 0 (3.11)

for all u ∈ H0,1
per(QT ), as well as


∂
1/2
t u, ∂

1/2
t u⊥

L2(QT )
= 0 and


∇u,∇u⊥

L2(QT )
= 0 (3.12)

for all u ∈ H1, 12 (QT ), e.g., we prove in detail


∂
1/2
t u, ∂

1/2
t u⊥

L2(QT )
=

T

2

∞
k=1

kω(uk,u
⊥
k )L2(Ω) = 0.

Remark 3.4. Indeed, all the identities and orthogonality relations are also valid for their σ- and
ν-weighted counterparts, e.g.,

σ∂
1/2
t u, ∂

1/2
t u⊥

L2(QT )
= 0 and


ν∇u,∇u⊥

L2(QT )
= 0 (3.13)

for all u ∈ H1, 12 (QT ).
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In the Fourier space, the Cauchy-Schwarz inequality follows from the usual Cauchy-Schwarz inequality
(2.1) for functions in L2(Ω), e.g.,

|(u, v)| =

T (uc
0, v

c
0)L2(Ω) +

T

2

∞
k=1

(uk,vk)L2(Ω)


≤ T ∥uc

0∥L2(Ω)∥vc0∥L2(Ω) +
T

2

∞
k=1

∥uk∥L2(Ω)∥vk∥L2(Ω)

≤


T ∥uc

0∥2L2(Ω) +
T

2

∞
k=1

∥uk∥2L2(Ω)

1/2
T ∥vc0∥2L2(Ω) +

T

2

∞
k=1

∥vk∥2L2(Ω)

1/2

= ∥u∥L2(QT )∥v∥L2(QT )

(3.14)

for all u, v ∈ L2(QT ), where (·, ·) = (·, ·)L2(QT ), and(∂1/2
t u, ∂

1/2
t v)

 = T2
∞
k=1

kω(uk,vk)L2(Ω)

 ≤ T

2

∞
k=1

kω ∥uk∥L2(Ω)∥vk∥L2(Ω)

≤


T

2

∞
k=1

kω∥uk∥2L2(Ω)

1/2
T

2

∞
k=1

kω∥vk∥2L2(Ω)

1/2

=
∂1/2

t u

L2(QT )

∂1/2
t v


L2(QT )

(3.15)

for all u, v ∈ H0, 12 (QT ).
Now, we are in the position to state a very general variational formulation of our parabolic time-
periodic boundary value problem (3.1)-(3.3):
Given f ∈ L2(QT ), find u ∈ H

1, 12
0 (QT ) such that T

0


Ω


σ(x)∂

1/2
t u(x, t) ∂

1/2
t v⊥(x, t) + ν(x)∇u(x, t) · ∇v(x, t)


dx dt

=

 T

0


Ω

f(x, t) v(x, t) dx dt

(3.16)

for all test functions v ∈ H
1, 12
0 (QT ), where all functions are given in their Fourier series expansion in

time, i.e., everything has to be understood in the sense of Definition 3.2, e.g., inserting the Fourier
series ansatz in the variational formulation (3.5) and using all the definitions and identities before.
The following lemma, i.e., Lemma 3.5, provides the existence of a unique solution of the variational
problem (3.16) and serves as vehicle for the existence and uniqueness proof of the space-time varia-
tional problem (3.5) and for discussing the existence of a unique solution of problem (3.4), see [112].
Moreover, all formulations in the sense of Definition 3.2 will be the basis for the construction of
preconditioners and the discretization error analysis.

Lemma 3.5. The space-time bilinear form

a(u, v) =

 T

0


Ω


σ(x)∂

1/2
t u ∂

1/2
t v⊥ + ν(x)∇u · ∇v


dx dt (3.17)

fulfills the following inf-sup and sup-sup condition:

µ1∥u∥
H1, 1

2 (QT )
≤ sup

0̸=v∈H
1, 1

2
0 (QT )

a(u, v)

∥v∥
H1, 1

2 (QT )

≤ µ2∥u∥
H1, 1

2 (QT )
(3.18)

for all u ∈ H
1, 12
0 (QT ) with positive constants µ1 = min{ ν

C2
F+1

, σ} and µ2 = max{σ, ν}.
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Proof. We start with the proof of the sup-sup condition. Using (2.29), i.e., the boundedness of the
coefficients σ and ν, as well as the triangle and the Cauchy-Schwarz inequalities (3.14) and (3.15),
we obtain the estimate

|a(u, v)| =


 T

0


Ω


σ(x)∂

1/2
t u ∂

1/2
t v⊥ + ν(x)∇u · ∇v


dx dt


≤ σ

 T

0


Ω

∂1/2
t u

 ∂1/2
t v⊥

 dx dt+ ν

 T

0


Ω

|∇u| |∇v| dx dt

≤ σ
∂1/2

t u

L2(QT )

∂1/2
t v⊥


L2(QT )

+ ν ∥∇u∥L2(QT )∥∇v∥L2(QT ).

Since

∂1/2
t v⊥

2
L2(QT )

=
T

2

∞
k=1

kω∥v⊥
k ∥2L2(Ω) =

T

2

∞
k=1

kω∥vk∥2L2(Ω) =
∂1/2

t v
2
L2(QT )

,

we finally prove the sup-sup condition by

|a(u, v)| ≤ σ
∂1/2

t u

L2(QT )

∂1/2
t v⊥


L2(QT )

+ ν ∥∇u∥L2(QT )∥∇v∥L2(QT )

= σ
∂1/2

t u

L2(QT )

∂1/2
t v


L2(QT )

+ ν ∥∇u∥L2(QT )∥∇v∥L2(QT )

≤ max{σ, ν} |u|
H1, 1

2
|v|

H1, 1
2

≤ µ2∥u∥
H1, 1

2
∥v∥

H1, 1
2

with the constant µ2 = max{σ, ν}. Next, we prove the inf-sup condition by choosing the test function
v = u − u⊥ and using the σ- and ν-weighted orthogonality relations (3.13) as well as Friedrichs
inequality (2.17), see Theorem 2.5, which we write in the Fourier space by

∥∇u∥2L2(QT ) =

 T

0


Ω

|∇u|2 dx dt = T ∥∇uc
0∥2L2(Ω) +

T

2

∞
k=1

∥∇uk∥2L2(Ω)

≥ 1

C2
F


T ∥uc

0∥2L2(Ω) +
T

2

∞
k=1

∥uk∥2L2(Ω)


=

1

C2
F

∥u∥2L2(QT ).

(3.19)

So, it follows that

∥u∥2H1,0(QT ) = ∥u∥2L2(QT ) + ∥∇u∥2L2(QT ) ≤

C2

F + 1

∥∇u∥2L2(QT ).

Hence, we get

a(u, u) =

 T

0


Ω


σ(x)∂

1/2
t u ∂

1/2
t u⊥ + ν(x)∇u · ∇u


dx dt

=

 T

0


Ω

ν(x)∇u · ∇u dx dt

≥ ν

 T

0


Ω

|∇u|2 dx dt

≥ ν
1

C2
F + 1

∥u∥2H1,0(QT )
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and, since (u⊥)⊥ = −u and (−u⊥)⊥ = u,

a(u,−u⊥) =

 T

0


Ω


σ(x)∂

1/2
t u ∂

1/2
t u− ν(x)∇u · ∇u⊥


dx dt

=

 T

0


Ω

σ(x)∂
1/2
t u ∂

1/2
t u dx dt

≥ σ
∂1/2

t u
2
L2(QT )

.

Altogether, we have

a(u, u− u⊥) ≥ min{ ν

C2
F + 1

, σ}

∥u∥2H1,0(QT ) +

∂1/2
t u

2
L2(QT )


= µ1∥u∥2

H1, 1
2 (QT )

with the constant µ1 = min{ ν
C2

F+1
, σ}.

Theorem 3.6. The space-time variational problem (3.16) has a unique solution.

Proof. The proof immediately follows from Lemma 3.5 by applying Theorem 2.8, i.e., the Babuška-
Aziz theorem.

Now, we are in the position to prove existence and uniqueness of the second space-time variational
problem (3.5), where we reuse some ideas known from the analysis of parabolic initial-boundary value
problems in [108, 109], and adapt them to the time-periodic case, see [112].

Theorem 3.7. The space-time variational problem (3.5) has a unique solution.

Proof. We start with the uniqueness proof. Let us assume that there are two different solutions u1,
u2 ∈ H1,0

0 (QT ) of the problem (3.5). We expand these two solutions into Fourier series in time, i.e.,

ui(x, t) = uc
i 0(x) +

∞
k=1

[uc
i k(x) cos(kωt) + us

i k(x) sin(kωt)],

whose unique Fourier coefficients are given by

uc
i 0(x) =

1

T

 T

0

ui(x, t) dt,

uc
i k(x) =

2

T

 T

0

ui(x, t) cos(kωt) dt and us
i k(x) =

2

T

 T

0

ui(x, t) sin(kωt) dt,

for i = 1, 2, see Theorem 2.2. Since u1 ̸= u2, we have uj
1k(x) ̸= uj

2k(x) for at least one k ∈ N0 and
j ∈ {c, s}, and therefore u1k ̸= u2k. Let us fix such a k for which uj

1k ̸= uj
2k. For this k, we define

the difference wj
k := uj

2k − uj
1k and wk = (wc

k, w
s
k)

T ∈ V = V × V = (H1
0 (Ω))

2. After inserting the
Fourier series ansatz for u1 and u2 into the variational problem (3.5), see also Remark 2.1, the whole
system decouples, and we arrive at variational problems for the Fourier coefficients with respect to
every single mode k, analogously as in (3.6) and (3.7). For this index k, the difference wk ∈ V satisfies
the variational equation

ak(wk,vk) :=


Ω

kω σ(x)wk · v⊥
k dx+


Ω

ν(x)∇wk · ∇vk dx = 0

for all vk ∈ V. We now choose the test function vk = wk −w⊥
k . Hence, we obtain

Ω

kω σ(wk ·w⊥
k −wk · (w⊥

k )
⊥) dx+


Ω

ν(∇wk · ∇wk −∇wk · ∇w⊥
k ) dx = 0.
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From (w⊥
k )

⊥ = −wk and wk ·w⊥
k = 0, it follows that

Ω

(kω σ(x)wk ·wk + ν(x)∇wk · ∇wk) dx = 0.

Hence, the inequalities

0 = ak(wk,wk −w⊥
k ) ≥ kω σ


Ω

wk ·wk dx+ ν


Ω

∇wk · ∇wk dx

≥ min{kω σ, ν}∥wk∥2H1(Ω)

immediately yield wk = 0 in V, which is in contradiction to our assumption at the beginning.
For k = 0, Friedrichs inequality (2.17) gives the same result. Thus, the uniqueness of a solution
u ∈ H1,0

0 (QT ) of the variational problem (3.5) is proven. Now we come to the existence proof.
Let

uN (x, t) = uc
0(x) +

N
k=1

[uc
k(x) cos(kωt) + us

k(x) sin(kωt)] ∈ H1,0
0 (QT )

be the solution of the variational problem T

0


Ω

(−σ(x)uN ∂tvN + ν(x)∇uN · ∇vN ) dx dt =

 T

0


Ω

f vN dx dt =

 T

0


Ω

fN vN dx dt

for all truncated Fourier series vN of functions v from H1,1
0,per(QT ). Existence and uniqueness are

ensured by the orthogonalities of the cosine and sine functions and by Theorem 3.1. Moreover,
uN solves the variational problems (3.4) and (3.16) for all test functions vN such as defined above.
Choosing the test function vN = uN − u⊥

N and using Lemma 3.5 as well as applying the Cauchy-
Schwarz inequality, we obtain the estimates

µ1∥uN∥2
H1, 1

2 (QT )
≤ a(uN , uN − u⊥

N ) =

 T

0


Ω

f (uN − u⊥
N ) dx dt

≤ ∥f∥L2(QT )(∥uN∥L2(QT ) + ∥u⊥
N∥L2(QT )) = 2∥f∥L2(QT )∥uN∥L2(QT )

≤ 2∥f∥L2(QT )∥uN∥
H1, 1

2 (QT )
.

Hence, uN is bounded in H1, 12 (QT ), i.e.,

∥uN∥
H1, 1

2 (QT )
≤ 2µ1

−1∥f∥L2(QT ) < ∞.

From this estimate it follows that there exists a function u from H1, 12 (QT ) such that uN (without
loss of generality) weakly converges to u in H1, 12 (QT ), and therefore also in H1,0

0 (QT ). Note that
since the space H1, 12 (QT ) is a reflexive Banach space, boundedness implies that it is weakly compact.
It remains to show that u solves our variational problem (3.5). Let us choose M ∈ N arbitrarily and
N ∈ N with N ≤ M , where vM → v in H1,1

0,per(QT ) and fN → f in L2(QT ). Inserting uN , fN and
the arbitrary test function vM into the variational problem (3.5) yields T

0


Ω

(−σ(x)uN ∂tvM + ν(x)∇uN · ∇vM ) dx dt =

 T

0


Ω

fN vM dx dt.

Since the test function vM → v in H1,1
0,per(QT ) for M → ∞, we arrive at the identity T

0


Ω

(−σ(x)uN ∂tv + ν(x)∇uN · ∇v) dx dt =

 T

0


Ω

fN v dx dt.
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Now, we pass N to the limit. Since fN → f in L2(QT ) and uN ⇀ u in H1,0
0 (QT ), we finally get T

0


Ω

(−σ(x)u ∂tv + ν(x)∇u · ∇v) dx dt =

 T

0


Ω

f v dx dt,

which means that u ∈ H1,0
0 (QT ) solves the variational problem (3.5).

Remark 3.8. From the proof of Theorem 3.7 follows that u is even from H1, 12 (QT ) assuming that
f ∈ L2(QT ). In this case, the unique solution u of the space-time variational problem (3.5) is also
the unique solution of the variational problem (3.16), i.e., the variational problems (3.5) and (3.16)
are equivalent.

Remark 3.9. If f ∈ L2(QT ) and we assume that

div (ν∇u) ∈ L2(QT ),

then it follows very easily from T

0


Ω

σ(x)∂tu(x, t) v(x, t) dx dt =

 T

0


Ω


f(x, t) + div (ν(x)∇u(x, t))


v(x, t) dx dt (3.20)

for all test functions v ∈ H1,1
0,per(QT ) that

σ∂tu ∈ L2(QT ),

and, hence,

u ∈ H1,1
0,per(QT ).

Due to Theorem 2.3, the Fourier series of u converges strongly in u ∈ H1,1
0 (QT ). Hence, by choosing

the test functions

vck(x) cos(kωt) ∀ k = 0, 1, . . . and vsk(x) sin(kωt) ∀ k = 1, 2, . . .

with vjk(x) ∈ H1
0 (Ω), j ∈ {c, s}, and due to the orthogonalities of the cosine and sine functions, we

arrive at the following problems for all modes k = 1, 2, . . . :
Ω

kω σ(x)uk(x) · v⊥
k (x) dx =


Ω


fk(x) + div (ν(x)∇uk(x))


· vk(x) dx. (3.21)

In the case k = 0, we obtain the problem

−

Ω

div (ν(x)∇uc
0(x)) v

c
0(x) dx =


Ω

f c
0(x) v

c
0(x) dx. (3.22)

Contrariwise, if, in addition to f j
k ∈ L2(Ω), we have that

div (ν∇uj
k) ∈ L2(Ω)

for all Fourier coefficients with k = 0, 1, . . . and j = c and for all Fourier coefficients with k = 1, 2, . . .
and j = s, then, together with Theorem 2.3 and the equations (3.21) and (3.22), it follows the strong
convergence of the Fourier series of u in H1,1

0,per(QT ) of problem (3.20). Moreover, u is the unique
solution of the first space-time variational formulation (3.4) of the parabolic time-periodic boundary
value problem (3.1)-(3.3).

Remark 3.10. Under classical regularity assumptions imposed on u, e.g., u ∈ C2,1(QT ), and on the
data f , σ and ν, e.g., f ∈ C(QT ), σ ∈ C(Ω) and ν ∈ C1(Ω), it follows that u is the unique solution
of the parabolic time-periodic boundary value problem (3.1)-(3.3) in the classical sense.
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3.2 Multiharmonic finite element discretization
In order to solve the parabolic time-periodic problem (3.1)-(3.3), we numerically solve the variational
problem (3.16) by a multiharmonic finite element discretization. We choose the test functions

vck(x) cos(kωt) ∀ k = 0, . . . , N and vsk(x) sin(kωt) ∀ k = 1, . . . , N (3.23)

with vjk(x) ∈ H1
0 (Ω), j ∈ {c, s}, in the space-time variational problem (3.16). Due to the orthogo-

nalities of the cosine and sine functions, we arrive at the variational problems (3.6) corresponding to
every mode k = 1, 2, . . . , N , i.e., given fk ∈ (L2(Ω))2, find uk ∈ V := V × V = (H1

0 (Ω))
2 such that

Ω


ν(x)∇uk(x) · ∇vk(x) + kω σ(x)uk(x) · v⊥

k (x)

dx =


Ω

fk(x) · vk(x) dx

for all vk ∈ V, and, for k = 0, we obtain again the variational problem (3.7), i.e., given f c
0 ∈ L2(Ω),

find uc
0 ∈ V = H1

0 (Ω) such that
Ω

ν(x)∇uc
0(x) · ∇vc0(x) dx =


Ω

f c
0(x) v

c
0(x) dx

for all vc0 ∈ V . An equivalent approach for deriving the variational problems which correspond to
every mode k = 0, . . . , N is to approximate the data f by truncating its Fourier series expansion.
Hence, we arrive at

f(x, t) ≈ f c
0(x) +

N
k=1

[f c
k(x) cos(kωt) + fs

k(x) sin(kωt)] = fN (x, t), (3.24)

where its Fourier coefficients are given by

f c
0(x) =

1

T

 T

0

f(x, t) dt,

f c
k(x) =

2

T

 T

0

f(x, t) cos(kωt) dt,

fs
k(x) =

2

T

 T

0

f(x, t) sin(kωt) dt.

Remark 3.11. In general the Fourier coefficients have to be computed numerically, but we consider
only the case where we can compute the Fourier coefficients exactly.

Remark 3.12. In the case that f has a multiharmonic representation, the analysis is simplified since
we do not have to consider the discretization error due to truncation of the Fourier series expansions.

We insert the truncated Fourier series expansion (3.24) of f and the Fourier series ansatz of the
solution u and of the test function v into the space-time variational formulation (3.16). From the
orthogonality of the functions cos(kωt) and sin(kωt) it follows that it is sufficient to consider only
the truncated Fourier series of u and v, i.e.,

u(x, t) ≈ uc
0(x) +

N
k=1

[uc
k(x) cos(kωt) + us

k(x) sin(kωt)] = uN (x, t),

v(x, t) ≈ vc0(x) +

N
k=1

[vck(x) cos(kωt) + vsk(x) sin(kωt)] = vN (x, t).

We finally arrive at the same variational problems as before, i.e., problem (3.6) corresponding to
every mode k = 1, 2, . . . , N and (3.7) for k = 0.
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Now, we approximate the unknown Fourier coefficients

uk = (uc
k, u

s
k)

T ∈ V

by finite element functions

ukh = (uc
kh, u

s
kh)

T ∈ Vh = Vh × Vh ⊂ V.

The space Vh = Vh × Vh is a finite element space, where

Vh = span{ϕ1, . . . , ϕn}

with the standard nodal basis {ϕi(x) = ϕih(x) : i = 1, 2, . . . , nh} and h denotes the usual discretiza-
tion parameter such that n = nh = dimVh = O(h−d). In this work, we will use continuous, piecewise
linear functions on the finite elements on a regular triangulation Th to construct the finite element
subspace Vh and its basis, see, e.g., [41, 46, 84, 161] and Section 2.4. This yields the following linear
system arising from the variational problem (3.6) for k = 1, 2, . . . , N :

Kh,ν −kωMh,σ

kωMh,σ Kh,ν


uc
k

us
k


=


f c

k
fs

k


. (3.25)

Let us assume that the parameter σ is positive. We rewrite the linear system (3.25) in a symmetric
form. Hence, we obtain the saddle point system as follows

kωMh,σ −Kh,ν

−Kh,ν −kωMh,σ


us
k

uc
k


=


−f c

k
−fs

k


, (3.26)

which has to be solved with respect to the nodal parameter vector

uj
k = (uj

k,i)i=1,...,n ∈ Rn

of the finite element approximation

uj
kh(x) =

n
i=1

uj
k,i ϕi(x)

to the unknown Fourier coefficients uj
k(x) with j ∈ {c, s}. The matrices Kh,ν and Mh,σ correspond

to the weighted stiffness matrix and weighted mass matrix, respectively. Their entries are computed
by the formulas

Kij
h,ν =


Ω

ν∇ϕi · ∇ϕj dx and M ij
h,σ =


Ω

σ ϕi ϕj dx

with i, j = 1, . . . , n, whereas

f c

k
=
 

Ω

f c
k ϕj dx


j=1,...,n

and fs

k
=
 

Ω

fs
k ϕj dx


j=1,...,n

.

In the case k = 0, we obtain the following linear system arising from the variational problem (3.7):

Kh,ν u
c
0 = f c

0
. (3.27)

From the solutions of the linear systems (3.26) and (3.27), we can easily reconstruct the multiharmonic
finite element approximation

uNh(x, t) = uc
0h(x) +

N
k=1

[uc
kh(x) cos(kωt) + us

kh(x) sin(kωt)] (3.28)

to the exact solution u(x, t). We will present an a priori error analysis for the complete discretization
error between the unknown solution u and its multiharmonic finite element approximation uNh in
Section 3.4.
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3.3 Block-diagonal preconditioned MINRES solver

The aim of this section is to construct robust block-diagonal preconditioners for the MINRES method
in order to solve the saddle point problem (3.26) for all k = 1, 2, . . . , N by applying the interpolation
theory presented in Section 2.7. A convergence result for the preconditioned MINRES method is
stated in Theorem 2.25.

Remark 3.13. In this work, we assume that the parameter σ is strictly positive, i.e.,

0 < σ ≤ σ(x) ≤ σ, x ∈ Ω.

If σ is only non-negative but not strictly positive, then the linear system (3.25) decouples into linear
systems of the form (3.27) for σ = 0. Hence, we have to solve the following problems:

Kh,ν u
c
k = f c

k
∀ k = 0, 1, . . . , N,

Kh,ν u
s
k = fs

k
∀ k = 1, 2, . . . , N.

Here, the system matrix is given by

A =


kωMh,σ −Kh,ν

−Kh,ν −kωMh,σ


.

Since (kωMh,σ) is symmetric and positive definite, we can build the two Schur complements S and
R from Theorem 2.26, i.e.,

S = R = kωMh,σ +
1

kω
Kh,νM

−1
h,σKh,ν ,

which yield the two Schur complement preconditioners (2.49) for A, i.e.,

P0 =


kωMh,σ 0

0 S


and P1 =


R 0
0 kωMh,σ


.

As mentioned in Section 2.7, it is hard to work with these Schur complements in practice and,
therefore, we construct block-diagonal preconditioners Pθ by interpolating between P0 and P1 as
presented in (2.52). By choosing the parameter θ = 1/2, we obtain the preconditioner

P1/2 =


[kωMh,σ, R]1/2 0

0 [S, kωMh,σ]1/2


with

[kωMh,σ, R]1/2 = [R, kωMh,σ]1/2 = (kωMh,σ)
1/2

(kωMh,σ)

−1/2R (kωMh,σ)
−1/2

1/2
(kωMh,σ)

1/2

=
√
kωM

1/2
h,σ


M

−1/2
h,σ RM

−1/2
h,σ

1/2
M

1/2
h,σ =

√
kω [Mh,σ, R]1/2

and, due to S = R,

[S, kωMh,σ]1/2 = [kωMh,σ, R]1/2 =
√
kω [Mh,σ, R]1/2.

The diagonal entries of P1/2 can be estimated from above and below by using the inequality

1√
2
(
√
a I +

√
bX1/2) ≤ (a I + bX)1/2 ≤

√
a I +

√
bX1/2, (3.29)
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which has to be understood in the sense of Definition 2.30. Here, a and b are some arbitrary positive
real numbers and I and X denote the identity matrix and an arbitrary symmetric positive definite
matrix, both in Rn×n, respectively. We obtain the estimates in the following way:

[kωMh,σ, R]1/2 = [S, kωMh,σ]1/2 =
√
kω [Mh,σ, R]1/2 =

√
kωM

1/2
h,σ


M

−1/2
h,σ RM

−1/2
h,σ

1/2
M

1/2
h,σ

=
√
kωM

1/2
h,σ


M

−1/2
h,σ


kωMh,σ +

1

kω
Kh,νM

−1
h,σKh,ν


M

−1/2
h,σ

1/2

M
1/2
h,σ

=
√
kωM

1/2
h,σ


kω I +

1

kω
M

−1/2
h,σ Kh,νM

−1
h,σKh,νM

−1/2
h,σ

1/2

M
1/2
h,σ

≤
√
kωM

1/2
h,σ

√
kω I +

1√
kω


M

−1/2
h,σ Kh,νM

−1
h,σKh,νM

−1/2
h,σ

1/2
M

1/2
h,σ

= kωMh,σ +M
1/2
h,σ


M

−1/2
h,σ Kh,νM

−1/2
h,σ


M

1/2
h,σ = kωMh,σ +Kh,ν ,

[kωMh,σ, R]1/2 = [S, kωMh,σ]1/2 =
√
kω [Mh,σ, R]1/2 =

√
kωM

1/2
h,σ


M

−1/2
h,σ RM

−1/2
h,σ

1/2
M

1/2
h,σ

=
√
kωM

1/2
h,σ


kω I +

1

kω
M

−1/2
h,σ Kh,νM

−1
h,σKh,νM

−1/2
h,σ

1/2

M
1/2
h,σ

≥
√
kωM

1/2
h,σ


1√
2

√
kω I +

1√
kω


M

−1/2
h,σ Kh,νM

−1
h,σKh,νM

−1/2
h,σ

1/2
M

1/2
h,σ

=
1√
2


kωMh,σ +M

1/2
h,σ


M

−1/2
h,σ Kh,νM

−1/2
h,σ


M

1/2
h,σ


=

1√
2
(kωMh,σ +Kh,ν) .

Altogether, we arrive at the spectral equivalence

[kωMh,σ, R]1/2 = [S, kωMh,σ]1/2 ∼ kωMh,σ +Kh,ν

with spectral equivalence bounds c = 1/
√
2 and c = 1 according to Definition 2.30. Thus, we have

obtained a new block-diagonal preconditioner for a MINRES solver of problem (3.26) which is given
by

P =


kωMh,σ +Kh,ν 0

0 kωMh,σ +Kh,ν


, (3.30)

and this block-diagonal preconditioner yields the robust condition number estimate

κP(P−1A) := ∥P−1A∥P ∥A−1P∥P ≤ c/c =
√
2 ≈ 1.414. (3.31)

An alternative approach for obtaining robust norm estimates for the preconditioned system matrix
P−1A is to verify the inf-sup and sup-sup conditions in Theorem 2.8, i.e., the Babuška-Aziz theorem.
More precisely, these norm estimates are equivalent to the inf-sup and sup-sup conditions in the
Babuška-Aziz theorem, and, at the same time, provide existence, uniqueness, as well as a priori
and a posteriori error estimates. For instance, the assumptions of the Babuška-Aziz theorem yield
discretization error estimates which we are going to present in Section 3.4.
Let us now verify the inf-sup and sup-sup conditions of the Babuška-Aziz theorem. We return to the
variational formulation (3.6) for each mode k = 1, 2, . . . , N , where the corresponding bilinear form is
defined in (3.8), i.e.,

ak(uk,vk) =


Ω


ν(x)∇uk(x) · ∇vk(x) + kω σ(x)uk(x) · v⊥

k (x)

dx.
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Hence, the variational problem (3.6) reads as follows: Given fk ∈ (L2(Ω))2, find uk ∈ V = (H1
0 (Ω))

2

such that

ak(uk,vk) =


Ω

fk(x) · vk(x) dx ∀vk ∈ V.

Note that we have reformulated the discretized version of the variational problem (3.6) such that it
has a symmetric form, resulting in problem (3.26). This discretized problem simply corresponds to
the variational problem (3.6) multiplied by −1.
The candidate P for a parameter robust preconditioner yields the following definition of an inner
product and of its associated norm. We define a non-standard (weighted) inner product in V =
(H1

0 (Ω))
2 by

(uk,vk)P = (ν∇uk,∇vk)L2(Ω) + kω (σuk,vk)L2(Ω). (3.32)

The associated norm is then given by

∥uk∥2P = (ν∇uk,∇uk)L2(Ω) + kω (σuk,uk)L2(Ω), (3.33)

which differs from the standard H1-norms. Now, we are prepared to verify the assumptions of the
Babuška-Aziz theorem, i.e., the inf-sup and sup-sup conditions.

Theorem 3.14. Let the bilinear form ak(·, ·) be defined as in (3.8). The following inequalities are
valid:

c ∥uk∥P ≤ sup
0 ̸=vk∈V

ak(uk,vk)

∥vk∥P
≤ c ∥uk∥P (3.34)

for all uk ∈ V with constants c = 1/
√
2 and c = 1.

Proof. We start with the proof of the inequality from above. Due to the triangle inequality, it follows
that ak(uk,vk)

 ≤  
Ω

ν∇uk · ∇vk dx
+  

Ω

kω σuk · v⊥
k dx


=
(ν∇uk,∇vk)L2(Ω)

+ kω (σuk,v
⊥
k )L2(Ω)

 .
Applying the Cauchy-Schwarz inequality, we obtainak(uk,vk)

 ≤ (ν∇uk,∇uk)
1/2
L2(Ω)(ν∇vk,∇vk)

1/2
L2(Ω) + kω (σuk,uk)

1/2
L2(Ω)(σv

⊥
k ,v

⊥
k )

1/2
L2(Ω)

=(ν∇uk,∇uk)
1/2
L2(Ω)(ν∇vk,∇vk)

1/2
L2(Ω) + kω (σuk,uk)

1/2
L2(Ω)(σvk,vk)

1/2
L2(Ω)

≤

(ν∇uk,∇uk)L2(Ω) + kω (σuk,uk)L2(Ω)

1/2
(ν∇vk,∇vk)L2(Ω)

+ kω (σvk,vk)L2(Ω)

1/2
= ∥uk∥P∥vk∥P .

Hence, we have proved the upper bound with c = 1. Now, we want to show the estimate from below.
With the choice

vk = uk − u⊥
k

and together with the σ- and ν-weighted orthogonality relations for the modes k (3.13), we obtain

ak(uk,vk) = (ν∇uk,∇uk)L2(Ω) + kω (σuk,uk)L2(Ω) = ∥uk∥2P .
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By using the fact that

∥vk∥2P =
uk − u⊥

k

2
P = 2 ∥uk∥2P ,

we arrive at the estimate of the supremum from below, i.e.,

sup
0 ̸=vk∈V

ak(uk,vk)

∥vk∥P
≥ ak(uk,uk − u⊥

k )

∥uk − u⊥
k ∥P

=
∥uk∥2P√
2 ∥uk∥P

=
1√
2
∥uk∥P .

Hence, we get c = 1/
√
2, which finally completes the proof of the theorem.

Remark 3.15. Since we have verified the assumptions of the Babuška-Aziz theorem in Theorem 3.14,
we immediately obtain the existence of a unique solution to variational problem (3.6), which gives us
an additional existence and uniqueness result to the one obtained in Theorem 3.1.

Due to the supremum, the discrete version of the inf-sup condition, i.e., the left inequality in Theo-
rem 3.14, does in general not follow from the continuous version. However, in our case, we can repeat
the proof step-by-step, and, finally, we arrive at the same inequalities in the discrete case, where V
is replaced by Vh with the same constants c and c. Therefore, in matrix-vector notation, we have
proved the inequalities

c ∥uk∥P ≤ sup
vk∈R2n

(Auk, vk)

∥vk∥P
≤ c ∥uk∥P ∀uk = (uc

k, u
s
k)

T ∈ R2n (3.35)

implying the condition number estimate (3.31), i.e.,

κP(P−1A) := ∥P−1A∥P ∥A−1P∥P ≤ c/c =
√
2 ≈ 1.414.

So, these estimates are exactly the same as the ones obtained by interpolation theory. Theorem 2.25
yields a robust convergence rate of the preconditioned MINRES method with

q =
κP(P−1A)− 1

κP(P−1A) + 1
≤

√
2− 1√
2 + 1

≈ 0.172

of the factor q defining the residual reduction 2qm/(1+q2m) after 2m MINRES iterations. Altogether,
for every mode k = 1, 2, . . . , N , we have determined a preconditioner such that the corresponding
system can be solved by the preconditioned MINRES method with a robust convergence rate.
In practical applications, the diagonal blocks (kωMh,σ +Kh,ν) of the preconditioner P in (3.30) of
the discretized problem (3.26) for k = 1, 2, . . . , N have to be replaced by diagonal blocks D̃, which
are spectrally equivalent to these weighted sums of mass and stiffness matrices, i.e., (kωMh,σ +
Kh,ν), and which are robust, symmetric positive definite and more cost efficient. The construction of
such robust and efficient preconditioners can be done by (algebraic) multigrid, multilevel or domain
decomposition methods, see, e.g., [101, 142, 168, 173]. In this work, we consider the construction
of practical preconditioners via algebraic multilevel iteration methods. Moreover, a detailed proof
for the robustness and optimality of an algebraic multilevel preconditioner for weighted sums of
mass and stiffness matrices will be presented in Chapter 5. The spectral equivalence of the diagonal
blocks implies the spectral equivalence of the new preconditioner P̃ to the preconditioner P with the
same parameter independent constants cD and cD. Hence, the condition number κP̃(P̃−1A) can be
estimated by

κP̃(P̃
−1A) ≤ κP(P−1A) (cD/cD),

where κP(P−1A) ≤
√
2 and cDD̃ ≤ (kωMh,σ +Kh,ν) ≤ cDD̃. All proofs on this topic including the

computation of the constants cD and cD are presented in Chapter 5. Altogether, the new practical
block-diagonal preconditioner P̃ yields again parameter independent convergence rates.
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3.4 Discretization error analysis
For the complete error analysis, we have to define some seminorms and norms in certain function
spaces inspired by the P-norm in the same spirit as we did this in the definitions (3.32) and (3.33).
Let us define the function spaces

V0 := H
1, 12
0 (QT ) and V1 := (H0, 12 )10(QT ) ∩H0,1

per(QT ), (3.36)

where

(H0, 12 )10(QT ) := {u ∈ H0, 12 (QT ) : ∇u ∈ H0, 12 (QT ), u = 0 on ΣT },

and let us equip these spaces with the corresponding seminorms

|u|2V0
= (ν∇u,∇u)L2(QT ) +


σ∂

1/2
t u, ∂

1/2
t u


L2(QT )

,

|u|2V1
= (ν∇u,∇u)L2(QT ) +


ν∂

1/2
t ∇u, ∂

1/2
t ∇u


L2(QT )

+

σ∂tu, ∂tu


L2(QT )

,

which are again defined in the Fourier space according to Definition 3.2, i.e.,

|u|2V0
= T (ν∇uc

0,∇uc
0)L2(Ω) +

T

2

∞
k=1

[(ν∇uk,∇uk)L2(Ω) + kω (σuk,uk)L2(Ω)],

|u|2V1
= T (ν∇uc

0,∇uc
0)L2(Ω) +

T

2

∞
k=1

[(1 + kω)(ν∇uk,∇uk)L2(Ω) + (kω)2(σuk,uk)L2(Ω)].

Due to the Friedrichs inequality, the seminorms | · |V0 and | · |V1 are equivalent to the norms in these
spaces. Hence, in the following, we denote by ∥ ·∥V0

and ∥ ·∥V1
, in fact, the corresponding seminorms,

i.e., we define

∥u∥V0
:= |u|V0

and ∥u∥V1
:= |u|V1

.

Note that the P-norm defined in (3.33) corresponds to the V0-norm for a single mode k = 1, 2, . . . , N ,
i.e.,

∥u∥2V0
= T (ν∇uc

0,∇uc
0)L2(Ω) +

T

2

∞
k=1

∥uk∥2P . (3.37)

For the mode k = 0, the discretized system of the variational problem (3.7) is given by (3.27).
Together with (3.37), it follows that, in the case k = 0, natural choices for the P-inner product and
the P-norm are

(uc
0, v

c
0)P = (ν∇uc

0,∇vc0)L2(Ω) and ∥uc
0∥2P = (ν∇uc

0,∇uc
0)L2(Ω), (3.38)

respectively. Moreover, we write ∥uk∥V0
= ∥uk∥P in the case k = 1, 2, . . . , N and ∥uc

0∥V0
= ∥uc

0∥P
for k = 0. So finally, the V0-norm can be written as

∥u∥2V0
= T ∥uc

0∥2V0
+

T

2

∞
k=1

∥uk∥2V0
.

Now, we are prepared for the analysis of the complete discretization error between the exact solution
of the variational problem (3.6) and its multiharmonic finite element approximation, given by

∥u− uNh∥V0
, (3.39)
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where the exact solution u can be represented as Fourier series, i.e.,

u(x, t) = uc
0(x) +

∞
k=1

[uc
k(x) cos(kωt) + us

k(x) sin(kωt)],

and its multiharmonic finite element approximation uNh is given by (3.28), i.e.,

uNh(x, t) = uc
0h(x) +

N
k=1

[uc
kh(x) cos(kωt) + us

kh(x) sin(kωt)].

Using the triangle inequality, we can split the discretization error (3.39) into two parts, a discretization
error in the truncation index N and a discretization error in the parameter h arising from the finite
element discretization, i.e.,

∥u− uNh∥V0
≤ ∥u− uN∥V0

+ ∥uN − uNh∥V0
.

3.4.1 Discretization error with respect to the truncation index
The following theorem provides an estimate for the discretization error due to truncation of the
Fourier series at the mode N under weak regularity assumptions.

Theorem 3.16. Let us assume that u ∈ V1. Then the discretization error due to truncation of the
Fourier series can be estimated by

∥u− uNh∥V0
≤ c0 N

−1/2 ∥u∥V1
, (3.40)

where c0 is a constant depending only on the frequency ω.

Proof. Under the assumption that u ∈ V1 = (H0, 12 )10(QT ) ∩ H0,1
per(QT ), we obtain the following

estimate:

∥u− uN∥2V0
=

T

2

∞
k=N+1


(ν∇uk,∇uk)L2(Ω) + kω (σuk,uk)L2(Ω)


≤ T

2

∞
k=N+1


1 + kω

kω
(ν∇uk,∇uk)L2(Ω) +

(kω)2

kω
(σuk,uk)L2(Ω)



≤ 1

(N + 1)ω

T

2

∞
k=N+1


(1 + kω)(ν∇uk,∇uk)L2(Ω) + (kω)2(σuk,uk)L2(Ω)


≤ c20

1

N
∥u∥2V1

,

where c0 = c0(ω) = 1/
√
ω.

3.4.2 Discretization error with respect to the finite element discretization
parameter

The discretization error between the multiharmonic approximation of the exact solution and its
multiharmonic finite element approximation can be reduced to the discretization error between the
unknown Fourier coefficients and their finite element approximations due to the identity

∥uN − uNh∥2V0
= T ∥uc

0 − uc
0h∥2V0

+
T

2

N
k=1

∥uk − ukh∥2V0
.
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Remember that our decoupled variational problems for k = 1, . . . , N are given by (3.6), i.e., find
uk ∈ V = V × V such that

ak(uk,vk) =


Ω

fk · vk dx =: ⟨Fk,vk⟩ ∀vk ∈ V.

The variational problem for k = 0 is given by (3.7), i.e., find uc
0 ∈ V such that

a0(u
c
0, v

c
0) =


Ω

f c
0(x) v

c
0(x) dx =: ⟨F0, v

c
0⟩ ∀ vc0 ∈ V,

where the bilinear form a0(·, ·) is defined in (3.9). Since the Fourier coefficients of the given data f
can be computed exactly, the corresponding discrete problems are given by: Find ukh ∈ Vh such that

ak(ukh,vkh) = ⟨Fk,vkh⟩ ∀vkh ∈ Vh,

which is equivalent to solving the linear system (3.26). Since Vh ⊂ V, we have the Galerkin orthogo-
nality

ak(uk − ukh,vkh) = 0 ∀vkh ∈ Vh. (3.41)

For the case k = 0, we analogously obtain the following discrete problem: Find uc
0h ∈ Vh such that

a0(u
c
0h, v

c
0h) = ⟨F0, v

c
0h⟩ ∀ vc0h ∈ Vh,

and the Galerkin orthogonality

a0(u
c
0 − uc

0h, v
c
0h) = 0 ∀ vc0h ∈ Vh.

The following theorem provides an estimate for the discretization error between the unknown Fourier
coefficients and their finite element approximations. To begin with, we prove that the discretization
error of the Fourier coefficients can be estimated by the best approximation error. Afterwards we
estimate the best approximation error by the interpolation error provided the Fourier coefficients are
sufficiently smooth, see [42].

Theorem 3.17. Under the assumption that uk ∈ (H2(Ω))2 for all k = 1, . . . , N , the discretization
error for the Fourier coefficients can be estimated by

∥uk − ukh∥V0
≤ c1 cpar(k, ω, ν, σ, h)h |uk|H2(Ω), (3.42)

where c2par(k, ω, ν, σ, h) = νc21,2 + kωσc20,2h
2 with constants c0,2 and c1,2 from the approximation

theorem, c1 is a positive constant, and | · |H2(Ω) is the H2(Ω)-seminorm. Moreover, if uc
0 ∈ H2(Ω),

then

∥uc
0 − uc

0h∥V0 ≤
√
ν c1,2 h |uc

0|H2(Ω) (3.43)

with the constant c1,2 coming from the approximation theorem.

Proof. Let us start with the case k = 1, . . . , N . Inserting an arbitrary vkh ∈ Vh and using triangle
inequality, the discrete version of the inf-sup condition in (3.34) of the Babuška-Aziz theorem with the
constant c = 1/

√
2 as well as the sup-sup condition with constant c = 1 together with the Galerkin

orthogonality (3.41), we obtain the following Céa-type estimate according to (2.26):

∥uk − ukh∥V0
≤ ∥uk − vkh∥V0

+ ∥ukh − vkh∥V0
≤ ∥uk − vkh∥V0

+
1

c
sup

0̸=ṽkh∈Vh

ak(ukh − vkh, ṽkh)

∥ṽkh∥V0

≤ ∥uk − vkh∥V0
+

1

c
sup

0̸=ṽkh∈Vh

ak(ukh − uk, ṽkh)

∥ṽkh∥V0  
=0

+
1

c
sup

0 ̸=ṽkh∈Vh

ak(uk − vkh, ṽkh)

∥ṽkh∥V0

≤ ∥uk − vkh∥V0
+

1

c
· c ∥uk − vkh∥V0

≤ (1 +
c

c
)  

=:c1

∥uk − vkh∥V0
.
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So, we can estimate the discretization error by the best approximation error, i.e.,

∥uk − ukh∥V0 ≤ c1 inf
vkh∈Vh

∥uk − vkh∥V0 . (3.44)

Thus, the best approximation error can be estimated by the interpolation error, i.e.,

inf
vkh∈Vh

∥uk − vkh∥V0
≤ ∥uk − Ihuk∥V0

, (3.45)

where Ih : V → Vh is some interpolation operator. The V0-norm is bounded by

∥uk∥2V0
= (ν∇uk,∇uk)L2(Ω) + kω (σuk,uk)L2(Ω)

≤ ν |uk|2H1(Ω) + kωσ∥uk∥2L2(Ω).

Under the assumption that the Fourier coefficients are from H2(Ω), the interpolation error can be
estimated by

∥uk − Ihuk∥2V0
= ∥(I − Ih)uk∥2V0

≤ ν|(I − Ih)uk|2H1(Ω) + kωσ∥(I − Ih)uk∥2L2(Ω)

≤ νc21,2h
2|uk|2H2(Ω) + kωσc20,2h

4|uk|2H2(Ω)

= (νc21,2 + kωσc20,2h
2)  

=:c2par(k,ω,ν,σ,h)

h2|uk|2H2(Ω),

where c0,2 and c1,2 are constants coming from applying the approximation theorem from finite element
discretization theory, see, e.g., [42, 46]. Thus, we have

∥uk − Ihuk∥V0
≤ cpar(k, ω, ν, σ, h)h |uk|2H2(Ω).

Altogether, the discretization error for the Fourier coefficients corresponding to the modes k =
1, . . . , N can be estimated by

∥uk − ukh∥V0
≤ c1 inf

vkh∈Vh

∥uk − vkh∥V0

≤ c1 ∥uk − Ihuk∥V0
≤ c1 cpar(k, ω, ν, σ, h)h |uk|H2(Ω)

(3.46)

with the constant c1 = 1 +
√
2.

The error for the case k = 0 can be similarly estimated. The bilinear form a0(·, ·) is bounded and
elliptic in the V0-norm with boundedness and ellipticity constants c = c = 1, since, e.g., ac0(uc

0, u
c
0) =

∥uc
0∥2V0

. Hence, we can estimate the discretization error by the best approximation error, i.e.,

∥uc
0 − uc

0h∥V0
≤ inf

vc
0h∈Vh

∥uc
0 − vc0h∥V0

,

due to the Céa lemma, see Lemma 2.14 and Remark 2.15. Thus, the best approximation error can
be estimated by the interpolation error, i.e.,

inf
vc
0h∈Vh

∥uc
0 − vc0h∥V0

≤ ∥uc
0 − Ihu

c
0∥V0

,

where Ih : V → Vh is again some interpolation operator. Under the assumption that uc
0 ∈ H2(Ω),

the interpolation error can be estimated by

∥uc
0 − Ihu

c
0∥2V0

= ∥(I − Ih)u
c
0∥2V0

≤ ν|(I − Ih)u
c
0|2H1(Ω) ≤ νc21,2h

2|uc
0|2H2(Ω),

where c1,2 is again a constant coming from applying the approximation theorem from finite element
discretization theory, see, e.g., [42, 46]. Altogether, we have

∥uc
0 − uc

0h∥V0
≤

√
ν c1,2 h |uc

0|H2(Ω),

which completes the proof.



66 CHAPTER 3. MHFE ANALYSIS OF PARABOLIC TIME-PERIODIC BVPS

Let us now define the H2,0(QT )-seminorm in the Fourier space as follows

|u|H2 =


T |uc

0|2H2(Ω) +
T

2

∞
k=1

|uk|2H2(Ω)

1/2

, (3.47)

where the H2-seminorm for the Fourier coefficients is the usual H2(Ω)-seminorm as used in Theo-
rem 3.17. The following theorem provides the estimate for the complete discretization error with
respect to the spatial discretization parameter h.

Theorem 3.18. Under the assumptions of Theorem 3.17, the discretization error in h can be esti-
mated as follows

∥uN − uNh∥V0
≤ c1 cpar(N,ω, ν, σ, h)h |uN |H2 , (3.48)

where c2par(N,ω, ν, σ, h) = νc21,2 + Nωσc20,2h
2 with constants c0,2 and c1,2 from the approximation

theorem, and c1 is a positive constant. The H2-seminorm of uN is given by

|uN |2H2 = T |uc
0|2H2(Ω) +

T

2

N
k=1

|uk|2H2(Ω).

Proof. Due to Theorem 3.17, we obtain the estimate

∥uN − uNh∥2V0
= T ∥uc

0 − uc
0h∥2V0

+
T

2

N
k=1

∥uk − ukh∥2V0

≤ T ν c21,2 h
2 |uc

0|2H2(Ω) +
T

2

N
k=1

c21 c
2
par(k, ω, ν, σ, h)h

2 |uk|2H2(Ω)

≤ T ν c21,2 h
2 |uc

0|2H2(Ω) + c21 c
2
par(N,ω, ν, σ, h)h2 T

2

N
k=1

|uk|2H2(Ω)

≤ c21 c
2
par(N,ω, ν, σ, h)h2


T |uc

0|2H2(Ω) +
T

2

N
k=1

|uk|2H2(Ω)


,

which completes the proof.

3.4.3 Complete discretization error

Now, we are in the position to state the final discretization error estimate.

Theorem 3.19. Let us assume that u ∈ V1 ∩ H2,0(QT ). Then the complete discretization error
arising from the multiharmonic finite element discretization can be estimated as follows

∥u− uNh∥V0 ≤ c0 N
−1/2 ∥u∥V1 + c1 cpar(N,ω, ν, σ, h)h |u|H2 ,

where c0 and c1 come from Theorem 3.16 and Theorem 3.18, respectively, and c2par(N,ω, ν, σ, h) =
νc21,2 +Nωσc20,2h

2 with constants c0,2 and c1,2 from the approximation theorem.

Proof. Applying the triangle inequality and using Theorems 3.16 and 3.18 yield the estimates

∥u− uNh∥V0
≤ ∥u− uN∥V0

+ ∥uN − uNh∥V0
≤ c0 N

−1/2 ∥u∥V1
+ c1 cpar(N,ω, ν, σ, h)h |uN |H2 ,

where the seminorm |uN |H2 can trivially be estimated by (3.47).
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Remark 3.20. The convergence rate with respect to the spatial discretization parameter h reduces
from h to hs with some s ∈ (0, 1), if

u ∈ V1 ∩H1+s,0(QT ).

In order to get hs with s > 1, we need higher order elements. On the other side the convergence
with respect to N will improve, if u is smoother with respect to the time variable. More precisely, the
factor N−1/2 improves to N−ℓ/2 provided that

u ∈ Vℓ ∩H1+s,0(QT ),

where Vℓ := (H0,ℓ/2)10(QT ) ∩H
0,(ℓ+1)/2
per (QT ) and with some ℓ > 1.

Remark 3.21. If the given right-hand side f has a multiharmonic representation, then the solution
u has a multiharmonic representation as well and the complete discretization error reduces to a
discretization error in the spatial variable h and can be estimated as in Theorem 3.18.
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Chapter 4

Multiharmonic finite element analysis
of parabolic time-periodic optimal
control problems

This chapter considers optimal control problems, where parabolic time-periodic partial differential
equations of the form (3.1)-(3.3) appear in their constraints. The multiharmonic finite element anal-
ysis of these parabolic time-periodic partial differential equations including existence and uniqueness
results has already been presented in Chapter 3. Following these ideas and results, we now discuss
the existence and uniqueness of parabolic time-periodic optimal control problems as well as present
block-diagonal preconditioned MINRES solvers and full a priori error estimates.

4.1 A parabolic time-periodic optimal control problem

Let us denote the state of our optimal control problem by y and the control by u. The spatial domain
Ω ⊂ Rd is assumed to be a bounded Lipschitz domain with the boundary Γ := ∂Ω, where d = {1, 2, 3}.
Moreover, the space-time cylinder is again denoted by QT := Ω× (0, T ) and its mantle boundary by
ΣT := Γ× (0, T ). We consider the following parabolic time-periodic optimal control problem:

min
y,u

J (y, u) :=
1

2

 T

0


Ω

(y(x, t)− yd(x, t))
2
dx dt+

λ

2

 T

0


Ω

(u(x, t))
2
dx dt (4.1)

subject to the parabolic time-periodic boundary value problem (3.1)-(3.3), i.e.,

σ(x) ∂ty(x, t)− div (ν(x)∇y(x, t)) = u(x, t) (x, t) ∈ QT ,

y(x, t) = 0 (x, t) ∈ ΣT ,

y(x, 0) = y(x, T ) x ∈ Ω,

(4.2)

with uniformly bounded coefficients σ(·) and ν(·) satisfying the assumptions (2.29). The desired
state yd is the given target that we try to reach via a suitable control u. The positive regularization
parameter λ provides a weighting of the cost of the control in the cost functional J (·, ·).
In this section, we discuss existence and uniqueness of the parabolic time-periodic optimal control
problem (4.1)-(4.2) as well as formulate its optimality system that we are going to discretize by the
multiharmonic finite element method.
In Chapter 3, we have already proved the existence and uniqueness of a solution of certain variational
formulations, i.e., (3.4), (3.5) and (3.16), of the parabolic time-periodic boundary value problem (4.2).
In particular, remember the existence and uniqueness result of Theorem 3.6, more precisely, that the

69
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variational problem (3.16) has a unique solution due to Lemma 3.5, which exactly are the inf-sup and
sup-sup conditions of the Babuška-Aziz theorem for this variational problem.

Theorem 4.1. The parabolic time-periodic optimal control problem (4.1)-(4.2) has a unique solution
(ȳ, ū) ∈ H

1, 12
0 (QT )× L2(QT ).

Proof. Theorem 3.6 implies the existence of a linear and continuous solution operator which uniquely
assigns a state

y ∈ H
1, 12
0 (QT )

to every control u ∈ L2(QT ), where the space H
1, 12
0 (QT ) is compactly embedded in L2(QT ). With

the solution operator, the optimal control problem (4.1)-(4.2) can be rewritten as a reduced (weak)
minimization problem. Under the assumptions that yd ∈ L2(QT ) and λ > 0, Theorem 2.21 finally
yields the existence and uniqueness result.

We want to formulate now the optimality system. Its solution is equivalent to the solution of the
original optimal control problem (4.1)-(4.2). We denote the Lagrange multiplier by p, which is also
referred as the adjoint state. We choose the following Lagrange functional for our minimization
problem:

L(y, u, p) := J (y, u)−
 T

0


Ω


σ∂ty − div (ν∇y)− u


p dx dt. (4.3)

The optimality system is given by (2.42), i.e.,

Lp(y, u, p) = 0,

Ly(y, u, p) = 0,

Lu(y, u, p) = 0,

(4.4)

and characterizes a stationary point (y, u, p) of the Lagrange functional (4.3). Using the second
condition, we can eliminate the control u from the optimality system (4.4), i.e.,

u = −λ−1p in QT . (4.5)

From (4.5) it appears very natural to choose y, p and also u from the same space. Moreover, we
arrive at a reduced optimality system, written in its classical formulation as

σ(x) ∂ty(x, t)− div (ν(x)∇y(x, t)) = −λ−1p(x, t) (x, t) ∈ QT ,

y(x, t) = 0 (x, t) ∈ ΣT ,

y(x, 0) = y(x, T ) x ∈ Ω,

−σ(x) ∂tp(x, t)− div (ν(x)∇p(x, t)) = y(x, t)− yd(x, t) (x, t) ∈ QT ,

p(x, t) = 0 (x, t) ∈ ΣT ,

p(x, T ) = p(x, 0) x ∈ Ω.

(4.6)

The space-time variational formulation of (4.6) is obtained in the same way as for the parabolic
time-periodic partial differential equation (3.16) in Chapter 3 and is stated as the following: Given
the desired state yd ∈ L2(QT ), find y and p from H

1, 12
0 (QT ) such that T

0


Ω


y v − ν(x)∇p · ∇v + σ(x)∂

1/2
t p ∂

1/2
t v⊥


dx dt =

 T

0


Ω

yd v dx dt, T

0


Ω


ν(x)∇y · ∇q + σ(x)∂

1/2
t y ∂

1/2
t q⊥ + λ−1p q


dx dt = 0,

(4.7)

for all test functions v, q ∈ H
1, 12
0 (QT ), where all functions are given in their Fourier series expansion

in time according to Definition 3.2.
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Remark 4.2. In Chapter 6, we show that problem (4.7) has a unique solution based on the fact that
the corresponding inf-sup and sup-sup conditions are fulfilled and, hence, the Babuška-Aziz theorem
can be applied, see Lemma 6.23 as well as Lemma 6.25. These lemmas provide additional existence
and uniqueness results to the one obtained in Theorem 4.1.

4.2 Multiharmonic finite element discretization
In order to solve the optimal control problem (4.1)-(4.2), we discretize the optimality system (4.7)
by the multiharmonic finite element method. Again, choosing test functions (3.23) yields variational
problems, which correspond to every mode k = 0, . . . , N . On the other hand, we can use the equivalent
approach and approximate the desired state yd by truncating its Fourier series expansion, i.e.,

yd(x, t) ≈ ycd0(x) +

N
k=1

[ycdk(x) cos(kωt) + ysdk(x) sin(kωt)] = ydN (x, t), (4.8)

where its Fourier coefficients are given by

ycd0(x) =
1

T

 T

0

yd(x, t) dt,

ycdk(x) =
2

T

 T

0

yd(x, t) cos(kωt) dt,

ysdk(x) =
2

T

 T

0

yd(x, t) sin(kωt) dt.

We mention here again that in this work we consider only the case where we can compute the Fourier
coefficients exactly.
We insert the truncated desired state (4.8) and the Fourier series ansatz of the state y and the adjoint
state p into the space-time variational formulation (4.7). From the orthogonality of the functions
cos(kωt) and sin(kωt) it follows that it is sufficient to consider only the truncated Fourier series of y
and p, i.e.,

y(x, t) ≈ yc0(x) +

N
k=1

[yck(x) cos(kωt) + ysk(x) sin(kωt)] = yN (x, t),

p(x, t) ≈ pc0(x) +

N
k=1

[pck(x) cos(kωt) + psk(x) sin(kωt)] = pN (x, t),

and we arrive at the following system which has to be solved for every mode k = 1, 2, . . . , N : Find
yk,pk ∈ V = V × V = (H1

0 (Ω))
2 such that

Ω


yk · vk − ν(x)∇pk · ∇vk + kω σ(x)pk · v⊥

k


dx =


Ω

ydk · vk dx,
Ω


ν(x)∇yk · ∇qk + kω σ(x)yk · q⊥

k + λ−1pk · qk


dx = 0,

(4.9)

for all test functions vk, qk ∈ V. In the case of k = 0, we obtain the following optimality system:
Find yc0, p

c
0 ∈ V = H1

0 (Ω) such that
Ω


yc0 · vc0 − ν(x)∇pc0 · ∇vc0


dx =


Ω

ycd0 · v
c
0 dx,

Ω


ν(x)∇yc0 · ∇qc0 + λ−1pc0 · qc0


dx = 0,

(4.10)
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for all test functions vc0, q
c
0 ∈ V . Analogously to Chapter 3, we approximate the unknown Fourier

coefficients

yk = (yck, y
s
k)

T , pk = (pck, p
s
k)

T ∈ V

by finite element functions

ykh = (yckh, y
s
kh)

T , pkh = (pckh, p
s
kh)

T ∈ Vh = Vh × Vh ⊂ V,

where Vh = Vh × Vh is a finite element space with

Vh = span{ϕ1, . . . , ϕn}

and {ϕi(x) = ϕih(x) : i = 1, 2, . . . , nh} is the standard nodal basis. Again, we denote by h the usual
discretization parameter such that n = nh = dimVh = O(h−d) and use continuous, piecewise linear
finite elements on the finite elements on a regular triangulation Th to construct the finite element
subspace Vh and its basis, see, e.g., [41, 46, 84, 161] as well as Sections 2.4 and 3.2. This leads to a
linear system arising from the variational formulation (4.9), i.e.,

Mh 0 −Kh,ν kωMh,σ

0 Mh −kωMh,σ −Kh,ν

−Kh,ν −kωMh,σ −λ−1Mh 0
kωMh,σ −Kh,ν 0 −λ−1Mh




yc
k

ys
k

pc
k

ps
k

 =


yc
dk

ys
dk
0
0

 (4.11)

for k = 1, 2, . . . , N , which has to be solved with respect to the nodal parameter vectors

yj
k
= (yjk,i)i=1,...,n ∈ Rn and pj

k
= (pjk,i)i=1,...,n ∈ Rn

of the finite element approximations

yjkh(x) =

n
i=1

yjk,iϕi(x) and pjkh(x) =

n
i=1

pjk,iϕi(x)

to the unknown Fourier coefficients yjk(x) and pjk(x) with j ∈ {c, s}. The matrices Mh, Mh,σ and
Kh,ν correspond to the mass matrix, the weighted mass matrix and the stiffness matrix, respectively.
Their entries are computed by the following formulas:

M ij
h =


Ω

ϕiϕj dx, M ij
h,σ =


Ω

σ ϕiϕj dx, Kij
h,ν =


Ω

ν∇ϕi · ∇ϕj dx,

with i, j = 1, . . . , n, whereas

yc
dk

=
 

Ω

ycdkϕj dx

j=1,...,n

and ys
dk

=
 

Ω

ysdkϕj dx

j=1,...,n

.

In the case k = 0, we obtain the following linear system arising from the variational problem (4.10):
Mh −Kh,ν

−Kh,ν −λ−1Mh


yc
0

pc
0


=


yc
d0
0


. (4.12)

Finally, we can easily reconstruct the multiharmonic finite element approximations

yNh(x, t) = yc0h(x) +

N
k=1

[yckh(x) cos(kωt) + yskh(x) sin(kωt)] (4.13)
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and

pNh(x, t) = pc0h(x) +

N
k=1

[pckh(x) cos(kωt) + pskh(x) sin(kωt)] (4.14)

to the state y(x, t) and the adjoint state p(x, t) from the solutions of the linear systems (4.11)
and (4.12). Analogously to Chapter 3, we will present an a priori error analysis for the complete
discretization error between the unknown solution (y, p) of the reduced optimality system (4.7) and
its multiharmonic finite element approximation (yNh, pNh), see Section 4.4.

Remark 4.3. We can also insert the Fourier series ansatz immediately into the optimal control
problem (4.1)-(4.2) - before formulating its optimality system. So after inserting the Fourier series
ansatz (2.10) for all functions, we obtain the following optimal control problems for every mode
k = 1, 2, . . . :

min
yk,uk

Jk(yk,uk) :=
1

2


Ω

(yk(x)− ydk(x))
2
dx+

λ

2


Ω

(uk(x))
2
dx (4.15)

subject to the boundary value problem

− kω σ(x)y⊥
k (x)− div (ν(x)∇yk(x, t)) = uk(x) x ∈ Ω,

yk(x) = 0 x ∈ Γ.
(4.16)

The variational problem of (4.16) can be formulated as (3.6). For the case k = 0, we obtain the
optimal control problem

min
yc
0,u

c
0

J0(y
c
0, u

c
0) :=

1

2


Ω

(yc0(x)− ycd0(x))
2
dx+

λ

2


Ω

(uc
0(x))

2
dx (4.17)

subject to the boundary value problem

− div (ν(x)∇yc0(x, t)) = uc
0(x) x ∈ Ω,

yc0(x) = 0 x ∈ Γ,
(4.18)

which leads to variational problem (3.7).
Formulating the optimality systems of problems (4.15)-(4.16) and (4.17)-(4.18), and, then, discretiz-
ing it by the finite element method leads to the same linear systems of equations (4.11) and (4.12).

4.3 Block-diagonal preconditioned MINRES solver

The resulting linear system (4.11) as well as the system (4.12) are saddle point problems of the form
(2.46) with the system matrix (2.47), i.e.,

Au = f, (4.19)

where

A :=


A BT

B −C


, u :=


y
p


and f :=


y
d
0


.

In the case k = 1, . . . , N , we have that

A :=


Mh 0
0 Mh


, B :=


−Kh,ν −kωMh,σ

kωMh,σ −Kh,ν


, C := λ−1A
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and

y
d
:=


yc
dk

ys
dk


, y :=


yc
k

ys
k


, p :=


pc
k

ps
k


.

These saddle point problems can be solved by a preconditioned MINRES method, see Section 2.7,
where a convergence result for this method is stated in Theorem 2.25. Hence, it is crucial to construct
preconditioners, which yield robust and fast convergence for the preconditioned MINRES method.
This will be done analogously as in Section 3.3. We start with an easier case by assuming that the
parameter σ is constant and construct preconditioners following the strategy presented in Zulehner
[187], which is based on space interpolation theory. Motivated by the resulting preconditioner, we
choose an initial guess for a preconditioner in the more general case of σ(·) being piecewise constant.
By introducing proper parameter dependent norms, we verify the assumptions of the Babuška-Aziz
theorem, which finally yields a parameter robust convergence rate as desired, see [89].
Let us start by assuming that σ(·) is constant. Hence, in this case, we have

Mh,σ = σMh.

Then, the system matrix A in the linear system (4.19) is given by the block matrices

A :=


Mh 0
0 Mh


, B :=


−Kh,ν −kωσMh

kωσMh −Kh,ν


, C := λ−1A.

Due to Theorem 2.25, the convergence rate of the preconditioned MINRES method only depends
on the condition number of the precondioned system. Hence, we are going to construct precondi-
tioners for the preconditioned MINRES method such that the condition number κP(P−1A) of the
preconditioned system P−1A is independent of all “bad” parameters, i.e.,

h, N, ω, λ, ν, σ.

In order to obtain parameter robust convergence rates, we first construct block-diagonal precondi-
tioners by the operator matrix interpolation technique presented in Section 2.7. From Theorem 2.26
follows that A can be preconditioned by

P0 =


A 0
0 S


and P1 =


R 0
0 C


,

where the negative Schur complements are given by

S =


Kh,νM

−1
h Kh,ν + (k2ω2σ2 + λ−1)Mh 0

0 Kh,νM
−1
h Kh,ν + (k2ω2σ2 + λ−1)Mh


and

R =


λKh,νM

−1
h Kh,ν + (k2ω2σ2λ+ 1)Mh 0

0 λKh,νM
−1
h Kh,ν + (k2ω2σ2λ+ 1)Mh


in our model problem. Hence,

R = λS.

Analogously to Chapter 3, we construct block-diagonal preconditioners Pθ by interpolating between
P0 and P1 as presented in (2.52), from which we can obtain again parameter independent condition
number estimates for all θ ∈ [0, 1]. We choose θ = 1

2 and obtain the block-diagonal matrix

P1/2 =


[A,R]1/2 0

0 [S,C]1/2


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with

[A,R]1/2 = A1/2(A−1/2RA−1/2)1/2A1/2 and [S,C]1/2 = S1/2(S−1/2CS−1/2)1/2S1/2.

Since A and R are block-diagonal, the diagonal entries [A,R]
(1,1)
1/2 = [A,R]

(2,2)
1/2 can be estimated from

above and from below as follows

[A,R]
(1,1)
1/2 = M

1/2
h (λM

−1/2
h Kh,νM

−1
h Kh,νM

−1/2
h + (k2ω2σ2λ+ 1)I)1/2M

1/2
h

≤
√
λM

1/2
h (M

−1/2
h Kh,νM

−1
h Kh,νM

−1/2
h )1/2M

1/2
h +


k2ω2σ2λ+ 1M

1/2
h M

1/2
h

=
√
λKh,ν +


k2ω2σ2λ+ 1Mh

≤
√
λKh,ν + (kωσ

√
λ+ 1)Mh =: D,

[A,R]
(1,1)
1/2 = M

1/2
h (λM

−1/2
h Kh,νM

−1
h Kh,νM

−1/2
h + (k2ω2σ2λ+ 1)I)1/2M

1/2
h

≥ M
1/2
h

 1√
2
(
√
λM

−1/2
h Kh,νM

−1/2
h +


k2ω2σ2λ+ 1 I)


M

1/2
h

=
1√
2

√
λKh,ν +


k2ω2σ2λ+ 1Mh


≥ 1√

2

√
λKh,ν +

1√
2
(kωσ

√
λ+ 1)Mh


≥ 1√

2
min{1, 1√

2
}
√

λKh,ν + (kωσ
√
λ+ 1)Mh


=

1

2

√
λKh,ν + (kωσ

√
λ+ 1)Mh


=

1

2
D,

where we used the spectral inequality (3.29) again. Analogously, since S = λ−1R and C = λ−1A, we
have that

[S,C]
(1,1)
1/2 = [S,C]

(2,2)
1/2

= [λ−1R, λ−1A]
(1,1)
1/2

= λ−1[A,R]
(1,1)
1/2

∼ λ−1(
√
λKh,ν + (kωσ

√
λ+ 1)Mh) = λ−1D.

Thus, we have obtained a new block-diagonal preconditioner for the MINRES solver of problem
(4.11), which we denote by P1/2, and which is given by

P1/2 =


D 0 0 0
0 D 0 0
0 0 λ−1D 0
0 0 0 λ−1D

 . (4.20)

This block-diagonal preconditioner is much easier to realize in practice than the previous precondi-
tioners P0 and P1 containing Schur complements. Hence, we obtain the estimates (2.53), i.e.,

c ∥u∥P1/2
≤ ∥Au∥P−1

1/2
≤ c ∥u∥P1/2

∀u ∈ R4n, (4.21)

which yield a robust estimate of the condition number

κP1/2
(P−1

1/2A) ≤ c/c

with constants c = (
√
5 − 1)/2 and c = (

√
5 + 1)/2. Therefore, Theorem 2.25 leads to robust

convergence rates of the MINRES method.
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Let us now consider the case that σ(·) is only piecewise constant, but not constant. Moreover, we
allow that σ is zero in some regions of the computational domain Ω. This situation is typical in
electromagnetics, where σ is nothing but the conductivity that is zero in non-conducting regions.
The system matrix A of (4.11) is now given by

A :=


Mh 0 −Kh,ν kωMh,σ

0 Mh −kωMh,σ −Kh,ν

−Kh,ν −kωMh,σ −λ−1Mh 0
kωMh,σ −Kh,ν 0 −λ−1Mh

 .

Since now

Mh,σ ̸= σMh,

the interpolated matrices [A,R]1/2 and [S,C]1/2 cannot be computed explicitly. However, we get
an inspiration for choosing a suitable block-diagonal preconditioner according to the block-diagonal
preconditioner P1/2. Replacing σMh by Mh,σ in (4.20), we arrive at the new preconditioner

P =


D 0 0 0
0 D 0 0
0 0 λ−1D 0
0 0 0 λ−1D

 , (4.22)

and so now, the diagonal block D is given by

D =
√
λKh,ν + kω

√
λMh,σ +Mh.

This preconditioner P is our candidate for a robust preconditioner of the system matrix A. In order
to obtain robust norm estimates for the preconditioned system matrix P−1A, we look again at the
Babuška-Aziz theorem. The clue is once more that the norm estimates which have to be proven are
equivalent to the assumptions (inf-sup- and sup-sup-conditions) in the Babuška-Aziz theorem that, at
the same time, provides existence, uniqueness, as well as a priori and a posteriori error estimates. The
assumptions of the Babuška-Aziz theorem yield discretization error estimates, which we are going to
present in Section 4.4.
Let us return to the variational formulation (4.9) of the optimality system for each mode k = 1, . . . , N ,
and let us define the corresponding bilinear form

Bk((yk,pk), (vk, qk)) :=


Ω


yk · vk − ν∇pk · ∇vk + kωσpk · v⊥

k


dx

+


Ω


ν∇yk · ∇qk + kωσyk · q⊥

k + λ−1pk · qk


dx.

(4.23)

Hence, the variational problem (4.9) reads now as follows: Find (yk,pk) ∈ V2 = (H1
0 (Ω))

4 such that

Bk((yk,pk), (vk, qk)) =


Ω

ydk · vk dx (4.24)

for all test functions (vk, qk) ∈ V2. The initial guess (4.22) for the preconditioner P yields the fol-
lowing definitions of inner products and associated norms. We first define a non-standard (weighted)
inner product in V = (H1

0 (Ω))
2 by

(yk,vk)V =
√
λ (ν∇yk,∇vk)L2(Ω) + kω

√
λ (σyk,vk)L2(Ω) + (yk,vk)L2(Ω).

The associated norm is then given by

∥yk∥2V =
√
λ (ν∇yk,∇yk)L2(Ω) + kω

√
λ (σyk,yk)L2(Ω) + ∥yk∥2L2(Ω), (4.25)
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which differs from the standard H1-norms. Finally, we define an inner product in V2 = (H1
0 (Ω))

4 by

((yk,pk), (vk, qk))P = (yk,vk)V + λ−1(pk, qk)V.

The associated norm is given by

∥(yk,pk)∥2P = ∥yk∥2V + λ−1∥pk∥2V. (4.26)

Next, we verify the assumptions (inf-sup- and sup-sup-conditions) of the theorem of Babuška-Aziz,
see [89].

Theorem 4.4. The following inequalities are valid:

c ∥(yk,pk)∥P ≤ sup
0̸=(vk,qk)∈V2

Bk((yk,pk), (vk, qk))

∥(vk, qk)∥P
≤ c ∥(yk,pk)∥P (4.27)

for all (yk,pk) ∈ V2 with constants c = 1/
√
3 and c = 1.

Proof. We start with the proof of the inequality from above. Due to the triangle inequality, it follows
thatBk((yk,pk), (vk, qk))

 ≤  
Ω

yk · vk dx
+  

Ω

ν∇pk · ∇vk dx
+  

Ω

kω σpk · v⊥
k dx


+
 

Ω

ν∇yk · ∇qk dx
+  

Ω

kω σyk · q⊥
k dx

+  
Ω

λ−1pk · qk dx
.

After appropriate scaling with the parameter λ and applying several times the Cauchy-Schwarz in-
equality, we obtainBk((yk,pk), (vk, qk))

 ≤  
Ω

yk · vk dx
+  

Ω

νλ−1/4∇pk · λ1/4∇vk dx


+
 

Ω

kω σλ−1/4pk · λ1/4v⊥
k dx

+  
Ω

νλ−1/4∇yk · λ1/4∇qk dx


+
 

Ω

kω σλ−1/4yk · λ1/4q⊥
k dx

+  
Ω

λ−1pk · qk dx


=
(yk,vk)L2(Ω)

+ (νλ−1/4∇pk, λ
1/4∇vk)L2(Ω)


+
kω (σλ−1/4pk, λ

1/4v⊥
k )L2(Ω)

+ (νλ1/4∇yk, λ
−1/4∇qk)L2(Ω)


+
kω (σλ1/4yk, λ

−1/4q⊥
k )L2(Ω)

+ λ−1(pk, qk)L2(Ω)


≤∥yk∥L2(Ω)∥vk∥L2(Ω) + λ−1/4(ν∇pk,∇pk)

1/2
L2(Ω)λ

1/4(ν∇vk,∇vk)
1/2
L2(Ω)

+
√
kω λ−1/4(σpk,pk)

1/2
L2(Ω)

√
kω λ1/4(σv⊥

k ,v
⊥
k )

1/2
L2(Ω)

+ λ1/4(ν∇yk,∇yk)
1/2
L2(Ω)λ

−1/4(ν∇qk,∇qk)
1/2
L2(Ω)

+
√
kω λ1/4(σyk,yk)

1/2
L2(Ω)

√
kω λ−1/4(σq⊥

k , q
⊥
k )

1/2
L2(Ω)

+ λ−1/2∥pk∥L2(Ω)λ
−1/2∥qk∥L2(Ω).

Applying the Cauchy-Schwarz inequality again several times, we obtainBk((yk,pk), (vk, qk))
 ≤ ∥yk∥2L2(Ω) + λ−1/2(ν∇pk,∇pk)L2(Ω) + kω λ−1/2(σpk,pk)L2(Ω)

+ λ1/2(ν∇yk,∇yk)L2(Ω) + kω λ1/2(σyk,yk)L2(Ω) + λ−1∥pk∥2L2(Ω)

1/2
∥vk∥2L2(Ω) + λ1/2(ν∇vk,∇vk)L2(Ω) + kω λ1/2(σvk,vk)L2(Ω)

+ λ−1/2(ν∇qk,∇qk)L2(Ω) + kω λ−1/2(σqk, qk)L2(Ω) + λ−1∥qk∥2L2(Ω)

1/2
=

∥yk∥2V + λ−1∥pk∥2V

1/2∥vk∥2V + λ−1∥qk∥2V
1/2

= ∥(yk,pk)∥P∥(vk, qk)∥P .
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Hence, we have proved the upper bound with c = 1. Now, we want to show the estimate from below.
With the choice

(vk, qk) =

yk − 1√

λ
pk − 1√

λ
p⊥
k ,pk +

√
λyk −

√
λy⊥

k


,

we get the relations

Bk((yk,pk), (yk,pk)) = ∥yk∥2L2(Ω) + λ−1∥pk∥2L2(Ω),

Bk


(yk,pk),


− 1√

λ
pk,

√
λyk


=

√
λ(ν∇yk,∇yk)L2(Ω) +

1√
λ
(ν∇pk,∇pk)L2(Ω),

Bk


(yk,pk),


− 1√

λ
p⊥
k ,−

√
λy⊥

k


= kω

√
λ(σyk,yk)L2(Ω) + kω

1√
λ
(σpk,pk)L2(Ω).

Altogether, with this choice, we obtain

Bk((yk,pk), (vk, qk)) = ∥yk∥2V + λ−1∥pk∥2V = ∥(yk,pk)∥2P .

By using the fact that

∥(vk, qk)∥2P =
yk − 1√

λ
pk − 1√

λ
p⊥
k ,pk +

√
λyk −

√
λy⊥

k

2
P
= 3∥(yk,pk)∥2P ,

we arrive at the following estimate of the supremum from below:

sup
0̸=(vk,qk)∈V2

Bk((yk,pk), (vk, qk))

∥(vk, qk)∥P
≥ 1√

3
∥(yk,pk)∥P .

Hence, we get c = 1/
√
3. This completes the proof of the theorem.

Remark 4.5. The inequalities (4.27) in Theorem 4.4 immediately yield existence and uniqueness of
the solution of variational problem (4.9).

Due to the supremum, the discrete version of the left inequality in Theorem 4.4, i.e., the inf-sup
condition, does in general not follow from the continuous version. However, in our case, we can
repeat the proof step-by-step, and, finally, we arrive at the same inequalities in the discrete case
where V2 is replaced by V2

h with the same constants. Therefore, in matrix-vector notation, we have
proved similar inequalities as in (3.35), but now for optimal control problems, i.e., the inequalities

c ∥uk∥P ≤ sup
vk∈R4n

(Auk, vk)

∥vk∥P
≤ c ∥uk∥P ∀uk ∈ R4n (4.28)

implying the condition number estimate

κP(P−1A) := ∥P−1A∥P ∥A−1P∥P ≤ c/c =
√
3. (4.29)

This condition number estimate yields together with Theorem 2.25 a robust convergence rate of the
preconditioned MINRES method with

q =
κP(P−1A)− 1

κP(P−1A) + 1
≤

√
3− 1√
3 + 1

≈ 0.267949

of the factor q defining the residual reduction 2qm/(1 + q2m) after 2m MINRES iterations.
Finally, we want to determine a preconditioner for the discretized system (4.12) in the case of k = 0.
This is done in the same way as before. The matrix A is now given by

A :=


A BT

B −C


, (4.30)
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where A := Mh, B := −Kh,ν and C := λ−1Mh. According to Theorem 2.26, we construct the two
block-diagonal preconditioners P0 and P1 with

P0 =


A 0
0 C +BA−1BT


and P1 =


A+BTC−1B 0

0 C


.

By applying Theorem 2.29, we obtain the new preconditioner P with

P =


[A,R]1/2 0

0 [S,C]1/2


=


[A,R]1/2 0

0 λ−1[A,R]1/2


,

where

[A,R]1/2 = M
1/2
h (M

−1/2
h (Mh + λKh,νM

−1
h Kh,ν)M

−1/2
h )1/2M

1/2
h

∼ M
1/2
h (M

−1/2
h MhM

−1/2
h )1/2M

1/2
h +

√
λM

1/2
h (M

−1/2
h Kh,νM

−1
h Kh,νM

−1/2
h )1/2M

1/2
h

= M
1/2
h M

−1/2
h M

1/2
h M

1/2
h +

√
λM

1/2
h M

−1/2
h Kh,νM

−1/2
h M

1/2
h

= Mh +
√
λKh,ν =: D.

Hence, the preconditioner is given by

P =


D 0
0 λ−1D


. (4.31)

We can again establish similar inequalities as in Theorem 4.4. Indeed, let us define the bilinear form

B0((y
c
0, p

c
0), (v

c
0, q

c
0)) :=


Ω


yc0v

c
0 − ν∇pc0 · ∇vc0 + ν∇yc0 · ∇qc0 + λ−1pc0q

c
0


dx. (4.32)

Then the variational problem (4.10) reads now as follows: Find (yc0, p
c
0) ∈ V = V ×V with V = H1

0 (Ω)
such that

B0((y
c
0, p

c
0), (v

c
0, q

c
0)) =


Ω

ycd0 · v
c
0 dx (4.33)

for all test functions (vc0, q
c
0) ∈ V. Moreover, defining the inner product

((y, p), (v, q))P = (y, v)L2(Ω) +
√
λ(ν∇y,∇v)L2(Ω) + λ−1((p, q)L2(Ω) +

√
λ(ν∇p,∇q)L2(Ω))

with associated norm

∥(y, p)∥2P = ∥y∥2L2(Ω) +
√
λ(ν∇y,∇y)L2(Ω) + λ−1(∥p∥2L2(Ω) +

√
λ(ν∇p,∇p)L2(Ω)),

we can again show the following inequalities:

c ∥(yc0, pc0)∥P ≤ sup
0̸=(vc

0,q
c
0)∈V

B0((y
c
0, p

c
0), (v

c
0, q

c
0))

∥(vc0, qc0)∥P
≤ c ∥(yc0, pc0)∥P (4.34)

for all (yc0, pc0) ∈ V with constants c and c independent of all involved parameters. The upper bound
of the supremum with the constant c = 1 is again obtained by applying triangle and Cauchy-Schwarz
inequalities. The estimate from below follows by the choice

(vc0, q
c
0) =


yc0 −

1√
λ
pc0, p

c
0 +

√
λyc0


.

For this choice, we obtain

∥(vc0, qc0)∥2P = 2∥(yc0, pc0)∥2P and B0((y
c
0, p

c
0), (v

c
0, q

c
0)) = ∥(yc0, pc0)∥2P .
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Hence, the constant for the lower bound is c = 1/
√
2. The same arguments as above lead us to the

estimate

κP (P−1A) ≤
√
2, (4.35)

which provides a robust convergence rate of the preconditioned MINRES method by Theorem 2.25
with

q ≤
√
2− 1√
2 + 1

≈ 0.171573.

In a nutshell, we have designed preconditioners for the linear systems (4.11) and (4.12) corresponding
to the modes 1 ≤ k ≤ N and k = 0, respectively, providing robust convergence rates for solving the
preconditioned system by the preconditioned MINRES method.
In practical applications, for a large number of degrees of freedom, it is not very efficient to use
sparse direct methods to invert the diagonal blocks appearing in the preconditioners P in (4.22) of
the discretized problem (4.11) for the case k = 1, . . . , N and in (4.31) of the problem (4.12) for the
case k = 0. Hence, it is important to replace the diagonal blocks D =

√
λKh + kω

√
λMh,σ +Mh and

D = Mh +
√
λKh of the preconditioners P by diagonal blocks D̃, which are spectrally equivalent to

D, robust, symmetric positive definite and more cost efficient. As already mentioned at the end of
Section 3.3, such robust and efficient practical preconditioners D̃ for the diagonal blocks D can be
constructed by various techniques as by (algebraic) multigrid, multilevel or domain decomposition
methods, see, e.g., [101, 142, 168, 173]. In Chapter 5, we consider the algebraic multilevel iteration
method for constructing such robust and optimal preconditioners. Moreover, we present numerical
results using this algebraic multilevel preconditioner as well as other preconditioners in Chapter 7.

4.4 Discretization error analysis
We start the discretization error analysis by defining some norms in certain function spaces inspired
by the P-norm in the same spirit as it is done in Section 3.4. Let us consider again the function
spaces (3.36), i.e.,

V0 := H
1, 12
0 (QT ) and V1 := (H0, 12 )10(QT ) ∩H0,1

per(QT ),

where

(H0, 12 )10(QT ) := {y ∈ H0, 12 (QT ) : ∇y ∈ H0, 12 (QT ), y = 0 on ΣT }.

Let us equip these spaces with the norms

∥y∥2V0
= ∥y∥2L2(QT ) +

√
λ (ν∇y,∇y)L2(QT ) +

√
λ

σ∂

1/2
t y, ∂

1/2
t y


L2(QT )

,

∥y∥2V1
= ∥y∥2L2(QT ) +

∂1/2
t y

2
L2(QT )

+
√
λ (ν∇y,∇y)L2(QT )

+
√
λ

ν∂

1/2
t ∇y, ∂

1/2
t ∇y


L2(QT )

+
√
λ

σ∂ty, ∂ty


L2(QT )

.

These norms are again defined in the Fourier space according to Definition 3.2, i.e.,

∥y∥2V0
=T (∥yc0∥2L2(Ω) +

√
λ(ν∇yc0,∇yc0)L2(Ω))

+
T

2

∞
k=1

[∥yk∥2L2(Ω) +
√
λ(ν∇yk,∇yk)L2(Ω) +

√
λkω(σyk,yk)L2(Ω)],

∥y∥2V1
=T (∥yc0∥2L2(Ω) +

√
λ(ν∇yc0,∇yc0)L2(Ω))

+
T

2

∞
k=1

[(1 + kω)∥yk∥2L2(Ω) +
√
λ(1 + kω)(ν∇yk,∇yk)L2(Ω) +

√
λ(kω)2(σyk,yk)L2(Ω)].
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Moreover, we introduce the norms

∥(y, p)∥2P0
= ∥y∥2V0

+ λ−1∥p∥2V0
and ∥(y, p)∥2P1

= ∥y∥2V1
+ λ−1∥p∥2V1

.

Remark 4.6. Note that the V-norm defined in (4.25) as well as the P-norm defined in (4.26)
correspond to the V0-norm and the P0-norm, respectively, for a single mode k, i.e.,

∥y∥2V0
= T∥yc0∥2V +

T

2

∞
k=1

∥yk∥2V and ∥(y, p)∥2P0
= T∥(yc0, pc0)∥2P +

T

2

∞
k=1

∥(yk,pk)∥2P .

The complete discretization error between the exact solution of the variational problem (4.7) and its
multiharmonic finite element approximation is given by

∥(y, p)− (yNh, pNh)∥P0
, (4.36)

where the exact solution (y, p) can be represented as Fourier series, i.e.,

y(x, t) = yc0(x) +

∞
k=1

[yck(x) cos(kωt) + ysk(x) sin(kωt)],

p(x, t) = pc0(x) +

∞
k=1

[pck(x) cos(kωt) + psk(x) sin(kωt)],

and its multiharmonic finite element approximation (yNh, pNh) is given by (4.13) and (4.14). Using
the triangle inequality, we can split the discretization error (4.36) again into two parts, i.e.,

∥(y, p)− (yNh, pNh)∥P0
≤ ∥(y, p)− (yN , pN )∥P0  

discretization error in N

+ ∥(yN , pN )− (yNh, pNh)∥P0  
discretization error in h

.

4.4.1 Discretization error with respect to the truncation index
As in Subsection 3.4.1, we present a theorem which provides an estimate for the discretization error
due to truncation of the Fourier series at the mode N under weak regularity assumptions, see [112].

Theorem 4.7. Let us assume that y, p ∈ V1. Then the discretization error due to truncation of the
Fourier series can be estimated by

∥(y, p)− (yN , pN )∥P0
≤ c0 N

−1/2 ∥(y, p)∥P1
, (4.37)

where c0 is a constant depending only on the frequency ω.

Proof. Under the assumption that y ∈ V1, we obtain the following estimate:

∥y − yN∥2V0
=

T

2

∞
k=N+1


∥yk∥2L2(Ω) +

√
λ(ν∇yk,∇yk)L2(Ω) +

√
λkω(σyk,yk)L2(Ω)


≤ T

2

∞
k=N+1


1 + kω

kω
∥yk∥2L2(Ω) +

√
λ
1 + kω

kω
(ν∇yk,∇yk)L2(Ω)

+
√
λ
(kω)2

kω
(σyk,yk)L2(Ω)


≤ 1

(N + 1)ω

T

2

∞
k=N+1


(1 + kω)∥yk∥2L2(Ω) +

√
λ(1 + kω)(ν∇yk,∇yk)L2(Ω)

+
√
λ(kω)2(σyk,yk)L2(Ω)


≤ c20

1

N
∥y∥2V1

,
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where c0 = c0(ω) = 1/
√
ω. Since the same estimate is obviously true for the adjoint state p, we

finally get the estimate

∥(y, p)− (yN , pN )∥2P0
= ∥y − yN∥2V0

+ λ−1∥p− pN∥2V0
≤ c20

1

N
∥(y, p)∥2P1

,

that completes the proof of Theorem 4.7.

4.4.2 Discretization error with respect to the finite element discretization
parameter

The discretization error between the multiharmonic approximation of the exact solution and its
multiharmonic finite element approximation can be deduced from the discretization error between
the unknown Fourier coefficients and their finite element approximations due to linearity. More
precisely, we have the identity

∥(yN , pN )− (yNh, pNh)∥2P0
= T∥(yc0, pc0)− (yc0h, p

c
0h)∥2P +

T

2

N
k=1

∥(yk,pk)− (ykh,pkh)∥2P .

The discretization error analysis with respect to the finite element discretization parameter h starts
with proving that the discretization error of the Fourier coefficients can be estimated by the best
approximation error. Afterwards we estimate the best approximation error by the interpolation error
provided the Fourier coefficients are sufficiently smooth. We mainly consider the case k = 1, . . . , N ,
since the error analysis for the case k = 0 can be done analogously, cf. Subsection 3.4.2 as well.
Our decoupled variational problems for k = 1, . . . , N are given by: Find (yk,pk) ∈ V2 such that

Bk((yk,pk), (vk, qk)) =


Ω

ydk · vk dx

=


Ω

(ydk, 0) · (vk, qk) dx

=: ⟨Fk, (vk, qk)⟩

for all test functions (vk, qk) ∈ V2. Due to the assumption that the Fourier coefficients of the given
desired state yd can be computed exactly, the corresponding discrete problems are given by: Find
(ykh,pkh) ∈ V2

h such that

Bk((ykh,pkh), (vkh, qkh)) = ⟨Fk, (vkh, qkh)⟩

for all test functions (vkh, qkh) ∈ V2
h, which is equivalent to solving the linear system (4.11). Moreover,

from Vh ⊂ V follows the Galerkin orthogonality

Bk((yk,pk)− (ykh,pkh), (vkh, qkh)) = 0 ∀ (vkh, qkh) ∈ V2
h. (4.38)

The following theorem provides an estimate for the discretization error between the unknown Fourier
coefficients and their finite element approximations, see also [89].

Theorem 4.8. Under the assumption that (yk,pk) ∈ (H2(Ω))4 the discretization error for the
Fourier coefficients can be estimated by

∥(yk,pk)− (ykh,pkh)∥P ≤ c1 cpar(λ, k, ω, ν, σ, h)h |(yk,pk)|H2(Ω), (4.39)

where c2par(λ, k, ω, ν, σ, h) =
√
λνc21,2 + (1 + kω

√
λσ)c20,2h

2 with constants c0,2 and c1,2 from the
approximation theorem and c1 is a positive constant. The weighted H2-seminorm | · |H2(Ω) is defined
by the relation

|(yk,pk)|2H2(Ω) = |yk|2H2(Ω) + λ−1|pk|2H2(Ω). (4.40)
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Proof. Inserting an arbitrary (vkh, qkh) ∈ V2
h and using triangle inequality, the discrete inf-sup con-

dition as well as the sup-sup condition of the Babuška-Aziz theorem together with (4.38), we obtain
the following estimate:

∥(yk,pk)− (ykh,pkh)∥P ≤ ∥(yk,pk)− (vkh, qkh)∥P + ∥(ykh,pkh)− (vkh, qkh)∥P

≤∥(yk,pk)− (vkh, qkh)∥P +
√
3 sup
0̸=(ṽkh,q̃kh)∈V2

h

Bk((ykh,pkh)− (vkh, qkh), (ṽkh, q̃kh))

∥(ṽkh, q̃kh)∥P

≤∥(yk,pk)− (vkh, qkh)∥P +
√
3 sup
0̸=(ṽkh,q̃kh)∈V2

h

Bk((ykh,pkh)− (yk,pk), (ṽkh, q̃kh))

∥(ṽkh, q̃kh)∥P  
=0

+
√
3 sup
0̸=(ṽkh,q̃kh)∈V2

h

Bk((yk,pk)− (vkh, qkh), (ṽkh, q̃kh))

∥(ṽkh, q̃kh)∥P

≤∥(yk,pk)− (vkh, qkh)∥P +
√
3 · 1∥(yk,pk)− (vkh, qkh)∥P

≤ (1 +
√
3)  

=:c1

∥(yk,pk)− (vkh, qkh)∥P .

We can estimate the discretization error by the best approximation error, i.e.,

∥(yk,pk)− (ykh,pkh)∥P ≤ c inf
(vkh,qkh)∈V2

h

∥(yk,pk)− (vkh, qkh)∥P , (4.41)

and then, estimate the best approximation error by the interpolation error, i.e.

inf
(vkh,qkh)∈V2

h

∥(yk,pk)− (vkh, qkh)∥P ≤ ∥(yk,pk)− I2h(yk,pk)∥P , (4.42)

where I2h : V2 → V2
h (respectively Ih : V → Vh) is some interpolation operator. The P-norm

∥(yk,pk)∥2P = ∥yk∥2V + λ−1∥pk∥2V
with

∥yk∥2V =
√
λ(ν∇yk,∇yk)L2(Ω) + kω

√
λ(σyk,yk)L2(Ω) + ∥yk∥2L2(Ω)

≤
√
λν|yk|2H1(Ω) + (1 + kω

√
λσ)∥yk∥2L2(Ω)

is bounded by

∥(yk,pk)∥2P ≤
√
λν|yk|2H1(Ω) + (1 + kω

√
λσ)∥yk∥2L2(Ω)

+ λ−1
√

λν|pk|2H1(Ω) + (1 + kω
√
λσ)∥pk∥2L2(Ω)


.

Under the assumption that the Fourier coefficients are from H2(Ω), the interpolation error can be
estimated by

∥(yk,pk)− I2h(yk,pk)∥2P = ∥(I − Ih)
2(yk,pk)∥2P = ∥(I − Ih)yk∥2V + λ−1∥(I − Ih)pk∥2V

≤
√
λν|(I − Ih)yk|2H1(Ω) + (1 + kω

√
λσ)∥(I − Ih)yk∥2L2(Ω)

+ λ−1
√

λν|(I − Ih)pk|2H1(Ω) + (1 + kω
√
λσ)∥(I − Ih)pk∥2L2(Ω)


≤
√
λνc21,2h

2|yk|2H2(Ω) + (1 + kω
√
λσ)c20,2h

4|yk|2H2(Ω)

+ λ−1
√

λνc21,2h
2|pk|2H2(Ω) + (1 + kω

√
λσ)c20,2h

4|pk|2H2(Ω)


=

(
√
λνc21,2 + (1 + kω

√
λσ)c20,2h

2)h2|yk|2H2(Ω)

+ λ−1 (
√
λνc21,2 + (1 + kω

√
λσ)c20,2h

2)  
=:c2par(λ,k,ω,ν,σ,h)

h2|pk|2H2(Ω)


= c2par(λ, k, ω, ν, σ, h)h

2(|yk|2H2(Ω) + λ−1|pk|2H2(Ω)),
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where c0,2 and c1,2 are constants coming from applying the approximation theorem from finite element
discretization theory, see, e.g., [42, 46]. Hence, it follows that

∥(yk,pk)− I2h(yk,pk)∥P ≤ cpar(λ, k, ω, ν, σ, h)h (|yk|2H2(Ω) + λ−1|pk|2H2(Ω))
1/2  

=:|(yk,pk)|H2(Ω)

,

where |(yk,pk)|H2(Ω) is a weighted H2-seminorm defined by (4.40). Altogether the discretization
error for the Fourier coefficients can be estimated by

∥(yk,pk)− (ykh,pkh)∥P ≤ c1 inf
(vkh,qkh)∈V2

h

∥(yk,pk)− (vkh, qkh)∥P

≤ c1 ∥(yk,pk)− I2h(yk,pk)∥P
≤ c1 cpar(λ, k, ω, ν, σ, h)h |(yk,pk)|H2(Ω)

(4.43)

with the constant c1 = 1 +
√
3.

Under the assumption that (yc0, pc0) ∈ (H2(Ω))2 we obtain the following estimate for the discretization
error in the case of k = 0, which can analogously be proven as Theorem 4.8, by using (4.34):

∥(yc0, pc0)− (yc0h, p
c
0h)∥P ≤ (1 +

√
2) cpar(λ, ν, h)h |(yc0, pc0)|H2(Ω), (4.44)

where c2par(λ, ν, h) =
√
λνc21,2 + c20,2h

2 with constants c0,2 and c1,2 coming from the approximation
theorem.
According to (3.47), we define again a H2,0(QT )-seminorm in the Fourier space, i.e.,

|(y, p)|H2 =


T |(yc0, pc0)|2H2(Ω) +

T

2

∞
k=1

|(yk,pk)|2H2(Ω)

1/2

, (4.45)

where the H2(Ω)-seminorm for the Fourier coefficients is defined in (4.40). The following theorem
provides the estimate for the complete discretization error with respect to the spatial discretization
parameter h.

Theorem 4.9. Under the assumptions that (yc0, p
c
0) ∈ (H2(Ω))2 and (yk,pk) ∈ (H2(Ω))4 for all

k = 1, . . . , N , the error with respect to the discretization parameter of the finite element discretization
can be estimated as follows

∥(yN , pN )− (yNh, pNh)∥P0
≤ c1 cpar(λ,N, ω, ν, σ, h)h |(yN , pN )|H2 , (4.46)

where c2par(λ,N, ω, ν, σ, h) =
√
λνc21,2 + (1 + Nω

√
λσ)c20,2h

2 with constants c0,2 and c1,2 from the
approximation theorem and c1 = 1 +

√
3. The H2-seminorm is given by

|(yN , pN )|2H2 = T |(yc0, pc0)|2H2(Ω) +
T

2

N
k=1

|(yk,pk)|2H2(Ω).

Proof. The proof immediately follows from Theorem 4.8, more precisely, by using (4.39), and from
(4.44).

4.4.3 Complete discretization error
Finally, the following theorem presents the result for the complete discretization error (4.36).

Theorem 4.10. Let us assume that y, p ∈ V1 ∩ H2,0(QT ). Then the complete discretization error
arising from the multiharmonic finite element discretization can be estimated as follows

∥(y, p)− (yNh, pNh)∥P0 ≤ c0 N
−1/2 ∥(y, p)∥P1 + c1 cpar(λ,N, ω, ν, σ, h)h |(y, p)|H2 ,

where c0 and c1 come from Theorem 4.7 and Theorem 4.9, respectively, and c2par(λ,N, ω, ν, σ, h) =√
λνc21,2 + (1 +Nω

√
λσ)c20,2h

2 with constants c0,2 and c1,2 from the approximation theorem.
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Proof. Applying the triangle inequality and using Theorems 4.7 and 4.9 yield the estimates

∥(y, p)− (yNh, pNh)∥P0 ≤ ∥(y, p)− (yN , pN )∥P0 + ∥(yN , pN )− (yNh, pNh)∥P0

≤ c0 N
−1/2 ∥(y, p)∥P1

+ c1 cpar(λ,N, ω, ν, σ, h)h |(yN , pN )|H2 ,

where the seminorm |(yN , pN )|H2 can trivially be estimated by (4.45).

Remark 4.11. The same statements for optimal control problems can be made as in Remark 3.20,
i.e., the convergence rate with respect to h reduces from h to hs with some s ∈ (0, 1), if

y, p ∈ V1 ∩H1+s,0(QT ),

whereas higher order elements are needed in order to obtain hs with s > 1. Moreover, the convergence
with respect to N will improve, if y and p are smoother with respect to the time variable, i.e., the
factor N−1/2 improves to N−ℓ/2 provided that

y, p ∈ Vℓ ∩H1+s,0(QT ),

with Vℓ := (H0,ℓ/2)10(QT )∩H
0,(ℓ+1)/2
per (QT ) and with some ℓ > 1. This is confirmed by our numerical

experiments presented in Chapter 7. In particular, we observe very fast convergence with respect to
N for time-analytic solutions.
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Chapter 5

Robustness and optimality of
algebraic multilevel preconditioners
for reaction-diffusion type problems

The examination of the block-diagonal preconditioners in Chapters 3 and 4, whose diagonal blocks
are weighted sums of stiffness and mass matrices, strongly motivates to construct robust and optimal
preconditioners for these sums of stiffness and mass matrices. Moreover, we do not only want to
construct efficient preconditioners but to provide a rigorous proof of their robustness and optimal
complexity. Hence, this chapter is devoted to the analysis of preconditioners for reaction-diffusion
type problems that are both, uniform with respect to the reaction and diffusion coefficients, and
optimal in terms of computational complexity. The considered preconditioners belong to the class of
algebraic multilevel iteration (AMLI) methods, which are based on multilevel block factorization and
polynomial stabilization. In Section 2.8, we have already presented some of the fundamental results
regarding the AMLI method.

The main focus of this chapter is on the construction and on the analysis of a hierarchical splitting of
the conforming finite element space of piecewise linear functions that allows to meet the optimality
conditions for the related AMLI preconditioner in case of second-order elliptic problems with non-
vanishing zero-order term. The finite element method then leads to a system of linear equations with
a system matrix that is a weighted sum of stiffness and mass matrices. We compute bounds for the
constant γ in the strengthened Cauchy-Bunyakowski-Schwarz inequality (2.59) for both, mass and
stiffness, matrices in case of a general m-refinement, including a new estimate for the mass matrix.
Moreover, we present an additive preconditioner for the pivot blocks with (2.70) that arise in the
course of the multilevel block factorization and prove its optimality for the case m = 3. Together
with the estimates for γ this shows that the construction of a uniformly convergent AMLI method
with optimal complexity is possible (for all m ≥ 3). In other words, the derived uniform condition
number estimates together with the verification of the optimality conditions guarantee the existence of
optimal linear AMLI methods for linear systems with weighted sums of stiffness and mass matrices.
We discuss the practical application of this preconditioning technique in the context of parabolic
time-periodic problems at the end of this chapter. First numerical results using the linear AMLI
preconditioned CG algorithm in case of a 3-refinement together with the additive preconditioner for
the pivot block of the two-by-two splitting can be found in Chapter 7. Altogether, this linear AMLI
preconditioned CG algorithm leads to a robust solver of optimal complexity.

87



88 CHAPTER 5. AMLI PRECONDITIONERS

5.1 A reaction-diffusion type problem

Let Ω ⊂ R2 be a two-dimensional bounded Lipschitz domain with boundary Γ := ∂Ω. For simplicity,
we assume that Ω is a polygonal domain. We consider the following heterogeneous reaction-diffusion
model problem:

− div (ν(x)∇u(x)) + µ(x)u(x) = f(x) x ∈ Ω,

u(x) = 0 x ∈ Γ,
(5.1)

where the coefficients ν and µ are assumed to be measurable, uniformly bounded, and positive and
non-negative, respectively, i.e.,

0 < ν ≤ ν(x) ≤ ν and 0 ≤ µ ≤ µ(x) ≤ µ, x ∈ Ω.

Usually, these coefficients are piecewise constant, e.g., due to different material parameters in different
subdomains.

5.1.1 The variational problem

In order to formulate the variational problem corresponding to (5.1), one multiplies the first equation
of (5.1) by a test function v ∈ V , where V is the Hilbert space

V := H1
0 (Ω) = {u ∈ L2(Ω) : ∇u ∈ L2(Ω), u = 0 on Γ}

equipped with the norm

∥u∥H1(Ω) =

∥u∥2L2(Ω) + ∥∇u∥2L2(Ω)

1/2
,

and integrates over Ω. Integration by parts finally yields the following variational problem: Given
f ∈ L2(Ω), find u ∈ V such that

Ω

(ν(x)∇u(x) · ∇v(x) + µ(x)u(x)v(x)) dx =


Ω

f(x) v(x) dx (5.2)

for all test functions v ∈ V .

Theorem 5.1. The variational problem (5.2) has a unique solution.

Proof. Existence and uniqueness of the solution of problem (5.2) follows immediately from the Lax-
Milgram theorem.

5.1.2 The finite element discretization

In order to solve the reaction-diffusion problem (5.1), we discretize problem (5.2) by a conforming
finite element method (FEM), see, e.g., [41, 46, 84, 161] and Section 2.4. Hence, we approximate the
solution u ∈ V by a finite element function uh ∈ Vh ⊂ V . Let us consider the space Vh to be the
largest of a sequence of nested spaces, i.e.,

V (0) ⊂ V (1) ⊂ · · · ⊂ V (ℓ) ⊂ · · · ⊂ V (L) = Vh,

which correspond to a sequence of nested meshes T (ℓ) for ℓ = 0, . . . , L and T (L) = Th is the finest
mesh. The spaces

V (ℓ) = span{ϕ(ℓ)
1 , . . . , ϕ

(ℓ)

n(ℓ)}
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are finite element spaces spanned by the standard nodal basis functions

{ϕ(ℓ)
i : i = 1, . . . , n(ℓ)},

where n(ℓ) = dimV (ℓ). For the finest triangulation Th with n = n(L) = nh = dimVh, the following
linear system arises from the variational formulation (5.2):

(Kν,h +Mµ,h  
=:Ah

)uh = f
h
, (5.3)

where Kν,h and Mµ,h correspond to the weighted stiffness and weighted mass matrix, respectively,
and f

h
denotes the load vector. Their entries are computed by the formulas

Kij
ν,h =


Ω

ν∇ϕ
(L)
i · ∇ϕ

(L)
j dx, M ij

µ,h =


Ω

µϕ
(L)
i ϕ

(L)
j dx

with i, j = 1, . . . , n and

f
h
=


Ω

f ϕ
(L)
j dx


j=1,...,n

.

The system (5.3) has to be solved for the vector

uh = (ui)i=1,...,n ∈ Rn

of nodal unknowns of the finite element approximation

uh(x) =

n
i=1

ui ϕ
(L)
i (x).

In order to solve problem (5.3) efficiently one needs a robust optimal preconditioner. Such a pre-
conditioner can be implemented by various methods such as algebraic multigrid (AMG), domain
decomposition (DD) or the AMLI method. In the following, we will construct AMLI preconditioners
as presented in Subsection 2.8.1, which have been introduced in [14, 15], see also [101, 173]. We will
present a rigorous proof of their robustness and optimal complexity when used for solving the linear
system (5.3).
Let the symmetric and positive definite matrix Ah = A(L) in (5.3) be obtained in the course of
a regular refinement procedure, which defines a sequence of symmetric positive definite matrices
starting from a coarsest level system matrix A(0), i.e.,

{A(ℓ)}, A(ℓ) ∈ Rn(ℓ)×n(ℓ)

,

where ℓ = 0, . . . , L, and n(ℓ) > n(ℓ−1), for ℓ = 1, . . . , L, see [17]. These matrices are constructed for
the sequence of nested spaces V (ℓ), i.e., (2.56), corresponding to nested meshes T (ℓ) for ℓ = 0, . . . , L.
We partition the matrix A(ℓ) on each level ℓ in a two-by-two block form, i.e., (2.57), where its standard
FEM assembling can be written as in (2.63). Moreover, let us assume that the parameters ν and µ of
problem (5.3) are constant on the coarsest mesh partitioning T (0), and let us denote by e(0) ∈ T (0)

an arbitrary element at the coarsest level. Then, the system matrix corresponding to the coarsest
mesh can be written as

A(0) =


e(0)∈T (0)

RT
e(0)Ae(0)Re(0)

=


e(0)∈T (0)

RT
e(0) (νe(0) Ke(0) + µe(0) Me(0))Re(0)

=


e(0)∈T (0)

νe(0) R
T
e(0) (Ke(0) + µ̃e(0) Me(0))Re(0) ,

(5.4)

where µ̃e(0) = µe(0)/νe(0) ≥ 0 and νe(0) > 0. We denote by Re(0) the restriction mapping of a global
vector of unknowns at the coarsest level to the local vector corresponding to e(0) ∈ T (0).
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5.2 Robust AMLI algorithms for conforming linear finite ele-
ments

Since the system matrices on the coarsest level satisfy the assembling property (5.4), we consider the
element system matrix

Ae(0) = Ke(0) + µ̃e(0) Me(0)

for an arbitrary element e(0) ∈ T (0), which is a weighted sum of stiffness and mass matrices. The
analysis of uniform local bounds has to be carried out for an element matrix corresponding to an
arbitrary triangle denoted by e ∈ T (ℓ).

Figure 5.1: An arbitrary non-degenerate triangle e ∈ T (ℓ).

The following lemma regarding the element stiffness matrix for the Laplace operator can be found
in, e.g., [9, 101, 122].

Lemma 5.2. The element stiffness matrix Ke for the Laplace operator can be written in the general
form

Ke =
1

2

 b+ c −c −b
−c a+ c −a
−b −a a+ b

 , (5.5)

where a, b and c are equal to the cotangent of the angles in the triangle e, i.e.,

a = cot θ1, b = cot θ2, c = cot θ3.

Proof. See, e.g., [101].

Lemma 5.3. The element mass matrix Me can be written in the general form

Me =
h2(b+ c)

24

 2 1 1
1 2 1
1 1 2

 , (5.6)

where a, b and c are equal to the cotangent of the angles in the triangle e, i.e.,

a = cot θ1, b = cot θ2, c = cot θ3

and h is the triangle height measured perpendicular to the side BC, where B and C are the vertices
with the angles θ2 and θ3, respectively.
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Proof. The element mass matrix for a given arbitrary non-degenerate triangle e is given by

Me(u, v) =


e

uv de.

We introduce the notations h = |OA|, p = |OB| and q = |OC|, where O is the origin, see Figure 5.1.
Then we have the following relations given:

b =
p

h
, c =

q

h
, a = cot(π − (θ2 + θ3)) =

h2 − pq

h(p+ q)
.

The element basis functions are given by

ϕ1 = −x

h
, ϕ2 =

qx+ h(q − y)

h(p+ q)
, ϕ3 =

px+ h(p+ y)

h(p+ q)
.

Moreover,

|e| =


de =
h(p+ q)

2
= Je ·

1

2
,

where Je = h2(b + c) is the Jacobi determinant. We obtain the following first two entries of the
element mass matrix:

Me11 =

 0

−h

 q/hx+q

−p/hx−p

(ϕ1)
2 dy dx =

h2(b+ c)

12

and

Me12 =

 0

−h

 q/hx+q

−p/hx−p

ϕ1ϕ2 dy dx =
h2(b+ c)

24
.

Analogously, we obtain all other entries and we finally derive the element mass matrix (5.6).

We assume without loss of generality that

|a| ≤ b ≤ c.

Moreover, we define α = a/c and β = b/c and obtain the following representations for the element
stiffness and mass matrices:

Ke =
c

2

 β + 1 −1 −β
−1 α+ 1 −α
−β −α α+ β


and

Me =
h2c (β + 1)

24

 2 1 1
1 2 1
1 1 2

 ,

where (α, β) ∈ D with

D =


(α, β) ∈ R2 : −1

2
< α ≤ 1, max{− α

α+ 1
, |α|} ≤ β ≤ 1


, (5.7)

see [101] and the references therein. The domain D is illustrated in Figure 5.2.
In case of discretizing diffusion problems by conforming linear finite elements, the standard choice
is a (uniform) 2-refinement, which means that each coarse element is subdivided into four congruent
elements in every refinement step. We will consider the general case of an m-refinement, where each
element is subdivided into m2 elements in every refinement step. In the next subsection, we will give
the reason why a 2-refinement in general is not sufficient for problems of the form (5.3).
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Figure 5.2: Domain D of the parameters (α, β).

5.2.1 The 2-refinement
Let us consider the two consecutive levels ℓ− 1 and ℓ. We consider the element stiffness matrix (5.5)
for an arbitrary element e ∈ T (ℓ−1). On the related macro element E ⊂ T (ℓ), which is obtained by

Figure 5.3: Subdivision of one triangle into four congruent ones.

subdivision of the coarse triangle into four congruent triangles, see Figure 5.3, we obtain the following
stiffness matrix:

KE =


a+ b+ c −a −b − c

2 − c
2 0

−a a+ b+ c −c − b
2 0 − b

2
−b −c a+ b+ c 0 −a

2 −a
2

− c
2 − b

2 0 b+c
2 0 0

− c
2 0 −a

2 0 a+c
2 0

0 − b
2 −a

2 0 0 a+b
2

 .
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The hierarchical stiffness matrix is given by

K̃E = JTKEJ =


K̃E:11 K̃E:12

K̃E:21 K̃E:22


with

J =


I J12
0 I


=


1 0 0 1

2
1
2 0

0 1 0 1
2 0 1

2
0 0 1 0 1

2
1
2

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


and

K̃E:11 =

 a+ b+ c −a −b
−a a+ b+ c −c
−b −c a+ b+ c

 , K̃E:12 =− 1

2

 −b −a a+ b
−c a+ c −a
b+ c −c b

 ,

K̃E:21 = (K̃E:12)
T , K̃E:22 =Ke.

In [122], the authors proved the following explicit formula for the local CBS constant γK,E in case of
a 2-refinement:

γ2
K,E =

3

8
+

1

4

 3
i=1

cos2 θi −
3

4
. (5.8)

One way to derive this result is to solve the generalized eigenvalue problem (2.62) and then to compute
γK,E via the rule (2.61). From (5.8) follows that

γ2
K,E = 3/4

in the worst case.
Analogously, we can compute the CBS constant for the mass matrix. The mass matrix on a macro
element E ⊂ T (ℓ) is given by

ME =
h2(b+ c)

24


6 2 2 1 1 0
2 6 2 1 0 1
2 2 6 0 1 1
1 1 0 2 0 0
1 0 1 0 2 0
0 1 1 0 0 2


and the hierarchical mass matrix by

M̃E = JTMEJ =


M̃E:11 M̃E:12

M̃E:21 M̃E:22


,

where

M̃E:11 =
h2(b+ c)

24

 6 2 2
2 6 2
2 2 6

 , M̃E:12 = (M̃E:21)
T =

h2(b+ c)

24

 5 5 2
5 2 5
2 5 5


and

M̃E:22 = 4Me.
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We solve the generalized eigenvalue problem

SM vE:2 = λ M̃E:22 vE:2, (5.9)

where

SM = ME:22 −ME:21M
−1
E:11ME:12 = S̃M

is the Schur complement of the mass matrix, and obtain the eigenvalue 7/16 twice and the eigenvalue
1/10 once (independent of all parameters a, b, c !). The local CBS constant for the mass matrix
therefore is given by

γM,E =


1−min

 7

16
,
1

10


=


1− 1

10
=


9

10
.

Hence, we obtain the following parameter-robust estimate for the CBS constant of the weighted sum
AE = KE + µ̃E ME :

γ2
A,E ≤ max


γ2
K,E , γ

2
M,E


= max


3

4
,
9

10


=

9

10
, (5.10)

see also [39]. We observe that the estimate (5.10) does not imply the optimality conditions (2.71) of
the linear AMLI method because there is no integer degree υ of the stabilization polynomial satisfying

1
1− 9/10

=
√
10 ≈ 3.16228 < υ < ϱ = m2 = 4. (5.11)

This is the reason to consider m-refinements for m > 2. In the next subsection, we analyze the case
m = 3.

5.2.2 The 3-refinement
In case of a 3-refinement, see Figure 5.4, one macro element E ⊂ T (ℓ) is subdivided into nine congruent
triangles.

Figure 5.4: Subdivision of one triangle into nine congruent ones.

Denoting

s = a+ b+ c,
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the corresponding stiffness matrix KE and its hierarchical stiffness matrix K̃E on the macro element
are then given by

KE =


KE:11 KE:12

KE:21 KE:22


and K̃E = JTKEJ,

where

KE:11 =



s − c
2 −a −b 0 0 0

− c
2 s 0 −a −b 0 0

−a 0 s −c 0 − b
2 0

−b −a −c 2s −c −a −b
0 −b 0 −c s 0 −a

2

0 0 − b
2 −a 0 s −c

0 0 0 −b −a
2 −c s


, KE:12 =



− c
2 0 0
0 − c

2 0
− b

2 0 0
0 0 0
0 −a

2 0
0 0 − b

2
0 0 −a

2


,

KE:21 = (KE:12)
T , KE:22 =

 b+c
2 0 0
0 a+c

2 0
0 0 a+b

2

 .

Here, the transformation matrix J is given by

J =



1 0 0 0 0 0 0 2
3

1
3 0

0 1 0 0 0 0 0 1
3

2
3 0

0 0 1 0 0 0 0 2
3 0 1

3
0 0 0 1 0 0 0 1

3
1
3

1
3

0 0 0 0 1 0 0 0 2
3

1
3

0 0 0 0 0 1 0 1
3 0 2

3
0 0 0 0 0 0 1 0 1

3
2
3

0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


,

and the blocks of the hierarchical stiffness matrix K̃E are as follows

K̃E:11 = KE:11, K̃E:12 = (K̃E:21)
T = −1

3



−b −a a+ b
−b −a a+ b
−c a+ c −a
0 0 0

b+ c −c −b
−c a+ c −a
b+ c −c −b


, K̃E:22 = Ke.

In [10], the authors proved the following estimate of the CBS constant of a macro element stiffness
matrix arising from a uniform m-refinement:

γK,E ≤


m2 − 1

m2
. (5.12)

Hence, for m = 3, we have the estimate

γK,E ≤


8

9
. (5.13)
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Now, we estimate the CBS constant for the corresponding macro element mass matrix, where we use
the node numbering as shown in Figure 5.4. First, we find

ME =
h2(b+ c)

24



6 1 2 2 0 0 0 1 0 0
1 6 0 2 2 0 0 0 1 0
2 0 6 2 0 1 0 1 0 0
2 2 2 12 2 2 2 0 0 0
0 2 0 2 6 0 1 0 1 0
0 0 1 2 0 6 2 0 0 1
0 0 0 2 1 2 6 0 0 1
1 0 1 0 0 0 0 2 0 0
0 1 0 0 1 0 0 0 2 0
0 0 0 0 0 1 1 0 0 2


and the hierarchical macro element mass matrix

M̃E = JTMEJ =


M̃E:11 M̃E:12

M̃E:21 M̃E:22


,

where M̃E:11 = ME:11, M̃E:22 = 9Me and

M̃E:12 = (M̃E:21)
T =

h2(b+ c)

24



22
3

10
3

4
3

10
3

22
3

4
3

22
3

4
3

10
3

8 8 8
4
3

22
3

10
3

10
3

4
3

22
3

4
3

10
3

22
3


.

We solve the eigenvalue problem (5.9) corresponding to the 3-refinement and obtain the two-fold
eigenvalue 19/99 and the eigenvalue 1/21 which are again independent of the parameters a, b, and c.
Hence, the local CBS constant for the mass matrix can be computed via the rule (2.61) and is given
by

γM,E =


1−min

19
99

,
1

21


=


20

21
,

and finally, in view of (5.13), the CBS constant of the weighted sum AE = KE + µ̃E ME can be
estimated by

γA,E ≤

max


γ2
K,E , γ

2
M,E


=


max


8

9
,
20

21


=


20

21
. (5.14)

From (5.14) we conclude that the optimality condition (2.71) is fulfilled since

1
1− 20/21

=
√
21 ≈ 4.58258 < υ < ϱ = m2 = 9 (5.15)

holds for polynomial degree υ ∈ {5, 6, 7, 8}.
In the following subsection, we discuss the estimation of the CBS constant for uniform m-refinements
for all m > 2. In particular, we present a uniform estimate of the CBS constant for AE = KE+µ̃E ME

on a macro element E ⊂ T (ℓ).
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5.2.3 The uniform m-refinement
The CBS constant for the mass matrix for a refinement factor ϱ = m2 can be computed in the same
way as it was presented in Subsection 5.2.1 and Subsection 5.2.2. In Theorem 5.4, we present a
general result for the estimation of the CBS constant of the mass matrix, see [103].

Theorem 5.4 (Kraus and Wolfmayr [103]). Consider a uniform m-refinement for conforming linear
finite elements where m > 2. The CBS constant of the mass matrix can be estimated as follows

γM ≤


12m2 − 5

12m2
. (5.16)

Proof. The global CBS constant can be estimated by the maximum of the local CBS constants on
the macro elements (2.60), which can be again computed via the rule (2.61), i.e.,

γ2
M,E = 1− λmin

E ,

where λmin
E is the minimal eigenvalue of the eigenvalue problem (5.9), which we write in the form

vT
E:2


SM − λ M̃E:22


vE:2 = 0,

We try to find a lower bound λmin
E for the minimal eigenvalue λmin

E such that

vT
E:2


SM − λmin

E M̃E:22


vE:2 ≥ 0.

For that reason, we estimate the Schur complement SM from below by SM , and, after that we solve
the problem

vT
E:2


SM − λ M̃E:22


vE:2 = 0.

For every m-refinement, we systematically use a bottom-up lexicographical ordering for the fine nodes
and number the three coarse nodes last. Hence, the lower right block ME:22 of the macro element
mass matrix is always

ME:22 = 2mc I,

where I is the identity matrix and

mc =
h2(b+ c)

24
.

Let nE denote the number of nodes on a macro element subdivided into m2 elements. The Schur
complement SM can be estimated from below in the following way:

SM = ME:22 −ME:21 M
−1
E:11 ME:12

= 2mc I −ME:21 M
−1
E:11 ME:12

≥ 2mc I −
1

6
m−1

c ME:21 I ME:12,

where we use the estimate

ME:11 ≥ min
i∈{1,...,nE}

(ME:11)ii I = 6mc I

because the weakly diagonally dominant matrix ME:11 has only the diagonal entries 12mc and 6mc.
Moreover, since the matrices ME:12 and ME:21 = (ME:12)

T have exactly two entries equal to one in
each of the three columns and rows, respectively, we obtain

ME:21 ME:12 = (ME:12)
T ME:12 = 2m2

c I.
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Finally, the Schur complement SM can be estimated from below by

SM ≥ 2mc I −
1

6
m−1

c 2m2
c I

= 2mc I −
1

3
mc I

=
5

3
mc I.

Next, we have that

M̃E:22 = ME:22 + JT
E:12 ME:12 +ME:21 JE:12 + JT

E:12 ME:12 JE:12 = m2 Me

with a transformation matrix JE:12 of the form (2.64). Then

JT
E:12 ME:12 = mc

 2m−2
m

1
m

1
m

1
m

2m−2
m

1
m

1
m

1
m

2m−2
m


because ME:12 has exactly two entries with value one in each row and JE:12 has the value (m− 1)/m
in exactly the same positions. Hence, we solve the problem

vT
E:2


5

3
mc I − λm2 Me


vE:2 = 0

and obtain the two-fold eigenvalue 5/(3m2) and the eigenvalue 5/(12m2), which yields the lower
bound for λmin

E . According to (2.61), we obtain the estimate

γ2
M,E = 1− λmin

E ≤ 1− 5

12m2
=

12m2 − 5

12m2
,

which together with (2.60) gives the upper bound (5.16).

Remark 5.5. If the parameter µ̃E = 0, i.e., AE = KE, then the CBS constant can be estimated by
the formula (5.12), see [10]. Moreover, the estimate (5.16) at the same time provides a bound for
the local CBS constant γA,E corresponding to the weighted sum of mass and stiffness matrix, since
together with (5.12), we obtain

γA,E ≤ max {γK,E , γM,E} ≤ max


m2 − 1

m2
,


12m2 − 5

12m2


=


12m2 − 5

12m2
. (5.17)

By applying estimate (5.16) of Theorem 5.4 and using (5.12), we obtain the following estimates for
the CBS constants in case of m-refinements for m = 3, 4, 5:

γ2
A,E ≤ max


γ2
K,E , γ

2
M,E


≤


max


8
9 ,

103
108


≈ 0.953704 for m = 3,

max


15
16 ,

187
192


≈ 0.973958 for m = 4,

max


24
25 ,

59
60


≈ 0.983333 for m = 5.

(5.18)

For comparison, we compute also the sharp bounds for the CBS constants γK,E and γM,E up to
a 5-refinement. The cases m = 2 and m = 3 have already been worked out in Subsections 5.2.1
and 5.2.2. In an analogous manner, one computes the estimates for the cases m = 4 and m = 5 using
again a bottom-up lexicographical ordering for the fine nodes and numbering the three coarse nodes
last.
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For m = 4, we obtain the following block J12 of the transformation matrix J :

J12 =

 3
4

1
2

1
4

3
4

1
2

1
4 0 1

2
1
4 0 1

4 0
1
4

1
2

3
4 0 1

4
1
2

3
4 0 1

4
1
2 0 1

4
0 0 0 1

4
1
4

1
4

1
4

1
2

1
2

1
2

3
4

3
4

T

.

The resulting hierarchical macro element mass matrix is given by

M̃E = JTMEJ =


M̃E:11 M̃E:12

M̃E:21 M̃E:22


,

where M̃E:22 = 16Me,

M̃E:12 = (M̃E:21)
T =

h2(b+ c)

24

 17
2

11
2

5
2

17
2 12 6 1 11

2 6 1 5
2 1

5
2

11
2

17
2 1 6 12 17

2 1 6 11
2 1 5

2
1 1 1 5

2 6 6 5
2

11
2 12 11

2
17
2

17
2

T

and

M̃E:11 =
h2(b+ c)

24



6 1 0 2 2 0 0 0 0 0 0 0
1 6 1 0 2 2 0 0 0 0 0 0
0 1 6 0 0 2 2 0 0 0 0 0
2 0 0 6 2 0 0 1 0 0 0 0
2 2 0 2 12 2 0 2 2 0 0 0
0 2 2 0 2 12 2 0 2 2 0 0
0 0 2 0 0 2 6 0 0 1 0 0
0 0 0 1 2 0 0 6 2 0 1 0
0 0 0 0 2 2 0 2 12 2 2 2
0 0 0 0 0 2 1 0 2 6 0 1
0 0 0 0 0 0 0 1 2 0 6 2
0 0 0 0 0 0 0 0 2 1 2 6



.

Analogously, one determines the transformation matrix J , the macro element mass matrix ME and
the hierarchical mass matrix M̃E for the 5-refinement. For m = 5, we obtain the following block J12
of the transformation matrix J :

J12 =

 4
5

3
5

2
5

1
5

4
5

3
5

2
5

1
5 0 3

5
2
5

1
5 0 2

5
1
5 0 1

5 0
1
5

2
5

3
5

4
5 0 1

5
2
5

3
5

4
5 0 1

5
2
5

3
5 0 1

5
2
5 0 1

5
0 0 0 0 1

5
1
5

1
5

1
5

1
5

2
5

2
5

2
5

2
5

3
5

3
5

3
5

4
5

4
5

T

.

The resulting hierarchical macro element mass matrix is given by

M̃E = JTMEJ =


M̃E:11 M̃E:12

M̃E:21 M̃E:22


,

where M̃E:22 = 25Me, M̃E:12 = (M̃E:21)
T = h2(b+c)

24 Ñ with

Ñ =

 46
5

34
5

22
5 2 46

5
72
5

48
5

24
5

4
5

34
5

48
5

24
5

4
5

22
5

24
5

4
5 2 4

5
2 22

5
34
5

46
5

4
5

24
5

48
5

72
5

46
5

4
5

24
5

48
5

34
5

4
5

24
5

22
5

4
5 2

4
5

4
5

4
5

4
5 2 24

5
24
5

24
5 2 22

5
48
5

48
5

22
5

34
5

72
5

34
5

46
5

46
5

T

,
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and

M̃E:11 =
h2(b+ c)

24



6 1 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0
1 6 1 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0
0 1 6 1 0 0 2 2 0 0 0 0 0 0 0 0 0 0
0 0 1 6 0 0 0 2 2 0 0 0 0 0 0 0 0 0
2 0 0 0 6 2 0 0 0 1 0 0 0 0 0 0 0 0
2 2 0 0 2 12 2 0 0 2 2 0 0 0 0 0 0 0
0 2 2 0 0 2 12 2 0 0 2 2 0 0 0 0 0 0
0 0 2 2 0 0 2 12 2 0 0 2 2 0 0 0 0 0
0 0 0 2 0 0 0 2 6 0 0 0 1 0 0 0 0 0
0 0 0 0 1 2 0 0 0 6 2 0 0 1 0 0 0 0
0 0 0 0 0 2 2 0 0 2 12 2 0 2 2 0 0 0
0 0 0 0 0 0 2 2 0 0 2 12 2 0 2 2 0 0
0 0 0 0 0 0 0 2 1 0 0 2 6 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 2 0 0 6 2 0 1 0
0 0 0 0 0 0 0 0 0 0 2 2 0 2 12 2 2 2
0 0 0 0 0 0 0 0 0 0 0 2 1 0 2 6 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 6 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2 6



.

Finally, one solves the corresponding eigenvalue problem (5.9) for m = 4, 5, and uses the minimal
eigenvalues to compute the CBS constants via the rule (2.61). The resulting sharp estimates of the
CBS constants for problems of the form (5.3) corresponding to m-refinements for m ∈ {2, 3, 4, 5}
(under the assumption (5.4)) are as follows

γ2
A,E ≤ max


γ2
K,E , γ

2
M,E


=



max


3
4 ,

9
10


= 0.9 for m = 2,

max


8
9 ,

20
21


≈ 0.952381 for m = 3,

max


15
16 ,

36
37


≈ 0.972973 for m = 4,

max


24
25 ,

11916
12125


≈ 0.982763 for m = 5.

(5.19)

Comparing now (5.18) and (5.19) shows that formula (5.16) provides a very good estimate for the
CBS constant of the macro element mass matrix.

Corollary 5.6. Summarizing our findings, the smallest value for m that guarantees that the opti-
mality conditions can be satisfied with an m-refinement is m = 3. Moreover, since

1
1− 12m2−5

12m2

= 2m


3

5
< 2m < m2 for all m > 2, (5.20)

any m-refinement for m > 2 allows to meet the optimality conditions (2.71), see also [103].

In the next section, we will present the construction and the analysis of an additive preconditioner
for the pivot block A11 arising in the 3-refinement.

5.3 Additive preconditioning of the pivot block

Applying the AMLI method requires the action of (an approximation of) the inverse of the pivot
blocks A

(ℓ)
11 on a vector. It is well known (see, e.g., [15]) that the (linear) AMLI preconditioner
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with approximate pivot block C
(ℓ)
11 is optimal if apart from the optimality conditions (2.71) the

preconditioners C
(ℓ)
11 are spectrally equivalent to A

(ℓ)
11 on all levels ℓ, i.e.,

C
(ℓ)
11 ≈ A

(ℓ)
11 ,

in the sense of (2.70) and their action on a vector has linear complexity, i.e., requires O(n(ℓ)) arithmetic
operations.
Here, we generalize the additive preconditioner C(ℓ)

11 , which was proposed in [13] for the 2-refinement,
for the 3-refinement and derive the corresponding condition number bounds. The construction as
well as the analysis of C(ℓ)

11 relies on a macro-element-by-macro-element assembling procedure, i.e.,

A
(ℓ)
11 =


E⊂T (ℓ)

RT
E AE:11 RE (5.21)

and

C
(ℓ)
11 =


E⊂T (ℓ)

RT
E CE:11 RE . (5.22)

The pivot block of the macro element matrices is given by

AE:11 = KE:11 + µ̃E ME:11.

The idea is to construct an additive preconditioner CE:11 having the form

CE:11 = CK
E:11 + µ̃E CM

E:11

with the same weighting as the pivot block AE:11 and where the matrices CK
E:11 and CM

E:11 have the
same structure, i.e., the same non-zero pattern, in order to implement the preconditioner CE:11. We
obtain the preconditioners CK

E:11 and CM
E:11 by preserving the largest (in magnitude) off-diagonal

entries of KE:11 and ME:11, respectively. Note that the same nonzero pattern is chosen for the
preconditioner of the stiffness matrix pivot block and for the one of the mass matrix pivot block ! The
couplings corresponding to the largest (in magnitude) off-diagonal entries are shown in Figure 5.5.

Figure 5.5: Couplings corresponding to the largest entries in the macro element pivot block (red) for
the 3-refinement.

We start with the computation and analysis of the additive preconditioner CM
E:11 for the pivot block

of the macro element mass matrix ME:11.
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5.3.1 Additive preconditioning for the pivot block of the mass matrix

Let us consider the element mass matrix (5.6) and let α = a/c and β = b/c with |a| ≤ b ≤ c, where
(α, β) ∈ D as illustrated in Figure 5.2. Then the pivot block of the macro element mass matrix
corresponding to the node numbering presented in Figure 5.4 is given by

ME:11 =
h2c (β + 1)

24



6 1 2 2 0 0 0
1 6 0 2 2 0 0
2 0 6 2 0 1 0
2 2 2 12 2 2 2
0 2 0 2 6 0 1
0 0 1 2 0 6 2
0 0 0 2 1 2 6


.

We choose the following additive preconditioner by preserving only the largest (in magnitude) off-
diagonal entries as illustrated in Figure 5.5:

CM
E:11 =

h2c (β + 1)

24



6 1 0 0 0 0 0
1 6 0 0 0 0 0
0 0 6 2 0 0 0
0 0 2 12 2 0 0
0 0 0 2 6 0 0
0 0 0 0 0 6 2
0 0 0 0 0 2 6


. (5.23)

Hence, the additive preconditioner of M11 is defined via the macro-element-by-macro-element assem-
bling by

CM
11 =


E⊂T (ℓ)

RT
E CM

E:11 RE . (5.24)

Theorem 5.7 (Kraus and Wolfmayr [103]). The additive preconditioner (5.24) of M11 with (5.23)
yields a relative condition number uniformly bounded by

κ((CM
11 )

−1M11) ≤
1 +


205+3

√
3873

1792

1−


205+3
√
3873

1792

≈ 2.75607, (5.25)

which holds independently of the shape, the size of each element and of the problem parameters ν and
µ, cf. (5.3).

Proof. In order to obtain the relative condition number of the preconditioned system κ((CM
11 )

−1M11),
we have to solve the local eigenproblem

ME:11 vE = λE CM
E:11 vE .

In the characteristic equation

det(ME:11 − λEC
M
E:11) = 0,

we substitute λE = 1− µE and obtain the equation

(β + 1)c hµE


40µ2

E − 7
 

896µ4
E − 205µ2

E + 2

= 0.
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Since c ̸= 0, h ̸= 0 and β ̸= −1, we obtain the following solutions of this equation:

µ
(1)
E = 0,

µ
(2/3)
E = ±1

2


7

10
≈ ±0.41833,

µ
(4/5)
E = ± 1

16


1

7


205− 3

√
3873


≈ ±0.101054,

µ
(6/7)
E = ±


205

1792
+

3
√
3873

1792
≈ ±0.467528.

Hence, the largest and smallest eigenvalues λmax
E and λmin

E are given by

λmax
E = 1 +


205

1792
+

3
√
3873

1792
≈ 1.46753

and

λmin
E = 1−


205

1792
+

3
√
3873

1792
≈ 0.532472,

respectively. Thus, we obtain

1−


205 + 3

√
3873

1792
≤ λE ≤ 1 +


205 + 3

√
3873

1792
. (5.26)

Finally, using (5.26) together with (5.24) it follows that the relative condition number estimate (5.25)
holds.

In the next subsection, we compute and analyze the additive preconditioner for the pivot block of
the stiffness matrix.

5.3.2 Additive preconditioner for the pivot block of the stiffness matrix

Let us consider now the element stiffness matrix (5.5) and let again α = a/c and β = b/c with
|a| ≤ b ≤ c, where (α, β) ∈ D as illustrated in Figure 5.2. Then the pivot block of the macro element
stiffness matrix corresponding to the node numbering presented in Figure 5.4 is given by

KE:11 = c



σ − 1
2 −α −β 0 0 0

− 1
2 σ 0 −α −β 0 0

−α 0 σ −1 0 −β
2 0

−β −α −1 2σ −1 −α −β
0 −β 0 −1 σ 0 −α

2

0 0 −β
2 −α 0 σ −1

0 0 0 −β −α
2 −1 σ


,

where σ = α+ β + 1. We define the additive preconditioner of K11 by

CK
11 =


E⊂T (ℓ)

RT
E CK

E:11 RE (5.27)
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with

CK
E:11 = c



σ − 1
2 0 0 0 0 0

− 1
2 σ 0 0 0 0 0
0 0 σ −1 0 0 0
0 0 −1 2σ −1 0 0
0 0 0 −1 σ 0 0
0 0 0 0 0 σ −1
0 0 0 0 0 −1 σ


, (5.28)

where we have preserved only the largest (in magnitude) off-diagonal entries of the macro element
stiffness matrix pivot block KE:11 in order to get CK

E:11 as illustrated in Figure 5.5. Note that this
preconditioner has the same nonzero pattern as the one for the pivot block of the mass matrix.

Theorem 5.8 (Kraus and Wolfmayr [103]). The additive preconditioner (5.27) of K11 with (5.28)
yields a relative condition number uniformly bounded by

κ((CK
11)

−1K11) ≤
1 +


223
640 + 3

√
5241
640

1−


223
640 + 3

√
5241
640

≈ 10.7185. (5.29)

which holds independently of the shape, the size of each element and of the problem parameters ν and
µ, cf. (5.3).

Proof. In order to estimate the condition number of the preconditioned pivot block K11 we consider
the local generalized eigenproblem

KE:11 vE:1 = λE CK
E:11 vE:1. (5.30)

We rewrite (5.30) in the form

vTE:1


KE:11 − λE CK

E:11


vE:1 = 0,

substitute λE = 1− µE and define

c P (µE , α, β) = KE:11 − (1− µE)C
K
E:11

with

P (µE , α, β) := P0(µE) + αPα(µE) + β Pβ(µE),

where

P0(µE) := µE



1 − 1
2 0 0 0 0 0

− 1
2 1 0 0 0 0 0
0 0 1 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 1 0 0
0 0 0 0 0 1 −1
0 0 0 0 0 −1 1


,

Pα(µE) :=



µE 0 −1 0 0 0 0
0 µE 0 −1 0 0 0
−1 0 µE 0 0 0 0
0 −1 0 2µE 0 −1 0
0 0 0 0 µE 0 − 1

2
0 0 0 −1 0 µE 0
0 0 0 0 − 1

2 0 µE


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and

Pβ(µE) :=



µE 0 0 −1 0 0 0
0 µE 0 0 −1 0 0
0 0 µE 0 0 − 1

2 0
−1 0 0 2µE 0 0 −1
0 −1 0 0 µE 0 0
0 0 − 1

2 0 0 µE 0
0 0 0 −1 0 0 µE


do not depend on α and β. Since P (µE , α, β) depends linearly on α and β, this matrix-valued function
can be only maximal or minimal (in an symmetric positive semidefinite sense) on the boundary of
the domain D defined in (5.7), see also Figure 5.2. Hence, either for − 1

2 < α ≤ 0 and β = − α
α+1

or for α = β = 1. It remains to determine the corresponding value µE . Let us firstly consider the
simpler case α = β = 1.
In the case α = β = 1, we solve the characteristic equation corresponding to problem (5.30) which
yields the equation

µE


107520µ6

E − 87408µ4
E + 9369µ2

E − 78

= 0

and has the following solutions:

µ
(1)
E = 0,

µ
(2/3)
E = ±1

4


13

7
≈ ±0.340693,

µ
(4/5)
E = ±1

8


1

10


223− 3

√
5241


≈ ±0.0953263,

µ
(6/7)
E = ±


223

640
+

3
√
5241

640
≈ ±0.82933.

Hence, the local largest and smallest eigenvalues corresponding to the case α = β = 1 are given by

λmax
E = 1 +


223

640
+

3
√
5241

640
≈ 1.82933,

λmin
E = 1−


223

640
+

3
√
5241

640
≈ 0.17067,

respectively.
Now, we consider the second case, i.e., − 1

2 < α ≤ 0 and β = − α
α+1 . The characteristic equation

corresponding to (5.30) together with c ̸= 0 and with the substitution λE = 1− µE is given by

0 =
α4 µE

32(α+ 1)7
[16

α2 + α+ 1

 
2α2 + α+ 1


(α(α+ 2) + 2)2(α(2α+ 3) + 3)µ6

E

− 2α2(α(α(α(α(α(α(8α(α+ 7) + 191) + 421) + 589) + 457) + 157)

+ 4) + 1)− 6(α(α(α(α(α(α(2α(α(12α(α+ 7) + 293) + 647) + 2001)

+ 2229) + 1807) + 1026) + 399) + 95) + 19)µ4
E

+ 3(α(α(α(α(α(α(2α(α(16α(α+ 7) + 375) + 781) + 2203) + 2119)

+ 1397) + 598) + 157) + 5) + 1)µ2
E ],

where − 1
2 < α ≤ 0. The first solution is µ

(1)
E = 0 and λ

(1)
E = 1. Moreover, the equation is fulfilled

for α = 0. So, we consider the case α ∈ (− 1
2 , 0). We now substitute νE = µ2

E and solve the cubic
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equation by Cardano’s formula, see, e.g., [34]. The equation has the form

A(α) ν3E +B(α) ν2E + C(α) νE +D(α) = 0, (5.31)

where

A(α) = 16

α2 + α+ 1

 
2α2 + α+ 1


(α(α+ 2) + 2)2(α(2α+ 3) + 3).

We divide by A(α) ̸= 0 and obtain an equation of the form

ν3E + a(α) ν2E + b(α) νE + c(α) = 0

with

a(α) =
B(α)

A(α)

=
3

8


− 6(α+ 1)

α2 + α+ 1
+

6(α+ 1)

2α2 + α+ 1
+

−10α− 7

α(α+ 2) + 2
+

26(α+ 1)

α(2α+ 3) + 3
− 3

(α(α+ 2) + 2)2
− 6


.

The symmetry of all the involved matrices implies that the cubic equation (5.31) has three real
solutions. Using the substitution

νE = z − a(α)

3
,

we obtain the equation

z3 + p(α) z + q(α) = 0,

where

p(α) = b(α)− a(α)2

3
and q(α) =

2a(α)3

27
− a(α)b(α)

3
+ c(α).

The solutions of this equation are given by

z(1) =


−4

3
p(α) cos


1

3
arccos (r(α))


,

z(2) = −

−4

3
p(α) cos


1

3
arccos (r(α)) +

π

3


,

z(3) = −

−4

3
p(α) cos


1

3
arccos (r(α))− π

3


,

where

r(α) = −q(α)

2


− 27

p(α)3
.

Finally, the solutions νE = µ2
E are given by

ν
(i)
E (α) = z(i) − a(α)

3
, i = 1, 2, 3.

The three solutions (as functions of α) are illustrated in Figure 5.6. We see that ν(1)(α) corresponds
to the largest value for µE and has its maximum for α = −1/2. This can be proven by a standard
tool from symbolic computation called Cylindrical Algebraic Decomposition (CAD), see [47, 48, 86],
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Figure 5.6: The three solutions ν(1)(α), ν(2)(α) and ν(3)(α) for α ∈ (−1/2, 0).

of which several implementations are available. We used the Mathematica commands CylindricalDe-
composition and Resolve for the proof. For α = −1/2,

ν(1)(−1/2) =
1

800


503 + 3

√
201

≈ 0.681915,

and the corresponding maximal and minimal eigenvalues are given by

λmax
E = 1 +


ν(1)(−1/2) ≈ 1.82578 and λmin

E = 1−


ν(1)(−1/2) ≈ 0.174218,

respectively. The outcome of comparing these eigenvalues to the ones for the case α = β = 1 is that
the maximal and minimal eigenvalues are both attained for α = β = 1, which leads to the following
local eigenvalue estimate:

0.17067 ≈ 1− s < λE < 1 + s ≈ 1.82933, (5.32)

where

s =


223

640
+

3
√
5241

640
.

Together with the macro-element-by-macro-element assembling procedure (5.27), we finally arrive at
the condition number estimate

κ((CK
11)

−1K11) ≤
1 +


223
640 + 3

√
5241
640

1−


223
640 + 3

√
5241
640

≈ 10.7185.

Instead of using CAD for proving that

max
1≤i≤3

max
α∈D

ν(i)(α) = ν(1)(−1/2),
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we can, alternatively, prove a less sharp bound by estimating the cosine in all formulas of z(i),
i = 1, 2, 3, by 1. This yields the following bound for all three solutions:

ν
(i)
E (α) ≤


−4

3
p(α) · 1− a(α)

3
=: νmax(α).

This bound can be written as

νmax(α) = −a(α)

3
+


−4

3
p(α)

= −1

8
f(α) +

1

4


f(α)2 − 4 g(α)

where

f(α) =
8

3
a(α) and g(α) =

16

3
b(α).

As can be seen from Figure 5.7, the function νmax(α) has its maximum at α = −1/2. For the sake of

Figure 5.7: ν(1)(α), ν(2)(α), ν(3)(α) and their bound νmax(α) for α ∈ (−1/2, 0).

a simple proof we determine functions f(α) and g(α) such that we can bound νmax from above, i.e.,

νmax(α) = −1

8
f(α) +

1

4


f(α)2 − 4 g(α)

≤ 1

8
f(α) +

1

4


f(α)2 − 4 g(α) =: νmax(α).

This can be done by choosing quadratic functions as upper bound for −f and as lower bound for g.
We compute three points on the curves −f and g and then fit quadratic polynomials through these
points. For instance, we may choose the following two quadratic functions bounding −f and g from
above and from below, respectively:

f(α) =
119

27
α2 − 1802

675
α+

19

12
,
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g(α) =
232

15
α2 +

9

25
α+

1

12
.

For this choice of f and g, the function νmax(α) does not have a local extremum and, hence, its
maximum is attained for α = −1/2. In this case, we have that

νmax(−1/2) = νmax(−1/2) =
201

400
+

√
2701

200
≈ 0.762356,

and P (µE , α, β) is maximal and minimal for α = −1/2 and β = 1. Together with the macro-element-
by-macro-element assembling (5.27), we obtain the following condition number estimate:

κ((CK
11)

−1K11) ≤
1 +


νmax(−1/2)

1−

νmax(−1/2)

≈ 14.7641.

5.3.3 Additive preconditioning for the pivot block of the whole system
Theorem 5.9 (Kraus and Wolfmayr [103]). The additive preconditioner (5.22) of A11 with the
additive preconditioners for the pivot block of the mass matrix (5.24) and for the stiffness matrix
(5.27), where we have used the preconditioners (5.23) and (5.28) corresponding to the macro elements,
is uniform. More precisely, the relative condition number bound

κ((C11)
−1A11) ≤

1 +


223
640 + 3

√
5241
640

1−


223
640 + 3

√
5241
640

≈ 10.7185 (5.33)

holds independently of the shape, the size of each element and of the problem parameters ν and µ, cf.
(5.3).

Proof. It follows from macro-element-by-macro-element assembling that

vT1 A11v1 =


E⊂T (ℓ)

vTE:1 R
T
E AE:11 RE vE:1

=


E⊂T (ℓ)

vTE:1 R
T
E (KE:11 + µ̃E ME:11) RE vE:1.

Using the local eigenvalue estimates (5.26) and (5.32) corresponding to the local generalized eigen-
problems with ME:11 and CM

E:11 and with KE:11 and CK
E:11, respectively, yields the following upper

bound:

vT1 A11v1 =


E⊂T (ℓ)

vTE:1 R
T
E KE:11 RE vE:1 +


E⊂T (ℓ)

vTE:1 R
T
E µ̃E ME:11 RE vE:1

≤


E⊂T (ℓ)

λmax
K,E vTE:1 R

T
E CK

E:11 RE vE:1 +


E∈⊂T (ℓ)

λmax
M,E vTE:1 R

T
E µ̃E CM

E:11 RE vE:1.

Taking the maximum of the two eigenvalues λmax
K,E and λmax

M,E , i.e., λmax
A,E = max{λmax

K,E , λ
max
M,E}, leads to

vT1 A11v1 =


E⊂T (ℓ)

vTE:1 R
T
E AE:11 RE vE:1

≤


E⊂T (ℓ)

λmax
A,E vTE:1 R

T
E


CK

E:11 + µ̃E CM
E:11


RE vE:1

≤ λmax
A


E⊂T (ℓ)

vTE:1 R
T
E


CK

E:11 + µ̃E CM
E:11


RE vE:1

= λmax
A


E⊂T (ℓ)

vTE:1 R
T
E CE:11 RE vE:1

= λmax
A vT1 C11 v1,
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where λmax
A = 1 +


223
640 + 3

√
5241
640 . Similarly, one proves

vT1 A11v1 ≥ λmin
A vT1 C11 v1

with λmin
A = 1−


223
640 + 3

√
5241
640 . Altogether, the two inequalities yield the condition number estimate

(5.33).

5.4 Stabilization polynomials of higher degree

As briefly discussed in Subsection 2.8.1, we combine hierarchical basis preconditioners with stabiliza-
tion techniques in order to obtain a linear AMLI method of optimal order. In this section, we discuss
the construction of the matrix polynomials P (ℓ)(t) = Pυℓ

(t), which occur in the approximations
(2.68), i.e.,

(Z(ℓ−1))−1 :=

I − P (ℓ)


(B(ℓ−1))−1A(ℓ−1)


(A(ℓ−1))−1

of the Schur complements (2.58), i.e.,

S(ℓ) = A
(ℓ)
22 −A

(ℓ)
21 (A

(ℓ)
11 )

−1A
(ℓ)
12

at levels ℓ = 1, . . . , L, not only of degree 1 and 2 but also of higher degree since the considered
3-refinement requires and allows for higher-degree polynomial stabilization in order to fulfill the
optimality conditions (2.71), i.e.,

1
1− γ2

< υ < ϱ.

Proper choices of matrix polynomials P (ℓ)(t) = Pυℓ
(t) approximating matrix inverses are based on

Chebyshev polynomials, see [14, 15] as well as [8, 101]. This work goes back to Chebyshev (1821-1894),
see [45]. Polynomials of best approximation are discussed in, e.g., [102, 106]. The following matrix
polynomials based on Chebyshev polynomials can be used on the interval [α, 1] with 0 < α < 1:

Pυℓ
(t) =

Tυℓ


1+α−2 t

1−α


+ 1

Tυℓ


1+α
1−α


+ 1

. (5.34)

Here, Tυℓ
(t) is the Chebyshev polynomial of the first kind defined via the recursion

Tυℓ
(t) = 2 t Tυℓ−1(t)− Tυℓ−2(t), υℓ = 2, 3, . . . ,

T0(t) = 1, T1(t) = t.

Next, we define the polynomial Q(ℓ)(t) = Qυℓ−1(t) by

Qυℓ−1(t) =
1− Pυℓ

(t)

t

= q
(ℓ)
0 + q

(ℓ)
1 t+ · · ·+ q

(ℓ)
υℓ−1t

υℓ−1.

(5.35)

In Table 5.1, Table 5.2, Table 5.3, Table 5.4 Table 5.5 and Table 5.6, we list the coefficients q
(ℓ)
i ,

i ∈ {0, 1, . . . , 7}, of all polynomials Qυℓ−1(t) for υℓ ∈ {1, 2, . . . , 8} on the interval [α, 1] with 0 < α < 1.
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Table 5.1: Coefficients of the polynomials Q0(t) and Q1(t).

q
(ℓ)
i υℓ = 1

i = 0 q
(1)
0 = 1

q
(ℓ)
i υℓ = 2

i = 0 q
(2)
0 = 4

1+α

i = 1 q
(2)
1 = − 4

(1+α2)

Table 5.2: Coefficients of the polynomials Q2(t) and Q3(t).

q
(ℓ)
i υℓ = 3

i = 0 q
(3)
0 = 9+3α

1+3α

i = 1 q
(3)
1 = − 24(1+α)

(1+3α)2

i = 2 q
(3)
2 = 16

(1+3α)2

q
(ℓ)
i υℓ = 4

i = 0 q
(4)
0 = 16(1+α)

1+α(6+α)

i = 1 q
(4)
1 = − 16(5+α(14+5α))

(1+α(6+α)2

i = 2 q
(4)
2 = 128(1+α)

(1+α(6+α)2

i = 3 q
(4)
3 = − 64

(1+α(6+α)2

Table 5.3: Coefficients of the polynomial Q4(t).

q
(ℓ)
i υℓ = 5

i = 0 q
(5)
0 = 5(5+α(10+α))

1+5α(2+α)

i = 1 q
(5)
1 = − 40(1+α)(5+α(22+5α))

(1+5α(2+α))2

i = 2 q
(5)
2 = 80(7+α(18+7α))

(1+5α(2+α))2

i = 3 q
(5)
3 = − 640(1+α)

(1+5α(2+α))2

i = 4 q
(5)
4 = 256

(1+5α(2+α))2

Table 5.4: Coefficients of the polynomial Q5(t).

q
(ℓ)
i υℓ = 6

i = 0 q
(6)
0 = 12(3+α)(3α+1)

(1+α)(1+α(α+14))

i = 1 q
(6)
1 = − 12(35+α(308+α(594+7α(44+5α))))

(1+α)2(1+α(α+14))2

i = 2 q
(6)
2 = 256(α(7α+26)+7)

(1+α)(1+α(α+14))2

i = 3 q
(6)
3 = − 384(α(9α+22)+9)

(1+α)2(1+α(α+14))2

i = 4 q
(6)
4 = 3072

(1+α)(1+α(α+14))2

i = 5 q
(6)
5 = − 1024

(1+α)2(1+α(α+14))2
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Table 5.5: Coefficients of the polynomial Q6(t).

q
(ℓ)
i υℓ = 7

i = 0 q
(7)
0 = 7(α(α(α+21)+35)+7)

1+7α(3+α(5+α))

i = 1 q
(7)
1 = − 112(α+1)(α(α(7α(α+12)+202)+84)+7)

(1+7α(3+α(5+α)))2

i = 2 q
(7)
2 = 224(α(α(3α(7α+52)+286)+156)+21)

(1+7α(3+α(5+α)))2

i = 3 q
(7)
3 = − 4480(α+1)(α+3)(3α+1)

(1+7α(3+α(5+α)))2

i = 4 q
(7)
4 = 1792(α(11α+26)+11)

(1+7α(3+α(5+α)))2

i = 5 q
(7)
5 = − 14336(α+1)

(1+7α(3+α(5+α)))2

i = 6 q
(7)
6 = 4096

(1+7α(3+α(5+α)))2

Table 5.6: Coefficients of the polynomial Q7(t).

q
(ℓ)
i υℓ = 8

i = 0 q
(8)
0 = 64(α+1)(α(α+6)+1)

1+α(28+α(70+α(28+α)))

i = 1 q
(8)
1 = − 64(α(α(α(3α(7α(α+18)+585)+2860)+1755)+378)+21)

(1+α(28+α(70+α(28+α))))2

i = 2 q
(8)
2 = 512(α+1)(α(α(3α(7α+68)+446)+204)+21)

(1+α(28+α(70+α(28+α))))2

i = 3 q
(8)
3 = − 1280(α(α(11α(3α+20)+390)+220)+33)

(1+α(28+α(70+α(28+α))))2

i = 4 q
(8)
4 = 8192(α+1)(α(11α+34)+11)

(1+α(28+α(70+α(28+α))))2

i = 5 q
(8)
5 = − 8192(α(13α+30)+13)

(1+α(28+α(70+α(28+α))))2

i = 6 q
(8)
6 = 65536(α+1)

(1+α(28+α(70+α(28+α))))2

i = 7 q
(8)
7 = − 16384

(1+α(28+α(70+α(28+α))))2
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Remark 5.10. In order to ensure that the linear AMLI preconditioner is uniform and of optimal
order of computational complexity, the stabilization polynomial Pυℓ

(t) for the 3-refinement has to be
at least of degree υℓ = 5, which corresponds to a polynomial Qυℓ−1(t) of degree 4. More precisely, the
optimality condition (5.15) in the 3-refinement case, i.e.,

1
1− 20/21

=
√
21 ≈ 4.58258 < υ < ϱ = 9 with υ = max

0≤ℓ≤L
υℓ

is fulfilled for polynomial degree υ ∈ {5, 6, 7, 8}.

5.5 The relative condition number of the AMLI preconditioned
system

We want to consider some bounds for the spectral condition number

κ((B(ℓ))−1A(ℓ))

of the AMLI preconditioned linear systems, which consist of weighted sums of stiffness and mass
matrices, in the spirit of [11, 14, 15]. The preconditioner B(ℓ) at level ℓ for (2.66) and replacing the
pivot block A

(ℓ)
11 by an approximation C

(ℓ)
11 satisfying (2.70), i.e.,

c vT1 C
(ℓ)
11 v1 ≤ vT1 A

(ℓ)
11 v1 ≤ c vT1 C

(ℓ)
11 v1,

yields the linear AMLI preconditioner (2.73), which is given by

B(ℓ) :=


C

(ℓ)
11 0

Ã
(ℓ)
21 Z(ℓ−1)


I (C

(ℓ)
11 )

−1Ã
(ℓ)
12

0 I


.

Here, we denote by Z(ℓ−1) the approximation of the inverse of the Schur complements (2.68), i.e.,

(Z(ℓ−1))−1 :=

I − P (ℓ)


(B(ℓ−1))−1A(ℓ−1)


(A(ℓ−1))−1

Since we have discussed the choice of the stabilization polynomials in Section 5.4, we now want to
present bounds for the relative condition number of A(ℓ) with respect to B(ℓ), which are depending
on the CBS constant γ, the degree of the stabilization polynomial υ, the interval on which the
stabilization polynomial is defined and on the constants c and c for approximating the pivot blocks
according to (2.70). The following estimates are proven for stabilization polynomials defined on the
interval [α, 1] with 0 < α < 1, see [15].

Theorem 5.11. Let C
(ℓ)
11 be a spectral equivalent preconditioner for the pivot block A

(ℓ)
11 satisfying

(2.70) and let B(ℓ) be the linear AMLI preconditioner defined in (2.73). Then the relative condition
number of A(ℓ) with respect to B(ℓ) is bounded by

κ((B(ℓ))−1A(ℓ)) ≤ 1

1− γ2


c γ2 +


1 + ϑ(α)

1− ϑ(α)

2


+
c2

c+ γ2 + 4(1−α)υ

(1−ϑ(α))2

, (5.36)

where c = c/c−1 and ϑ(α) denotes the so-called (asymptotic) reduction rate of the Chebyshev method
given by

ϑ(α) =


1−

√
α

1 +
√
α

υ

. (5.37)

Proof. See [15].
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The parameter α can be chosen by solving the equation

1 =
1

1− γ2


α c γ2 +


1 + ϑ(α)

2
υ

s=1(1 +
√
α)υ−s(1−

√
α)s−1

2


+
α c2

c+ γ2 + 4(1−α)υ

(1−ϑ(α))2

,

see [15], which is equivalent to solving the equation

1 = γ2 + α

c γ2 +


1 + ϑ(α)

1− ϑ(α)

2

+
c2

1− γ2


c+ γ2 + 4(1−α)υ

(1−ϑ(α))2

 . (5.38)

Remark 5.12. We can simplify the estimate (5.36) by obtaining the (only slightly worse) upper bound

κ((B(ℓ))−1A(ℓ)) ≤ 1

1− γ2


c+


1 + ϑ(α)

1− ϑ(α)

2

, (5.39)

see [15]. Then, we can choose the parameter α by solving the equation

1− γ2 = α c+


1 + ϑ(α)

2
υ

s=1(1 +
√
α)υ−s(1−

√
α)s−1

2

,

or, equivalently,

1− γ2 = α


c+


1 + ϑ(α)

1− ϑ(α)

2

.

Using the linear AMLI preconditioner (2.67) with the exact pivot block A
(ℓ)
11 reduces the estimate

(5.36) to

κ((B(ℓ))−1A(ℓ)) ≤ 1

1− γ2


1 + ϑ(α)

1− ϑ(α)

2

, (5.40)

since we have c/c = 1, hence, c = 0, in this case, see [14, 15]. Here, the parameter α can be chosen
by solving the equation

1− γ2 = α


1 + ϑ(α)

1− ϑ(α)

2

. (5.41)

Let us consider the 3-refinement case and the discretized problem (5.3), i.e.,

(Kν,h +Mµ,h  
=:Ah

)uh = f
h
.

As first example, we consider the case without mass matrix. Then, the linear system is given by

Kν,h uh = f
h
,

the CBS constant is estimated by γ ≤

8/9, and the optimality conditions

1
1− 8/9

= 3 < υ < ϱ = m2 = 9

are fulfilled for polynomials of degree υ ∈ {4, 5, 6, 7, 8}. By using the exact pivot block A
(ℓ)
11 , we can

compute α from solving equation (5.41). This yields the following choice for α:

α =
1

3


2
√
13− 7


≈ 0.0704.



5.6. AMLI PRECONDITIONED MINRES SOLVER 115

Table 5.7: Condition number estimates for the AMLI method in the 3-refinement case using additive
preconditioners for approximating the pivot blocks and stabilization polynomials of degree υℓ = 5.

α κ((B(ℓ))−1A(ℓ))

α = 0.001 κ((B(ℓ))−1A(ℓ)) ≤ 1049.72
α = 0.01 κ((B(ℓ))−1A(ℓ)) ≤ 298.741
α = 0.1 κ((B(ℓ))−1A(ℓ)) ≤ 227.521
α = 0.5 κ((B(ℓ))−1A(ℓ)) ≤ 224.233
α = 0.9 κ((B(ℓ))−1A(ℓ)) ≤ 224.221

We can compute an estimate for the condition number by (5.40) and obtain

κ((B(ℓ))−1A(ℓ)) ≤ 7 + 2
√
13 ≈ 14.2111.

Now, let us consider the problem (5.3) with mass matrix. In this case, the CBS constant is estimated
by γ ≤


20/21, see (5.14), and the optimality conditions (5.15)

1
1− 20/21

=
√
21 ≈ 4.58258 < υ < ϱ = m2 = 9

are fulfilled for polynomials of degree υ ∈ {5, 6, 7, 8}. By using the exact pivot block A
(ℓ)
11 , we can

compute α from solving equation (5.41). This yields the choice

α =
1

131


−130 + 5

√
21 +


2

7075− 257

√
21


≈ 0.0116

and an estimate for the condition number by (5.40), i.e.,

κ((B(ℓ))−1A(ℓ)) ≤ 5

4 +

√
21

+


950 + 206

√
21 ≈ 86.4331.

Finally, let us consider solving the finite element problem (5.3) by the AMLI preconditioned CG
method together with approximating the pivot block A

(ℓ)
11 by the additive preconditioner C

(ℓ)
11 pre-

sented in Section 5.3. In this case,

c =
1 +


223
640 + 3

√
5241
640

1−


223
640 + 3

√
5241
640

− 1 ≈ 9.7185.

In Table 5.7, we present some estimates for the condition numbers by computing (5.36) for different
choices of α.
In conclusion of this section, the parameter α should be chosen carefully, especially for different
choices of polynomial degrees υ. For further information regarding the choices of α and condition
number estimates for the AMLI preconditioned CG method, we refer the reader to [8, 11, 12, 14, 15]
as well as [101] and the references therein.

5.6 AMLI preconditioned MINRES solver for parabolic time-
periodic problems

In this section, we briefly present the model problems from Chapter 3 and Chapter 4 for the case
Ω ⊂ R2 being a (two-dimensional) bounded (polygonal) Lipschitz domain and discuss the use of
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the AMLI preconditioner in order to solve the problems by the preconditioned MINRES method.
Moreover, we assume that the coefficients σ and ν are piecewise constant on the coarsest mesh.
Let us start with the parabolic time-periodic partial differential equation (3.1)-(3.3). After the mul-
tiharmonic finite element discretization of a corresponding variational problem, we finally arrived at
saddle point systems (3.26) corresponding to every mode k = 1, . . . , N , i.e.,

kωMh,σ −Kh,ν

−Kh,ν −kωMh,σ


us
k

uc
k


=


−f c

k
−fs

k


,

for which we constructed the block-diagonal preconditioner (3.30)

P =


kωMh,σ +Kh,ν 0

0 kωMh,σ +Kh,ν


,

for a MINRES solver yielding the robust condition number estimate κP(P−1A) ≤
√
2. For k = 0, we

had to solve the linear system

Kh,ν u
c
0 = f c

0
.

Now, we are able to precondition the diagonal blocks D = (kωMh,σ +Kh,ν) of the preconditioner P
in (3.30) of the discretized problem (3.26) for k = 1, 2, . . . , N by the AMLI method. More precisely,
we can replace these diagonal blocks D by spectral equivalent ones D̃, i.e., cDD̃ ≤ D ≤ cDD̃, with a
condition number estimate

κP̃(P̃
−1A) ≤ κP(P−1A) (cD/cD).

The corresponding optimal control problem of Chapter 4, i.e.,

min
y,u

J (y, u) :=
1

2

 T

0


Ω

[y(x, t)− yd(x, t)]
2
dx dt+

λ

2

 T

0


Ω

[u(x, t)]
2
dx dt

subject to the partial differential equation (3.1)-(3.3), is treated analogously: The multiharmonic
finite element discretization of its variational problem leads to the linear saddle point systems (4.11)
and (4.12), i.e.,

Mh 0 −Kh,ν kωMh,σ

0 Mh −kωMh,σ −Kh,ν

−Kh,ν −kωMh,σ −λ−1Mh 0
kωMh,σ −Kh,ν 0 −λ−1Mh




yc
k

ys
k

pc
k

ps
k

 =


yc
dk

ys
dk
0
0


for k = 1, 2, . . . , N , and 

Mh −Kh,ν

−Kh,ν −λ−1Mh


yc
0

pc
0


=


yc
d0
0


for k = 0, respectively. For the cases k = 1, 2, . . . , N , we constructed the preconditioners (4.22), i.e.,

P =


D 0 0 0
0 D 0 0
0 0 λ−1D 0
0 0 0 λ−1D


with D =

√
λKh,ν + kω

√
λMh,σ +Mh and proved the condition number estimate

κP(P−1A) := ∥P−1A∥P ∥A−1P∥P ≤
√
3.
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In the case k = 0, we constructed the preconditioner (4.31), i.e.,

P =


D 0
0 λ−1D


with D = Mh +

√
λKh,ν implying the condition number estimate

κP(P−1A) := ∥P−1A∥P ∥A−1P∥P ≤
√
2.

If all parameters are piecewise constant on the coarsest mesh, the AMLI preconditioner discussed in
this chapter yields a robust and optimal preconditioner for D and, hence, an optimal MINRES solver
either for the partial differential equation (3.1)-(3.3) or for the optimal control problem (4.1)-(4.2).
Finally, we will present numerical results confirming our theoretical findings and demonstrating the
robustness and optimal complexity of the AMLI preconditioned MINRES solver for parabolic time-
periodic problems in Chapter 7.
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Chapter 6

A posteriori error analysis of
parabolic time-periodic problems

This chapter is devoted to the a posteriori error analysis of parabolic time-periodic boundary value
and optimal control problems that are presented in Chapters 3 and 4, respectively. The functional
a posteriori error estimation techniques, which we use, are based on the works by Repin, see, e.g.,
[152, 61, 59, 60, 154, 153, 123] and the references therein. In particular, our a posteriori error analysis
is based on the method presented in [152], but the analysis contains proper changes regarding the
space H1, 12 and the special features of the approximation via truncated Fourier series.

6.1 Functional a posteriori error estimates for parabolic time-
periodic boundary value problems

As starting point let us consider the variational problem (3.16): Given f ∈ L2(QT ), find u ∈ H
1, 12
0 (QT )

such that  T

0


Ω


σ(x)∂

1/2
t u ∂

1/2
t v⊥ + ν(x)∇u · ∇v


dx dt =

 T

0


Ω

f v dx dt (6.1)

for all test functions v ∈ H
1, 12
0 (QT ), where all functions are given in their Fourier series expansion in

time, i.e., everything has to be understood in the sense of Definition 3.2. Moreover, we have defined
the space-time bilinear form a(·, ·) in (3.17) as follows

a(u, v) =

 T

0


Ω


σ(x)∂

1/2
t u ∂

1/2
t v⊥ + ν(x)∇u · ∇v


dx dt.

Let η be an approximation to the exact solution u, e.g., the multiharmonic finite element approxima-
tion uNh constructed in Chapter 3.

A first a posteriori error result

First, we assume that η is a bit more regular than u, i.e., η ∈ H1,1
0,per(QT ), that is of course true

for the multiharmonic finite element approximation uNh. Our goal is to deduce a computable upper
bound of the error

e := u− η

in H
1, 12
0 (QT ).

119
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Relation (6.1) immediately implies that the integral identity T

0


Ω


σ(x)∂

1/2
t (u− η) ∂

1/2
t v⊥ + ν(x)∇(u− η) · ∇v


dx dt

=

 T

0


Ω


f v − σ(x)∂

1/2
t η ∂

1/2
t v⊥ − ν(x)∇η · ∇v


dx dt

(6.2)

is valid for all v ∈ H
1, 12
0 (QT ). The left hand side of (6.2) is nothing but

a(u− η, v),

and we know from Lemma 3.5 that

sup

0 ̸=v∈H
1, 1

2
0 (QT )

a(u− η, v)

∥v∥
H1, 1

2 (QT )

≥ µ1∥u− η∥
H1, 1

2 (QT )
(6.3)

with the positive constant µ1 = min{ ν
C2

F+1
, σ}. Moreover, we can similarly prove inf-sup and sup-sup

conditions with the H1, 12 -seminorm. In fact, the H1, 12 -seminorm is, due to the Friedrichs inequality,
an equivalent norm.

Lemma 6.1. The space-time bilinear form a(·, ·) defined by (3.17) fulfills the following inf-sup and
sup-sup conditions:

µ1|u|
H1, 1

2 (QT )
≤ sup

0̸=v∈H
1, 1

2
0 (QT )

a(u, v)

|v|
H1, 1

2 (QT )

≤ µ2|u|
H1, 1

2 (QT )
(6.4)

for all u ∈ H
1, 12
0 (QT ) with positive constants µ1 = min{ν, σ} and µ2 = max{σ, ν}.

Proof. The inf-sup and sup-sup conditions are analogously proven as in Lemma 3.5.

We denote the right-hand side of (6.2) by Fη(v). Indeed,

Fη(v) =

 T

0


Ω


f v − σ(x)∂

1/2
t η ∂

1/2
t v⊥ − ν(x)∇η · ∇v


dx dt

is a linear functional defined on v ∈ H
1, 12
0 (QT ). We need to find an upper bound of

sup

0̸=v∈H
1, 1

2
0 (QT )

Fη(v)

∥v∥
H1, 1

2 (QT )

or sup

0̸=v∈H
1, 1

2
0 (QT )

Fη(v)

|v|
H1, 1

2 (QT )

. (6.5)

For getting such a bound we need to reconstruct Fη(v). First, we note that the σ-weighted identity
σ∂

1/2
t η, ∂

1/2
t v⊥


L2(QT )

=

σ∂tη, v


L2(QT )

(6.6)

is valid since η ∈ H1,1
0,per(QT ) and v ∈ H

1, 12
0 (QT ), see also Lemma 3.3 and Remark 3.4. Second, we

introduce a vector-valued function

τ ∈ H(div, QT ) := {τ ∈ [L2(QT )]
d : div τ (·, t) ∈ L2(Ω) for a.e. t ∈ (0, T )}.

Here, div = divx denotes the weak spatial divergence defined by the identity
Ω

div τ v dx = −

Ω

τ · ∇v dx ∀ v ∈ C∞
0 (Ω).
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Due to the Cauchy-Schwarz inequality, we obtain

Fη(v) =

 T

0


Ω


f v − σ(x)∂tη v + div τ v + (τ − ν(x)∇η) · ∇v


dx dt

≤ ∥R1(η, τ )∥L2(QT )∥v∥L2(QT ) + ∥R2(η, τ )∥L2(QT )∥∇v∥L2(QT )

(6.7)

with

R1(η, τ ) = σ∂tη − div τ − f and R2(η, τ ) = τ − ν∇η.

Applying the Friedrichs inequality (2.17), or rather the Friedrichs inequality (3.19) in the space-time
cylinder QT , yields

Fη(v) ≤ ∥R1(η, τ )∥L2(QT )∥v∥L2(QT ) + ∥R2(η, τ )∥L2(QT )∥∇v∥L2(QT )

≤ ∥R1(η, τ )∥L2(QT )CF ∥∇v∥L2(QT ) + ∥R2(η, τ )∥L2(QT )∥∇v∥L2(QT )

≤

CF ∥R1(η, τ )∥L2(QT ) + ∥R2(η, τ )∥L2(QT )


∥∇v∥L2(QT ),

where again ∇ = ∇x denotes the weak spatial gradient. Hence,

sup

0 ̸=v∈H
1, 1

2
0 (QT )

Fη(v)

|v|
H1, 1

2 (QT )

≤ sup

0̸=v∈H
1, 1

2
0 (QT )


CF ∥R1(η, τ )∥L2(QT ) + ∥R2(η, τ )∥L2(QT )


∥∇v∥L2(QT )

|v|
H1, 1

2 (QT )

= sup

0̸=v∈H
1, 1

2
0 (QT )


CF ∥R1(η, τ )∥L2(QT ) + ∥R2(η, τ )∥L2(QT )


∥∇v∥L2(QT )

(∥∇v∥2L2(QT ) + ∥∂1/2
t v∥2L2(QT ))

1/2

≤ CF ∥R1(η, τ )∥L2(QT ) + ∥R2(η, τ )∥L2(QT ).

(6.8)

We arrive at the following result:

Theorem 6.2. Let η ∈ H1,1
0,per(QT ) and the bilinear form a(·, ·) satisfy (6.4). Then,

|u− η|
H1, 1

2 (QT )
≤ 1

µ1


CF ∥R1(η, τ )∥L2(QT ) + ∥R2(η, τ )∥L2(QT )


=: M⊕

|·|(η, τ ), (6.9)

where µ1 = min{ν, σ} and τ ∈ H(div, QT ).

Proof. Using the left inequality of (6.4) we get the estimate

|u− η|
H1, 1

2 (QT )
≤ 1

µ1
sup

0̸=v∈H
1, 1

2
0 (QT )

a(u− η, v)

|v|
H1, 1

2 (QT )

=
1

µ1
sup

0̸=v∈H
1, 1

2
0 (QT )

Fη(v)

|v|
H1, 1

2 (QT )

that together with (6.8) immediately lead to (6.9).

A similar estimate as (6.9) for the seminorm can be proven for the full norm using the inf-sup condition
(6.3).

Theorem 6.3. Let η ∈ H1,1
0,per(QT ) and the bilinear form a(·, ·) satisfy (6.3). Then,

∥u− η∥
H1, 1

2 (QT )
≤ 1

µ1


∥R1(η, τ )∥2L2(QT ) + ∥R2(η, τ )∥2L2(QT )

1/2
=: M⊕

∥·∥(η, τ ), (6.10)

where τ ∈ H(div, QT ) and now µ1 = min{ ν
C2

F+1
, σ}.
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Proof. Applying the Cauchy-Schwarz inequality again on (6.7), we obtain

Fη(v) ≤ ∥R1(η, τ )∥L2(QT )∥v∥L2(QT ) + ∥R2(η, τ )∥L2(QT )∥∇v∥L2(QT )

≤

∥R1(η, τ )∥2L2(QT ) + ∥R2(η, τ )∥2L2(QT )

1/2 
∥v∥2L2(QT ) + ∥∇v∥2L2(QT )

1/2
.

Hence, estimate (6.10) now follows from (6.3) and the estimate

sup

0 ̸=v∈H
1, 1

2
0 (QT )

Fη(v)

∥v∥
H1, 1

2 (QT )

≤ sup

0 ̸=v∈H
1, 1

2
0 (QT )


∥R1(η, τ )∥2L2(QT ) + ∥R2(η, τ )∥2L2(QT )

1/2 
∥v∥2L2(QT ) + ∥∇v∥2L2(QT )

1/2
∥v∥

H1, 1
2 (QT )

≤

∥R1(η, τ )∥2L2(QT ) + ∥R2(η, τ )∥2L2(QT )

1/2
.

We call the functions M⊕
|·|(η, τ ) and M⊕

∥·∥(η, τ ) error majorants. They denote the upper bounds for
the error in the H1, 12 -seminorm and full norm, respectively.

Remark 6.4. If R1(η, τ ) = 0 and R2(η, τ ) = 0, then

σ∂tη − div τ = f,

τ = ν∇η.

Since η ∈ H1,1
0,per(QT ) is a periodic function and satisfies the Dirichlet condition on ΣT , it is the

solution. In other words, the majorants vanish if and only if η is the exact solution and τ is the exact
flux.

The multiharmonic approximation

Since we assume that the function f is from L2(QT ), we expand it into a Fourier series. Moreover,
we choose our approximation η of the solution u as well as the vector-valued function τ to be some
truncated Fourier series, i.e.,

η(x, t) = ηc0(x) +

N
k=1

[ηck(x) cos(kωt) + ηsk(x) sin(kωt)],

τ (x, t) = τ c
0(x) +

N
k=1

[τ c
k(x) cos(kωt) + τ s

k(x) sin(kωt)],

(6.11)

where all Fourier coefficients are from the space L2(Ω) and are defined by the relations

ηc0(x) =
1

T

 T

0

η(x, t) dt, τ c
0(x) =

1

T

 T

0

τ (x, t) dt,

ηck(x) =
2

T

 T

0

η(x, t) cos(kωt) dt, τ c
k(x) =

2

T

 T

0

τ (x, t) cos(kωt) dt,

ηsk(x) =
2

T

 T

0

η(x, t) sin(kωt) dt, τ s
k(x) =

2

T

 T

0

τ (x, t) sin(kωt) dt.
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Hence, we can compute the L2(QT )-norms of the functions

R1(η, τ ) = σ∂tη − div τ − f and R2(η, τ ) = τ − ν∇η,

where

∂tη(x, t) =

N
k=1

[kω ηsk(x) cos(kωt)− kω ηck(x) sin(kωt)],

∇η(x, t) = ∇ηc0(x) +

N
k=1

[∇ηck(x) cos(kωt) +∇ηsk(x) sin(kωt)],

div τ (x, t) = div τ c
0(x) +

N
k=1

[div τ c
k(x) cos(kωt) + div τ s

k(x) sin(kωt)].

We have that

∥R1(η, τ )∥2L2(QT ) =

 T

0


Ω

(σ∂tη − div τ − f)
2
dx dt

=

 T

0


Ω


(σ∂tη − div τ )2 − 2 (σ∂tη − div τ ) f + f2


dx dt.

We want to mention that we split only this first integral into three parts, since f does not have
a multiharmonic representation, and we want to compute the first integral more in detail. Due to
the orthogonalities of the cosine and sine functions with respect to the L2(0, T )-inner product, i.e.,
orthogonalities (2.9), the integrals in time can be computed easily. For instance, we have that T

0


Ω

(σ∂tη − div τ )2 dx dt

=

 T

0


Ω

 N
k=1

[kω σ(x)ηsk(x) cos(kωt)− kω σ(x)ηck(x) sin(kωt)]

− div τ c
0(x)−

N
k=1

[div τ c
k(x) cos(kωt) + div τ s

k(x) sin(kωt)]
2

dx dt

=

 T

0


Ω


− div τ c

0(x) +

N
k=1

[(kω σ(x)ηsk(x)− div τ c
k(x)) cos(kωt)

+ (−kω σ(x)ηck(x)− div τ s
k(x)) sin(kωt)]

2
dx dt

=T


Ω

(div τ c
0(x))

2dx+
T

2


Ω

N
k=1

[(kω σ(x)ηsk(x)− div τ c
k(x))

2

+ (−kω σ(x)ηck(x)− div τ s
k(x))

2]dx

=T∥div τ c
0∥2L2(Ω) +

T

2

N
k=1

[∥kω σηsk − div τ c
k∥2L2(Ω) + ∥ − kω σηck − div τ s

k∥2L2(Ω)]

=T∥div τ c
0∥2L2(Ω) +

T

2

N
k=1

[∥ − kω σηsk + div τ c
k∥2L2(Ω) + ∥kω σηck + div τ s

k∥2L2(Ω)]

=T∥div τ c
0∥2L2(Ω) +

T

2

N
k=1

∥kω ση⊥
k + div τ k∥2L2(Ω),
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where η⊥
k = (−ηsk, η

c
k)

T and div τ k = (div τ c
k, div τ s

k)
T . We remind the reader that

∥uk∥2L2(Ω) = ∥uc
k∥2L2(Ω) + ∥us

k∥2L2(Ω).

Analogously, we compute the following time-integrals:

−2

 T

0


Ω

(σ∂tη − div τ ) f dx dt = −2


T (−div τ c

0, f
c
0)L2(Ω) +

T

2

N
k=1

(−kω ση⊥
k − div τ k,fk)L2(Ω)



= 2


T (div τ c

0, f
c
0)L2(Ω) +

T

2

N
k=1

(kω ση⊥
k + div τ k,fk)L2(Ω)


and  T

0


Ω

f2 dx dt = T∥f c
0∥2L2(Ω) +

T

2

∞
k=1

∥fk∥2L2(Ω).

Altogether, we obtain the L2-norm of R1, i.e.,

∥R1(η, τ )∥2L2(QT ) = ∥σ∂tη − div τ∥2L2(QT ) − 2(σ∂tη − div τ , f)2L2(QT ) + ∥f∥2L2(QT )

=

 T

0


Ω

(σ∂tη − div τ )2 dx dt− 2

 T

0


Ω

(σ∂tη − div τ ) f dx dt+

 T

0


Ω

f2 dx dt

=T∥div τ c
0∥2L2(Ω) +

T

2

N
k=1

∥kω ση⊥
k + div τ k∥2L2(Ω)

+ 2


T (div τ c

0, f
c
0)L2(Ω) +

T

2

N
k=1

(kω ση⊥
k + div τ k,fk)L2(Ω)



+ T∥f c
0∥2L2(Ω) +

T

2

∞
k=1

∥fk∥2L2(Ω)

=T∥div τ c
0 + f c

0∥2L2(Ω) +
T

2

N
k=1

∥kω ση⊥
k + div τ k + fk∥2L2(Ω) +

T

2

∞
k=N+1

∥fk∥2L2(Ω).

Analogously, we can compute the L2-norm of R2 and obtain

∥R2(η, τ )∥2L2(QT ) =

 T

0


Ω

|τ − ν∇η|2 dx dt = T∥τ c
0 − ν∇ηc0∥2L2(Ω) +

T

2

N
k=1

∥τ k − ν∇ηk∥2L2(Ω),

where τ k = ((τ c
k)

T , (τ s
k)

T )T . In fact, the L2-norms of R1 and R2 corresponding to every single mode
k are decoupled. In the following, we denote by ∥ · ∥L2 the norm ∥ · ∥L2(Ω). Altogether, we have the
following L2-norms of R1 and R2:

∥R1(η, τ )∥2L2(QT ) = T∥div τ c
0 + f c

0∥2L2 +
T

2

N
k=1

∥kω ση⊥
k + div τ k + fk∥2L2 +

T

2

∞
k=N+1

∥fk∥2L2

=T∥div τ c
0 + f c

0∥2L2 +
T

2

N
k=1

[∥ − kω σηsk + div τ c
k + f c

k∥2L2 + ∥kω σηck + div τ s
k + fs

k∥2L2 ]

+
T

2

∞
k=N+1

[∥f c
k∥2L2 + ∥fs

k∥2L2 ]

=T∥R1
c
0(τ

c
0)∥2L2 +

T

2

N
k=1

[∥R1
c
k(η

s
k, τ

c
k)∥2L2 + ∥R1

s
k(η

c
k, τ

s
k)∥2L2 ] +

T

2

∞
k=N+1

[∥f c
k∥2L2 + ∥fs

k∥2L2 ],
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where

R1
c
0(τ

c
0) = div τ c

0 + f c
0 ,

R1
c
k(η

s
k, τ

c
k) = −kω σηsk + div τ c

k + f c
k , ∀ k = 1, . . . , N,

R1
s
k(η

c
k, τ

s
k) = kω σηck + div τ s

k + fs
k , ∀ k = 1, . . . , N,

(6.12)

and

∥R2(η, τ)∥2L2(QT ) = T∥τ c
0 − ν∇ηc0∥2L2 +

T

2

N
k=1

∥τ k − ν∇ηk∥2L2

= T∥τ c
0 − ν∇ηc0∥2L2 +

T

2

N
k=1

[∥τ c
k − ν∇ηck∥2L2 + ∥τ s

k − ν∇ηsk∥2L2 ]

= T∥R2
c
0(η

c
0, τ

c
0)∥2L2 +

T

2

N
k=1

[∥R2
c
k(η

c
k, τ

c
k)∥2L2 + ∥R2

s
k(η

s
k, τ

s
k)∥2L2 ],

where

R2
c
0(η

c
0, τ

c
0) = τ c

0 − ν∇ηc0,

R2
j
k(η

j
k, τ

j
k) = τ j

k − ν∇ηjk, ∀ k = 1, . . . , N, j ∈ {c, s}.
(6.13)

Corollary 6.5. The error majorants M⊕
|·|(η, τ ) and M⊕

∥·∥(η, τ ) are given by

M⊕
|·|(η, τ ) =

1

µ1,|·|


CF ∥R1(η, τ )∥L2(QT ) + ∥R2(η, τ )∥L2(QT )


=

1

µ1,|·|


CF


T∥R1

c
0(τ

c
0)∥2L2 +

T

2

N
k=1

[∥R1
c
k(η

s
k, τ

c
k)∥2L2 + ∥R1

s
k(η

c
k, τ

s
k)∥2L2 ]

+
T

2

∞
k=N+1

[∥f c
k∥2L2 + ∥fs

k∥2L2 ]
1/2

+

T∥R2

c
0(η

c
0, τ

c
0)∥2L2 +

T

2

N
k=1

[∥R2
c
k(η

c
k, τ

c
k)∥2L2 + ∥R2

s
k(η

s
k, τ

s
k)∥2L2 ]

1/2
,

where µ1,|·| = min{ν, σ}, and

M⊕
∥·∥(η, τ ) =

1

µ1,∥·∥


∥R1(η, τ )∥2L2(QT ) + ∥R2(η, τ )∥2L2(QT )

1/2
=

1

µ1,∥·∥


T

∥R1

c
0(τ

c
0)∥2L2 + ∥R2

c
0(η

c
0, τ

c
0)∥2L2


+

T

2

N
k=1

[∥R1
c
k(η

s
k, τ

c
k)∥2L2 + ∥R1

s
k(η

c
k, τ

s
k)∥2L2

+ ∥R2
c
k(η

c
k, τ

c
k)∥2L2 + ∥R2

s
k(η

s
k, τ

s
k)∥2L2 ]

+
T

2

∞
k=N+1

[∥f c
k∥2L2 + ∥fs

k∥2L2 ]
1/2

where µ1,∥·∥ = min{ ν
C2

F+1
, σ}, respectively.

The term

T

2

∞
k=N+1

∥fk∥2L2(Ω) =
T

2

∞
k=N+1

[∥f c
k∥2L2 + ∥fs

k∥2L2 ]
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corresponds to the high oscillatory part of the right-hand side f . This term can be controlled due to
the knowledge on the data f .

Remark 6.6. It is obvious that η is the exact solution of problem (6.1) and τ is the exact flux if and
only if the error majorants vanish, i.e.,

R1
c
k = 0 and R2

c
k = 0 ∀ k = 0, 1, . . . , N,

R1
s
k = 0 and R2

s
k = 0 ∀ k = 1, 2, . . . , N,

(6.14)

i.e.,

− div τ c
0 = f c

0 , τ c
0 = ν∇ηc0,

kω σηsk − div τ c
k = f c

k , −kω σηck − div τ s
k = fs

k , τ c
k = ν∇ηck, τ s

k = ν∇ηsk, ∀ k = 1, . . . , N,

and the data f has a multiharmonic representation, i.e.,

f(x, t) = f c
0(x) +

N
k=1

[f c
k(x) cos(kωt) + fs

k(x) sin(kωt)].

Moreover, η and τ converge to the exact solution and flux, respectively, if and only if η = ηN and
τ = τN in (6.11) with N going to infinity and the error majorants corresponding to the modes
k = 0, 1, . . . vanish as in (6.14).

Another approach to derive some kind of Fourier series representation of the majorant is to insert
the Fourier series ansatz immediately into the bilinear form a(u− η, v) and into the functional Fη(v)

as defined in (6.2), but now we consider the variational problem (3.4) since η ∈ H1,1
0,per(QT ). Due to

the orthogonalities of the cosine and sine functions (2.9), we obtain the following integral identities
corresponding to every single mode k = 1, . . . , N :

Ω


ν(x)∇(uk(x)− ηk(x)) · ∇vk(x) + kω σ(x)(uk(x)− ηk(x)) · v⊥

k (x)

dx

=


Ω


fk(x) · vk(x)− ν(x)∇ηk(x) · ∇vk(x)− kω σ(x)ηk(x) · v⊥

k (x)

dx,

(6.15)

which are valid for all vk ∈ (H1
0 (Ω))

2, and, in the case k = 0, we obtain the integral identity
Ω

ν(x)∇(uc
0(x)− ηc0(x)) · ∇vc0(x) dx =


Ω

(f c
0(x) v

c
0(x)− ν(x)∇ηc0(x) · ∇vc0(x)) dx, (6.16)

which is valid for all vc0 ∈ H1
0 (Ω). We define the left hand sides of (6.15) and (6.16) by

ak(uk − ηk,vk) and a0(u
c
0 − ηc0, v

c
0),

respectively. We start with the case k = 1, . . . , N . Let us compute an upper bound for the errors

ek := uk − ηk, ∀ k = 1, . . . , N,

in (H1
0 (Ω))

2. First, we define the bilinear form ak(·, ·) as in (3.8), i.e.,

ak(uk,vk) =


Ω


ν(x)∇uk(x) · ∇vk(x) + kω σ(x)uk(x) · v⊥

k (x)

dx. (6.17)

Following the proof of Theorem 3.1, we analogously deduce the inf-sup condition

sup
0̸=vk∈(H1

0 (Ω))2

ak(uk − ηk,vk)

∥vk∥H1(Ω)
≥ ck ∥uk − ηk∥H1(Ω) (6.18)



6.1. A POSTERIORI ERROR ESTIMATES FOR PARABOLIC TIME-PERIODIC BVPS 127

with the inf-sup constant ck = min{ν, kω σ}. We denote the right-hand side of (6.15) by Fηk
(vk),

i.e.,

Fηk
(vk) =


Ω


fk(x) · vk(x)− ν(x)∇ηk(x) · ∇vk(x)− kω σ(x)ηk(x) · v⊥

k (x)

dx,

and need to find an upper bound of

sup
0̸=vk∈(H1

0 (Ω))2

Fηk
(vk)

∥vk∥H1(Ω)
.

Moreover, we introduce a function of vector-valued functions

τ k = (τ c
k, τ

s
k)

T , τ c
k, τ

s
k ∈ H(div,Ω) := {τ ∈ [L2(Ω)]d : div τ ∈ L2(Ω)},

with the weak divergence fulfilling
Ω

div τ v dx = −

Ω

τ · ∇v dx ∀ v ∈ C∞
0 (Ω).

Due to the Cauchy-Schwarz inequality, we obtain

Fηk
(vk) =


Ω


fk · vk − kω σ(x)ηk · v⊥

k + div τ k · vk + τ k · ∇vk − ν(x)∇ηk · ∇vk


dx

=


Ω


fk · vk + kω σ(x)η⊥

k · vk + div τ k · vk + (τ k − ν(x)∇ηk) · ∇vk


dx

≤ ∥R1k(ηk, τ k)∥L2(Ω)∥vk∥L2(Ω) + ∥R2k(ηk, τ k)∥L2(Ω)∥∇vk∥L2(Ω)

≤

∥R1k(ηk, τ k)∥2L2(Ω) + ∥R2k(ηk, τ k)∥2L2(Ω)

1/2 
∥vk∥2L2(Ω) + ∥∇vk∥2L2(Ω)

1/2
=

∥R1k(ηk, τ k)∥2L2(Ω) + ∥R2k(ηk, τ k)∥2L2(Ω)

1/2
∥vk∥H1(Ω)

(6.19)

with

R1k(ηk, τ k) = kω ση⊥
k + div τ k + fk = (−kω σηsk + div τ c

k + f c
k , kω σηck + div τ s

k + fs
k)

T

= (R1
c
k(η

s
k, τ

c
k),R1

s
k(η

c
k, τ

s
k))

T

and

R2k(ηk, τ k) = τ k − ν∇ηk = (τ c
k − ν∇ηck, τ

s
k − ν∇ηsk)

T

= (R2
c
k(η

c
k, τ

c
k),R2

s
k(η

s
k, τ

s
k))

T .

Hence, we have derived the same results as in (6.12) and (6.13) for every mode k = 1, . . . , N . Using
the estimate (6.19) together with the inf-sup condition (6.18), we finally arrive at the following upper
bounds for every single mode k = 1, . . . , N :

Corollary 6.7. Let ηk ∈ (H1
0 (Ω))

2 and the bilinear form ak(·, ·) defined by (6.17) satisfy (6.18).
Then, we obtain the estimate

∥uk − ηk∥H1(Ω) ≤
1

ck


∥R1k(ηk, τ k)∥2L2(Ω) + ∥R2k(ηk, τ k)∥2L2(Ω)

1/2
=: M⊕k

∥·∥(ηk, τ k), (6.20)

where ck = min{ν, kω σ} and τ k = (τ c
k, τ

s
k)

T with τ c
k, τ

s
k ∈ H(div,Ω).
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Using the inf-sup condition

sup
0 ̸=vk∈(H1

0 (Ω))2

ak(uk,vk)

|vk|H1(Ω)
= sup

0̸=vk∈(H1
0 (Ω))2

(ν∇uk,∇vk)L2(Ω) + kω

σuk,v

⊥
k


L2(Ω)

|vk|H1(Ω)

≥


ν∇uk,∇(uk − u⊥

k )

L2(Ω)

+ kω

σuk, (uk − u⊥

k )
⊥

L2(Ω)

|uk − u⊥
k |H1(Ω)

=
(ν∇uk,∇uk)L2(Ω) + kω (σuk,uk)L2(Ω)√

2|uk|H1(Ω)

≥
ν∥∇uk∥2L2(Ω) + kωσ∥uk∥2L2(Ω)√

2|uk|H1(Ω)

≥
ν∥∇uk∥2L2(Ω) +

kωσ
C2

F+1
∥∇uk∥2L2(Ω)√

2|uk|H1(Ω)

≥
min{ν, kωσ

C2
F+1

}
√
2

|uk|H1(Ω)

(6.21)

together with the estimate

Fηk
(vk) ≤ ∥R1k(ηk, τ k)∥L2(Ω)∥vk∥L2(Ω) + ∥R2k(ηk, τ k)∥L2(Ω)∥∇vk∥L2(Ω)

≤

CF ∥R1k(ηk, τ k)∥L2(Ω) + ∥R2k(ηk, τ k)∥L2(Ω)


|vk|H1(Ω)

yields the following error majorant for the H1-seminorm:

Corollary 6.8. Let ηk ∈ (H1
0 (Ω))

2 and the bilinear form ak(·, ·) defined by (6.17) satisfy (6.21).
Then, we obtain the estimate

|uk − ηk|H1(Ω) ≤
√
2

min{ν, kωσ
C2

F+1
}

CF ∥R1k(ηk, τ k)∥L2(Ω) + ∥R2k(ηk, τ k)∥L2(Ω)


=: M⊕k

|·| (ηk, τ k),

(6.22)

where τ k = (τ c
k, τ

s
k)

T with τ c
k, τ

s
k ∈ H(div,Ω).

Now, let us consider the case k = 0. Here, we want to compute an upper bound for the error

ec0 := uc
0 − ηc0

in H1
0 (Ω). We define the bilinear form a0(·, ·) as in (3.9), i.e.,

a0(u
c
0, v

c
0) =


Ω

ν(x)∇uc
0(x) · ∇vc0(x) dx. (6.23)

From the proof of Theorem 3.1, we know that

sup
0 ̸=vc

0∈H1
0 (Ω)

a0(u
c
0 − ηc0, v

c
0)

∥vc0∥H1(Ω)
≥ c0 ∥uc

0 − ηc0∥H1(Ω) (6.24)

with the inf-sup constant c0 = ν
C2

F+1
. Moreover, one can easily show that

sup
0̸=vc

0∈H1
0 (Ω)

a0(u
c
0 − ηc0, v

c
0)

|vc0|H1(Ω)
≥ a0(u

c
0 − ηc0, u

c
0 − ηc0)

|uc
0 − ηc0|H1(Ω)

≥ ν |uc
0 − ηc0|H1(Ω), (6.25)
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since ν satisfies the assumptions (2.29). We denote the right-hand side of (6.16) by Fηc
0
(vc0), i.e.,

Fηc
0
(vc0) =


Ω

(f c
0(x) v

c
0(x)− ν(x)∇ηc0(x) · ∇vc0(x)) dx,

and need to find an upper bound of

sup
0̸=vc

0∈H1
0 (Ω)

Fηc
0
(vc0)

∥vc0∥H1(Ω)
and sup

0̸=vc
0∈H1

0 (Ω)

Fηc
0
(vc0)

|vc0|H1(Ω)
.

Again, we introduce a vector-valued function

τ c
0 ∈ H(div,Ω).

Due to the Cauchy-Schwarz inequality, we obtain

Fηc
0
(vc0) =


Ω


f c
0 v

c
0 + div τ c

0 v
c
0 + τ c

0 · ∇vc0 − ν(x)∇ηc0 · ∇vc0

dx

=


Ω


(f c

0 + div τ c
0) v

c
0 + (τ c

0 − ν(x)∇ηc0) · ∇vc0

dx

≤ ∥R1
c
0(τ

c
0)∥L2(Ω)∥vc0∥L2(Ω) + ∥R2

c
0(η

c
0, τ

c
0)∥L2(Ω)∥∇vc0∥L2(Ω)

≤

∥R1

c
0(τ

c
0)∥2L2(Ω) + ∥R2

c
0(η

c
0, τ

c
0)∥2L2(Ω)

1/2
∥vc0∥H1(Ω)

(6.26)

and

Fηc
0
(vc0) ≤ ∥R1

c
0(τ

c
0)∥L2(Ω)∥vc0∥L2(Ω) + ∥R2

c
0(η

c
0, τ

c
0)∥L2(Ω)∥∇vc0∥L2(Ω)

≤

CF ∥R1

c
0(τ

c
0)∥L2(Ω) + ∥R2

c
0(η

c
0, τ

c
0)∥L2(Ω)


|vc0|H1(Ω)

(6.27)

with

R1
c
0(τ

c
0) = f c

0 + div τ c
0 and R2

c
0(η

c
0, τ

c
0) = τ c

0 − ν∇ηc0.

Hence, we have derived the same results as in (6.12) and (6.13) for k = 0. Using the estimates (6.26)
and (6.27) together with the inf-sup conditions (6.24) and (6.25), we finally arrive at the following
upper bounds for the case k = 0, which correspond to the H1-norm and seminorm, respectively:

Corollary 6.9. Let ηc0 ∈ H1
0 (Ω) and the bilinear form a0(·, ·) defined as in (6.23) satisfy (6.24).

Then,

∥uc
0 − ηc0∥H1(Ω) ≤

1

c0


∥R1

c
0(τ

c
0)∥2L2(Ω) + ∥R2

c
0(η

c
0, τ

c
0)∥2L2(Ω)

1/2
=: M⊕0

∥·∥(η
c
0, τ

c
0), (6.28)

where c0 = ν
C2

F+1
and τ c

0 ∈ H(div,Ω).

Corollary 6.10. Let ηc0 ∈ H1
0 (Ω) and the bilinear form a0(·, ·) defined as in (6.23) satisfy (6.25).

Then,

|uc
0 − ηc0|H1(Ω) ≤

1

ν


CF ∥R1

c
0(τ

c
0)∥L2(Ω) + ∥R2

c
0(η

c
0, τ

c
0)∥L2(Ω)


=: M⊕0

|·| (η
c
0, τ

c
0), (6.29)

where τ c
0 ∈ H(div,Ω).

Now, we go back to the beginning of the chapter, but consider error estimates regarding approxima-
tions η for the solution u that are less regular than H1,1

0,per(QT ).
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A second a posteriori error result

In the following, we deduce another upper bound of the error e := u− η, which is valid for approxi-
mations that are less regular with respect to the time, i.e.,

η ∈ H
1, 12
0 (QT ).

In fact, we will choose a multiharmonic finite element approximation uNh as η, which is, of course,
more regular in time, but the abstract functional a posteriori error estimates, which we obtain, can
be used in a more general setting.
Let us again consider the functional

Fη(v) =

 T

0


Ω


f v − σ(x)∂

1/2
t η ∂

1/2
t v⊥ − ν(x)∇η · ∇v


dx dt

defined for all v ∈ H
1, 12
0 (QT ). Besides the vector-valued function τ ∈ H(div, QT ), let us introduce

the function

κ ∈ H0, 12 (QT ),

which fulfills the identity  T

0

κ ∂
1/2
t v⊥ dt = −

 T

0

∂
1/2
t κ⊥ v dt (6.30)

for all v ∈ H0, 12 (QT ). This identity is defined in the Fourier space according to Definition 3.2, i.e.,


κ, ∂

1/2
t v


L2(QT )

:=
T

2

∞
k=1

(kω)1/2(κk,vk)L2(Ω) (6.31)

yielding the following definitions in the Fourier space:

∂
1/2
t κ(x, t) :=

∞
k=1

(kω)1/2[κc
k(x) cos(kωt) + κs

k(x) sin(kωt)]

=

∞
k=1

(kω)1/2 (κc
k(x), κ

s
k(x))  

=κT
k

·


cos(kωt)
sin(kωt)


,

∂
1/2
t κ⊥(x, t) :=

∞
k=1

(kω)1/2[−κs
k(x) cos(kωt) + κc

k(x) sin(kωt)]

=

∞
k=1

(kω)1/2 (−κs
k(x), κ

c
k(x))  

=(κ⊥
k )T

·


cos(kωt)
sin(kωt)


.

Hence,


κ, ∂

1/2
t v⊥


L2(QT )

=
T

2

∞
k=1

(kω)1/2(κk,v
⊥
k )L2(Ω) = −


∂
1/2
t κ, v⊥


L2(QT )

and 
κ, ∂

1/2
t v⊥


L2(QT )

=
T

2

∞
k=1

(kω)1/2(κk,v
⊥
k )L2(Ω) =

T

2

∞
k=1

(kω)1/2(−κ⊥
k ,vk)L2(Ω)

= −T

2

∞
k=1

(kω)1/2(κ⊥
k ,vk)L2(Ω) = −


∂
1/2
t κ⊥, v


L2(QT )

.
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Remark 6.11. Identity (6.30) and definition (6.31) coincide with the identities (3.10) like, e.g.,
∂
1/2
t u, ∂

1/2
t v⊥


L2(QT )

=

∂tu, v


L2(QT )

∀u ∈ H0,1
per(QT ) ∀ v ∈ H0, 12 (QT ),

since we have that
∂
1/2
t u, ∂

1/2
t v⊥


L2(QT )

=
T

2

∞
k=1

(kω)(uk,v
⊥
k )L2(Ω) =

T

2

∞
k=1

(kω)(−u⊥
k ,vk)L2(Ω) =


∂tu, v


L2(QT )

.

We rearrange the functional Fη(v) and write it as

Fη(v) =

 T

0


Ω


f v − σ∂

1/2
t η ∂

1/2
t v⊥ − ν∇η · ∇v


dx dt

=

 T

0


Ω


f v − σ∂

1/2
t η ∂

1/2
t v⊥ + σ κ ∂

1/2
t v⊥ + σ∂

1/2
t κ⊥ v + div τ v

+ τ · ∇v − ν∇η · ∇v

dx dt

=

 T

0


Ω


f v + div τ v + σ∂

1/2
t κ⊥ v − σ∂

1/2
t η ∂

1/2
t v⊥ + σ κ ∂

1/2
t v⊥

+ τ · ∇v − ν∇η · ∇v

dx dt

=

 T

0


Ω


f + div τ + σ∂

1/2
t κ⊥


v +


σ(−∂

1/2
t η + κ)


∂
1/2
t v⊥ + (τ − ν∇η) · ∇v


dx dt

for all v ∈ H
1, 12
0 (QT ).

Remark 6.12. We can interpret τ as “an image” of ν∇u and κ as “an image” of ∂1/2
t u.

Let

R1(τ , κ) = f + div τ + σ∂
1/2
t κ⊥,

R2(τ , η) = τ − ν∇η,

R3(κ, η) = σ(κ− ∂
1/2
t η).

Then, the functional Fη(v) can be estimated from above as follows

Fη(v) ≤∥R1(τ , κ)∥L2(QT )∥v∥L2(QT ) + ∥R2(τ , η)∥L2(QT )∥∇v∥L2(QT )

+ ∥R3(κ, η)∥L2(QT )∥∂
1/2
t v∥L2(QT )

≤

∥R1(τ , κ)∥2L2(QT ) + ∥R2(τ , η)∥2L2(QT ) + ∥R3(κ, η)∥2L2(QT )

1/2
∥v∥

H1, 1
2
(QT ) ,

using the Cauchy-Schwarz inequality and ∥∂1/2
t v⊥∥L2(QT ) = ∥∂1/2

t v∥L2(QT ), since

∂1/2
t v⊥

2
L2(QT )

=
T

2

∞
k=1

kω∥v⊥
k ∥2L2(Ω) =

T

2

∞
k=1

kω∥vk∥2L2(Ω) =
∂1/2

t v
2
L2(QT )

.

Altogether, we obtain the upper bound

sup

0̸=v∈H
1, 1

2
0 (QT )

Fη(v)

∥v∥
H1, 1

2 (QT )

≤

∥R1(τ , κ)∥2L2(QT ) + ∥R2(τ , η)∥2L2(QT ) + ∥R3(κ, η)∥2L2(QT )

1/2
,

(6.32)

and, finally, deduce the following theorem:
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Theorem 6.13. Let η ∈ H
1, 12
0 (QT ) and the bilinear form a(·, ·) defined in (3.17) satisfy (6.3). Then,

∥u− η∥
H1, 1

2 (QT )
≤ 1

µ1


∥R1(τ , κ)∥2L2(QT ) + ∥R2(τ , η)∥2L2(QT ) + ∥R3(κ, η)∥2L2(QT )

1/2
=: M⊕

∥·∥(η, τ , κ),

(6.33)

where τ ∈ H(div, QT ), κ ∈ H0, 12 (QT ) and µ1 = min{ ν
C2

F+1
, σ}.

Proof. From (6.3) follows that

∥u− η∥
H1, 1

2 (QT )
≤ 1

µ1
sup

0̸=v∈H
1, 1

2
0 (QT )

a(u− η, v)

∥v∥
H1, 1

2 (QT )

=
1

µ1
sup

0̸=v∈H
1, 1

2
0 (QT )

Fη(v)

∥v∥
H1, 1

2 (QT )

,

which leads together with (6.32) to the final estimate (6.33).

Remark 6.14. If R1(τ , κ) = 0, R2(τ , η) = 0 and R3(κ, η) = 0, then

− σ∂
1/2
t κ⊥ − div τ = f,

τ = ν∇η,

κ = ∂
1/2
t η.

Since η satisfies the Dirichlet condition on ΣT , η is the solution. In other words, M⊕
∥·∥(η, τ , κ)

vanishes if and only if η is the exact solution, τ is the exact flux and κ is the exact half time
derivative of the solution. Moreover, if η ∈ H1,1

0,per(QT ), we derive the original equation (3.1)

σ∂tη − div (ν∇η) = f

in the weak sense, due to

−

σ∂

1/2
t (∂

1/2
t η)⊥, v


L2(QT )

=

σ∂

1/2
t η, ∂

1/2
t v⊥


L2(QT )

=

σ∂tη, v


L2(QT )

using the σ-weighted counterparts of the identities (6.30) and (3.10), cf. (3.13) as well.

It is obvious that similar results to the ones obtained in Theorem 6.2 for the H1, 12 -seminorm can be
shown here together with the estimate

Fη(v) ≤∥R1(τ , κ)∥L2(QT )∥v∥L2(QT ) + ∥R2(τ , η)∥L2(QT )∥∇v∥L2(QT )

+ ∥R3(κ, η)∥L2(QT )∥∂
1/2
t v∥L2(QT )

≤CF ∥R1(τ , κ)∥L2(QT )∥∇v∥L2(QT ) + ∥R2(τ , η)∥L2(QT )∥∇v∥L2(QT )

+ ∥R3(κ, η)∥L2(QT )∥∂
1/2
t v∥L2(QT )

=

CF ∥R1(τ , κ)∥L2(QT ) + ∥R2(τ , η)∥L2(QT )


∥∇v∥L2(QT )

+ ∥R3(κ, η)∥L2(QT )∥∂
1/2
t v∥L2(QT )

≤
 

CF ∥R1(τ , κ)∥L2(QT ) + ∥R2(τ , η)∥L2(QT )

2
+ ∥R3(κ, η)∥2L2(QT )

1/2
|v|

H1, 1
2
(QT ) .

(6.34)

Hence, we obtain the following theorem:

Theorem 6.15. Let η ∈ H
1, 12
0 (QT ) and the bilinear form a(·, ·) defined by (3.17) satisfy (6.4). Then,

|u− η|
H1, 1

2 (QT )
≤ 1

µ1


CF ∥R1(τ , κ)∥L2(QT ) + ∥R2(τ , η)∥L2(QT )

2
+ ∥R3(κ, η)∥2L2(QT )

1/2
=: M⊕

|·|(η, τ , κ),

(6.35)

where τ ∈ H(div, QT ), κ ∈ H0, 12 (QT ) and µ1 = min{ν, σ}.
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Proof. The estimate is analogously proven as the one of Theorem 6.13 by using (6.4) and (6.34).

Similarly, we can prove a posteriori error estimates using the seminorm | · |V0
introduced in Chapter 3,

which is a weighted H1, 12 -seminorm, i.e.,

|u|2V0
= (ν∇u,∇u)L2(QT ) +


σ∂

1/2
t u, ∂

1/2
t u


L2(QT )

,

= T (ν∇uc
0,∇uc

0)L2(Ω) +
T

2

∞
k=1

[(ν∇uk,∇uk)L2(Ω) + kω (σuk,uk)L2(Ω)],

and, as already mentioned, in fact, a norm due to the Friedrichs inequality. We obtain the following
inf-sup and sup-sup conditions regarding the V0-seminorm:

Lemma 6.16. The space-time bilinear form a(·, ·) defined by (3.17) fulfills the following inf-sup and
sup-sup conditions:

µ1|u|V0
≤ sup

0̸=v∈H
1, 1

2
0 (QT )

a(u, v)

|v|V0

≤ µ2|u|V0
(6.36)

for all u ∈ H
1, 12
0 (QT ) with constants µ1 = 1/

√
2 and µ2 = 1.

Proof. We start with the proof of the sup-sup condition. Using the triangle inequality and the σ- and
ν-weighted counterparts of the Cauchy-Schwarz inequalities (3.14) and (3.15), we obtain the estimate

|a(u, v)| =


 T

0


Ω


σ(x)∂

1/2
t u ∂

1/2
t v⊥ + ν(x)∇u · ∇v


dx dt


≤


 T

0


Ω

σ(x)∂
1/2
t u ∂

1/2
t v⊥ dx dt

+

 T

0


Ω

ν(x)∇u · ∇v dx dt


≤

σ∂

1/2
t u, ∂

1/2
t u

1/2
L2(QT )


σ∂

1/2
t v⊥, ∂

1/2
t v⊥

1/2
L2(QT )

+ (ν∇u,∇u)
1/2
L2(QT )(ν∇v,∇v)

1/2
L2(QT )

=

σ∂

1/2
t u, ∂

1/2
t u

1/2
L2(QT )


σ∂

1/2
t v, ∂

1/2
t v

1/2
L2(QT )

+ (ν∇u,∇u)L2(QT )(ν∇v,∇v)
1/2
L2(QT ),

since 
σ∂

1/2
t v⊥, ∂

1/2
t v⊥


L2(QT )

=
T

2

∞
k=1

kω(σv⊥
k ,v

⊥
k )L2(Ω)

=
T

2

∞
k=1

kω(σvk,vk)L2(Ω) =

σ∂

1/2
t v, ∂

1/2
t v


L2(QT )

.

Finally, we prove the sup-sup condition by

|a(u, v)| ≤

σ∂

1/2
t u, ∂

1/2
t u

1/2
L2(QT )


σ∂

1/2
t v, ∂

1/2
t v

1/2
L2(QT )

+ (ν∇u,∇u)
1/2
L2(QT )(ν∇v,∇v)

1/2
L2(QT )

≤


σ∂
1/2
t u, ∂

1/2
t u


L2(QT )

+ (ν∇u,∇u)L2(QT )

1/2
σ∂

1/2
t v, ∂

1/2
t v


L2(QT )

+ (ν∇v,∇v)L2(QT )

1/2
= µ2|u|V0 |v|V0

with the constant µ2 = 1. Next, we prove the inf-sup condition by choosing the test function
v = u−u⊥ and using the σ- and ν-weighted orthogonality relations (3.13). With the choice v = u−u⊥,
we obtain

a(u, u) =

 T

0


Ω


σ(x)∂

1/2
t u ∂

1/2
t u⊥ + ν(x)∇u · ∇u


dx dt = (ν∇u,∇u)L2(QT ),

a(u,−u⊥) =

 T

0


Ω


σ(x)∂

1/2
t u ∂

1/2
t u+ ν(x)∇u · ∇u⊥


dx dt =


σ∂

1/2
t u, ∂

1/2
t u


L2(QT )

,

a(u, u− u⊥) = |u|2V0
.
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By using the σ- and ν-weighted orthogonalities (3.13) again, we get that |v|V0
=

√
2 |u|V0

, i.e.,

|v|2V0
= |u− u⊥|2V0

=

ν∇(u− u⊥),∇(u− u⊥)


L2(QT )

+

σ∂

1/2
t (u− u⊥), ∂

1/2
t (u− u⊥)


L2(QT )

= (ν∇u,∇u)L2(QT ) −

ν∇u⊥,∇u


L2(QT )

−

ν∇u,∇u⊥

L2(QT )
+

ν∇u⊥,∇u⊥

L2(QT )

+

σ∂

1/2
t u, ∂

1/2
t u


L2(QT )

−

σ∂

1/2
t u⊥, ∂

1/2
t u


L2(QT )

−

σ∂

1/2
t u, ∂

1/2
t u⊥

L2(QT )
+

σ∂

1/2
t u⊥, ∂

1/2
t u⊥

L2(QT )

= (ν∇u,∇u)L2(QT ) + (ν∇u,∇u)L2(QT ) +

σ∂

1/2
t u, ∂

1/2
t u


L2(QT )

+

σ∂

1/2
t u, ∂

1/2
t u


L2(QT )

=2 |u|2V0
.

Altogether, we arrive at the following estimate of the supremum from below:

sup

0̸=v∈H
1, 1

2
0 (QT )

a(u, v)

|v|V0

≥ a(u, u− u⊥)

|u− u⊥|V0

=
|u|2V0√
2|u|V0

=
1√
2
|u|V0

,

which finally yields the inf-sup constant µ1 = 1/
√
2.

Now, we want to find an upper bound for

sup

0̸=v∈H
1, 1

2
0 (QT )

Fη(v)

|v|V0

.

Hence, we estimate the functional Fη(v) as follows

Fη(v) =

 T

0


Ω


f v − σ∂

1/2
t η ∂

1/2
t v⊥ − ν∇η · ∇v


dx dt

=

 T

0


Ω


f v − σ∂

1/2
t η ∂

1/2
t v⊥ + σ κ ∂

1/2
t v⊥ + σ∂

1/2
t κ⊥ v

+ div τ v + τ · ∇v − ν∇η · ∇v

dx dt

=

 T

0


Ω


f v + div τ v + σ∂

1/2
t κ⊥ v + τ · ∇v − ν∇η · ∇v

− σ∂
1/2
t η ∂

1/2
t v⊥ + σ κ ∂

1/2
t v⊥


dx dt

=

 T

0


Ω


f + div τ + σ∂

1/2
t κ⊥


v + (τ − ν∇η) · ∇v

+ σ(−∂
1/2
t η + κ)∂

1/2
t v⊥


dx dt

≤∥R1(τ , κ)∥L2(QT )∥v∥L2(QT ) + ∥R2(τ , η)∥L2(QT )∥∇v∥L2(QT )

+ (σR3(κ, η),R3(κ, η))
1/2
L2(QT )(σ∂

1/2
t v, ∂

1/2
t v)

1/2
L2(QT )

≤CF ∥R1(τ , κ)∥L2(QT )∥∇v∥L2(QT ) + ∥R2(τ , η)∥L2(QT )∥∇v∥L2(QT )

+ (σR3(κ, η),R3(κ, η))
1/2
L2(QT )(σ∂

1/2
t v, ∂

1/2
t v)

1/2
L2(QT )

=

CF ∥R1(τ , κ)∥L2(QT ) + ∥R2(τ , η)∥L2(QT )


∥∇v∥L2(QT )

+ (σR3(κ, η),R3(κ, η))
1/2
L2(QT )(σ∂

1/2
t v, ∂

1/2
t v)

1/2
L2(QT )

≤


CF ∥R1(τ , κ)∥L2(QT ) + ∥R2(τ , η)∥L2(QT )

2
+ (σR3(κ, η),R3(κ, η))L2(QT )

1/2
×

∥∇v∥2L2(QT ) + (σ∂

1/2
t v, ∂

1/2
t v)L2(QT )

1/2

(6.37)
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for all v ∈ H
1, 12
0 (QT ), where

R1(τ , κ) = f + div τ + σ∂
1/2
t κ⊥,

R2(τ , η) = τ − ν∇η,

R3(κ, η) = κ− ∂
1/2
t η.

Hence, it follows an a posteriori error result for the V0-seminorm:

Theorem 6.17. Let η ∈ H
1, 12
0 (QT ) and the bilinear form a(·, ·) satisfy (6.36). Then,

|u− η|V0
≤ µ1


CF ∥R1(τ , κ)∥L2(QT ) + ∥R2(τ , η)∥L2(QT )

2
+ (σR3(κ, η),R3(κ, η))L2(QT )

1/2
=: M⊕

|·|V0
(η, τ , κ),

(6.38)

where τ ∈ H(div, QT ), κ ∈ H0, 12 (QT ) and µ1 =
√
2

min{√ν,1} .

Proof. Using the left inequality of (6.36) and the estimate (6.37), we obtain the following upper bound
using the notation ∥ · ∥L2 = ∥ · ∥L2(QT ):

|u− η|V0 ≤
√
2 sup

0̸=v∈H
1, 1

2
0 (QT )

a(u− η, v)

|v|V0

=
√
2 sup

0̸=v∈H
1, 1

2
0 (QT )

Fη(v)

|v|V0

≤
√
2 sup

0̸=v∈H
1, 1

2
0 (QT )


CF ∥R1∥L2 + ∥R2∥L2

2
+ (σR3,R3)L2

1/2
∥∇v∥2L2 + (σ∂

1/2
t v, ∂

1/2
t v)L2

1/2

(ν∇v,∇v)L2 +


σ∂

1/2
t v, ∂

1/2
t v


L2

1/2
≤

√
2 sup

0̸=v∈H
1, 1

2
0 (QT )


CF ∥R1∥L2 + ∥R2∥L2

2
+ (σR3,R3)L2

1/2
∥∇v∥2L2 + (σ∂

1/2
t v, ∂

1/2
t v)L2

1/2

ν∥∇v∥2L2 +


σ∂

1/2
t v, ∂

1/2
t v


L2

1/2
≤

√
2 sup

0̸=v∈H
1, 1

2
0 (QT )


CF ∥R1∥L2 + ∥R2∥L2

2
+ (σR3,R3)L2

1/2
∥∇v∥2L2 + (σ∂

1/2
t v, ∂

1/2
t v)L2

1/2
min{√ν, 1}


∥∇v∥2L2 +


σ∂

1/2
t v, ∂

1/2
t v


L2

1/2
=

√
2

min{√ν, 1}


CF ∥R1(τ , κ)∥L2(QT ) + ∥R2(τ , η)∥L2(QT )

2
+ (σR3(κ, η),R3(κ, η))L2(QT )

1/2
,

which immediately leads to (6.38).

In order to derive a posteriori estimates for the full weighted H1, 12 -norm, which we define as

∥v∥2V0
= ∥v∥2L2(QT ) + (ν∇v,∇v)L2(QT ) +


σ∂

1/2
t v, ∂

1/2
t v


L2(QT )

,

we have to rearrange the functional Fη(v) again as follows

Fη(v) =

 T

0


Ω


f v − σ∂

1/2
t η ∂

1/2
t v⊥ − ν∇η · ∇v


dx dt

=

 T

0


Ω


f v − σ∂

1/2
t η ∂

1/2
t v⊥ + σ κ ∂

1/2
t v⊥ + σ∂

1/2
t κ⊥ v

+ div (ν τ̃ ) v + (ν τ̃ ) · ∇v − ν∇η · ∇v

dx dt

=

 T

0


Ω


f v + div (ν τ̃ ) v + σ∂

1/2
t κ⊥ v − σ∂

1/2
t η ∂

1/2
t v⊥ + σ κ ∂

1/2
t v⊥

+ (ν τ̃ ) · ∇v − ν∇η · ∇v

dx dt,



136 CHAPTER 6. A POSTERIORI ERROR ANALYSIS

which finally yields

Fη(v) =

 T

0


Ω


f + div (ν τ̃ ) + σ∂

1/2
t κ⊥


v + σ


− ∂

1/2
t η + κ


∂
1/2
t v⊥ + ν


τ̃ −∇η


· ∇v


dx dt

for all v ∈ H
1, 12
0 (QT ). Here, we have introduced a vector-valued function τ̃ fulfilling the identity

Ω

div (ν τ̃ ) v dx = −

Ω

(ν τ̃ ) · ∇v dx ∀ v ∈ C∞
0 (Ω).

Let

R1(τ̃ , κ) = f + div (ν τ̃ ) + σ∂
1/2
t κ⊥,

R2(τ̃ , η) = τ̃ −∇η,

R3(κ, η) = κ− ∂
1/2
t η.

Then, the functional Fη(v) can be estimated from above as follows

Fη(v) ≤∥R1(τ̃ , κ)∥L2(QT )∥v∥L2(QT ) + (νR2(τ̃ , η),R2(τ̃ , η))
1/2
L2(QT )(ν∇v,∇v)

1/2
L2(QT )

+ (σR3(κ, η),R3(κ, η))
1/2
L2(QT )(σ∂

1/2
t v, ∂

1/2
t v)

1/2
L2(QT )

≤

∥R1(τ̃ , κ)∥2L2(QT ) + (νR2(τ̃ , η),R2(τ̃ , η))L2(QT ) + (σR3(κ, η),R3(κ, η))L2(QT )

1/2
∥v∥V0 ,

which leads to the upper bound

sup

0̸=v∈H
1, 1

2
0 (QT )

Fη(v)

∥v∥V0

≤

∥R1(τ̃ , κ)∥2L2(QT ) + (νR2(τ̃ , η),R2(τ̃ , η))L2(QT ) + (σR3(κ, η),R3(κ, η))L2(QT )

1/2
.

(6.39)

Moreover, we can prove the following inf-sup conditions:

Lemma 6.18. The space-time bilinear form a(·, ·) defined by (3.17) fulfills the following inf-sup and
sup-sup conditions:

µ1∥u∥V0
≤ sup

0̸=v∈H
1, 1

2
0 (QT )

a(u, v)

∥v∥V0

≤ µ2∥u∥V0
(6.40)

for all u ∈ H
1, 12
0 (QT ) with constants µ1 = min{1, ν

C2
F
}/
√
5 and µ2 = 1.

Proof. The sup-sup condition is analogously proven as it is done in Lemma 6.16 with the final result

|a(u, v)| ≤ |u|V0
|v|V0

≤ µ2∥u∥V0
∥v∥V0

,

where µ2 = 1. The inf-sup condition is proven by choosing the test function v = u+u−u⊥ and using
the σ- and ν-weighted orthogonality relations (3.13) as well as the Friedrichs inequality (3.19) in the
Fourier space. With the choice v = 2u− u⊥, we obtain

a(u, 2u) =

 T

0


Ω


σ(x)∂

1/2
t u ∂

1/2
t (2u)⊥ + ν(x)∇u · ∇(2u)


dx dt = 2(ν∇u,∇u)L2(QT ),

a(u,−u⊥) =

 T

0


Ω


σ(x)∂

1/2
t u ∂

1/2
t u+ ν(x)∇u · ∇u⊥


dx dt =


σ∂

1/2
t u, ∂

1/2
t u


L2(QT )

,

a(u, 2u− u⊥) = |u|2V0
+ (ν∇u,∇u)L2(QT ) ≥ |u|2V0

+ ν∥∇u∥2L2(QT )

≥ |u|2V0
+

ν

C2
F

∥u∥2L2(QT ) ≥ min{1, ν

C2
F

}∥u∥2V0
.
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By using orthogonalities (3.11), (3.12) and (3.13), we get that ∥v∥V0
=

√
5 ∥u∥V0

, since

∥v∥2V0
= ∥2u− u⊥∥2V0

= ∥2u− u⊥∥2L2(QT ) +

ν∇(2u− u⊥),∇(2u− u⊥)


L2(QT )

+

σ∂

1/2
t (2u− u⊥), ∂

1/2
t (2u− u⊥)


L2(QT )

= ∥2u∥2L2(QT ) + ∥u⊥∥2L2(QT ) + (ν∇(2u),∇(2u))L2(QT ) +

ν∇u⊥,∇u⊥

L2(QT )

+

σ∂

1/2
t (2u), ∂

1/2
t (2u)


L2(QT )

+

σ∂

1/2
t u⊥, ∂

1/2
t u⊥

L2(QT )

=5∥u∥2L2(QT ) + 5 (ν∇u,∇u)L2(QT ) + 5

σ∂

1/2
t u, ∂

1/2
t u


L2(QT )

=5 ∥u∥2V0
.

Altogether, we arrive at the following estimate of the supremum from below:

sup

0̸=v∈H
1, 1

2
0 (QT )

a(u, v)

∥v∥V0

≥ a(u, 2u− u⊥)

∥2u− u⊥∥V0

≥
min{1, ν

C2
F
}∥u∥2V0√

5∥u∥V0

= µ1∥u∥V0 ,

which finally yields the inf-sup constant µ1 = min{1, ν
C2

F
}/
√
5.

Altogether, we obtain the following a posteriori error result for the full V0-norm:

Theorem 6.19. Let η ∈ H
1, 12
0 (QT ) and the bilinear form a(·, ·) satisfy (6.40). Then,

∥u− η∥V0 ≤ 1

µ1


∥R1(τ̃ , κ)∥2L2(QT ) + (νR2(τ̃ , η),R2(τ̃ , η))L2(QT )

+ (σR3(κ, η),R3(κ, η))L2(QT )

1/2
=: M⊕

∥·∥V0
(η, τ̃ , κ),

(6.41)

where (ν τ̃ ) ∈ H(div, QT ), κ ∈ H0, 12 (QT ) and µ1 = min{1, ν
C2

F
}/
√
5.

Proof. The a posteriori error estimate immediately follows from (6.39) and (6.40).

Now, let us discuss again a posteriori error estimates for the Fourier coefficients using the multihar-
monic approximation and the P-norm (3.33) introduced in Section 3.3, i.e.,

∥uk∥2P = (ν∇uk,∇uk)L2(Ω) + kω (σuk,uk)L2(Ω).

We proved the following inf-sup condition:

sup
0̸=vk∈(H1

0 (Ω))2

ak(uk − ηk,vk)

∥vk∥P
≥ c ∥uk − ηk∥P (6.42)

with the parameter-independent constant c = 1/
√
2. Hence, we want to find an upper bound of

sup
0 ̸=vk∈(H1

0 (Ω))2

Fηk
(vk)

∥vk∥P
.

Besides introducing the functions τ k = (τ c
k, τ

s
k)

T of vector-valued functions

τ c
k, τ

s
k ∈ H(div,Ω) := {τ ∈ [L2(Ω)]d : div τ ∈ L2(Ω)},

where the weak divergence fulfills the identity
Ω

div τ v dx = −

Ω

τ · ∇v dx ∀ v ∈ C∞
0 (Ω),
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we introduce the functions

κk = (κc
k, κ

s
k)

T ∈ (H1
0 (Ω))

2

fulfilling the identity
Ω

kω σ(x)κk · v⊥ dx = −

Ω

kω σ(x)κ⊥
k · v dx ∀v ∈ (C∞

0 (Ω))2,

which is a simple orthogonality relation. Due to the Cauchy-Schwarz and Friedrichs inequalities, we
obtain

Fηk
(vk) =


Ω


fk · vk − kω σ(x)ηk · v⊥

k + div τ k · vk + τ k · ∇vk + kω σ(x)κk · v⊥
k

+ kω σ(x)κ⊥
k · vk − ν(x)∇ηk · ∇vk


dx

=


Ω


fk · vk + kω σ(x)κ⊥

k · vk + div τ k · vk + (τ k − ν(x)∇ηk) · ∇vk

− kω σ(x)ηk · v⊥
k + kω σ(x)κk · v⊥

k


dx

≤∥R1k(κk, τ k)∥L2(Ω)∥vk∥L2(Ω) + ∥R2k(ηk, τ k)∥L2(Ω)∥∇vk∥L2(Ω)

+
√
kω(σR3k(ηk,κk),R3k(ηk,κk))

1/2
L2(Ω)(σvk,vk)

1/2
L2(Ω)

≤

CF ∥R1k(κk, τ k)∥L2(Ω) + ∥R2k(ηk, τ k)∥L2(Ω)


∥∇vk∥L2(Ω)

+
√
kω(σR3k(ηk,κk),R3k(ηk,κk))

1/2
L2(Ω)(σvk,vk)

1/2
L2(Ω)

≤


CF ∥R1k(κk, τ k)∥L2(Ω) + ∥R2k(ηk, τ k)∥L2(Ω)

2
+ (σR3k(ηk,κk),R3k(ηk,κk))L2(Ω)

1/2
∥∇vk∥2L2(Ω) + kω (σvk,vk)L2(Ω)

1/2
with

R1k(κk, τ k) = kω σκ⊥
k + div τ k + fk = (−kω σκs

k + div τ c
k + f c

k , kω σκc
k + div τ s

k + fs
k)

T

= (R1
c
k(κ

s
k, τ

c
k),R1

s
k(κ

c
k, τ

s
k))

T ,

R2k(ηk, τ k) = τ k − ν∇ηk = (τ c
k − ν∇ηck, τ

s
k − ν∇ηsk)

T

= (R2
c
k(η

c
k, τ

c
k),R2

s
k(η

s
k, τ

s
k))

T

and

R3k(ηk,κk) = κk − ηk = (κc
k − ηck, κ

s
k − ηsk)

T

= (R3
c
k(η

c
k, κ

c
k),R2

s
k(η

s
k, κ

s
k))

T .

Now, we obtain the following upper bound using the notation ∥ · ∥L2 = ∥ · ∥L2(Ω):

sup
0 ̸=vk∈(H1

0 (Ω))2

Fηk
(vk)

∥vk∥P

≤ sup
0 ̸=vk∈(H1

0 (Ω))2


CF ∥R1k∥L2 + ∥R2k∥L2

2
+ (σR3k,R3k)L2

1/2
∥∇vk∥2L2 + kω (σvk,vk)L2

1/2

(ν∇vk,∇vk)L2 + kω (σvk,vk)L2

1/2
≤ sup

0 ̸=vk∈(H1
0 (Ω))2


CF ∥R1k∥L2 + ∥R2k∥L2

2
+ (σR3k,R3k)L2

1/2
∥∇vk∥2L2 + kω (σvk,vk)L2

1/2

ν∥∇vk∥L2 + kω (σvk,vk)L2

1/2
≤ 1

min{√ν, 1}


CF ∥R1k∥L2 + ∥R2k∥L2

2
+ (σR3k,R3k)L2

1/2
.

(6.43)
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Hence, we have derived another result as in Corollary 6.7 and Corollary 6.8 for every mode k =
1, . . . , N but now with the P-norm. Using the estimate (6.43) together with the inf-sup condition
(6.42), we finally arrive at the following upper bounds for every single mode k = 1, . . . , N :

Corollary 6.20. Let ηk ∈ H1
0 (Ω) and the bilinear form ak(·, ·) defined by (6.17) satisfy (6.42). Then,

it follows together with (6.43) that

∥uk − ηk∥P ≤
√
2

min{√ν, 1}


CF ∥R1k(κk, τ k)∥L2(Ω) + ∥R2k(ηk, τ k)∥L2(Ω)

2
+ (σR3k(ηk,κk),R3k(ηk,κk))L2(Ω)

1/2
=: M⊕k

∥·∥P
(ηk, τ k,κk),

(6.44)

where τ k = (τ c
k, τ

s
k)

T ∈ (H(div,Ω))2 and κk = (κc
k, κ

s
k)

T ∈ (H1
0 (Ω))

2.

In the case k = 0, we obtain the same result as presented in Corollary 6.10.

Remark 6.21. The construction of η and τ is an important issue in order to obtain final bounds
from the majorants M⊕

∗ (replacing ∗ with the different seminorms and norms) in practice. As already
discussed, we can choose for η a multiharmonic finite element approximation, solve the discretized
problem and then reconstruct the flux. A good reconstruction of the flux is an important and non-
trivial topic. For instance, by choosing piecewise linear finite element approximations in space, their
gradients are only piecewise constant and so do not belong to H(div, QT ). Hence, it is important to
regularize τ by a post-processing operator which maps the L2-functions into H(div, QT ), see [153].
There are various techniques for realizing these post-processing steps such as, e.g., local post-processing
by an elementwise averaging procedure or by using Raviart-Thomas elements, see, e.g., [148, 168] and
[153, 123].

Remark 6.22. Another very important topic is the construction of a so-called adaptive multihar-
monic finite element method (AMhFEM). In addition to constructing an adaptive finite element
method (AFEM), we can compute the finite element approximated Fourier coefficients parallel on
different meshes, since the computations of the Fourier coefficients corresponding to every single
mode k = 0, 1 . . . are decoupled. Then, by prescribing certain bounds, we can filter out the Fourier
coefficients, which are important for the (numerical) solution of the problem. Altogether, such an
AMhFEM yields adaptivity in space and time.

6.2 Functional a posteriori error estimates for parabolic time-
periodic optimal control problems

As starting point let us consider the variational problem (4.7) of the reduced optimality system:
Given the desired state yd ∈ L2(QT ), find y and p from H

1, 12
0 (QT ) such that T

0


Ω


y v − ν(x)∇p · ∇v + σ(x)∂

1/2
t p ∂

1/2
t v⊥


dx dt =

 T

0


Ω

yd v dx dt, T

0


Ω


ν(x)∇y · ∇q + σ(x)∂

1/2
t y ∂

1/2
t q⊥ + λ−1p q


dx dt = 0,

(6.45)

for all test functions v, q ∈ H
1, 12
0 (QT ), where all functions are given in their Fourier series expansion

in time according to Definition 3.2. Let us define the space-time bilinear form

B((y, p), (v, q)) =
 T

0


Ω


y v − ν(x)∇p · ∇v + σ(x)∂

1/2
t p ∂

1/2
t v⊥

+ ν(x)∇y · ∇q + σ(x)∂
1/2
t y ∂

1/2
t q⊥ + λ−1p q


dx dt.

(6.46)
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This space-time bilinear form is analogously defined as the bilinear form (4.23) for every single mode
k. Let (η, ζ) be an approximation of (y, p), e.g., the multiharmonic finite element approximations
η = yNh and ζ = pNh, where uNh = −λ−1pNh, of the state and the adjoint state, respectively.

A first a posteriori error result

First, we assume again that η and ζ are a bit more regular than the state y and the adjoint state p
with respect to the time variable, i.e., η, ζ ∈ H1,1

0,per(QT ), that is clearly true for the multiharmonic
finite element approximations. Our goal ist to deduce a computable upper bound of the error

e := (y, p)− (η, ζ) = (y − η, p− ζ) ∈

H

1, 12
0 (QT )

2
.

From (6.45) it follows that

 T

0


Ω


(y − η) v − ν(x)∇(p− ζ) · ∇v + σ(x)∂

1/2
t (p− ζ) ∂

1/2
t v⊥

+ ν(x)∇(y − η) · ∇q + σ(x)∂
1/2
t (y − η) ∂

1/2
t q⊥ + λ−1(p− ζ) q


dx dt

=

 T

0


Ω


yd v − η v + ν(x)∇ζ · ∇v − σ(x)∂

1/2
t ζ ∂

1/2
t v⊥

− ν(x)∇η · ∇q − σ(x)∂
1/2
t η ∂

1/2
t q⊥ − λ−1ζ q


dx dt

(6.47)

for all v, q ∈ H
1, 12
0 (QT ). The left hand side of (6.47) is obviously

B((y − η, p− ζ), (v, q)).

Let us now prove inf-sup and sup-sup conditions for the bilinear form B(·, ·). First, we define the
following H1, 12 -norm for (y, p) ∈ H

1, 12
0 (QT )×H

1, 12
0 (QT ):

∥(y, p)∥
H1, 1

2 (QT )
=


∥y∥2

H1, 1
2 (QT )

+ ∥p∥2
H1, 1

2 (QT )

1/2

.

Lemma 6.23. The space-time bilinear form B(·, ·) defined by (6.46) fulfills the following inf-sup and
sup-sup conditions:

µ1∥(y, p)∥
H1, 1

2 (QT )
≤ sup

0̸=(v,q)∈(H
1, 1

2
0 (QT ))2

B((y, p), (v, q))
∥(v, q)∥

H1, 1
2 (QT )

≤ µ2∥(y, p)∥
H1, 1

2 (QT )
(6.48)

for all y, p ∈ H
1, 12
0 (QT ) with the positive constants µ1 = min{1, 1

λ ,
ν√
λ
, ν

√
λ, σ√

λ
, σ

√
λ} and µ2 =

max{1, ν, σ, λ−1}.

Proof. We start with the proof of the sup-sup condition. Using (2.29), i.e., the boundedness of the
coefficients σ and ν, as well as the triangle and the Cauchy-Schwarz inequalities (3.14) and (3.15),
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we obtain the estimate

B((y, p), (v, q)) =   T

0


Ω


y v − ν(x)∇p · ∇v + σ(x)∂

1/2
t p ∂

1/2
t v⊥

+ ν(x)∇y · ∇q + σ(x)∂
1/2
t y ∂

1/2
t q⊥ + λ−1p q


dx dt


≤
  T

0


Ω

y v dx dt
+   T

0


Ω

ν(x)∇p · ∇v dx dt
+   T

0


Ω

σ(x)∂
1/2
t p ∂

1/2
t v⊥ dx dt


+
  T

0


Ω

ν(x)∇y · ∇q dx dt
+   T

0


Ω

σ(x)∂
1/2
t y ∂

1/2
t q⊥ dx dt

+ λ−1
  T

0


Ω

p q dx dt


≤
 T

0


Ω

|y v| dx dt+ ν

 T

0


Ω

∇p
∇v

 dx dt+ σ

 T

0


Ω

∂1/2
t p

 ∂1/2
t v⊥

 dx dt

+ ν

 T

0


Ω

∇y
∇q

 dx dt+ σ

 T

0


Ω

∂1/2
t y

 ∂1/2
t q⊥

 dx dt+ λ−1

 T

0


Ω

|p q| dx dt

≤∥y∥L2(QT )∥v∥L2(QT ) + ν ∥∇p∥L2(QT )∥∇v∥L2(QT )

+ σ
∂1/2

t p

L2(QT )

∂1/2
t v⊥


L2(QT )

+ ν ∥∇y∥L2(QT )∥∇q∥L2(QT )

+ σ
∂1/2

t y

L2(QT )

∂1/2
t q⊥


L2(QT )

+ λ−1 ∥p∥L2(QT )∥q∥L2(QT ).

Since

∂1/2
t v⊥

2
L2(QT )

=
T

2

∞
k=1

kω∥v⊥
k ∥2L2(Ω) =

T

2

∞
k=1

kω∥vk∥2L2(Ω) =
∂1/2

t v
2
L2(QT )

,

we have thatB((y, p), (v, q)) ≤ ∥y∥L2(QT )∥v∥L2(QT ) + ν ∥∇p∥L2(QT )∥∇v∥L2(QT )

+ σ
∂1/2

t p

L2(QT )

∂1/2
t v⊥


L2(QT )

+ ν ∥∇y∥L2(QT )∥∇q∥L2(QT )

+ σ
∂1/2

t y

L2(QT )

∂1/2
t q⊥


L2(QT )

+ λ−1 ∥p∥L2(QT )∥q∥L2(QT )

= ∥y∥L2(QT )∥v∥L2(QT ) + ν ∥∇p∥L2(QT )∥∇v∥L2(QT ) + σ
∂1/2

t p

L2(QT )

∂1/2
t v


L2(QT )

+ ν ∥∇y∥L2(QT )∥∇q∥L2(QT ) + σ
∂1/2

t y

L2(QT )

∂1/2
t q


L2(QT )

+ λ−1 ∥p∥L2(QT )∥q∥L2(QT )

≤µ2


∥y∥L2(QT )∥v∥L2(QT ) + ∥∇p∥L2(QT )∥∇v∥L2(QT ) +

∂1/2
t p


L2(QT )

∂1/2
t v


L2(QT )

+ ∥∇y∥L2(QT )∥∇q∥L2(QT ) +
∂1/2

t y

L2(QT )

∂1/2
t q


L2(QT )

+ ∥p∥L2(QT )∥q∥L2(QT )


≤µ2


∥y∥2L2(QT ) + ∥∇p∥2L2(QT ) +

∂1/2
t p

2
L2(QT )

+ ∥∇y∥2L2(QT ) +
∂1/2

t y
2
L2(QT )

+ ∥p∥2L2(QT )

1/2
×

∥v∥2L2(QT ) + ∥∇v∥2L2(QT ) +

∂1/2
t v

2
L2(QT )

+ ∥∇q∥2L2(QT ) +
∂1/2

t q
2
L2(QT )

+ ∥q∥2L2(QT )

1/2
=µ2


∥y∥2L2(QT ) + ∥∇y∥2L2(QT ) +

∂1/2
t y

2
L2(QT )

+ ∥p∥2L2(QT ) + ∥∇p∥2L2(QT ) +
∂1/2

t p
2
L2(QT )

1/2
×

∥v∥2L2(QT ) + ∥∇v∥2L2(QT ) +

∂1/2
t v

2
L2(QT )

+ ∥q∥2L2(QT ) + ∥∇q∥2L2(QT ) +
∂1/2

t q
2
L2(QT )

1/2
=µ2


∥y∥2

H1, 1
2 (QT )

+ ∥p∥2
H1, 1

2 (QT )

1/2
∥v∥2

H1, 1
2 (QT )

+ ∥q∥2
H1, 1

2 (QT )

1/2
=µ2∥(y, p)∥

H1, 1
2 (QT )

∥(v, q)∥
H1, 1

2 (QT )
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with µ2 = max{1, ν, σ, λ−1}. Next, we prove the inf-sup condition. By choosing the test function

(v, q) = (y − 1√
λ
p− 1√

λ
p⊥, p+

√
λy −

√
λy⊥)

and using the σ- and ν-weighted orthogonality relations (3.13), we get the following relations:

B((y, p), (y, p)) =
 T

0


Ω


y y − ν(x)∇p · ∇y + σ(x)∂

1/2
t p ∂

1/2
t y⊥

+ ν(x)∇y · ∇p+ σ(x)∂
1/2
t y ∂

1/2
t p⊥ + λ−1p p


dx dt

=

 T

0


Ω


y y + σ(x)∂

1/2
t p ∂

1/2
t y⊥ − σ(x)∂

1/2
t p ∂

1/2
t y⊥ + λ−1p p


dx dt

= ∥y∥2L2(QT ) + λ−1∥p∥2L2(QT ),

B((y, p), (− 1√
λ
p,
√
λy)) =

 T

0


Ω


y (− 1√

λ
p)− ν(x)∇p · ∇(− 1√

λ
p) + σ(x)∂

1/2
t p ∂

1/2
t (− 1√

λ
p)⊥

+ ν(x)∇y · ∇(
√
λy) + σ(x)∂

1/2
t y ∂

1/2
t (

√
λy)⊥ + λ−1p (

√
λy)

dx dt

=

 T

0


Ω

 1√
λ
ν(x)∇p · ∇p− 1√

λ
σ(x)∂

1/2
t p ∂

1/2
t p⊥

+
√
λ ν(x)∇y · ∇y +

√
λσ(x)∂

1/2
t y ∂

1/2
t y⊥


dx dt

=

 T

0


Ω

 1√
λ
ν(x)∇p · ∇p+

√
λ ν(x)∇y · ∇y


dx dt

=
1√
λ
(ν∇p,∇p)L2(QT ) +

√
λ(ν∇y,∇y)L2(QT )

and

B((y, p), (− 1√
λ
p⊥,−

√
λy⊥)) =

 T

0


Ω


y (− 1√

λ
p⊥)− ν(x)∇p · ∇(− 1√

λ
p⊥)

+ σ(x)∂
1/2
t p ∂

1/2
t (− 1√

λ
p⊥)⊥ + ν(x)∇y · ∇(−

√
λy⊥)

+ σ(x)∂
1/2
t y ∂

1/2
t (−

√
λy⊥)⊥ + λ−1p (−

√
λy⊥)


dx dt

=

 T

0


Ω


− 1√

λ
y p⊥ +

1√
λ
σ(x)∂

1/2
t p ∂

1/2
t (−p⊥)⊥ +

√
λσ(x)∂

1/2
t y ∂

1/2
t (−y⊥)⊥ − 1√

λ
p y⊥


dx dt

=

 T

0


Ω


− 1√

λ
y p⊥ +

1√
λ
σ(x)∂

1/2
t p ∂

1/2
t p+

√
λσ(x)∂

1/2
t y ∂

1/2
t y +

1√
λ
y p⊥


dx dt

=

 T

0


Ω

 1√
λ
σ(x)∂

1/2
t p ∂

1/2
t p+

√
λσ(x)∂

1/2
t y ∂

1/2
t y


dx dt

=
1√
λ
(σ∂

1/2
t p, ∂

1/2
t p)L2(QT ) +

√
λ(σ∂

1/2
t y, ∂

1/2
t y)L2(QT ).

From these relations, we easily obtain the estimates

B((y, p), (y, p)) = ∥y∥2L2(QT ) + λ−1∥p∥2L2(QT )

≥ min{1, λ−1}

∥y∥2L2(QT ) + ∥p∥2L2(QT )


= min{1, λ−1} ∥(y, p)∥2L2(QT ),
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B((y, p), (− 1√
λ
p,
√
λy)) =

1√
λ
(ν∇p,∇p)L2(QT ) +

√
λ(ν∇y,∇y)L2(QT )

≥ min{ 1√
λ
,
√
λ} ν


∥∇y∥2L2(QT ) + ∥∇p∥2L2(QT )


= min{ 1√

λ
,
√
λ} ν ∥(∇y,∇p)∥2L2(QT )

and

B((y, p), (− 1√
λ
p⊥,−

√
λy⊥)) =

1√
λ
(σ∂

1/2
t p, ∂

1/2
t p)L2(QT ) +

√
λ(σ∂

1/2
t y, ∂

1/2
t y)L2(QT )

≥ min{ 1√
λ
,
√
λ}σ


∥∂1/2

t y∥2L2(QT ) + ∥∂1/2
t p∥2L2(QT )


= min{ 1√

λ
,
√
λ}σ∥(∂1/2

t y, ∂
1/2
t p)∥2L2(QT ).

Altogether, we have the following estimate from below:

B((y, p), (y − 1√
λ
p− 1√

λ
p⊥, p+

√
λy −

√
λy⊥))

≥ min{1, 1
λ
,
ν√
λ
, ν

√
λ,

σ√
λ
, σ

√
λ}

∥(y, p)∥2L2(QT ) + ∥(∇y,∇p)∥2L2(QT ) + ∥(∂1/2

t y, ∂
1/2
t p)∥2L2(QT )


= µ1∥(y, p)∥2

H1, 1
2 (QT )

with the constant

µ1 = min{1, 1
λ
,
ν√
λ
, ν

√
λ,

σ√
λ
, σ

√
λ}.

We now know from Lemma 6.23 that

sup

0 ̸=(v,q)∈(H
1, 1

2
0 (QT ))2

B((y − η, p− ζ), (v, q)

∥(v, q)∥
H1, 1

2 (QT )

≥ µ1∥(y − η, p− ζ)∥
H1, 1

2 (QT )
(6.49)

with a positive constant µ1. For completeness, we similarly prove inf-sup and sup-sup conditions with
the H1, 12 -seminorm, which is, in fact, an equivalent norm due to the Friedrichs inequality.

Lemma 6.24. The space-time bilinear form B(·, ·) defined by (6.46) fulfills the following inf-sup and
sup-sup conditions:

µ1|(y, p)|
H1, 1

2 (QT )
≤ sup

0 ̸=(v,q)∈(H
1, 1

2
0 (QT ))2

B((y, p), (v, q))
|(v, q)|

H1, 1
2 (QT )

≤ µ2|(y, p)|
H1, 1

2 (QT )
(6.50)

for all y, p ∈ H
1, 12
0 (QT ) with positive constants

µ1 = min{ 1√
λ
,
√
λ}min{ν, σ} and µ2 = max{1, ν, σ, λ−1}max{1, 1 + C2

F },

where CF is the Friedrichs constant as in Theorem 2.5.
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Proof. We prove the sup-sup condition by using the assumptions (2.29) as well as the triangle and
the Cauchy-Schwarz inequalities (3.14) and (3.15). As in the proof of Lemma 6.23, we obtain the
estimate B((y, p), (v, q)) ≤ max{1, ν, σ, λ−1}


∥y∥2L2(QT ) + ∥∇y∥2L2(QT ) +

∂1/2
t y

2
L2(QT )

+ ∥p∥2L2(QT ) + ∥∇p∥2L2(QT ) +
∂1/2

t p
2
L2(QT )

1/2
×

∥v∥2L2(QT ) + ∥∇v∥2L2(QT ) +

∂1/2
t v

2
L2(QT )

+ ∥q∥2L2(QT ) + ∥∇q∥2L2(QT ) +
∂1/2

t q
2
L2(QT )

1/2
.

Using Friedrichs inequality (2.17), see Theorem 2.5, which can be written in the Fourier space by
(3.19), we getB((y, p), (v, q)) ≤ max{1, ν, σ, λ−1}


C2

F ∥∇y∥2L2(QT ) + ∥∇y∥2L2(QT ) +
∂1/2

t y
2
L2(QT )

+ C2
F ∥∇p∥2L2(QT ) + ∥∇p∥2L2(QT ) +

∂1/2
t p

2
L2(QT )

1/2
×

C2

F ∥∇v∥2L2(QT ) + ∥∇v∥2L2(QT ) +
∂1/2

t v
2
L2(QT )

+ C2
F ∥∇q∥2L2(QT ) + ∥∇q∥2L2(QT ) +

∂1/2
t q

2
L2(QT )

1/2
= max{1, ν, σ, λ−1}max{1, 1 + C2

F }

∥∇y∥2L2(QT ) +

∂1/2
t y

2
L2(QT )

+ ∥∇p∥2L2(QT ) +
∂1/2

t p
2
L2(QT )

1/2
∥∇v∥2L2(QT ) +

∂1/2
t v

2
L2(QT )

+ ∥∇q∥2L2(QT ) +
∂1/2

t q
2
L2(QT )

1/2
≤µ2


|y|2

H1, 1
2 (QT )

+ |p|2
H1, 1

2 (QT )

1/2
|v|2

H1, 1
2 (QT )

+ |q|2
H1, 1

2 (QT )

1/2
=µ2|(y, p)|

H1, 1
2
|(v, q)|

H1, 1
2

with the constant µ2 = max{1, ν, σ, λ−1}max{1, 1 + C2
F }. Next, we prove the inf-sup condition by

choosing the test function

(v, q) = (− 1√
λ
p− 1√

λ
p⊥,

√
λy −

√
λy⊥),

and using the σ- and ν-weighted orthogonality relations (3.13). We get the same relations and
estimates as in the proof of Lemma 6.23, i.e.,

B((y, p), (− 1√
λ
p,
√
λy)) =

1√
λ
(ν∇p,∇p)L2(QT ) +

√
λ(ν∇y,∇y)L2(QT )

≥ min{ 1√
λ
,
√
λ} ν


∥∇y∥2L2(QT ) + ∥∇p∥2L2(QT )


= min{ 1√

λ
,
√
λ} ν ∥(∇y,∇p)∥2L2(QT )

and

B((y, p), (− 1√
λ
p⊥,−

√
λy⊥)) =

1√
λ
(σ∂

1/2
t p, ∂

1/2
t p)L2(QT ) +

√
λ(σ∂

1/2
t y, ∂

1/2
t y)L2(QT )

≥ min{ 1√
λ
,
√
λ}σ


∥∂1/2

t y∥2L2(QT ) + ∥∂1/2
t p∥2L2(QT )


= min{ 1√

λ
,
√
λ}σ∥(∂1/2

t y, ∂
1/2
t p)∥2L2(QT ).
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Altogether, we have the following estimate from below:

B((y, p), (− 1√
λ
p− 1√

λ
p⊥,

√
λy −

√
λy⊥))

≥ min{ ν√
λ
, ν

√
λ,

σ√
λ
, σ

√
λ}

∥(∇y,∇p)∥2L2(QT ) + ∥(∂1/2

t y, ∂
1/2
t p)∥2L2(QT )


= µ1|(y, p)|2

H1, 1
2 (QT )

with the constant µ1 = min{ 1√
λ
,
√
λ}min{ν, σ}.

By using the weighted H1, 12 -norms ∥ · ∥V0
, i.e.,

∥y∥V0
:=

∥y∥2L2(QT ) +

√
λ(ν∇y,∇y)L2(QT ) +

√
λ(σ∂

1/2
t y, ∂

1/2
t y)L2(QT )

1/2
,

∥(y, p)∥V0
:=

∥y∥2V0

+ λ−1∥p∥2V0

1/2
,

which were introduced in Chapter 4, we can get rid of all parameters from the inf-sup and sup-sup
constants µ1 and µ2. Hence, we obtain the following lemma:

Lemma 6.25. The space-time bilinear form B(·, ·) defined by (6.46) fulfills the following inf-sup and
sup-sup conditions:

µ1∥(y, p)∥V0
≤ sup

0 ̸=(v,q)∈(H
1, 1

2
0 (QT ))2

B((y, p), (v, q))
∥(v, q)∥V0

≤ µ2∥(y, p)∥V0
(6.51)

for all y, p ∈ H
1, 12
0 (QT ) with µ1 = 1/

√
3 and µ2 = 1.

Proof. We start with the proof of the sup-sup condition. Using the triangle inequality and the σ- and
ν-weighted counterparts of the Cauchy-Schwarz inequalities (3.14) and (3.15), we obtain the estimate

B((y, p), (v, q)) =   T

0


Ω


y v − ν(x)∇p · ∇v + σ(x)∂

1/2
t p ∂

1/2
t v⊥

+ ν(x)∇y · ∇q + σ(x)∂
1/2
t y ∂

1/2
t q⊥ + λ−1p q


dx dt


≤
  T

0


Ω

y v dx dt
+   T

0


Ω

ν(x)∇p · ∇v dx dt


+
  T

0


Ω

σ(x)∂
1/2
t p ∂

1/2
t v⊥ dx dt

+   T

0


Ω

ν(x)∇y · ∇q dx dt


+
  T

0


Ω

σ(x)∂
1/2
t y ∂

1/2
t q⊥ dx dt

+   T

0


Ω

λ−1p q dx dt


≤∥y∥L2(QT )∥v∥L2(QT ) + (ν∇p,∇p)
1/2
L2(QT )(ν∇v,∇v)

1/2
L2(QT )

+ (σ∂
1/2
t p, ∂

1/2
t p)

1/2
L2(QT )(σ∂

1/2
t v, ∂

1/2
t v)

1/2
L2(QT ) + (ν∇y,∇y)

1/2
L2(QT )(ν∇q,∇q)

1/2
L2(QT )

+ (σ∂
1/2
t y, ∂

1/2
t y)

1/2
L2(QT )(σ∂

1/2
t q, ∂

1/2
t q)

1/2
L2(QT ) + λ−1 ∥p∥L2(QT )∥q∥L2(QT ).
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With a proper weighting with λ, we finally prove the sup-sup condition as followsB((y, p), (v, q)) ≤∥y∥L2(QT )∥v∥L2(QT ) + λ−1/4(ν∇p,∇p)
1/2
L2(QT )λ

1/4(ν∇v,∇v)
1/2
L2(QT )

+ λ−1/4(σ∂
1/2
t p, ∂

1/2
t p)

1/2
L2(QT )λ

1/4(σ∂
1/2
t v, ∂

1/2
t v)

1/2
L2(QT )

+ λ1/4(ν∇y,∇y)
1/2
L2(QT )λ

−1/4(ν∇q,∇q)
1/2
L2(QT )

+ λ1/4(σ∂
1/2
t y, ∂

1/2
t y)

1/2
L2(QT )λ

−1/4(σ∂
1/2
t q, ∂

1/2
t q)

1/2
L2(QT )

+ λ−1/2 ∥p∥L2(QT ) λ
−1/2 ∥q∥L2(QT )

≤

∥y∥2L2(QT ) + λ−1/2(ν∇p,∇p)L2(QT ) + λ−1/2(σ∂

1/2
t p, ∂

1/2
t p)L2(QT )

+ λ1/2(ν∇y,∇y)L2(QT ) + λ1/2(σ∂
1/2
t y, ∂

1/2
t y)L2(QT ) + λ−1 ∥p∥2L2(QT )

1/2
×

∥v∥2L2(QT ) + λ1/2(ν∇v,∇v)L2(QT ) + λ1/2(σ∂

1/2
t v, ∂

1/2
t v)L2(QT )

+ λ−1/2(ν∇q,∇q)L2(QT ) + λ−1/2(σ∂
1/2
t q, ∂

1/2
t q)L2(QT ) + λ−1 ∥q∥2L2(QT )

1/2
=

∥y∥2L2(QT ) +

√
λ(ν∇y,∇y)L2(QT ) +

√
λ(σ∂

1/2
t y, ∂

1/2
t y)L2(QT )

+ λ−1

∥p∥2L2(QT ) +

√
λ(ν∇p,∇p)L2(QT ) +

√
λ(σ∂

1/2
t p, ∂

1/2
t p)L2(QT )

1/2
×

∥v∥2L2(QT ) +

√
λ(ν∇v,∇v)L2(QT ) +

√
λ(σ∂

1/2
t v, ∂

1/2
t v)L2(QT )

+ λ−1

∥q∥2L2(QT ) +

√
λ(ν∇q,∇q)L2(QT ) +

√
λ(σ∂

1/2
t q, ∂

1/2
t q)L2(QT )

1/2
=

∥y∥2V0

+ λ−1∥p∥2V0

1/2
∥v∥2V0

+ λ−1∥q∥2V0

1/2
=µ2∥(y, p)∥V0

∥(v, q)∥V0

with µ2 = 1. Next, we prove the inf-sup condition. By choosing the same test function as in the
proof of Lemma 6.23, i.e.,

(v, q) = (y − 1√
λ
p− 1√

λ
p⊥, p+

√
λy −

√
λy⊥)

and using the σ- and ν-weighted orthogonality relations (3.13), we get the following relations:

B((y, p), (y, p)) = ∥y∥2L2(QT ) + λ−1∥p∥2L2(QT ),

B((y, p), (− 1√
λ
p,
√
λy)) =

1√
λ
(ν∇p,∇p)L2(QT ) +

√
λ(ν∇y,∇y)L2(QT ),

B((y, p), (− 1√
λ
p⊥,−

√
λy⊥)) =

1√
λ
(σ∂

1/2
t p, ∂

1/2
t p)L2(QT ) +

√
λ(σ∂

1/2
t y, ∂

1/2
t y)L2(QT ),

which were already proven, see Lemma 6.23. Altogether, we obtain

B((y, p), (y − 1√
λ
p− 1√

λ
p⊥, p+

√
λy −

√
λy⊥)) = ∥y∥2V0

+ λ−1∥p∥2V0
= ∥(y, p)∥2V0

.

Due to

∥(v, q)∥V0
=

√
3 ∥(y, p)∥V0

,
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we arrive at the following estimate of the supremum from below:

sup

0 ̸=(v,q)∈(H
1, 1

2
0 (QT ))2

B((y, p), (v, q))
∥(v, q)∥V0

≥
B((y, p), (y − 1√

λ
p− 1√

λ
p⊥, p+

√
λy −

√
λy⊥))

∥(y − 1√
λ
p− 1√

λ
p⊥, p+

√
λy −

√
λy⊥)∥V0

=
∥(y, p)∥2V0√
3∥(y, p)∥V0

= µ1∥(y, p)∥V0 ,

which finally yields the inf-sup constant µ1 = 1/
√
3.

We denote the right-hand side of (6.47) by F(η,ζ)(v, q). Indeed,

F(η,ζ)(v, q) =

 T

0


Ω


yd v − η v + ν(x)∇ζ · ∇v − σ(x)∂

1/2
t ζ ∂

1/2
t v⊥

− ν(x)∇η · ∇q − σ(x)∂
1/2
t η ∂

1/2
t q⊥ − λ−1ζ q


dx dt

is a linear functional defined on v, q ∈ H
1, 12
0 (QT ). We need to find an upper bound of

sup

0̸=(v,q)∈(H
1, 1

2
0 (QT ))2

F(η,ζ)(v, q)

∥(v, q)∥
H1, 1

2 (QT )

, sup

0̸=(v,q)∈(H
1, 1

2
0 (QT ))2

F(η,ζ)(v, q)

|(v, q)|
H1, 1

2 (QT )

or (6.52)

sup

0 ̸=(v,q)∈(H
1, 1

2
0 (QT ))2

F(η,ζ)(v, q)

∥(v, q)∥V0

, (6.53)

where (6.53) will be discussed later. For getting such upper bounds of (6.52), we need to reconstruct
F(η,ζ). First, we note that the σ-weighted identity (6.6), i.e.,

σ∂
1/2
t η, ∂

1/2
t v⊥


L2(QT )

=

σ∂tη, v


L2(QT )

is valid for η ∈ H1,1
0,per(QT ) and v ∈ H

1, 12
0 (QT ) (and, hence, also for ζ ∈ H1,1

0,per(QT ) and q ∈
H

1, 12
0 (QT )), see also (3.10). Let

τ ,ρ ∈ H(div, QT ) := {τ ∈ [L2(QT )]
d : div τ (·, t) ∈ L2(Ω) for a.e. t ∈ (0, T )}

be two arbitrary vector-valued functions, where div = divx again denotes the weak spatial divergence.
Then, using

Ω

div τ v dx = −

Ω

τ · ∇v dx and

Ω

divρ q dx = −

Ω

ρ · ∇q dx ∀ v, q ∈ C∞
0 (Ω),

we obtain

F(η,ζ)(v, q) =


QT


yd v − η v + ν(x)∇ζ · ∇v − σ(x)∂tζ v − ν(x)∇η · ∇q − σ(x)∂tη q − λ−1ζ q


dx dt

=


QT


yd v − η v + ν(x)∇ζ · ∇v − σ(x)∂tζ v + div τ v + τ · ∇v

− ν(x)∇η · ∇q − σ(x)∂tη q − λ−1ζ q + divρ q + ρ · ∇q

dx dt

=


QT


(yd − σ(x)∂tζ − η + div τ ) v + (ν(x)∇ζ + τ ) · ∇v

+ (−σ(x)∂tη − λ−1ζ + divρ) q + (ρ− ν(x)∇η) · ∇q

dx dt

≤∥R1(η, ζ, τ )∥L2(QT )∥v∥L2(QT ) + ∥R2(ζ, τ )∥L2(QT )∥∇v∥L2(QT )

+ ∥R3(η, ζ,ρ)∥L2(QT )∥q∥L2(QT ) + ∥R4(η,ρ)∥L2(QT )∥∇q∥L2(QT )
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with

R1(η, ζ, τ ) = σ∂tζ + η − div τ − yd, R2(ζ, τ ) = τ + ν∇ζ,

R3(η, ζ,ρ) = σ∂tη + λ−1ζ − divρ, R4(η,ρ) = ρ− ν∇η,

where we have applied the Cauchy-Schwarz inequality in the last estimate. The following two theorems
provide some upper bounds for the error e = (y − η, p− ζ) in the H1, 12 -seminorm and H1, 12 -norm.

Theorem 6.26. Let η, ζ ∈ H1,1
0,per(QT ) and the bilinear form B(·, ·) defined by (6.46) satisfy the

inf-sup condition (6.50). Then,

|e|
H1, 1

2 (QT )
≤ 1

µ1


CF ∥R1(η, ζ, τ )∥L2(QT ) + ∥R2(ζ, τ )∥L2(QT )

+ CF ∥R3(η, ζ,ρ)∥L2(QT ) + ∥R4(η,ρ)∥L2(QT )


=:M⊕

|·|(η, ζ, τ ,ρ),

(6.54)

where e = (y − η, p− ζ) ∈ (H
1, 12
0 (QT ))

2, µ1 = min{ 1√
λ
,
√
λ}min{ν, σ} and τ ,ρ ∈ H(div, QT ).

Proof. Due to the Friedrichs inequality (2.17), see Theorem 2.5, which can be written in the Fourier
space by (3.19), we obtain

F(η,ζ)(v, q) ≤∥R1(η, ζ, τ )∥L2(QT )∥v∥L2(QT ) + ∥R2(ζ, τ )∥L2(QT )∥∇v∥L2(QT )

+ ∥R3(η, ζ,ρ)∥L2(QT )∥q∥L2(QT ) + ∥R4(η,ρ)∥L2(QT )∥∇q∥L2(QT )

≤∥R1(η, ζ, τ )∥L2(QT )CF ∥∇v∥L2(QT ) + ∥R2(ζ, τ )∥L2(QT )∥∇v∥L2(QT )

+ ∥R3(η, ζ,ρ)∥L2(QT )CF ∥∇q∥L2(QT ) + ∥R4(η,ρ)∥L2(QT )∥∇q∥L2(QT )

=

CF ∥R1(η, ζ, τ )∥L2(QT ) + ∥R2(ζ, τ )∥L2(QT )


∥∇v∥L2(QT )

+

CF ∥R3(η, ζ,ρ)∥L2(QT ) + ∥R4(η,ρ)∥L2(QT )


∥∇q∥L2(QT ).

Hence,

sup

0̸=(v,q)∈(H
1, 1

2
0 (QT ))2

F(η,ζ)(v, q)

|(v, q)|
H1, 1

2 (QT )

≤ sup
(v,q)


CF ∥R1(η, ζ, τ )∥L2 + ∥R2(ζ, τ )∥L2


∥∇v∥L2 +


CF ∥R3(η, ζ,ρ)∥L2 + ∥R4(η,ρ)∥L2


∥∇q∥L2

(|v|2
H1, 1

2
+ |q|2

H1, 1
2
)1/2

= sup
(v,q)


CF ∥R1(η, ζ, τ )∥L2 + ∥R2(ζ, τ )∥L2


∥∇v∥L2 +


CF ∥R3(η, ζ,ρ)∥L2 + ∥R4(η,ρ)∥L2


∥∇q∥L2

(∥∇v∥2L2 + ∥∂1/2
t v∥2L2 + ∥∇q∥2L2 + ∥∂1/2

t q∥2L2)1/2

≤ CF ∥R1(η, ζ, τ )∥L2(QT ) + ∥R2(ζ, τ )∥L2(QT ) + CF ∥R3(η, ζ,ρ)∥L2(QT ) + ∥R4(η,ρ)∥L2(QT ),

where

∥ · ∥L2 = ∥ · ∥L2(QT ) and | · |
H1, 1

2
= | · |

H1, 1
2 (QT )

.

From the inf-sup condition (6.50) follows that

|e|
H1, 1

2 (QT )
≤ 1

µ1
sup

0̸=(v,q)∈(H
1, 1

2
0 (QT ))2

B(e, (v, q))
|(v, q)|

H1, 1
2 (QT )

=
1

µ1
sup

0 ̸=(v,q)∈(H
1, 1

2
0 (QT ))2

F(η,ζ)(v, q)

|(v, q)|
H1, 1

2 (QT )

.

Together with the estimates before, this yields the final estimate (6.54).
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Remark 6.27. For computational reasons, it is common to reformulate majorants as, e.g., the
majorant M⊕

|·|(η, ζ, τ ,ρ), in such a way that they are given by quadratic functionals, see, e.g., [59].
This is done by introducing some parameters α, β, γ > 0, i.e.,

M⊕
|·|(η, ζ, τ ,ρ)

2 ≤ M⊕
|·|(α, β, γ; η, ζ, τ ,ρ)

2

=
1

µ2
1


C2

F (1 + α)(1 + β) ∥R1(η, ζ, τ )∥2L2(QT ) +
(1 + α)(1 + β)

β
∥R2(ζ, τ )∥2L2(QT )

+ C2
F

(1 + α)(1 + γ)

α
∥R3(η, ζ,ρ)∥2L2(QT ) +

(1 + α)(1 + γ)

αγ
∥R4(η,ρ)∥2L2(QT )


.

A similar estimate as (6.54) for the seminorm can be proven for the norm using the inf-sup condition
(6.49).

Theorem 6.28. Let η, ζ ∈ H1,1
0,per(QT ) and the bilinear form B(·, ·) defined by (6.46) satisfy (6.49).

Then,

∥e∥
H1, 1

2 (QT )
≤ 1

µ1


∥R1(η, ζ, τ )∥2L2(QT ) + ∥R2(ζ, τ )∥2L2(QT )

+ ∥R3(η, ζ,ρ)∥2L2(QT ) + ∥R4(η,ρ)∥2L2(QT )

1/2
=:M⊕

∥·∥(η, ζ, τ ,ρ),

(6.55)

where e = (y − η, p− ζ) ∈ (H
1, 12
0 (QT ))

2, µ1 = min{1, 1
λ ,

ν√
λ
, ν

√
λ, σ√

λ
, σ

√
λ} and τ ,ρ ∈ H(div, QT ).

Proof. Applying the Cauchy-Schwarz inequality yields the estimate

F(η,ζ)(v, q) ≤∥R1(η, ζ, τ )∥L2∥v∥L2 + ∥R2(ζ, τ )∥L2∥∇v∥L2

+ ∥R3(η, ζ,ρ)∥L2∥q∥L2 + ∥R4(η,ρ)∥L2∥∇q∥L2

≤

∥R1(η, ζ, τ )∥2L2 + ∥R2(ζ, τ )∥2L2 + ∥R3(η, ζ,ρ)∥2L2 + ∥R4(η,ρ)∥2L2

1/2
×

∥v∥2L2 + ∥∇v∥2L2 + ∥q∥2L2 + ∥∇q∥2L2

1/2
=

∥R1(η, ζ, τ )∥2L2 + ∥R2(ζ, τ )∥2L2 + ∥R3(η, ζ,ρ)∥2L2 + ∥R4(η,ρ)∥2L2

1/2
×

∥v∥2H1,0 + ∥q∥2H1,0

1/2
=

∥R1(η, ζ, τ )∥2L2 + ∥R2(ζ, τ )∥2L2 + ∥R3(η, ζ,ρ)∥2L2 + ∥R4(η,ρ)∥2L2

1/2
∥(v, q)∥H1,0

with

∥ · ∥L2 = ∥ · ∥L2(QT ) and ∥ · ∥H1,0 = ∥ · ∥H1,0(QT ).

From the inf-sup condition (6.49) follows that

∥e∥
H1, 1

2 (QT )
≤ 1

µ1
sup

0 ̸=(v,q)∈(H
1, 1

2
0 (QT ))2

B(e, (v, q))
∥(v, q)∥

H1, 1
2 (QT )

=
1

µ1
sup

0̸=(v,q)∈(H
1, 1

2
0 (QT ))2

F(η,ζ)(v, q)

∥(v, q)∥
H1, 1

2 (QT )

≤ 1

µ1


∥R1(η, ζ, τ )∥2L2(QT ) + ∥R2(ζ, τ )∥2L2(QT ) + ∥R3(η, ζ,ρ)∥2L2(QT ) + ∥R4(η,ρ)∥2L2(QT )

1/2
,

where µ1 = min{1, 1
λ ,

ν√
λ
, ν

√
λ, σ√

λ
, σ

√
λ} as proven in Lemma 6.23.
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The multiharmonic approximation

Since we assume that the desired state yd is from L2(QT ), we expand it into a Fourier series in time.
Moreover, we choose our approximations η and ζ to the exact state y and adjoint state p, respectively,
as well as the vector-valued functions τ and ρ to be some truncated Fourier series, e.g.,

η(x, t) = ηc0(x) +

N
k=1

[ηck(x) cos(kωt) + ηsk(x) sin(kωt)],

where all Fourier coefficients are at least from the space L2(Ω) and are defined as, e.g.,

ηc0(x) =
1

T

 T

0

η(x, t) dt,

ηck(x) =
2

T

 T

0

η(x, t) cos(kωt) dt,

ηsk(x) =
2

T

 T

0

η(x, t) sin(kωt) dt.

We need to compute the L2(QT )-norms of the functions

R1(η, ζ, τ ) = σ∂tζ + η − div τ − yd, R2(ζ, τ ) = τ + ν∇ζ,

R3(η, ζ,ρ) = σ∂tη + λ−1ζ − divρ, R4(η,ρ) = ρ− ν∇η.

Due to the orthogonalities of the cosine and sine functions (2.9), the integrals in time can be computed
easily. Moreover, remember that

∂tη(x, t) =

N
k=1

[kω ηsk(x) cos(kωt)− kω ηck(x) sin(kωt)],

∇η(x, t) = ∇ηc0(x) +

N
k=1

[∇ηck(x) cos(kωt) +∇ηsk(x) sin(kωt)],

div τ (x, t) = div τ c
0(x) +

N
k=1

[div τ c
k(x) cos(kωt) + div τ s

k(x) sin(kωt)].

We will start with considering the L2-norm of R2 and R4, and, then, of R3 and R1. The time
integrals are computed similarly as in Section 6.1. We obtain

∥R2(ζ, τ )∥2L2(QT ) =

 T

0


Ω

|τ + ν∇ζ|2 dx dt

= T∥τ c
0 + ν∇ζc0∥2L2(Ω) +

T

2

N
k=1

[∥τ c
k + ν∇ζck∥2L2(Ω) + ∥τ s

k + ν∇ζsk∥2L2(Ω)]

= T∥τ c
0 + ν∇ζc0∥2L2(Ω) +

T

2

N
k=1

∥τ k + ν∇ζk∥2L2(Ω),

∥R4(η,ρ)∥2L2(QT ) =

 T

0


Ω

|ρ− ν∇η|2 dx dt

= T∥ρc
0 − ν∇ηc0∥2L2(Ω) +

T

2

N
k=1

[∥ρc
k − ν∇ηck∥2L2(Ω) + ∥ρs

k − ν∇ηsk∥2L2(Ω)]

= T∥ρc
0 − ν∇ηc0∥2L2(Ω) +

T

2

N
k=1

∥ρk − ν∇ηk∥2L2(Ω).
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and

∥R3(η, ζ,ρ)∥2L2(QT ) =

 T

0


Ω


σ∂tη + λ−1ζ − divρ

2
dx dt

= T∥λ−1ζc0 − divρc
0∥2L2(Ω) +

T

2

N
k=1

[∥kω σηsk + λ−1ζck − divρc
k∥2L2(Ω)

+ ∥ − kω σηck + λ−1ζsk − divρs
k∥2L2(Ω)]

= T∥λ−1ζc0 − divρc
0∥2L2(Ω) +

T

2

N
k=1

∥ − kω ση⊥
k + λ−1ζk − divρk∥2L2(Ω).

Finally, we obtain

∥R1(η, ζ, τ )∥2L2(QT ) =

 T

0


Ω

(σ∂tζ + η − div τ − yd)
2
dx dt

=T∥ηc0 − div τ c
0 − ycd0∥

2
L2(Ω) +

T

2

N
k=1

[∥kω σζsk + ηck − div τ c
k − ycdk∥

2
L2(Ω)

+ ∥ − kω σζck + ηsk − div τ s
k − ysdk∥

2
L2(Ω)] +

T

2

∞
k=N+1

[∥ycdk∥
2
L2(Ω) + ∥ysdk∥

2
L2(Ω)]

=T∥ηc0 − div τ c
0 − ycd0∥

2
L2(Ω) +

T

2

N
k=1

∥ − kω σζ⊥
k + ηk − div τ k − ydk∥2L2(Ω)

+
T

2

∞
k=N+1

∥ydk∥2L2(Ω).

Again, the term

T

2

∞
k=N+1

∥ydk∥2L2(Ω) =
T

2

∞
k=N+1

[∥ycdk∥
2
L2(Ω) + ∥ysdk∥

2
L2(Ω)]

corresponds to the high oscillatory part of the given data, which is here the given desired state yd,
and, hence, this term can be controlled due to the knowledge on the given data.
All the L2-norms of R1, R2, R3 and R4 corresponding to every single mode k are decoupled. Here,
we define the following functions for every mode k = 1, . . . , N :

R1k(ηk, ζk, τ k) = −kω σζ⊥
k + ηk − div τ k − ydk = (R1

c
k(η

c
k, ζ

s
k, τ

c
k),R1

s
k(η

s
k, ζ

c
k, τ

s
k))

T

= (kω σζsk + ηck − div τ c
k − ycdk,−kω σζck + ηsk − div τ s

k − ysdk)
T ,

R2k(ζk, τ k) = τ k + ν∇ζk = (R2
c
k(ζ

c
k, τ

c
k),R2

s
k(ζ

s
k, τ

s
k))

T = (τ c
k + ν∇ζck, τ

s
k + ν∇ζsk)

T ,

R3k(ηk, ζk,ρk) = −kω ση⊥
k + λ−1ζk − divρk = (R3

c
k(η

s
k, ζ

c
k,ρ

c
k),R3

s
k(η

c
k, ζ

s
k,ρ

s
k))

T

= (kω σηsk + λ−1ζck − divρc
k,−kω σηck + λ−1ζsk − divρs

k)
T ,

R4k(ηk,ρk) = ρk − ν∇ηk = (R4
c
k(η

c
k,ρ

c
k),R4

s
k(η

s
k,ρ

s
k))

T = (ρc
k − ν∇ηck,ρ

s
k − ν∇ηsk)

T ,

(6.56)

and, for k = 0, we define

R1
c
0(η

c
0, τ

c
0) = ηc0 − div τ c

0 − ycd0, R2
c
0(ζ

c
0, τ

c
0) = τ c

0 + ν∇ζc0,

R3
c
0(ζ

c
0,ρ

c
0) = λ−1ζc0 − divρc

0, R4
c
0(η

c
0,ρ

c
0) = ρc

0 − ν∇ηc0.
(6.57)

Altogether, we obtain the following error majorants corresponding to the optimal control problem:
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Corollary 6.29. The error majorants M⊕
|·|(η, ζ, τ ,ρ) and M⊕

∥·∥(η, ζ, τ ,ρ) are given by

M⊕
|·|(η, ζ, τ ,ρ) =

1

µ1,|·|


CF ∥R1(η, ζ, τ )∥L2(QT ) + ∥R2(ζ, τ )∥L2(QT )

+ CF ∥R3(η, ζ,ρ)∥L2(QT ) + ∥R4(η,ρ)∥L2(QT )


=

1

µ1,|·|


CF


T∥R1

c
0(η

c
0, τ

c
0)∥2L2(Ω) +

T

2

N
k=1

∥R1k(ηk, ζk, τ k)∥2L2(Ω) +
T

2

∞
k=N+1

∥ydk∥2L2(Ω)

1/2
+

T∥R2

c
0(ζ

c
0, τ

c
0)∥2L2(Ω) +

T

2

N
k=1

∥R2k(ζk, τ k)∥2L2(Ω)

1/2
+CF


T∥R3

c
0(ζ

c
0,ρ

c
0)∥2L2(Ω) +

T

2

N
k=1

∥R3k(ηk, ζk,ρk)∥2L2(Ω)

1/2
+

T∥R4

c
0(η

c
0,ρ

c
0)∥2L2(Ω) +

T

2

N
k=1

∥R4k(ηk,ρk)∥2L2(Ω)

1/2
,

where µ1,|·| = min{ 1√
λ
,
√
λ}min{ν, σ}, and

M⊕
∥·∥(η, ζ, τ ,ρ) =

1

µ1,∥·∥


∥R1(η, ζ, τ )∥2L2(QT ) + ∥R2(ζ, τ )∥2L2(QT )

+ ∥R3(η, ζ,ρ)∥2L2(QT ) + ∥R4(η,ρ)∥2L2(QT )

1/2
=

1

µ1,∥·∥


T

∥R1

c
0(η

c
0, τ

c
0)∥2L2(Ω) + ∥R2

c
0(ζ

c
0, τ

c
0)∥2L2(Ω) + ∥R3

c
0(ζ

c
0,ρ

c
0)∥2L2(Ω) + ∥R4

c
0(η

c
0,ρ

c
0)∥2L2(Ω)


+
T

2

N
k=1

[∥R1k(ηk, ζk, τ k)∥2L2(Ω) + ∥R2k(ζk, τ k)∥2L2(Ω) + ∥R3k(ηk, ζk,ρk)∥2L2(Ω)

+∥R4k(ηk,ρk)∥2L2(Ω)] +
T

2

∞
k=N+1

∥ydk∥2L2(Ω)

1/2
,

where µ1,∥·∥ = min{1, 1
λ ,

ν√
λ
, ν

√
λ, σ√

λ
, σ

√
λ}, respectively.

Remark 6.30. It is easy to see that η is the exact state and ζ the adjoint state of problem (6.45)
and τ , ρ are their exact fluxes if and only if the error majorants vanish, i.e.,

Rj
c
0 = 0 and Rjk = 0 ∀ k = 1, . . . , N, ∀ j ∈ {1, 2, 3, 4}, (6.58)

i.e.,

kω σζsk + ηck − div τ c
k = ycdk, −kω σζck + ηsk − div τ s

k = ysdk,

kω σηsk + λ−1ζck − divρc
k = 0, −kω σηck + λ−1ζsk − divρs

k = 0,

τ c
k = −ν∇ζck, τ s

k = −ν∇ζsk, ρc
k = ν∇ηck, ρs

k = ν∇ηsk,

for all k = 1, . . . , N , and

ηc0 − div τ c
0 = ycd0, τ c

0 = −ν∇ζc0, λ−1ζc0 − divρc
0 = 0, ρc

0 = ν∇ηc0,

for k = 0, and the given desired state yd has a multiharmonic representation, i.e.,

yd(x, t) = yd
c
0(x) +

N
k=1

[yd
c
k(x) cos(kωt) + yd

s
k(x) sin(kωt)].
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Moreover, (η, ζ) and (τ ,ρ) converge to the exact solution and flux, respectively, if and only if η = ηN ,
ζ = ζN , τ = τN and ρ = ρN with N going to infinity and the error majorants corresponding to the
modes k = 0, 1, . . . vanish as in (6.58).

A second a posteriori error result

Let us assume that the approximations η and ζ of y and p are not from the space H1,1
0,per(QT ), but

are less regular. More precisely, we want to deduce an upper bound valid for approximations

η, ζ ∈ H
1, 12
0 (QT ).

Let us again consider the functional

F(η,ζ)(v, q) =

 T

0


Ω


yd v − η v + ν(x)∇ζ · ∇v − σ(x)∂

1/2
t ζ ∂

1/2
t v⊥

− ν(x)∇η · ∇q − σ(x)∂
1/2
t η ∂

1/2
t q⊥ − λ−1ζ q


dx dt

defined for all v, q ∈ H
1, 12
0 (QT ). Besides the vector-valued functions τ ,ρ ∈ H(div, QT ), let us

introduce the functions

κ, χ ∈ H0, 12 (QT ),

which fulfill the identity (6.30), i.e., T

0

κ ∂
1/2
t v⊥ dt = −

 T

0

∂
1/2
t κ⊥ v dt

for all v ∈ H0, 12 (QT ). We rearrange the functional F(η,ζ)(v, q) and write it as

F(η,ζ)(v, q) =

 T

0


Ω


yd v − η v + ν∇ζ · ∇v − σ∂

1/2
t ζ ∂

1/2
t v⊥

− ν∇η · ∇q − σ∂
1/2
t η ∂

1/2
t q⊥ − λ−1ζ q


dx dt

=

 T

0


Ω


yd v − η v + ν∇ζ · ∇v + div τ v + τ · ∇v

− σ∂
1/2
t ζ ∂

1/2
t v⊥ + σ κ ∂

1/2
t v⊥ + σ∂

1/2
t κ⊥ v

− ν∇η · ∇q + divρ q + ρ · ∇q

− σ∂
1/2
t η ∂

1/2
t q⊥ + σ χ∂

1/2
t q⊥ + σ∂

1/2
t χ⊥ q − λ−1ζ q


dx dt

=

 T

0


Ω


yd v − η v + div τ v + σ∂

1/2
t κ⊥ v

− σ∂
1/2
t ζ ∂

1/2
t v⊥ + σ κ ∂

1/2
t v⊥ + ν∇ζ · ∇v + τ · ∇v

− ν∇η · ∇q + ρ · ∇q − σ∂
1/2
t η ∂

1/2
t q⊥ + σ χ∂

1/2
t q⊥

+ divρ q + σ∂
1/2
t χ⊥ q − λ−1ζ q


dx dt

=

 T

0


Ω


yd − η + div τ + σ∂

1/2
t κ⊥


v +


σ(κ− ∂

1/2
t ζ)


∂
1/2
t v⊥

+ (τ + ν∇ζ) · ∇v + (ρ− ν∇η) · ∇q

+

σ(χ− ∂

1/2
t η)


∂
1/2
t q⊥ +


divρ+ σ∂

1/2
t χ⊥ − λ−1ζ


q

dx dt
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for all v, q ∈ H
1, 12
0 (QT ). Let

R1(τ , κ, η) = yd − η + div τ + σ∂
1/2
t κ⊥,

R2(τ , ζ) = τ + ν∇ζ,

R3(κ, ζ) = σ(κ− ∂
1/2
t ζ),

R4(ρ, χ, ζ) = divρ+ σ∂
1/2
t χ⊥ − λ−1ζ,

R5(ρ, η) = ρ− ν∇η,

R6(χ, η) = σ(χ− ∂
1/2
t η).

Hence, using Cauchy-Schwarz inequality and the identity ∥∂1/2
t v⊥∥L2(QT ) = ∥∂1/2

t v∥L2(QT ), which is
valid for v ∈ H0, 12 (QT ), we can estimate the functional F(η,ζ)(v, q) from above as follows

F(η,ζ)(v, q) ≤∥R1(τ , κ, η)∥L2(QT )∥v∥L2(QT ) + ∥R2(τ , ζ)∥L2(QT )∥∇v∥L2(QT )

+ ∥R3(κ, ζ)∥L2(QT )∥∂
1/2
t v∥L2(QT ) + ∥R4(ρ, χ, ζ)∥L2(QT )∥q∥L2(QT )

+ ∥R5(ρ, η)∥L2(QT )∥∇q∥L2(QT ) + ∥R6(χ, η)∥L2(QT )∥∂
1/2
t q∥L2(QT )

≤

∥R1(τ , κ, η)∥2L2(QT ) + ∥R2(τ , ζ)∥2L2(QT ) + ∥R3(κ, ζ)∥2L2(QT )

+ ∥R4(ρ, χ, ζ)∥2L2(QT ) + ∥R5(ρ, η)∥2L2(QT ) + ∥R6(χ, η)∥2L2(QT )

1/2
∥(v, q)∥

H1, 1
2
(QT ) ,

where

∥(v, q)∥
H1, 1

2
(QT ) =


∥v∥2L2(QT ) + ∥∇v∥2L2(QT ) + ∥∂1/2

t v∥2L2(QT )

+ ∥q∥2L2(QT ) + ∥∇q∥2L2(QT ) + ∥∂1/2
t q∥2L2(QT )

1/2
.

Altogether, we obtain the upper bound

sup

0̸=(v,q)∈(H
1, 1

2
0 (QT ))2

F(η,ζ)(v, q)

∥(v, q)∥
H1, 1

2 (QT )

≤

∥R1(τ , κ, η)∥2L2(QT ) + ∥R2(τ , ζ)∥2L2(QT )

+ ∥R3(κ, ζ)∥2L2(QT ) + ∥R4(ρ, χ, ζ)∥2L2(QT )

+ ∥R5(ρ, η)∥2L2(QT ) + ∥R6(χ, η)∥2L2(QT )

1/2
,

(6.59)

and, finally, deduce the following theorem:

Theorem 6.31. Let η, ζ ∈ H
1, 12
0 (QT ) and the bilinear form B(·, ·) satisfy (6.49). Then,

∥e∥
H1, 1

2 (QT )
≤ 1

µ1


∥R1(τ , κ, η)∥2L2(QT ) + ∥R2(τ , ζ)∥2L2(QT ) + ∥R3(κ, ζ)∥2L2(QT )

+ ∥R4(ρ, χ, ζ)∥2L2(QT ) + ∥R5(ρ, η)∥2L2(QT ) + ∥R6(χ, η)∥2L2(QT )

1/2
=:M⊕

∥·∥(η, ζ, τ ,ρ, κ, χ),

(6.60)

where τ ,ρ ∈ H(div, QT ), κ, χ ∈ H0, 12 (QT ) and µ1 = min{1, 1
λ ,

ν√
λ
, ν

√
λ, σ√

λ
, σ

√
λ}.

Proof. From (6.49) follows that

∥e∥
H1, 1

2 (QT )
≤ 1

µ1
sup

0̸=(v,q)∈(H
1, 1

2
0 (QT ))2

B(e, (v, q))
∥(v, q)∥

H1, 1
2 (QT )

=
1

µ1
sup

0̸=(v,q)∈(H
1, 1

2
0 (QT ))2

F(η,ζ)(v, q)

∥(v, q)∥
H1, 1

2 (QT )

,

which leads together with (6.59) to the final estimate (6.60).
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Remark 6.32. If R1(τ , κ, η) = 0, R2(τ , ζ) = 0, R3(κ, ζ) = 0, R4(ρ, χ, ζ) = 0, R5(ρ, η) = 0 and
R6(χ, η) = 0, then

− σ∂
1/2
t κ⊥ − div τ + η = yd, −σ∂

1/2
t χ⊥ − divρ+ λ−1ζ = 0,

τ = −ν∇ζ, ρ = ν∇η,

κ = ∂
1/2
t ζ, χ = ∂

1/2
t η.

Since η and ζ satisfy the Dirichlet condition on ΣT , (η, ζ) is the solution. In other words, the majorant
M⊕

∥·∥(η, ζ, τ ,ρ, κ, χ) vanishes if and only if (η, ζ) is the exact solution, (τ ,ρ) the exact flux and (κ, χ)

the exact half time derivative. Moreover, if η, ζ ∈ H1,1
0,per(QT ), we derive the optimality system

σ∂tζ + div (ν∇ζ) + η = yd in QT ,

σ∂tη − div (ν∇η) + λ−1ζ = 0 in QT ,

in the weak sense.

Let us now find an upper bound for the supremum (6.53) in the V0-norm case, i.e.,

sup

0 ̸=(v,q)∈(H
1, 1

2
0 (QT ))2

F(η,ζ)(v, q)

∥(v, q)∥V0

,

where

∥(v, q)∥2V0
= ∥v∥2V0

+ λ−1∥q∥2V0
,

with

∥v∥2V0
= ∥v∥2L2(QT ) +

√
λ(ν∇v,∇v)L2(QT ) +

√
λ(σ∂

1/2
t v, ∂

1/2
t v)L2(QT ).

Let us introduce some new functions τ̃ and ρ̃, where (ν τ̃ ), (ν ρ̃) ∈ H(div, QT ) and the identity
Ω

div (ν τ̃ ) v dx = −

Ω

(ν τ̃ ) · ∇v dx ∀ v ∈ C∞
0 (Ω)

is fulfilled for both vector-valued functions τ̃ and ρ̃. Then,

F(η,ζ)(v, q) =

 T

0


Ω


yd v − η v + ν∇ζ · ∇v − σ∂

1/2
t ζ ∂

1/2
t v⊥

− ν∇η · ∇q − σ∂
1/2
t η ∂

1/2
t q⊥ − λ−1ζ q


dx dt

=

 T

0


Ω


yd v − η v + ν∇ζ · ∇v + div (ν τ̃ ) v + (ν τ̃ ) · ∇v

− σ∂
1/2
t ζ ∂

1/2
t v⊥ + σ κ ∂

1/2
t v⊥ + σ∂

1/2
t κ⊥ v

− ν∇η · ∇q + div (ν ρ̃) q + (ν ρ̃) · ∇q

− σ∂
1/2
t η ∂

1/2
t q⊥ + σ χ∂

1/2
t q⊥ + σ∂

1/2
t χ⊥ q − λ−1ζ q


dx dt

=

 T

0


Ω


yd v − η v + div (ν τ̃ ) v + σ∂

1/2
t κ⊥ v

− σ∂
1/2
t ζ ∂

1/2
t v⊥ + σ κ ∂

1/2
t v⊥ + ν∇ζ · ∇v + (ν τ̃ ) · ∇v

− ν∇η · ∇q + (ν ρ̃) · ∇q − σ∂
1/2
t η ∂

1/2
t q⊥ + σ χ∂

1/2
t q⊥

+ div (ν ρ̃) q + σ∂
1/2
t χ⊥ q − λ−1ζ q


dx dt



156 CHAPTER 6. A POSTERIORI ERROR ANALYSIS

and

F(η,ζ)(v, q) =

 T

0


Ω


yd − η + div (ν τ̃ ) + σ∂

1/2
t κ⊥v + σ


κ− ∂

1/2
t ζ


∂
1/2
t v⊥

+ ν

τ̃ +∇ζ


· ∇v + ν


ρ̃−∇η


· ∇q

+ σ

χ− ∂

1/2
t η


∂
1/2
t q⊥ +


div (ν ρ̃) + σ∂

1/2
t χ⊥ − λ−1ζ


q

dx dt

for all v, q ∈ H
1, 12
0 (QT ). Let us now define

R1(τ̃ , κ, η) = yd − η + div (ν τ̃ ) + σ∂
1/2
t κ⊥, R4(ρ̃, χ, ζ) = div (ν ρ̃) + σ∂

1/2
t χ⊥ − λ−1ζ,

R2(τ̃ , ζ) = τ̃ +∇ζ, R5(ρ̃, η) = ρ̃−∇η,

R3(κ, ζ) = κ− ∂
1/2
t ζ, R6(χ, η) = χ− ∂

1/2
t η.

Hence, we obtain the following a posteriori error result for the V0-norm:

Theorem 6.33. Let η, ζ ∈ H
1, 12
0 (QT ) and the bilinear form B(·, ·) defined by (6.46) satisfy (6.51).

Then,

∥e∥V0
≤ 1

µ1


∥R1(τ̃ , κ, η)∥2L2(QT ) +

1√
λ
(νR2(τ̃ , ζ),R2(τ̃ , ζ))L2(QT )

+
1√
λ
(σR3(κ, ζ),R3(κ, ζ))L2(QT ) + λ ∥R4(ρ̃, χ, ζ)∥2L2(QT )

+
√
λ(νR5(ρ̃, η),R5(ρ̃, η))L2(QT ) +

√
λ(σR6(χ, η),R6(χ, η))L2(QT )

1/2
=:M⊕

∥·∥V0
(η, ζ, τ̃ , ρ̃, κ, χ),

(6.61)

where (ν τ̃ ), (ν ρ̃) ∈ H(div, QT ), κ, χ ∈ H0, 12 (QT ) and µ1 = 1/
√
3.

Proof. Using the Cauchy-Schwarz inequality as well as a proper weighting with λ, we can estimate
the functional F(η,ζ)(v, q) from above as follows

F(η,ζ)(v, q) ≤∥yd − η + div (ν τ̃ ) + σ∂
1/2
t κ⊥∥L2(QT )∥v∥L2(QT )

+ (σ (κ− ∂
1/2
t ζ), κ− ∂

1/2
t ζ)

1/2
L2(QT )(σ ∂

1/2
t v⊥, ∂

1/2
t v⊥)

1/2
L2(QT )

+ (ν (τ̃ +∇ζ), τ̃ +∇ζ)
1/2
L2(QT )(ν∇v,∇v)

1/2
L2(QT )

+ (ν (ρ̃−∇η), ρ̃−∇η)
1/2
L2(QT )(ν∇q,∇q)

1/2
L2(QT )

+ (σ (χ− ∂
1/2
t η), χ− ∂

1/2
t η)

1/2
L2(QT )(σ ∂

1/2
t q⊥, ∂

1/2
t q⊥)

1/2
L2(QT )

+ ∥div (ν ρ̃) + σ∂
1/2
t χ⊥ − λ−1ζ∥L2(QT )∥q∥L2(QT )

= ∥yd − η + div (ν τ̃ ) + σ∂
1/2
t κ⊥∥L2(QT )∥v∥L2(QT )

+ λ−1/4(σ (κ− ∂
1/2
t ζ), κ− ∂

1/2
t ζ)

1/2
L2(QT )λ

1/4(σ ∂
1/2
t v, ∂

1/2
t v)

1/2
L2(QT )

+ λ−1/4(ν (τ̃ +∇ζ), τ̃ +∇ζ)
1/2
L2(QT )λ

1/4(ν∇v,∇v)
1/2
L2(QT )

+ λ1/4(ν (ρ̃−∇η), ρ̃−∇η)
1/2
L2(QT )λ

−1/4(ν∇q,∇q)
1/2
L2(QT )

+ λ1/4(σ (χ− ∂
1/2
t η), χ− ∂

1/2
t η)

1/2
L2(QT )λ

−1/4(σ ∂
1/2
t q, ∂

1/2
t q)

1/2
L2(QT )

+ λ1/2 ∥div (ν ρ̃) + σ∂
1/2
t χ⊥ − λ−1ζ∥L2(QT )λ

−1/2 ∥q∥L2(QT )
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and

F(η,ζ)(v, q) ≤

∥yd − η + div (ν τ̃ ) + σ∂

1/2
t κ⊥∥2L2(QT ) +

1√
λ
(σ (κ− ∂

1/2
t ζ), κ− ∂

1/2
t ζ)L2(QT )

+
1√
λ
(ν (τ̃ +∇ζ), τ̃ +∇ζ)L2(QT ) +

√
λ(ν (ρ̃−∇η), ρ̃−∇η)L2(QT )

+
√
λ(σ (χ− ∂

1/2
t η), χ− ∂

1/2
t η)L2(QT ) + λ ∥div (ν ρ̃) + σ∂

1/2
t χ⊥ − λ−1ζ∥2L2(QT )

1/2
×

∥v∥2L2(QT ) +

√
λ(σ ∂

1/2
t v, ∂

1/2
t v)L2(QT ) +

√
λ(ν∇v,∇v)L2(QT )

+
1√
λ
(ν∇q,∇q)L2(QT ) +

1√
λ
(σ ∂

1/2
t q, ∂

1/2
t q)L2(QT ) + λ−1∥q∥2L2(QT )

1/2
,

which yields the estimate

F(η,ζ)(v, q) ≤

∥R1(τ̃ , κ, η)∥2L2(QT ) +

1√
λ
(νR2(τ̃ , ζ),R2(τ̃ , ζ))L2(QT )

+
1√
λ
(σR3(κ, ζ),R3(κ, ζ))L2(QT ) + λ ∥R4(ρ̃, χ, ζ)∥2L2(QT )

+
√
λ(νR5(ρ̃, η),R5(ρ̃, η))L2(QT ) +

√
λ(σR6(χ, η),R6(χ, η))L2(QT )

1/2
×

∥v∥2L2(QT ) +

√
λ(ν∇v,∇v)L2(QT ) +

√
λ(σ ∂

1/2
t v, ∂

1/2
t v)L2(QT )

+ λ−1

∥q∥2L2(QT ) +

√
λ(ν∇q,∇q)L2(QT ) +

√
λ(σ ∂

1/2
t q, ∂

1/2
t q)L2(QT )

1/2
=

∥R1(τ̃ , κ, η)∥2L2(QT ) +

1√
λ
(νR2(τ̃ , ζ),R2(τ̃ , ζ))L2(QT )

+
1√
λ
(σR3(κ, ζ),R3(κ, ζ))L2(QT ) + λ ∥R4(ρ̃, χ, ζ)∥2L2(QT )

+
√
λ(νR5(ρ̃, η),R5(ρ̃, η))L2(QT ) +

√
λ(σR6(χ, η),R6(χ, η))L2(QT )

1/2
∥(v, q)∥V0

.

Altogether, we obtain the upper bound

sup

0̸=(v,q)∈(H
1, 1

2
0 (QT ))2

F(η,ζ)(v, q)

∥(v, q)∥V0

≤

∥R1(τ̃ , κ, η)∥2L2(QT ) +

1√
λ
(νR2(τ̃ , ζ),R2(τ̃ , ζ))L2(QT )

+
1√
λ
(σR3(κ, ζ),R3(κ, ζ))L2(QT ) + λ ∥R4(ρ̃, χ, ζ)∥2L2(QT )

+
√
λ(νR5(ρ̃, η),R5(ρ̃, η))L2(QT ) +

√
λ(σR6(χ, η),R6(χ, η))L2(QT )

1/2
.

(6.62)

From (6.51) follows that

∥e∥V0
≤ 1

µ1
sup

0̸=(v,q)∈(H
1, 1

2
0 (QT ))2

B(e, (v, q))
∥(v, q)∥V0

=
1

µ1
sup

0̸=(v,q)∈(H
1, 1

2
0 (QT ))2

F(η,ζ)(v, q)

∥(v, q)∥V0

with µ1 = 1/
√
3, which leads together with (6.62) to the final estimate (6.61).

Analogously to Section 6.1, we now derive the majorants for the optimality equations which corre-
spond to every single mode k.
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We consider the problems (4.9), i.e.,
Ω


(yk − ηk) · vk − ν(x)∇(pk − ζk) · ∇vk + kω σ(x)(pk − ζk) · v⊥

k

+ ν(x)∇(yk − ηk) · ∇qk + kω σ(x)(yk − ηk) · q⊥
k + λ−1(pk − ζk) · qk


dx

=


Ω


ydk · vk − ηk · vk + ν(x)∇ζk · ∇vk − kω σ(x)ζk · v⊥

k

− ν(x)∇ηk · ∇qk − kω σ(x)ηk · q⊥
k − λ−1ζk · qk


dx,

(6.63)

for every single mode k = 1, . . . , N , and, in the case k = 0, we obtain the variational problem (4.10),
i.e., 

Ω


(yc0 − ηc0) v

c
0 − ν(x)∇(pc0 − ζc0) · ∇vc0 + ν(x)∇(yc0 − ηc0) · ∇qc0 + λ−1(pc0 − ζc0) q

c
0


dx

=


Ω


ycd0 v

c
0 − ηc0 v

c
0 + ν(x)∇ζc0 · ∇vc0 − ν(x)∇ηc0 · ∇qc0 − λ−1ζc0 q

c
0


dx.

(6.64)

We define the left hand sides of (6.63) and (6.64) by

Bk((yk − ηk,pk − ζk), (vk, qk)) and B0((y
c
0 − ηc0, p

c
0 − ηc0), (v

c
0, q

c
0)),

respectively, see (4.23) and (4.32). We start with the case k = 1, . . . , N . Let us consider again the
P-norm (4.26) introduced in Section 4.3, i.e.,

∥(yk,pk)∥2P = ∥yk∥2V + λ−1∥pk∥2V

with

∥yk∥2V =
√
λ (ν∇yk,∇yk)L2(Ω) + kω

√
λ (σyk,yk)L2(Ω) + ∥yk∥2L2(Ω).

Let us compute an upper bound for the errors

ek := (yk − ηk,pk − ζk)
T ∀ k = 1, . . . , N

in (H1
0 (Ω))

4. From (4.27), it follows that

sup
0 ̸=(vk,qk)∈(H1

0 (Ω))4

Bk(ek, (vk, qk))

∥(vk, qk)∥P
≥ c ∥ek∥P (6.65)

with the parameter-independent constant c = 1/
√
3. We denote the right-hand side of (6.63) by

F(ηk,ζk)
(vk, qk), i.e.,

F(ηk,ζk)
(vk, qk) =


Ω


ydk · vk − ηk · vk + ν(x)∇ζk · ∇vk − kω σ(x)ζk · v⊥

k

− ν(x)∇ηk · ∇qk − kω σ(x)ηk · q⊥
k − λ−1ζk · qk


dx,

and need to find an upper bound of

sup
0̸=(vk,qk)∈(H1

0 (Ω))4

F(ηk,ζk)
(vk, qk)

∥(vk, qk)∥P
.

We introduce the functions τ̃ k = (τ̃ c
k, τ̃

s
k)

T and ρ̃k = (ρ̃c
k, ρ̃

s
k)

T of vector-valued functions with

(ντ̃ c
k), (ντ̃

s
k), (νρ̃

c
k), (νρ̃

s
k) ∈ H(div,Ω) := {τ ∈ [L2(Ω)]d : div τ ∈ L2(Ω)}
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with the weak divergence fulfilling
Ω

div (ν(x)τ̃ (x)) v(x) dx = −

Ω

(ν(x)τ̃ (x)) · ∇v(x) dx ∀ v ∈ C∞
0 (Ω).

Moreover, we simply introduce the functions

κk = (κc
k, κ

s
k)

T , χk = (χc
k, χ

s
k)

T ∈ (H1
0 (Ω))

2,

which fulfill both the identity, i.e., the orthogonality relation, as follows
Ω

kω σ(x)κk · v⊥ dx = −

Ω

kω σ(x)κ⊥
k · v dx ∀v ∈ (C∞

0 (Ω))2.

Due to the Cauchy-Schwarz inequality, we obtain

F(ηk,ζk)
(vk, qk) =


Ω


ydk · vk − ηk · vk + ν∇ζk · ∇vk + div (ν τ̃ k) · vk + (ν τ̃ k) · ∇vk

− kω σζk · v⊥
k + kω σκk · v⊥

k + kω σκ⊥
k · vk

− ν∇ηk · ∇qk + div (ν ρ̃k) · qk + (ν ρ̃k) · ∇qk

− kω σηk · q⊥
k + kω σχk · q⊥

k + kω σχ⊥
k · qk − λ−1ζk · qk


dx,

=


Ω


(ydk − ηk + div (ν τ̃ k) + kω σκ⊥

k ) · vk + ν(∇ζk + τ̃ k) · ∇vk

+ kω σ(κk − ζk) · v⊥
k + (div (ν ρ̃k) + kω σχ⊥

k − λ−1ζk) · qk

+ ν(ρ̃k −∇ηk) · ∇qk + kω σ(χk − ηk) · q⊥
k


dx,

≤ ∥R1k(ηk, τ̃ k,κk)∥L2(Ω)∥vk∥L2(Ω) + (νR2k(ζk, τ̃ k),R2k(ζk, τ̃ k))
1/2
L2(Ω)(ν∇vk,∇vk)

1/2
L2(Ω)

+kω(σR3k(ζk,κk),R3k(ζk,κk))
1/2
L2(Ω)(σvk,vk)

1/2
L2(Ω) + ∥R4k(ζk, ρ̃k,χk)∥L2(Ω)∥qk∥L2(Ω)

+(νR5k(ηk, ρ̃k),R5k(ηk, ρ̃k))
1/2
L2(Ω)(ν∇qk,∇qk)

1/2
L2(Ω)

+kω(σR6k(ηk,χk),R6k(ηk,χk))
1/2
L2(Ω)(σqk, qk)

1/2
L2(Ω)

with

R1k(ηk, τ̃ k,κk) = ydk − ηk + div (ν τ̃ k) + kω σκ⊥
k ,

R2k(ζk, τ̃ k) = τ̃ k +∇ζk,

R3k(ζk,κk) = κk − ζk,

R4k(ζk, ρ̃k,χk) = div (ν ρ̃k) + kω σχ⊥
k − λ−1ζk,

R5k(ηk, ρ̃k) = ρ̃k −∇ηk,

R6k(ηk,χk) = χk − ηk.

Applying the Cauchy-Schwarz inequality together with a proper weighting with λ, we get

F(ηk,ζk)
(vk, qk) ≤∥R1k∥L2(Ω)∥vk∥L2(Ω) + λ−1/4(νR2k,R2k)

1/2
L2(Ω)λ

1/4(ν∇vk,∇vk)
1/2
L2(Ω)

+ λ−1/4
√
kω(σR3k,R3k)

1/2
L2(Ω)λ

1/4
√
kω(σvk,vk)

1/2
L2(Ω)

+ λ1/2∥R4k∥L2(Ω)λ
−1/2∥qk∥L2(Ω)

+ λ1/4(νR5k,R5k)
1/2
L2(Ω)λ

−1/4(ν∇qk,∇qk)
1/2
L2(Ω)

+ λ1/4
√
kω(σR6k,R6k)

1/2
L2(Ω)λ

−1/4
√
kω(σqk, qk)

1/2
L2(Ω)



160 CHAPTER 6. A POSTERIORI ERROR ANALYSIS

and

F(ηk,ζk)
(vk, qk) ≤


∥R1k∥2L2(Ω) +

1√
λ
(νR2k,R2k)L2(Ω) +

1√
λ
kω(σR3k,R3k)L2(Ω)

+ λ ∥R4k∥2L2(Ω) +
√
λ(νR5k,R5k)L2(Ω) +

√
λkω(σR6k,R6k)L2(Ω)

1/2
×

∥vk∥2L2(Ω) +

√
λ(ν∇vk,∇vk)L2(Ω) +

√
λkω(σvk,vk)L2(Ω)

+ λ−1

∥qk∥2L2(Ω) +

√
λ(ν∇qk,∇qk)L2(Ω) +

√
λkω(σqk, qk)L2(Ω)

1/2
.

(6.66)

Hence, we optain the upper bound

sup
0̸=(vk,qk)∈(H1

0 (Ω))4

F(ηk,ζk)
(vk, qk)

∥(vk, qk)∥P
≤

∥R1k∥2L2(Ω) +

1√
λ
(νR2k,R2k)L2(Ω)

+
1√
λ
kω(σR3k,R3k)L2(Ω) + λ ∥R4k∥2L2(Ω)

+
√
λ(νR5k,R5k)L2(Ω) +

√
λkω(σR6k,R6k)L2(Ω)

1/2
,

which yields together with (6.65) the following a posteriori error result corresponding to every single
mode k = 1, . . . , N :

Corollary 6.34. Let ηk, ζk ∈ H1
0 (Ω) and the bilinear form Bk(·, ·) in (6.63) satisfy (6.65). Then,

∥ek∥P ≤
√
3

∥R1k∥2L2(Ω) +

1√
λ
(νR2k,R2k)L2(Ω) +

1√
λ
kω(σR3k,R3k)L2(Ω)

+ λ ∥R4k∥2L2(Ω) +
√
λ(νR5k,R5k)L2(Ω) +

√
λkω(σR6k,R6k)L2(Ω)

1/2
=:M⊕k

∥·∥P
(ηk, ζk, τ̃ k, ρ̃k,κk,χk),

(6.67)

where (ντ̃ k), (νρ̃k) ∈ (H(div,Ω))2 and κk,χk ∈ (H1
0 (Ω))

2.

Now, let us consider the case k = 0, where

B0((y
c
0 − ηc0, p

c
0 − ηc0), (v

c
0, q

c
0)) =


Ω


(yc0 − ηc0) v

c
0 − ν(x)∇(pc0 − ζc0) · ∇vc0

+ ν(x)∇(yc0 − ηc0) · ∇qc0 + λ−1(pc0 − ζc0) q
c
0


dx

Using the definitions

((y, p), (v, q))P = (y, v)L2(Ω) +
√
λ(ν∇y,∇v)L2(Ω) + λ−1((p, q)L2(Ω) +

√
λ(ν∇p,∇q)L2(Ω))

and

∥(y, p)∥2P = ∥y∥2L2(Ω) +
√
λ(ν∇y,∇y)L2(Ω) + λ−1(∥p∥2L2(Ω) +

√
λ(ν∇p,∇p)L2(Ω))

of the P-inner product and norm in the case k = 0, we proved the following inf-sup condition in
Section 4.3 with inf-sup constant c = 1/

√
2:

sup
0̸=(vc

0,q
c
0)∈(H1

0 (Ω))2

B0(e
c
0, (v

c
0, q

c
0))

∥(vc0, qc0)∥P
≥ c ∥ec0∥P (6.68)

for all (yc0, pc0) ∈ V with ec0 := (yc0 − ηc0, p
c
0 − ζc0)

T . We denote the right-hand side of (6.64) by

F(ηc
0,ζ

c
0)
(vc0, q

c
0) =


Ω


ycd0 v

c
0 − ηc0 v

c
0 + ν(x)∇ζc0 · ∇vc0 − ν(x)∇ηc0 · ∇qc0 − λ−1ζc0 q

c
0


dx
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and need to find an upper bound of

sup
0 ̸=(vc

0,q
c
0)∈(H1

0 (Ω))2

F(ηc
0,ζ

c
0)
(vc0, q

c
0)

∥(vc0, qc0)∥P
.

Again, we introduce the vector-valued functions τ̃ c
0 and ρ̃c

0, where

(ντ̃ c
0), (νρ̃

c
0) ∈ H(div,Ω) := {τ ∈ [L2(Ω)]d : div τ ∈ L2(Ω)}.

Due to the Cauchy-Schwarz inequality, we obtain

F(ηc
0,ζ

c
0)
(vc0, q

c
0) =


Ω


ycd0 v

c
0 − ηc0 v

c
0 + ν∇ζc0 · ∇vc0 + div (ντ̃ c

0) v
c
0 + (ντ̃ c

0) · ∇vc0

+ div (νρ̃c
0) q

c
0 + (νρ̃c

0) · ∇qc0 − ν∇ηc0 · ∇qc0 − λ−1ζc0 q
c
0


dx

=


Ω


(ycd0 − ηc0 + div (ντ̃ c

0)) v
c
0 + ν(τ̃ c

0 +∇ζc0) · ∇vc0

+ ν(ρ̃c
0 −∇ηc0) · ∇qc0 + (div (νρ̃c

0)− λ−1ζc0) q
c
0


dx

≤ ∥R1
c
0(η

c
0, τ̃

c
0)∥L2(Ω)∥vc0∥L2(Ω)

+ λ−1/4(νR2
c
0(ζ

c
0, τ̃

c
0),R2

c
0(ζ

c
0, τ̃

c
0))

1/2
L2(Ω)λ

1/4(ν∇vc0,∇vc0)
1/2
L2(Ω)

+ λ1/4(νR3
c
0(η

c
0, ρ̃

c
0),R3

c
0(η

c
0, ρ̃

c
0))

1/2
L2(Ω)λ

−1/4(ν∇qc0,∇qc0)
1/2
L2(Ω)

+ λ1/2∥R4
c
0(ζ

c
0, ρ̃

c
0)∥L2(Ω)λ

−1/2∥qc0∥L2(Ω)

≤

∥R1

c
0(η

c
0, τ̃

c
0)∥2L2(Ω) +

1√
λ
(νR2

c
0(ζ

c
0, τ̃

c
0),R2

c
0(ζ

c
0, τ̃

c
0))L2(Ω)

+
√
λ(νR3

c
0(η

c
0, ρ̃

c
0),R3

c
0(η

c
0, ρ̃

c
0))L2(Ω) + λ∥R4

c
0(ζ

c
0, ρ̃

c
0)∥2L2(Ω)

1/2
×

∥vc0∥2L2(Ω) +

√
λ(ν∇vc0,∇vc0)L2(Ω)

+
1√
λ
(ν∇qc0,∇qc0)L2(Ω) + λ−1∥qc0∥2L2(Ω)

1/2
=

∥R1

c
0(η

c
0, τ̃

c
0)∥2L2(Ω) +

1√
λ
(νR2

c
0(ζ

c
0, τ̃

c
0),R2

c
0(ζ

c
0, τ̃

c
0))L2(Ω)

+
√
λ(νR3

c
0(η

c
0, ρ̃

c
0),R3

c
0(η

c
0, ρ̃

c
0))L2(Ω) + λ∥R4

c
0(ζ

c
0, ρ̃

c
0)∥2L2(Ω)

1/2
∥(vc0, qc0)∥P

(6.69)

with

R1
c
0(η

c
0, τ

c
0) = ycd0 − ηc0 + div (ντ̃ c

0),

R2
c
0(ζ

c
0, τ

c
0) = τ̃ c

0 +∇ζc0,

R3
c
0(η

c
0,ρ

c
0) = ρ̃c

0 −∇ηc0,

R3
c
0(ζ

c
0,ρ

c
0) = div (νρ̃c

0)− λ−1ζc0.

This yields the upper bound

sup
0 ̸=(vc

0,q
c
0)∈(H1

0 (Ω))2

F(ηc
0,ζ

c
0)
(vc0, q

c
0)

∥(vc0, qc0)∥P
≤

∥R1

c
0(η

c
0, τ̃

c
0)∥2L2(Ω) +

1√
λ
(νR2

c
0(ζ

c
0, τ̃

c
0),R2

c
0(ζ

c
0, τ̃

c
0))L2(Ω)

+
√
λ(νR3

c
0(η

c
0, ρ̃

c
0),R3

c
0(η

c
0, ρ̃

c
0))L2(Ω) + λ∥R4

c
0(ζ

c
0, ρ̃

c
0)∥2L2(Ω)

1/2
.

Using (6.68) and (6.69), we finally arrive at the following upper bounds for the case k = 0, which
correspond to the P-norm:
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Corollary 6.35. Let ηc0, ζc0 ∈ H1
0 (Ω) and the bilinear form B0(·, ·) in (6.64) satisfy (6.68). Then,

∥ec0∥P ≤
√
2

∥R1

c
0(η

c
0, τ̃

c
0)∥2L2(Ω) +

1√
λ
(νR2

c
0(ζ

c
0, τ̃

c
0),R2

c
0(ζ

c
0, τ̃

c
0))L2(Ω)

+
√
λ(νR3

c
0(η

c
0, ρ̃

c
0),R3

c
0(η

c
0, ρ̃

c
0))L2(Ω) + λ∥R4

c
0(ζ

c
0, ρ̃

c
0)∥2L2(Ω)

1/2
=:M⊕0

∥·∥P
(ηc0, ζ

c
0, τ̃

c
0, ρ̃

c
0),

(6.70)

where (ντ̃ c
0), (νρ̃

c
0) ∈ H(div,Ω).

Altogether, we obtain the following error majorant M⊕
∥·∥V0

(η, ζ, τ̃ , ρ̃, κ, χ) defined in Theorem 6.33
in the Fourier space:

Corollary 6.36. The error majorant M⊕
∥·∥V0

(η, ζ, τ̃ , ρ̃, κ, χ) is given by

M⊕
∥·∥V0

(η, ζ, τ̃ , ρ̃, κ, χ) =
√
3

∥R1(τ̃ , κ, η)∥2L2(QT ) +

1√
λ
(νR2(τ̃ , ζ),R2(τ̃ , ζ))L2(QT )

+
1√
λ
(σR3(κ, ζ),R3(κ, ζ))L2(QT ) + λ ∥R4(ρ̃, χ, ζ)∥2L2(QT )

+
√
λ(νR5(ρ̃, η),R5(ρ̃, η))L2(QT ) +

√
λ(σR6(χ, η),R6(χ, η))L2(QT )

1/2
=

√
3

T

∥R1

c
0∥2L2(Ω) +

1√
λ
(νR2

c
0,R2

c
0)L2(Ω) +

√
λ(νR3

c
0,R3

c
0)L2(Ω) + λ∥R4

c
0∥2L2(Ω)


+

T

2

N
k=1

[∥R1k∥2L2(Ω) +
1√
λ
(νR2k,R2k)L2(Ω) +

1√
λ
kω(σR3k,R3k)L2(Ω)

+ λ ∥R4k∥2L2(Ω) +
√
λ(νR5k,R5k)L2(Ω) +

√
λkω(σR6k,R6k)L2(Ω)]

+
T

2

∞
k=N+1

∥ydk∥2L2(Ω)

1/2
,

where

R1
c
0 = R1

c
0(η

c
0, τ

c
0) = ycd0 − ηc0 + div (ντ̃ c

0),

R2
c
0 = R2

c
0(ζ

c
0, τ

c
0) = τ̃ c

0 +∇ζc0,

R3
c
0 = R3

c
0(η

c
0,ρ

c
0) = ρ̃c

0 −∇ηc0,

R4
c
0 = R3

c
0(ζ

c
0,ρ

c
0) = div (νρ̃c

0)− λ−1ζc0.

and

R1k = R1k(ηk, τ̃ k,κk) = ydk − ηk + div (ν τ̃ k) + kω σκ⊥
k ,

R2k = R2k(ζk, τ̃ k) = τ̃ k +∇ζk,

R3k = R3k(ζk,κk) = κk − ζk,

R4k = R4k(ζk, ρ̃k,χk) = div (ν ρ̃k) + kω σχ⊥
k − λ−1ζk,

R5k = R5k(ηk, ρ̃k) = ρ̃k −∇ηk,

R6k = R6k(ηk,χk) = χk − ηk.

Remark 6.37. In order to obtain final bounds from the majorants M⊕
∗ (replacing ∗ with the dif-

ferent seminorms and norms) in practical applications, we have to consider the construction of the
approximations η and ζ of the state and adjoint state, respectively, as well as the construction of (τ ,
ρ) or (τ̃ , ρ̃) for their fluxes as already discussed in Section 6.1, see Remark 6.21.
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Remark 6.38. In the optimal control of parabolic time-periodic problems, the construction of a so-
called adaptive multiharmonic finite element method (AMhFEM) is again an important issue. More
precisely, in addition to constructing an adaptive finite element method (AFEM), we can compute the
finite element approximated Fourier coefficients parallel on different meshes, since the computations
of the Fourier coefficients corresponding to every single mode k = 0, 1 . . . are decoupled. Then,
by prescribing certain bounds, we can filter out the Fourier coefficients, which are important for
computing the solution of the problem. Altogether, such a AMhFEM yields adaptivity in space and
time.

6.3 Functional a posteriori estimates for cost functionals of
parabolic time-periodic optimal control problems

Instead of – or in addition to – determining a posteriori estimates for the optimality systems, one
may derive a posteriori estimates of the cost functional as it is done, e.g., in [59, 153].
The cost functional of our optimal control problem is given by (4.1), i.e.,

J (y(u), u) =
1

2

 T

0


Ω

(y(x, t)− yd(x, t))
2
dx dt+

λ

2

 T

0


Ω

(u(x, t))
2
dx dt

=
1

2
∥y − yd∥2L2(QT ) +

λ

2
∥u∥2L2(QT )

and in the Fourier spaces by

J (y(u), u) = TJ0(y
c
0(u

c
0), u

c
0) +

T

2

∞
k=1

Jk(yk(uk),uk),

where

J0(y
c
0(u

c
0), u

c
0) =

1

2


Ω

(yc0(x)− ycd0(x))
2
dx+

λ

2


Ω

(uc
0(x))

2
dx

=
1

2
∥yc0 − ycd0∥

2
L2(Ω) +

λ

2
∥uc

0∥2L2(Ω)

and

Jk(yk(uk),uk) =
1

2


Ω

(yk(x)− ydk(x))
2
dx+

λ

2


Ω

(uk(x))
2
dx

=
1

2
∥yk − ydk∥

2
L2(Ω) +

λ

2
∥uk∥2L2(Ω)

are defined as in (4.17) and (4.15), respectively. Hence, we can determine majorants, i.e., upper
bounds, for the cost functional J (y, u) by using the results of Section 6.1 immediately. Adding and
subtracting η as well as applying the triangle and Friedrichs inequalities yield the estimates

J (y(u), u) =
1

2
∥y − yd∥2L2(QT ) +

λ

2
∥u∥2L2(QT )

=
1

2
∥y − η + η − yd∥2L2(QT ) +

λ

2
∥u∥2L2(QT )

≤ 1

2


∥η − yd∥L2(QT ) + ∥y − η∥L2(QT )

2
+

λ

2
∥u∥2L2(QT )

≤ 1

2


∥η − yd∥L2(QT ) + CF ∥∇y −∇η∥L2(QT )

2
+

λ

2
∥u∥2L2(QT )
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and

J (y(u), u) ≤ 1

2


∥η − yd∥L2(QT ) + CF |y − η|

H1, 1
2 (QT )

2
+

λ

2
∥u∥2L2(QT ),

since

∥∇y −∇η∥2L2(QT ) ≤ |y − η|2
H1, 1

2 (QT )
= ∥∇y −∇η∥2L2(QT ) + ∥∂1/2

t y − ∂
1/2
t η∥2L2(QT ).

From Theorem 6.2, we obtain

J (y(u),u) ≤ 1

2


∥η − yd∥L2(QT ) + CF |y − η|

H1, 1
2 (QT )

2
+

λ

2
∥u∥2L2(QT )

≤ 1

2


∥η − yd∥L2(QT ) +

CF

µ1


CF ∥R1(η, τ , u)∥L2(QT ) + ∥R2(η, τ )∥L2(QT )

2

+
λ

2
∥u∥2L2(QT )

=
1

2


∥η − yd∥L2(QT ) +

CF

µ1
∥R2(η, τ )∥L2(QT ) +

C2
F

µ1
∥R1(η, τ , u)∥L2(QT )

2

+
λ

2
∥u∥2L2(QT ),

where µ1 = min{ν, σ}, τ ∈ H(div, QT ) and

R1(η, τ , u) = σ∂tη − div τ − u, R2(η, τ ) = τ − ν∇η.

By introducing parameters α, β > 0, we can reformulate the estimate such that the right-hand side
is given by a quadratic functional, see, e.g., [59]. Then, we obtain the following estimate:

J (y(u), u) ≤ J⊕(α, β; η, τ , u) ∀u ∈ L2(QT )

with the majorant

J⊕(α, β; η, τ , u) :=
1 + α

2
∥η − yd∥2L2(QT ) +

(1 + α)(1 + β)C2
F

2αµ2
1

∥R2(η, τ )∥2L2(QT )

+
(1 + α)(1 + β)C4

F

2αβµ2
1

∥R1(η, τ , u)∥2L2(QT ) +
λ

2
∥u∥2L2(QT ).

(6.71)

Moreover, we obtain

inf
η∈H1,1

0,per(QT ),τ∈H(div,QT )

u∈L2(QT ),α,β>0

J⊕(α, β; η, τ , u) = J (y(ū), ū), (6.72)

since the infimum is attained for the optimal control ū, its corresponding state ȳ = y(ū) and its exact
flux (ν∇ȳ), for which R1 and R2 vanish, and for α going to zero. Hence, (6.72) states that the exact
lower bound of the majorant (6.71) coincides with the optimal value of the cost functional of the
optimal control problem, cf. [59]. Therefore, we have

J (ȳ, ū) ≤ J⊕(α, β; η, τ , u) ∀ η ∈ H1,1
0,per(QT ), τ ∈ H(div, QT ), u ∈ L2(QT ), α, β > 0. (6.73)

Now, it is easy to derive an a posteriori estimate. Let η be the multiharmonic finite element approxi-
mation yNh to the state y as, for instance, constructed in Chapter 4. Since the control u can be chosen
arbitrarily in (6.71), we choose a multiharmonic finite element approximation uNh for it as well. More
precisely, we can compute the multiharmonic finite element approximation uNh for the control from
the multiharmonic finite element approximation pNh of the adjoint state, since uNh = −λ−1pNh, by
solving the optimality system as presented in Chapter 4, from which we obtain yNh as well. Hence,
we arrive at the estimate

J (ȳ, ū) ≤ J⊕(α, β; yNh, τ , uNh) ∀ τ ∈ H(div, QT ), α, β > 0. (6.74)
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Next, we have to reconstruct the flux τ , which can be done by different techniques, see Remark 6.21
and Remark 6.37. For that, we first choose the vector-valued function τ to be some multiharmonic
finite element function τNh as well. Then the majorant J⊕(α, β; yNh, τNh, uNh) is given by

J⊕(α, β; yNh, τNh, uNh) =
1 + α

2
∥yNh − yd∥2L2(QT ) +

(1 + α)(1 + β)C2
F

2αµ2
1

∥R2(yNh, τNh)∥2L2(QT )

+
(1 + α)(1 + β)C4

F

2αβµ2
1

∥R1(yNh, τNh, uNh)∥2L2(QT ) +
λ

2
∥uNh∥2L2(QT )

=
1 + α

2


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c
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T

2

N
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c
k∥2L2 + ∥yskh − yd

s
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T

2

∞
k=N+1
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

+
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c
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2
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c
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c
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c
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s
k(y

s
kh, τ

s
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
+

(1 + α)(1 + β)C4
F
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
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c
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c
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+
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c
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s
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

with ∥ · ∥L2 = ∥ · ∥L2(Ω),

R1
c
0(τ

c
0h, u

c
0h) = div τ c

0h + uc
0h,

R1k(ykh, τ kh,ukh) = kω σy⊥
kh + div τ kh + ukh

= (−kω σyskh + div τ c
kh + uc

kh, kω σyckh + div τ s
kh + us

kh)
T

= (R1
c
k(y

s
kh, τ

c
kh, u

c
kh),R1

s
k(y

c
kh, τ

s
kh, u

s
kh))

T

and

R2
c
0(y

c
0h, τ

c
0h) = τ c

0h − ν∇yc0h

R2k(ykh, τ kh) = τ kh − ν∇ykh

= (τ c
kh − ν∇yckh, τ

s
kh − ν∇yskh)

T

= (R2
c
k(y

c
kh, τ

c
kh),R2

s
k(y

s
kh, τ

s
kh))

T .

Note that the computations are as straightforward as using the formulation with the optimality
system.

Remark 6.39. Since all the terms corresponding to every single mode k in the majorant J⊕ are
decoupled, we arrive at some majorants J⊕

k , for which we can, of course, introduce positive parameters
αk and βk for every single mode k as well.

Next, we have to reconstruct the fluxes τ c
0h and τ kh for all k = 1, . . . , N , which we denote by

τ kh = Rflux
h (ν∇ykh).

This can be done by various techniques as already mentioned in Remarks 6.21 and 6.37, see also
[153]. Hence, we obtain the reconstructed flux

τNh = Rflux
h (ν∇yNh).
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After performing a simple minimization of the majorant J⊕(α, β; yNh, τNh, uNh) with respect to α
and β, we finally arrive at the a posteriori estimate

J (ȳ, ū) ≤ J⊕(ᾱ, β̄; yNh, τNh, uNh), (6.75)

where ᾱ and β̄ denote the optimized positive parameters. This majorant provides a guaranteed
upper bound for the cost functional. Alternatively, but more costly, we can mode-wise minimize the
majorant leading to an H(div)-problem, see [104, 153].

Remark 6.40. In this work, we do not consider any inequality constraints imposed neither on the
control nor on the state, but inequality constraints imposed on the Fourier coefficients of the control
or the state can easily be included into the multiharmonic finite element approach, see [88], and,
hence, may be considered in the a posteriori error analysis of parabolic time-periodic optimal control
problems as well.



Chapter 7

Numerical results

In this chapter, we present and discuss the results of numerical experiments studying the numerical
behavior of the MhFE approximations as well as of the AMLI preconditioned CG and MINRES
solvers, which are proposed in this work and implemented in C++.
We investigate the practical convergence behavior with respect to the space and time discretizations
as well as the efficiency and the robustness of our preconditioned MINRES solver in different settings.
First, we present results on using the linear AMLI preconditioner proposed in Chapter 5 and its non-
linear version, which is shortly discussed in Subsection 2.8.2. Then, we go on with some numerical
experiments in a very general setting using these AMLI preconditioners as well as an AMLI precon-
ditioner, which was presented by Kraus in [99], for different inexact realizations of our block-diagonal
preconditioner in the MINRES method. A part of these numerical experiments has already been pre-
sented in the papers [89, 103, 112]. The computational domain is the unit square Ω = (0, 1)× (0, 1)
that is uniformly discretized by triangles. All computations were performed on a PC with Intel(R)
Core(TM) i7-2600 CPU @3.40 GHz.
Let us start with some numerical examples for solving reaction-diffusion type problems as presented
in Chapter 5 by the linear AMLI method we have investigated there as well as by its nonlinear version.

7.1 Numerical experiments for heterogeneous reaction-diffusi-
on type problems

We present numerical results using the linear AMLI preconditioned CG algorithm presented in this
work for solving heterogeneous reaction-diffusion type problems of the form (5.1), which lead to linear
systems of the form (cf. also (5.3))

(Kν,h +Mµ,h  
=:Ah

)uh = f
h
,

after a proper finite element discretization. In this section, the right-hand side is given by Ah times
the vector consisting only of ones. This yields a non-trivial problem, since we consider homogeneous
Dirichlet boundary conditions. The coarsest mesh has 3 × 3 rectangles, and the parameter ℓ corre-
sponds to a mesh of 3ℓ × 3ℓ rectangles, where one rectangle consists of two triangular finite elements.
All tables present the number of iterations for reducing the initial residual by a factor of 10−6. The
numerical experiments are for the following parameter settings:

(a) no jumps in the values of ν and µ,

(b) jumps in the values of ν and µ on the coarse mesh.

In Example (a), the system matrix is given by Ah = Kh + Mh, i.e., the parameters ν = µ = 1.
Table 7.1 presents the number of AMLI iterations for different values of polynomial degrees υ and

167
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Table 7.1: Number of iterations for Ah = Kh +Mh using the LINEAR AMLI method with additive
preconditioner for the pivot block (Example (a)).

grid υ = 1 υ = 2 υ = 3 υ = 4 υ = 5 υ = 6

ℓ = 2 20 20 20 20 20 20
ℓ = 3 36 30 27 25 24 24
ℓ = 4 61 39 32 28 26 25
ℓ = 5 102 49 36 29 27 25
ℓ = 6 170 60 39 30 27 25

on grids of different mesh size. Here, we use exactly the linear AMLI method, for which we have
proved robustness and optimality in Chapter 5, and we choose the parameter α = 0.95, see also
Section 5.5. Table 7.2 presents the number of iterations using the nonlinear version of the AMLI
method presented in Chapter 5 (cf. Subsection 2.8.2) for different values of υCG, which denotes the
number of inner CG iterations, and on grids of different mesh size. In both numerical experiments, the
pivot block of the system matrix A11 is preconditioned by the additive preconditioner C11 according
to Chapter 5. Comparing Tables 7.1 and 7.2 shows that the linear and the nonlinear versions of our
AMLI method lead to very similar results. In the case of υ = υCG = 1 and υ = υCG = 2, we do not
observe, as expected, a stabilization of the iteration numbers for increasing grid sizes. Moreover, the
iteration numbers are (mildly) growing for υ = 3 and υ = 4 as well, which all in all accompanies our
theoretical results. Following the computational times also illustrates the optimality of our AMLI
method in terms of the computational complexity. For instance, the setting υ = 6 in Table 7.1 yields
25 iterations in 0.02, 0.24 and 2.40 seconds on the 3ℓ×3ℓ grids with ℓ = 4, 5 and 6, respectively, where
more than 500.000 unknowns are involved in case of ℓ = 6. Moreover, the setting υCG = 6 in Table 7.2
yields 24, 24 and 23 iterations in 0.03, 0.30 and 2.92 seconds on the 3ℓ × 3ℓ grids with ℓ = 4, 5 and 6,
respectively, which demonstrates again optimal complexity. All the other computational times show
the same behavior.

Table 7.2: Number of iterations for Ah = Kh + Mh using the NONLINEAR AMLI method with
additive preconditioner for the pivot block (Example (a)).

grid υCG = 1 υCG = 2 υCG = 3 υCG = 4 υCG = 5 υCG = 6

ℓ = 2 20 20 20 20 20 20
ℓ = 3 37 25 24 24 23 24
ℓ = 4 64 27 24 24 24 24
ℓ = 5 137 28 24 24 24 24
ℓ = 6 274 29 24 24 23 23

In Table 7.3 and Table 7.4, we present the number of iterations using the linear and nonlinear versions
of our AMLI method, but now the pivot block A11 is inverted exactly. The iteration numbers, which
are presented in Table 7.3, are computed with the parameter choice α = 0.5. Here, we want to
emphasize the importance of a good parameter choice of α, which is different for different problems,
e.g., inverting the pivot block exactly or using an additive preconditioner for it, see Section 5.5. The
stabilization of the iteration numbers as well as the computational times are similarly behaving as
observed in the computations of the numerical experiments presented in Table 7.1 and Table 7.2,
where we have used the additive preconditioner for the pivot block.
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Table 7.3: Number of iterations for Ah = Kh +Mh using the LINEAR AMLI method inverting the
pivot block exactly (Example (a)).

grid υ = 1 υ = 2 υ = 3 υ = 4 υ = 5 υ = 6

ℓ = 2 12 12 12 12 12 12
ℓ = 3 24 18 16 16 16 15
ℓ = 4 39 22 18 17 16 15
ℓ = 5 61 26 19 17 16 15
ℓ = 6 96 29 19 17 16 15

Table 7.4: Number of iterations for Ah = Kh +Mh using the NONLINEAR AMLI method inverting
the pivot block exactly (Example (a)).

grid υCG = 1 υCG = 2 υCG = 3 υCG = 4 υCG = 5 υCG = 6

ℓ = 2 12 12 12 12 12 12
ℓ = 3 24 16 15 15 15 15
ℓ = 4 43 17 15 15 15 14
ℓ = 5 67 18 15 14 14 14
ℓ = 6 162 18 15 14 14 14

In Example (b), we allow jumps in the values of the coeffcients ν and µ. More precisely, ν = 10−4

and µ = 1 on subdomain Ω1 = (0, 1) × (0, 1
3 ) and ν = 104 and µ = 10−4 on Ω2 = Ω\Ω1. Hence,

the jumps correspond to the partitioning of the coarse mesh, which consists of 3 × 3 rectangles in
the computational domain Ω = (0, 1)× (0, 1). This is a requirement in order to prove the theoretical
results obtained in Chapter 5, cf. (5.4). Table 7.5 and Table 7.6 present the number of iterations
using the linear and nonlinear versions of our AMLI method, where the pivot block of the system
matrix A11 is preconditioned by the additive preconditioner C11 according to Chapter 5. In Table 7.7
and Table 7.8, we present the number of AMLI iterations, but now the pivot block A11 is inverted
exactly. The iteration numbers, which are presented in Table 7.5 and Table 7.7, are computed with
the parameter choices α = 0.95 and α = 0.5, respectively, which are exactly as in the example without
considering jumps in the values of the coeffcients ν and µ. The stabilization of the iteration numbers
is similarly behaving as observed in the tables of Example (a), i.e., Tables 7.1, 7.2, 7.3 and 7.4.
Moreover, the computational times are similar to the ones of Example (a), e.g., the setting υ = 6 in

Table 7.5: Number of iterations for Kν,h + Mµ,h using the LINEAR AMLI method with additive
preconditioner for the pivot block and jumps in ν and µ on the coarse mesh (Example (b)).

grid υ = 1 υ = 2 υ = 3 υ = 4 υ = 5 υ = 6

ℓ = 2 22 22 22 22 22 22
ℓ = 3 48 36 32 30 29 28
ℓ = 4 75 47 37 28 27 25
ℓ = 5 108 50 36 29 27 25
ℓ = 6 180 60 39 30 27 25
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Table 7.6: Number of iterations for Kν,h+Mµ,h using the NONLINEAR AMLI method with additive
preconditioner for the pivot block and jumps in ν and µ on the coarse mesh (Example (b)).

grid υCG = 1 υCG = 2 υCG = 3 υCG = 4 υCG = 5 υCG = 6

ℓ = 2 22 22 22 22 22 22
ℓ = 3 51 31 27 26 26 26
ℓ = 4 87 30 24 24 24 24
ℓ = 5 141 29 24 24 24 24
ℓ = 6 280 29 24 24 24 24

Table 7.7: Number of iterations for Kν,h+Mµ,h using the LINEAR AMLI method inverting the pivot
block exactly and jumps in ν and µ on the coarse mesh (Example (b)).

grid υ = 1 υ = 2 υ = 3 υ = 4 υ = 5 υ = 6

ℓ = 2 16 16 16 16 16 16
ℓ = 3 31 23 21 20 18 18
ℓ = 4 51 27 18 17 16 15
ℓ = 5 70 27 19 17 16 15
ℓ = 6 102 27 19 17 16 15

Table 7.5 yields 25 iterations in 0.02, 0.24 and 2.40 seconds on the 3ℓ × 3ℓ grids with ℓ = 4, 5 and
6, respectively, where again more than 500.000 unknowns are involved in case of ℓ = 6. Hence, the
numerical results come along with our theory having a robust solver of optimal complexity, if the
jumps in the values of the coeffcients ν and µ correspond to the partitioning of the coarse mesh, see
Chapter 5.

Table 7.8: Number of iterations for Kν,h+Mµ,h using the NONLINEAR AMLI method inverting the
pivot block exactly and jumps in ν and µ on the coarse mesh (Example (b)).

grid υCG = 1 υCG = 2 υCG = 3 υCG = 4 υCG = 5 υCG = 6

ℓ = 2 16 16 16 16 16 16
ℓ = 3 31 20 17 17 17 17
ℓ = 4 56 18 15 15 15 15
ℓ = 5 82 17 15 15 14 14
ℓ = 6 167 18 14 14 14 14

Altogether, we have presented first numerical results using the linear AMLI preconditioned CG algo-
rithm in case of a 3-refinement together with the additive preconditioner for the pivot block of the
two-by-two splitting, which has been all discussed in Chapter 5. This linear AMLI preconditioned
CG algorithm leads to a robust solver of optimal complexity for heterogeneous reaction-diffusion type
problems including problems with jumps in the values of the reaction and diffusion coefficients µ and
ν on the coarse mesh.
In the next section, we present numerical results for solving the saddle point systems presented
especially in Chapter 4 by the AMLI preconditioned MINRES method, cf. Section 5.6.
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7.2 Numerical experiments for saddle point systems

In this section, we start with two numerical examples on solving saddle point systems by the precondi-
tioned MINRES method with the AMLI preconditioner proposed in this work. Then, we present more
numerical experiments for studying the numerical behavior of the MhFE approximations, where we
use the AMLI preconditioner presented by Kraus in [99] together with the preconditioned MINRES
method as solver.

Numerical experiments on a linear AMLI preconditioned MINRES method

We present numerical results on solving the optimal control problem (4.1)-(4.2), i.e.,

min
y,u

J (y, u) :=
1

2

 T

0


Ω

[y(x, t)− yd(x, t)]
2
dx dt+

λ

2

 T

0


Ω

[u(x, t)]
2
dx dt

subject to the parabolic time-periodic BVP (3.1)-(3.3), which has been presented in Chapter 4, by
the AMLI preconditioned MINRES method using the block-diagonal preconditioners P together with
the linear AMLI solver proposed in Chapter 5. The MhFE discretization of the variational problem
leads to the linear saddle point systems (4.11) and (4.12), e.g.,

Mh 0 −Kh,ν kωMh,σ

0 Mh −kωMh,σ −Kh,ν

−Kh,ν −kωMh,σ −λ−1Mh 0
kωMh,σ −Kh,ν 0 −λ−1Mh




yc
k

ys
k

pc
k

ps
k

 =


yc
dk

ys
dk
0
0


for k = 1, 2, . . . , N . The numerical experiments are designed for the following settings:

1. the desired state is periodic and analytic in time,

2. the desired state is a characteristic function in space and time and there are jumps in ν and σ.

In both settings, the desired states are not time-harmonic and unreachable, and, hence, their Fourier
coeffcients have to be computed for different modes k in order to expand the desired states into Fourier
series. Again, the coarsest mesh has 3×3 elements, where one element consists of two triangular finite
elements. In the first example, the material coefficients are ν = σ = 1, whereas jumping coefficients
are considered in the second example. Table 7.9 and Table 7.10 present the number of MINRES
iteration steps for different values of the cost parameter λ computing the solution for one mode k = 1
stopping all iterations after reducing the initial residual by a factor of 10−6 together with 15 inner
AMLI iterations in each MINRES iteration step. The results for all other modes k are similar and
can be computed in parallel. In these two examples, we use stabilization polynomials up to the
degree υ = 5 and the parameter choice α = 0.9. The tables include numerical results computed on a
729× 729 grid resulting in a linear system with more than 2.000.000 unknowns.

Table 7.9: Number of MINRES iterations using the linear AMLI preconditioned MINRES method
for different values of λ (Example 1).

grid / λ 10−8 10−6 10−4 10−2 1 102 104 106 108

27× 27 20 20 18 12 8 6 6 6 6
81× 81 22 18 16 12 8 6 6 6 6
243× 243 22 20 16 12 8 6 6 6 8
729× 729 22 20 18 12 8 6 6 6 8
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In Example 1, we consider a time-periodic and time-analytic, but not time-harmonic, desired state

yd(x, t) = et sin(t)

3 + 4π4


sin2(t)− 6 cos2(t)− 6 sin(t) cos(t)


sin(x1π) sin(x2π)

with T = 2π and ω = 1. Table 7.9 presents the number of MINRES iteration steps on grids of
different mesh size varying the parameter λ. The numerical results accompany our theoretical results
having a robust solver of optimal complexity. For instance, the parameter setting λ = 1 yields 8
iterations in 0.06, 0.48, 4.81 and 47.04 seconds on the 27×27, 81×81, 243×243 and 729×729 grids,
respectively.
In Example 2, we consider a desired state

yd(x, t) = χ[ 14 ,
3
4 ]
(t)χ[ 13 ,

2
3 ]

2(x)

with T = 1 and ω = 2π, which is a characteristic function in space and time. In addition, we allow
jumps in the values of the material coefficients ν and σ. More precisely, ν = 10−2 and σ = 1 on
subdomain Ω1 = (0, 1)×(0, 1

3 ) and ν = 1 and σ = 102 on Ω2 = Ω\Ω1. Table 7.10 presents the number
of MINRES iteration steps of this example for different values of λ and on grids of different mesh
size. The computational times are similarly behaving as in Example 1. For instance, the parameter
setting λ = 104 yields 14 iterations in 0.09, 0.80, 8.01 and 78.38 seconds on the 27 × 27, 81 × 81,
243× 243 and 729× 729 grids, respectively.

Table 7.10: Number of MINRES iterations using the linear AMLI preconditioned MINRES method
for different values of λ (Example 2).

grid / λ 10−8 10−6 10−4 10−2 1 102 104 106 108

27× 27 12 17 14 16 14 14 14 16 18
81× 81 13 18 16 16 13 12 14 16 20
243× 243 17 18 16 14 12 12 14 16 20
729× 729 15 20 14 12 10 12 14 16 18

In summary, the numerical results confirm our theoretical findings, demonstrating the robustness and
optimal complexity of the linear AMLI preconditioned MINRES solver. This theoretical statement
is proven in Chapter 5.

Numerical experiments on a nonlinear AMLI preconditioned MINRES method

In the following five examples, we use the AMLI preconditioner proposed by Kraus in [99] for an
inexact realization of our block-diagonal preconditioner in the MINRES method. We consider again
the optimal control problem (4.1)-(4.2), which leads, after the MhFE discretization, to the saddle
point systems (4.11) and (4.12). We present numerical results for the following very general settings:

3. the desired state is time-harmonic,

4. the desired state is periodic and analytic in time, but not time-harmonic,

5. the desired state is analytic in time, but not time-periodic,

6. the desired state is a characteristic function in space and time, and

7. the desired state is a characteristic function in space and time, but in addition, there are jumps
in the coefficients ν and σ.
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We mention here that the desired state is unreachable and not time-harmonic in the last four examples.
Therefore, we have to compute their Fourier coefficients for different modes k in order to expand the
desired states into Fourier series. The material coefficients are supposed to be piecewise constant on
Ω. In Examples 3 - 6, σ = ν = 1, whereas jumping material coefficients are considered in Example
7. Example 6 has been borrowed from [1], but with homogeneous Dirichlet boundary conditions
instead of Robin conditions. We mention that, in all tables where the number of MINRES iterations
is presented, the iteration was stopped after reducing the initial residual by a factor of 10−6. For
the inexact version of the preconditioned MINRES method, we have used the AMLI preconditioner
according to [99] in each MINRES iteration step. In Example 3, we use the AMLI preconditioner
with 4 inner iterations, whereas we only use 2 inner AMLI iteration steps in the latter four examples.
The computations for the figures of all examples were obtained on a 64 × 64 grid. The results on
grids of smaller mesh sizes were very similar.
In Example 3, we consider a time-harmonic desired state given by the formula

yd(x, t) = 2(4− x1x2(x2 − 1) + x2
1x2(x2 − 1))(cos(ωt) + sin(ωt)).

For this example, we present numerical results for both the exact preconditioner P in connection with
a direct solver for the preconditioning equations with the system matrix D from P and an inexact
preconditioner according to [99]. In order to study the robustness of our preconditioners, we have
performed numerical experiments for several parameter settings. In particular, we have varied the
values of the parameters ω and λ.

Table 7.11: Number of MINRES iterations for different values of ω and λ on a 64× 64 grid using the
EXACT version of the preconditioner P (Example 3).

λ / ω 10−8 10−6 10−4 10−2 1 102 104 106 108

10−8 18 18 18 18 18 24 12 4 4
10−6 18 18 18 18 18 20 12 4 4
10−4 14 14 14 14 14 14 12 4 4
10−2 8 8 8 8 10 14 12 4 4
1 6 6 6 6 10 14 12 4 4
102 4 4 4 6 10 14 12 4 4
104 4 4 4 4 10 14 12 4 4
106 4 4 4 4 10 14 12 4 4
108 2 2 4 4 10 14 12 4 4

Table 7.11 presents the number of MINRES iterations using the exact preconditioner. The theoretical
bound for reducing the residual of the MINRES method by a factor of 10−6 lies at 24 iterations for the
exact version. The numerical results for the inexact version are presented in Table 7.12 and Table 7.13,
where we have used the AMLI preconditioner with 4 inner iterations according to Kraus [99]. In
Table 7.11 and Table 7.12, we have computed the solutions on a 64 × 64 grid. Table 7.13 presents
the numerical results using the AMLI preconditioner on a 512× 512 grid where more than 1.000.000
unknowns are involved.
Again, the numerical experiments impressively confirm our theoretical results. Both the exact and
the inexact versions lead to a parameter independent bound for the convergence rate respectively
iteration numbers of the corresponding preconditioned MINRES solver. However, we observe some
dependence of the preconditioned MINRES iterations on parameters λ and ω if we vary them in the
large range from 10−8 to 108. This behavior is not surprising since the parameters λ and ω change
the system matrix and the preconditioner at the same time. This becomes clear for the limit cases
where λ and ω (kω) tend to ∞ or 0. Tables 7.12 and 7.13 show the AMLI preconditioner is not
affected nor by mesh refinement neither by parameter variations. The comparison of the latter two
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Table 7.12: Number of MINRES iterations for different values of ω and λ on a 64× 64 grid using the
INEXACT version of the preconditioner P with 4 inner AMLI iteration steps (Example 3).

λ / ω 10−8 10−6 10−4 10−2 1 102 104 106 108

10−8 18 18 18 18 18 24 12 4 4
10−6 18 18 18 18 18 20 12 4 4
10−4 14 14 14 14 14 14 12 4 4
10−2 8 8 8 8 10 14 12 4 4
1 6 6 6 6 10 14 12 4 4
102 4 4 4 6 10 14 12 4 4
104 4 4 4 4 10 14 12 4 4
106 4 4 4 4 10 14 12 4 4
108 2 2 4 4 10 14 12 4 4

Table 7.13: Number of MINRES iterations for different values of ω and λ on a 512× 512 grid using
the INEXACT version of the preconditioner P with 4 inner AMLI iteration steps (Example 3).

λ / ω 10−8 10−6 10−4 10−2 1 102 104 106 108

10−8 23 23 23 23 23 26 14 10 4
10−6 20 20 20 20 20 22 12 10 4
10−4 14 14 14 14 14 14 12 10 4
10−2 8 8 8 8 10 14 12 10 4
1 6 6 6 6 10 14 12 10 4
102 4 4 4 6 10 14 12 10 4
104 4 4 4 4 10 14 12 10 4
106 4 4 4 4 10 14 12 10 4
108 4 4 4 4 10 14 12 10 4

tables with Table 7.11 show that the AMLI preconditioned MINRES solver is almost as good as the
exact version with respect to the iteration numbers and, in contrast to the exact version, has optimal
complexity.
In Example 4, we consider the same desired state as in Example 1, which is time-periodic and
analytic, but not time-harmonic, i.e.,

yd(x, t) = et sin(t)

3 + 4π4


sin2(t)− 6 cos2(t)− 6 sin(t) cos(t)


sin(x1π) sin(x2π),

where T = 2π/ω with ω = 1. The Fourier coefficients of the Fourier series expansion of the desired
state yd in time can be computed analytically. We truncate the Fourier series at an index N and
approximate the Fourier coefficients by finite element functions. Finally, we solve the systems (4.11)
and (4.12) for all 0 ≤ k ≤ N . Figure 7.1 illustrates the fast convergence of the MhFE approximations
yNh(0.5, 0.5, t) to the exact solution y(0.5, 0.5, t) = et sin(t)3 at the spatial coordinates (0.5, 0.5) for
λ = 1 and t ∈ [0, T ] for increasing N . Already y5h provides a very good approximation to the exact
solution y. In Figure 7.2 (left), we illustrate the exact desired state yd and the MhFE approximations
yNh to the state y for different values of λ, more precisely, for λ ∈ {1, 10−2, 10−4, 10−6}, as functions
of time in [0, T ] at the spatial coordinates x = (0.5, 0.5) and for N = 5. Figure 7.2 (right) presents
the corresponding controls uNh.
Table 7.14 presents the iteration numbers, and Table 7.15 the computational times for the mode k = 1
obtained on grids of different mesh sizes. We present the iteration numbers and the computational
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Figure 7.1: The exact state y (red) and its MhFE approximations yNh for N = 1, 2, 5 as functions of
time in [0, 2π] at the spatial coordinates (0.5, 0.5), and for λ = ω = σ = ν = 1 (Example 4).

Figure 7.2: The desired state yd (red) and the MhFE approximations y5h to the state y (left) and
the MhFE approximations u5h to the control u (right) for λ = 1, 10−2, 10−4, 10−6 as functions of
time in [0, 2π] at the spatial coordinates (0.5, 0.5), and for ω = σ = ν = 1 (Example 4).

times only for k = 1 because the computations of all modes up to the truncation index N can be
done totally in parallel and lead to similar results.
Altogether, Figure 7.1 and Figure 7.2 as well as Table 7.14 and Table 7.15 confirm that the MhFEM
is a very efficient approach for solving time-periodic problems. In the following, we will consider an
example, where the desired state is not time-periodic anymore.
In Example 5, we choose the time-analytic desired state

yd(x, t) = et(−2 cos(t) + sin(t) + 4π4 sin(t)) sin(x1π) sin(x2π),

which is obviously not time-periodic. We set again ω = 1. Hence, the time period T = 2π/ω is
equal to 2π. For this example, we can compute the Fourier coefficients of the desired state again
analytically. In Figure 7.3, we present the exact state y and its MhFE approximations yNh with
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Table 7.14: Number of MINRES iterations for different λ on different grids (Example 4).

grid / λ 10−8 10−6 10−4 10−2 1 102 104 106 108

64× 64 19 16 14 12 12 12 12 12 12
128× 128 18 16 14 12 14 13 14 14 14
256× 256 18 16 14 13 16 17 15 15 15
512× 512 18 17 14 16 18 21 41 35 33

Table 7.15: The CPU times in seconds for different values of λ and on different grids (Example 4).

grid / λ 10−8 10−6 10−4 10−2 1 102 104 106 108

64× 64 0.19 0.16 0.14 0.12 0.12 0.12 0.13 0.12 0.13
128× 128 0.88 0.80 0.71 0.59 0.69 0.64 0.70 0.70 0.70
256× 256 4.02 3.59 3.15 2.93 3.61 3.80 3.37 3.38 3.37
512× 512 17.20 16.29 13.51 15.38 17.34 20.02 38.53 33.08 31.16

N = 1, 2, 5 as functions of time in [0, T ] at the spatial coordinates (0.5, 0.5) and for the parameter
choice λ = 1. In this case, the exact state is given by y(0.5, 0.5, t) = et sin(t). As for the previous

Figure 7.3: The exact state y (red) and its MhFE approximations yNh with N = 1, 2, 5 as functions
of time in [0, 2π] at the spatial coordinates (0.5, 0.5), and for λ = σ = ν = 1 (Example 5).

example, we illustrate in Figure 7.4 again how the MhFE approximations y5h of the state y approach
the desired state yd as λ goes to zero. We obtain almost the same results for the number of MINRES
iterations and for the computational times as have been shown for Example 4 in Tables 7.14 and 7.15,
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Figure 7.4: The desired state yd (red) and the MhFE approximation y5h to the state y for λ =
1, 10−2, 10−4, 10−6 as functions of time in [0, 2π] at the spatial coordinates (0.5, 0.5), and for ω = ν =
σ = 1 (Example 5).

i.e., the solver is not only robust with respect to λ and h, but also of optimal complexity.
In Example 6, we consider the desired state

yd(x, t) = χ[ 14 ,
3
4 ]
(t)χ[ 12 ,1]

2(x),

that is a characteristic function in space and time. The time period T is set to 1, hence ω = 2π. We
can again compute the Fourier coeffcients of the desired state analytically. Indeed, we get

ycdk(x) =
2

T

 T

0

yd(x, t) cos(kωt) dt = χ[ 12 ,1]
2(x)

1

kπ
(− sin(

kπ

2
) + sin(

3kπ

2
))

and

ysdk(x) =
2

T

 T

0

yd(x, t) sin(kωt) dt = χ[ 12 ,1]
2(x)

2

kπ
sin(

kπ

2
) sin(kπ) = 0

for all k ∈ N, and ycd0(x) = χ[ 12 ,1]
2(x) in the case when k = 0. Figure 7.5 presents the MhFE

approximations yNh to the state y for N = 5 as functions of time at the spatial coordinates (0.5, 0.5)
for different values of λ. In Figure 7.6, we illustrate the approximations uNh to the control u for
N = 5 and N = 11, and for different spatial coordinates, more precisely, for (0.25, 0.25), (0.5, 0.5)
and (0.75, 0.75), where we set λ = 0.01 for all cases. Finally, we refer to Tables 7.16 and 7.17 where
the number of MINRES iterations and the computational times in seconds are presented for different
regularization parameters λ and mesh sizes h in comparison with the results for the last example.
In Example 7, we consider again a desired state which is a characteristic function in space and time,
but in addition, we allow jumps in the values of the material coefficients ν and σ. More precisely,
ν = 10−4 and σ = 1 on the subdomain Ω1 = (0, 1)× (0, 1

2 ), and ν = 104 and σ = 102 on Ω2 = Ω\Ω1.



178 CHAPTER 7. NUMERICAL RESULTS

Figure 7.5: The MhFE approximations y5h to the state y for λ = 1, 10−2, 10−4, 10−6 as functions of
time in [0, 1] at the spatial coordinates (0.5, 0.5), and for ω = 2π, ν = σ = 1 (Example 6).

Figure 7.6: The MhFE approximations u5h and u11h at the spatial coordinates (0.25, 0.25), (0.5, 0.5)
and (0.75, 0.75) as functions of time in [0, 1] for λ = 0.01, ω = 2π, ν = σ = 1 (Example 6).
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The time period is set T = 1, hence ω = 2π. We again vary the regularization parameter λ, and
compute the solutions on grids of different mesh size. The desired state

yd(x, t) = χ[ 14 ,
3
4 ]
(t)χ[ 12 ,1]

2(x)

is chosen as in the preceding example. We again expand the desired state in a Fourier series, where
the Fourier coefficients can be computed analytically. We truncate then the Fourier series and ap-
proximate the Fourier coefficients by finite element functions. Finally, we solve the systems (4.11)
and (4.12) for all 0 ≤ k ≤ N by our preconditioned MINRES iteration. The number of MINRES
iterations and the corresponding computational times can be found in Table 7.16 and Table 7.17,
respectively. We observe from these tables that our solver also remains robust with respect to both
the regularization parameter λ and the mesh size h in case of large jumps in the values of the co-
efficient functions ν and σ. In addition to this, the comparison of the number of iterations and the
corresponding computational times for Examples 6 and 7 show that the efficiency of our solver is not
affected by large jumps in the coefficients ν and σ. This is a very important issue for many practical
applications where we have usually large jumps in the values of material coefficients.

Table 7.16: Number of MINRES iterations for different values of λ on grids of different mesh size
(Example 6 / Example 7).

grid / λ 10−8 10−4 1 104 108

64× 64 22 / 14 18 / 18 12 / 16 10 / 14 10 / 14
128× 128 22 / 15 20 / 20 12 / 18 10 / 18 10 / 18
256× 256 22 / 16 20 / 24 14 / 18 12 / 16 12 / 16
512× 512 23 / 16 22 / 24 14 / 17 12 / 12 12 / 12

Table 7.17: The CPU times in seconds for different values of λ on grids of different mesh size
(Example 6 / Example 7).

grid / λ 10−8 10−4 1 104 108

64× 64 0.2 / 0.1 0.2 / 0.2 0.1 / 0.2 0.1 / 0.1 0.1 / 0.1
128× 128 1.1 / 0.7 1.0 / 0.9 0.6 / 0.8 0.5 / 0.8 0.5 / 0.8
256× 256 4.8 / 3.3 4.4 / 4.7 3.1 / 3.7 2.6 / 3.3 2.7 / 3.3
512× 512 21.5 / 14.0 20.6 / 20.9 13.2 / 15.1 11.3 / 10.7 11.3 / 10.7
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Chapter 8

Conclusions and outlook

In this chapter, we want to summarize our results and give an outlook on some future work.

Conclusions

We have provided a complete numerical analysis of linear parabolic boundary value and optimal con-
trol problems in a time-periodic setting and their discretization by means of the multiharmonic finite
element method (MhFEM). Moreover, we have developed new algebraic multilevel preconditioners
for solving the discrete problems by the preconditioned minimal residual (MINRES) method.

The mathematical and numerical analysis includes an existence and uniqueness proof of the weak
solution to a special variational setting of the parabolic time-periodic boundary value problem and
the corresponding optimal control problem in Chapters 3 and 4, respectively. More precisely, we
have introduced the space H1, 12 which has provided a suitable framework for deducing existence
and uniqueness of the problems by proving inf-sup and sup-sup conditions such that the theorem of
Babuška and Aziz can be applied.

We have intensely studied the MhFEM for solving parabolic time-periodic problems, where all – given
and unknown – functions are approximated by truncated Fourier series and the Fourier coefficients
by the finite element method. The MhFEM is a very powerful tool for solving linear time-periodic
problems since it reduces a large time-dependent problem to a sequence of smaller time-independent
ones that can completely be solved in parallel. More precisely, the large systems of linear algebraic
equations fortunately decouple into smaller linear systems each of them defining the cosine and
sine Fourier coefficients with respect to a single frequency. The resulting systems have a saddle
point structure and can be solved by the preconditioned MINRES method. We have constructed
block-diagonal preconditioners leading to robust and fast convergence rates for the MINRES method
following the work by Zulehner in [187].

The diagonal blocks of the MINRES preconditioners are sums of stiffness and mass matrices. Since
the finite element discretization of reaction-diffusion type problems with heterogeneous reaction and
diffusion coefficients leads to such sums of stiffness and mass matrices, we have presented the con-
struction of efficient preconditioners for these problems by the linear algebraic multilevel iteration
(AMLI) method, which has been introduced in [14, 15]. Moreover, one of the main achievements of
this work is not only the construction of efficient multilevel preconditioners but the derivation of a
rigorous proof for the robustness and optimality of this AMLI method for heterogeneous reaction-
diffusion type problems in two space dimensions, see Chapter 5. More precisely, we have varified the
optimality conditions for linear AMLI preconditioners constructed in the framework of hierarchical
splittings of lowest-order conforming finite element spaces for reaction-diffusion type problems. A new
estimate of the constant γ in the strengthened Cauchy-Bunyakowski-Schwarz inequality has been pre-
sented for the mass matrix in case of a general m-refinement. Moreover, an additive preconditioner
for the pivot blocks arising in the recursive two-by-two block factorization has been analyzed for the
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case m = 3. The derived uniform condition number estimates together with the verification of the
optimality conditions lead to robust and optimal linear AMLI methods for linear systems with sums
of stiffness and mass matrices.

The numerical analysis has also involved full a priori and a posteriori discretization error estimates
for the parabolic time-periodic boundary value and optimal control problems, including the analysis
for the space H1, 12 . We have analyzed the error coming from the approximation via truncated Fourier
series as well as from the finite element approximation of the Fourier coefficients. The a posteriori
error analysis, which can be found in Chapter 6, is based on the method presented in Repin [152],
but we had to incorporate proper changes regarding the space H1, 12 and the special features of the
MhFEM.

Although the main focus of this work was to develop the theoretical machinery for a rigorous numerical
analysis of parabolic time-periodic problems, we also implemented the algorithms developed and
confirmed our theoretical results by proper numerical experiments in Chapter 7.

Altogether this thesis presents the MhFEM as a very efficient approach for the discretization of linear
parabolic time-periodic simulation and optimal control problems as well as provides optimal and
robust solvers for this type of problems.

Outlook

• In this work, we have assumed that the Fourier coefficients of the given data, e.g., the source
term f or the desired state yd, can be computed exactly, but, in general, the Fourier coefficients
of the data have to be computed numerically. Hence, the efficient numerical computation of
the Fourier coefficients together with an error analysis is a matter of future work, cf. also [93],
where it is briefly discussed that three-term recurrences can be used to evaluate the integrals
appearing in the Fourier coefficients by a forward-backward recursion.

• In case of given time-analytic data, the error estimates can be definitely improved, which is also
observed in our numerical experiments, cf. Remark 4.11 and also Remark 3.20. For given time-
analytic data, we may expect exponential convergence with respect to the truncation parameter
of the Fourier series.

• The incorporation of initial conditions instead of time-periodic ones is definitely an important
topic for further investigations. Especially, in case of optimal control problems, this leads to
many interesting questions since the initial condition for the forward problem turns into a final
condition for the adjoint problem. Ideas for solving this problem are, for instance, to incorporate
the initial condition somehow into the Fourier series approximation of our unknown functions or
to use – instead of Fourier series – other spectral methods like Legendre or integrated Legendre
polynomials for the approximation in time.

• In case of optimal control problems, the efficient treatment of inequality constraints for the
control and the state using the MhFEM is a challenging topic. However, inequality contraints
imposed on the Fourier coefficients of the state or the control can easily be included into the
MhFE approach, although one loses the robustness with respect to the cost or regularization
parameter when solving the optimality system by the preconditioned MINRES method, see [88].
The inclusion of inequality constraints imposed on the state or the control itself is much harder
to handle. One technique to handle this problem is to include them as penalty term in the cost
functional or to use barrier methods. However, this makes the optimality system nonlinear.
Nonlinearities of this kind, but also nonlinearities arising from nonlinear partial differential
equations as in the case of coefficients which depend on the solution, e.g., ν = ν(x, t, |∇y|) or
ν = ν(x, t, y), lead to coupled nonlinear optimality systems. The Newton linearization results
in linear systems where all modes are coupled. However, the block-diagonal preconditioners
constructed for the linear case could be very useful for the efficient solution of the linear systems
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arising at each step of the Newton method, see [27] for the solution of time-periodic eddy current
problems. The primal-dual active set method may also help to handle nonlinearities arising from
prescribing inequality constraints. This method is equivalent to a semi-smooth Newton method,
see [80].

• Although the parallel implementation of computing the Fourier coefficients for different modes
is straightforward, it should be put into practice, since the practical parallelization as well as a
proper optimization of our algorithms should improve the efficiency of our solver.

• In the a posteriori error analysis of Chapter 6, we have obtained majorants for our parabolic
time-periodic boundary value problem as well as for the optimality system and cost functional of
the corresponding optimal control problem. Of course, the computation of co-called minorants
for the parabolic time-periodic problems is a matter of future work.

• Another important topic is the practical implementation of the final bounds from the majo-
rants, which we have obtained in the a posteriori error analysis of Chapter 6. Here, we can use
techniques that are known from the elliptic case, see [153, 123]. The construction of an adap-
tive multiharmonic finite element method (AMhFEM) based on a posteriori error estimates is
another challenging area for further research and should yield adaptivity in space and time.

• We have proved robustness and optimality of our linear AMLI method for heterogeneous
reaction-diffusion type problems in two space dimensions. A rigorous proof for three space
dimensions is another important issue for further investigations.

• In order to prove robustness and optimality of our AMLI method, we have assumed that the
reaction and diffusion coefficients are constant on the coarsest mesh partitioning. Hence, the
next step would be to prove robustness and optimality considering parameters which have
jumps in their values on the finest mesh leading to highly heterogeneous problems which arise
in multiscale analysis, see, e.g., [66].
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