
UNIVERSITÄT LINZ
JOHANNES KEPLER JKU

Technisch-Naturwissenschaftliche
Fakultät

Formal Specification and Verification of
Computer Algebra Software

DISSERTATION

zur Erlangung des akademischen Grades

Doktor

im Doktoratsstudium der

Technischen Wissenschaften

Eingereicht von:

Muhammad Taimoor Khan

Angefertigt am:

Doktoratskolleg Computational Mathematics
Research Institute for Symbolic Computation

Beurteilung:

A.Univ.-Prof. Dipl.-Ing Dr. Wolfgang Schreiner (Betreuung)
Professor Dr. Renaud Rioboo

Linz, April, 2014

This research was funded by the Austrian Science Fund (FWF): W1214-N15, project DK10.

Abstract

In this thesis, we present a novel framework for the formal specification and verification
of computer algebra programs and its application to a non-trivial computer algebra
package. The programs are written in the language MiniMaple which is a substantial
subset of the language of the commercial computer algebra system Maple. The main
goal of the thesis is the application of light-weight formal methods to MiniMaple
programs (annotated with types and behavioral specifications) for finding internal
inconsistencies and violations of methods preconditions by employing static program
analysis. This task is more complex for a computer algebra language like Maple that
for conventional programming languages, as Maple supports non-standard types of
objects and also requires abstract data types to model algebraic concepts and notions.

As a starting point, we have defined and formalized a syntax, semantics, type system
and specification language for MiniMaple. For verification, we automatically trans-
late the (types and specification) annotated MiniMaple program into a behaviorally
equivalent program in the intermediate language Why3ML of the verification tool
Why3; from the translated program, Why3 generates verification conditions whose
correctness can be proved by various automated and interactive theorem provers (e.g.
Z3 and Coq). Furthermore, we have defined a denotational semantics of MiniMaple
and its specification language and proved the soundness of the translation with re-
spect to the operational semantics of Why3ML. Finally, we discuss the application of
our verification framework to the Maple package DifferenceDifferential developed at
our institute to compute bivariate difference-differential dimension polynomials using
relative Gröbner bases.

Keywords: formal methods, program verification, computer algebra software,
Maple, formal specification, formal semantics

i

Zusammenfassung

In dieser Arbeit präsentieren wir ein neuartiges Framework für die formale Spez-
ifikation und Verifikation von Computeralgebra-Programmen und seine Anwendung
auf ein nicht-triviales Computeralgebra-Paket. Die Programme werden in der Sprache
MiniMaple geschrieben, die eine wesentliche Teilmenge der Sprache des kommerziellen
Computeralgebra-Systems Maple ist. Das Hauptziel dieser Arbeit ist die Anwendung
leichtgewichtiger formaler Methoden auf (mit Typen und Verhaltens-Spezifikationen)
annotierte MiniMaple-Programme, um interne Inkonsistenzen und Verletzungen von
Methodenvorbedingungen durch Einsatz statischer Programmanalyse zu finden. Diese
Aufgabe ist für eine Computeralgebra-Sprache wie Maple komplexer als für konven-
tionelle Programmiersprachen, da Maple ungewöhnliche Typen von Objekten unter-
stützt und auch abstrakte Datentypen zur Modellierung von algebraischen Konzepten
und Begriffen benötigt.

Als Ausgangspunkt haben wir eine Syntax, Semantik, Typ-System und Spezifika-
tionssprache für MiniMaple definiert und formalisiert. Für die Verifikation überset-
zen wir automatisch das (durch Typen und Spezifikationen) annotierte MiniMaple-
Programm in ein verhaltensgleiches Programm in der Zwischensprache Why3ML des
Verifikations-Werkzeugs Why3; aus dem übersetzten Programm generiert Why3 Ver-
ifikationsbedingungen, deren Korrektheit mit verschiedenen automatischen und inter-
aktiven Beweisern (z.B. Z3 und Coq) bewiesen werden kann. Weiters haben wir eine
denotationale Semantik von MiniMaple und ihrer Spezifikationssprache entwickelt und
die Korrektheit der Übersetzung in Bezug auf die operationale Semantik von Why3
bewiesen. Schließlich zeigen wir die Anwendung unseres Verifikations-Frameworks auf
das Maple-Paket DifferenceDifferential, das an unserem Institut für die Berechnung
bivariater Differenzen-Differenzial-Dimensions-Polynome unter Verwendung relativer
Gröbner Basen entwickelt wurde.

Schlüsselwörter: Formale Methoden, Programmverifikation, Computeralgebra-
Software, Maple, formale Spezifikation, formale Semantik.

Acknowledgements

Foremost, I would like to express my sincere gratitude and thanks to my disserta-
tion advisor A.Univ.-Prof. Dipl.-Ing Dr. Wolfgang Schreiner, you have been really a
tremendous and wonderful mentor for me. I could not have imagined having a better
supervisor for my doctoral studies. I would like to thank you for encouraging my
research and providing me this opportunity to work on a very exciting project that
has allowed me to grow as a young (formal methods) research scientist. Your invalu-
able advices on both research as well as on management of life have been priceless.
This thesis is the result of your continuous guidance through very explicit and con-
crete explanations equipped with creative ideas. Thank you very much for your true
coordination, care, long patience, feedback and all kind of support!!

I would also especially like to pay thanks to my thesis examiner and research host,
Professor Renaud Rioboo (member of Centre d’Études et de Recherches en Informa-
tique, France). His scientific remarks played a very helping role to improve the quality
of my work on verification. He was a wonderful colleague who was always willing to
help and give his best suggestions during my few months stay at ENSIIE. I also would
like to thank for his kind hospitality and support during the stay. Furthermore, I am
thankful to him for introducing me to Why3 and other teams at INRIA and CNAM.

I also want to thank the Why3 team at LRI (Laboratoire de Recherche en Infor-
matique), Université Paris-Sud in general and Jean-Christophe Filliâtre and Claude
Marché in particular for allowing me to attend their seminars, discussions and above
all their technical support.

Afterwards, I am also very thankful to the secretaries, system administrators and
all colleagues from RISC and DK for their scientific, technical and organizational
support. I especially want to thank Doktratskolleg (DK) and Austrian Science Fund
(FWF) for providing funds for such an exciting project.

A special thanks to my beloved parents. I am really short of words to express how
grateful I am for their sincere support, prays and encouragement. And last but not the
least, I would like to thank my wife (Najma Taimoor) and children (Noor-ul-Eman,
M. Mohid Khan and M. Sarmad-Muzaffar Khan) who stood beside me throughout
these years and cheered me up in the good and bad times. I am also thankful for their
unconditional love and all kinds of support. Above all that, I express my deepest
gratitude to Almighty Allah for being infinitely kind throughout the journey of my
life.

v

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1

2. State of the Art 7
2.1. Computer Algebra and Type Systems 7
2.2. Formal Semantics . 12
2.3. Formal Specification and Verification 20

3. MiniMaple 25
3.1. Background Study . 25
3.2. Challenges . 27
3.3. Overview of Syntax . 31
3.4. Running Example . 36

4. Formal Type System 37
4.1. Background . 37
4.2. Type System for MiniMaple . 38

4.2.1. Types and Sub-typing . 38
4.2.2. Type Environment . 40
4.2.3. Typing Judgments . 43
4.2.4. Typing Rules . 44
4.2.5. Auxiliary Functions and Predicates 48

4.3. A Type Checker for MiniMaple . 51

5. Formal Specification Language 53
5.1. Formula Language . 53
5.2. Specification Elements . 55

5.2.1. Mathematical Theories . 55
5.2.2. Procedure Specifications . 56
5.2.3. Loop Specifications . 57
5.2.4. Assertions . 58

5.3. Example . 60

vii

Contents

6. Formal Semantics 63
6.1. Introduction . 63

6.2. Background . 64

6.2.1. Semantic Values . 64

6.2.2. Module Values . 64

6.2.3. Procedure Values . 64

6.2.4. Function Values . 65

6.2.5. List Values . 65

6.2.6. Sequence Values . 65

6.2.7. Environment Values . 65

6.2.8. State Values . 66

6.2.9. Lifted Values . 66

6.3. Semantics of Programs . 66

6.3.1. Commands . 67

6.3.2. Expressions . 70

6.4. Semantics of Specification Expressions 73

6.5. Semantics of Specification Annotations 77

6.5.1. Specification Declarations . 77

6.5.2. Procedure Specifications . 78

6.5.3. Loop Specifications . 79

6.5.4. Assertions . 80

7. Formal Verification 81
7.1. Why3 . 81

7.2. MiniMaple to Why3 Translation . 82

7.2.1. Commands . 83

7.2.2. Expressions . 86

7.2.3. Specification Expressions . 87

7.3. Example . 88

7.3.1. Translation . 88

7.3.2. Verification . 91

7.4. Soundness of Translation . 93

7.4.1. Soundness of Command Sequence 94

7.4.2. Soundness of While-loop . 105

8. Application 113
8.1. The Package “DifferenceDifferential” 113

8.2. Type Checking the Package . 114

8.3. Specifying the Package . 115

8.3.1. Concrete Data Type-based Specifications 116

8.3.2. Abstract Data Type-based Specifications 118

viii

Contents

8.4. Verifying the Package . 122

8.4.1. Verification of Low-level Procedures 123

8.4.2. Verification of High-level Procedures 124

8.4.3. Verification of the High-level Procedure “SP” 132

9. Conclusions and Future Work 137

Appendices 139

A. Syntax of MiniMaple 141

B. Syntax of the Specification Language for MiniMaple 143

C. Type System of MiniMaple 145
C.1. Logical Rules . 145

C.2. Auxiliary Functions . 145

C.3. Auxiliary Predicates . 145

D. Formal Semantics of MiniMaple 147
D.1. Semantic Algebras . 147

D.2. Signatures of Valuation Functions . 147

D.3. Auxiliary Functions and Predicates 147

D.4. Semantics . 147

E. Formal Semantics of the Specification Language for MiniMaple 149
E.1. Semantic Algebras . 149

E.2. Signatures of Valuation Functions of Formula Language 149

E.3. Auxiliary Functions and Predicates 149

E.4. Semantics of Formula Language . 149

E.5. Signatures of Valuation Functions for Specification Annotations . . . 150

E.6. Semantics of Specification Annotations 150

F. Translation of MiniMaple into Why3ML 151
F.1. Semantic Algebras . 151

F.2. Signatures of Translation Functions 151

F.3. Auxiliary Functions and Predicates 151

F.4. Definition of Translation Functions 151

G. Proof of the Soundness of the Translation 153
G.1. Semantic Algebras . 153

G.2. Auxiliary Functions and Predicates 153

G.3. Soundness Statements . 153

G.4. Proof . 153

ix

Contents

G.5. Lemmas . 153
G.6. Definitions . 154
G.7. Why3 Semantics . 154
G.8. Derivations . 154

Bibliography 155

x

List of Figures

1.1. A High-level Overview of the Verification Framework 3

3.1. High-level Syntactic Domains . 32
3.2. An Example MiniMaple Program . 35

4.1. Parsing and Type Checking Output 51

5.1. Syntactic Domains of Formula Language and the Related Domains . . 54
5.2. A MiniMaple Procedure Formally Specified 57
5.3. A MiniMaple Loop Formally Specified 59

7.1. Overview of Why3 . 82
7.2. Verification of Example Program . 92
7.3. Illustration of Soundness Statement for Command Sequence 95

8.1. Overview of Specification of the Package DifferenceDifferential 116
8.2. Formulation for Abstract Specification and Verification 119
8.3. Verification of a Stack Example . 128
8.4. Verification of DifferenceDifferential 133

xi

1. Introduction

Since the last couple of decades, software has been seamlessly integrated in almost
every technology that we use to facilitate our daily life activities. This phenomenon has
given rise to the critical question of whether the software is trustworthy and reliable
in order to avoid any undesired and unpleasant incidents/situations. To address this
question, software reliability has evolved as a major focus area of research in computer
science. In fact, behavioral errors of software are main threats to software reliability
and cost sixty billion dollars per annum to the US economy as claimed in a study by
NIST [146].

One approach to establish the reliability of software is by formal methods. This
approach allows to specify the behavior (requirements) of a system using mathematical
and logical notations which are then amenable to verification, i.e. to a formal proof
that the system’s implementation is correct with respect to its specification. Formal
methods have been successfully applied in various domains of computer science such
as the development of mission and safety critical systems software [9,10,60,86,87]. In
this thesis, we consider the special application domain of computer algebra.

Computer algebra is a branch of symbolic computation that manipulates math-
ematical expressions and other mathematical objects , e.g. systems of polynomial
equations in multiple variables. In contrast to numerical computation, which solves
such systems by iterative applications, the goal of computer algebra is to derive ex-
act solutions of such systems (possibly expressed in symbolic form including formal
parameters) by symbol manipulation. A computer algebra system is a software that
implements computer algebra algorithms, typically within an interactive environment,
for the computation with mathematical expressions. There are various such systems,
e.g. AXIOM [121], Maple [111] and Mathematica [159] that are widely used for sci-
entific computation in various fields of computer mathematics. The languages sup-
ported by these systems for implementing computer algebra algorithms have evolved
from simple scripting languages to full-fledged programming languages. However, they
have typically not been developed with the consideration of formal methods, such that
the correctness of computer algebra algorithms implemented in these languages poses
a serious problem.

In the past few decades, there has been a lot of research on applying formal tech-
niques to classical programming languages, e.g. C [17], Java [71] and C# [14]; variously
also the application of formal methods to the languages of computer algebra systems
has been investigated, e.g. for AXIOM [56], Maple [37] and FoCaLiZe [145]. However,

1

1. Introduction

there has not been significant attention paid to find practical applications of formal
methods to computer algebra software implemented in commercial systems such Maple
and Mathematica. While computer algebra algorithms and their implementations are
“essentially” correct, they often rely on some implicit assumptions, usually dependen-
cies and side conditions which need to be considered, because otherwise the results
might be erroneous or misinterpreted.

Therefore, the main goal of this thesis was to design and develop a tool to find
by static program analysis behavioral errors in computer algebra programs that are
written in a symbolic computation language and are annotated with types and formal
specifications. Our focus was on commercial languages such as Maple and Mathe-
matica, because the overwhelming majority of computer algebra software is written
in these languages. These languages are more complicated than computer algebra
languages developed in the academic context, because they have historically evolved
from scripting languages whose fundamental design was not subject to the applica-
tion of formal methods. Already the task of type checking programs written in these
languages is complex as these languages support non-standard objects such as uneval-
uated expressions and polynomials and also allow dynamic type tests which direct the
control flow of the program at runtime.

More concretely, we have developed a verification framework for a well-defined sub-
set of the language of Maple, which we call MiniMaple [91]. To be able to demonstrate
our framework in a real application scenario, we first studied various computer alge-
bra packages developed at our institute. We then chose as a typical representative
the Maple package DifferenceDifferential [42] that was developed at our institute by
Christian Dönch without formal methods in mind. This package provides algorithms
for computing difference-differential polynomials according to the method developed
by M. Zhou and F. Winkler [163]. All steps of the development of our verification
framework were validated by the application to this package.

Figure 1.1 gives a general overview of our verification framework. First the Mini-
Maple program is parsed to generate an abstract syntax tree (AST). Then the AST
is annotated by type information and translated into a semantically equivalent pro-
gram in the language Why3ML of the verification framework Why3 [21] developed at
LRI, France. From this program, Why3 generates verification conditions that may be
proved correct by various supported back-end provers. Throughout the whole process,
all components may generate error and information messages. Further details of the
project and software are available at https://www.dk-compmath.jku.at/people/mtkhan.

In more detail, to approach the goal of this thesis, we have first formally defined
the syntax of MiniMaple. As type safety is a prerequisite of program correctness,
we have formalized a type system for statically type checking MiniMaple programs
based on the type annotations which Maple has introduced for runtime type checking.
Then we have defined a specification language to formally specify the behavior of
MiniMaple programs [100,101]. The specification language allows to formally describe

2

Figure 1.1.: A High-level Overview of the Verification Framework

mathematical theories (types, functions, axioms) and the behavior of procedures (pre-
and post-conditions and other constraints), loops (invariants and termination terms)
and commands (assertions). The language slightly extends the syntax of Maple, e.g.
logical quantifiers use typed variables and numerical quantifiers (binders) use logical
conditions that filter values from the specified range of a variable. Moreover, the
language also supports abstract data types to specify abstract mathematical notions.
We have then formalized the denotational semantics of MiniMaple and its specification
language [93,94].

To verify a MiniMaple program annotated with types and specifications, we trans-
late this program into a semantically equivalent program in the language Why3ML of
the verification tool Why3. Based on the denotational semantics of MiniMaple and
the operational semantics of Why3ML [63], we have proved the soundness of the trans-
lation. The Why3 built-in verification conditions generator is used to produce a set of
verification conditions: the pre-conditions of called procedures, the post-conditions of
defined procedures, the initial establishing of loop invariants, the preservation of loop
invariants after every iteration and the decreasing of termination terms.

Finally, we have applied our verification framework to achieve our original goal:
the verification of the package DifferenceDifferential. We have type annotated the
package, formally specified, translated in Why3ML program and then generated the
corresponding verification conditions. Using automatic and interactive provers sup-

3

1. Introduction

ported by the Why3 back-end, we have verified all low-level procedures of the package.
However, in order to verify the high-level procedures of the package, we first had to
develop a strategy to formally specify and verify such procedures. The problem is that
these procedures are implemented using concrete data types but are specified with the
help of abstract data types. Based on our strategy, we were able to successfully prove
selected high-level procedures of the package.

The results of this thesis are original in that they represent to our knowledge the
very first attempt to verify real-life code that was developed in a commercial com-
puter algebra language without formal methods in mind. We have for the first-time
formalized a type system, specification language and formal semantics for a subset of
the language of the commercial computer algebra system Maple. Our framework is
also innovative in that it supports the entire process to statically type check, specify
and verify such computer algebra programs. We have also formulated a novel strategy
for verifying high-level procedures in such programs and have successfully applied it
to a non-trivial example from a real-life application. The contents of this thesis are in
parts based on several conference and workshop publications [95,99–102] and technical
reports [91–94,96–98].

In the following, we discuss the structure of the rest of the thesis: in Chapter 2
we sketch the state of the art of computer algebra systems, type systems, formal
semantics, formal methods and their relationship.

In Chapter 3 we introduce the syntax of MiniMaple and discuss the language by a
running example that will be subsequently used in the other chapters.

In Chapter 4 we first sketch the design of a formal type system for MiniMaple
consisting of various kinds of judgments and rules to derive these judgments. Then
we explain the formalization of the type system in more detail for several commands
and expressions of MiniMaple. Finally, we discuss the application of type checker to
our running example.

Chapter 5 introduces a specification language of MiniMaple whose core is a logical
formula language embedded into the syntax of MiniMaple. Then we discuss various
elements of the specification language, i.e. mathematical theories, procedure speci-
fications, loop specifications and assertions. Finally, we demonstrate the use of the
specification language by specifying our example program.

The formal semantics of MiniMaple and its specification language are discussed
in Chapter 6. Here, first we present the formalization of some interesting semantic
domains and then give the semantics of selected commands and expressions of Mini-
Maple. Finally, we describe the semantics of the specification language, i.e. its core
formula language and other elements of the language.

Chapter 7 explains the various components of our verification framework. In partic-
ular, we discuss the translation functions of various constructs of MiniMaple and its
specification language to corresponding constructs in Why3ML and demonstrate this

4

translation of our example program. Finally, we discuss the proof of the soundness of
our translation with respect to the formal semantics of MiniMaple and Why3ML.

In Chapter 8, we discuss the results of the application of our verification framework
to the Maple package DifferenceDifferential. First, we give an overview of the package
and then discuss the results on type checking, specifying and verifying the package.

In the final Chapter 9, we review our work and discuss possible future extensions.

In Appendices A and B we give the complete formal definition of the syntax of Mini-
Maple and its specification language, respectively. Appendix C gives the complete
type system for MiniMaple programs. The formal semantices of MiniMaple and its
specification language are defined in the Appendices D and E. In Appendix F, we give
the definition of the translation functions from MiniMaple to Why3ML. Finally, the
proof of the soundness of the translation of MiniMaple to Why3ML is discussed in
Appendix G. The complete contents of the appendices are not shown in the printout
but are part of the electronic version (attached CD) of this thesis.

This research was funded by the Austrian Science Fund (FWF): W1214-N15, project
DK10 in the frame of Doktoratskolleg “Computational Mathematics” at the Johannes
Kepler University, Linz.

5

2. State of the Art

In this chapter we discuss the state of the art of computer algebra systems, formal
semantics, formal methods and the relationship among these topics. The rest of the
chapter is organized as follows: Section 2.1 introduces various computer algebra sys-
tems and their respective type systems. In Section 2.2 we first give an overview of
various approaches for defining the formal semantics of programming languages and
then describe the semantics of classical programming and scripting languages, com-
puter algebra languages and their corresponding specification languages; finally we
discuss the semantics of various intermediate verification languages. Finally, in Sec-
tion 2.3 we first sketch the role of formal methods in classical programming languages
and then discuss assertions checking in computer algebra languages, the application
of formal methods to such languages and the related integration of theorem provers
and computer algebra systems.

2.1. Computer Algebra and Type Systems

A variety of computer algebra systems has been developed, e.g. AXIOM [121], Magma
[26], Sage [156], FoCaLiZe [145], Mathematica [159], Maple [111], REDUCE [134],
Maxima [113] and GAP [147]. Among these the commercial systems Mathematica
and Maple are the most widely used ones. In the following, we discuss some of the
aforementioned computer algebra systems and their type systems.

Statically Typed Computer Algebra Languages

AXIOM [121] is a general purpose computer algebra system developed by NAG
Ltd. Based on the language Aldor [7], AXIOM (forked into FriCAS [68] and Open-
AXIOM [120] since 2007) is a strongly typed system [59]. In an interactive (inter-
preter) mode of AXIOM, a function can be declared with the corresponding signatures
and defined by an assignment == as follows:

f0 : () -> List Integer; f1 : (Integer) -> List Integer

Type: Void

f0() == []; f1(x) == [x]

Type: Void

The types of the functions are known at compile time as shown by the corresponding
function applications below:

7

2. State of the Art

f0()

Compiling function f0 with type () -> List Integer

[]

Type: List Integer

f1(6)

Compiling function f1 with type Integer -> List Integer

[6]

Type: List Integer

f1("12")

Conversion failed in the compiled user function f3 .

Cannot convert from type String to Integer for value

"12"

The last function application f1("12") indicates that type of the function applica-
tion is tested against the compile-time type of the function.

The data types in AXIOM are called domains; a class of domains is represented by
a category. In detail, a category defines the exports of domains, i.e. which operations
are provided, while the domains implement the corresponding operations. The system
supports a hierarchy of parameterized domains and categories, e.g. ordered sets, rings
and finite fields. Based on Aldor, AXIOM allows to write programs by combining the
properties of functional, aspect-oriented and object-oriented styles.

FriCAS uses the programming language SPAD [7,142] which is a variant of Aldor.
In the following example [142], we define a category in SPAD as follows:

)abbrev category MYCAT MyCategory

MyCategory: Category == with

1: %

nth: Integer -> %

_+: (%, %) -> %

The header specifies that constructor MyCategory is a category. The category de-
clares signatures of three functions. The function nth computes the sum of integers
up-to a value of the given parameter. A domain MyDomain belongs to MyCategory
and thus implements the corresponding three exports of the category.

)abbrev domain MYDOM MyDomain

MyDomain: MyCategory with

coerce: Integer -> %

coerce: % -> Integer

== add

Rep ==> Integer

rep r ==> (r@%) pretend Rep

per p ==> (p@Rep) pretend %

8

2.1. Computer Algebra and Type Systems

coerce(p: Integer): % == per p

coerce(r: %): Integer == rep r

1: % == per(1)

((m: %) + (n: %)): % == m + n

nth(j: Integer): % ==

r := 1

for i in 2..j repeat r := r + 1

r

In the domain definition, first two functions are declared in addition to the exported
functions of MyCategory and then the add part provides an implementation of the de-
clared and exported functions. The symbol % refers to this domain which is MyDomain.
In the implementation part (add), first three macros (==>) define the underlying repre-
sentation of the elements of the domain; then the two declared operations are defined
followed by the definitions of three exports functions of MyCategory.

Dynamically Typed Computer Algebra Languages

Magma [25, 26] is a dynamically typed computer algebra system developed at CAG,
University of Sydney, Australia. The design of Magma is based on algebraic struc-
tures and morphism such that every object has a type magma [25]. For an algebraic
structure Σ-algebra, Magma supports two-level classification of magmas:

1. a class of magmas that satisfies a set of relations Q is called a variety and is
written as Var(Σ; Q) and

2. a class of magmas that belongs to the variety E and shares a common “repre-
sentation” R is called a category and is written as Cat(E ;R).

Here, a variety is used to specify generic functions which are independent of the repre-
sentation of a magma, while a category realizes a magma in its concrete representation.

Sage [156] is a Python-based dynamically typed computer System for Algebra and
Geometry Experimentation with a customized interpreter. In [75] a prototype im-
plementation for Sage has been adapted to a hybrid type checking scheme [90], i.e.
static and dynamic type checking. Though Sage has its own libraries for computations
in algebra, combinatorics and calculus, Sage mainly provides an interface to several
other well-known mathematical and computer algebra tools and libraries, e.g. the
combinatorics libraries of GAP, PARI [123] and NTL [139], the commutative algebra
tool SINGULAR [52] and the libraries of Maxima [113] for symbolic computation and
calculus.

As an example a dynamically typed Sage function, g is defined as follows:

sage: def g(x):

if x <2:

9

2. State of the Art

return 0

else:

return x+"2"

The variable g has a type “function”. The applications of function g(‘‘test’’)
and g(1) compute valid results. However, the application g(5) gives a runtime error,
as an integer cannot be concatenated with a string value:

sage: type (g)

<type ’function’>

sage: g("test")

’test2’

sage: g(1)

0

sage: g(5)

Error in lines 1-1

Traceback (most recent call last):

...

TypeError: unsupported operand parent(s) \

for ’+’: ’Integer Ring’ and ’<type ’str’>’

FoCaLiZe [145] is a computer algebra environment based on the dynamically typed
language FoCal (formerly known as FoC). The goal here was to develop a language for
the co-design of a program and its corresponding proof of correctness. The language
supports an object oriented modularity; code, specifications, and proofs are developed
together in the same files. The absence of inconsistencies and correctness of dependen-
cies are analyzed at compile time before the code is translated into Objective Caml,
and the corresponding proofs are translated into Coq. Further details on the seman-
tics and the verification framework of FoCaLiZe are discussed in the Sections 2.2 and
2.3, respectively.

Commercial Computer Algebra Languages

Mathematica [159] supports a wide range of packages for symbolic and numeric com-
putations. Mathematica is a rule-based programming language for the manipulation
of supported expressions. Besides the availability of optional type annotations, the
language of Mathematica is not statically typed (however, in [69] the authors devel-
oped a static type system for a small subset of Mathematica). Moreover, the type
annotations in Mathematica can be used to select an appropriate rule at runtime.

Maple [111] is a commercial computer algebra software developed by Symbolic Com-
putation Group, University of Waterloo. Maple supports optional type annotations.

10

2.1. Computer Algebra and Type Systems

However, these type annotations can only be dynamically checked at runtime. Al-
though there does not exist any complete static type system for Maple, various ap-
proaches investigated the applications of the type information in Maple for different
purposes. The Maple package Gauss [116] introduced parameterized types in Maple
and allowed to implement various generic algorithms in an AXIOM-like style. The
system also supported parameterized types and parameterized abstract types, however
these were only checked at runtime. At start, the package was introduced in Maple
V Release 2 and later evolved into the domains package. In [37], partial evaluation is
applied to Maple. The focus of the work was to apply the available type information
in Maple for generating specialized programs from generic Maple programs. The lan-
guage of the partial evaluator had similar syntactic constructs (but fewer expressions)
as our language MiniMaple (see Chapter 3) and also supported a limited range of data
types e.g. booleans, floats, rationals, and strings.

In comparison to the aforementioned approaches, MiniMaple uses the type annota-
tions provided by Maple for static analysis. MiniMaple supports a substantial subset
of Maple types in addition to user-defined named types as discussed in Chapter 4.

Scripting Languages and Computer Algebra Languages

The problem of statically type-checking dynamically typed computer algebra pro-
grams is related to the problem of statically type-checking scripting languages such
as JavaScript [8, 150] and Ruby [70].

Object-oriented scripting languages like JavaScript are also popular because of their
dynamic features such as the runtime modification of objects (e.g. addition/update
of fields or methods). Since static type checking of such languages is a complex task,
therefore dynamic typing is used. However, with dynamic typing some errors cannot
be detected until runtime, e.g. access to non-existent members (in JavaScript, such
errors are reported in a web browser).

On one hand, there are a number of studies on the design and development of
type inference algorithms for statically type-checking scripting languages [8, 79, 161].
In [161], an algorithm for type inference for a subset of JavaScript is presented. The
focus of the algorithm was on the inference of function types by keeping track of ob-
ject/function extensions with the help of function calls and assignments. Moreover,
the algorithm allowed updates to objects through flexible and unrestricted (but per-
mitted) extensions to objects. The algorithm offered explicit and implicit extension of
objects, i.e. with the help of “add” operation and of method calls, respectively. How-
ever, the goal here was to allow only legal access of objects, their defined members
and operations.

On the other hand, variously annotation-based type systems have been developed
for statically type checking scripting languages. For instance, in [107], Anders Hejls-
berg at Microsoft developed the language TypeScript which is a typed superset of

11

2. State of the Art

JavaScript that provides optional type annotations for JavaScript programs. Based
on these annotations, a static type system is developed which makes extensive use
of type inference to allow only legal operations and behavior of JavaScript objects.
The compiler translates a well-typed TypeScript program into a JavaScript program.
Furthermore, the language also supports some object-oriented features; e.g. classes,
modules and interfaces can be defined to understand the behavior of even already ex-
isting JavaScript components. However, the goal here was to design a language which
supports development and maintenance of large scale JavaScript applications.

In comparison to the above approaches, MiniMaple had similar typing challenges.
For example, Maple also has a polymorphic type system and does support some dy-
namic features, e.g. runtime type-tests which direct the control flow of a program at
runtime and thus makes static type-checking more difficult. Therefore, a type sys-
tem for MiniMaple addressed aforementioned typing issues as discussed in Chapter 4.
However, still there are some fundamental differences due to the two different language
paradigms.

2.2. Formal Semantics

While the syntax of a programming language is formally defined by some grammar
(e.g. BNF), still not every syntactically correct program is well-typed: consequently
only well-typed programs are of value. Therefore, the semantics of a programming
language specifies a relation between a well-typed derivation of the program and its
meaning [50].

The formal semantics of a computer programming language can be defined in an
operational, axiomatic or denotational style [118]. Each style has been defined to
achieve a different purpose. For example, some styles make reasoning about programs
very easy; others make the meanings of programs accessible to a large audience and
some can be used to make the implementation of programming languages easier. In
the following, we discuss these approaches.

Operational Semantics

In the operational style introduced by Gordon Plotkin [127], the meaning of a pro-
gram is described by specifying an execution of the program on an abstract machine.
Furthermore, this method specifies the execution of a program with the help of rules
which are directed by the syntax of the language. There are numerous variants of
operational semantics, i.e. small-step, big-step and modular operational semantics.
Gordon Plotkin originally introduced the small-step variant of operational semantics,
which is also known as structural operational semantics. The focus here was to define
the execution of a program in terms of the execution of its parts. The big-step variant
defines the semantics of a program construct as a whole by hiding the intermediate

12

2.2. Formal Semantics

executions of parts of the construct. The modular operational semantics is a variant of
structural operational semantics: in this style the rules for a programming construct
are defined incrementally such that the rules do not need reformulation when new
constructs are added in the language. The goal here was to provide high degree of
modularity in the language which was the shortcoming of original structural opera-
tional semantics [117]. The examples of some variants of the operational semantics
are discussed later in this section.

Axiomatic Semantics

In the axiomatic style formulated by Floyd and Hoare [67, 80], the meaning of a
program is defined with the help of rules which specify the properties of the program.
The initial goal of the style was to explain the meaning of programs with the help of
“axioms“ (more generally inference rules). The rules specify how to prove properties
for a given program construct. After this reason, this style is known as axiomatic
semantics [50]. The rule for the axiomatic semantics of a typical conditional-statement
is:

{P ∧ B} C1 {Q}, {P ∧ ¬B} C2 {Q}
{P} if B then C1 else C2 endif{Q}

In detail, the rule says that execution of the conditional in a pre-condition P yields
a postcondition Q , iff

� either the execution of C1 in a pre-condition P and B yields a post-condition Q

� or the execution of C2 in a pre-condition P and ¬B yields a post-condition Q .

Here a boolean expression B has no side-effects and is thus identified with a logical
formula.

Denotational Semantics

In the denotational style devised by Scott-Strachey [143], the meaning of a program is
defined as a mathematical function that maps the well-typed derivation of the program
to its semantic value (denotation). The semantics of a syntactic phrase is formulated
in terms of the denotations of its sub-phrases. Thus, the corresponding proof of the
program’s correctness is typically based on the proof technique of structural induction.
The denotational semantics of MiniMaple is discussed in Chapter 6.

In the following, first we present various attempts to define the formal semantics of
classical programming languages: then we describe approaches to define the seman-
tics of scripting languages, computer algebra and specification languages and finally
explain the semantics of intermediate verification languages.

13

2. State of the Art

Semantics of Classical Languages

In the literature, the semantices of most popular programming languages have been
defined only informally. However, there have been also attempts to formally define
the semantices of subsets of a few widely used classical programming languages, e.g.
Ada [31], Scheme [135], C [122], Java [16, 84], C++ [40], Pascal [48, 133], Standard
ML [132], Cobol [112], Prolog [58] and Algol 60 [47].

The semantics and operational design of Ada were developed based on denotational
semantics of Scott-Strachey [31]. In the work, the static (compile-time) semantics was
formulated only for the sequential constructs of Ada. The semantics of the functional
programming language Scheme is also based on the variety of the denotational ap-
proach [135]. In [122], mathematical monads were employed to define the denotational
semantics of C. In order to achieve semantic respectively operational modularity and
readability, the work transformed monads into denotations.

In [24], based on transition rules of abstract state machines [23], the semantics for
a substantial subset of Java was formalized which however excluded visibility of Java
names and packages and class loading. Here the focus was to define the rigorous
semantices of Java programs which can help to identify the design inconsistencies of
the language and also can serve as the basis for the standardization of Java language.
For example, the transition rule for a Java conditional was formulated as follows:

if task is if (E) C1 else C2 then
if val(E) then task := fst(C1)

else task := fst(C2)

In detail, the rule states that in order to execute a conditional command, if evaluation
of expression E yields true then the task is to execute the first command of a command
sequence C1 otherwise, the task is to execute the first command of command sequence
C2.

Later in [84], the formal semantices of object-oriented and concurrency features
of Java were defined in the styles of big-step and small-step operational semantics
respectively. The definition of semantics was based on informal Java specification of
Sun [72]. The semantics of Java were formalized in the Centaur system which is a pro-
gramming environment where from the semantics of a language one can automatically
generate semantic tools, e.g. type checkers and interpreters. The semantics definition
results in a list of objects and threads, which denotes the behavior of a Java program.
For example, the rule for the Java conditional is defined as follows:

Assignment end:
–CS : Ident1 = Value1;
–C : ”assign“: makes assignment.
assign(ObjL1, ClVarL1, Env1, Ident1, Value1

14

2.2. Formal Semantics

–>
ObjL2, ClVarL2, Env2)

—————————————————
ObjL1, ClVarL1, Env1, OThId1, ObjId1, Mode
|– assign comp(void(), Ident1, Value1) –>

ObjL2, ClVarL2, Env2, Value1, inst l[], nil;

In detail, the rule says that the behavior of an assignment statement ”Ident1 = Value1”
is formalized as:

� if in a given list of current objects (ObjL1), a list of class variables (ClVarL1), an
environment (Env1), an identifier (Ident1) and value (Value1) the assignment-
phrase introduces a list of objects (ObjL2), a list of class variables (ClVarL2)
and an environment (Env2), then

� in a given ObjL1, ClVarL1, Env1, thread identifier (OThid1) and thread mode
(Mode) the execution of the assignment yields ObjL2, ClVarL2, Env2, value
(Value1), an empty list of running threads (inst l[]).

Here “nil” indicates that the assignment statement is a part of a sequential (non-
threaded) Java program.

Semantics of Scripting Languages

Also variously attempts have been made to formalize the semantics of scripting lan-
guages, e.g. the early work [8, 150] encoded the formal semantics of a small subset of
JavaScript in a corresponding type system. However, later a small-step operational
semantics for the complete language ECMAScript of JavaScript was defined in [106].
In fact, the semantics is a relational variant of structural operational semantics: here
each semantic function represents a corresponding semantic transition relation which
transforms a heap, a pointer to the scope, and the term into a new heap-scope-term
triple. Moreover, the evaluation of expression terms yields either a value or an excep-
tion, while the statements evaluates with a notion of completion. The completion is a
flag-value-identifier triple where

flag ∈ {Normal, Break, Continue, Return, Throw}

In the triple, the value represents the return or exception value while the identifier
represents the corresponding break or continue. The focus here was to analyze various
security properties of JavaScript based web applications. In the following, we show the
semantic rules for an exception statement and a ’@PutValue’ expression of JavaScript.
An exception statement has the following semantic rule

H,I,throw va;
s−→ H,I,<Throw, va, &empty>

which returns a completion with a flag ’Throw’ and value ’va’.

15

2. State of the Art

The semantic rule for the specification of a ’@Put’ expression (which is used to set
properties of objects) is defined as follows:

H,I1.@CanPut(m)
m <> H(I1) H(I1.m=v1{}) = H1

H,I,I1.@Put(m,v)
e−→ H1,I,v1

The rule says that if the predicate ’H,l1.@CanPut(m)’ holds (which shows that an
object ’m’ is not ’ReadOnly‘), then the fresh properties are added with an empty set
of attributes.

Semantics of Computer Algebra Languages

There have been various attempts to formalize the formal semantics of computer
algebra languages: for instance, the formal semantics of the (former) language FoCaL
of the computer algebra system FoCaLiZe has been studied respectively formalized
in [62, 131, 144]. In [154], the semantics was formalized for the translation of proofs
into Coq. The denotational semantics is hard to maintain, particularly when new
features are added in the language, so the later work [55] attempted to formalize the
semantics in the λΠ-calculus.

In [119], the formal semantics of the language Lisp of the computer algebra system
Maxima was defined. In fact, the operational semantics was defined for the language
M-Lisp (Meta-Lisp) which was a subset of Lisp. For example, the operational seman-
tics of a M-Lisp conditional was defined by the following two rules:

M1 −→
v

TRUE M2 −→
v

M

IFM1M2M3 −→
v

M

M1 −→
v

FALSE M3 −→
v

M

IFM1M2M3 −→
v

M

The former rule says that if the M-expression M1 yields value “TRUE“ then M2

yields value M which is the result of execution of the conditional. The latter rule says
that if the M-expression M1 yields value ”FALSE“ then M3 yields the resulting value
M .

In [35] an abstract interpretation is used to analyze whether a certain relationship
holds between the two semantic interpretations of a Maple program for a particular
property. One of the interpretations is used as a template while the other as its
abstract version with a certain property. The focus here was to exploit the operational
semantics of Maple against certain properties.

16

2.2. Formal Semantics

The denotational semantics of MiniMaple (see Chapter 6) is different from the
aforementioned variants, as MiniMaple has some non-standard semantic domains, e.g.
symbol, union and polynomial etc.; moreover, it also supports a polymorphic type sys-
tem with corresponding runtime type tests. In contrary to functional programming
languages, MiniMaple has expressions with side effects. Thus we have developed the
denotational semantics as a mathematical function which defines a relationship be-
tween pre and post-states to describe a program behavior. The MiniMaple semantics
is defined to formalize the runtime behavior of MiniMaple programs. So far, there is
no formally defined semantics of Maple and hence we consider the current implemen-
tation of Maple as a basis of our semantics.

Semantics of Specification Languages

Some approaches have also been investigated to formalize the semantics of specifi-
cation languages. However, the task of defining the formal semantics of specification
languages is more complex because the underlying semantic domains are very different
from the conventional Scott-Strachey denotational domains. For example, in [115] the
semantic space of the specification language Z is modeled as the world of “theories“
and their corresponding meaning as the collection of all of its models. The semantics
of a schema (i.e. an abstract object with certain properties) and its related operations
is defined with the help of the notion of ”variety” based on the typed set theory and
relational algebra. For example, the semantic function sexpr is defined for the con-
junction of the Z schema-expression SEXPR. The function maps schema-expressions
to varieties with a given environment:

sexpr : ENV → SEXPR 7→ VARIETY

. . .
sexpr(ρ, [S1 ∧ S2]) == combine(sexpr(ρ, [S1]), sexpr(ρ, [S2]))
. . .

The varieties corresponding to the schema-expressions S1 and S2 are put together
by the auxiliary operation combine. In principle, the combine function joins the
signatures sig1 and sig2 of the given varieties by another auxiliary operation join. In
fact, varieties correspond to the meaning/semantics of the schema here. Then the
function defines a class of models, which recovers a structure of those models which
satisfy the properties of the schema. The function combine is defined as follows:

17

2. State of the Art

combine : VARIETY ×VARIETY 7→ VARIETY

combine(θVARIETY1, θVARIETY2) ==
µVARIETY ′ |

sig ′ == join(sig1, sig2)
models ′ =

(M : Struct(sig ′) |
restrict(sig1,M ∈ models1)&
restrict(sig2,M ∈ models2))

The denotational semantics of a specification language Meta-IV of VDM was defined
in [49]. The work was later applied to derive the compiler that translated VDM
denotations into Ada. The system allowed to generate an implementation through
design specification where the specifications were added incrementally. Each increment
to the specification generated corresponding proof obligations, which could be proved
for the correctness of the design. Later the semantics for the specification language
BSI/VDM SL was formalized based on a variant of denotational semantics [126]. For
example, the semantic function for the evaluation of expressions (Expr) has signature:

EvalExpr: Expr → MODEL → P(VAL)

where VAL is the semantic value and MODEL is a mapping of identifiers to denota-
tions. The semantic function for the conditional statement (without side-effects) is
defined as:

EvalExpr(mk -If(t , c, a)(m)) ,
let ts = EvalExpr(t)(m) in

if ts = {True} then
EvalExpr(c)(m)

else if ts = {False} then
EvalExpr(a)(m)

else if ts = {True, False} then
EvalExpr(c)(m) ∪ EvalExpr(a)(m)

else {⊥}

In detail, the rule says that, if the evaluation of the expression t yields a singleton set,
then the corresponding branch of the conditional statement is evaluated. However,
if the evaluation of t yields a set with both values, i.e. True and False, then both
branches of the conditional are evaluated and the result is the union of the evaluations.
If the evaluation yields some other value, then the result is a set with an element
⊥. The semantic definition is the result of looseness of the expressions. The loose
expressions are demonstrated with the help of the following let-be-such expression:

18

2.2. Formal Semantics

let x ∈ {3, 5} in if x = 3 then 2 else 4 .

The evaluation of the let-be-such expression results in a set {2, 4} because during
execution x can be chosen for the other value, i.e. 5: hence both branches of the
conditional are evaluated.

The formal semantics of an interface specification language of Larch was formalized
in [41]. The focus here was to formalize the semantics of object-oriented features of
Larch, e.g. specification inheritance. The semantics was defined as a modular variant
of operational semantics as a pre-requisite for modular reasoning about object-oriented
programs of Larch. Also the formal semantics of a specification language for Java
(JML) is defined in [27] as a variant of denotational semantics.

In comparison to the above semantics approaches, the semantic domains for the
specification language of MiniMaple has more complex structures, e.g. mathemat-
ical theories, loop and procedure specifications. Moreover, in addition to the basic
arithmetic and logical expressions, the specification language also supports guarded
numerical and sequence quantifiers. We have defined the semantics of the specification
language as a relational variant of denotational semantics in order to overcome the
complexity of its semantic domains and other non-standard constructs.

Semantics of Intermediate Verification Languages

There also have been various attempts to formalize the semantices of intermediate
verification languages, e.g. for Why3ML [63] and BoogiePL [155]. The operational se-
mantics of Why3ML was defined in [63]. Each semantic function transforms a current
state and an expression to the new state and the value yielded by the evaluation of the
expression (the evaluation yields a special value void for the command expressions).
For example, an assignment statement has the following rule:

s, e −→ s ′, c
s, x := e −→ s ′ ⊕ {x 7→ c}, void

which says that evaluation of an assignment statement (x := e) in state s yields a
value ’void’ and the post-state results by an update of value c (of expression e) to an
identifier x in state s ′. For further details on the formal semantics of Why3ML, please
see Chapter 7.

The operational semantics for selected constructs of the intermediate verification
language BoogiePL of the verification environment Boogie was formalized in [155].
The single step semantics was defined by a function on states, i.e. σ ; σ′. For
example, the semantic rule for an assignment statement in BoogiePL takes a command
sequence x := e; c and store µ and results in command c and an updated store µ:

(x := e; c | µ) ; (c | µ, x 7→ e[µ])

19

2. State of the Art

The focus was to prove the soundness of the verification conditions generator, i.e.
the corresponding weakest precondition calculus.

Our main goal was to formalize the runtime behavior of MiniMaple annotated
programs. Also the semantics is a pre-requisite of our translation to an intermediate
verification language where we show that the translation preserves the semantics (see
Chapter 7).

2.3. Formal Specification and Verification

In this section, we discuss the role of formal methods in classical programming lan-
guages, assertion checking in computer algebra languages, an application of formal
methods to computer algebra languages, and the integration of theorem proving and
computer algebra systems, respectively.

Formal Methods and Classical Languages

The interest of applying formal methods in computer science for modeling and reason-
ing has surged during last couple of decades. Thus on one hand, some programming-
language independent specification languages have been developed, e.g. Z [160], Al-
loy [85], VDM [88], Larch [105], B [2] and Object Constraint Language (OCL) which is
part of the UML standard [103]; on the other hand, some specification languages have
also been developed to formally specify the behavior of programs written in classical
languages, e.g. the Java Modeling Language (JML) [71] for Java, ACSL [17] for ANSI
C, Larch/C++ for C++ [105], Spec# [14] for C# and Spark for Ada [14,83]. Based on
the recent developments in SMT (satisfiability modulo theories) solving [15,140] vari-
ous tools are making use of automated reasoning techniques [32,38] by employing the
aforementioned specification languages. Moreover, various development environments
have been integrated with proving assistants for the specification and verification of
systems [19,21,83].

Assertion Checking in Computer Algebra Languages

In general, programming languages of most of the computer algebra systems, e.g.
Mathematica, Maple, Sage, and Maxima (to name a few) support assertion checking
to increase the reliability of programs. For example, Mathematica supports runtime
assertion checking only if assertions are enabled. The following example function has
an assertion Assert[c > 1] which is not violated at the first application.

In[6]:= testFunc[a_] :=

Block[{c},

c = a*a;

20

2.3. Formal Specification and Verification

Assert[c > 1];

]

In[7]:= testFunc[1]

Out[7]= 1

Then, the assertion checking is enabled by command On[Assert] and the subse-
quent function call results in the violation of the assertion.

In[8]:= On[Assert];

testFunc[1]

Assert::asrtf: Assertion c > 1 failed.

Sage also supports runtime assertion checking: however, here the assertions are
enabled by default. An assertion assert x > 0 is introduced in the example function
but function application shows the violation of the assertion.

sage: def g(x):

if x <2:

assert x > 0

return 0

else:

return x+"2"

sage: g(0)

Error in lines 1-1

...

AssertionError

The last line reports the error to be AssertionError.

Formal Methods and Computer Algebra Languages

Later also several pragmatic applications of formal methods to computer algebra sys-
tems have been investigated. Here, the focus was to develop a logical framework such
that the language of computer algebra system was equipped with a corresponding
formal specification language. For instance, [56] presents an integration of the be-
havioral specification language Larch [76] to the programming language Aldor of the
computer algebra system AXIOM. The methodology for the verification of Aldor pro-
grams was devised by defining abstract specifications for AXIOM (respective Aldor)
primitives and generating verification conditions which can be proved correct with the
help of the prover Larch [57,89]. Also, to define and prove the correctness of computer
algebra programs, the language of prover Coq was used such that executable OCaml
code can be extracted from the corresponding Coq definitions [74,108–110,149].

21

2. State of the Art

As already mentioned, the FoCaLiZe (former FoCal and FoC) project [61,130,145]
has been developed to provide an integrated programming and specification based
environment for computer algebra to develop certified programs to achieve higher
reliability. The environment is based on its functional programming language FoCaL-
iZe (influenced by Ocaml) that additionally supports some object-oriented features
and thus allows to write both specifications (based on an axiomatic type language)
and proofs of programs together. For verification, the FoCaLiZe compiler extracts
the computational code to executable Ocaml programs and also generates verification
conditions in the language of an interactive prover Coq. The verification conditions
can be proved interactively in Coq; as a result, proofs are produced as Coq scripts
that can be verified by Coq.

In FoCaLiZe, a specie (domain) can be formally specified by its name and decla-
rations of operations, values and properties. The environment supports a refinement
process from formal modeling of requirements to design and implementation: and thus
allows the incremental addition of more definitions of the domain. At any stage of
development, the corresponding proofs can be produced such that an implementation
meets the specification. Consequently, hierarchal development is possible in the envi-
ronment, where the higher level corresponds to the specification while the lower one
correspond to implementation and every node in the hierarchy refers to a refinement
towards the goal.

Later, several new and powerful features were added to the language of FoCaLiZe,
e.g. patter matching, inheritance, parameterization and lazy binding. Also an auto-
matic prover Zenon was integrated in the compiler which allowed to develop recursive
functions and checks for corresponding termination proofs.

Variously the applications of formal methods to Maple have been investigated. For
instance, Maple was integrated with provers to empower the reasoning capabilities
of Maple, e.g. [5,73] provided a Maple-PVS interface where the validity of the Maple
procedure calls (i.e. preconditions and postconditions) can be checked with the help of
PVS. Also, [3,4] focused on the verification of necessary side conditions of arguments
of the Maple procedures by invoking PVS which matches the entries to a symbolic
integral table.

Later, a mathematical description of the interfaces between existing Maple routines
was studied in [36]. The goal here was to study the actual contracts that are in use
by Maple routines. The contracts were statements with certain (static and dynamic)
logical constraints. In fact, the work was just focused on the collection of requirements
for the pure type inference engine for existing Maple routines. The work was extended
to develop the partial evaluator for Maple [37] as discussed in Section 2.1.

22

2.3. Formal Specification and Verification

Theorem Proving and Computer Algebra Systems

Various attempts have been made to enhance the role of formal methods in the com-
puter algebra systems beyond runtime assertion checking: one of the earlier works [141]
provided a generic interface between the proof planing system Omega and computer
algebra systems. The focus here was to verify the computation results based on ad-
ditional information computed by computer algebra systems. Also the integration
of reasoning and computation was discussed in, e.g. Theorema [29, 30, 148] which is
built on top of Mathematica and employs proving, computing, and solving method:
the method is an iterative proof heuristics. Similarly, the reasoning systems were
embedded into computer algebra systems as discussed in Analytica [18,44] and RED-
LOG [54].

Later, on one hand some investigations focused on developing computer algebra
programs based on the principle of “correct by construction”. For example, the Atyp-
ical project [128,129,152] modified the type system of Aldor to describe propositions
and specifications of Aldor’s categories. Here, the goal was to modify the dependent
types of Aldor such that the category specifications become equivalent to axiomatic
data-type specifications [151]. Also a type theory based formalization of polynomial
rings and the Gröbner bases algorithm is discussed in [125]. On the other hand, sev-
eral attempts focused on building computer algebra software on the top of proving
systems, e.g. [39] built a computer algebra system on top of HOL Light such that
rewriting proofs can be generated based on the computations.

Also, several projects attempted to enhance the computing capabilities of the the-
orem provers by interfacing provers with back-end computer algebra systems. For
instance, in [77, 78] the proving assistant HOL used Maple as a “canon” to find an-
swers for some computational tasks which are later verified by HOL (checking an
answer is often much easier than finding it). Similarly an integration of Isabelle and
Maple was discussed in [12] where simply the answers are trusted to be correct.

In comparison to the approaches discussed above, the goal of our verification frame-
work was not only to reason about the full correctness of a program but also to apply
light-weight formal methods to computer algebra programs for finding internal incon-
sistencies in the program such as violations of methods preconditions by employing
static program analysis. Furthermore, MiniMaple supports some non-standard types
of objects and runtime type tests, while the specification language of MiniMaple sup-
ports abstract data types to formalize abstract mathematical concepts; many existing
specification languages are weaker in this aspect. In contrast to the computer algebra
specification languages above, our specification language is defined for the commer-
cially supported language Maple, which is widely used but was not designed to sup-
port static analysis (type checking respectively verification). The challenge here was
to overcome those particularities of the language that hinder static analysis.

23

3. MiniMaple

Based on our study and syntactic analysis of the Maple package DifferenceDifferential,
we have defined a substantial subset of the language of the computer algebra system
Maple, which we call MiniMaple. In this chapter, we discuss the syntax and various
other interesting features of MiniMaple. The rest of the chapter is organized as fol-
lows: in Section 3.1, we discuss the results on our study of various computer algebra
packages available at our institute. In Section 3.2, we highlight the challenges of static
program analysis in Maple and demonstrate them with examples. An overview of the
MiniMaple syntax is given in Section 3.3; this section also provides some examples of
selected syntactic constructs. Section 3.4 elaborates MiniMaple in more detail with
the help of an example.

3.1. Background Study

At the very beginning of our project, we studied various packages developed at RISC
by experts in the area of numerical and symbolic computation in general and algorith-
mic combinatorics, automated theorem proving and computer algebra in particular.
The goal here was to choose one of these packages as a test-case for our envisioned
verification framework. In the following, we briefly discuss the investigated packages
respectively.

Algorithmic Combinatorics

In the research area of algorithmic combinatorics, the Mathematica package Holonomic-
Functions [104] was developed by Christoph Koutschan. The goal here was to develop
advanced applications of the holonomic systems approach, i.e. computations in Ore
algebras, non-commutative Gröbner bases and solving linear systems of differential
equations. Characteristically, this package

� was based on pattern matching,

� used more of an imperative style of programming,

� used abstract data types,

� on the one hand made use of customized Mathematica functionality and

� on the other hand did not use many Mathematica libraries.

25

3. MiniMaple

In essence, this package can mainly be considered as a procedural/functional Mathe-
matica program with abstract data types.

Automated Theorem Proving

The Mathematica package STProver [157] was developed by Wolfgang Windsteiger
in the area of automated theorem proving. This package provides a prover based on
the Prove-Compute-Solve (PCS) strategy, i.e. proving by applying standard inference
techniques from the predicate logic, computing the facts by rewriting the formulas
using assumptions in the knowledge base, and finally solving by applying computer
algebra methods to solve quantified formulas in general and existentially formulas in
particular.

We identified the following characteristics of the package STProver as it mainly
made use of:

� pattern matching rules,

� implicit type definitions and a

� declarative style of programming paradigm.

This package is a Mathematica program based on pattern matching which is now
integrated with the Theorema [28] infrastructure.

Computer Algebra

In the area of computer algebra, the Maple package DifferenceDifferential [42] was
developed by Christian Dönch to compute bivariate difference differential polynomials
using relative Gröbner bases using an algorithm of M. Zhou and Franz Winkler [162].

As the main characteristics, this package:

� made use of limited types i.e. integers and lists only,

� was mainly standalone, i.e. did not made much use of Maple libraries,

� did not use destructive update of data structures and

� made use of imperative style of development.

In principle, this package is a Maple functional program. Further details of this
package DifferenceDifferential are discussed in Chapter 8.

Summary

Based on our study of the aforementioned packages developed in the most prominent
dynamically typed computer algebra languages, i.e. Mathematica and Maple, we have
chosen Maple for our subsequent study for the following reasons:

� Maple has an imperative style of programming which has a simpler semantics
than the rule-based programming style of Mathematica.

26

3.2. Challenges

� Maple has type annotations for runtime checking which can be directly applied
for static analysis. There are also parameter annotations in Mathematica but
they are used for selecting the appropriate rule at runtime.

Still many of the results we derive with the static analysis (e.g. type checking) of
Maple can be applied to Mathematica, as Mathematica has almost the same kinds of
runtime objects as Maple. In the following section, we demonstrate various challenges
for this static analysis of Maple programs by examples.

3.2. Challenges

During our study, we found the following special features respectively challenges for
the static analysis of Maple programs (which are typical for most other computer
algebra languages):

� The language has no static type system. It allows runtime type checking by
type annotations but these annotations are optional.

� The language does support some non-standard objects, e.g. symbols and un-
evaluated expressions.

� There is no clear difference between declaration and assignment. A global vari-
able is introduced by an assignment; a subsequent assignment may modify the
dynamic (runtime) type of the variable.

� The language uses type information to direct the flow of control in the program,
i.e. it allows some runtime type-tests to select the further execution path.

� The (dynamic) type system of Maple is kind of polymorphic [34]; since Maple
has a hierarchy of types in a sub-typing relationship, values of different types
can satisfy the same type test.

In the following, we demonstrate the aforementioned challenges for various Maple
language constructs by some example Maple programs.

Runtime Type Checking

As already explained, Maple has optional type annotations, which Maple uses for
runtime type checking. A Maple kernel routine kernelopts allows to change the mode
of type checker at different levels to check type assertions at runtime. To do so, one
needs to set the value of variable assertlevel of routine kernelopts to either 0, 1 or 2
where

� 0 (the default value) means, no assertion checking at all,

� 1 means, only calls of the ASSERT function are checked, and

� 2 implies checking of calls of the ASSERT function and of assignments such that
these calls respect the type annotations of variable declarations.

27

3. MiniMaple

We demonstrate the runtime type checking in Maple by a simple Maple procedure
which takes an integer as an argument and returns an integer value. If the value of
the parameter is less than 10, then the procedure adds 10 to it and stores the result
in a local variable x , otherwise it assigns a string value “test” to a local variable x and
returns x .

> p := proc(s::integer)::integer;

local x::integer;

if s < 10 then

x := s + 10

else

x := "string"

end if;

return x;

end proc;

Now, we test the behavior of the procedure by a corresponding call with an integer
argument 12 as follows:

> p(12);

"string"

The call to the procedure p returns “string” because the parameter value is greater
than 10, which is clearly not a valid result as indicated in the procedure header, i.e.
the procedure must return an integer value. No checking of any assertion at all allows
this program to be executed without warnings, as the kernel routine kernelopts is
operating in the default mode, i.e. with a value of assertlevel.

Now, we change the mode of operation of the kernel routine kernelopts such that it
checks all the assertions:

> kernelopts(assertlevel=2);

0

To test the type assertions, we call the procedure p again with an integer value 12.

> p(12);

Error, (in p) assertion failed in assignment, expected integer,\

got string

>

In the body of the procedure, the else branch of the conditional is executed, where
an assignment is made such that a string value is assigned to an integer type variable.
This is a typing error and caught by the Maple type checker at runtime.

28

3.2. Challenges

Runtime Type Tests

Maple also supports some non-standard types of objects, e.g. union types, symbols
and unevaluated expressions. For example, the Or(integer, string) indicates that a
value may be an integer or a string. The type predicate type(e, t) allows one to test
whether a Maple expression e is of a given type t ; it returns true if the expression e is
of type t , and returns the value false otherwise. Such type tests can be used to direct
the flow of control in the program, which complicates reasoning about the correctness
of the behavior of such programs.

For instance, type test is applied to the parameter x . The procedure calls show that
the corresponding conditional branch is executed depending on the type of the value
of the procedure parameter.

p := proc(x::Or(integer, string))::integer;

local y::integer;

if type(x, integer) then

y := x;

elif type(x, string) then

y := 10;

end if;

return y;

end proc;

> p(12);

12

> p("test");

10

As shown in Section 3.2, the type inference of such expressions (with union types)
is complex because in order to identify the correct use of such variables, one needs to
keep the track of their types.

Special Types

A symbol is a Maple name and stands for itself until some value is assigned to it. In
the following script, a is an unassigned variable whose runtime type is correspondingly
symbol . Subsequent assignments of values to a change its type to“string”and“integer”
respectively.

> a;

a

29

3. MiniMaple

> type(a,symbol);

true

> a:="test";

a := "test"

> type(a,string);

true

> a:=12;

a := 12

> type(a, integer);

true

Maple supports a subtype relationship among types such that Maple can satisfy
multiple type tests:

> a:=12;

a := 12

> type(a, integer);

true

> type(a, rational);

true

> type(a, anything);

true

Every expression in Maple is of type anything as anything is a the root of the type
hierarchy in Maple as Object is the root type in Java. This sub-typing and polymorphic
typing phenomena in Maple makes type inferences more complex.

Enclosing a Maple expression with unevaluated (right) quotes delays its evaluation.
Such expressions are called “unevaluated expressions”, which are correspondingly an-
notated with type uneval :

> type(’’2+3’’, uneval);

true

30

3.3. Overview of Syntax

An unevaluated expression can be evaluated as show below:

> eval(’’2+3’’, 1);

’2+3’

> eval(’’2+3’’, 2);

5

By default each evaluation strips off one quote from the unevaluated expression. An
operation eval is also supported to evaluate an unevaluated expression until a desired
level. The delayed evaluation of a certain expression increases the complexity to the
semantics and behavior of program using such expressions.

3.3. Overview of Syntax

Based on our previous investigations, we have defined a simple but substantial subset
of Maple, which we call MiniMaple. MiniMaple covers all the syntactic domains of
Maple but has fewer alternatives in each domain than Maple; in particular, Maple has
many expressions which are not supported in our language. The complete syntactic
definition of MiniMaple is given in Appendix A.

In the following, we briefly explain the major syntactic domains of MiniMaple and
their informal semantics, while the corresponding complete semantic details are dis-
cussed in Chapter 6. The grammar of MiniMaple has been formally specified in
Backus-Naur-Form (BNF) from which a parser for the language has been automat-
ically generated with the help of the parser generator ANTLR [11]. The top level
syntax for MiniMaple is shown in Figure 3.1.

Commands

A MiniMaple program (Prog) is a sequence of commands (Cseq); commands are rep-
resented by the syntactic domain C. There is no separation between declaration and
an assignment. In addition to the classical while-loop, the return statement and one
and two-sided conditionals statements, MiniMaple also supports four variations of
for-loops.

For example, in the variation “for I from E by E to E while E do Cseq end do”,
the for-loop iterates starting from an initial bound to a terminating bound with the
steps as specified in the by clause. Additionally, the while expression condition is also
tested, before it executes the body Cseq of the loop. In this variation, to expression
is evaluated only once at the start of the loop and tested at each iteration for the
termination of the loop. The while expression is evaluated and tested before every
iteration. Using this variant of the for-loop, the code fragment

31

3. MiniMaple

Prog ::= Cseq
Cseq ::= EMPTY | C;Cseq
C ::= if E then Cseq Elif end if | if E then Cseq Elif else Cseq end if

| while E do Cseq end do
| for I in E do Cseq end do
| for I in E while E do Cseq end do
| for I from E by E to E do Cseq end do
| for I from E by E to E while E do Cseq end do
| return E; | return; | error | error I,Eseq
| try Cseq Catch end | try Cseq Catch finally Cseq end
| I,Iseq := E,Eseq | E(Eseq) | ‘type/I‘ := T

...
Eseq ::= EMPTY | E,Eseq
E ::= I | N | module() S;R end module;

| proc(Pseq) S;R end proc;| proc(Pseq)::T; S;R end proc;
| E1 Bop E2 | Uop E | Esop | E1 and E2 | E1 or E2 | E(Eseq)
| I1:-I2 | E,E,Eseq | type(I,T) | E1 = E2 | E1 <> E2

S ::= EMPTY | local It,Itseq;S | global I,Iseq;S | uses I,Iseq;S
| export It,Itseq;S

R ::= Cseq | Cseq;E
...

Figure 3.1.: High-level Syntactic Domains

> s := "The quick brown fox jumped over the lazy dog.":

> for c from "a" to "z" while searchtext(c,s) > 0 do end do; c;

"s"

iterates over the letters of the alphabet for a letter missing in s.

The assignment statement “I,Iseq := E,Eseq“ represents a simultaneous assignment
where first the expressions on the right hand side are evaluated and then the resulting
values are assigned to the respective variables on the left hand side:

> x,y := 1, 2;

x, y := 1, 2

> x,y := x+y, x-y;

x, y := 3, -1

An exception handling mechanism ”try Cseq Catch end” allows the execution of

32

3.3. Overview of Syntax

MiniMaple commands in a controlled environment, while the execution of command
sequence can be interrupted by a corresponding error statement:

p := proc(x::integer)::integer;

local y::integer;

try

if x < 10 then

error "invalid"

else y := x - 10

end if

catch "invalid":

y := -1; print("Exception caught")

end;

return y

end proc

In the example above, a procedure has an exceptional behavior such that when a
parameter has a value less than 10 it throws an exception “invalid”; this exception
is caught by an exception handler catch "invalid", which assigns −1 to a local
variable y and prints a message. Otherwise the procedure subtracts 10 from the value
of its argument, assigns this to a local variable y . In both cases, the procedure returns
the value of y .

This behavior is demonstrated by the corresponding procedure calls.

> p(12);

2

> p(1);

"Exception caught"

-1

Sometimes, when the names of types get too long, it is helpful to use an abbreviated
name. In the following example, by an assignment to variable ‘type/myList‘, we define
a new name “myList” for the type list(integer):

> ‘type/myList‘:=list(integer);

type/myList := list(integer)

> l:=[54,23,98];

l := [54, 23, 98]

33

3. MiniMaple

> type(l, myList);

true

Expressions

MiniMaple supports almost all classical basic expressions, e.g. arithmetic (addition,
subtraction, multiplication, division and remainder computation) and logical opera-
tions (equal, less, greater, less equal and greater equal). Moreover, MiniMaple also
supports procedure and module expressions.

Syntactically, a procedure expression ”proc(Pseq)::T; S;R end proc;” consists of
a header and a body. The sequence of parameters (typed identifiers) Pseq and the
return type of the procedure T are part of the procedure header, while the body of
the procedure contains various (local and global) declarations S and a sequence of
statements R. The return type T is a type assertion, which in Maple is checked at
runtime when a procedure is called with the operational mode 2 of assertlevel in the
kernel routine kernelopts.

In the example program

> m;

m

> f := proc(k::Or(integer, string))::integer;

local n::integer;

global m;

if type(k, integer) then

n := k + 1; m := n

elif type(k, string) then

m := "test"

end if;

return m

end proc

the procedure f takes an argument k of union type of integer or string and returns
an value of type integer. After the header, there are local and global declarations.
Here, one can notice that the global variable m has no type information attached to it.
This is because of the fact that the global declarations respectively variables cannot
be type annotated in Maple and therefore values of arbitrary types can be assigned
to them.

In the body of the procedure, the local declaration respectively variable is type
annotated. In the body of the loop, we assign an integer or a string value to the
global variable m based on the evaluation of the respective type tests for integer

34

3.3. Overview of Syntax

1. status:=0;
2. sum := proc(l::list(Or(integer,float)))::[integer,float];
3. global status;
4. local i, x::Or(integer,float), si::integer:=0, sf::float:=0.0;
5. for i from 1 by 1 to nops(l) do
6. x:=l[i];
7. status:=i;
8. if type(x,integer) then
9. if (x = 0) then
10. return [si,sf];
11. end if ;
12. si:=si+x;
13. elif type(x,float) then
14. if (x < 0.5) then
15. return [si,sf];
16. end if ;
17. sf:=sf+x;
18. end if ;
19. end do;
20. status:=-1;
21. return [si,sf];
22. end proc;

Figure 3.2.: An Example MiniMaple Program

35

3. MiniMaple

(type(k , integer)) or string (type(k , string)). In any case, the procedure returns the
value of the global variable, i.e. m.

To test the return type assertion of the procedure f , we call this procedure with a
string value “s”, which results in an error because f expects its return value to be of
type integer, but returned ’s’.

> f("s");

Error, (in f) assertion failed: f expects its return value to\

be of type integer, but computed test

In addition to the aforementioned expressions, MiniMaple also supports other spe-
cial expressions, e.g. constructors for list, tuple and set and also their corresponding
various operands, i.e. select, length, substitution etc.

In addition to basic types, e.g. integers, booleans, MiniMaple also supports com-
posite and extended types, e.g. anything, union and unevaluated. Further details on
the type system of MiniMaple are discussed in the Chapter 4.

3.4. Running Example

For showing more details of the MiniMaple syntax, we introduce in Figure 3.2 an
example procedure, which we will use in the following chapters to demonstrate type
checking, specification and verification.

The program consists of a command followed by a procedure definition and an
application of the procedure. The procedure takes a list of integers and floats and
computes the sum of these integers and floats separately; it returns a tuple of integer
and float as the sum of respective integers and floats in the list. The procedure may
also terminate prematurely for certain inputs, i.e. either for an integer value 0 or for a
float value less than 0.5 in the list; in this case the procedure computes the respective
sums just before the index at which the aforementioned terminating input occurs.

As one can see from the example, we make use of the type annotations that Maple
introduced for runtime type checking. In particular, we demand that function param-
eters, function results and local variables are correspondingly type annotated.

36

4. Formal Type System

Based on the MiniMaple type annotations introduced in the previous chapter, we
have defined a language of types and a corresponding type system for the static type
checking of MiniMaple programs. In this chapter, we discuss a corresponding formal
type system for MiniMaple. The rest of the chapter is organized as follows: in Sec-
tion 4.1, we discuss the motivation for the design and development of the type system.
In Section 4.2, we present various elements of the type system, while in Section 4.3,
we demonstrate the implementation of a corresponding type checker by its application
to our example MiniMaple program.

4.1. Background

A type is (an upper bound on) the range of values of a variable. A type system
is a set of formal typing rules to determine the types of variables from the text of
a program. A type system prevents forbidden errors during the execution of the
program. It completely prevents the untrapped errors and also a large class of trapped
errors. Untrapped errors may go unnoticed for a while and later cause an arbitrary
behavior during the execution of a program, while trapped errors immediately stop
execution [34].

A type system is a simple decidable logic with various kinds of judgments; for
example the typing judgment

π ` E :(τ)exp

can be read as “in the given type environment π, E is a well-typed expression of type
τ”.

A type system is sound, if the deduced types indeed capture the program values
exhibited at runtime. For example, if we can derive the simplified typing judgment

π ` E :(τ)exp

and e is an environment which is consistent with π, then

[E]e ∈ [τ]

i.e. at runtime the expression E in environment e indeed denotes a value of type τ
([E] describes the runtime value of E and [τ] describes the set of values specified by
type τ) as will be formally explained in the Chapter 6.

37

4. Formal Type System

4.2. Type System for MiniMaple

We have defined a typing judgment for each syntactic domain of MiniMaple. Logical
rules are defined to derive the typing judgments by using auxiliary functions and
predicates. In this section, we first sketch the design of our type system and then we
presents its corresponding implementation and application by an example. A proof of
the soundness of the type system is still a future task. The complete formalization of
the type system is presented in Appendix C.

4.2.1. Types and Sub-typing

MiniMaple uses Maple’s type annotations for static type checking, which gives rise to
the following language of types:

T ::= integer | boolean | string | float | rational | anything
| { T } | list(T) | [Tseq] | procedure[T](Tseq)
| I (Tseq) | Or(Tseq) | symbol | void | uneval | I

The language supports various atomic data types (e.g. integer, boolean, float,
rational), sets of values of type T ({ T }), lists of values of type T (list(T)) and
tuples whose members have the values of types denoted by a type sequence Tseq ([Tseq
]). Type anything is the super-type of all types. Type Or(Tseq) denotes the union
type of various types, type uneval denotes the values of unevaluated expressions, e.g.
polynomials, and type symbol is a name that stands for itself, because no value has
been assigned to it yet. User-defined data types are referred by I while I (Tseq)
denotes tuples (of values of types Tseq) tagged by a name I.

As discussed in the previous chapter, Maple supports a sub-typing relation (<)
among types, e.g. integer < rational < ... < anything, i.e. integer is a sub-type of
rational and anything is the super-type of all types. A Maple function subtype(s, t)
determines such relation between any two Maple types. The call subtype(s, t) returns
true, if type s is a subtype of type t and both types are Maple types and returns false
otherwise. In general, not every Maple type qualifies for this subtype test and hence
the aforementioned routine returns false. In the following example, a variable c has
an integer value assigned to it, which consequently returns true for various type tests,
i.e. for integer, rational and anything.

> c:=12;

x := 12

> type(c, integer);

true

38

4.2. Type System for MiniMaple

> type(c, rational);

true

> type(c, anything);

true

> subtype(integer, rational);

true

> subtype(rational, anything);

true

> subtype(integer, anything);

true

Also, a sub type test subtype(integer , rational) returns true, which reflects our notion
of sub-typing as above. The other two sub typing tests, show that type anything is
the super type of both integer and rational .

In MiniMaple, we have defined the sub-typing relation by a predicate

matchType(τ1, τ2)

which returns true if the former type τ1 is a super-type of type τ2. In the following we
define this predicate for selected types, for its complete definition, see Appendix C.

matchType(integer , τ)⇔

{
true if τ = integer

false otherwise

matchType(boolean, τ)⇔

{
true if τ = boolean

false otherwise

matchType(string , τ)⇔

{
true if τ = string

false otherwise

matchType(anything , τ)⇔ true

matchType([τseq], τ)⇔

true if ∃ τseq1 : τ = [τseq1]

∧matchTypeSeq(τseq , τseq1)

false otherwise

matchType({τ}, τ1)⇔

true if ∃ τ2 : τ1 = {τ2}

∧matchType(τ, τ2)

false otherwise

39

4. Formal Type System

matchType(list(τ), τ1)⇔

true if ∃ τ2 : τ1 = list(τ2)

∧matchType(τ, τ2)

false otherwise

matchType(procedure[τ](τseq), τ1)⇔
true if ∃ τ2, τseq1 : τ1 = procedure[τ2](τseq1)

∧matchType(τ, τ2) ∧matchTypeSeq(τseq1, τseq)

false otherwise

matchType(I (τseq), τ)⇔

true if ∃ τseq1 : τ = I (τseq1)

∧matchTypeSeq(τseq , τseq1)

false otherwise

matchType(Or(τseq), τ)⇔

true if hasTypeAnything(τseq)

true if ∃ τ1 ∈ τseq : matchType(τ1, τ)

true if ∃ τseq1 : τ = Or(τseq1)

∧∀ τ1 ∈ τseq1 : ∃ τ2 ∈ τseq : matchType(τ2, τ1)

false otherwise

matchType(symbol , τ)⇔

{
true if τ = symbol

false otherwise

matchType(void , τ)⇔

{
true if τ = void

false otherwise

matchType(uneval , τ)⇔

{
true if τ = uneval

false otherwise

matchType(I , τ)⇔

{
true if ∃ τ : τ = I

false otherwise

As shown above, in addition to the surface types the predicate matchType also defines
the sub-typing relationship for the structured types. The predicates hasTypeAnything
and matchTypeSeq are defined in Section 4.2.5.

4.2.2. Type Environment

In order to track the types of MiniMaple identifiers, we define a type environment π
as a partial function

π : Identifier
partial−−−−→ Type

40

4.2. Type System for MiniMaple

from identifiers to types. In the following, we discuss the problems arising from type
checking MiniMaple programs using the example presented in the previous chapter.

Type Tests

As already explained in the previous chapter, a predicate type(E,T) (which is true
if the value of expression E has type T) may direct the control flow of a program.
If this predicate is used in a conditional, then different branches of the conditional
may have different type information for the same variable. We keep track of the
type information introduced by the different type tests from different branches to
adequately reason about the possible types of a variable.

In our example program, the variable x has a union type Or(integer,float) and this
variable x is used in a conditional statement where the ”then” branch is guarded by
a test type(x ,integer), and similarly the other branch is guarded by a corresponding
test type(x , float).

The correspondingly inferred type environments are:

. . .
(a). # π={..., x:Or(integer, float), ...}
. . .
if type(x,integer) then
(b). # π={..., i:integer, x:integer, si:integer, ..., status:integer}
. . .
elif type(x,float) then
(c). # π={..., i:integer, x:float, ..., sf:float, status:integer}
. . .
end if ;
(d). # π={..., i:integer, x:Or(integer,float),..., status:integer}
. . .

The use of type tests in the conditional expressions introduce more type informa-
tion for the identifier x to direct the program control flow as depicted by the type
environments at lines (b) and (c).

By analyzing the conditional command as a whole, the type of variable x is combined
to Or(integer, float) as depicted at line (d). For this purpose, we use the auxiliary
function

combine: Type Environment × Type Environment → Type Environment

combine(π1, π2) ={(I : τ1) ∈ π1 : ¬∃(I : τ2) ∈ π2)}
∪{(I : τ2) ∈ π2 : ¬∃(I : τ1) ∈ π1)}
∪{(I : τ3) :∃ τ3 : (I : τ1) ∈ π1 ∧ ∃(I : τ2) ∈ π2

∧τ3 = orCombine(τ1, τ2)}

41

4. Formal Type System

that combines the identifiers of the former type environment with the identifiers in
latter type environment. The resulting type environment has the disjoint identifiers
with their corresponding types and the common identifiers with an or-type τ3 of the
two corresponding types.

The function orCombine is defined in Section 4.2.5.

Global Variables

As shown in our example program, global variables (declarations) can not be type
annotated:

. . .
global status;
. . .

therefore values of arbitrary types can be assigned to global variables as shown below
for a global variable status:

> status:=12;

status := 12

> status:="test";

status := "test"

> status:=[12,31,43];

status := [12, 31, 43]

We have introduced global and local contexts to handle the semantics of the variables
inside and outside of the body of a procedure respective loop.

� In a global context new variables may be introduced by assignments and the
types of variables may change arbitrarily by assignments.

� In a local context variables can only be introduced by declarations. The types
of variables can only be specialized i.e. the new value of a variable should be a
sub-type of the declared variable type, which is defined by an auxiliary function

specialize: Type Environment × Type Environment → Type Environment

specialize(π1, π2) ={(I : τ1) ∈ π1 : ¬∃(I : τ2) ∈ π2)}
∪{(I : τ2) ∈ π2 : ¬∃(I : τ1) ∈ π1)}
∪{(I : τ3) : ∃τ3 : (I : τ1) ∈ π1 ∧ (I : τ2) ∈ π2

∧τ3 = superType(τ1, τ2)}

42

4.2. Type System for MiniMaple

that specializes the identifiers of former type environment to the identifiers in
the latter type environment w.r.t. their types.

Moreover, the sub-typing relation (i.e. matchType) is observed while specializing
the types of variables, which is correspondingly defined by an auxiliary function

superType: Type × Type → Type

superType(τ1, τ2) =

{
τ1 if matchType(τ2, τ1)

τ2 if matchType(τ1, τ2)
that returns the super-type between the two given types.

Depending on the current context, the different typing rules will be used to constrain
variable assignments as shown in Section 4.2.3.

4.2.3. Typing Judgments

In this subsection we explain the typing judgments and typing rules for the boolean
expressions and commands of MiniMaple. These judgments use the following kinds of
objects (“Identifier” and ”Type“ are the syntactic domains of identifiers/variables and
types of MiniMaple respectively):

� πset : A set of type environments introduced by type checking the corresponding
syntactic phrase.

� c ∈ {global, local}: A context flag to check if the corresponding syntactic phrase
is type checked inside/outside of the procedure/loop.

� asgnset ⊆ Identifier: A set of assignable identifiers introduced by type checking
the declarations.

� expidset ⊆ Identifier: A set of exported identifiers introduced by type checking
the export declarations in procedure/module.

� εset ⊆ Identifier: A set of thrown exceptions introduced by type checking the
corresponding syntactic phrase.

� τset ⊆ Type: A set of return types introduced by type checking the correspond-
ing syntactic phrase.

� rflag ∈ {aret, not aret}: A return flag to check if the last statement of every
execution of the corresponding syntactic phrase is a return command.

Boolean Expressions

MiniMaple supports various types of expressions but boolean expressions are treated
specially because of the test type(I,T) that gives additional type information about
the expression. The typing judgment for boolean expressions

π ` E :(π1)boolexp

43

4. Formal Type System

can be read as ”with the given type environment π, E is a well-typed boolean ex-
pression which generates a new type environment π1“. The new type environment
is produced as a fact of type test that might introduce new type information for an
identifier.

Commands

The typing judgment for commands

π, c, asgnset ` C :(π1, τset , εset , rflag)comm

can be read as ”in the given type environment π, context c and an assignable set of
identifiers asgnset, C is a well-typed command and produces (π1, τset , εset , rflag) as
type information”.

4.2.4. Typing Rules

In this subsection, we discuss the typing rules for selected boolean expressions and
commands. These rules use various auxiliary functions and predicates which are de-
fined in Subsection 4.2.5.

Boolean Expression

The typing rule for type(I,T) is as follows:

π ` I :(τ1)id π ` T :(τ2)type superType(τ1,τ2)
π ` type(I,T):({I:τ2})boolexp

The phrase “type(I,T)“ is a well-typed boolean expression if the declared type of
identifier (τ1) is the super-type of T (τ). The boolean expression may introduce new
type information for the identifier.

In our example program, the local variable x has a union type of integer and float
(as depicted at line a below), which is used in two corresponding type tests (at lines
b and c) in the conditional.

. . .
a: local i, x::Or(integer,float), . . .;
. . .
a0: # π0={..., i:integer, x:Or(integer,float),..., status:anything}
b: if type(x,integer) then
. . .
c: elif type(x,float) then
. . .

44

4.2. Type System for MiniMaple

d : end if ;
. . .

By the above typing rule, the type test type(x , integer) is evaluated in a step-wise
way as follows:

� π0 ` x :(Or(integer,float))id,

� π0 ` integer :(integer))type and

� superType(Or(integer, float), integer) evaluates to true.

All of the above evaluations results in the conclusion/judgment

π0 ` type(x,integer):({x:integer})boolexp

where a new type environment is produced, in which a variable x has a type integer.
Similarly the typing judgment

π0 ` type(x,float):({x:float})boolexp

can be derived for the second type test type(x , float).

Conditional Command

The typing rule for the conditional command, i.e. if E then Cseq Elif end if is given
below:

π ` E : (π’)boolexp canSpecialize(π,π’)
specialize(π,π’), c, asgnset ` Cseq :(π1,τset1,εset1,rflag1)cseq

π, c, asgnset ` Elif :(π2,πset , τset2,εset2,rflag2)elif
π, c, asgnset ` if E then Cseq Elif end

if :(combine(π1,π2),τset1 ∪ τset2,εset1 ∪ εset2,ret(rflag1, rflag2))comm

The phrase “if E then Cseq Elif end if“ is a well typed conditional command if
the type of expression E does not conflict global type information. The conditional
command combines the type environment of its two conditional branches (if and elif),
because we are not sure which of the branches will be executed at runtime.

For demonstration of this typing rule, let’s consider the following conditional code
snippet from our example program, which is manually type annotated (with corre-
sponding type environment) for elaboration.

. . .
a: local i, x::Or(integer,float), . . .;
. . .
a0: # π0={..., i:integer, x:Or(integer,float),..., status:anything}
b: if type(x,integer) then

45

4. Formal Type System

b0: # π1={..., i:integer, x:integer, si:integer, ..., status:integer}
b1: if (x = 0) then

return [si,sf];
end if ;

b2. si:=si+x;
b3: # π11={..., i:integer, x:integer, si:integer, ..., status:integer}
c: elif type(x,float) then
c0: # π2={..., i:integer, x:float, ..., sf:float, status:integer}
c1: if (x < 0.5) then

return [si,sf];
end if ;

c2. sf:=sf+x;
c3: # π22={..., i:integer, x:float, ..., sf:float, status:integer}
d : end if ;
d0: # π3={..., i:integer, x:Or(integer,float),..., status:integer}
. . .

The above typing rule is evaluated with respect to its premises as follows:

� π0 ` type(x , integer): ({x:integer})boolexp (as given π0 above)

� canSpecialize(π0,{x:integer}) evaluates to true

� specialize(π0,{x:integer}) results in a type environment π1
� π1, c, asgnset ` Cseq :(π11,{[integer,float]},∅,not aret)cseq, where Cseq repre-

sents the command sequence with labels b1 and b2

� π, c, asgnset ` Elif :(π22,∅, {[integer,float]},∅,not aret)elif, where Elif represents
the command with label c.

The above premise evaluations results in the judgment

π0, c, asgnset ` if type(x,integer) then Cseq Elif end
if :(π3,{[integer,float]},∅,not aret)comm

where π3 is an application of the auxiliary function combine and all other components
of comm are computed as derived by the typing rule. Moreover, this conditional com-
mand not always returns and also has no exceptions as depicted by the corresponding
values not aret and ∅.

Assignment Command

The typing rule for the assignment command I,Iseq := E,Eseq in a local context is
defined below:

46

4.2. Type System for MiniMaple

π ` I :(τ1)id π ` Iseq :(τseq1)idseq isNotRepeated(I,Iseq)
π ` E :(τ2)exp π ` Eseq :(τseq2)expseq

matchTypeSeq((τ1, τseq1),(τ2, τseq2)) isAssignable((I,Iseq), asgnset)
π, local, asgnset ` I,Iseq :=

E,Eseq :(update(π, (I , Iseq), (τ2, τseq2)),{},{},not aret)comm

In a local context, the phrase ”I,Iseq := E,Eseq” is a well typed assignment command
which updates the types of the identifiers only, if the types of the expressions (E and
Eseq) are the subtypes of the declared types of identifiers (I and Iseq).

isNotRepeated(I , Iseq) π ` E :(τ)exp π ` Eseq :(τseq)expseq
π, global, asgnset ` I,Iseq :=

E,Eseq :(update(π, (I , Iseq), (τ, τseq)),{},{},not aret)comm

In a global context, the phrase ”I,Iseq := E,Eseq” is a well typed assignment command
that allows to change the types of identifiers arbitrarily.

The rule for the global context can easily be practiced, so we demonstrate the typing
rule in the local context by considering the our example program as follows:

a: status:=0;
b: sum := proc(l::list(Or(integer,float)))::[integer,float];
. . .
c: # π0={..., i:integer, x:Or(integer,float),..., status:anything}
d : for i from 1 by 1 to nops(l) do
d0. x:=l[i];
d1. status:=i;
d2. # π1={..., i:integer, ..., status:integer}
. . .

Based on the assignment command labeled d1, the premises of the corresponding
typing rule evaluates in the following order:

� π0 ` status:(anything)id as global variables cannot be type annotated and are
assigned the super type by default

� π0 ` EMPTY :(EMPTY)idseq, as it is not a simultaneous assignment

� π0 ` i :(integer)exp

� π0 ` EMPTY :(EMPTY)expseq

� isNotRepeated(I,EMPTY) returns true

� matchTypeSeq((anything, EMPTY),(integer, EMPTY)) returns true and

� isAssignable((status,EMPTY), asgnset) returns true because the identifier status
became available for assignment after its (global) declaration.

The above premises results in

47

4. Formal Type System

π0, local, asgnset ` status := i :(π1,∅,∅,not aret)comm

where π1 is the result of the update function. Furthermore, an assignment command
is neither an exception statement nor a return statement and also not always returns
as represented by the corresponding values ∅, ∅ and not aret.

Further details on the typing judgments and rules for various syntactic domains of
MiniMaple are discussed in [91].

4.2.5. Auxiliary Functions and Predicates

In this subsection, we give definitions of the selected auxiliary functions and predicates,
which are used in the Subsection 4.2.4.

� orCombine: Type × Type → Type returns the general type (if there) between
the two (former and later type), otherwise returns the union of the two types.

orCombine(integer , τ) =

integer if τ = integer

anything if τ = anything

Or(integer , τ) if τ /∈ {integer , anything}

orCombine(boolean, τ) =

boolean if τ = boolean

anything if τ = anything

Or(boolean, τ) if τ /∈ {boolean, anything}

orCombine(string , τ) =

string if τ = string

anything if τ = anything

Or(string , τ) if τ /∈ {string , anything}

orCombine(anything , τ) = anything

orCombine({τ}, τ1) =

{τ} if ∃ τ2 : τ1 = {τ2}
anything if τ = anything

Or({τ}, τ1) if τ1 6= anything ∧ ¬∃ τ2 : τ1 = {τ2}
orCombine(list(τ), τ1) =

list(τ) if ∃ τ2 : τ1 = list(τ2)

anything if τ = anything

Or(list(τ), τ1) if τ1 6= anything ∧ ¬∃ τ2 : τ1 = list(τ2)

orCombine([τseq], τ1) =
[orCombineSeq(τseq , τseq1)] if ∃ τseq1 : τ1 = [τseq1]

anything if τ = anything

Or([τseq], τ1) if τ1 6= anything

∧¬∃ τseq1 : τ1 = [τseq1]

48

4.2. Type System for MiniMaple

orCombine(procedure[τ](τseq), τ1) =

procedure[τ][orCombineSeq(τseq , τseq1)] if ∃ τ2, τseq1

: τ1 = procedure[τ2](τseq1)

anything if τ = anything

Or(procedure[τ](τseq), τ1) if τ1 6= anything

∧¬∃ τ2, τseq1

: τ1 = procedure[τ2](τseq1)

orCombine(I (τseq), τ1) =

I (orCombineSeq(τseq , τseq1)) if ∃ I1, τseq1 : τ1 = I1(τseq1)

∧I = I1

anything if τ = anything

Or(I (τseq), τ1) if τ1 6= anything

∧¬∃ I1, τseq1 : τ1 = I1(τseq1)

∧I = I1

orCombine(Or(τseq), τ1) =

Or(orCombineSeq(τseq , τseq1)) if ∃ τseq1 : τ1 = Or(τseq1)

∧¬hasTypeAnything(τseq)

∧hasTypeAnything(τseq1)

anything if τ = anything

Or(τseq , τ1) if τ1 6= anything

∧¬hasTypeAnything(τseq)

orCombine(symbol , τ) =

symbol if τ = symbol

anything if τ = anything

Or(symbol , τ) if τ /∈ {symbol , anything}

orCombine(void , τ) =

void if τ = void

anything if τ = anything

Or(void , τ) if τ /∈ {void , anything}

orCombine(uneval , τ) =

uneval if τ = uneval

anything if τ = anything

Or(uneval , τ) if τ /∈ {uneval , anything}
� matchTypeSeq ⊂ Type Sequence ×Type Sequence: returns true (in most cases)

if every type from the former sequence of types is general to the corresponding
type in the latter sequence of types, i.e. the former type is a super type of the
latter type.

49

4. Formal Type System

matchTypeSeq((τ1, τseq1), (τ2, τseq2))⇔

true if ∃ τ ′, τ ′′ : τ1 = seq(τ ′)

∧τ2 = seq(τ ′′)

∧matchTypes(τ ′, τ ′′)

∧matchTypeSeq((τ1, τseq1), τseq2)

true if ∃ τ ′, τ ′′ : τ1 = seq(τ ′)

∧τ2 = seq(τ ′′)

∧¬(matchTypes(τ ′, τ ′′)

∧matchTypeSeq(τseq1, (τ2, τseq2)))

true if ∃ τ ′ : τ1 = seq(τ ′)

∧¬∃ τ ′′ : τ2 = seq(τ ′′)

∧matchTypes(τ ′, τ ′′)

∧matchTypeSeq((τ1, τseq1), τseq2)

true if ∃ τ ′ : τ1 = seq(τ ′)

∧¬∃ τ ′′ : τ2 = seq(τ ′′)

∧¬(matchTypes(τ ′, τ ′′)

∧matchTypeSeq(τseq1, (τ2, τseq2)))

true if ¬(∃ τ ′, τ ′′ : τ1 = seq(τ ′)

∧τ2 = seq(τ ′′))

∧matchTypes(τ ′, τ ′′)

∧matchTypeSeq((τ1, τseq1), τseq2)

false otherwise

matchTypeSeq((τ, τseq), empty)⇔

true if τseq = seq(τ)

∧matchTypeSeq(τseq , empty)

false otherwise

matchTypeSeq(empty , (τ, τseq))⇔ false

matchTypeSeq(empty , empty)⇔ true

� canSpecialize ⊂ Type Environment ×Type Environment : returns true if all the
common identifiers (in both type environments) have a super-type between their
corresponding types, i.e.

canSpecialize(π1, π2)⇔(∀ I , τ1, τ2 : (I : τ1) ∈ π1 ∧ (I : τ2) ∈ π2
⇒ ∃ τ3 : τ3 = superType(τ1, τ2))

� hastTypeAnything ⊂ Type Sequence returns true if any of the type is anything
in the given sequence of types.

hasTypeAnything(empty)⇔ true

50

4.3. A Type Checker for MiniMaple

/home/taimoor/antlr3/Test6.m parsed with no errors.

Generating Annotated AST...

...

**********COMMAND-SEQUENCE-ANNOTATION START**********

PI -> [

sum:procedure[[integer,float]](list(Or(integer,float)))

status:integer

result:[integer,float]

]

RetTypeSet -> {}

ThrownExceptionSet -> {}

RetFlag -> not_aret

**********COMMAND-SEQUENCE-ANNOTATION END************

Annotated AST generated.

The program type-checked correctly.

Figure 4.1.: Parsing and Type Checking Output

hasTypeAnything(τ, τseq)⇔ τ 6= anything ∧ hasTypeAnything(τseq) . . .

The other auxiliary predicate orCombineSeq used above is defined in Appendix C.

4.3. A Type Checker for MiniMaple

In this section, we discuss the implementation of the type checker [91, 92, 99] and its
application by an example. As discussed in Chapter 1, the type checker annotates the
abstract syntax tree (AST) generated by the parser with type information respectively
it may generates warning and error messages. The type checker is operational and its
implementation consists of approx. 100 Java classes and 10K lines of code.

To type check the MiniMaple program shown in Chapter 3, we execute the com-
mand;

java fmrisc/typechecker/MiniMapleTypeChecker -typecheck Test6.m

where the file Test6.m contains the example program.

The output of the type checker applied to a file containing the source code of the
example program is shown in Figure 4.1.

Figure 4.1 shows that the file has been successfully parsed and presents the type
annotations for the assignment command. In the second part, it shows the resulting
type environment with the associated program identifiers and their respective types
introduced while type checking. The last message indicates that the program has type
checked correctly.

The current implementation has the following limitations:

� All the code must be contained in a single MiniMaple file.

� Procedure and module definitions must precede their application. In the future,
we may consider the following alternatives:

51

4. Formal Type System

– We can use forward declarations i.e. procedure/module prototypes embed-
ded in comments in the MiniMaple program.

– We can use two-pass type checking. In the first pass we can collect the
procedure and module information and in second pass we can type check
rest of the program with the given procedure/module definitions.

� Procedure parameter(s) and return types have to be explicitly given in the Mini-
Maple program. In the future, we may use type inference (to determine the
parameter(s) and return types) by the applications of the parameter(s) and
procedure(s).

� Type checking terminates at very first error message, so one cannot see all the
type information flow if the type checking fails.

An application of the type checker to the Maple package DifferenceDifferential is
discussed in Chapter 8.

52

5. Formal Specification Language

Based on the formal type system discussed in the previous chapter, we have devel-
oped a formal specification language for MiniMaple. In this chapter, we discuss the
characteristic features of this language. The rest of the chapter is organized as fol-
lows: in Section 5.1, we discuss the underlying formula language of the specification
language; in Section 5.2, we explain the main elements of the specification language
and in Section 5.3, we give a specification example.

5.1. Formula Language

The formal specification language for MiniMaple is essentially a first order logic, which
is mainly based on Maple notations but has been extended also by new notions as
shown in Figure 5.1.

Apart from atomic formulas, the formula language supports logical connectives
(and, or, implies, equivalent), various forms of quantifiers, i.e. logical quantifiers
(exists and forall), numerical quantifiers/binders (add, mul, min and max) and a
sequence quantifier (seq) representing truth values, numeric values and sequences of
values respectively.

In Maple, such quantifiers are computable expressions as:

> l:=[2,4,6,8];

l := [2, 4, 6, 8]

> add(k, k in l);

20

> mul(k, k in l);

384

> seq(k+k, k in l);

4, 8, 12, 16

where add and mul quantifier are used to compute the sum and the product of all
elements k in list l respectively. The seq expression generates the sequence of values

53

5. Formal Specification Language

spec-expr ::= spec-expr and spec-expr | spec-expr or spec-expr
| spec-expr equivalent spec-expr | spec-expr implies spec-expr
| forall(Itseq, spec-expr) | exists(Itseq, spec-expr)
| it-op(spec-expr, binding, (EMPTY | spec-expr))
| spec-expr Bop spec-expr | Uop spec-expr | type(spec-expr,T)
. . .
| ‘if‘(spec-expr1, spec-expr2, spec-expr3)
| LET Iseq=eseq IN spec-expr
| I | N | OLD I | RESULT
. . .

binding ::= I = spec-expr1...spec-expr2 | I in spec-expr
it-op ::= add | mul | max | min | seq
. . .

Figure 5.1.: Syntactic Domains of Formula Language and the Related Domains

k + k iterating over all the elements k of the list l .

The conditional operator ‘if‘ in Maple accepts three arguments, a conditional ex-
pression and two other expressions of the same type; based on the evaluation of the
conditional expression, it evaluates one of the other expressions and returns its value.

> x:=12;

x := 12

> ‘if‘(x*x<100, true, false);

false

In the specification language for MiniMaple, we have extended the Maple syntax,
e.g., logical quantifiers use typed variables and numerical quantifiers are equipped with
logical conditions that filter values from the specified variable range by a corresponding
property. Thus the following are legal specification expressions:

mul(k, k in l, k*k < 50)

seq(k+k, k in l, k < 8)

add(k, k in l, k < 5)

For example, the application of the last quantifier sums those elements k in the list
l , which are less than 5.

The specification language also supports the local definition of variables (by LET-
IN construct). The definition

54

5.2. Specification Elements

LET

l = [1,-2,3,-4]

IN

mul(k, k in l, k > 0)

locally introduces a list l which is used in the numerical quantifier.

For the complete syntactic definition of the formula language, please see Appendix B.
In the following section, we explain the use of the formula language for the formal
specification of various MiniMaple constructs.

5.2. Specification Elements

The formal specification language allows to formally describe the behavior of Mini-
Maple procedures by pre- and post-conditions and other constraints; it also supports
loop specifications and command annotations. The specification language also allows
the definitions of abstract data types to formalize mathematical concepts in general
and computer algebra concepts in particular; existing behavioral specification lan-
guages (such as the Java Modeling Language [71]) are weaker in this respect. For
specifying mathematical notions, the use of abstract data types is more simpler than
specifying with their underlying representation, i.e. by concrete data types. Also other
related facts of abstract concept can be formalized for better and easier reasoning.

The MiniMaple type checker also checks the correct typing of formal specifica-
tions. We have used the specification language to formally specify the Maple package
DifferenceDifferential, which demonstrates the adequacy of the language for the in-
tended purpose. In the following, we discuss the main elements of the specification
language by examples.

5.2.1. Mathematical Theories

At the top of a MiniMaple program one can define mathematical theories by declaring
respectively defining mathematical functions, named types, abstract data types and
axioms. The syntax of specification declarations

decl ::= EMPTY
| (define(I(Itseq)::T,rules); | ‘type/I ‘:=T ; | ‘type/I ‘;
| assume(spec-expr);) decl

is mainly borrowed from Maple. For example, the mathematical function fac can be
defined using the Maple define construct as follows:

> define(fac,

fac(0) = 1

fac(n::integer) = n*fac(n - 1));

55

5. Formal Specification Language

> fac(5);

120

However, as we believe type checking to be the pre-requisite of program correctness,
we demand type annotations in mathematical function definitions. In MiniMaple, thus
the factorial function is defined as follows:

define(fac(i::integer)::integer, fac(0) = 1, fac(n::integer) = n * fac(n -1));

Names data types can be defined with the phrase ”‘type/I ‘:=T“, e.g. in the following
declaration an identifier ListInt stands for the type list(integer):

‘type/ListInt‘:=list(integer);

The phrase ”‘type/I ‘” can be used to declare an abstract data type with name I,
e.g. the following example shows the declaration of an abstract data type “difference
differential operator (DDO)”:

‘type/addo‘;

Axioms can be introduced by the phrase “assume(spec-expr)“; the following exam-
ple shows an axiom that an operator ’t’ is a difference-differential operator, if each of
it’s term is a difference-differential term:

assume(forall(t::list(ddoterm), d::ddo data, isddo(t, d) equivalent
forall(i::integer, 1<=i and i<=nops(t) implies isddo term(d, t[i]))));

The abstract data type ”addo“ is used in the specification and verification of the
package DifferenceDifferential described in Chapter 8.

5.2.2. Procedure Specifications

A specification of a MiniMaple procedure consists of a pre-condition, the set of global
variables that can be modified (by an execution of the body of the procedure) and
the post-condition, describing the relationship between pre- and post-state. By an
optional clause we can also specify the exceptional behavior of a procedure. The
procedure specification syntax is influenced by the Java Modeling Language [71]:

proc-spec ::= requires spec-expr ;
global Iseq ;
ensures spec-expr ; excep-clause

Figure 5.2 shows an example for the procedure specification. The specification is a
big logical disjunction to formulate two possible behaviors of the procedure:

1. when the procedure terminates normally and

2. when the procedure terminates prematurely.

The figure gives a formal specification of the example procedure introduced in Chap-
ter 3. The procedure has no pre-condition as shown in the requires clause; the global
clause says that a global variable status can be modified by the body of the procedure.

56

5.2. Specification Elements

(*@
requires true;
global status;
ensures

(status = -1 and RESULT[1] = add(e, e in l, type(e,integer))
and RESULT[2] = add(e, e in l, type(e,float))
and forall(i::integer, 1<=i and i<=nops(l) and type(l[i],integer) implies l[i]<>0)
and forall(i::integer, 1<=i and i<=nops(l) and type(l[i],float) implies l[i]>=0.5))
or
(1<=status and status<=nops(l)
and RESULT[1] = add(l[i], i=1..status-1, type(l[i],integer))
and RESULT[2] = add(l[i], i=1..status-1, type(l[i],float))
and ((type(l[status],integer) and l[status]=0)

or (type(l[status],float) and l[status]<0.5))
and forall(i::integer, 1<=i and i<status and type(l[i],integer) implies l[i]<>0)
and forall(i::integer, 1<=i and i<status and type(l[i],float) implies l[i]>=0.5));

@*)
proc(l::list(Or(integer,float)))::[integer,float]; ... end proc;

Figure 5.2.: A MiniMaple Procedure Formally Specified

The normal behavior of the procedure is specified in the ensures clause.

The post-condition specifies that, if the complete list is processed then we get the
result as the sum of all integers and floats in the list; if the procedure terminates
pre-maturely, then we only get the sum of integers and floats till the index denoted by
the variable status. The variable RESULT is a keyword of the specification language,
which represents the return value of the procedure.

In the example, the numerical quantifier add sums those elements e of the input list
l that satisfy the given property, i.e. a type test type(e,integer) or type(e,float),
respectively.

5.2.3. Loop Specifications

The specification language allows to formally specify the total correctness of a Mini-
Maple loop by an invariant and by a termination term that denotes a non-negative
integer.

loop-spec := invariant spec-expr ; decreases spec-expr ;

An invariant is used to generate the conditions to verify partial correctness of the
loop; it must hold before and after each iteration of the loop body. A termination
term is added to specify the total correctness of the loops; it denotes a value that is
decremented by every iteration of the loop such that the loop eventually terminates.

57

5. Formal Specification Language

Figure 5.3 shows the formally specified loop from the example program. In analogy
to the post-condition of the procedure specification, the loop invariant is a big logical
disjunction which specifies the relationship among the variables that are modified in
the loop body

1. when the body of the loop executes normally and

2. when the loop terminates abnormally, i.e. with the execution of the return
statement.

In detail, the loop specification says that at each iteration of the loop,

� either si and sf equal the sum of the corresponding integer and float values of
the elements of list l until index status. Furthermore no integer of value 0 or
float of value less than 0.5 has been found before index status;

� or si and sf equal the sum of the corresponding integer and float values of the
elements of the list l until index status-1; at index status, either there is an
integer of value 0 or a float of value 0.5. Moreover, there is no integer of value
0 or a float value of less than 0.5 until index status-1.

The termination term (as specified by the decreases clause) decrements after each
iteration because the subtrahend of the termination term, i.e. the loop counter i
gets incremented after each iteration. After the last iteration, the subtrahend equals
one more than the length of the list l and hence the termination term still becomes
non-negative.

5.2.4. Assertions

Any MiniMaple statement can be specified by assertions. Semantically, an assertion
constrains the state of the execution at the point where it occurs. Furthermore, an
assertion splits the verification proof into two parts,

1. a proof obligation and

2. an assumption for the rest of the proof.

In the formal specification language of MiniMaple, an assertion has the syntax bor-
rowed from Maple:

ASSERT(spec-expr, (EMPTY | “I“));

An assertion can be named by an optional identifier I as in

ASSERT(type(y,integer), ”y is not an integer“);

where, if the assertion type(y, integer) fails, the message ”y is not an integer“ is
printed.

In Maple, an assertion is checked when the variable assertlevel of the kernel routine
kernelopts is set to 1. For instance, in the example

> kernelopts(assertlevel=1);

0

58

5.2. Specification Elements

for i from 1 by 1 to nops(l) do
(*@
invariant (status <= i and

(si = add(l[j], j=1..status, type(l[j],integer)) and
sf = add(l[j], j=1..status, type(l[j],float)) and
forall(i0::integer, 0 <= i0 and i0 <= status and type(l[i0],integer)

implies l[i0]<>0) and
forall(i0::integer, 0 <= i0 and i0 <= status and type(l[i0],float)

implies l[i0]>=0.5)
))
or
(si = add(l[j], j=1..status-1, type(l[j],integer)) and
sf = add(l[j], j=1..status-1, type(l[j],float)) and
((type(l[status],integer) and l[status]=0)

or (type(l[status],float) and l[status]<0.5)) and
forall(i0::integer, 0 <= i0 and i0 <= status and type(l[i0],integer)

implies l[i0]<>0) and
forall(i0::integer, 0 <= i0 and i0 <= status and type(l[i0],float)

implies l[i0]>=0.5)
);

decreases (nops(l) + 1 - i);
@*)
x:=l[i];
status:=i;
if type(x,integer) then

if (x = 0) then
return [si,sf];

end if ;
si:=si+x;

elif type(x,float) then
if (x < 0.5) then

return [si,sf];
end if ;
sf:=sf+x;

end if ;
end do;

Figure 5.3.: A MiniMaple Loop Formally Specified

59

5. Formal Specification Language

> x:=12;

x := 12

> ASSERT(x>10);

> ASSERT(x<10);

Error, assertion failed

when an assertion is violated, Maple reports an error, otherwise it continues the
execution.

5.3. Example

The complete specification of the example program presented in the previous sections
is given:

status:=0;

sum := proc(l::list(Or(integer,float)))::[integer,float];

(*@

requires true;

global status;

ensures

(status = -1 and RESULT[1] = add(e, e in l, type(e,integer))

and RESULT[2] = add(e, e in l, type(e,float))

and forall(i::integer, 1<=i and i<=nops(l) and type(l[i],integer) implies l[i]<>0)

and forall(i::integer, 1<=i and i<=nops(l) and type(l[i],float) implies l[i]>=0.5))

or

(1<=status and status<=nops(l)

and RESULT[1] = add(l[i], i=1..status-1, type(l[i],integer))

and RESULT[2] = add(l[i], i=1..status-1, type(l[i],float))

and ((type(l[status],integer) and l[status]=0)

or (type(l[status],float) and l[status]<0.5))

and forall(i::integer, 1<=i and i<status and type(l[i],integer) implies l[i]<>0)

and forall(i::integer, 1<=i and i<status and type(l[i],float) implies l[i]>=0.5));

@*)

global status;

local i,x::Or(integer,float), si::integer:=0, sf::float:=0.0;

for i from 1 by 1 to nops(l) do

(*@

invariant (status <= i and

(si = add(l[j], j=1..status, type(l[j],integer)) and

sf = add(l[j], j=1..status, type(l[j],float)) and

forall(i0::integer, 0 <= i0 and i0 <= status and type(l[i0],integer)

implies l[i0]<>0) and

forall(i0::integer, 0 <= i0 and i0 <= status and type(l[i0],float)

implies l[i0]>=0.5)

)

or

60

5.3. Example

(si = add(l[j], j=1..status-1, type(l[j],integer)) and

sf = add(l[j], j=1..status-1, type(l[j],float)) and

((type(l[status],integer) and l[status]=0)

or (type(l[status],float) and l[status]<0.5)) and

forall(i0::integer, 0 <= i0 and i0 <= status and type(l[i0],integer)

implies l[i0]<>0) and

forall(i0::integer, 0 <= i0 and i0 <= status and type(l[i0],float)

implies l[i0]>=0.5)

);

decreases (nops(l) + 1 - i);

@*)

x:=l[i];

status:=i;

if type(x,integer) then

if (x = 0) then

return [si,sf];

end if;

si:=si+x;

elif type(x,float) then

if (x < 0.5) then

return [si,sf];

end if;

sf:=sf+x;

end if;

end do;

status:=-1;

return [si,sf];

end proc;

We type check this program by executing the following command:

java fmrisc/typechecker/MiniMapleTypeChecker -typecheck Test66.m

which accepts the specified program as correctly typed. The application of the type
checker to the formally specified Maple package DifferenceDifferential is discussed in
Chapter 8.

61

6. Formal Semantics

In this chapter, we define a formal semantics of MiniMaple programs as a pre-requisite
of our translation, which will be discussed in Chapter 7: this translation of a Mini-
Maple annotated program into a corresponding Why3ML program must be sound with
respect to the semantics. The rest of the chapter is organized as follows: Section 6.1
highlights selected features of MiniMaple program’s semantics. Section 6.2 introduces
the background for the definition of the formal semantics. In Section 6.3, we discuss the
formal semantics of MiniMaple programs, while Section 6.4 and 6.5 sketch the formal
semantics of the formula language and of the specification annotations, respectively.
The complete definitions of the semantics of MiniMaple and its specification language
are presented in Appendices D and E, respectively.

6.1. Introduction

There is no formally defined semantics for Maple such that only the implementation
of Maple can be considered as a basis of our semantics definition which attempts to
depict the internal behavior of Maple. Based on this semantics, we can formalize the
question about the correct behavior of any MiniMaple program.

Our formal semantics of MiniMaple correspondingly shows the following features:

� MiniMaple has expressions with side-effects, which is not supported in functional
programming languages, e.g. Haskell [82] and Miranda [153]. As a result the
evaluation of an expression may change the program execution state.

� The semantics is correspondingly defined in a denotational style as a state rela-
tionship between pre- and post-states.

� Static scoping [114] is used to evaluate a MiniMaple procedure.

� MiniMaple and its specification language share various semantic domains of
values that have some non-standard types of objects, for example symbol, uneval
and union etc. These languages also support additional functions and predicates,
for example type tests i.e. type(E,T).

In the following Section, we introduce some background notions which will be used
to define the formal semantics in the subsequent sections.

63

6. Formal Semantics

6.2. Background

In this section, we discuss the structure of our definition of denotational semantics.
A denotational semantics is defined with the help of various semantic domains [1],
which represents sets of elements that share some common properties. A semantic do-
main is accompanied by a set of operations as functions over the domain. A domain
and its operations together form a semantic algebra [136]. A valuation function de-
fines a mapping from an abstract syntax structure of a language to its corresponding
meaning which is an element of a semantic domain. A valuation function VF for a
syntax domain VF is usually formalized by a set of equations, one per alternative in
the corresponding BNF rule for the syntactic domain. The abstract syntax domains
for MiniMaple and its specification language are defined in Appendices A and B re-
spectively, while the corresponding semantic algebras and the valuation functions are
defined in Appendices D and E.

The most important semantic domains are introduced in the following.

6.2.1. Semantic Values

A Value is a disjunctive union domain composed of all kinds of primitive semantic
values supported in MiniMaple:

V alue := Module+ Procedure+ Function+ List+ Set+ ...+ Uneval + V alue∗

Some of these domains, e.g. Module, Procedure and Function are explained in the
following subsections. Note that the domain Value is a recursive domain, e.g. List is
defined by a sequence of values Value* as discussed in the Section 6.2.5.

6.2.2. Module Values

A Module can be thought of as a collection of name bindings:

Module := Identifier Sequence→ V alue∗

These bindings are accessible outside the module, once the module has been con-
structed. They are defined by the exports of the module.

6.2.3. Procedure Values

The semantic domain Procedure represents MiniMaple procedures. It is defined as
a relation on a sequence of (parameter) values, a pre- and a post-state and a return
value.

Procedure := P(V alue∗ × State× StateU × V alueU)

64

6.2. Background

A Procedure is one of the values that can be stored in the Environment values as
discussed in Subsection 6.2.7. The domain State and other lifted domains StateU and
ValueU are defined in Subsections 6.2.8 and 6.2.9 respectively.

6.2.4. Function Values

The semantic domain Function defines and formalizes the mathematical functions
supported in the specification language as follows:

Function :=
⋃
n∈N

Functionn

where

Functionn := V aluen → V alue

i.e. a value of type Function maps n parameter values to a return value. A predicate
is a special case of a mathematical function which returns a boolean value.

6.2.5. List Values

The structure of domain List is defined as a finite sequence of elements Value:

List := V alue∗

The semantic domain List is used as a building block for some other domains, e.g.
Tuple and Set. Furthermore, the domains List and Set are defined as a sequence of
values belonging to a single domain.

6.2.6. Sequence Values

The domain for a finite sequence of values V alue∗ is defined by two constructors

emptyV alue : ()→ V alue∗

cons : V alue× V alue∗ → V alue∗

which create an empty and the finite sequences respectively.

The formalism of our semantics does require some auxiliary semantic domains; the
important of which are discussed in the following sections.

6.2.7. Environment Values

The domain Environment holds for the environment of a MiniMaple program. Envi-
ronment is formalized as a Cartesian product of domains Context and Space.

Environment := Context× Space

65

6. Formal Semantics

where the domain Context is a mapping of identifiers to the environment values (Vari-
able, Procedure, Function and Type-Tag):

Context := Identifier → EnvV alue
EnvV alue := V ariable+ Procedure+ Function

The domain Space models the memory space

Space := P(V ariable)

as a pool of variables that are not assigned to any identifiers and can be used for
allocation of program variables.

6.2.8. State Values

This section defines the domain for the State of the program, which is composed of a
Store and a Data object:

State := Store×Data

A Store holds for every Variable a Value, while Data stores the control information
of a particular state.

Store := V ariable→ V alue
Data := Flag × Exception×Return
F lag := {execute, exception, return, leave}

An Exception and Return domains give the corresponding exception and return values
based on the value of Flag.

6.2.9. Lifted Values

The evaluation of some semantic domains might result in an illegal state or an unde-
fined value. To address these unsafe evaluations we lifted the domains of State and
Value to domains StateU and ValueU, which are disjoint sums of the basic domains
and the domains Error and Undefined, respectively.

V alueU := V alue+ Undefined
StateU := State+ Error

Undefined (:= {()}) and Error (:= {()}) are unit domains.

6.3. Semantics of Programs

Based on the semantic domains introduced in the previous section, we define the
valuation functions for selected syntactic domains of MiniMaple in this section.

66

6.3. Semantics of Programs

6.3.1. Commands

As the formal semantics of MiniMaple commands is defined as a state relationship, we
define the result of the corresponding valuation functions as a predicate. A valuation
function for commands takes the abstract syntax of a command as a value of type C
and results in a ComRelation:

[C]: ComRelation

where

ComRelation := Environment → StateRelation
StateRelation := P(State × StateU)

If we unfold the definition of the above valuation function signature can be rewritten
as follows:

[]: Command → Environment → StateRelation

A valuation function for a command thus takes a command and an environment and
results in a power set of pairs of pre- and post-states of the execution of the command.

In the following, we give some examples for the definition of the valuation function
of a command.

Assignments

MiniMaple supports a simultaneous multi-assignment statement, whose semantics is
defined as a relationship between pre-state s and post-state s ′ as shown below:

[I,Iseq := E,Eseq](e)(s, s ′)⇔
∃ v ∈ ValueU , s ′′ ∈ StateU : [E](e)(s, s ′′, v)∧
cases v of

isUndefined()→ s ′ = inError()
[]isValue(v ′)→
cases s ′′ of

isError()→ s ′ = inError()
[]isState(p)→ ∃ v ′′ ∈ ValueU ∗, s ′′′ ∈ State : [Eseq](e)(p, s ′′′, v ′′)∧
cases s ′′′ of

isError()→ s ′ = inError()
[]isState(p1)→

IF undefinedSeq(v ′′) THEN
∃ var ∈ Variable, l1 ∈ List , vars ∈ Variable∗, ln ∈ List∗ :
[I](e)(var , l1)∧[Iseq](e)(vars, ln)∧
s ′ = inValueU (update(p1,<var , vars>,<l1, ln>,<v ′, valSeq(v ′′)>))

ELSE s ′ = inError()

67

6. Formal Semantics

END //if
END //cases-s”’

END //cases-s”’
END //cases-v

Semantically, with the given environment e and a pre-state s, first the expression
sequence (E and Eseq respectively) of the assignment command is evaluated:

� if none of them yields an unsafe evaluation (i.e. an error state or an undefined
value), then

� the identifier sequence (i.e. left-hand-side) of the assignment statement is eval-
uated, and

� consequently, a post-state s ′ is computed by simultaneously updating the value
of identifier sequence to the corresponding values in the state p1 (computed by
the evaluation of the corresponding expression sequence).

If any of the evaluation is unsafe, then the post-state of the assignment command is
an error state.

Command Sequences

Also the semantics of MiniMaple command sequence states the relationship between
a pre-state s and a post-state s ′ as follows:

[C; Cseq](e)(s, s ′)⇔
∃ s ′′ ∈ StateU : [C](e)(s, s ′′)∧

cases s ′′ of
isError()→ s ′ = inError()
[]isState(p)→
IF executes(data(p)) THEN

LET e ′ = Env(e,C) IN
[Cseq](e ′)(p, s ′)

ELSE s ′ = inStateU (p)
END //if

END //cases-s”

If the execution of a command C yields a post-state s ′′, then the execution of a
command sequence Cseq in a pre-state s ′′ results in a post-state s ′.

While-loops

MiniMaple supports the typical while-loop, whose semantics is given below:

[while E do Cseq end do](e)(s, s ′)⇔

68

6.3. Semantics of Programs

∃ k ∈ Nat , t , u ∈ StateU ∗ :
t(0) = inStataU (s) ∧ u(0) = inStateU (s)∧

(∀ i ∈ Natk : iterate(i , t , u, e,[E], [Cseq]))∧
((u(k) = inError() ∧ s ′ = u(k))∨
(returns(data(inState(u(k)))) ∧ s ′ = t(k))∨
(∃ v ∈ ValueU :[E](e)(inState(t(k)), u(k), v)
∧v <> inValue(inBoolean(True))∧
IF v = inValue(inBoolean(False)) THEN

s ′ = t(k)
ELSE s ′ = inError()
END

)
)

The semantics of the while-loop is determined by the two sequences of pre and post
states [137]. Both sequences are constructed from the pre-state of the loop. Any
ith iteration (execution of the body) of the loop transforms state pre(i) into state
post(i+1) from which the state pre(i+1) is constructed. No iteration is allowed from
the Error as pre state. The loop terminates when the guard expression E evaluates to
false or when the body of the loop evaluates to an error post-state. The corresponding
iterate predicate formalizes the aforementioned while-loop semantics, which is defined
as a relation on

� number of iterations i ,

� a sequence of pre-states t ,

� a sequence of post-states u,

� an environment e in which the body of the loop (command sequence) has to be
evaluated,

� a valuation function for the loop condition expression E and

� a valuation function for the body o the loop (command sequence) C .

Here the pre and post-states refer to the corresponding pre and post-states of the
execution of the body of the loop.

iterate ⊆ Nat× StateU∗×StateU∗ × Environment ×
StateV alueRelation× StateRelation

iterate(i , t , u, e,E ,C)⇔
cases t(i) of

isError()→ false
[]isState(m)→ executes(data(m)) ∧
∃ v ∈ ValueU , s ′ ∈ StateU : E (e)(m, s ′, v)∧
cases s ′ of

isError()→ u(i + 1) = inError() ∧ t(i + 1) = u(i + 1)

69

6. Formal Semantics

[]isState(p)→
cases v of

isUndefined()→ u(i + 1) = inError() ∧ t(i + 1) = u(i + 1)
[]isValue(v ′)→
cases v ′ of

isBoolean(b)→ b∧C (e)(p, u(i + 1)) ∧ t(i + 1) = u(i + 1)
[] . . .→u(i + 1) = inError() ∧ t(i + 1) = u(i + 1)

END //cases-v’
END //cases-v

END //cases-s’
END //cases-t(i)

The predicate iterate is defined such that, at an arbitrary iteration i of the loop,

� if the pre-state t(i) is a non-error state m, then

� if the state m is an executing state (i.e. no-exception and no return), then, with
the given environment e and a pre-state m, the loop condition expression E
evaluates to value v and results in the post-state s ′, then

� if the resulting post-state s ′ is a non-error state and the value of expression v is
not undefined, then

� if the value of expression v is a boolean true value, then, with the given envi-
ronment e and a pre-state p, the execution of the body of the loop C produces
u(i + 1) as a post-state, which is then transformed to the pre-state t(i + 1) for
the next iteration of the loop.

In the alternative of any of the aforementioned conditions, the post-state u(i +1) is set
to an error state, which consequently results in an error pre-state t(i +1). However, if
the pre-condition t(i) for any iteration i is an error state, then the predicate returns
false.

6.3.2. Expressions

The valuation function for the abstract syntax domain of expression values E is defined
as:

[E]: ExpRelation

where

ExpRelation := Environment→ StateV alueRelation
StateV alueRelation := P(State× StateU × V alueU)

The valuation function for an expression takes an expression and an environment and
results in a power set of triples of pre-state, post-state and the value of the expression.

In the following, we give some examples for the definition of the valuation functions
of a MiniMaple expressions.

70

6.3. Semantics of Programs

Binary Expressions

MiniMaple supports various kind of binary operations, e.g. arithmetic and logical
expressions, whose abstract syntax is represented by the domain of value of type Bop.
The semantics of such expressions state that the evaluation of the binary operator
Bop (operating over expression E1 and E2) in a pre-state s yields a post-state s ′ and
a value v as defined below:

[E1 Bop E2](e)(s, s ′, v)⇔
∃ s1 ∈ StateU , v1 ∈ ValueU : [E1](e)(s, s1, v1)∧
cases s1 of

isError()→ s ′ = inError() ∧ v = inUndefined()
[]isState(s11)→
cases v1 of

isUndefined()→ s ′ = inError() ∧ v = inUndefined()
[]isValue(v11)→
∃ s2 ∈ StateU , v2 ∈ ValueU : [E2](e)(s11, s2, v2)∧
cases s2 of

isError()→ s ′ = inError() ∧ v = inUndefined()
[]isState(s22)→

cases v2 of
isUndefined()→ s ′ = inError() ∧ v = inUndefined()
[]isValue(v22)→
∃ v ′ ∈ Value :[Bop](v11, v22)(v

′)∧
s ′ = inStateU (s22) ∧ v = inValueU (v ′)

END //cases-v2
END //cases-s2

END //cases-v1
END //cases-s1

Semantically, first the expression E1 is evaluated in a given environment e and pre-
state s, if

� the evaluation yields a value v1, then

� the expression E2 is evaluated in a pre-state s11 (which is a yielded post-state
by the evaluation of expression E1) and if this evaluation yields a value v2, then

� the application of the binary operator Bop to the values v11 and v22 computes
the result value v ′ which equals v .

Any unsafe evaluation results in an undefined value v .

71

6. Formal Semantics

Procedures

As discussed earlier in Section 6.2.3, a MiniMaple procedure expression evaluates to
a Procedure value, which is defined as a predicate. Moreover, static scoping is used to
evaluate a MiniMaple procedure.

In the following we define the corresponding definition time valuation function where
a procedure expression evaluates to a procedure predicate value p. Here, Pseq, S and R
represent the parameter sequence (identifiers with corresponding types), declarations
and body (command sequence) of the procedure, respectively.

[proc(Pseq) S ; R end proc](e)(s, s ′, v)⇔
LET p ∈ Procedure, p(valseq , s0, s1, v

′)⇔
LET e ′ = push(e, identifiers(Pseq))
∃varseq ∈ Variable∗, s ′′, s3 ∈ StateU ,

e ′′, e ′′′ ∈ Environment :[Pseq](e ′)(e ′′, valseq)∧
[S](e ′′)(s0, s

′′, e ′′′)∧
cases s ′′ of

isError()→ inError()
[]isState(s4)→ ∃ s2 ∈ State, v ′′ ∈ ValueU :

s2 = update(s4, varseq , valseq)∧[R](e ′′′)(s2, s3, v
′′)

END
IN cases s3 of

isError()→ inError()
[]isState(s5)→

cases v ′′ of
isUndefined()→s1 = inError() ∧ v ′ = inUndefined()
[]isValue(v1)→s1 = inStateU (s5) ∧ v ′ = inValueU (v1)

END
END

END
IN s ′ = inStateU (s) ∧ v = inValueU (p) END

The valuation function for a procedure expression in a given environment e and a pre-
state s evaluates to a procedure value v , i.e. a procedure p(valseq , s0, s1, v

′), where
valseq is the sequence of parameter values, s0 and s1 are the corresponding pre and
post-states of the procedure, while v ′ is the return value of the procedure. Note here
that the evaluation of the procedure expression does not change the post-state of the
expression, i.e. the post-state s ′ is equivalent to the pre-state s.

Procedure Calls

In a procedure call, first, the argument expression sequence is evaluated; if any of
them yields an unsafe result, then the call-expression evaluates to an Undefined value

72

6.4. Semantics of Specification Expressions

and an Error as a post-state.

[I (Eseq)](e)(s, s ′, v) ⇔
LET vseq ∈ ValueU ∗, s1 ∈ StateU : [Eseq](e)(s, s1, vseq)
IN
cases s1 of

isError()→ s ′ = inError() ∧ v = inUndefined()
[]isState(s2)→
IF hasUndefinedValue(vseq) THEN

s ′ = inError() ∧ v = inUndefined()
ELSE
cases [I](e) of

isProcedure(p)→ ∃ s3 ∈ StateU , v1 ∈ ValueU : p(vseq , s2, s3, v1)∧
cases s3 of

isError()→ s ′ = inError() ∧ v = inUndefined()
[]isState(s4)→

cases v1 of
isUndefined()→ s ′ = inError() ∧ v = inUndefined()
[]isValue(v ′)→ s ′ = inStateU (s4) ∧ v = inValueU (v ′)

END //cases-v1
END //cases-s3

[] . . .→ s ′ = inError()
END //cases-[I]
END //IF-hasUndefinedValue

END //cases-s1
END //LET

Otherwise, the environment e is looked up for the procedure named I with value
p(vseq , s2, s3, v1). This procedure p is applied to the argument values which yields a
command behavior; the post-state of the command sequence execution is set to the
post-state of the procedure call expression and the procedure call expression evaluates
to the value of the procedure.

6.4. Semantics of Specification Expressions

In this section, we first discuss the signatures of a valuation function of the specification
expression and then define the valuation functions for various interesting expressions
of the formula language.

The valuation function for the abstract syntax domain specification expression of
values spec-expr is defined as:

[spec-expr]: Environment → StateResultValueRelation

73

6. Formal Semantics

where

StateResultValueRelation := P(State× StateU × V alueU × V alueU)

is a power set of a pre-state, a post-state, a (procedure) result value and the value
of the expression. Here, the post-state can be an Error state and also the evaluated
value can be Undefined.

Variables

OLD I is an expression that refers to the value of identifier I in the previous state.

[OLD I](e)(s, s ′, r , v ′)⇔ v ′ = inValueU (store(s)([I](e))) ∧ s ′ = inStateU (s)

The semantics of the old expression is the value v ′ of the identifier I looked up in the
previous state s.

The expression RESULT refers to the result (return) value of a MiniMaple proce-
dure expression and is defined as:

[RESULT](e)(s, s ′, r , v ′)⇔ v ′ = inValueU (r) ∧ s ′ = inStateU (s)

The value of this expression is provided as the third parameter of the predicate.

Conditionals

The specification language supports a conditional operator whose semantics is defined
as follows:

[’if ’(spec-expr1, spec-expr2, spec-expr3)](e)(s, s ′, r , v ′)⇔
∃ v1 ∈ ValueU : [spec-expr1](e)(s, s ′, r , v1)∧
IF v1 = inValueU (inValue(inBoolean(inTrue()))) THEN

[spec-expr2](s, s
′, r , v ′)

ELSE
[spec-expr3](s, s

′, r , v ′)
END //if-b1 = inTrue()

The semantics of a conditional expression says that the spec-expr1 is evaluated first,
if it yields true then the specification expression spec-expr2 is evaluated that gives the
semantic value v ′, otherwise the specification expression spec-expr3 is evaluated to a
result value v ′.

74

6.4. Semantics of Specification Expressions

Local Definitions

The specification language supports an evaluation of a specification expression with a
local definition (by the LET-IN construct).

[LET Iseq = eseq IN spec-expr](e)(s, s ′, r , v ′)⇔
∃ vs ∈ ValueU ∗ : [eseq](e)(s, s ′, r , vs)∧
IF hasUndefinedValue(vs) THEN

v ′ = inUndefined()
ELSE
∃ e1 ∈ Environment : e1 = push(e, Iseq , vs)∧ [spec-expr](e1)(s, s

′, r , v ′)
END //if

First the local definitions (LET part) is evaluated and the specification expression
sequence is evaluated; then, if none of them yields the Undefined value, Environment
is updated with the identifiers (Iseq) mapped to the correspondingly evaluated values
(expression sequence). Then the specification expression spec-expr (IN part) is eval-
uated in the updated Environment, the result of the whole LET-IN construct is the
evaluated value of spec-expr.

Numerical Quantifiers/Binders

As discussed in Chapter 5, the specification language also supports numerical quan-
tifiers (of the form IOp(SE1,B ,SE2)) to apply a binary arithmetic operation to a
range of values those satisfy a certain property. For example, the numerical quantifier
mul(e, e in l, e > 0) computes the product of the those elements e of the list l
which are greater than 0; here mul is the quantifier’s name IOp, e is the base expres-
sion SE1, e in l is the range B of the quantifier and e > 0 is the property SE2 to
be satisfied by the quantifier. The semantics of the numerical quantifier/binder is a
relationship among the pre-state (s), post-state (s ′), (procedure) result value (r) and
the evaluated value (v) of the iterator as defined below:

[IOp(SE1,B ,SE2)](e)(s, s ′, r , v)⇔
∃vseq ∈ Value∗ :[B](e)(s, s ′, r , inValueU (vseq))∧
∃k ′ ∈ Nat ′, e1 ∈ Environment , vs ∈ Value∗ :

e1 = push(e, getIdentifiers(B))∧
(∀i ∈ Nat ′k ′ : iterate(i , I , e1, vseq , vs,[SE1],[SE2])) ∧

(k ′< length(vseq)∧
(access(k ′, vseq) = isUndefined()∨
∀s ∈ State, r ∈ Value : ∃ v1 ∈ Value,n ∈ StateU :
[SE2](e1)(s, inStateU (s), r , inValueU (v1))∧

inBoolean(v1) = inFalse()) ∧v = inUndefined()
) ∨ (k ′ = length(vs) ∧ v = doIterate(IOp, vs))

75

6. Formal Semantics

Semantically, first the range B is computed to get the sequence of values; if none of
these values evaluates to undefined, then the environment e is iteratively updated with
each value in the range computed previously. At each iteration the (property/filter)
SE2 is evaluated; if it holds, then SE1 is evaluated and its value is collected. If all
these evaluations are safe, then we get a range of those values of SE1 for which SE2

holds. At the end we apply the operator IOp to these filtered values and compute the
result value. The corresponding auxiliary predicate iterate formalizes the collection
of filtered values. The relation iterate is defined on

� the number of iterations i (over the range of the quantifier),

� an identifier I , which is subject to a corresponding iteration in the quantifier’s
binding,

� an environment e,

� a sequence of all the values vseq of the corresponding bound expression (i.e.
quantifier/binder),

� a sequence of values vs that are filtered from vseq for

� an expression SE1 which satisfies

� the property formulated by the expression SE2.

The corresponding definition of iterate is as follows:

iterate ⊆ Nat′ × Identifier × Environment× V alue∗ × V alue∗×
StateResultV alueRelation× StateResultV alueRelation

iterate(i , I , e, vseq , vs,SE1,SE2)⇔
∃ e1 ∈ Environment : e1 = push(e, I , access(i , vseq))∧
∀ s ∈ State, r ∈ Value :
∃ v ′ ∈ Value : SE1(e1)(s, inStateU (s), r , inValueU (v ′))∧

SE2(e1)(s, inStateU (s), r , inValueU (inBoolean(inTrue())))∧
v ′ = access(i , vs)

In detail, the relation iterate says that at any arbitrary iteration i ,

� a given environment is extended such that identifier I is assigned the ith value
of the value sequence vseq , then

� in pre-state s the expression SE1 evaluates to the next value v ′ such that

� in a pre-state s the expression SE2 (i.e. a property or filter) evaluates to true
and

� this value v ′ is in the filtered values of sequence vs.

In essence, this predicate describes the relationship of the filtered (sequence) range of
value vs from the given full (sequence) range of values vseq for a given expression SE1

and the corresponding property SE2.

76

6.5. Semantics of Specification Annotations

6.5. Semantics of Specification Annotations

In this section, we define the semantics (correspondingly valuation functions) of the
specification annotations for MiniMaple. The main specification annotations includes
the syntactic domains of specification declarations, procedure specifications, loop spec-
ifications and assertions.

6.5.1. Specification Declarations

A specification declaration can be used to specify a mathematical theory and its
semantics; it produces a new environment that has the corresponding theory declara-
tions and definitions. The valuation function for a specification declaration decl has
signature:

[decl]: Environment → Environment

The specification declaration introduces a new environment that contains the math-
ematical function declarations/definitions as defined below:

[decl](e)(e ′)⇔
LET

(id1, . . . , idn ,T1, . . . ,Tn) = getFunctionIdentifersAndTypes(decl)
(iseq1, . . . , iseqn ,Tseq1, . . . ,Tseqn) = getFunctionParametersAndTypes(decl)
(i1, . . . , in ,Td1, . . . ,Tdn) = getTypeIdentifiersAndTypes(decl)
(ax1, . . . , axn) = getAxioms(decl)
(r1, . . . , rn) = getRules(decl)

IN
∃ f1, . . . , fn = Functionn1 , . . . ,Functionnn ,n1, . . . ,nn ∈ Nat ′,

tag1, . . . , tagn ∈ Type-Tag , e1, . . . , en ∈ Environment :
n1 = length(iseq1) ∧ · · · ∧ nn = length(iseqn)∧
[Td1](e)(inType-TagU (tag1)) ∧ e1 = push(e, i1, tag1) ∧ . . .∧
[Tdn](en−1)(inType-TagU (tagn)) ∧ en = push(e, in , tagn)∧
e ′ = push(en , id1, . . . , idn , f1, . . . , fn)∧ [r1](e

′) ∧ . . .∧ [rn](e
′)

∧
(∀ b1, . . . , bn ∈ Boolean, s ∈ State, r ∈ Value :

[ax1](e
′)(s, inStateU (s), r , inValueU (inValue(b1))) ∧ . . .

[axn](e
′)(s, inStateU (s), r , inValueU (inValue(bn)))

⇒ b1 = inTrue() ∧ . . . ∧ bn = inTrue()
) //END //let-in

In detail, first from a given declaration (decl) all the function definitions (function
identifiers and corresponding rules), axioms (specification expressions) and type dec-
larations (type identifiers and corresponding types) are collected and then

77

6. Formal Semantics

� the type of each type identifier is evaluated which introduces a new environment
where the type identifier is mapped to its corresponding type. The evaluation
of all the type identifiers produces the environment en ;

� the environment en is updated to the result environment e ′ with the function
identifiers mapped to corresponding Function values where each function is of
some arity which equals the number of its parameters;

� in the updated environment e ′ all the rules must hold;

� also in e ′ all the axioms evaluate to true.

For the above used auxiliary functions, predicates and the definition of the other
alternatives of the declaration domain decl, please see Appendix E.

6.5.2. Procedure Specifications

The valuation function for a procedure specification proc-spec has signature:

[proc-spec]: P(Environment)

The procedure specification holds in the given environment.

The semantics of a procedure specification is defined below:

[requires spec-expr1;
global Iseq ;
ensures spec-expr2;
excep-clause;
proc(Pseq) :: T ; S ; R end](e) ⇔

LET (iseq ,Tseq) = getIdentifiersAndTypes(Pseq)
IN
∀ valseq ∈ [Tseq], e1 ∈ Environment , s1, s2 ∈ State, v , r ∈ Value, b, b1 ∈ Boolean :

e1 = push(e, iseq , valseq)∧
[spec-expr1](e1)(s1, inStateU (s1), r , inValueU (inValue(b))) ∧ b = inTrue()∧
∃ p ∈ Procedure, tag ∈ Type-Tag , tagseq ∈ Type-Tag∗ :
[proc(Pseq) :: T ; S ; R; end](e1)(s1, inStateU (s1), inValueU (inValue(p)))∧
p(valseq , s1, inStateU (s2), inValueU (v), tag , tagseq) ∧ isType(v , tag)
⇒ equalsExcept(s1, s2, Iseq)∧

IF exceptions(data(s2)) THEN
[excep-clause](e1)(s2, inStateU (s2), v , inValueU (inValue(b1))) ∧ b1 = inTrue()

ELSE
[spec-expr2](e1)(s2, inStateU (s2), v , inValueU (inValue(b1))) ∧ b1 = inTrue()

END //if-exceptions(data(inState(s2)))
END //let-(iseq ,Tseq)

In detail, if for any pre-state s1 and post-state s2

78

6.5. Semantics of Specification Annotations

� we update the given environment e by mapping all the identifiers (from the
given parameter sequence Pseq) to their possible values (w.r.t. their types) and

� the precondition expression (spec-expr1) holds in the pre-state s1 and

� the evaluation of a procedure expression (proc(Pseq)::T; S;R; end proc;) in a
pre-state s1 evaluates to a procedure relation p and

� the procedure relation p holds for all the possible values of parameter identifiers

then

� the two states s1 and s2 are equal except for the values of identifiers Iseq and

� if the post-state s2 is an exception-state then the exceptional behavior of the
procedure excep-clause holds in the post-state s2, otherwise normal behavior
spec-expr2 holds in the post-state s2.

For the definition of various auxiliary functions and predicates (which are not defined
in this chapter), please see Appendix E.

6.5.3. Loop Specifications

The valuation function for a loop specification loop-spec has signature:

[loop-spec]: Environment → P(State × StateU)

The loop specification must hold in the given environment and in the pre- and post-
states.

The semantics of a loop specification is defined as a relationship between the pre-
state (s) and post-state (s ′) of the loop. MiniMaple supports different variations of a
loop; for simplicity, we only discuss here the semantics of a while-loop specification.

[invariant SE1; decreases SE2;
while E do Cseq end do;](e)(s, s ′)⇔

(∀b ∈ Boolean, r ∈ Value :
[SE1](e)(s, inStateU (s), r , inValueU (b)⇒ b = inTrue())

∧
(∀i ∈ Integer , r ∈ Value : [SE2](e)(s, inStateU (s), r , inValueU (i))⇒ i > 0)
∧
(∀s1, s2 ∈ State, r ∈ Value :

(∀ b1 ∈ Boolean :
[SE1](e)(s1, inStateU (s1), r , inValueU (b1))⇒ b1 = inTrue()) ∧
(∀ j ∈ Integer :
[SE2](e)(s1, inStateU (s1), r , inValueU (j))⇒ j > 0) ∧
(∀ b2 ∈ Boolean :
[E](e)(s1, inStateU (s1), r , inValueU (b2))
⇒ b2 = inTrue()) ∧ [Cseq](e)(s1, inStateU (s2))

79

6. Formal Semantics

⇒ (∀ b3 ∈ Boolean :[SE1](e)(s, inStateU (s2), r , inValueU (b3))⇒ b3 = inTrue()) ∧
(∀ k ∈ Integer :[SE2](e)(s2, inStateU (s2), r , inValueU (k))⇒ k >= 0 ∧ k < j)

)

The semantics of an annotated while-loop says that:

� in a pre-state (s) an invariant (boolean specification expression) spec-expr1 eval-
uates to true and

� the termination term (a numeral specification expression) spec-expr2 evaluates
to a non-negative integer value and

� also for any arbitrary pre-state s1 and post-state s2, if we make an iteration step
for the body of the loop (Cseq) where in the pre-state s1

– the loop expression E holds and

– the invariant spec-expr1 evaluates to true and

– the termination term spec-expr2 evaluates to an integer value that is greater
than or equal to zero

then (after iteration step) in the post-state s2
– the invariant spec-expr1 evaluates to true and

– the termination term spec-expr2 evaluates to an non-negative integer value
and

– the value of the termination term in the post-state s2 must be less than its
value in the pre-state s1

Based on the same idea, the corresponding semantics of the for-loop specification can
easily be derived.

6.5.4. Assertions

The valuation function for an assertion asrt has signature:

[asrt]: Environment → P(State)

The assertion holds in the given environment and a state.

The semantics of an assertion is similar to the semantics of a boolean specification
expression as defined below:

[ASSERT(spec-expr)](e)(s)⇔
∀ r ∈ Value, b ∈ Boolean :[spec-expr](e)(s, inStateU (s), r , inValueU (b))
⇒ b = inTrue()

The result of the evaluation of the boolean command-specification (assertion) ex-
pression spec-expr evaluates to true in the given e and state s.

80

7. Formal Verification

In this chapter, we discuss the formal verification of MiniMaple programs. For verifica-
tion, we first translate an annotated MiniMaple program into the language Why3ML
of the intermediate verification tool Why3 [21] developed at LRI, France; then we
generate verification conditions by the corresponding component of Why3; finally, we
prove the correctness of these conditions by various automatic and interactive theo-
rem provers supported by Why3 as back-ends. The rest of the chapter is organized as
follows: Section 7.1 introduces the intermediate verification tool Why3. In Section 7.2
we give an overview of the translation of MiniMaple and its specification language to
Why3ML. In Section 7.3 we discuss the MiniMaple to Why3ML translation and the
verification of our example program. Section 7.4 sketches the structure and strategy of
the proof of the soundness of the translation in general and the proof of the soundness
of the translation of command sequences and while-loops in particular.

7.1. Why3

For the verification of an annotated MiniMaple program, we can generate verification
conditions either on our own (as in the RISC ProgramExplorer [138]) or by some
existing verification framework, e.g. Why3 [21] developed at LRI, France or Boogie [13]
developed by Microsoft. Based on preliminary investigations, we decided to use Why3,
which we discuss in this section.

Why3 is a verification tool for the programming language Why3ML whose core is a
verification condition generator as depicted in Figure 7.1. The generated verification
conditions are translated into a logical specification language called Why for which
translation to various back-end theorem provers is provided [65].

In general, Why3 provides an environment for deductive program verification [64].
The system was originally developed as a generic intermediate verification platform
supporting various front-end tools, e.g. Krakatoa [33] (for Java programs) and Frama-
C [46] (for C programs); currently the focus of Why3 is the verification of Why3ML
programs. Why3ML is a first order functional language influenced by ML that sup-
ports pattern matching, inductive predicates, algebraic data types and also supports
typical imperative constructs (loops, sequences, exceptions, etc.).

Why3 supports various automated provers (e.g. Z3 and CVC3) and proof assistants
(e.g. Coq). This wide range of proof support was one of the reasons why we chose

81

7. Formal Verification

Figure 7.1.: Overview of Why3

Why3, as we are, e.g. dealing with non-linear arithmetic which requires in general
an interactive prover. The existence of a formal semantics of Why3ML (first based
on weakest precondition [64], later operational [63, 66]) is the other reason for choos-
ing this system, because one can precisely argue whether the generated verification
conditions are sound with respect to the MiniMaple semantics.

7.2. MiniMaple to Why3 Translation

In this section we discuss the translation of annotated MiniMaple to Why3ML. The
goal is to automatically translate a MiniMaple program into a semantically equiv-
alent Why3ML program. Some of the main features respectively challenges of the
translation are as follows:

� MiniMaple supports a return statement which is not supported in Why3ML.
The return statement is translated with the help of the Why3ML exception-
handling mechanism: where-ever return statement occurs, we assign values to
the corresponding exception-object and then raise an exception which is caught
by a corresponding handler in the program.

� In contrast to Why3ML, MiniMaple supports a multi-assignment command. We
translate this statement by a local binding in Why3ML.

82

7.2. MiniMaple to Why3 Translation

� Why3ML supports very limited data types, e.g. integers, reals, strings, tuples
and lists. We axiomatize all other MiniMaple types and their corresponding op-
erations. For example, type set(T) is axiomatized with the underlying Why3ML
list representations where the elements of the set are some permutation of the
list elements.

� The union type Or(Tseq) is defined as an algebraic data type with one con-
structor for each type in Tseq. The type tests for such types are translated
using pattern matching over the corresponding type constructor.

The formal definition of our translation has 40 valuation functions, approx. 50 aux-
iliary functions and predicates and contains 45 pages [97]. For further details on
the translation, please see Appendix F. In the following, we discuss the definition of
translation functions for the selected syntactic constructs of MiniMaple.

7.2.1. Commands

The translation function T for a command C has the following signature:

T [C]: Envm × Envw ×Declw × Thryw → Expw × Envw ×Declw × Thryw

The function takes as arguments a MiniMaple type environment (Envm), a Why3
environment (Envw), Why3 global declarations (Declw) and a Why3 theory (Thryw);
the function returns the corresponding translated Why3ML expression (Expw) and
generates the respective extended Why3 environment (Envw), global and theory dec-
larations (Declw and Thryw).

Assignment

The translation of a MiniMaple assignment command depends on the value of the
Context flag (local or global) as determined by the type system.

In a global context, the translation function looks as follows:

T[I, Iseq := E, Eseq](te,we,mdecl ,wt) =
<inWhy3 ExpU (I := w expr1; w expr3),we2,

combine(w mdecl2, val I : ref w type1, decls),wt2>
where
<w expr1,we1,w mdecl1,wt1> = T [E](te,we,mdecl ,wt)
<inWhy3 ExpU (w expr2),we2,w mdecl2,wt2>= T [Eseq](te,we1,mdecl1,wt1)
w type1 = getType(I ,we1)
<inWhy3 ExprU (w expr3), decls> = getAssignments(Iseq ,we2,w expr2)

The translation function first translates the right hand side expressions E and Eseq to
corresponding Why3 expressions w expr1 and w expr2, respectively. Then the ordered

83

7. Formal Verification

sequence of assignments is constructed. For example, if w expr1 is the translation of E
then an assignment I := w expr1 corresponds to the translation of I := E . However,
this assignment introduces a declaration val I : ref w type1 where w type1 is the
corresponding type of expression w expr1. Similarly, the assignment of Eseq to Iseq is
translated to expression w expr3 with corresponding declarations decls. Additionally,
an extended Why3 environment we2, declarations w mdecl2 and a theory wt2 are
produced.

The translation function for a local context is similar:

T[I, Iseq := E, Eseq](te,we,mdecl ,wt) =
<inWhy3 ExpU (I := w expr1; w expr3),we2,w mdecl2,wt2>

where
<w expr1,we1,w mdecl1,wt1> = T [E](te,we,mdecl ,wt)
<inWhy3 ExpU (w expr2),we2,w mdecl2,wt2>= T [Eseq](te,we1,mdecl1,wt1)
<inWhy3 ExprU (w expr3), decls> = getAssignments(Iseq ,we2,w expr2)

However, here the variables in local context are already declared so we can just intro-
duce a typical assignment.

The translations of assignments statements in the global and local contexts from
our example program are shown in Section 7.3.

For-loop

The translation of a MiniMaple for-while loop command is as follows:

T[for I in E1 while E2 do Cseq end do](em , ew , dw , tw) =
(inWhy3 Exp(let I0 = ref 0 in

while I0 < op length(exp1w) & exp2w do
let I =op nth(I0, exp1w) in

exp3w ; I0 :=!I0 + 1
done), e3w , d3w , t3w)

where
<exp1w , e1w , d1w , t1w>= T [E1](em , ew , dw , tw),
<exp2w , e2w , d2w , t2w>= T [E2](em , e1w , d1w , t1w),
<exp3w , e3w , d3w , t3w>= T [Cseq](em , e2w , d2w , t2w),
exp type1 = getExpType(exp1w , e1w),
op length = access(“length”, exp type1, e1w),
op nth = access(“select”, exp type1, e1w)

The MiniMaple for-while loop checks at the start of every iteration both loop con-
ditions, i.e. I in E1 and E2; if any of them is false, the body of the loop is not
executed. Moreover, the identifier I is used in the body of the loop representing the

84

7.2. MiniMaple to Why3 Translation

ith (iteration) element of expression E1. For a semantically equivalent translation we
proceeded as follows:

1. We declare a (locally bound) auxiliary variable I0 to track the iteration number
and initialize it with value 0.

2. We translate the member-based loop condition, i.e. I in E1 into a correspond-
ing iteration-bounded condition I0 < op length(exp1w) and combine it with the
while-loop condition (exp2w) which we get from the translation of the corre-
sponding MiniMaple expression E2.

3. We declare I as a local variable and at the ith iteration (represented by I0)
assign it the ith value of the translated expression exp1w .

4. We increment I0 at the end of the iteration.

The generic operation access(op, exp type, ew) returns the name of the concrete op-
eration op as generated by the translator for the type expression exp type in the
environment ew . In above example, the access function returns the names of the
concrete operations “length” and “select” of the expression type exp type1.

Our example program has a typical for-loop, which is simpler than the MiniMaple
for-while loop; thus the translation for the typical for-loop is pretty simple as shown
in Section 7.3.

Return

The MiniMaple return command is translated with the help of the Why3 exception-
handling mechanism.

T[return E](te,we,mdecl ,wt) =
<inWhy3 ExprU (raise I ,w expr1),we1,

inWhy3 MDeclU (combine(w mdecl1,exception I)),wt1>
where
<w expr1,we1,w mdecl1,wt1>= T[E](te,we,mdecl ,wt)

The translation generates a Why3 raise statement raise I , w expr1, where I is an
auxiliary identifier denoting an exception and w expr1 is the corresponding handling
expression. Moreover, this translation extends the module declarations by an excep-
tion declaration exception I . The return statement is replaced by a corresponding
translated raise statement; by executing this raise statement, the corresponding catch-
block returns the expression w expr1 and thus conforms to the semantics of MiniMaple
return statement.

The translation of the return statement of our example program is shown in Sec-
tion 7.3.

85

7. Formal Verification

7.2.2. Expressions

The translation function T for an expression E has the following signature:

T [E]: Envm × Envw ×Declw × Thryw → Expw × Envw ×Declw × Thryw

The translation function for E is similar to the corresponding function for command
C as discussed in Subsection 7.2.1 because both syntactic domains command C and
expression E are mutually recursive.

Procedure

A MiniMaple procedure is translated into Why3 let-in construct. The translation
function T for procedure first translates parameter sequence ’Pseq’ and return type ’T’
into w expr1 and w type respectively and then, translates the procedure declarations
’S’ and the body of the procedure ’R’ into corresponding Why3 expressions w expr2
and w expr3 respectively.

T[proc(Pseq)::T S;R end](te,we,mdecl ,wt) = (proc expr ,we4,w mdecl4,wt4)
where
<inWhy3 ExprU (w expr1),we1,w mdecl1,wt1> = T[Pseq](te,we,mdecl ,wt)
te1 = typeEnv(te,Pseq)
<w type,we ′1,w mdecl ′1,wt ′1> = T[T](te1,we1,mdecl1,wt1)
<inWhy3 ExprU (w expr2),we2,w mdecl2,wt2> = T[S](te1,we ′1,mdecl ′1,wt ′1)
te2 = typeEnv(te1,S)
<inWhy3 ExprU (w expr3),we3,w mdecl3,wt3> = T[R](te2,we2,mdecl2,wt2)
proc expr = defineProcedure(inWhy3 ExprU (w expr1), inWhy3 ExprU (w expr2),

inWhy3 ExprU (w expr3),w type)

Finally, a resulting Why3 procedure expression proc expr is constructed with the help
of an auxiliary function defineProcedure.

Our example program contains a procedure definition; the corresponding application
of the procedure translation function is shown in Section 7.3.

Type Test

The translation function T translates a type test with the help of Why3 pattern-
matching construct.

T[type(I,T)](te,we,mdecl ,wt) =
<match I with

constructors

86

7.2. MiniMaple to Why3 Translation

end, we2,w mdecl2,wt2>
where
<we1,w mdecl1,wt> = T [I](te,we,mdecl ,wt)
<w type,we2,w mdecl2,wt2 = T[T](te,we1,mdecl1,wt1)
constructors = getTestConstructors(I, w type, we, wt)

The function, first translates the testing type T into a Why3 type w type then, the
constructors of the corresponding union type of the identifier I are extracted from the
given Why3 type environment we2 and the theory declarations wt2. Finally, a match
construct is defined with the given constructors.

Please remember here that a MiniMaple union type is translated with the help of an
algebraic type with respective constructors. The example translation of our program
in Section 7.3 shows the translation function of the union type Or(integer ,float) and
its corresponding type tests.

7.2.3. Specification Expressions

The translation function T for a specification expression SE has signature:

T [SE]: Envm × Envw ×Declw × Thryw → Expw × Envw ×Declw × Thryw

The function takes as arguments a MiniMaple type environment (Envm), a Why3
environment (Envw), Why3 global declarations (Declw) and a Why3 theory (Thryw);
the function returns the corresponding translated Why3ML expression (Expw) and
generates the respective extended Why3 environment (Envw), global and theory dec-
larations (Declw and Thryw).

Numerical Quantifiers/Binders

The translation function T for a numerical quantifier specification expression into a
corresponding Why3 specification/theory function.

T[IOp(SE, B, SE)](te,we,mdecl ,wt) =
<function func name (w sexpr1) : w type = func def,

we4,w mdecl3,wt4)>
where
<(w sexpr1,we1,w mdecl1,wt1)> = T [SE1](te,we,mdecl ,wt)
te1 = typeEnv(te,SE1)
w type = getQuantifierType(SE, te, w sexpr, we, wt)
<(w sexpr2,we2,w mdecl2,wt2)> = T [B](te1,we1,w mdecl1,wt1)
te2 = typeEnv(te,B)
<(w sexpr3,we3,w mdecl3,wt3)> = T [SE2](te2,we2,w mdecl2,wt2)

87

7. Formal Verification

<func name = getQuantifierName(IOp)
<func def = getQuantifierDefinition(w sexpr, w sexpr, w sexpr)
wt4 = combine(wt3, function func name (w sexpr1) : w type = func def)
we = wtypeEnv(we, func name,w sexpr, w type)

First, this function translates the corresponding elements SE1, B and SE2 of the
numerical quantifier IOp into corresponding Why3 specification expressions w sexpr1,
w sexpr2 and w sexpr3 respectively. Then the resulting Why3 specification function is
constructed with the help of auxiliary functions. Furthermore, the translation function
returns an updated Why3 environment we4 and the theory declarations wt4.

The translation of the numerical quantifier add used in our example program is
shown in Section 7.3.

7.3. Example

In this section, we discuss the implementation of the translator, the translation of
our example program and finally the verification of the translated program. The
corresponding translator is implemented in Java and contains approximately 80+
classes and 5K+ lines of code.

To translate the MiniMaple program shown in Section 5.3, we execute the command;

java fmrisc/typechecker/MiniMapleTypeChecker -translate Test6.m

where the file Test6.m contains the example program.

7.3.1. Translation

In the following, we show the example translation (manually modified for readabil-
ity) of our example MiniMaple (discussed in Section 7.2) into a Why3ML program.
The translated program consists of a theory (specification) and a module (program).
For further illustration, the various code parts of the translation are annotated with
Why3ML comments (* ... *).

theory SumList

use export int.Int

use export real.RealInfix

use export list.List

use export list.Length

use export list.Nth

type or_integer_float = Integer int | Real real

88

7.3. Example

(* sum integers among the first j elements of e *)

function add_int (e: list or_integer_float) (j: int) : int =

if j <= 0 then 0 else

match e with

| Nil -> 0

| Cons (Integer n) t -> n + add_int t (j-1)

| Cons _ t -> add_int t (j-1)

end

(* sum reals among the first j elements of e *)

function add_real (e: list or_integer_float) (j: int) : real =

if j <= 0 then 0.0 else

match e with

| Nil -> 0.0

| Cons (Real x) t -> x +. add_real t (j-1)

| Cons _ t -> add_real t (j-1)

end

end

module SumListImpl

use import SumList

use import module ref.Ref

val status: ref int

exception Break

val get (n: int) (l: list ’a) :

{ 0 <= n < length l } ’a { nth n l = Some result }

let sum (l: list or_integer_float) : (int, real) =

{ true }

status := 0;

let si = ref 0 in

let sf = ref 0.0 in

try

for i = 0 to length l - 1 do

invariant { (i = 0 /\ !status = 0 /\ !si = 0 /\ !sf = 0.0)

\/

(i > 0 /\ !status = i-1 /\

forall j: int. 0 <= j <= !status ->

match nth j l with

| None -> false

| Some y -> match y with

| Integer n -> n <> 0

| Real r -> r >=. 0.5

end

end /\

!si = add_int l (!status + 1) /\

89

7. Formal Verification

!sf = add_real l (!status + 1))

}

status := i;

match get i l with

| Integer n -> if n = 0 then raise Break; si := !si + n

| Real r -> if r <. 0.5 then raise Break; sf := !sf +. r

end

done;

status := -1;

(!si, !sf)

with Break ->

(!si, !sf)

end

{ let (si, sf) = result in

(!status = -1 /\

forall j: int. 0 <= j < (length l) ->

match nth j l with

| None -> false

| Some y -> match y with

| Integer n -> n <> 0

| Real r -> r >=. 0.5

end

end /\

si = add_int l (length l) /\ sf = add_real l (length l))

\/

(0 <= !status < length l /\

match nth !status l with

| None -> false

| Some y -> match y with

| Integer n -> n = 0

| Real r -> r <. 0.5

end

end /\

forall j: int. 0 <= j < !status ->

match nth j l with

| None -> false

| Some y -> match y with

| Integer n -> n <> 0

| Real r -> r >=. 0.5

end

end /\

si = add_int l !status /\ sf = add_real l !status)

}

end

In detail, the corresponding Why3 theory defines the types and functions arisen
from the translation of the Why3 module and MiniMaple program; e.g. the Mini-
Maple union type Or(integer, float) is translated to an algebraic data type with
two corresponding constructors for integers and floats respectively. The module con-

90

7.3. Example

tains the declarations arising from the translation of the MiniMaple procedure, a
global variable status, the auxiliary exception Break, and the translation of the pro-
cedure sum itself. This procedure also contains a translation of MiniMaple for loop
to a corresponding Why3ML loop. The type tests of MiniMaple are translated using
the pattern matching feature of Why3ML: the match construct matches the ith el-
ement of the list with the corresponding constructor of the type of the list elements.
The MiniMaple return statement is translated into an equivalent exception-handling
mechanism by an auxiliary exception object Break, i.e. we throw the exception Break
whereever the return statement occurred and then catch this exception in the corre-
sponding handler as shown in the with construct. Finally, in the handler we return
the value of the corresponding resulting tuple.

The application of our translator to the test package DifferenceDifferential package
is discussed in Chapter 8.

7.3.2. Verification

In this section we discuss the verification of the example program which was generated
by the translator in the previous subsection. For this purpose, we use the GUI-based
interface of Why3 to generate verification conditions and to prove them as shown in
Figure 7.2.

The Why3 GUI displays three columns:

1. The left column lists the configured theorem provers.

2. The middle column shows the verification conditions generated (respectively
required to be proved correct).

3. The right column shows the contents of the goals (verification conditions). Ac-
tually, the right column has two parts, the upper part shows the corresponding
Why contents of the selected goals, while the lower part highlights the corre-
sponding Why3ML code from which the selected goal is generated.

In our example, the proof of the correctness of the procedure results in the following
four goals as shown in the middle column of Figure 7.2:

1. a normal postcondition,

2. the for-loop (invariant) initialization,

3. the for-loop (invariant) preservation and

4. a normal postcondition.

The first and the last goal are about proving the correctness of postconditions. The
first goal is to prove the postcondition when the loop body is not executed, while the
last goal is to prove the postcondition when the loop body is executed, which requires
invariant-based reasoning.

The second goal is to prove that the loop invariant holds at the start of the execution
of the loop. The third goal is to prove that the loop invariant is preserved by the

91

7. Formal Verification

Figure 7.2.: Verification of Example Program

92

7.4. Soundness of Translation

execution of the loop and must also hold when the loop terminates.

To run through the prove of these generated verification conditions, it was required
to add some lemmas manually (at Why3 level) because the function definitions gen-
erated by the translator from the corresponding numeric quantifiers (add) appearing
in the MiniMaple procedure specification were not adequate for this proof:

(* the following two lemmas are about "add" function over integers *)

lemma add_int_right:

forall e: list or_integer_float, j: int.

0 <= j < length e -> forall n: int.

nth j e = Some (Integer n) -> add_int e (j+1) = add_int e j + n

lemma add_int_right2:

forall e: list or_integer_float, j: int.

0 <= j < length e -> forall x: real.

nth j e = Some (Real x) -> add_int e (j+1) = add_int e j

(* the following two lemmas are about "add" function over floats *)

lemma add_real_right:

forall e: list or_integer_float, j: int.

0 <= j < length e -> forall x: real.

nth j e = Some (Real x) -> add_real e (j+1) = add_real e j +. x

lemma add_real_right2:

forall e: list or_integer_float, j: int.

0 <= j < length e -> forall n: int.

nth j e = Some (Integer n) -> add_real e (j+1) = add_real e j

Thus, the above lemmas introduce the facts that the translated addition functions
(add int and add real over lists) correctly handle the integers and reals in the list.
By the introduction of these lemmas, all of the verification conditions could be proved
with the automatic decision procedures Alt-Ergo and Z3. On the other hand, we had
to prove these lemmas manually by induction using the interactive theorem prover
Coq. In the future, we will generate these lemmas automatically as axioms: then the
proof of the aforementioned generated verification conditions is automatic.

The verification of the test package DifferenceDifferential is discussed in Chapter 8.

7.4. Soundness of Translation

In order to show that the verification of the translated Why3ML program implies the
correctness of the original MiniMaple program , we have to prove that the translation
preserves the semantics of the program. In detail, we have to prove the equivalence of
the denotational semantics of MiniMaple programs [95] and the operational semantics
of Why3ML programs [63].

As discussed in Chapter 6, the denotational semantics of a MiniMaple command C
is defined as a relationship between a pre and a post-state:

93

7. Formal Verification

[C](e)(s, s ′)

such that semantically, in a given type environment e, execution of a command C in
a pre-state s yields to a post-state s ′.

On the other hand, in [63] a big-step operational semantics of Why3 expression e
is defined by a transition:

<t , e>−→ <t ′, v>

which states that in a pre-state t , the execution of a Why3 expression e yields a
post-state t ′ and a value v .

Based on these semantices, we have formulated and proved the soundness statements
for the translation of selected constructs of MiniMaple to Why3ML, i.e. command
sequence, conditional command, assignment statement and a while-loop command. In
the following, we sketch the structure and proof strategy for the soundness statement
of a command sequence. For the complete proof of the corresponding soundness
statements, please see Appendix F and [98].

7.4.1. Soundness of Command Sequence

We illustrate the soundness statement for the translation of a command sequence with
the help of the diagram shown in Figure 7.3. Its formal definition is as follows:

∀ Cseq ∈ Command Sequence :
∀ em ∈ Environment , cw ∈ Exprressionw , ew , ew ′ ∈ Environmentw ,

dw , dw ′ ∈ Declw , tw , tw
′ ∈ Theoryw :

wellTyped(em,Cseq) ∧ consistent(em, ew, dw, tw)∧
< cw , ew ′, dw ′, tw ′ >=T[Cseq](em, ew , dw , tw)
⇒

wellTyped(cw, ew′, dw′, tw′) ∧ extendsEnv(ew′, cw, ew)∧
extendsDecl(dw′, cw, dw) ∧ extendsTheory(tw′, cw, tw)∧
∀t, t′ ∈ Statew, vw ∈ V aluew :< t′, cw >−→< t′, vw >
⇒
∃s, s′ ∈ Statem :equals(s, t)∧ [Cseq](em)(s, s′)∧
∀s, s′ ∈ Statem, dm ∈ InfoData : equals(s, t)∧
[Cseq](em)(s, s′) ∧ dm = infoData(s′)
⇒ equals(s′, t′) ∧ equals(dm, vw)

This statement says that

� if a command sequence Cseq translates to Why3 expression cw such that various
predicates hold for Cseq (e.g. well-typing),

� then various predicates also hold for the translated expression cw (e.g. extension
of the declarations extendsDecl and theory extendsTheory) and

94

7.4. Soundness of Translation

Figure 7.3.: Illustration of Soundness Statement for Command Sequence

� if for arbitrary Why3 states t and t ′, the execution of the translated expression
cw in state t yields post-state t ′ and value vw ,

� then there are corresponding MiniMaple states s and s ′ such that states s and t
are equal and the execution of a command sequence Cseq in state s yields state
s ′ and

� if, an arbitrary MiniMaple state s is equal to state t ; and with a given environ-
ment em the execution of Cseq in pre-state s yields post-state s ′ and also dm
is the information of state s ′,

� then the post-states s ′ and t ′ are equal and also the values dm and vw are equal

The formulation of other soundness statements is discussed in Appendix G and [98].

Proof of Soundness (Command Sequence)

In this section, we will discuss the proof of the soundness of the command sequence.
The proof of the other selected constructs is discussed in [98]. For further details
on definitions, lemmas and auxiliary functions and predicates used in the following
proofs, please see the corresponding subsections of the Appendix G.

We prove the goal by structural induction on Cseq which is defined by grammar rule

95

7. Formal Verification

Cseq ::= C | C; Cseq. Here, we only discuss the interesting case when the command
sequence has the form C ; Cseq .

We instantiate the soundness statement with C ; Cseq to get

∀ em ∈ Environment , cw ∈ Exprressionw , ew , ew ′ ∈ Environmentw ,
dw , dw ′ ∈ Declw , tw , tw

′ ∈ Theoryw :
wellTyped(em,C; Cseq) ∧ consistent(em, ew, dw, tw)∧
< cw , ew ′, dw ′, tw ′ >=T[C ; Cseq](em, ew , dw , tw)
⇒

wellTyped(cw, ew′, dw′, tw′) ∧ extendsEnv(ew′, cw, ew)∧
extendsDecl(dw′, cw, dw) ∧ extendsTheory(tw′, cw, tw)∧
∀t, t′ ∈ Statew, vw ∈ V aluew :< t′, cw >−→< t′, vw >
⇒
∃s, s′ ∈ Statem :equals(s, t)∧ [C ; Cseq](e)(s, s′)∧
∀s, s′ ∈ Statem, dm ∈ InfoData : equals(s, t)∧
[C ; Cseq](e)(s, s′) ∧ dm = infoData(s′)
⇒ equals(s′, t′) ∧ equals(dm, vw)

Let em, cw , em, ew ′, dw , dw ′, tw , tw ′, be arbitrary but fixed.

We assume:
wellTyped(em,C; Cseq) (7.1)

consistent(em, ew, dw, tw) (7.2)

< cw , ew ′, dw ′, tw ′ >= T [C ; Cseq](em, ew , dw , tw) (7.3)

We show:

� wellTyped(cw, ew′, dw′, tw′) (a)

� extendsEnv(ew′, cw, ew) (b)

� extendsDecl(dw′, cw, dw) (c)

� extendsTheory(tw′, cw, tw) (d)

� ∀t, t′ ∈ Statew, vw ∈ V aluew :< t′, cw >−→< t′, vw >
⇒
∃s, s′ ∈ Statem :equals(s, t)∧ [C ; Cseq](e)(s, s′)∧
∀s, s′ ∈ Statem, dm ∈ InfoData : equals(s, t)∧
[C ; Cseq](e)(s, s′) ∧ dm = infoData(s′)
⇒ equals(s′, t′) ∧ equals(dm, vw) (e)

We prove these goals with the help of lemmas which in principle guarantee the
absence of internal inconsistencies of typing, environments, theory and global declara-
tions that are used respectively extended by the translation of MiniMaple to Why3ML.

96

7.4. Soundness of Translation

The proofs of these lemmas are not very complex and can be proved by the principle
of structural induction. In the following, we formulate and describe (informally) these
lemmas:

Lemma L-cseq1

∀ cseq ∈ Command Sequence, em ∈ Environment , e ∈ Expressionw ,
ew , ew ′ ∈ Environmentw , dw , dw ′ ∈ Declw , tw , tw ′ ∈ Theoryw :
wellTyped(em, cseq) ∧ <e, ew ′, dw ′, tw ′>= T[cseq](em, ew , dw , tw)
⇒ wellTyped(e, ew ′, dw ′, tw ′)

This lemma says that if a MiniMaple command sequence (cseq) is well typed then the
translated Why3 expression (e) is also well typed in the corresponding environment
and declarations.

Lemma L-cseq2

∀ em ∈ Environment ,C ∈ Command ,Cseq ∈ Command Sequence,
ew , ew ′, ew ′′ ∈ Environmentw , e1, e2 ∈ Expressionw , dw , dw ′, dw ′′ ∈ Declw ,
tw , tw ′, tw ′′ ∈ Theoryw :
wellTyped(em,C ; Cseq) ∧ (e1; e2, ew ′, dw ′, tw ′) = T [C ; Cseq](em, ew , dw , tw)
⇒
[extendsEnv(ew ′′, e1, ew)∧extendsEnv(ew ′, e2, ew ′′)

⇒ extendsEnv(ew ′, e1; e2, ew)] ∧
[extendsDecl(dw ′′, e1, dw)∧extendsDecl(dw ′, e2, dw ′′)

⇒ extendsDecl(dw ′, e1; e2, dw)] ∧
[extendsTheory(tw ′′, e1, tw)∧extendsTheory(tw ′, e2, tw ′′)

⇒ extendsTheory(tw ′, e1; e2, tw)]

This lemma says the fact that if Why3 expressions (e1 and e2 are the translations of
MiniMaple command sequences (C and Cseq respectively), then the finally generated
Why3 environment, global and theory declarations (ew ′, dw ′ and tw ′) extends the
corresponding intermediate Why3 environment, global and theory declarations (ew ′′,
dw ′′ and tw ′′).

Lemma L-cseq3

∀ em, em ′ ∈ Environment ,C ∈ Command ,Cseq ∈ Command Sequence :
wellTyped(em,C ; Cseq)
⇒ wellTyped(em,C) ∧ em ′ = Env(em,C) ∧ wellTyped(em ′,Cseq)

This lemma is about the well typing of a command sequence Cseq in an intermediate
type environment em ′.

97

7. Formal Verification

Lemma L-cseq4

∀ em, em ′ ∈ Environment ,C ∈ Command ,Cseq ∈ Command Sequence,
ew , ew ′, ew ′′ ∈ Environmentw , e1, e2 ∈ Expressionw , dw , dw ′, dw ′′ ∈ Declw ,
tw , tw ′, tw ′′ ∈ Theoryw :
< e1, ew ′′, dw ′′, tw ′′ >= T[C](em, ew , dw , tw) ∧ em ′ = Env(em,C)∧
< e2, ew ′, dw ′, tw ′ >= T[Cseq](em ′, ew ′′, dw ′′, tw ′′) ∧ consistent(em, ew , dw , tw)
⇒ consistent(em ′, ew ′′, dw ′′, tw ′′)

This lemma is about the consistency of an intermediate type environment em ′ w.r.t.
intermediate Why3 environment, global and theory declarations (ew ′′, dw ′′ and tw ′′).

Lemma L-cseq5

∀ s ∈ State, t ∈ Statew : s = constructs(t)⇒ equals(s, t)

This lemma says that if we construct a MiniMaple state (s) from a Why3 state (t),
then the two states are equal.

Lemma L-cseq6

∀ v ∈ V aluew, v′ ∈ InfoData : v′ = constructs(v)⇒ equals(v′, v)

This lemma is about the equivalence of state values, i.e. if we construct a MiniMaple
value (v ′) from a Why3 value (v), then the two values are equal.

In the following, we prove each of the five goals (a − e) above.

Goal (a)

This goal is about the well-typing of the translated Why3 expression cw . To prove,
this goal, we instantiate lemma (L-cseq1) with cseq as C ; Cseq , em as em, e as cw ,
ew as ew , ew ′ as ew ′, dw as dw , dw ′ as dw ′, tw as tw , tw ′ as tw ′ and get

wellTyped(em,C ; Cseq)∧ < cw , ew ′, dw ′, tw ′ >=T[C ; Cseq](em, ew , dw , tw)
⇒ wellTyped(cw , ew ′, dw ′, tw ′)

This goal follows from the above formula with assumptions (7.1) and (7.3).

Goals (b,c,d)

The goals (b), (c) and (d) are similar. So for simplicity, we only show here the proof
of the sub-goal (b). The proof of this sub-goal (b) requires the expansions of some
definitions and some more sub-goals to be proved; because semantically, the execution

98

7.4. Soundness of Translation

of the command sequence C ; Cseq produces an intermediate environment e ′′ by the
execution of C and then Cseq is executed in environment e ′′.

To prove this goal, we proceed as follows: By the definition of the translation
function (D2) of T[C ; Cseq], there are e1, e2, ew ′′, dw ′′, tw ′′ for which

< cw , ew ′, dw ′, tw ′ >= T [C ; Cseq](em, ew , dw , tw) (7.4)

where

cw = e1; e2 (7.5)

< e1, ew ′′, dw ′′′, tw ′′ >= T [C](em, ew , dw , tw) (7.6)

em ′ = Env(em,C) (7.7)

< e2, ew ′, dw ′, tw ′ >= T [Cseq](em ′, ew ′′, dw ′′, tw ′′) (7.8)

Here e1; e2 is a syntactic sugar for the Why3 semantic construct let = e1 in e2.

We instantiate lemma (L-cseq3) with em as em, em ′ as em ′, C as C and Cseq as
Cseq from which the following holds

wellTyped(em,C) (7.9)

em ′ = Env(em,C) (7.10)

wellTyped(em ′,Cseq) (7.11)

In order to show that this intermediate environment e ′′ preserves the properties, we
instantiate the soundness statement for C with em as em, cw as e1, ew as ew , ew ′

as ew ′′, dw as dw , dw ′ as dw ′′, tw as tw , tw ′ as tw ′′ to get

wellTyped(em,C) ∧ consistent(em, ew, dw, tw)∧
< e1, ew ′′, dw ′′, tw ′′ >=T[C](em, ew , dw , tw)
⇒

wellTyped(e, ew′′, dw′′, tw′′) ∧ extendsEnv(ew′′, e, ew)∧
extendsDecl(dw′′, e, dw) ∧ extendsTheory(tw′′, e, tw)∧
∀t, t′ ∈ Statew, vw ∈ V aluew, :< t′, e >−→< t′, vw >
⇒
∃s, s′ ∈ Statem :equals(s, t)∧ [C](e)(s, s′)∧
∀s, s′ ∈ Statem, dm ∈ InfoData : equals(s, t)∧
[C](e)(s, s′) ∧ dm = infoData(s′)
⇒ equals(s′, t′) ∧ equals(dm, vw) (A)

From (A) and assumptions (7.9), (7.2) and (7.6), it follows that

extendsEnv(ew ′′, e1, ew) (7.12)

99

7. Formal Verification

the intermediate environment preserves extension.

Now, we show that environment e ′ extends an intermediate environment e ′′, we
proceed as follows: We instantiate lemma (L-cseq4) with em as em, em ′ as em ′, C as
C , Cseq as Cseq, ew as ew , ew ′ as ew ′, e1 as e1, e2 as e2, dw as dw , dw ′ as dw ′, tw
as tw , tw ′ as tw ′, ew ′′ as ew ′′, dw ′′ as dw ′′, tw ′′ as tw ′′ to get

< e1, ew ′′, dw ′′, tw ′′ >= T[C](em, ew , dw , tw) ∧ em ′ = Env(em,C)∧
< e2, ew ′, dw ′, tw ′ >= T[Cseq](em ′, ew ′′, dw ′′, tw ′′) ∧ consistent(em, ew , dw , tw)
⇒ consistent(em ′, dw ′′, dw ′′, tw ′′) (B)

From (B) with assumptions (7.6), (7.7), (7.8) and (7.2), it follows that

consistent(em ′, ew ′′, dw ′′, tw ′′) (7.13)

We instantiate the induction assumption for Cseq with em as em ′, cw as e2, ew as
ew ′′, ew ′ as ew ′, dw as dw ′′, dw ′ as dw ′, tw as tw ′′, tw ′ as tw ′ to get

wellTyped(em′, Cseq) ∧ consistent(em′, ew′′, dw′′, tw′′)∧
< e2, ew ′, dw ′, tw ′ >=T[Cseq](em ′, ew ′′, dw ′′, tw ′′)
⇒

wellTyped(e, ew′, dw′, tw′) ∧ extendsEnv(ew′, e, ew′′)∧
extendsDecl(dw′, e, dw′′) ∧ extendsTheory(tw′, e, tw′′)∧
∀t, t′ ∈ Statew, vw ∈ V aluew, :< t′, e >−→< t′, vw >
⇒
∃s, s′ ∈ Statem :equals(s, t)∧ [Cseq](e)(s, s′)∧
∀s, s′ ∈ Statem, dm ∈ InfoData : equals(s, t)∧
[Cseq](e)(s, s′) ∧ dm = infoData(s′)
⇒ equals(s′, t′) ∧ equals(dm, vw) (C)

From (C) with assumptions (7.11), (7.13) and (7.8), it follows that

extendsEnv(ew ′, e2, ew ′′) (7.14)

From (7.5), we can re-write the goal (b) as

extendsEnv(ew ′, e1; e2, ew)

In order to prove this goal, we instantiate lemma (L-cseq2) with em as em, C as
C , Cseq as Cseq, ew as ew , ew ′ as ew ′, ew ′′ as ew ′′, e1 as e1, e2 as e2, dw as dw ,
dw ′ as dw ′, dw ′′ as dw ′′, tw as tw , tw ′ as tw ′, tw ′′ as tw ′′ to get

wellTyped(em,C ; Cseq)∧ < e1; e2, ew ′, dw ′, tw ′ >= T[C ; Cseq](em, ew , dw , tw)

100

7.4. Soundness of Translation

⇒
[extendsEnv(ew ′′, e1, ew)∧extendsEnv(ew ′, e2, ew ′′)

⇒ extendsEnv(ew ′, e1; e2, ew)] ∧
[extendsDecl(dw ′′, e1, dw)∧extendsDecl(dw ′, e2, dw ′′)

⇒ extendsDecl(dw ′, e1; e2, dw)] ∧
[extendsTheory(tw ′′, e1, tw)∧extendsTheory(tw ′, e2, tw ′′)⇒

extendsTheory(tw ′, e1; e2, tw)] (D)

The goal (b) follows from (D) and assumptions (7.1), (7.4), (7.5), (7.12) and (7.14).

Goal (e)

To prove, this goal, we proceed as follow:

Let t , t ′, cw , vw be arbitrary but fixed.

We assume:

< t , cw >−→< t ′, vw > (7.15)

From (7.15), (7.5), and the semantics of Why3 (i.e. e1; e2 is a syntactic sugar for
let = e1 in e2), we know

cw = let = e1 in e2 (7.16)

From Why3 semantics (com-s) [63] and Appendix G, we get

< t , let = e1 in e2 >−→< t ′, vw > (7.17)

< t , e1 >−→< t ′′, vw ′ > (7.18)

for some t ′′, where vw ′ is not an exception

< t ′′, e2 >−→< t ′, vw > (7.19)

for some t ′′.

We show:

∃ s, s ′ ∈ State : equals(s, t)∧ [C ; Cseq](em)(s, s ′) (e.a)

∀ s, s′ ∈ State, dm ∈ InfoData : equals(s, t)∧ [C ; Cseq](em)(s, s′) ∧ dm = infoData(s′)
⇒ equals(s ′, t ′) ∧ equals(dm, vw) (e.b)

In the following, we prove these two sub-goals (e.a) and (e.b) of goal (e).

101

7. Formal Verification

Sub-Goal (e.a)

To prove this goal, we define

s := constructs(t) (7.20)

We split the original goal (e.a) and show the following sub-goals:

equals(s, t) (e.a.1)

[C ; Cseq](em)(s, s ′) (e.a.2)

Now, in the following we prove the two further sub-goals (e.a.1) and (e.a.2).

Sub-Goal (e.a.1)

We instantiate lemma (L-cseq5) with s as s and t as t to get

s = constructs(t)⇒ equals(s, t) (E)

The sub-goal (e.a.1) follows from (E) with assumption (7.20).

Sub-Goal (e.a.2)

We instantiate the soundness statement for C with em as em, cw as e1, ew as ew ,
ew ′ as ew ′′, dw as dw , dw ′ as dw ′′, tw as tw , tw ′ as tw ′′ to get

wellTyped(em,C) ∧ consistent(em, ew, dw, tw)∧
< e1, ew ′′, dw ′′, tw ′′ >=T[C](em, ew , dw , tw)
⇒

wellTyped(e, ew′′, dw′′, tw′′) ∧ extendsEnv(ew′′, e, ew)∧
extendsDecl(dw′′, e, dw) ∧ extendsTheory(tw′′, e, tw)∧
∀t, t′ ∈ Statew, vw ∈ V aluew, :< t′, e >−→< t′, vw >
⇒
∃s, s′ ∈ Statem :equals(s, t)∧ [C](e)(s, s′)∧
∀s, s′ ∈ Statem, dm ∈ InfoData : equals(s, t)∧
[C](e)(s, s′) ∧ dm = infoData(s′)
⇒ equals(s′, t′) ∧ equals(dm, vw) (F)

From (F) with assumptions (7.9), (7.2), (7.6), we get

102

7.4. Soundness of Translation

∀t, t′ ∈ Statew, vw ∈ V aluew :< t′, e >−→< t′, vw >
⇒
∃s, s′ ∈ Statem :equals(s, t)∧ [C](e)(s, s′)∧
∀s, s′ ∈ Statem, dm ∈ InfoData : equals(s, t)∧
[C](e)(s, s′) ∧ dm = infoData(s′)
⇒ equals(s′, t′) ∧ equals(dm, vw) (F.1)

We instantiate the above formula (F.1) with t as t and t ′ as t ′′, vw as vw ′ to get

∀t, t′′ ∈ Statew, vw′ ∈ V aluew :< t′, e >−→< t′′, vw′ >
⇒
∃s, s′ ∈ Statem :equals(s, t)∧ [C](e)(s, s′)∧
∀s, s′ ∈ Statem, dm ∈ InfoData : equals(s, t)∧
[C](e)(s, s′) ∧ dm = infoData(s′)
⇒ equals(s′, t′′) ∧ equals(dm, vw′) (F.2)

From (F.2) with assumption (7.18), we know

∃ s, s ′ ∈ State : equals(s, t)∧ [C](em)(s, s ′) (F.3)

By instantiating (F.3) with s as s, s ′ as s ′′, we know that there is s, s ′′ s.t.

[C](em)(s, s ′′) (7.21)

We instantiate the induction assumption for Cseq with em as em ′, cw as e2, ew as
ew ′′, ew ′ as ew ′, dw as dw ′′, dw ′ as dw ′, tw as tw ′′, tw ′ as tw ′ to get

wellTyped(em′, Cseq) ∧ consistent(em′, ew′′, dw′′, tw′′)∧
< e2, ew ′, dw ′, tw ′ >=T[Cseq](em ′, ew ′′, dw ′′, tw ′′)
⇒

wellTyped(e, ew′, dw′, tw′) ∧ extendsEnv(ew′, e, ew′′)∧
extendsDecl(dw′, e, dw′′) ∧ extendsTheory(tw′, e, tw′′)∧
∀t, t′ ∈ Statew, vw ∈ V aluew, :< t′, e >−→< t′, vw >
⇒
∃s, s′ ∈ Statem :equals(s, t)∧ [Cseq](em′)(s, s′)∧
∀s, s′ ∈ Statem, dm ∈ InfoData : equals(s, t)∧
[Cseq](em′)(s, s′) ∧ dm = infoData(s′)
⇒ equals(s′, t′) ∧ equals(dm, vw) (G)

From (G) with assumptions (7.11), (7.13) and (7.8), it follows that

∀t, t′ ∈ Statew, vw ∈ V aluew :< t, e >−→< t′, vw >
⇒

103

7. Formal Verification

∃s, s′ ∈ Statem :equals(s, t)∧ [Cseq](em′)(s, s′)∧
∀s, s′ ∈ Statem, dm ∈ InfoData : equals(s, t)∧
[Cseq](em′)(s, s′) ∧ dm = infoData(s′)
⇒ equals(s′, t′′) ∧ equals(dm, vw′) (G.1)

We instantiate the formula (G.1) with t as t ′′, t ′ as t ′, vw as vw to get

∀t′′, t′ ∈ Statew, vw ∈ V aluew :< t′′, e >−→< t′, vw >
⇒
∃s, s′ ∈ Statem :equals(s, t)∧ [Cseq](em′)(s, s′)∧
∀s, s′ ∈ Statem, dm ∈ InfoData : equals(s, t′′)∧
[C](em′)(s, s′) ∧ dm = infoData(s′)
⇒ equals(s′, t′) ∧ equals(dm, vw′) (G.2)

From (G.2) and assumption (7.19), we get

∃ s, s ′ ∈ State : equals(s, t ′′)∧ [Cseq](em ′)(s, s ′) (G.3)

By instantiating (G.3) with s as s ′′, s ′ as s ′, we know that there is s ′′, s ′ s.t.

[Cseq](em ′)(s ′′, s ′) (7.22)

This sub-goal (e.a.2), which is a definition of the semantics of the command sequence
C ; Cseq follows from the assumptions (7.21), (7.22) and (7.7).

Hence sub-goals (e.a.1) and (e.a.2) are proved thus the sub-goal (e.a) is proved.

Sub-Goal (e.b)

This goal is the heart of this proof; as we need to show here the semantic equivalence
of the corresponding MiniMaple and Why3 states and values.

Let s, s ′, dm be arbitrary but fixed.

We assume:

equals(s, t) (7.23)

[C ; Cseq](em)(s, s ′) (7.24)

dm = infoData(s′) (7.25)

We define:

s ′ := constructs(t ′) (7.26)

vw := constructs(dm) (7.27)

We split the original goal (e.b) and show the following sub-goals:

104

7.4. Soundness of Translation

equals(s ′, t ′) (e.b.1)

equals(dm, vw) (e.b.2)

In the following, we prove the two further sub-goals (e.b.1) and (e.b.2).

Sub-Goal (e.b.1)

We instantiate lemma (L-cseq5) with s as s ′ and t as t ′ to get

s ′ = constructs(t ′)⇒ equals(s ′, t ′) (H)

This sub-goal follows from (H) with assumption (7.26).

Sub-Goal (e.b.2)

We instantiate lemma (L-cseq6) with v as vw , v ′ as dm to get

vw = constructs(dm)⇒ equals(dm, vw) (I)

This sub-goal follows from (I) with assumption (7.27).

7.4.2. Soundness of While-loop

The soundness statement for command C is similar to the soundness statement of
command sequence Cseq as formulated in Section 7.4.1. Thus the goal for the sound-
ness statement of a while-loop command is:

∀ E ∈ Expression,Cseq ∈ Command Sequence :
∀ em ∈ Environment , e1, e2 ∈ Exprressionw , ew , ew ′ ∈ Environmentw ,

dw , dw ′ ∈ Declw , tw , tw
′ ∈ Theoryw :

wellTyped(em, while E do Cseq end) mathit∧consistent(em, ew , dw , tw)∧
< while e1 do e2, ew ′, dw ′, tw ′>= T[while e1 do e2](em, ew , dw , tw)
⇒

wellTyped(while e1 do e, ew′, dw′, tw′) ∧ extendsEnv(ew′, while e1 do e2, ew)∧
extendsDecl(dw′, while e1 do e, dw) ∧ extendsTheory(tw′, while e1 do e2, tw)∧
∀t, t′ ∈ Statew, vw ∈ V aluew, :< t, while e1 do e >−→< t′, vw >
⇒
∃s, s′ ∈ Statem :equals(s, t)∧ [while E do Cseq end](em)(s, s′)∧
∀s, s′ ∈ Statem, dm ∈ InfoData : equals(s, t)∧
[while E do Cseq end](em)(s, s′) ∧ dm = infoData(s′)
⇒ equals(s′, t′) ∧ equals(dm, vw)

105

7. Formal Verification

The proof of the soundness statement of a while-loop command is not straight
forward because the semantics of a Why3 while-loop [63] is defined by a corresponding
complex exception handling mechanism of Why3:

while e1 do e2 ≡
try

loop if e1 then e2 else raise Exit
with Exit → void end (SE)

The semantics above involves various other Why3 constructs, e.g. loop and conditional
which makes the reasoning complex as the reasoning requires lot of applications re-
spectively unfolding of semantics rules of the other Why3 constructs.

In order to make the proof respectively reasoning simpler, we have derived the fol-
lowing two new rules for the semantics of while-loop (from the above defined semantics
of Why3 while-loop):

< t , e1 >−→< t ′, false >

< t ,while e1 do e2 >−→< t ′, void >
(R.1)

< t , e1 >−→< t ′′, true >

< t ′′, e2 >−→< t ′′′, void >

< t ′′′,while e1 do e2 >−→< t ′, void >

< t ,while e1 do e2 >−→< t ′, void >

(R.2)

These rules operate directly on the level of while-loop (without expansion/unfolding).
Based on these rules, we prove the soundness of typical while-loops by the principle
of rule induction [158]. We will subsequently prove the soundness of rules (R.1) and
(R.2) with the help of the following lemma.

Lemma (L-a1)

If there exists a derivation

< t ′′′, try loop if e1 then e2 else raise Exit with Exit → void end >−→< t ′, void >

then there also exists a corresponding derivation

< t ′′′, loop if e1 then e2 else raise Exit with Exit → void end >−→< t ′,Exit c >

Proof

We assume:

< t ′′′, try loop if e1 then e2 else raise Exit with Exit → void end >−→< t ′, void >
(7.28)

106

7.4. Soundness of Translation

We show:

< t ′′′, loop if e1 then e2 else raise Exit with Exit → void end >−→< t ′,Exit c >

In fact, we show here that the goal-derivation from assumption (7.28) is possible by
only one semantic rule such that it does not change the respective semantics.

We suppose a derivation (7.28), which is a try-catch construct. There are three
semantic rules for Why3 try-catch construct; in the following, we apply case analysis
on each of these three rules:

Case 1:

The first rule is try-1:

< t , e1 >−→< t ′′,E c >

< t ′′, e2[x ← c] >−→< t ′, vw >

< t , try e1 with E x → e2 end >−→< t ′, vw >

We instantiate rule try-1 with t as t ′′′, t ′ as t ′, t ′′ as t ′′, e1 as loop if e1 then
e2 else raise Exit , e2 as void , E as Exit , vw as void and x as ; from which the
following

< t ′, void >−→< t ′, void > (7.29)

< t ′′′, loop if e1 then e2 else raise Exit with Exit → void end >−→< t ′,Exit c >
(7.30)

holds. The goal follows from assumption (7.30).

Case 2:

The second rule is try-2:

< t , e1 >−→< t ′, vw > where vw is not an exception

< t , try e1 with E x → e2 end >−→< t ′, vw >

This rule cannot be applied to derive the goal from supposition (7.28). We prove
this by induction on the number of iterations. Suppose n ∈ N is the number of loop
iterations:

107

7. Formal Verification

Induction Basis

We instantiate rule try-2 with t as t ′′′, t ′ as t ′, e1 as loop if e1 then e2 else raise
Exit , e2 as void , E as Exit , vw as void and x as ; from which the following

< t , e1 >−→< tn , void > (7.31)

< t ′′′, loop if e1 then e2 else raise Exit with Exit → void end >−→< t ′, void >
(7.32)

holds. Thus no derivation is found as neither (7.31) nor (7.32) is the goal.

Induction Step

Here, we assume that by the application of rule try-2 the required derivation is not
possible for iteration n and prove that also the goal cannot be derived for loop iteration
n + 1.

To prove, we instantiate rule try-2 with t as t ′′′, t ′ as tn , e1 as loop if e1 then
e2 else raise Exit , e2 as void , E as Exit , vw as void and x as ; from which the
following

< t , e1 >−→< t ′, void > (7.33)

< t ′′′, loop if e1 then e2 else raise Exit with Exit → void end >−→< tn , void >
(7.34)

holds. Thus again no derivation is found as neither (7.33) nor (7.34) is the goal.

Case 3:

The third rule is try-3:

< t , e1 >−→< t ′,E ′ c > E <> E ′

< t , try e1 with E x → e2 end >−→< t ′,E ′ c >

The structure of this rule does not allow its application to derive the required goal.
Because the consequence of the transition of this rule (<t ′, E ′ c>) has an exception
value (E ′ c), while the corresponding consequence of the transition of our assumption
(7.28) (<t ′, void>) has a non-exception value (void). �

In the following, we show that the aforementioned two new semantic rules (R.1)
and (R.2) follow from the basic rule calculus, i.e. adding these rules does not change
the semantics of Why3ML.

108

7.4. Soundness of Translation

Derivation of Rule (R.1)

In order to derive rule (R.1), first we get the following derivation based on the ap-
plication of various semantics rules of Why3, e.g. try-1, loop-e. For the definition of
these semantics rules, please see Appendix G.

< t ′, >−→< t ′, c > where c = (const)
< t , e1 >−→< t ′, false > < t ′, raise Exit >−→< t ′,Exit c >(raise)
< t , if e1 then e2 else raise Exit >−→< t ′,Exit c >(cond -f)
< t , loop if e1 then e2 else raise Exit >−→< t ′,Exit c >(loop-e)

< t ′, void >−→< t ′, void >(const)

< t ′, void [← c] >−→< t ′, void >(rewriting)

(try-1)

< t , try loop if e1 then e2 else raise Exit with Exit → void end >−→< t ′, void >

This derivation is only possible, if the following (d1) holds:

< t , e1 >−→< t ′, false > (d1)

< t , try loop if e1 then e2 else raise Exit with Exit → void end >−→< t ′, void >

From (SE), we can rewrite (d1) as:

< t , e1 >−→< t ′, false >

< t ,while e1 do e2 >−→< t ′, void >

which is the required rule (R.1).

Derivation of Rule (R.2)

The derivation of rule (R.2) is similar to the derivation of (R.1). By the application
of various semantics rules, we get the following derivation:

< t ′, e1 >−→< t ′′, true > < t ′′, e2 >−→< t ′′′, void >

< t , if e1 then e2 else raise Exit >−→< t ′′′, void >(cond -t)

< t ′′′, loop if e1 then e2 else raise Exit >−→< t ′,Exit c >

< t , loop if e1 then e2 else raise Exit >−→< t ′,Exit c >(loop-n)

109

7. Formal Verification

< t ′, void >−→< t ′, void >(const)

< t ′, void [← c] >−→< t ′, void >(rewriting)

(try-1)

< t , try loop if e1 then e2 else raise Exit with Exit → void end >−→< t ′, void >

This derivation is only possible, when the following (d2) holds:

< t , e1 >−→< t ′′, true > < t ′′, e2 >−→< t ′′′, void >

< t ′′′, loop if e1 then e2 else raise Exit >−→< t ′,Exit c >

< t , try loop if e1 then e2 else raise Exit with Exit → void end >−→< t ′, void >

Based on lemma L-a1, we can derive the following derivation (d3) from derivation
(d2) above.

< t , e1 >−→< t ′′, true > < t ′′, e2 >−→< t ′′′, void >

< t ′′′, try loop if e1 then e2 else raise Exit with Exit → void end >−→< t ′, void >

< t , try loop if e1 then e2 else raise Exit with Exit → void end >−→< t ′, void >

From (SE), we can rewrite (d3) as:

< t , e1 >−→< t ′′, true >

< t ′′, e2 >−→< t ′′′, void >

< t ′′′,while e1 do e2 >−→< t ′, void >

< t ,while e1 do e2 >−→< t ′, void >

which is the required rule (R.2).

Proof of Soundness (While-loop)

In this section, we sketch the structure and strategy for the proof of soundness of
while-loops. For the complete proof, please see Appendix G.

In the following, we discuss the proof of goal (SE) as formulated in Section 7.4.2.

Let em, e1, e2, ew , ew ′, dw , dw ′, tw , tw ′, dm and vw be arbitrary but fixed.

We assume:
wellTyped(em,while E do Cseq end) (7.35)

consistent(em, ew , dw , tw) (7.36)

< while e1 do e2, ew ′, dw ′, tw ′ >= T [while E do Cseq end](em, ew , dw , tw)
(7.37)

By expanding the definition of (7.37), we know

< e1, ew ′′, dw ′′, tw ′′ >= T [E](em, ew , dw , tw) (7.38)

110

7.4. Soundness of Translation

em ′ = Env(em,E) (7.39)

< e2, ew ′, dw ′, tw ′ >= T [Cseq](em ′, ew ′′, dw ′′, tw ′′) (7.40)

We show:

� wellTyped(while e do e, ew′, dw′, tw′) (a)

� extendsEnv(ew′,while e do e, ew) (b)

� extendsDecl(dw′,while e do e, dw) (c)

� extendsTheory(tw′,while e do e, tw) (d)

� ∀t, t′ ∈ Statew, vw ∈ V aluew :< t′,while e do e >−→< t′, vw >
⇒
∃s, s′ ∈ Statem :equals(s, t)∧ [while E do Cseqend](em)(s, s′)∧
∀s, s′ ∈ Statem, dm ∈ InfoData : equals(s, t)∧
[while E do Cseq end](e)(s, s′) ∧ dm = infoData(s′)
⇒ equals(s′, t′) ∧ equals(dm, vw) (e)

The goals (a), (b), (c), (d) above are comparatively simple and can be proved based
on the strategy similar to the corresponding goals of the proof for the command se-
quence as discussed in Section 7.4.1. In the following, we only sketch the configurations
required for the proof of the crucial goal (e).

We prove the goal (e) by rule induction [158] on the operational semantics of while-
loop which is defined above by the two derivation rules (R.1) and (R.2). By the
principle of rule induction, the goal (e) for a property P can be re-formulated as:

∀ t , t ′ ∈ Statew , vw ∈ Valuew :< t ,while e1 do e2 >−→< t ′, vw > ⇒ P(t , t ′, vw) (e’)

where

P(t , t ′, vw)⇔
[∃ s, s ′ ∈ State : equals(s, t)∧ [while E do Cseq end](em)(s, s ′)]∧
[∀s, s ′ ∈ State, dm ∈ InfoData :

equals(s ′, t ′)∧ [while E do Cseq end](em)(s, s ′) ∧ dm = infoData(s′)
⇒ equals(s ′, t ′) ∧ equals(dm, vw)] (D-p)

where E ,Cseq and em are fixed as defined above.

To show goal (e’), based on the principle of rule induction it suffices to show the
following sub-goals for while-loop for the corresponding derivation rules (R.1) and
(R.2) respectively:

∀ t , t ′ ∈ Statew , vw ∈ Valuew , e1 ∈ Expressionw :
< t , e1 >−→< t ′, false >⇒ P(t , t ′, vw) (e.a)

111

7. Formal Verification

∀ t , t ′, t ′′, t ′′′ ∈ Statew , vw ∈ Valuew , e1, e2 ∈ Expressionw :
< t , e1 >−→< t ′′, true > ∧ < t ′′, e2 >−→< t ′′′, void > ∧
< t ′′′,while e1 do e2 >−→< t ′, void > ∧P(t ′′′, t ′, void)
⇒ P(t , t ′, vw) (e.b)

With all of the above settings, now the proof of goal (e’) gets simpler. The sub-goals
(e.a) and (e.b) can be proved now with the help of the derivation rules (R.1) and (R.2)
and the corresponding definition (D-p). For the complete proof of the soundness of
while-loops and related definitions, please see [98] and Appendix G.

112

8. Application

In this chapter we discuss the application of our verification framework to the Maple
package DifferenceDifferential. The rest of the chapter is organized as follows: Sec-
tion 8.1 gives an overview of the package while Section 8.2 describes the application of
our type system to it. In Section 8.3 we sketch the formal specification of the package,
in particular, the abstract data type based specification of it’s high level procedures.
Finally, in Section 8.4 we first demonstrate the verification of an abstract specification
example and then discuss the verification of DifferenceDifferential.

8.1. The Package “DifferenceDifferential”

The Maple package DifferenceDifferential [42] was developed by Christian Dönch to
compute difference-differential dimension polynomials in two variables; the computa-
tion is based on the concept of relative Gröbner bases which employs the method of
Franz Winkler and Meng Zhou as discussed in [162].

The implementation of the method is based on the definition of a difference differ-
ential operator (which we call ’ddo’): a ’ddo’ s ∈ K [∆,Σ]E depends on a differential
field K , a set of derivatives ∆, a set of automorphisms Σ and the generators E of the
operator respectively field. A ’ddo’ can be modeled as a list of tuples each of which is
a difference-differential term represented by a quadruple <c, d , s, e>, where

� c is an element of K ,

� d is a list of integers whose elements have non negative values and whose size
equals the size of the derivative set ∆,

� s is a list of integers whose size equals the size of the automorphism set Σ and

� e is an element in E .

The package requires ∆, Σ, E and list of differential operators as parameters. Addi-
tionally, the computation takes optional values such as names of the variables, sym-
bols for automorphism and derivatives; if not given, these parameters get default
values. The package implements the method in a stepwise fashion which first com-
putes the relative Gröbner bases and then, based on this bases, computes the resulting
difference-differential dimension polynomials. For further details of the algorithm and
other related mathematical notions and properties, please see [162]. Moreover, the
applications of such polynomials can be derived from Einstein [6] notion of a systems’
strength as introduced in his theory of relativity.

113

8. Application

The package Difference-Differential contains both low-level and high-level proce-
dures. The sixteen low-level procedures are standalone, while the eighteen high-level
procedures call the low-level procedures. The low-level procedures implement the basic
operations on difference-differential dimension operators, e.g. “gleicheterme” (compar-
ing two difference-differential dimension terms), “sigmamax” (computing a difference-
differential dimension term with given constraints), “ddsub” and “ddprod” (comput-
ing the difference and product of given difference-differential operators); the high-
level procedures implement abstract mathematical notions of the algorithm, e.g. “SP”
(computing s-polynomials for the given difference-differential operators) and “relGB”
(computing relative Gröbner bases).

8.2. Type Checking the Package

The application of the type checker to the Maple package DifferenceDifferential re-
quired some pre-processing which included:

1. adding type annotations to the package and

2. translating those parts of the package which were not supported in MiniMaple
into corresponding logically equivalent MiniMaple constructs.

Type annotating the package was a challenging task because type information and
comments were missing. Therefore, based on discussions with author of the package,
we first identified the intentions of various parts/procedures of the package. Then,
based on the intentions, we incrementally added type annotations:

� we first annotated the procedure headers, i.e. parameters and their respective
return types;

� we then annotated the local (identifier) declarations of the corresponding pro-
cedures;

� finally we annotated the other expressions used in the procedures. These ex-
pressions included variables which were directly used but not declared (locally
or globally).

In general, the appropriate procedure headers (parameters and return types) were
(manually) inferred from the corresponding procedure applications. Similarly, type
annotations of the local variable declarations were inferred from the use of these
variables.

In particular, most of the expressions representing mathematical objects were mod-
eled as nested lists by the author of the package. We tried to annotate the parameters
of the package with appropriate types; e.g. we annotated the differential polynomial
expression with the list type

list([Or(integer, symbol), list(integer), list(integer), symbol])

114

8.3. Specifying the Package

where each tuple in the list represents a term of the differential polynomial (see Sec-
tion 8.3).

In general, MiniMaple supported most of the expressions appearing in the package.
We translated the few unsupported expressions manually to semantically equivalent
MiniMaple constructs. Such an unsupported expression is the Maple expression NULL

which can be used to delete an element of the list. In the following example, the third
element of the list l is assigned a NULL value and which removes this element from l .

> l:=[12,43,321,54,4];

l := [12, 43, 321, 54, 4]

> l:=subsop(3=NULL, l);

l := [12, 43, 54, 4]

This construction can be translated into the following equivalent form which recon-
structs l from the elements before and after the third element; and which is supported
by MiniMaple:

> l:=[12,43,321,54,4];

l := [12, 43, 321, 54, 4]

> l:=[op(1..2, l), op(4..nops(l),l)];

l := [12, 43, 54, 4]

The translation of nested lists that involve NULL expressions was more complicated
and involved our auxiliary procedure which deletes a required element.

After the addition of type annotations and the translation of unsupported expres-
sions, the type checker was applied by executing the command:

java fmrisc/typechecker/MiniMapleTypeChecker -typecheck DDDP76.m

While no crucial errors were found by the type checker, some bad code parts were
identified that could cause problems. These code parts were

� declarations of variables that were not used and correspondingly could not be
type-checked

� duplicate declarations of the same variables by global and local constructs.

After fixing these errors, the program could be correctly type-checked.

8.3. Specifying the Package

In this section, we discuss the formal specification of the package DifferenceDifferential.
In particular, we demonstrate the expressiveness of our specification language by for-

115

8. Application

Figure 8.1.: Overview of Specification of the Package DifferenceDifferential

mally specifying different mathematical concepts that were used in the package.

Both high-level and low-level procedures of the package have concrete-data type
based implementation, however,

� low-level procedures have concrete-data type based specifications while

� the high-level procedures have abstract-data type based specifications,

see Figure 8.1.

The high-level procedures specify and implement some abstract computer algebraic
concepts. As an example, we have chosen the high-level procedure SP to demonstrate
the results on our specification language. This procedure computes the s-polynomial
of two difference-differential polynomials with the help of two low-level procedures,
ddsub and ddprod which compute the difference and product of differential polyno-
mials, respectively. As an application of our specification language, we have formally
specified all low-level procedures and approx. 70% of the high-level procedures. In
the following subsections, we discuss these specifications in more detail.

8.3.1. Concrete Data Type-based Specifications

As a starting point, based on a concrete data type, we formally specify the main math-
ematical notion used in the package, namely the concept of a “difference-differential
operator/polynomial (ddo)”. Then we specify the low-level procedures ddsub and

116

8.3. Specifying the Package

ddprod based on the (concrete data type) specification of ’ddo’.

Concretely, we declare a type ’ddo’ and its related types as follows:

‘type/ddo‘:=list(ddo_term);

‘type/ddo_term‘:=[Or(integer,symbol),list(integer),

list(integer),symbol];

‘type/ddo_data‘:=[integer, integer, list(symbol)];

Here the type ddo_data represents the corresponding constraint elements of the ’ddo’,
i.e. ∆, Σ and E respectively. Now, we formally specify the aforementioned mathe-
matical properties of a ’ddo’ as follows:

define(isddo(a:: ddo, d:: ddo_data)::boolean,

isddo(a:: ddo, d:: ddo_data) =

forall(n:: integer, 1 <= n and n <= nops(a) implies

isddo_term(d, a[n])

);

define(isddo_term(d:: ddo_data, t:: ddo_term)::boolean,

isddo_term(d:: ddo_data, t:: ddo_term) =

inField(t[1], d) = true and

forall(j:: integer, 1<=j and j <= nops(t[2]) implies

0 <= t[2][j]) and

nops(t[2]) = d[1] and nops(t[3]) = d[2] and

exists(n::integer,1<=n and n <= nops(d[3]) and t[4]=d[3][n])

);

define(inField(s:: Or(integer, symbol), d:: addo_data)::boolean);

define(sub_ddo(a:: ddo, b:: ddo, d:: ddo_data, m:: integer)::ddo, ...);

define(mul_ddo(a:: [symbol,list(integer),list(integer)],

b:: ddo, d:: ddo_data, m:: integer)::ddo, ...);

In detail, the specification function isddo says that an object a of type ’ddo’ is a
well-formed ’ddo’, if each element of a is a differential term as specified by the corre-
sponding predicate isddo_term. The function isddo_term is a logical conjunction of
four formulas where each formula specifies the corresponding mathematical property
of each element of the term, respectively.

Based on this specification of ’ddo’, we sketch the (concrete data type based) spec-
ification of the low-level procedure ddsub which computes the difference of the two
given difference-differential operators:

ddsub := proc(c:: ddo, b::ddo)::ddo;

(*@

requires isddo(c, [anzdelta, anzsigma, generators]) = true and

117

8. Application

isddo(b, [anzdelta, anzsigma, generators]) = true;

global EMPTY;

ensures isddo(RESULT, [anzdelta, anzsigma, generators]) and

RESULT = sub_ddo(c, b, [anzdelta, anzsigma, generators], 0);

@*)

...

end proc;

The specification states

� as a pre-condition, that both of the procedure arguments c and b are well-formed
’ddo’s

� that the body of the procedure does not modify any global variable and

� as a post-condition, that the result of the procedure is a well-formed ’ddo’ whose
value is defined by the application of the specification function sub_ddo.

Here, anzdelta, anzsigma and generators are global variables which form the
addo_data as discussed above.

Similarly, the corresponding procedure ddprod that computes the differential prod-
uct is specified as follows:

ddprod := proc (u::ddo, v::ddo)::ddo;

(*@

requires isddo(v, [anzdelta, anzsigma, generators]) = true and

isddo(u, [anzdelta, anzsigma, generators]) = true;

global EMPTY;

ensures isddo(RESULT, [anzdelta, anzsigma, generators]) and

RESULT = mul_ddo(u, v, [anzdelta, anzsigma, generators]);

@*)

...

end proc;

The specification of the procedure ddprod is the same as explained above for the
procedure ddsub. However, the value of the result of the procedure ddprod is defined
by the application of the specification function mul_ddo.

8.3.2. Abstract Data Type-based Specifications

To specify the high-level procedure SP , we first formally specify the notion of an ab-
stract ’ddo’ with the help of an abstract data type; the support of abstract data types
is a key feature of our formal specification language. The specification of procedures
operating on concrete representations of the abstract data type follows the strategy
pioneered by Tony Hoare [81] which is based on an “abstraction function” that maps
the concrete data type into the corresponding abstract data type.

118

8.3. Specifying the Package

Figure 8.2.: Formulation for Abstract Specification and Verification

In more detail, if there is an abstract object A which has an underlying implemen-
tation based on a concrete object C , then our formulation for the specification of such
an object consists of the following elements (see Figure 8.2):

1. an abstract data type A (the model type),

2. a concrete data type C (the representation type),

3. an abstraction function abstract : C → A.

Subsequently, the contract of a method operating on a concrete object x ∈ C is then
specified in terms of its abstract counterpart abstract(x) ∈ A (i.e. the specification
refers to x only in the form abstract(x)). In the following, we specify step-wise the
notion of a ’ddo’ based on this strategy.

Model

To model ’ddo’, we first declare an abstract ’ddo’ (which we call ’addo’) and its
corresponding constructors as follows:

(* addo type declarations *)

‘type/addo‘;

(* addo constructors *)

define(create_addo()::addo);

define(add_term_addo(d:: addo_data, a:: addo, t:: ddo_term)::addo);

The first constructor create_addo returns an empty ’addo’ while the second con-
structor add_term_addo adds a new term t to the given ’addo’ a such that the term
t respects the data d. In fact, here we abstract away the concrete data type ’list’
(representing a ’ddo’) to ’addo’. Therefore, the two constructors have one-to-one cor-
respondence to the list constructors, i.e. to empty and cons. Then we specify the
other properties of abstract ’ddo’.

119

8. Application

(* addo operations/properties *)

define(isAddo(a:: addo)::boolean,

isAddo(a:: addo) =

forall(n:: integer, 1 <= n and n <= length_addo(a) implies

isAddo_term(get_addo_data(a), get_addo_term(a))

);

define(isAddo_term(d:: addo_data, t:: ddo_term)::boolean,

isAddo_term(d:: addo_data, t:: ddo_term) =

inField(t[1], d) = true and

forall(j:: integer, 1<=j and j <= nops(t[2]) implies

0 <= t[2][j]) and

nops(t[2]) = d[1] and nops(t[3]) = d[2] and

exists(n::integer,1<=n and n <= nops(d[3]) and t[4]=d[3][n])

);

define(length_addo(a:: addo)::integer);

define(get_addo_data(a:: addo)::addo_data);

define(get_addo_term(a:: addo)::ddo_term);

define(remove_term_addo(a:: addo)::addo);

define(is_empty_addo(a:: addo)::boolean,

is_empty_addo(a:: addo) = ’if’(a = create_addo(),true,false));

define(equals_addo(a:: addo, b:: addo)::boolean, ...);

define(equals_addo_term(t1:: ddo_term, t2:: ddo_term)::boolean, ...);

define(sub_addo(a:: addo, b:: addo):: addo);

define(mul_addo(a:: addo, b:: addo):: addo);

...

One of the main properties of interest for ’addo’ is specified by predicate isAddo which
says that an ’addo’ a is an abstract ’ddo’, if each of its terms is an abstract differential
term as specified by predicate isAddo_term.

Representation

The underlying representation as an implementation of ’addo’ is a concrete type
addo_rep:

‘type/addo_rep‘:=list(ddo_term);

In fact, this type is identical to the type ’ddo’ declared before.

Abstraction

Based on the previously defined concrete representation type, we define the abstraction
of concrete type addo_rep to an abstract type addo by the function to_abstract_addo.

120

8.3. Specifying the Package

In addition to representation m, the function also requires a parameter d which is used
to specify various constraints on the corresponding abstract ’ddo’ respectively terms.

define(to_abstract_ddo(d:: addo_data, m:: addo_rep)::addo,

to_abstract_addo(d:: addo_data, m:: addo_rep) =

’if’(nops(m) = 0,

create_addo(),

add_addo_term(d, [op(1..nops(m)-1, m)], m[nops(m)]))

);

In detail, the function says that for a given ’ddo’ m

� if the length of m is zero, then create an empty ’addo’ by the corresponding
constructor create_addo() , otherwise

� construct an ’addo’ by the constructor add_addo_term which adds the last ele-
ment of list m as an ’addo’ term to the remaining list.

In the following, we sketch the formal specification of the high-level procedure SP
based on the above specification (model type and abstraction function) of an abstract
’ddo’.

Procedure Specification

The procedure SP computes the s-polynomial of two given ’ddo’s (s and t) and other
auxiliary arguments. The procedure has arguments

� z ∈ Z, z ≥ 0

� s, t ∈ K [∆,Σ]E

� v ∈ [∆,Σ]E

� s1, t1 ∈ [∆,Σ]

and returns a ’ddo’.

Based on above description, we specify the procedure with the help of the abstract
data type as sketched below:

SP := proc (z::integer, s::ddo, t::ddo,

v::[list(integer), list(integer), list(symbol)],

s1::[list(integer),list(integer)],

t1::[list(integer),list(integer)])::ddo;

(*@

requires

1 <= z and z <= power(2, anzsigma) and

isAddo(to_abstract_addo([anzdelta,anzsigma,generators],s))=true and

isAddo(to_abstract_addo([anzdelta,anzsigma,generators],t))=true and

...

121

8. Application

global EMPTY;

ensures

LET ad=to_abstract_addo([anzdelta,anzsigma,generators],RESULT) IN

isAddo(ad) = true and

ad=sPol(z,

to_abstract_addo([anzdelta, anzsigma, generators], s),

to_abstract_addo([anzdelta, anzsigma, generators], t),

v , s1, t1);

@*)

...

...

c1 := ddprod(d1, f);

c2 := ddprod(d2, g);

sp := ddsub(c1, c2);

return sp;

end proc;

In detail, the specification is structured as follows:

� In the pre-condition, we first construct abstract ’ddo’s by the application of
function to_abstract_ddo to the actual arguments of the procedure s and t:
we then apply the predicate isAddo to the constructed abstract ’ddo’ in order
to specify the mathematical constraints on an abstract ’ddo’. Corresponding
constraints are also specified on the other other auxiliary arguments of the pro-
cedure.

� Similarly, in the post-condition, we first construct an abstract ’ddo’ from the
RESULT of the procedure and then test the abstract ’ddo’ if it respects the pred-
icate isAddo. Furthermore, this RESULT equals the value of the s-polynomial
defined with the help of the specification function sPol.

In the following, we discuss the verification of the implementation of SP (which calls
the low-level procedures ddsub and ddprod) with respect to this specification.

8.4. Verifying the Package

In this section, we discuss the verification of selected procedures of the package
DifferenceDifferential. In Subsection 8.4.1, we describe the verification of low-level
procedures of the package. In Subsection 8.4.2, we describe the verification of an ab-
stract data type based example program (written in Why3ML) from which we have
derived strategies for the appropriate verification of high-level procedures. Finally, in
Subsection 8.4.3, we use this strategy to verify the high-level procedure SP .

122

8.4. Verifying the Package

8.4.1. Verification of Low-level Procedures

We have verified all the sixteen low-level procedures of DifferenceDifferential which
includes approx. 80% automatic and 20% interactive proofs. The automatic proofs
were performed using the SMT (satisfiability modulo theories [140]) solvers Z3 [51],
CVC3 [43] and Alt-Ergo [45] while the interactive proofs were performed with the
help of the proving assistant Coq [20]. Most of the proofs could be performed auto-
matically because the low-level procedures of the package DifferenceDifferential have
both specifications and implementations based on concrete-data types as discussed in
Section 8.3.

The verification of the procedures also involved the definition and verification of
loop invariants and termination terms (aka variants) in addition to the procedure
specifications (pre- and post-conditions). One of the challenges of the verification of
low-level procedures was the adequacy of the definition of loop invariants and corre-
sponding termination terms. Here, the definitions of loop invariants and termination
terms were refined incrementally to make them directly amenable for verification after
translating them into corresponding Why3ML constructs.

In the following we sketch the MiniMaple specification of a simple loop from the
low-level procedure ddsub which is the result of quite a few refinements.

...

l := nops(f);

...

while (i0 < nops(g)) do

(*@

invariant (forall(j::integer, i0 < j and j < nops(g) implies

g[j] = OLD(g[j]))) and

(forall(k::integer, 0 <= k and k < i0 implies

g[k] = OLD(-g[k]))) and

(forall(j0::integer, 0 <= j0 and j0 < l implies

f[j0] = OLD(f[j0]))) and

(forall(k0::integer, k0 >= l and k0 < nops(f) implies

f[k0] = OLD(-g[k0 - nops(g)]))) and

(nops(f) = l + i0 and nops(g) = nops(OLD(g))) and

...;

decreases (nops(g) - i0);

@*)

...

g[i0][1] := -g[i0][1];

f := [nops(f), g[i0]];

...

i0 := i0 + 1;

123

8. Application

end do;

The loop invariant is specified with an invariant construct. In principle, the
invariant specifies the relationship between the elements of the two lists f and g . Fur-
thermore, the invariant describes some additional constraints about the corresponding
elements of the lists. The termination term of the loop is specified with the corre-
sponding decreases construct; it denotes a nonnegative value which is decreased after
each loop iteration.

However, the proofs of the verification conditions (including procedure and loop
specifications) of the low-level procedures required some lemmas to be added manually
because the definitions of some specification functions generated by the translator
were not adequate. For instance, as discussed in Section 8.3.1, the specification of
the procedure ddsub involves a specification function sub ddo which computes the
difference of the ’ddo’s. However, the function sub ddo which is generated by the
translator (for the corresponding specification function ddsub) is not directly amenable
for verification. Therefore, to make the definition of the translated function sub ddo
adequate for proving, we manually introduced the lemmas:

(* the following two lemmas are about "sub_ddo" function *)

lemma ddo_sub0:

forall b: list ddo_term, c: list ddo_term, d: ddo_data, j: int, k: int.

0 <= j < length c /\ 0 <= k < length b ->

equals_ddo_term (nth j c) (nth k b) (d) ->

sub_ddo b c d (k+1) = sub_ddo b c d k

lemma ddo_sub1:

forall b: list ddo_term, c: list ddo_term, d: ddo_data, j: int, k: int.

0 <= j < length c /\ 0 <= k < length b ->

forall s: symbol, s1: symbol, s2: symbol.

not (equals_ddo_term (nth j c) (nth k b) (d)) ->

sub_ddo b c d (k+1) =

sub_ddo b c d k ++ Cons (sub_ddo_term (nth j c) (nth k b) (d)) Nil

The above lemmas state the facts that the specification function sub ddo (over lists
of ’ddo’ terms) correctly computes the result. These lemmas were proved manually
using the interactive prover Coq based on the strategy of structural induction. In
future, we plan to generate lemmas of this kind automatically.

8.4.2. Verification of High-level Procedures

The verification of the high-level procedures of DifferenceDifferential included eight
proofs, which were all interactive. However, as discussed in Section 8.3, we have
devised a logical formulation for the verification of abstract data type based high-level
procedures. The challenge here was to prove the correctness of procedures, which

124

8.4. Verifying the Package

� on the one hand have an implementation based on concrete data types (e.g. the
difference-differential operator is implemented as a list of its terms as tuples)
and

� on the other hand are specified by abstract data types (e.g. the difference-
differential operator is specified by an abstract data type “addo” with corre-
sponding operations and mathematical properties).

In this section, we discuss the appropriate strategy for the verification of this kind
of procedures based on the example of a typical“stack”; we have used this example to
experiment with strategies to derive successful proofs.

As discussed in Section 8.3.2 a concrete representation type C can be specified
with the help of an abstract type A (the model type) and an abstraction function
abstract : C → A.

Our formulation for the verification of a procedure that is specified in terms of A
and operating on objects of type C consists of:

1. a concretization-relationship between C and A defined as “concrete ⊆ C ×A”,

2. an invariant predicate “invariant ⊆ C ” and

3. a lemma

∀ c : C , a : A, invariant(c)⇒ (a = abstract(c)⇔ concrete(a, c)).

The concretization relation and the associated lemma make knowledge about the
derivation of a concrete representation from an abstract model directly available in
the proof such that the reasoning gets simpler.

To demonstrate the adequacy of our formulation with respect to the underlying
tools used in our verification framework (Why3 and the supported back-end provers),
we specify in the following the abstract data type “stack” and verify its mutable array
based implementation.

Model

A stack of integer values is modeled as an algebraic type as follows:

type stack = Create | Push (stack) (int)

The two constructors correspond to

1. the construction of an empty stack and

2. the construction of a stack by pushing a given integer (element) to the given
stack respectively.

The other typical operations of the stack are defined by pattern matching respectively
structural induction as follows:

function is_empty_stack (s: stack) : bool=

match s with

125

8. Application

| Create -> True

| Push s1 e -> False

end

function top (s: stack) : int=

match s with

| Create -> 0

| Push s1 e -> e

end

function pop (s: stack) : stack=

match s with

| Create -> s

| Push s1 e -> s1

end

function length_stack (s: stack) : int=

match s with

| Create -> 0

| Push s1 e -> 1 + length_stack (s1)

end

Representation

An abstract stack can be represented by a tuple of two elements as follows:

type stack_rep = {| mutable size: int; data: mutable array int |}

The first element size represents the number of elements in the stack and the second
element data represents the actual stack elements as a mutable array of integers. Here,
the mutable array was later used in an imperative code part of the implementation
of the stack function push_array.

Abstraction

The function to_abstract_stack defines the mapping of a stack-representation of
type stack_rep to a corresponding abstract type stack as follows:

function to_abstract_stack (r: stack_rep) : stack

axiom to_abstract_stack0:

forall r: stack_rep. r.size = 0 -> to_abstract_stack (r) = Create

126

8.4. Verifying the Package

axiom to_abstract_stack1:

forall r: stack_rep, r1: stack_rep.

let r1 = {| size=r.size-1; data=r.data |} in

r.size > 0 ->

to_abstract_stack(r) = Push(to_abstract_stack (r1))(r.data[r.size-1])

In detail, the two axioms say that

1. if the size of the stack representation r is zero, then the abstraction of r is an
empty stack and

2. if the size of the stack-representation r is greater than zero, then the abstraction
of r is the result of the application of the push operation to a stack r1 (derived
from r by removing the last element).

In the following, we discuss the corresponding formulation for the verification of the
implementation specified above.

Concretization Relation

The concretization relationship specifies the other direction of the abstraction function.
We thus specify the relation of the stack-representation r to an abstract stack s as
defined below:

predicate concrete_stack (s: stack) (r: stack_rep)=

match s with

| Create -> r.size = 0

| Push s1 e ->

r.size > 0 /\ r.size < r.data.length ->

r.data[r.size-1] = e /\

exists a1: array int. r.data.length = a1.length /\

s1 = to_abstract_stack ({|size=r.size-1; data=a1 |}) /\

forall j: int. 0 <= j < r.size-1 -> r.data[j] = a1[j]

end

The relation concrete_stack says that

� if abstract stack s is empty, then the size of the stack representation r is zero

� if the abstract stack is non-empty, i.e. of form Push s1 e and if the size of r is
greater than zero and less than the length of the stack representation, then the
element e is the last element of the stack representation.

The formulation is based on an array a1 whose abstraction is equal to the stack s1.

127

8. Application

Figure 8.3.: Verification of a Stack Example

128

8.4. Verifying the Package

Invariant

There can be various such combinations of the elements (size and data) of the stack-
representation from which we cannot construct a legal abstract stack. To avoid such
instances of the stack-representation we define the following invariant:

predicate invariant_stack (r: stack_rep) = 0 <= r.size <= r.data.length

which prevents illegal stack representations.

Specified Stack Implementation

In the following, we give the complete Why3ML code for the stack example presumed
in the previous subsections:

(* stack model (abstract type stack and its operations) *)

module StackModel

use export int.Int

use export list.List

use export bool.Bool

use export module ref.Ref

use export module array.Array

type stack = Create | Push (stack) (int)

function length_stack (s: stack) : int=

match s with

| Create -> 0

| Push s1 e -> 1 + length_stack (s1)

end

function is_empty_stack (s: stack) : bool=

match s with

| Create -> True

| Push s1 e -> False

end

function top (s: stack) : int=

match s with

| Create -> 0

| Push s1 e -> e

end

function pop (s: stack) : stack=

match s with

| Create -> s

| Push s1 e -> s1

end

129

8. Application

function pop0 (s: stack) : int=

match s with

| Create -> 0

| Push s1 e -> e

end

function get_stack (s: stack) (i: int) : int

axiom get_stack0: forall s: stack, i: int. i = 0 -> get_stack (s) (i) = top (s)

axiom get_stack1: forall s: stack, i: int.

i > 0 -> get_stack (s) (i) = get_stack (pop (s)) (i-1)

end

(* stack representation (mapping, concretization and invariant) *)

module StackRep

use import module StackModel

use export module arith.Int32

type stack_rep = {| mutable size: int; data: array int |}

function to_abstract_stack (r: stack_rep) : stack

axiom to_abstract_stack0: forall r: stack_rep.

r.size = 0 -> to_abstract_stack (r) = Create

axiom to_abstract_stack1:

forall r: stack_rep, r1: stack_rep.

let r1 = {| size=r.size-1; data=r.data |} in

r.size > 0 ->

to_abstract_stack (r) = Push (to_abstract_stack (r1)) (r.data[r.size-1])

predicate concrete_stack (s: stack) (r: stack_rep)=

match s with

| Create -> r.size = 0

| Push s1 e -> r.size > 0 /\ r.size < r.data.length -> r.data[r.size-1] = e /\

exists a1: array int. r.data.length = a1.length /\

s1 = to_abstract_stack ({|size=r.size-1; data=a1 |}) /\

forall j: int. 0 <= j < r.size-1 -> r.data[j] = a1[j]

end

predicate invariant_stack (r: stack_rep)=

0 <= r.size <= r.data.length

lemma abstract_concrete:

forall r: stack_rep, s: stack.

invariant_stack (r) -> (s = to_abstract_stack (r) <-> concrete_stack (s) (r))

end

130

8.4. Verifying the Package

(* stack implementation (with abstract specifications) *)

module StackImpl

use import module StackModel

use import module StackRep

let top_array (r: stack_rep) : int=

{ let s = to_abstract_stack (r) in is_empty_stack (s) = False /\ invariant_stack (r) }

r.data[r.size-1]

{ let s = to_abstract_stack (r) in result = top (s) /\ invariant_stack (r) }

let pop_array (r: stack_rep) : stack_rep=

{let s = to_abstract_stack (r) in is_empty_stack (s) = False /\ invariant_stack (r)}

let a1 = r.data in

a1[r.size-1] <- 0;

{| size=r.size-1; data=a1 |}

{let s = to_abstract_stack (r) in

to_abstract_stack (result) = pop (s) /\ invariant_stack (result) }

let is_empty (r: stack_rep) : bool=

{ invariant_stack (r) }

r.size = 0

{ let s = to_abstract_stack (r) in result = is_empty_stack (s) /\ invariant_stack (r) }

let create_empty (i: int) : stack_rep=

{i > 0}

{| size=0; data=make i 0 |}

{ let s = to_abstract_stack (result) in

is_empty_stack (s) = True /\ invariant_stack (result) }

val resize (r: stack_rep) :

{ invariant_stack(r) } unit

{ invariant_stack(r) /\ (old r).size = r.size /\

(old r).data.length * 2 + 1 = r.data.length /\

forall j: int. 0 <= j < (old r).size -> r.data[j] = (old r).data[j] /\

forall k: int. (old r).size <= k < r.data.length -> r.data[k] = 0 }

let push_array (r: stack_rep) (e: int) =

{ invariant_stack (r) }

if r.size = r.data.length then

begin

resize(r)

end;

r.data[r.size] <- e;

r.size <- r.size+1

{ invariant_stack(r) /\

let s = to_abstract_stack (old r) in

let s1 = to_abstract_stack (r) in

s1 = Push s e }

131

8. Application

end

The example above contains three modules where

1. module StackModel specifies the stack model,

2. module StackRep specifies the stack representation, abstraction, concretization
relation and invariant and

3. module StackImpl contains the actual stack implementation (based on repre-
sentation) annotated with abstract specifications.

In the following, we discuss the verification of the above example.

Verification

Figure 8.3 shows a screen shot of the Why3-GUI for the verification of the stack
example. In fact, the verification conditions generated by Why3 are proved with the
help of the following lemma which is part of our logical formulation for verification:

lemma abstract_concrete:

forall r: stack_rep, s: stack.

invariant_stack (r) ->

(s = to_abstract_stack (r) <-> concrete_stack (s) (r))

This lemma makes the knowledge of stack representation r and abstract stack s di-
rectly available for use in proving; it was proved in Coq by structural induction on
stack s.

With the introduction of the lemma, the proofs of most of the implementation func-
tions were fully automatic. Only the proof of the implementation function push_array

was partially interactive, because the push operation needs to resize the stack-
representation array. Here, the interactive proof was a mix of case analysis, induction
on the size of the stack and some other tactics of Coq.

8.4.3. Verification of the High-level Procedure “SP”

We approached the goal of verification of the high-level procedure SP based on our
experiment with the verification of the stack example discussed in the previous sec-
tion. The verification of the implementation of the procedure requires to define a
concretization relation and an invariant as discussed in the following.

Concretization Relation

The concretization function specifies the relation between an abstract ’ddo’ a and its
corresponding concrete representation m as defined below:

132

8.4. Verifying the Package

Figure 8.4.: Verification of DifferenceDifferential

133

8. Application

define(concrete_addo(d:: addo_data, m:: addo_rep, a:: addo)::boolean,

concrete_addo(d:: addo_data, m:: addo_rep, a:: addo) =

’if’(nops(m) > 0 ,

nops(m) > 0 implies

exists(a1:: list(ddo_term), t:: ddo_term,

a = add_addo_term(d,to_abstract_addo(d, a1),t) and

t = m[nops(m)] and nops(a1) = nops(m) - 1 and

forall(i:: integer, 1 <= i and i <= nops(m)-1

implies a1[i] = m[i])

)

, a = create_addo())

);

In detail, the concretization relation says that if the concrete representation of ’ddo’ m
is non-empty, then the abstract ’ddo’ a is constructed with the help of a corresponding
constructor add_addo_term by adding some term t to some abstract ’ddo’ (that is
based on some concrete representation a1). Here, the term t is the last element of the
concrete ’ddo’ m and the elements of a1 are the same as of m such that the last element
of m is missing in a1. Furthermore, if the concrete representation m is empty, then the
given abstract ’ddo’ a is equal to the corresponding constructor create_addo.

Invariant

Now, we define the invariant for the concrete representation of the ’ddo’ that ensures
the legal construction of abstract ’ddo’ for a given concrete representation.

define(invariant_addo(d:: addo_data, m:: addo_rep)::boolean,

invariant_addo(d:: addo_data, m:: addo_rep) =

’if’(d[1] >= 0 and

nops(d[3]) > 0 and nops(m) >= 0 and

isddo(m, d) = true, true, false)

);

In principle, the function specifies some constraint on add_data which is used to spec-
ify the difference-differential dimension terms of the given representation add_rep of a
’ddo’. The function returns true only if the first element of the data is a positive inte-
ger and the list of generators is not empty as per the definition of ’ddo’. Furthermore,
the given m is a well-formed ’ddo’ and hence respects isddo.

Verification

To prove the verification conditions generated by Why3 for the procedure SP , we
introduced the following lemmas:

134

8.4. Verifying the Package

lemma abstract_concrete:

forall a: addo, m: addo_rep, d: addo_data.

invariant_addo(d) (m) ->

a = to_abstract_addo(d) (m) <-> concrete_addo (d) (m) (a)

lemma isddo_isaddo0:

forall d: addo_data, m: addo_rep, a: addo.

a = to_abstract_addo (d) (m) ->

isddo (m) (d) = isAddo (to_abstract_addo (d) (m))

The first lemma is the part of our verification strategy which says that for any abstract
’ddo’ a, underlying concrete representation m and constraint data d, if the invariant
holds for the concrete ’ddo’ m, then a is the abstraction of the concrete ’ddo’ if and
only if the concretization relation between m and a holds. The second lemma is intro-
duced to remove the redundancy of the proof of various verification conditions which
include similar goals. The lemma essentially says that if we abstract any concrete
representation m to a then the definition of the concrete ’ddo’ predicate isddo is equal
to the definition of the abstract ’ddo’ predicate isAddo. In fact, as mentioned above
the procedure SP includes the call to two other procedures which have concrete data
type specifications of ’ddo’. Both of the lemmas were proved in Coq by the principle
of structural induction on the list m and the corresponding constructor of an abstract
’ddo’ a.

With the introduction of the lemmas, most of the proofs of the verification condi-
tions were automatic. However, the proofs of some conditions that involved loop-
invariants and procedure calls were also interactive. The interactive proofs were
mainly based on the structural induction along-with other Coq tactics, e.g. destruc-
tion of definition of abstract ’ddo’, case analysis and the expansion of the lemma.
The task of verification here was simpler as compared to the verification of our stack-
example because the constructors of abstract ’ddo’ correspond to the constructors of
the underlying representation (i.e. list). The verification of the high-level procedures
in general and of SP in particular is presented by a screenshot of the Why3-GUI in
Figure 8.4.

135

9. Conclusions and Future Work

In this chapter, we first review the design and development of our verification frame-
work for the specification and verification of computer algebra software; then we sketch
the lessons learned followed by a discussion on possible future extensions.

In this thesis, we have first formalized the syntax and semantics of MiniMaple and
its specification language. We have then developed the type systems for MiniMaple
and its specification language. We have elaborated the translation of a MiniMaple
program into a Why3ML program, and have proved the soundness of the translation
based on the denotational semantics of MiniMaple and the operational semantics of
Why3ML. Finally, we have applied our framework to verify the main parts of the
non-trivial Maple package DifferenceDifferential. The verification of the high-level
procedures of the package was performed with the help of a strategy for specifying
and verifying such procedures which on one hand have concrete data type based
implementations and on the other hand have specifications based on abstract data
types.

During the entire course of the design and development of this framework, we have
gained fundamental knowledge in the various issues of designing and formalizing pro-
gramming and specification languages in general and computer algebra languages in
particular. We have learned to formalize the type system for MiniMaple and its spec-
ification language based on the specific notations of type systems. The subsequent
definition and formalization of the formal semantics of MiniMaple and its specification
language gave us a deep insight to understand the behavioral principles of these lan-
guages and how to apply a variety of mathematical formalisms and notions to model
the corresponding semantics. Also we have gained the capabilities to use the inter-
mediate verification tool Why3 and some of the automated and interactive theorem
provers (e.g. Z3 and Coq) that it supports as back-ends. We have used the general
principles (tactics and proof strategies) of automated theorem proving and also have
gained experienced with a handy approach for the specification and verification of
high-level procedures by modeling mathematical notions with the help of abstract
data types. During the application of the framework to the package we have realized
the importance of formal annotations (types and specifications) and informal ones
(comments) of programs in order to understand the correct behavior of the programs;
this becomes extremely important when sometime later a refactoring of the program
is required. The non-trivial proof for the soundness of the translation has enriched
our experience in proving by practicing a variety of proof strategies, e.g. rule-based

137

9. Conclusions and Future Work

induction.

As a next step, based on our strategy for the specification and verification of abstract
data type based specifications, we may complete the specification and verification of
all the high-level procedures of the package DifferenceDifferential. Furthermore, we
may extend our verification framework in various directions:

� The syntax of MiniMaple (and its specification language) can be extended to
support more expressions of Maple that are used for general purpose computing.

� We may use the specification language for MiniMaple programs to generate
executable assertions that are embedded in such programs and can check the
validity of pre/post conditions at runtime.

� As an alternative to Why3 (developed by LRI, France), we may use Boogie [13]
(developed by Microsoft, USA) as an intermediate verification framework. Boo-
gie also supports as back-ends various automated theorem provers (i.e. Sim-
plify [53] and Z3) and interactive ones (i.e. Isabelle/HOL [124]). Moreover,
the framework is also used by various front-end tools for some programming
languages, e.g. C# and C [22].

� The results of our verification framework can be also applied to other computer
algebra systems, in particular Mathematica. Mathematica shares with Maple
many concepts such as the basic kinds of runtime objects; thus the type system of
MiniMaple in principle can also be applied to Mathematica. However, the task
of verification of Mathematica programs is more complex as the programming
language is rule-based; here we would need to investigate the exhaustiveness
of rules and possible contradictions among rules. In principle, we could then
translate a Mathematica program into an equivalent procedural program such
that our verification tool can be applied.

Furthermore, the application of our framework to verify other Maple packages devel-
oped at our institute will further demonstrate the expressiveness and limitations of
our framework and will also show directions for future extension.

138

Appendices

139

A. Syntax of MiniMaple

In this appendix we give the formal abstract syntax (language grammar) of MiniMaple.

Prog ∈ Program
Cseq ∈ Command Sequence
C ∈ Command
Elif ∈ ElseIf
Catch ∈ Catch
Eseq ∈ Expression Sequence
E ∈ Expression
S ∈ Sequence
R ∈ Recurrence
Pseq ∈ Parameter Sequence
P ∈ Parameter
M ∈ Modifiers
Iseq ∈ Identifier Sequence
I ∈ Identifier
Itseq ∈ Identifier Typed Sequence
It ∈ Identifier Typed
Bop ∈ Boolean Operators
Uop ∈ Unary Operators
Esop ∈ Especial Operators
Tseq ∈ Type Sequence
T ∈ Type
N ∈ Numeral

Prog ::= Cseq
Cseq ::= EMPTY | (C; | E;)Cseq
C ::= if E then Cseq Elif end if ; | if E then Cseq Elif else Cseq end if ;

| while E do Cseq end do;
| for I in E do Cseq end do;
| for I in E while E do Cseq end do;
| for I from E by E to E do Cseq end do;
| for I from E by E to E while E do Cseq end do;
| return E; | return; | error; | error I,Eseq;
| try Cseq Catch end; | try Cseq Catch finally Cseq end;

141

A. Syntax of MiniMaple

| I,Iseq := E,Eseq; | E(Eseq); | ‘type/I‘ := T; | print(e);
Elif ::= EMPTY | elif E then Cseq;Elif
Catch ::= EMPTY | catch “I” :Cseq, Catch
Eseq ::= EMPTY | E,Eseq
E ::= I | N | module() S;R end module;

| proc(Pseq) S;R end proc;| proc(Pseq)::T; S;R end proc;
| E1 Bop E2 | Uop E | Esop | E1 and E2 | E1 or E2 | E(Eseq)
| I1:-I2 | E,E,Eseq | type(I,T) | E1 = E2 | E1 <> E2

S ::= EMPTY | local It,Itseq;S | global I,Iseq;S | uses I,Iseq;S
| export It,Itseq;S

R ::= Cseq | Cseq;E
Pseq ::= EMPTY | P,Pseq
P ::= I | I :: M
M ::= seq(T) | T
Iseq :: = EMPTY | I, Iseq
I ::= any valid Maple name
Itseq :: = EMPTY | It, Itseq
It ::= I | I :: T | I := E | I::T:=E
Bop ::= + | − | / | ∗ | mod |<|>|≤|≥
Uop ::= not | − | +
Esop ::= op(E1, E2) | op(E) | op(E..E, E) | nops(E)

| subsop(E1=E2, E3) | subs(I=E1, E2) | “ E “ | [Eseq]
| I[Eseq] | seq(E, I = E..E) | seq(E, I in E) | eval(I,1)

Tseq ::= EMPTY | T,Tseq
T ::= integer | boolean | string | float | rational | anything | { T }

| list(T) | [Tseq] | procedure[T](Tseq)
| I(Tseq) | Or(Tseq) | symbol | void | uneval | I

N ::= a sequence of decimal digits

142

B. Syntax of the Specification Language
for MiniMaple

In this appendix we give the formal abstract syntax (language grammar) of a specifi-
cation language for MiniMaple.

decl ∈ Declaration
proc-spec ∈ Procedure Specification
loop-spec ∈ Loop Specification
asrt ∈ Assertion
rules ∈ Rules
excep-clause ∈ Exception Clause
eseq ∈ Specification Expression Sequence
spec-expr ∈ Specification Expression
binding ∈ Binding
Itseq ∈ Identifier Typed Sequence
It ∈ Identifier Typed
Iseq ∈ Identifier Sequence
I ∈ Identifier
Bop ∈ Binary Operator
Uop ∈ Unary Operator
it-op ∈ Iteration Operator
esop ∈ Especial Operator
sel-op ∈ Selection Operator
Tseq ∈ Type Sequence
T ∈ Type
N ∈ Numeral

decl ::= EMPTY | (define(I(Itseq)::T,rules);
| ‘type/I‘;
| ‘type/I‘:=T;
| assume(spec-expr);) decl

proc-spec ::= requires spec-expr; global Iseq; ensures spec-expr; excep-clause
loop-spec := invariant spec-expr; decreases spec-expr;
asrt := ASSERT(spec-expr, (EMPTY | “I“));
rules ::= EMPTY | I(Itseq) = spec-expr, rules

143

B. Syntax of the Specification Language for MiniMaple

excep-clause ::= EMPTY | exceptions ”I” spec-expr; excep-clause
eseq ::= EMPTY | spec-expr, eseq
spec-expr ::= I (eseq) | type(spec-expr,T)

| spec-expr and spec-expr | spec-expr or spec-expr
| spec-expr equivalent spec-expr | spec-expr implies spec-expr
| forall(Itseq, spec-expr) | exists(Itseq, spec-expr)
| (spec-expr) | spec-expr Bop spec-expr | Uop spec-expr | esop
| it-op(spec-expr, binding, (EMPTY | spec-expr))
| true | false | LET Iseq=eseq IN spec-expr | RESULT
| ‘if‘(spec-expr1, spec-expr2, spec-expr3) | I | I1:-I2 | OLD I | N
| spec-expr1 = spec-expr2 | spec-expr1 <> spec-expr2

binding ::= I = spec-expr1...spec-expr2 | I in spec-expr
Itseq ::= EMPTY | It, Itseq
It ::= I::T
Iseq :: = EMPTY | I, Iseq
I ::= any valid Maple name
Bop ::= + | − | / | ∗ | mod |<|>|≤|≥|=|<>
Uop ::= not | − | +
it-op ::= add | mul | max | min | seq
esop ::= op(spec-expr1, spec-expr2) | op(spec-expr)

| op(spec-expr..spec-expr, spec-expr) | nops(spec-expr)
| subsop(spec-expr1=spec-expr2, spec-expr3)
| subs(I=spec-expr1, spec-expr2) | “ spec-expr “
| I sel-op | [eseq] | { eseq } | I(eseq) | eval(I,1)

sel-op ::= EMPTY | [eseq] sel-op
Tseq ::= EMPTY | T,Tseq
T ::= integer | boolean | string | float | rational | anything | { T }

| list(T) | [Tseq] | procedure[T](Tseq)
| I(Tseq) | Or(Tseq) | symbol | void | unevaluated | I

N ::= a sequence of decimal digits

144

C. Type System of MiniMaple

In this appendix we give the logical rules to derive the typing judgments. We also give
the auxiliary functions and predicates that are used in the rules. The contents of the
following sections are not shown in this printout but in the supplementary electronic
version of this thesis.

C.1. Logical Rules

In this section, we list the logical rules for each phrase/alternative of syntactic domain,
which are used to derive typing judgments. The rules state the conditions under which
the syntactic phrases are well typed.

C.2. Auxiliary Functions

In this section we define the auxiliary functions used in logical rules to derive typing
judgments. The auxiliary functions are defined over type environments and the syn-
tactic domains “type”, “identifier”, “typed identifier”, “parameter” and “expression”.
Some additional utility functions are defined over return flag and the sequences of
various syntactic domains.

C.3. Auxiliary Predicates

In this section we give the auxiliary predicates used in logical rules to derive typing
judgments. The auxiliary predicates are defined over type environments and the
syntactic domains “type”, “identifier”, “typed identifier” and “parameter”.

145

D. Formal Semantics of MiniMaple

In this appendix, we give the formalization and definitions of the denotational se-
mantics of MiniMaple. The contents of the following sections are not shown in this
printout but in the supplementary electronic version of this thesis.

D.1. Semantic Algebras

In this section, we formalize the semantic domains of values and their corresponding
operations.

D.2. Signatures of Valuation Functions

In this section, we give the signatures of the valuation functions for the semantics of
each MiniMaple syntactic domain.

D.3. Auxiliary Functions and Predicates

In this section, we define auxiliary functions and predicates that are later used in the
definition of the semantic functions.

D.4. Semantics

In this section, we give the definition of the valuation functions for MiniMaple syn-
tactic domains.

147

E. Formal Semantics of the Specification
Language for MiniMaple

In this appendix, we give the formalization and definitions of the denotational seman-
tics of the core formula language and the annotations of the specification language for
MiniMaple. The contents of the following sections are not shown in this printout but
in the supplementary electronic version of this thesis.

E.1. Semantic Algebras

In this section, we formalize the semantic domains of values and their corresponding
operations.

E.2. Signatures of Valuation Functions of Formula Language

In this section, we give the signatures of the valuation functions for the semantics of
the syntactic domains of the formula language.

E.3. Auxiliary Functions and Predicates

In this section, we declare and define the auxiliary functions and predicates that are
later used in the semantic functions definitions.

E.4. Semantics of Formula Language

In this section, we define the semantic functions of the formula language of the speci-
fication language.

149

E. Formal Semantics of the Specification Language for MiniMaple

E.5. Signatures of Valuation Functions for Specification
Annotations

In this section, we give the signatures of the valuation functions for the semantics of
the syntactic domains of the elements of the specification language.

E.6. Semantics of Specification Annotations

In this section, we define the semantic functions of the elements of the specification
language.

150

F. Translation of MiniMaple into
Why3ML

In this appendix, we give the formalization and definitions of the translation of Mini-
Maple and its specification language into Why3ML constructs. The contents of the
following sections are not shown in this printout but in the supplementary electronic
version of this thesis.

F.1. Semantic Algebras

In this section, we formalize the semantic domains of MiniMaple and Why3ML and
also declare/define their corresponding operations.

F.2. Signatures of Translation Functions

In this section, we give the signatures of translation functions for the syntactic domains
of MiniMaple and its specification language.

F.3. Auxiliary Functions and Predicates

In this section, we declare/define the auxiliary functions and predicates which are
later used in the definition of the translation functions.

F.4. Definition of Translation Functions

In this section, we define the translation functions.

151

G. Proof of the Soundness of the
Translation

In this appendix, we formulate the proof-settings and then discuss the proof of the
soundness of the translation for selected constructs of MiniMaple. The contents of the
following sections are not shown in this printout but in the supplementary electronic
version of this thesis.

G.1. Semantic Algebras

In this section, we formalize the semantic domains of values of MiniMaple and Why3ML
and also define their corresponding operations.

G.2. Auxiliary Functions and Predicates

In this section, we declare/define the auxiliary functions and predicates which are
used in the proof.

G.3. Soundness Statements

In this section, we formulate the soundness statements for the syntactic domains of
command sequences, commands, expressions and identifiers of MiniMaple.

G.4. Proof

In this section, we give the proof of the soundness of command sequences, assignment,
conditional and while-loop commands respectively.

G.5. Lemmas

In this section, we formulate and discuss the lemmas used in the proof.

153

G. Proof of the Soundness of the Translation

G.6. Definitions

In this section, we give the various definitions of the Why3ML and MiniMaple con-
structs.

G.7. Why3 Semantics

In this section, we formalize the definitions of Why3ML operational semantics as given
in [63] in order to make this document standalone.

G.8. Derivations

In this section, we give the derivation rules for the operational semantics of Why3
while-loop. These derivations are already used in the proof of the soundness of while-
loop command.

154

Bibliography

[1] Abramsky, Samson and Jung, Achim. Domain Theory, volume 3. Oxford Uni-
versity Press, Oxford, UK, 1994.

[2] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge Uni-
versity Press, Cambridge, UK, 1996.

[3] A. A. Adams, H. Gottliebsen, S. A. Linton, and U. Martin. Automated Theorem
Proving in Support of Computer Algebra: Symbolic Definite Integration as a
Case Study. In ISSAC ’99: International Symposium on Symbolic and Algebraic
Computation, pages 253–260, Vancouver, British Columbia, Canada, 1999. ACM
Press, New York.

[4] A. A. Adams, Hanne Gottliebsen, Steve Linton, and Ursula Martin. VSDITLU:
A Verifiable Symbolic Definite Integral Table Look-Up. In Harald Ganzinger,
editor, CADE-16, 16th International Conference on Automated Deduction, vol-
ume 1632 of Lecture Notes in Computer Science, pages 112–126, Trento, Italy,
July 7–10, 1999. Springer.

[5] Andrew Adams, Martin Dunstan, Hanne Gottliebsen, Tom Kelsey, Ursula Mar-
tin, and Sam Owre. Computer Algebra Meets Automated Theorem Proving:
Integrating Maple and PVS. In Richard J. Boulton and Paul B. Jackson, ed-
itors, TPHOLs 2001: 14th International Conference on Theorem Proving in
Higher Order Logics, volume 2152 of Lecture Notes in Computer Science, pages
27–42, Edinburgh, Scotland, UK, September 3–6, 2001. Springer.

[6] Albert Einstein. The Meaning of Relativity. Methuen and Co. Ltd., London,
UK, fourth edition, 1950.

[7] Aldor. http://www.aldor.org/.

[8] Christopher Anderson, Paola Giannini, and Sophia Drossopoulou. Towards
Type Inference for JavaScript. In 19th European Conference on Object-Oriented
Programming (ECOOP 2005), LNCS 3586, pages 428–453. Springer, 2005.

[9] Anthony Narkawicz and César Muñoz and Gilles Dowek. Formal Verification of
Air Traffic Prevention Bands Algorithms. Technical Memorandum NASA/TM-
2010-216706, NASA, Langley Research Center, Hampton VA 23681-2199, USA,
June 2010.

[10] Anthony Narkawicz and César Muñoz and Jeffrey Maddalon. A Mathematical
Analysis of Air Traffic Priority Rules. In Proceedings of the 12th AIAA Aviation
Technology, Integration, and Operations (ATIO) Conference, AIAA-2012-5544,

155

http://www.aldor.org/

Bibliography

Indianapolis, Indiana, USA, September 2012.

[11] ANTLR v3. http://www.antlr.org/.

[12] Clemens Ballarin, Karsten Homann, and Jacques Calmet. Theorems and Algo-
rithms: an Interface between Isabelle and Maple. In ISSAC ’95: International
Symposium on Symbolic and Algebraic Computation, pages 150–157, Montreal,
Quebec, Canada, July 10–12, 1995. ACM Press, New York.

[13] Mike Barnett, Boryuh Evan Chang, Robert Deline, Bart Jacobs, and K. Rus-
tan M. Leino. Boogie: A Modular Reusable Verifier for Object-Oriented Pro-
grams. In Formal Methods for Components and Objects: 4th International Sym-
posium, FMCO 2005, volume 4111 of LNCS, pages 364–387. Springer, 2006.

[14] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# Pro-
gramming System: An Overview. In CASSIS’2004: International Workshop
on Construction and Analysis of Safe, Secure, and Interoperable Smart Devices,
volume 3362 of Lecture Notes in Computer Science, pages 49–69, Marseille,
France, March 10–13, 2004. Springer, Berlin.

[15] Clark Barrett and Sergey Berezin. CVC Lite: A New Implementation of the Co-
operating Validity Checker. In Computer Aided Verification: 16th International
Conference, CAV 2004, Boston, MA, USA, July 13–17, 2004, volume 3114 of
LNCS, pages 515–518. Springer, 2004.

[16] Gilles Barthe, Guillaume Dufay, Line Jakubiec, Bernard Serpette, and
Simão Melo de Sousa. A Formal Executable Semantics of the JavaCard Platform.
In David Sands, editor, Programming Languages and Systems, volume 2028 of
Lecture Notes in Computer Science, pages 302–319. Springer Berlin Heidelberg,
2001.

[17] Patrick Baudin, Jean C. Filliâtre, Thierry Hubert, Claude Marché, Benjamin
Monate, Yannick Moy, and Virgile Prevosto. ACSL: ANSI C Specification Lan-
guage (preliminary design V1.2), preliminary edition, May 2008.

[18] Andrej Bauer, Edmund Clarke, and Xudong Zhao. Analytica — An Experi-
ment in Combining Theorem Proving and Symbolic Computation. Journal of
Automated Reasoning, 21(3):295–325, 1998.

[19] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Verification
of Object-Oriented Software: The KeY Approach. Springer, 2007.

[20] Bertot, Yves and Castéran, Pierre and Huet, Gérard (informaticien) and Paulin-
Mohring, Christine. Interactive Theorem Proving and Program Development :
Coq’Art : The Calculus of Inductive Constructions. Texts in theoretical com-
puter science. Springer, Berlin, New York, 2004.

[21] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paske-
vich. Why3: Shepherd Your Herd of Provers. In Boogie 2011: First Inter-
national Workshop on Intermediate Verification Languages, Wroc law, Poland,
August 2011.

156

http://www.antlr.org/

Bibliography

[22] Sascha Böhme, Michal Moskal, Wolfram Schulte, and Burkhart Wolff. HOL-
Boogie – An Interactive Prover-Backend for the Verifying C Compiler. Journal
of Automated Reasoning, 44(1-2):111–144, 2010.

[23] Egon Börger. High Level System Design and Analysis Using Abstract State
Machines. In Proceedings of the International Workshop on Current Trends in
Applied Formal Method: Applied Formal Methods, FM-Trends 98, pages 1–43,
London, UK, 1999. Springer-Verlag.

[24] Egon Börger and Wolfram Schulte. A Programmer Friendly Modular Definition
of the Semantics of Java. In Formal Syntax and Semantics of Java, pages 353–
404, London, UK, 1999. Springer-Verlag.

[25] Wieb Bosma, John Cannon, and Graham Matthews. Programming with Alge-
braic Structures: Design of the MAGMA Language. In ISSAC ’94: International
Symposium on Symbolic and Algebraic Computation, pages 52–57, Oxford, UK,
July 20–22, 1994. ACM Press, NY.

[26] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma Algebra
System I: The User Language. Journal of Symbolic Computation, 24(3–4):235 –
265, 1997.

[27] D Bruns. Formal Semantics for the Java Modeling Language. PhD thesis,
Universität Karlsruhe, Germany, 2009.

[28] B. Buchberger. Theorema: A Proving System Based on Mathematica. The
Mathematica Journal, 8(2):247–252, 2001.

[29] Bruno Buchberger, Adrian Craciun, Tudor Jebelean, et al. Theorema: Towards
Computer-Aided Mathematical Theory Exploration. Journal of Applied Logic,
4(4):470–504, 2006.

[30] Bruno Buchberger, Tudor Jebelean, et al. A Survey of the Theorema Project.
In Wolfgang Küchlin, editor, ISSAC’97 International Symposium on Symbolic
and Algebraic Computat ion, pages 384–391, Maui, Hawaii, July 21–23, 1997.
ACM Press, New York.

[31] Bundgaard, Jørgen and Schultz, Lennart. A Denotational (Static) Semantics
Method for Defining Ada Context Conditions. In Towards a Formal Description
of Ada, pages 21–212, London, UK, UK, 1980. Springer-Verlag.

[32] Lilian Burdy, Yoonsik Cheon, David Cok, Michael D. Ernst, Joe Kiniry, Gary T.
Leavens, K. Rustan M. Leino, and Erik Poll. An Overview of JML Tools and
Applications. Software Tools for Technology Transfer, 7(3):212–232, June 2005.

[33] C. Marché and C. Paulin-Mohring and X. Urbain. The KRAKATOA Tool for
Certification of JAVA/JAVACARD Programs Annotated in JML. The Journal
of Logic and Algebraic Programming, 58(1–2):89 – 106, 2004.

[34] Luca Cardelli. Type Systems. In Allen B. Tucker, editor, The Computer Science
and Engineering Handbook, pages 2208–2236. CRC Press, 1997.

[35] J. Carette and S. Forrest. Property Inference for Maple: an Application of

157

Bibliography

Abstract Interpretation. In Calculemus, pages 5–19, 2007.

[36] Jacques Carette and Stephen Forrest. Mining Maple Code for Contracts. In
Silvio Ranise and Anna Bigatti, editors, Calculemus, ENTCS. Elsevier, 2006.

[37] Jacques Carette and Michael Kucera. Partial Evaluation of Maple. In Proceed-
ings of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-
based Program Manipulation, PEPM ’07, pages 41–50. ACM Press, 2007.

[38] Gareth Carter, Rosemary Monahan, and Joseph M. Morris. Software Refinement
with Perfect Developer. In SEFM’05: Third IEEE International Conference on
Software Engineerin g and Formal Methods, pages 363–373, Koblenz, Germany,
September 5–9, 2005. IEEE Computer Society.

[39] Kalisyk Cezary and Freek Wiedijk. Certified Computer Algebra on Top of an
Interactive Theorem Prover. In Calculemus 2007 — 14th Symposium on the
Integration of Symbolic Computation and Mechanized Reasoning, LNAI, Hagen-
berg, Austria, June 27–30, 2007. Springer.

[40] Charles Wallace. The Semantics of the C++ Programming Language. In Speci-
fication and Validation Methods, pages 131–164. Oxford University Press, 1993.

[41] Yoonsik Cheon. Inheritance in Larch Interface Specification Languages, its Se-
mantic Foundation and Formal Semantics. In J. Grundy, M. Schwenke, and
T. Vickers, editors, Proceedings of International Refinement Workshop & For-
mal Methods Pacific (IRW/FMP) ’98, pages 81–99, Canberra, Australia, 1998.
Springer-Verlag.

[42] Christian Dönch. Bivariate Difference-Differential Dimension Polynomials and
Their Computation in Maple. Technical report, Research Institute for Symbolic
Computation (RISC), Johannes Kepler University (JKU), Linz, 2009.

[43] Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger Her-
manns, editor, Proceedings of the 19th International Conference on Computer
Aided Verification (CAV ’07), volume 4590 of Lecture Notes in Computer Sci-
ence, pages 298–302. Springer-Verlag, July 2007. Berlin, Germany.

[44] E. M. Clarke, A. S. Gavlovski, K. Sutner, and W. Windsteiger. Analytica
V: Towards the Mordell-Weil Theorem. In A. Bigatti and S. Ranise, editors,
Calculemus’06, 13th Symposium on the Integration of Symbolic Computation
and Mechanized Reasoning, Genova, Italy, July 2–6, 2006.

[45] Sylvain Conchon. SMT Techniques and their Applications: from Alt-Ergo to
Cubicle. Thèse d’habilitation, Université Paris-Sud, December 2012. In English,
http://www.lri.fr/~conchon/publis/conchonHDR.pdf.

[46] Cuoq, Pascal and Kirchner, Florent and Kosmatov, Nikolai and Prevosto, Virgile
and Signoles, Julien and Yakobowski, Boris. Frama-C: A Software Analysis
Perspective. In Proceedings of the 10th International Conference on Software
Engineering and Formal Methods, SEFM’12, pages 233–247, Berlin, Heidelberg,
2012. Springer-Verlag.

158

http://www.lri.fr/~conchon/publis/conchonHDR.pdf

Bibliography

[47] D. Bjørner and C.B. Jones. Algol 60, Formal Specification and Software Devel-
opment, volume Chapter 6. Prentice-Hall, Englewood Cliffs, NJ, 1982.

[48] D. Bjørner and C.B. Jones. Pascal, Formal Specification and Software Develop-
ment, volume Chapter 7. Prentice-Hall, Englewood Cliffs, NJ, 1982.

[49] D. Bjørner, C.B. Jones editors. Formal Specification & Software Development.
Prentice-Hall, 1982.

[50] Schmidt David A. The Structure of Typed Programming Languages. MIT Press,
Cambridge, MA, USA, 1994.

[51] Leonardo De Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In
Proceedings of the Theory and Practice of Software, 14th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Sys-
tems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008. Springer-
Verlag.

[52] Decker, Wolfram and Greuel, Gert-Martin and Pfister, Gerhard and Schöne-
mann, Hans. Singular 3-1-6 — A Computer Algebra System for Polynomial
Computations. http://www.singular.uni-kl.de, 2012.

[53] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A Theorem Prover
for Program Checking. J. ACM, 52(3):365–473, May 2005.

[54] Andreas Dolzmann and Thomas Sturn. REDLOG: Computer Algebra Meets
Computer Logic. SIGSAM Bulletin, 31(2):2–9, 1997.

[55] Dubois, Catherine and Hardin, Thérése and Donzeau-Gouge, Véronique. Build-
ing Certified Components within FOCAL. In Loidl, Hans-Wolfgang, editor,
Trends in Functional Programming, volume 5 of Trends in Functional Program-
ming, pages 33–48. Intellect, 2004.

[56] Martin Dunstan, Tom Kelsey, Steve Linton, and Ursula Martin. Lightweight
Formal Methods for Computer Algebra Systems. In Oliver Gloor, editor, ISSAC
1998: International Symposium on Symbolic and Algebraic Computation, pages
80–87, Rostock, Germany, August 13–15, 1998. ACM Press.

[57] Martin Dunstan, Tom Kelsey, Ursula Martin, and Steve Linton. Formal Methods
for Extensions to CAS. In Jeannette M. Wing, Jim Woodcock, and Jim Davies,
editors, FM’99 - World Congress on Formal Methods in the Development of
Computing Systems, volume 1709 of Lecture Notes in Computer Science, pages
1758–1777, Toulouse, France, September 20-24, 1999. Springer.

[58] Egon Börger and Dean Rosenzweig. A Mathematical Definition of Full Prolog.
Science of Computer Programming, 24(3):249–286, 1995.

[59] Erik Poll and Simon Thompson. The Type System of Aldor. Technical Report
11-99, Computing Laboratory, University of Kent at Canterbury, Kent CT2
7NF, UK, July 1999.

[60] Fantechi, Alessandro and Fokkink, Wan and Morzenti, Angelo. Some Trends in
Formal Methods Applications to Railway Signaling, pages 61–84. John Wiley &

159

http://www.singular.uni-kl.de

Bibliography

Sons, Inc., 2012.

[61] Stéphane Fechter. An Object-Oriented Model for the Certified Computer Alge-
bra Library. In FMOODS 2002, Formal Methods for Open Object-Based Dis-
tributed Systems, PhD workshop, Twente, The Netherlands, March 20–22, 2002.

[62] Fechter, Stéphane. Sémantique des traits orientés objet de Focal. PhD thesis,
Université Pierre et Marie Curie (UPMC), 2005. Type : Thèse de Doctorat
– Soutenue le : 2005-07-18 – Dirigée par : Hardin, Thérèse – Encadrée par :
DUBOIS Catherine.

[63] Jean-Christophe Filliâtre. Why: an Intermediate Language for Program Veri-
fication. A Tutorial Lecture at Summer School, 2007. https://www.lri.fr/

~filliatr/types-summer-school-2007/notes.pdf.

[64] Jean-Christophe Filliâtre. Deductive Software Verification. International Jour-
nal on Software Tools for Technology Transfer, 13(5):397–403, 2011.

[65] Jean-Christophe Filliâtre. Verifying Two Lines of C with Why3: an Exercise
in Program Verification. In Verified Software: Theories, Tools and Experiments
(VSTTE), Philadelphia, USA, January 2012.

[66] Jean-Christophe Filliâtre. One Logic to Use Them All. In Bonacina, Maria
Paola, editor, Automated Deduction – CADE-24, volume 7898 of Lecture Notes
in Computer Science, pages 1–20. Springer Berlin Heidelberg, 2013.

[67] Robert W. Floyd. Assigning Meanings to Programs. In J. T. Schwartz, editor,
Proceedings of a Symposium on Applied Mathematics, volume 19 of Mathemat-
ical Aspects of Computer Science, pages 19–31, Providence, 1967. American
Mathematical Society.

[68] FriCAS. http://fricas.sourceforge.net/.

[69] Peter Fritzson. Static and Strong Typing for Extended Mathematica. In In-
novation in Mathematics: Proceedings of the Second International Mathematica
Symposium, IMS-97, pages 153–160, 1997.

[70] Michael Furr, Jong-hoon (David) An, Jeffrey S. Foster, and Michael Hicks. Static
Type Inference for Ruby. In Proceedings of the 2009 ACM Symposium on Applied
Computing, SAC ’09, pages 1859–1866, New York, NY, USA, 2009. ACM.

[71] Gary T. Leavens and Yoonsik Cheon. Design by Contract with JML. A Tutorial,
2006. ftp://ftp.cs.iastate.edu/pub/leavens/JML/jmldbc.pdf.

[72] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language
Specification, The (3rd Edition) (Java (Addison-Wesley)). Addison-Wesley Pro-
fessional, 2005.

[73] Hanne Gottliebsen, Tom Kelsey, and Ursula Martin. Hidden Verification for
Computational Mathematics. Journal of Symbolic Computation, 39(5):539–567,
2005.

[74] Benjamin Grégoire and Assia Mahboubi. Proving Equalities in a Commutative
Ring Done Right in Coq. In Joe Hurd and Thomas F. Melham, editors, TPHOls

160

https://www.lri.fr/~filliatr/types-summer-school-2007/notes.pdf
https://www.lri.fr/~filliatr/types-summer-school-2007/notes.pdf
http://fricas.sourceforge.net/
ftp://ftp.cs.iastate.edu/pub/leavens/JML/jmldbc.pdf

Bibliography

2005, Theorem Proving in Higher Order Logics, 18th International Conference,
volume 3603 of Lecture Notes in Computer Science, Oxford, UK, August 22–25,
2005. Springer.

[75] Gronski, K. Knowles, A. Tomb, S. N. Freund, and C. Flanagan. Sage: Hy-
brid Checking for Flexible Specifications. In R. Findler, editor, Scheme and
Functional Programming Workshop, pages 93–104, 2006.

[76] J. V. Guttag, J. J. Horning, Withs. J. Garl, K. D. Jones, A. Modet, and J. M.
Wing. Larch: Languages and Tools for Formal Specification. In Texts and
Monographs in Computer Science. Springer-Verlag, 1993.

[77] John Harrison and Laurent Théry. Extending the HOL Theorem Prover with a
Computer Algebra System to Reason about the Reals. In Jeffrey J. Joyce and
Carl Seger, editors, 1993 International Workshop on the HOL Theorem Proving
System and its Applications, volume 780 of Lecture Notes in Computer Science,
pages 174–184, Vancouver, Canada, August 1993. Springer.

[78] John Harrison and Laurent Théry. Reasoning About the Reals: the Marriage
of HOL and Maple. In Andrei Voronkov, editor, LPAR ’93: 4th International
Conference on Logic Programming and Automated Reasoning, volume 698 of
Lecture Notes in Computer Science, St. Petersburg, Russia, July 13–20, 1993.
Springer.

[79] Phillip Heidegger and Peter Thiemann. Recency Types for Analyzing Scripting
Languages. In Theo D’Hondt, editor, ECOOP 2010 – Object-Oriented Pro-
gramming, volume 6183 of Lecture Notes in Computer Science, pages 200–224.
Springer Berlin Heidelberg, 2010.

[80] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communica-
tion of ACM, 12(10):576–580, October 1969.

[81] C.A.R. Hoare. Proof of Correctness of Data Representations. Acta Informatica,
1(4):271–281, 1972.

[82] Hudak, Paul. The Haskell School of Expression: Learning Functional Program-
ming through Multimedia. Cambridge University Press, June 2000.

[83] Andrew Ireleand, Bill J. Ellis, et al. An Integrated Approach to High Integrity
Software Verification. Journal of Automated Reasoning, 36(4):379–410, 2006.

[84] Isabelle Attali and Denis Caromel and Marjorie Russo. A Formal and Executable
Semantics for Java. Technical Report , Proceedings of Formal Underpinnings of
Java, an OOPSLA’98 Workshop, Vancouver, CA, 1998.

[85] Daniel Jackson. Software Abstractions — Logic, Language, and Analysis. MIT
Press, Cambridge, MA, 2006.

[86] John Rushby. Formal Methods and the Certification of Critical Systems. Tech-
nical Report SRI-CSL-93-7, Computer Science Laboratory, SRI International,
Menlo Park, CA, December 1993. Also issued under the title Formal Meth-
ods and Digital Systems Validation for Airborne Systems as NASA Contractor

161

Bibliography

Report 4551, December 1993.

[87] John Rushby. New Challenges In Certification For Aircraft Software. In San-
joy Baruah and Sebastian Fischmeister, editors, Proceedings of the Ninth ACM
International Conference On Embedded Software: EMSOFT, pages 211–218,
Taipei, Taiwan, 2011. ACM.

[88] Cliff B. Jones. Systematic Software Development Using VDM. Prentice-Hall,
Upper Saddle River, NJ, 1990.

[89] Tom Kelsey. Formal Methods and Computer Algebra: A Larch Specification
of AXIOM Categories and Functors. PhD thesis, School of Mathematical and
Computational Sciences, University of St Andrews, December 1999.

[90] Kenneth Knowles, Aaron Tomb, Jessica Gronski, Stephen N. Freund, and Cor-
mac Flanagan. SAGE: Unified Hybrid Checking for Firstclass Types, General
Refinement Types, and Dynamics (extended report). Technical report, Uni-
versity of California, Santa Cruz, USA, http://sage.soe.ucsc.edu/sage-tr.
pdf, 2006.

[91] Muhammad Taimoor Khan. A Type Checker for MiniMaple. RISC Technical
Report 11-05, also DK Technical Report 2011-05, Research Institute for Sym-
bolic Computation, Linz, 2011.

[92] Muhammad Taimoor Khan. Towards a Behavioral Analysis of Computer Alge-
bra Programs. RISC Technical Report 11-13, also DK Technical Report 2011-13,
Research Institute for Symbolic Computation, University of Linz, 2011.

[93] Muhammad Taimoor Khan. Formal Semantics of a Specification Language for
MiniMaple. DK Technical Report 2012-06, Research Institute for Symbolic
Computation, University of Linz, April 2012.

[94] Muhammad Taimoor Khan. Formal Semantics of MiniMaple. DK Technical
Report 2012-01, Research Institute for Symbolic Computation, University of
Linz, January 2012.

[95] Muhammad Taimoor Khan. On the Formal Semantics of MiniMaple and its
Specification Language. In Proceedings of Frontiers of Information Technology,
pages 169–174. IEEE Computer Society, 2012.

[96] Muhammad Taimoor Khan. On the Formal Verification of Maple Programs.
DK Technical Report 2013-06, Doktoratskolleg, Linz, July 2013.

[97] Muhammad Taimoor Khan. Translation of MiniMaple to Why3ML. DK Tech-
nical Report 2013-02, Doktoratskolleg, Linz, February 2013.

[98] Muhammad Taimoor Khan. On the Soundness of the Translation of MiniMaple
to Why3ML. DK Technical Report 2014-03, Research Institute for Symbolic
Computation, University of Linz, February 2014.

[99] Muhammad Taimoor Khan and Wolfgang Schreiner. Towards a Behavioral
Analysis of Computer Algebra Programs (Extended Abstract). In Paul Petters-
son and Cristina Seceleanu, editors, Proceedings of the 23rd Nordic Workshop

162

http://sage.soe.ucsc.edu/sage-tr.pdf
http://sage.soe.ucsc.edu/sage-tr.pdf

Bibliography

on Programming Theory (NWPT’11), pages 42–44, Vasteras, Sweden, October
2011.

[100] Muhammad Taimoor Khan and Wolfgang Schreiner. On the Formal Specifica-
tion of Maple Programs. In Johan Jeuring, John A. Campbell, Jacques Carette,
Gabriel Dos Reis, Petr Sojka, Makarius Wenzel, and Volker Sorge, editors, Intel-
ligent Computer Mathematics, volume 7362 of LNCS, pages 443–447. Springer,
2012.

[101] Muhammad Taimoor Khan and Wolfgang Schreiner. Towards the Formal Spec-
ification and Verification of Maple Programs. In Johan Jeuring, John A. Camp-
bell, Jacques Carette, Gabriel Dos Reis, Petr Sojka, Makarius Wenzel, and
Volker Sorge, editors, Intelligent Computer Mathematics, volume 7362 of LNCS,
pages 231–247. Springer, 2012.

[102] Muhammad Taimoor Khan and Wolfgang Schreiner. A Verification Framework
for Minimaple Programs (Extended Abstract). ACM Communication in Com-
puter Algebra, 47(3/4):98–99, January 2014.

[103] Anneke Kleppe and Jos Warmer. An Introduction to the Object Constraint
Language (OCL). In TOOLS 2000: 33rd International Conference on Tech-
nology of Object-Oriented Languages and Systems, page 456, St. Malo, France,
June 5–8, 2000. IEEE Computer Society.

[104] Christoph Koutschan. Holonomic Functions (User’s Guide). RISC Report Series
10-01, Research Institute for Symbolic Computation, University of Linz, January
2010.

[105] Gary T. Leavens and Yoonsik Cheon. Preliminary Design of Larch/C++. In
U. Martin and J. Wing, editors, First First International Workshop on Larch,
Workshops in Computing Science, pages 159–184, Deadham, MA, July 13–15,
1992. Springer, Berlin.

[106] Sergio Maffeis, JohnC. Mitchell, and Ankur Taly. An Operational Semantics for
JavaScript. In G. Ramalingam, editor, Programming Languages and Systems,
volume 5356 of Lecture Notes in Computer Science, pages 307–325. Springer
Berlin Heidelberg, 2008.

[107] Dan Maharry. TypeScript Revealed. Apress, Berkely, CA, USA, 1st edition,
2013.

[108] Assia Mahboubi. Programming and Certifying a CAD Algorithm in the Coq Sys-
tem. In Thierry Coquand, Henri Lombardi, and Marie-Françoise Roy, editors,
Mathematics, Algorithms, Proofs, number 05021 in Dagstuhl Seminar Proceed-
ings. IBFI, Germany, 2005.

[109] Assia Mahboubi. Proving Formally the Implementation of an Efficient gcd Al-
gorithm for Polynomials. In Ulrich Furbach and Natarajan Shankar, editors,
IJCAR 2006, Third International Joint Conference on Automated Reasoning,
volume 4130 of Lecture Notes in Computer Science, pages 438–452, Seattle,

163

Bibliography

WA, USA, August 17–20, 2006. Springer.

[110] Assia Mahboubi. Implementing the Cylindrical Algebraic Decomposition within
the Coq System. Mathematical Structures in Computer Science, 17(1):99–127,
2007.

[111] MapleSoft. http://www.maplesoft.com/.

[112] Marc Vale. The Evolving Algebra Semantics of COBOL – Part 1: Programs
and Control. Technical Report CSE-TR-162-93, University of Michigan, EECS
Department, Ann Arbor, MI, 1993.

[113] Maxima, A Computer Algebra System. http://maxima.sourceforge.net/,
2011.

[114] Meertens, L. On Static Scope Checking in ALGOL 68. ALGOL Bulletin, pages
45–58, March 1973.

[115] Mike Spivey. Towards a Formal Semantics for the Z Notation. Technical Report
PRG41, OUCL, October 1984.

[116] Michael B. Monagan. Gauss: A Parameterized Domain of Computation Sys-
tem with Support for Signature Functions. In Proceedings of the International
Symposium on Design and Implementation of Symbolic Computation Systems,
DISCO ’93, pages 81–94. Springer-Verlag, 1993.

[117] Peter D. Mosses. Modular Structural Operational Semantics. Journal of Logic
and Algebraic Programming, 60-61:195–228, 2004.

[118] Peter D. Mosses. Formal Semantics of Programming Languages: – An Overview.
Electronic Notes in Theoretical Computer Science, 148(1):41 – 73, 2006. Pro-
ceedings of the School of SegraVis Research Training Network on Foundations
of Visual Modelling Techniques (FoVMT 2004) Foundations of Visual Modelling
Techniques 2004.

[119] Robert Muller. M-LISP: A Representation-independent Dialect of LISP with
Reduction Semantics. ACM Transactions on Programming Languages and Sys-
tems, 14(4):589–616, October 1992.

[120] OpenAXIOM. http://www.open-axiom.org/.

[121] William S. Page. AXIOM: Open Source Computer Algebra System. ACM
Communincations in Computer Algebra, 41(3):114–114, September 2007.

[122] Papaspyrou, Nikolaos S. Denotational Sematics of ANSI C. Computer Standards
and Interfaces, 23(3):169–185, July 2001.

[123] PARI Library. http://pari.math.u-bordeaux.fr.

[124] Lawrence C. Paulson. Isabelle: a Generic Theorem Prover. Number 828 in
Lecture Notes in Computer Science. Springer – Berlin, 1994.

[125] Henrik Persson. Certified Computer Algebra. In Types summer school’99: The-
ory and practice of formal proofs, Giens, France, August 30 – September 10,
1999. INRIA.

164

http://www.maplesoft.com/
http://maxima.sourceforge.net/
http://www.open-axiom.org/
http://pari.math.u-bordeaux.fr

Bibliography

[126] Peter Gorm Larsen and Michael Meincke Arentoft and Brian Q. Monahan and
Stephen Bear. Towards A Formal Semantics Of The BSI/VDM Specification
Language. In In Information Processing 89, North-Holland, pages 95–100. IFIP,
North-Holland, 1989.

[127] Plotkin, G. D. A Structural Approach to Operational Semantics. Technical
Report DAIMI FN-19, Computer Science Department, Aarhus University, Ny
Munkegade, Building 540, DK-8000, Aarhus C, Denmark, 1981.

[128] Erik Poll and Simon Thompson. Adding the Axioms to AXIOM: Towards a
System of Automated Reasoning in Aldor. In Calculemus and Types ’98, Eind-
hoven, The Netherlands, July 13–15, 1998.

[129] Erik Poll and Simon Thompson. Integrating Computer Algebra and Reason-
ing through the Type System of Aldor. In Helene Kirchner and Christophe
Ringeissen, editors, Frocos 2000, Frontiers of Combining Systems, volume 1794
of Lecture Notes in Computer Science, pages 136–150, Nancy, France, March
22–24, March 2000. Springer.

[130] Virgile Prevosto. Certified Mathematical Hierarchies: The FoCal System. In
Thierry Coquand, Henri Lombardi, and Marie-Françoise Roy, editors, Math-
ematics, Algorithms, Proofs, volume 05021 of Dagstuhl Seminar Proceedings,
Schloss Dagstuhl, Germany, January 9–14, 2005. IBFI, Schloss Dagstuhl, Ger-
many.

[131] Prevosto, Virgile and Boulmé, Sylvain. Proof Contexts with Late Binding. In
Urzyczyn, Pawel, editor, Typed Lambda Calculi and Applications, volume 3461 of
Lecture Notes in Computer Science, pages 324–338. Springer Berlin Heidelberg,
2005.

[132] R. Milner, M. Tofte, R. Harper. The Definition of Standard ML. MIT Press,
Cambridge, 1990.

[133] R.D. Tennent. A Denotational Definition of the Programming Language Pascal.
Technical Report , Programming Research Group, Oxford University, 1978.

[134] REDUCE. http://reduce-algebra.sourceforge.net/.

[135] Rees, J and Clinger, W. Revised Report on the Algorithmic Language Scheme.
SIGPLAN Not., 21(12):37–79, December 1986.

[136] Schmidt, David A. Denotational Semantics: a methodology for language devel-
opment. William C. Brown Publishers, Dubuque, IA, USA, 1986.

[137] Wolfgang Schreiner. A Program Calculus. Technical report, Research Institute
for Symbolic Computation, Johannes Kepler University, Linz, Austria, Septem-
ber 2008.

[138] Wolfgang Schreiner. Computer-Assisted Program Reasoning Based on a Re-
lational Semantics of Programs. In Pedro Quaresma and Ralph-Johan Back,
editors, Proceedings First Workshop on CTP Components for Educational Soft-
ware (THedu’11), number 79 in Electronic Proceedings in Theoretical Computer

165

http://reduce-algebra.sourceforge.net/

Bibliography

Science (EPTCS), pages 124–142, Wroclaw, Poland, July 31, 2011, February
2012.

[139] Shoup’s Library. http://www.shoup.net/ntl/.

[140] SMT-LIB — The Satisfiability Modulo Theories Library, 2006. University of
Iowa, Iowa City, IA, http://combination.cs.uiowa.edu/smtlib.

[141] Volker Sorge. Non-Trivial Symbolic Computations in Proof Planning. In Hélène
Kirchner and Christophe Ringeissen, editors, FroCoS 2000: Third International
Workshop on Frontiers of Combining Systems, volume 1794 of Lecture Notes
in Computer Science, pages 121–135, Nancy, France, March 22-24, 2000, 2000.
Springer.

[142] SPAD. http://www.euclideanspace.com/maths/standards/program/spad/.

[143] Stoy, Joseph E. Denotational Semantics: The Scott-Strachey Approach to Pro-
gramming Language Theory. MIT Press, Cambridge, MA, USA, 1977.

[144] Sylvain Boulmé. Spécification d’un environnement dédié á la programmation
certifiée de bibliothéques de calcul formel. PhD thesis, Université Paris 6, De-
cember 2000.

[145] Sylvain Boulmé and Thérèse Hardin and Daniel Hirschkoff and Valérie
Ménissier-Morain and Renaud Rioboo. On the Way to Certify Computer Alge-
bra Systems. In Proceedings of the Calculemus workshop of FLOC’99 (Federated
Logic Conference, Trento, Italy), volume 23(3) of ENTCS, pages 370–385. Else-
vier, 1999.

[146] Gregory Tassey. The Economic Impacts of Inadequate Infrastructure for Soft-
ware Testing. Technical Report 02-3, National Institute of Standards and Tech-
nology, USA, May 2002.

[147] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.7.4,
2014.

[148] Overview of Theorema, 2006. Research Institute for Symbolic Compua-
tion (RISC), Johannes Kepler Unive rsity, Linz, Austria, http://www.risc.

uni-linz.ac.at/research/theorema.

[149] Laurent Théry. A Certified Version of Buchberger’s Algorithm. In CADE-15:
15th International Conference on Automated Deduction, number 1421 in LNAI,
pages 349–364, Lindau, Germany, July 5–10, 1998. Springer-Verlag.

[150] Peter Thiemann. Towards a Type System for Analyzing Javascript Programs.
In Proceedings of the 14th European Conference on Programming Languages and
Systems, ESOP’05, pages 408–422, Berlin, Heidelberg, 2005. Springer-Verlag.

[151] Simon Thompson. Logic and Dependent Types in the Aldor Computer Algebra
System. In Manfred Kerber and Michael Kohlhase, editors, Calculemus 2000:
Symbolic Computation and Automated Reasoning, pages 205–219, St. Andrews,
Scotland, August 6–7, 2000. A. K. Peters, Natick, MA.

[152] Simon Thompson, John Shackell, James Beaumont, and Leonid Timochouk.

166

http://www.shoup.net/ntl/
http://combination.cs.uiowa.edu/smtlib
http://www.euclideanspace.com/maths/standards/program/spad/
http://www.risc.uni-linz.ac.at/research/theorema
http://www.risc.uni-linz.ac.at/research/theorema

Bibliography

Atypical: Integrating Computer Algebra and Reasoning, 2003. http://www.

cs.kent.ac.uk/people/staff/sjt/Atypical.

[153] Tim Lambert and Peter Lindsay and Ken Robinson. Using Miranda as a First
Programming Language. Journal of Functional Programming, 3(1):5–34, 1993.

[154] Virgile Prevosto. Conception et Implantation du langage FoC pour le développe-
ment de logiciels certifiés. PhD thesis, Université Paris 6, Thése de doctorat,
2003.

[155] Frèdèric Vogels, Bart Jacobs, and Frank Piessens. A Machine Checked Sound-
ness Proof for an Intermediate Verification Language. In Mogens Nielsen, An-
toǹın Kuĉera, PeterBro Miltersen, Catuscia Palamidessi, Petr Tùma, and Frank
Valencia, editors, SOFSEM 2009: Theory and Practice of Computer Science,
volume 5404 of Lecture Notes in Computer Science, pages 570–581. Springer
Berlin Heidelberg, 2009.

[156] William Stein and David Joyner. SAGE: System for Algebra and Geometry
Experimentation. ACM SIGSAM Bulletin, 39(2):61–64, 2005.

[157] Wolfgang Windsteiger. A Set Theory Prover in Theorema: Implementation and
Practical Applications. PhD Thesis, May 2001.

[158] Winskel, Glynn. The Formal Semantics of Programming Languages: An Intro-
duction. MIT Press, Cambridge, MA, USA, 1993.

[159] Wolfram, Stephen. The Mathematica Book. Wolfram Media, Incorporated, 5
edition, 2003.

[160] Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and Proof.
Prentice-Hall, Inc., Upper Saddle River, NJ, 1996.

[161] Tian Zhao. Polymorphic Type Inference for Scripting Languages with Object
Extensions. In Proceedings of the 7th symposium on Dynamic languages, DLS
’11, pages 37–50, New York, NY, USA, 2011. ACM.

[162] M. Zhou and F. Winkler. Groebner bases in Difference-Differential Modules
and Difference-Differential Dimension Polynomials. Science in China Series A:
Mathematics, 51(9):1732–1752, 2008.

[163] Meng Zhou and Franz Winkler. Computing Difference-Differential Dimension
Polynomials by Relative Gröbner Bases in Difference-Differential Modules. Jour-
nal of Symbolic Computation, 43(10):726–745, October 2008.

167

http://www.cs.kent.ac.uk/people/staff/sjt/Atypical
http://www.cs.kent.ac.uk/people/staff/sjt/Atypical

Eidesstattliche Erklärung

Ich erkläre an Eides statt, daß ich die vorliegende Dissertation selbstständig und ohne
fremde Hilfe verfaßt, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht
habe.

Die vorliegende Dissertation ist mit dem elektronisch übermittelten Textdokument
identisch.

Linz, April 2014 Muhammad Taimoor Khan

169

Curriculum Vitae

Contact Information

Research Institute for Symbolic
Computation (RISC)

Office/Cell: +43 732 2468 9927/+43 680 237 9670

Altenbergerstraße 69 E-mail: muhammad.khan@dk-compmath.jku.at
A-4040 Linz, Austria WWW: http://www.risc.jku.at/people/mtkhan/

Personal Data

Name: Muhammad Taimoor Khan
Date of Birth: 5th of April 1978
Citizenship: Pakistani

Education

2009 – 2014 Doctoral Studies in ”Doctoral Program: Computational Mathematics” (DK)
Johannes Kepler University (JKU), Linz, Austria
Thesis: Formal Specification and Verification of Computer Algebra Software
Supervisor: Prof. Wolfgang Schreiner

2007 – 2008 M.Sc. in Advanced Distributed Systems (Distinction)
University of Leicester, UK
Project: Space Link Extension Service Management.
Supervisor: Prof. Reiko Heckel

1998 – 2000 M.Sc. in Computer Science (First Class)
The University of Bahawalpur, Pakistan
Project: WAP-based trading system.
Supervisor: Prof. Waqar Aslam

Publications

Refereed Papers

� Muhammad Taimoor Khan, Wolfgang Schreiner. A Verification Framework for
MiniMaple Programs (Extended Abstract . In: ACM Communications in Com-
puter Algebra, 47(3):98–99, ACM, September 2013, 38th International Sympo-
sium on Symbolic and Algebraic Computation (ISSAC).

171

http://www.risc.jku.at
http://www.risc.jku.at
mailto:muhammad.khan@dk-compmath.jku.at
http://www.risc.jku.at/people/mtkhan/dk10/
https://www.dk-compmath.jku.at/overview
file:www.jku.at
http://www.le.ac.uk
http://www.iub.edu.pk
http://www.issac-conference.org/2013/
http://www.issac-conference.org/2013/

� Muhammad Taimoor Khan. On the Formal Semantics of MiniMaple and its
Specification Language. In: Proceedings of the 10th International Conference on
Frontiers of Information Technology (FIT 2012), IEEE Digital Library, Decem-
ber 2012, pp. 169-174, ISBN 978-0-7695-4927-9/125.

� Muhammad Taimoor Khan, Wolfgang Schreiner. Towards the Formal Specifica-
tion and Verification of Maple Programs. In: Intelligent Computer Mathemat-
ics, Johan Jeuring, John A. Campbell, Jacques Carette, Gabriel Dos Reis, Petr
Sojka, Makarius Wenzel, Volker Sorge (ed.), Lecture Notes in Artificial Intelli-
gence (LNAI) 7362, pp. 231-247. July 2012. Springer Berlin/Heidelberg, ISBN
978-3-642-31373-8, Awarded with Best Student Paper Award.

� Muhammad Taimoor Khan, Wolfgang Schreiner. On the Formal Specification of
Maple Programs. In: Intelligent Computer Mathematics, Johan Jeuring, John
A. Campbell, Jacques Carette, Gabriel Dos Reis, Petr Sojka, Makarius Wenzel,
Volker Sorge (ed.), Lecture Notes in Artificial Intelligence (LNAI) 7362, pp.
442-446. July 2012. Springer Berlin/Heidelberg, ISBN 978-3-642-31373-8.

� Muhammad Taimoor Khan, Wolfgang Schreiner. Towards a Behavioral Analysis
of Computer Algebra Programs (Extended Abstract). In: Proceedings of the 23rd
Nordic Workshop on Programming Theory (NWPT’11), Paul Pettersson and
Cristina Seceleanu (ed.), pp. 42-44. October 2011. Vasteras, Sweden.

� Muhammad Taimoor Khan, Kashif Zia. Future Context-aware Pervasive Learn-
ing Environment: Smart Campus. Proc. of the Integration of Information Tech-
nology in Science, Gazimagusa, Turkish Republic of Northern Cyprus, January
16–18, 2007.

� Muhammad Taimoor Khan, Kashif Zia, Nadeem Daudpota, S.A. Hussain, Na-
jma Taimoor. Integrating Context-aware Pervasive Environments. Proc. of
the 2nd IEEE International Conference on Emerging Technologies, Peshawar,
Pakistan, pp. 683-688, IEEE, 2006.

� Babar Nazir, Muhammad Taimoor Khan. Fault Tolerant Job Scheduling in
Computational Grid. Proc. of the 2nd IEEE International Conference on Emerg-
ing Technologies, Peshawar, Pakistan, pp. 708-713, IEEE, 2006.

� M.A. Pasha, S.A. Hussain, Muhammad Akhlaq, Muhammad Taimoor Khan.
Using Bayesian Neural Network for Modeling Users in Location Tracking Per-
vasive Applications. Proc. of the International Conference on Information Tech-
nology and Applications, Quetta, Pakistan, 2005.

Technical Reports

� Muhammad Taimoor Khan, On the Soundness of the Translation of MiniMaple
to Why3ML. DK Report 2014-03, Johannes Kepler University, Linz-Austria.

� Muhammad Taimoor Khan, On the Verification of Maple Programs. DK Report
2013-06, Johannes Kepler University, Linz-Austria.

� Muhammad Taimoor Khan, Translation of MiniMaple to WhyML. DK Report
2013-02, Johannes Kepler University, Linz-Austria.

http://www.fit.edu.pk/
http://www.fit.edu.pk/
http://www.springerlink.com/content/e93p112736275568/
http://www.springerlink.com/content/e93p112736275568/
http://www.springerlink.com/content/a125486336008245/
http://www.springerlink.com/content/a125486336008245/
https://www.dk-compmath.jku.at/people/mtkhan/publications
https://www.dk-compmath.jku.at/people/mtkhan/publications
http://www.init.org.pk/papersandpublications/Paper6.pdf
http://www.init.org.pk/papersandpublications/Paper6.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4136943
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4136898
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4136898
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4136898
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4136898
https://www.dk-compmath.jku.at/people/mtkhan/publications
https://www.dk-compmath.jku.at/people/mtkhan/publications
https://www.dk-compmath.jku.at/people/mtkhan/publications
https://www.dk-compmath.jku.at/people/mtkhan/publications

� Muhammad Taimoor Khan, Formal Semantics of a Specification Language for
MiniMaple. DK Report 2012-06, Johannes Kepler University, Linz-Austria.

� Muhammad Taimoor Khan, Formal Verification of Space Missions Communi-
cation Protocols, ISBN 978-3-659-25299-0, LAP Lambert Academic Publishing,
2012 (Master’s Thesis).

� Muhammad Taimoor Khan, Formal Semantics of MiniMaple. DK Report 2012-
01, Johannes Kepler University, Linz-Austria.

� Muhammad Taimoor Khan, Towards a Behavioral Analysis of Computer Algebra
Programs. DK Report 2011-13, Johannes Kepler University, Linz-Austria.

� Muhammad Taimoor Khan, A Type Checker for MiniMaple. DK Report 2011-
05, Johannes Kepler University, Linz-Austria.

Posters

� Muhammad Taimoor Khan, Wolfgang Schreiner. A Verification Framework for
MiniMaple Programs. In: 38th International Symposium on Symbolic and Al-
gebraic Computation, June 2013.

National Conferences

� S.A. Hussain, Kashif Zia, Muhammad Taimoor Khan, Sajjad Ahmad, Umar
Farooq. Dynamic Contention Window for Quality of Service in IEEE 802.11
Networks. Proc. of the National Conference on Emerging Technologies, Karachi,
Pakistan, 2004.

Foreign Languages

English, fluent
German, intermediate level
French, basic level.

References

� Prof. Dr. Wolfgang Schreiner. Research Institute for Symbolic Computation,
Altenbergerstraße 69, 4040, Linz, Austria. Email: Wolfgang.Schreiner@risc.jku.at

� Prof. Dr. Renaud Rioboo. Computer Science Professor at ENSIIE and CNAM,
France. Email: renaud.rioboo@ensiie.fr.

� Prof. Dr. Reiko Heckel. Professor at School of Mathematics and Computer
Science, University of Leicester, UK. Email: reiko@mcs.le.ac.uk.

https://www.dk-compmath.jku.at/people/mtkhan/publications
https://www.dk-compmath.jku.at/people/mtkhan/publications
https://www.lap-publishing.com/catalog/details//store/ru/book/978-3-659-25299-0/formal -verification-of-space-missions-communication-protocols
https://www.lap-publishing.com/catalog/details//store/ru/book/978-3-659-25299-0/formal -verification-of-space-missions-communication-protocols
https://www.dk-compmath.jku.at/people/mtkhan/publications
https://www.dk-compmath.jku.at/people/mtkhan/publications
https://www.dk-compmath.jku.at/people/mtkhan/publications
https://www.dk-compmath.jku.at/people/mtkhan/publications
http://www.issac-conference.org/2013/
http://www.issac-conference.org/2013/
mailto: Wolfgang.Schreiner@risc.jku.at
http://www.ensiie.fr/~renaud.rioboo/
http://cedric.cnam.fr/index.php/labo/membre/view?id=226
mailto: renaud.rioboo@ensiie.fr
http://www.cs.le.ac.uk/people/rh122/
mailto: reiko@mcs.le.ac.uk

	Abstract
	Zusammenfassung
	Introduction
	State of the Art
	Computer Algebra and Type Systems
	Formal Semantics
	Formal Specification and Verification

	MiniMaple
	Background Study
	Challenges
	Overview of Syntax
	Running Example

	Formal Type System
	Background
	Type System for MiniMaple
	Types and Sub-typing
	Type Environment
	Typing Judgments
	Typing Rules
	Auxiliary Functions and Predicates

	A Type Checker for MiniMaple

	Formal Specification Language
	Formula Language
	Specification Elements
	Mathematical Theories
	Procedure Specifications
	Loop Specifications
	Assertions

	Example

	Formal Semantics
	Introduction
	Background
	Semantic Values
	Module Values
	Procedure Values
	Function Values
	List Values
	Sequence Values
	Environment Values
	State Values
	Lifted Values

	Semantics of Programs
	Commands
	Expressions

	Semantics of Specification Expressions
	Semantics of Specification Annotations
	Specification Declarations
	Procedure Specifications
	Loop Specifications
	Assertions

	Formal Verification
	Why3
	MiniMaple to Why3 Translation
	Commands
	Expressions
	Specification Expressions

	Example
	Translation
	Verification

	Soundness of Translation
	Soundness of Command Sequence
	Soundness of While-loop

	Application
	The Package ``DifferenceDifferential''
	Type Checking the Package
	Specifying the Package
	Concrete Data Type-based Specifications
	Abstract Data Type-based Specifications

	Verifying the Package
	Verification of Low-level Procedures
	Verification of High-level Procedures
	Verification of the High-level Procedure ``SP''

	Conclusions and Future Work
	Appendices
	Syntax of MiniMaple
	Syntax of the Specification Language for MiniMaple
	Type System of MiniMaple
	Logical Rules
	Auxiliary Functions
	Auxiliary Predicates

	Formal Semantics of MiniMaple
	 Semantic Algebras
	 Signatures of Valuation Functions
	 Auxiliary Functions and Predicates
	 Semantics

	Formal Semantics of the Specification Language for MiniMaple
	 Semantic Algebras
	 Signatures of Valuation Functions of Formula Language
	 Auxiliary Functions and Predicates
	 Semantics of Formula Language
	 Signatures of Valuation Functions for Specification Annotations
	 Semantics of Specification Annotations

	Translation of MiniMaple into Why3ML
	 Semantic Algebras
	 Signatures of Translation Functions
	 Auxiliary Functions and Predicates
	 Definition of Translation Functions

	Proof of the Soundness of the Translation
	Semantic Algebras
	 Auxiliary Functions and Predicates
	 Soundness Statements
	 Proof
	Lemmas
	 Definitions
	 Why3 Semantics
	 Derivations

	Bibliography

