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Kurzfassung

Differentialgleichungen werden seit langer Zeit intensiv studiert. Diverse Methoden für

spezielle Fälle wurden entwickelt. Dennoch gibt es bisher keinen allgemeinen Algorith-

mus zur Berechnung expliziter exakter Lösungen. Das wichtigste Ziel dieser Dissertation

ist die Entwicklung und Untersuchung neuer Methoden zur Berechnung exakter expli-

ziter Lösungen von algebraischen Differentialgleichungen. Hierfür wird das differentielle

Problem in ein algebraisch geometrisches umgewandelt, indem die Differentialgleichung

als algebraische Gleichung betrachtet wird. Eine solche Gleichung beschreibt eine alge-

braische Varietät und somit können Werkzeuge der algebraischen Geometrie angewendet

werden. Im Speziellen spielen Parametrisierungen von algebraischen Varietäten eine we-

sentliche Rolle bei der Lösung des Problems und beim Nachweis von Eigenschaften der

erhaltenen Lösungen. Eine allgemeine Idee zum Lösen autonomer algebraischer Diffe-

rentialgleichungen erster Ordnung wird präsentiert.

Das Hauptresultat der Dissertation ist die konkrete Anwendung der allgemeinen Idee auf

gewöhnliche und partielle Differentialgleichungen. Die Idee wird für autonome algebrai-

sche gewöhnliche Differentialgleichungen erster Ordnung vorgestellt. Die präsentierte

Methode ist eine Verallgemeinerung von bereits existierenden Algorithmen zur Berech-

nung rationaler Lösungen. Sie ermöglicht die Erweiterung zur Berechnung radikaler

Lösungen. Außerdem erlaubt sie eine weitere Verallgemeinerung auf algebraische ge-

wöhnliche Differentialgleichungen höherer Ordnung. Ein zweiter Fokus liegt in der An-

wendung der allgemeinen Idee auf partielle Differentialgleichungen in beliebig vielen

Variablen. Die präsentierte Methode reduziert das Problem auf ein anderes, für welches

Lösungsmethoden existieren. Diverse bekannte Differentialgleichungen lassen sich mit

dieser Methode lösen. Außerdem werden Klassen von Differentialgleichungen mit ratio-

nalen, radikalen oder algebraischen Lösungen präsentiert. Mit Hilfe linearer Transforma-

tionen wird eine Methode für gewisse nicht autonome Differentialgleichungen erreicht.

Die Methoden sind so konstruiert, dass die dadurch erhaltenen Lösungen bestimmte

Kriterien erfüllen. Es wird gezeigt, dass algebraische Lösungen von gewöhnlichen Diffe-

rentialgleichungen allgemeine Lösungen sind. Rationale Lösungen von partiellen Diffe-

rentialgleichungen sind bewiesenermaßen echt und vollständig.
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Abstract

Differential equations have been intensively studied for a long time. Various exact so-

lution methods have been proposed for specific cases. Nevertheless, there is no general

algorithm for finding explicit exact solutions. The main aim of this thesis is to develop

and investigate new methods for computing explicit exact solutions of algebraic differen-

tial equations. For this purpose, the differential problem is transformed into an algebraic

geometric one by considering the differential equation to be an algebraic equation. Such

an equation defines an algebraic variety and hence, tools from algebraic geometry can

be applied. In particular, parametrizations of algebraic varieties are intrinsically used

to solve the problem and prove properties of the obtained solutions. A general idea for

solving first-order autonomous algebraic differential equations is presented.

The main results of the thesis are applications of this general idea to ordinary and

partial differential equations. The idea is introduced for first-order autonomous algebraic

ordinary differential equations. The presented method is a generalization of an existing

algorithm for computing rational solutions. It admits an extension to the computation of

radical solutions. Moreover, it allows a further generalization to higher-order algebraic

ordinary differential equations.

A second focus lies on the application of the general idea to partial differential equations

in arbitrary many variables. The presented method reduces the problem to another one

for which solution methods exist. Various well-known differential equations are solved

by this method. Furthermore, classes of differential equations with rational, radical or

algebraic solutions are presented. With the help of linear transformations a solution

method for certain non-autonomous differential equations is achieved.

The procedures are constructed in such a way that the obtained solutions thereof sat-

isfy certain requirements. It is shown that algebraic solutions of ordinary differential

equations are general solutions. Rational solutions of partial differential equations are

proven to be proper and complete.
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research visit in Alcalá. I learned a lot from him in the many fruitful mathematical

discussions. In this respect I also want to thank Alberto Lastra. Both of them made

my visit a most valuable one.

I want to thank James H. Davenport for hosting me at the university of Bath and for

discussions with him and Matthew England on the topic of my research. Similarly, I

thank Moulay A. Barkatou for the chance to visit him at the university of Limoges.

Furthermore, I thank the colleagues and secretaries at the doctoral program “Compu-

tational Mathematics” and at RISC for their help and the friendly atmosphere at the

institutes. The interesting research discussions at RISC have been a motivation for

many new ideas.

My special thanks go to my family who helped me a lot to achieve this goal. It was

due to their continuous support throughout the years, that I was able to focus on my

studies and research.

This thesis is based on research supported by the Austrian Science Fund (FWF) in

the frame of the doctoral program “Computational Mathematics”, grant W1214-N15,

project DK11.

ix





Contents

1. Introduction 1

1.1. Historical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Differential Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1. Solutions of AODEs . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2. Solutions of APDEs . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3. Algebraic Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4. Differential Equations and Algebraic Hypersurfaces . . . . . . . . . . . . 8

2. Solution Method for AODEs 13

2.1. Rational Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1. Autonomous First-Order AODEs . . . . . . . . . . . . . . . . . . 14

2.1.2. Non-autonomous First-Order AODEs . . . . . . . . . . . . . . . . 15

2.2. Non-rational Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1. Radical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2. Other Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.3. Investigation of the Procedure . . . . . . . . . . . . . . . . . . . . 28

2.3. Extension to Higher-Order AODEs . . . . . . . . . . . . . . . . . . . . . 30

3. Solution Method for APDEs 35

3.1. Two Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1. Rational Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.2. Algebraic Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.3. Other Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2. Three Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3. The General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1. Rational Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.2. Other Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4. Further approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xi



Contents

4. Linear Transformations 81

4.1. Linear Transformations of First-Order APDEs . . . . . . . . . . . . . . . 82

4.1.1. Properties Preserved by Linear Transformations . . . . . . . . . . 85

4.1.2. Linear Transformations of Special Equations . . . . . . . . . . . . 89

4.2. Linear Transformations of Higher-Order APDEs . . . . . . . . . . . . . . 92

5. Conclusion 95

A. More Differential Algebra 97

B. Parametrizations 101

B.1. Rational Parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

B.1.1. Rational Parametrization of Curves . . . . . . . . . . . . . . . . . 102

B.1.2. Rational Parametrization of Surfaces . . . . . . . . . . . . . . . . 103

B.1.3. Rational Parametrization of Hypersurfaces . . . . . . . . . . . . . 109

B.2. Radical Parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

B.2.1. Radical Parametrization of Curves . . . . . . . . . . . . . . . . . 110

B.2.2. Radical Parametrization of Surfaces . . . . . . . . . . . . . . . . . 111

B.2.3. Radical Parametrization of Hypersurfaces . . . . . . . . . . . . . 112

B.3. Other Parametrizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

C. List of Differential Equations 115

C.1. First-Order AODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

C.2. Higher-Order AODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.3. First-Order APDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

D. Method of Characteristics 125

Index 127

Bibliography 131

Curriculum Vitae 139

xii



1. Introduction

In the literature one can choose among several exact methods in order to solve ordinary

and partial differential equations (see for instance [73, Section II.B]). The main aim of

the present work is to provide an alternative novel exact method for solving first-order

algebraic differential equations. Our method provides a tool for systematically solving

various well-known equations.

In this chapter we introduce the topic and we describe some of the ideas which the

method is based on. In Section 1.1 we give an overview of similar and more specific

methods and their historical background. Later we briefly describe the important no-

tions of differential algebra (Section 1.2) and algebraic geometry (Section 1.3). Basic

key facts of both areas are summarized. In the last part of the introduction we investi-

gate the relation between solutions of differential equations and algebraic hypersurfaces.

This relation figures the general idea of our method (Section 1.4).

In Chapter 2 we show how this idea can be applied to find radical solutions of first-order

autonomous algebraic ordinary differential equations. This generalizes some previously

known methods which are therefore briefly presented as well. We also give an idea of

further generalization to finding non-algebraic solutions. At the end of the chapter we

elaborate some advantages of the method.

Next we present a generalization of the new method to partial differential equations in

Chapter 3. We first bring up the idea for the case of two variables. All important aspects

of the procedure can be found there. The method is illustrated by examples and classes

of partial differential equations with rational solutions are given. As an intermediate

step we show the case of three variable separately before we extend the method to an

arbitrary number of variables.

Finally, in Chapter 4 we introduce linear transformations and their application for solv-

ing some non-autonomous differential equations. These transformations have been used

for solving and classifying algebraic ordinary differential equations. We show how the

ideas can be used for partial differential equations.
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1. Introduction

Additional information on differential algebra and algebraic geometry as well as an

extensive list of well-known ordinary and partial differential equations with computed

solutions can be found in the appendix.

The content of the thesis is based on the papers (co)authored by Grasegger [23, 21,

22]. Moreover, this thesis also contains further ideas and investigations. The main

contributions of the author are novel procedures for explicitly solving various classes of

algebraic differential equations. These include but are not restricted to

• autonomous algebraic ordinary differential equations of any order and rational

respectively radical solutions thereof,

• first-order autonomous algebraic partial differential equations (for arbitrary many

variables).

1.1. Historical Background

Recently algebraic-geometric solution methods for first-order algebraic ordinary differ-

ential equations (AODEs) have been investigated. A first result on computing solutions

of AODEs was presented in [30]. In this paper Hubert introduces a method for finding

implicit general and singular solutions of AODEs by computing Gröbner bases. Later

in Eremenko [15] a degree bound for rational solutions of a given AODE is computed.

Such a bound enables to find solutions by solving algebraic equations.

The starting point for algebraic-geometric methods, such as the one described in this

thesis, was an algorithm by Feng and Gao [17, 19]. This algorithm decides whether or

not an autonomous first-order AODE, F (y, y′) = 0, has a rational solution and in the

affirmative case computes it. This is done by transformation properties between different

proper curve parametrizations and by a degree bound on such parametrizations [62]

which leads to a degree bound on the solutions. Hence, existence of a rational solution

can be decided. From a rational solution a rational general solution can be deduced.

Efficiency of the algorithm is obtained by Laurent series and Padé approximants. The

basic idea of the algorithm is presented in Section 2.1.1.

Using the ideas of Feng and Gao several generalizations have been investigated since

then. Aroca, Cano, Feng and Gao [5] presented an algorithm for finding algebraic

solutions of first-order autonomous AODEs. Ngô and Winkler [44, 45, 46] introduced

2



1.2. Differential Algebra

a method for finding rational solutions of non-autonomous AODEs, F (x, y, y′) = 0.

Here, parametrizations of surfaces play an important role. On the basis of a proper

parametrization, the algorithm builds a so called associated system of first-order linear

ODEs for which solution methods exist. Based on invariant algebraic curves a solution

of the associated system leads to a rational general solution of the differential equation.

A short introduction to this method is given in Section 2.1.2.

First results on higher-order AODEs can be found in [27, 28, 29]. Given a proper rational

hypersurface parametrization the solutions of the AODE correspond to solutions of an

associated system.

As shown in [37] also one-dimensional systems of first-order AODEs can be treated in a

similar way.

For partial differential equations much less is known. Of course several solution methods

do exist and can be found in standard textbooks but the knowledge on explicit symbolic

solutions is worth further investigation. For linear and quasilinear equations solution

methods can be found in textbooks (see for instance [73]). The method of characteristics

for instance can be applied to quasilinear equations. However, it might not always give

an explicit solution. Using this method it is possible to transform a partial differen-

tial equation to a system of ordinary ones. The method of characteristic plays a role

in our procedure for partial differential equations. A generalization of the method of

characteristics to arbitrary first-order partial differential equations was investigated by

Lagrange and Charpit (compare [66]). However, we show that our method is essentially

different.

1.2. Differential Algebra

All necessary notions of differential algebra which are needed in this thesis can found in

standard textbooks such as Ritt [55] or Kolchin [33]. We recall some important aspects

here and refer to Appendix A for a little more information.

We consider the field of rational functions K(x1, . . . , xn) for some algebraically closed

field K of characteristic 0; in practice, one may think of K as the field C of complex

numbers. By ∂
∂xi

we denote the usual derivative by xi. Sometimes we might use the

abbreviations uxi = ∂u
∂xi

. In case n = 1 we also write x for x1 and ′ or d
dx

for ∂
∂xi

. For

3



1. Introduction

higher-order derivatives we use u(1) = u′ and recursively u(k) = (u(k−1))′. In case n = 2

we also write x for x1 and y for x2. Then K(x1, . . . , xn) together with the derivations

is a (partial) differential field , i. e. the derivations are linear with respect to addition

and fulfill the Leibniz rule and moreover ∂
∂xi

(
∂u
∂xj

)
= ∂

∂xj

(
∂u
∂xi

)
. Hence, we might use

shorthand notation

∂2

∂x2
j

=
∂

∂xj

(
∂

∂xj

)
,

∂k

∂xkj
=

∂

∂xj

(
∂k−1

∂xk−1
j

)
,

∂k1+...+kn

∂xk11 . . . ∂xknn
=

∂

∂xk11

(
. . .

(
∂

∂x
kn−1

n−1

(
∂

∂xknn

)))
.

As short hand notation we might also use u(k1,...,kn) = ∂k1+...+knu

∂x
k1
1 ...∂xknn

.

The ring of differential polynomials is denoted by K(x1, . . . , xn){u}. It consists of all

polynomials in u and its derivatives, i. e.

K(x1, . . . , xn){u} = K(x1, . . . , xn)[u, ux1 , . . . , uxn , ux1x1 , . . . , uxnxn , . . .] .

An algebraic differential equation (ADE) is defined by a differential polynomial F ∈
K(x1, . . . , xn){u} which is also a polynomial in x1, . . . , xn. We write

F (x1, . . . , xn, u, ux1 , . . . , uxn , ux1x1 , ux1x2 , . . . , ux1xn , . . . , uxnxn , . . .) = 0

for the considered differential equation. In case n = 1 this is an algebraic ordinary

differential equation (AODE). In case n > 1 it is an algebraic partial differential equation

(APDE). An ADE is called autonomous iff F ∈ K{u}, i. e. if the coefficients of F do not

depend on the variables of differentiation x1, . . . , xn. We call an ADE non-autonomous

if it is not necessarily autonomous.

1.2.1. Solutions of AODEs

Usually we want to describe solutions of ADEs by an expression which is as general as

possible, i. e. an expression which declares almost all solutions. Such an expression shall

be called a general solution. In the following we give a precise definition for the case of

AODEs. Let Σ be a prime differential ideal in K(x){u}. Then we call η a generic zero

4



1.2. Differential Algebra

of Σ iff for any differential polynomial P ∈ K(x){u} we have P (η) = 0 ⇐⇒ P ∈ Σ.

Such an η exists in a suitable extension field since Σ is prime.

Let F be an irreducible differential polynomial of order n. Then {F}, the radical

differential ideal generated by F , can be decomposed essential prime differential ideals

Σ1, . . . ,Σk (c. f. [55, Chapter II]).

{F} = Σ1 ∩ . . . ∩ Σk .

A prime divisor of an ideal is called essential if it does not contain any other prime

divisor. There is one component where the separant S := ∂F
∂u(n)

does not vanish. It is a

prime differential ideal

Σ1 = {F} : 〈S〉 = {P ∈ K(x){u} |SA ∈ {F}} .

This Σ1 represents the general component.

The other part {F, S} represents the singular component . It can be further decomposed

in Σ2 ∩ . . . ∩ Σk.

A zero of {F} is called a solution of F . A solution is called non-singular if it does

not annul the separant. Otherwise it is called singular . The non-singular zeros are all

contained in the general component.

A generic zero of Σ1 is called a general solution of F = 0. A general solution depends

on some transcendental constant. Every non-singular solutions can be expressed by a

certain evaluation of the constants in the general solution. No choice of evaluating the

constant yields a singular solution.

Example 1.1.

Let us consider the AODE, F (u, u′) = u′2 + u′ − 2u− x = 0. Then 1
2
(c + (c + x)2) is a

general solution. The separant of F is S = 2u′+ 1 which has solutions −x
2

+ k for some

constant k. We choose k = −1
8

such that the solution of the separant is also a solution

of F . Then −x
2
− 1

8
is a singular solution. It is easy to see that no choice of c in the

general solution would yield the singular one.

We say a general solution is rational if it is of the form u = akx
k+...+a1x+a0

bmxm+...+b1x+b0
, where the

ai and bi are constants in some field extension of K. An algebraic general solution is

a general solution v(x) which satisfies an algebraic equation g(x, u) = 0 (c. f. [5]). In

Section 2.2 we define the subclass of radical solutions.

5



1. Introduction

1.2.2. Solutions of APDEs

Similarly to the case of AODEs we want to describe solutions of partial differential

equations in a preferably general way. Again the ideal {F}, the radical differential ideal

generated by F , can be decomposed into prime differential ideals Σ1, . . . ,Σk (c. f. [55,

Chapter IX]),

{F} = Σ1 ∩ . . . ∩ Σk .

Furthermore, we can assume that all these prime differential ideals are essential. In

partial differential algebra the separant is defined with respect to an ordering of the

derivatives (for further details see Appendix A). Let v be the leader of F according

to this ordering. Then the separant of F is defined as ∂F
∂v

. Let Σ1 be the part where

the separant does not vanish (such a component exists). In fact, Σ1 does not contain

any separant, whereas the other Σk contain all separants. Hence, Σ1 is the general

component, and the other Σk form the singular components. A zero of some Σk is called

a solution. A solution is called non-singular if it does not annul any of the separants.

Otherwise it is called singular . Then a general solution of F is the manifold of Σ1, i. e.

the set of all zeros of Σ1. Since Σ1 is a prime differential ideal, it has a generic zero.

Sometimes this generic zero is also called a general solution.

A solution u of an APDE is called rational if it is of the form u = a(x1,...,xn)
b(x1,...,xn)

where a

and b 6= 0 are polynomials in K[x1, . . . , xn]. For APDEs, in difference to AODEs, there

is also an intermediate level of generally describing solutions. Such solutions are called

complete. This and other important properties of solutions of APDEs are described

later in Section 1.4.

1.3. Algebraic Geometry

An algebraic hypersurface S is an algebraic variety of codimension 1, i. e. a zero set of a

squarefree non-constant polynomial f ∈ K[x1, . . . , xn],

S = {(a1, . . . , an) ∈ An | f(a1, . . . , an) = 0} ,

where An is the n-dimensional affine space over K. In case n = 2 we call S an algebraic

curve. In case n = 3 we call S an algebraic surface. The polynomial f is identified

6



1.3. Algebraic Geometry

as the defining polynomial of S. An important aspect of algebraic hypersurfaces is

their rational parametrizability. We consider an algebraic hypersurface defined by an

irreducible polynomial f . We write s̄ = (s1, . . . , sn−1). A tuple of rational functions

P(s1, . . . , sn−1) = (p1(s̄), . . . , pn(s̄)) is called a rational parametrization of the hypersur-

face if f(p1(s̄), . . . , pn(s̄)) = 0 for all s̄ and the Jacobian of P has generic rank n − 1.

We observe that the condition on the Jacobian is fundamental since, otherwise, we are

parametrizing a lower dimensional subvariety on the hypersurface. A parametrization

can be considered as a dominant map P(s̄) : An−1 → S. By abuse of notation we

also call this map a parametrization. We call a parametrization P(s̄) proper iff it is

a birational map or in other words if for almost every point a = (a1, . . . , an) on the

hypersurface we find exactly one tuple (s1, . . . , sn−1) such that P(s̄) = a or equivalently

if K(P(s̄)) = K(s̄).

Remark 1.2.

The Jacobian of a proper parametrization P(s1, . . . , sn−1) of a hypersurface has generic

rank n − 1, where n is the dimension of the hypersurface. Since P is proper we know

that K(s1, . . . , sn−1) = K(P(s̄)). Hence, there is a rational function R(a1, . . . , an) =

(R1(ā), . . . , Rn(ā)) ∈ K(ā)n such that R(P(s̄)) = (s1, . . . , sn−1). Thus, Jid = JR◦P =

JR(P) · JP . Taking into account, that the rank of a product of two matrices is less or

equal the minimal rank of the two matrices, we get that rank(JP) = n− 1.

A hypersurface which has a rational parametrization is called unirational . If it also

has a proper rational parametrization it is called rational . Theorems of Lüroth and

Castelnuovo, respectively, prove that all unirational curves and surfaces are rational.

For higher dimensions there exist hypersurfaces which are unirational but not rational.

See for instance [63] and [7] for further information.

There exist algorithms for curves and surfaces to decide rationality and to compute

proper rational parametrizations (c. f. [63] and [56] respectively). However, for higher

n so far no general algorithm for finding rational parametrizations is known. Never-

theless, there exist methods for special kinds of hypersurfaces. Consider for instance

a hypersurface where one variable appears linearly in the defining polynomial. For

further information on parametrizations and treatment of special cases we refer to Ap-

pendix B.1.

The following well-known property of proper parametrization is a main motivation of

the idea for solving differential equations.

7



1. Introduction

Lemma 1.3.

Let P(s̄), Q(s̄) be two proper parametrizations of some algebraic hypersurface S ⊆ An.

Then there exists a rational function R(s̄) ∈ K(s̄) such that Q(s̄) = P(R(s̄)).

• In case n = 2, R(s̄) is a Möbius transformation, i. e. a linear rational function

R(s1) = a0+a1s1
b0+b1s1

with a0b1 − a1b0 6= 0.

• In case n = 3, R(s̄) is a Cremona transformation (i. e. a birational map of the

plane to itself), and hence by the theorem of Castelnuovo-Noether a finite compo-

sition of quadratic transformations (s1, s2) 7→ (a0+a1s1+a2s2
b0+b1s1+b2s2

, c0+c1s1+c2s2
d0+d1s1+d2s2

) and pro-

jective linear transformations (c. f. [8, 64]).

• In general R(s̄) = P(Q−1(s̄)).

1.4. Differential Equations and Algebraic Hypersurfaces

Let F (u, ux1 , . . . , uxn) = 0 be an autonomous APDE. We consider the corresponding

algebraic hypersurface developed by replacing the derivatives by independent transcen-

dental variables, F (z, p1, . . . , pn) = 0. Whenever we talk about the differential equation

and its solutions we use the variables x1, . . . , xn. To distinguish the parametrization

problem we use the variables s1, . . . , sn there.

Given any non-constant differentiable function u(x1, . . . , xn) which satisfies the APDE,

F (u, ux1 , . . . , uxn) = 0, the tuple (u(s1, . . . , sn), ux1(s1, . . . , sn), . . . , uxn(s1, . . . , sn)) is a

parametrization. We call this parametrization the corresponding parametrization of the

solution and denote it usually by L. We observe that the corresponding parametrization

of a solution is not necessarily a parametrization of the associated hypersurface, since the

condition on the rank of the Jacobian may fail. For instance, let us consider the APDE,

ux = 0, with n = 2. A solution would be of the form u(x, y) = g(y), with g differentiable.

However, this solution generates (g(s2), 0, g′(s2)) that is a curve in the surface; namely

the plane p = 0. Now, consider the APDE, ux = λ, with λ a nonzero constant. Hence,

the solutions are of the form u(x, y) = λx+ g(y). Then, u(x, y) = λx+ y generates the

line (λs1+s2, λ, 1) while u(x, y) = λx+y2 generates the parametrization (λs1+s2
2, λ, 2s2)

of the associated plane p = λ. These examples motivate the following definition. Clearly,

a solution of an APDE is a function u(x1, . . . , xn) such that F (u, ux1 , . . . , uxn) = 0.
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1.4. Differential Equations and Algebraic Hypersurfaces

Definition 1.4.

A solution of an APDE is rational iff u(x1, . . . , xn) is a rational function over K.

A rational solution of an APDE is proper iff the corresponding parametrization is proper.

In the case of autonomous ordinary differential equations, every non-constant solution

induces a proper parametrization of the associated curve (see [17]). However, this is not

true in general for autonomous APDEs. For instance, the solution x + y3 of ux = 1,

induces the parametrization (s1 + s3
2, 1, 3s

2
2) which is, although its Jacobian has rank 2,

not proper.

In addition, we observe that it can happen that none of the rational solutions of an

APDE is proper. This is the case for instance, of ux = 0, since all rational solutions are

of the form u = R(y), for some rational function R and K(R(s1), 0, R′(s1)) ( K(s1, s2).

Furthermore, we see that none of the solutions of this APDE generates a parametrization

of the associated hypersurface, since the Jacobian has rank 1.

Every solution of the problem under consideration in this work can be attained by the

knowledge of a set of complete solutions. We will see details later. For this reason,

we focus on finding families of complete solutions. This notion of a complete solution

is due to Lagrange (compare [14]). He calls a solution u(x, y) of a first-order PDE

complete, if it depends on two arbitrary constants, i. e. u(x, y) = u(x, y, c1, c2), such

that the elimination of the constants in the equations z−u, p−ux, q−uy gives back the

differential equation. Such a property for rational functions can be proven by Gröbner

bases.

For the following we use a definition of completeness which is easier to check. This

definition can be found for instance in [31, 50].

Definition 1.5.

Let F (u, ux1 , . . . , uxn) = 0 be an autonomous APDE. Let u be a rational solution depend-

ing on n arbitrary constants c1, . . . , cn. Let L = (v0, v1, . . . , vn) be the parametrization

induced by the solution, i. e. v0 = u and vi = uxi for i ≥ 1. We call the solution complete

if the Jacobian J c1,...,cn
L of L with respect to c1, . . . , cn has generic rank n.

We call the solution complete of suitable dimension if it is complete and the Jacobian

J s1,...,sn
L of L with respect to s1, . . . , sn has generic rank n.

Intuitively speaking, the notion of a complete solution is requiring that the correspond-

ing parametrization of the solution parametrizes an algebraic set on the hypersurface,

9



1. Introduction

independently of the constants c1, . . . , cn. On the other hand, the notion of suitable

dimension ensures that the corresponding parametrization really parametrizes the asso-

ciated hypersurface and not a lower dimensional subvariety.

The following example illustrates proper, complete and non-complete solutions for some

simple APDEs.

Example 1.6.

We consider the APDE, F (u, ux, uy) = ux = 0, with the solution u(x, y) = y + c1 + c2.

The corresponding parametrization is L = (s2 + c1 + c2, 0, 1). Then

J c1,c2
L =

1 1

0 0

0 0

 ,

and hence u(x, y) is not complete. However, if we take u(x, y) = c1y + c2, the Jacobian

with respect to c1, c2 has generic rank 2, and u is complete but not of suitable dimension,

since the Jacobian of L with respect to s1, s2 has rank 1.

Now, we take the APDE, ux = 1. In Table 1.1 we see solutions and their properties.

Note, that the solution x+c1 +y2 +c2 is not complete and hence, not complete of suitable

dimension. However, the other requirement of suitable dimension is fulfilled.

solution complete suitable dim proper rank(J s1,s2
L )

x+ c1 F F F 1

x+ y + c1 + c2 F F F 1

x+ c1 + c2y T F F 1

x+ c1 + y2 + c2 F F* T 2

x+ c1 + c2y
2 T T T 2

x+ c1 + (y + c2)2 T T T 2

x+ c1 + (y + c2)3 T T F 2

x+ c1 + y3 + c2 F F* F 2

Table 1.1.: Properties of some solutions of ux = 1, where T means true, F false and F*

false since not complete but condition on Jacobian is true

Note, that in this example all possible combinations of properties are found. Indeed, by

Remark 1.2 the Jacobian of a proper solution has generic rank n and hence there is no

rational solution which is proper and complete but not of suitable dimension.
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In the case of AODEs, i. e. n = 1, the notion of complete and general solution is equiv-

alent. This is not the case for APDEs. Nevertheless, as shown by Lagrange (c. f. [14])

from a complete solution one can compute singular and general solutions by envelopes.

An envelope of a one-parameter family of surfaces, given implicitly by g(x, y, z, a) = 0

for parameters a, is the surface which touches each point on any of the surfaces in the

family. It is defined by the solution of the system

g(x, y, z, a) = 0 , ga(x, y, z, a) = 0 .

An envelope of a two-parameter family of surfaces, defined by g(x, y, z, a1, a2) = 0 for

parameters a1 and a2, is the surface which touches each point on any of the surfaces in

the family. It is defined by the solution of the system

g(x, y, z, a1, a2) = 0 , ga1(x, y, z, a1, a2) = 0 , ga2(x, y, z, a1, a2) = 0 .

Let us consider a complete rational solution u(x, y, c1, c2) of some APDE. Hence, the

equation of the family of surfaces is z − u(x, y, c1, c2) = 0.

Assume now c2 = ϕ(c1) for some function ϕ. Then, we consider the envelope of the

family of surfaces u(x, y, c1, ϕ(c1)), i. e. we solve 0 = ∂u(x,y,c1,ϕ(c1))
∂c1

= uc1 + uc2ϕ
′(c1)

for c1. Let c1 = ψ(x, y) be the solution. Then u(x, y, ψ(x, y), ϕ(ψ(x, y))) is a general

solution of the APDE, where ϕ is an arbitrary function.

On the other hand we might compute the envelope with respect to c1 and c2, i. e. solve

the equations ∂u
∂c1

= ∂u
∂c2

= 0 for c1 and c2. Let c1 = ϕ(x, y) and c2 = ψ(x, y). Then

u(x, y, ϕ(x, y), ψ(x, y)) is a singular solution of the APDE.

These computations can be done as well for implicitly given solutions (as actually shown

in [14]) and for APDEs in more variables.

General idea for solving AODEs and APDEs

We now want to present the general idea of the main procedure presented in this thesis.

Here only the introductory part, which does not depend on a specific number of variables,

is described. Details for AODEs can be found in Section 2.2. The procedure for APDEs

is presented in Section 3.1 and 3.3 for 2 and n variables respectively.
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1. Introduction

Let F (u, ux1 , . . . , uxn) = 0 be an algebraic (partial) differential equation, where F is an

irreducible non-constant polynomial. We consider the hypersurface F (z, p1, . . . , pn) = 0

and assume it admits a proper (rational) hypersurface parametrization

Q(s1, . . . , sn) = (q0(s1, . . . , sn), q1(s1, . . . , sn), . . . , qn(s1, . . . , sn)) .

A summary of results for the problem of hypersurface parametrization is given in Ap-

pendix B.1.

Assume that L(s1, . . . , sn) = (v0, . . . , vn) corresponds to a solution of the APDE. Fur-

thermore we assume that the parametrization Q can be expressed as

Q(s1, . . . , sn) = L(g(s1, . . . , sn)) (1.1)

for some invertible function g(s1, . . . , sn) = (g1(s1, . . . , sn), . . . , gn(s1, . . . , sn)). This as-

sumption is motivated by the fact that in case of rational algebraic curves every non-

constant rational solution of an AODE yields a proper rational parametrization of the

associated algebraic curve (c. f. [17]) and each proper rational parametrization can be

obtained from any other proper one by a rational transformation (c. f. Lemma 1.3). In

the case of APDEs, however, not all rational solutions provide a proper parametrization,

as mentioned in the remark after Definition 1.4. What we still know is that any proper

rational hypersurface parametrization can be obtained from any other proper one by a

rational transformation. Assuming that g exists, it would be enough to find g−1 in order

to get the solution q0(g−1(x1, . . . , xn)). Looking at the Jacobian of the parametrizations,

equation (1.1) implies the following equation:

JQ(s1, . . . , sn) = JL(g(s1, . . . , sn)) · Jg(s1, . . . , sn) .

In particular we consider the first row,

∂q0

∂s1

=
n∑
i=1

∂v0

∂si
(g)

∂gi
∂s1

=
n∑
i=1

qi(s1, . . . , sn)
∂gi
∂s1

,

...

∂q0

∂sn
=

n∑
i=1

∂v0

∂si
(g)

∂gi
∂sn

=
n∑
i=1

qi(s1, . . . , sn)
∂gi
∂sn

.


(1.2)

This is a system of quasilinear equations in the unknown functions g1 to gn. In case of

n = 1 the system reduces to a single ordinary differential equation. Details on that case

are presented in Chapter 2. Further investigation of the APDE case can be found in

Chapter 3.
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2. Solution Method for AODEs

As mentioned in the introduction there exist several algorithms for solving first-order

AODEs of some special kind. Especially linear AODEs are well-studied objects. In

this chapter we briefly describe some existing algorithms for finding explicit rational

solutions of (non-linear) first-order AODEs (Section 2.1).

We mainly focus on an algorithm by Feng and Gao for autonomous first-order AODEs

(Section 2.1.1) which can be considered to be the basis of subsequent algebraic-geometric

methods; among others the generalization of Ngô and Winkler for non-autonomous first-

order AODEs (Section 2.1.2). Likewise based on these algorithms we present an extended

method for finding radical solutions of first-order autonomous AODEs (Section 2.2).

This new procedure generalizes existing algorithms and follows the framework presented

in Section 1.4.

Using the general idea of finding a suitable transformation of a given parametrization,

for n = 1 the system (1.2) reduces to a single ODE which is easily solvable by existing

algorithms. Deduced from special properties of the components of a given proper rational

or radical parametrization, several classes of AODEs with radical solutions are presented.

Later we illustrate that this new method is not restricted to the computation of algebraic

solutions (Section 2.2.2).

In Section 2.3 we present ideas for a generalization to higher-order AODEs. We start

with an approach for special second-order AODEs and show difficulties arising in respect

of further generalization. Later we use ideas from partial differential equations for solving

general second-order and higher-order AODEs.

Examples are provided throughout the sections whenever suitable. For a more extensive

list of (well-known) examples from literature which can be solved by the method we

refer to Appendix C.1.
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2.1. Rational Solutions

Recently two algorithms for solving first-order AODEs have been presented. Both of

them intrinsically use rational parametrizations of curves respectively surfaces. In Sec-

tion 2.1.1 we recall an algorithm for finding rational solutions of autonomous first-order

AODEs. It is based on the computation of a proper rational parametrization and the

fact that a solution of the AODE yields such a parametrization.

Several improvements and generalizations of this algorithm have been published. Some

of these are presented in the following and references are given for others. First we recall

an algorithm for finding rational solutions of non-autonomous AODEs (Section 2.1.2).

Later, in Section 2.2 we present a new generalized method for finding non-rational

solutions of autonomous AODEs.

2.1.1. Autonomous First-Order AODEs

In this section we briefly describe the algorithm of Feng and Gao [17] for finding rational

solutions of autonomous first-order AODEs. As a key fact they show that any rational

solution v of an autonomous AODE corresponds to a proper rational parametrization

L = (v, v′). Furthermore, it is known, that from any proper rational parametrization Q
any other proper parametrization P can be obtained by a transformation with a linear

rational function, i. e. P(s) = Q(a0+a1s
b0+b1s

), (see Lemma 1.3).

Theorem 2.1. (Feng and Gao [17])

Let F (u, u′) = 0 be an autonomous first-order AODE. It has a rational general solution

if and only if there is a proper parametrization Q(s) = (q0(s), q1(s)) over Q of the

corresponding curve F (z, p) = 0 and for any such parametrization the indicator A :=
q1(s)
q′0(s)

is either in Q or equal to a(s− b)2, where a, b ∈ Q.

For both cases in Theorem 2.1 a constructive algorithm for computing an explicit rational

general solution can be given. The general idea of the algorithm for deciding rational

solvability and, in the affirmative case, for computing a solution of a given autonomous

first-order AODE is the following.

Algorithm 1. (Feng and Gao [17])

Input: An autonomous AODE, F (u, u′) = 0, where F is irreducible and non-constant.

Output: A rational general solution or a statement that it does not exist.
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2.1. Rational Solutions

1. Compute a proper rational parametrization Q(s) = (q0, q1) of the corresponding

curve F (z, p) = 0. Let K be the ground field of Q.

If such a parametrization does not exist there is no rational solution. Otherwise

continue.

2. Compute A = q1
q′0

.

• If A ∈ K return q0(A(x− c)).

• If A = a(s− b)2 with a, b ∈ K return q0(ab(x+c)−1
a(x+c)

).

• Otherwise there is no rational solution.

The original algorithm in [17] is enhanced by the incorporation of an a priori test of

degree bounds. Using Laurent series solutions and Padé approximations this algorithm

was further improved to a polynomial time algorithm [19]. An algorithm for the special

case of polynomial solution can be found in [18] and a generalization of the algorithm

to algebraic solutions is described in [5]. We do not go into detail here. Instead we look

at an example for Algorithm 1.

Example 2.2.

Let us consider the simple AODE, F (u, u′) = u3 + u′2 = 0. The corresponding curve

has a rational parametrization Q(s) = (s2, s3). Then, A = 1
2
s2. Hence,

(
−1

1
2

(x+c)

)2

is a

rational general solution.

2.1.2. Non-autonomous First-Order AODEs

In this section we briefly describe the algorithm of Ngô and Winkler [44, 45, 46] for solv-

ing first-order AODEs which are not necessarily autonomous. An AODE, F (x, u, u′) = 0,

can be viewed as an algebraic surface, F (x, z, p) = 0, and the algorithm is based on a

given proper rational parametrization of this corresponding surface. A solution of a non-

autonomous AODE represents a curve on the surface. The aim is to find this specific

curve. The key idea is to construct an associated system of ODEs which depends on

the input parametrization. Given a parametrization Q(s, t) = (q0, q1, q2), the associated

system is defined as

s′1 =

∂q1
∂s2
− q2

∂q0
∂s2

det(J(q0,q1))
, s′2 =

∂q0
∂s1
q2 − ∂q1

∂s1

det(J(q0,q1))
. (2.1)
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It is proven that there is a one to one correspondence between rational general solutions

of the AODE and rational general solutions of the associated system. Furthermore, the

associated system is of order 1 and degree 1 in the derivative. Hence, existing algorithms

can be used to solve the system; for instance by computing invariant algebraic curves

and their parametrizations P(t) = (p0(t), p1(t)). The system has a rational solution if

and only if one of the ODEs

T ′ =
1

p′0(T )
s′1(p0(T ), p1(T )) , T ′ =

1

p′1(T )
s′1(p0(T ), p1(T )) , (2.2)

where s′i is as in (2.1), has a rational solution (see [45, Theorem 2.2]).

The idea of the algorithm in the generic case is described in Algorithm 2. A proper

rational parametrization of the corresponding surface has to be given. For details we

refer to [45].

Algorithm 2. (Ngô and Winkler [45])

Input: A first-order AODE, F (x, u, u′) = 0, where F is an irreducible non-constant

polynomial, and a proper rational parametrization Q(s1, s2) = (q0, q1, q2) of the corre-

sponding surface.

Output: A rational general solution of the AODE, if it exists.

1. Create the associated system as in (2.1).

2. Compute the irreducible invariant algebraic curves of the system, if possible.

3. Chose a general rational invariant curve and compute a parametrization P(t) =

(p0, p1), if possible.

4. Solve the ODEs in (2.2) if possible. Then P(T (x)) is a solution of the associated

system.

5. Compute c = q0(P(T (x)))− x.

6. Return q1(P(x− c)).

Example 2.3.

Consider the non-autonomous first-order AODE, from Example 1.1,

F (x, u, u′) = u′2 + 3u′ − 2u− x = 0 .

16



2.2. Non-rational Solutions

We briefly comment on the intermediate steps of Algorithm 2. The solution surface

p2 + 3p− 2z − 3x = 0 has the proper rational parametrization

Q(s1, s2) =

(
s1,

s2
2 − s1 + s2

2
, s2

)
.

The associated system is

s′ = 1 , t′ = 1 .

There is a 1-1 correspondence between the rational solutions of the original AODE and

the rational solutions of the associated system.

Now we consider the irreducible invariant algebraic curves of the associated system:

G(s1, s2) = s1 − s2 + c0 , G(s1, s2) = s2
1 − 2s1s2 + s1c1 + s2

2 − s2c1 + c0 .

These invariant algebraic curves are candidates for generating rational solutions of the

associated system. The first curve can be parametrized easily by P(t) = (t, t + c0). We

compute a solution of the ODE, T ′ = 1, i. e. T (x) = x. Then we solve c = q0(P(T (x)))−
x = x− x = 0. Finally,

q1(x− c, x− c+ c0) =
1

2
((x+ c0)2 − x+ (x+ c0)) =

1

2
(c0 + (x+ c0)2)

is exactly the general solution mentioned in Example 1.1.

2.2. Non-rational Solutions

In this section we present a method for finding radical solutions of first-order autonomous

AODEs based on the content of the author’s papers [21, 23]. However, additional infor-

mation and improvements are incorporated.

Let F (u, u′) = 0 be an autonomous AODE. For readability we ignore the index 1 in

x1, s1, p1, g1 and h1 and write x, s, p, g and h respectively instead. We consider

the corresponding algebraic curve F (z, p) = 0. As we know, for a non-trivial, i. e.

non-constant solution u of the AODE, L(s) = (u(s), u′(s)) is a parametrization of F

(not necessarily rational or radical). Assume we are given an arbitrary parametrization
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2. Solution Method for AODEs

Q(s) = (q0(s), q1(s)). Following the general idea of Chapter 1 for n = 1 the system (1.2)

reduces to a single ordinary differential equation

dq0

ds
= q1(s)

dg

ds
. (2.3)

We define A = AQ = q1(s)
q′0(s)

as in [17] (see Section 2.1.1). Then A acts as an indicator for

information on the solvability in a certain class of functions. In case A = 1 a solution

is already found. In case q0 ∈ K(s) and A ∈ K or A = a(b + t)2 there exists a rational

solution (see in Section 2.1.1). Further investigation on properties of A are done later.

For now we reason from (2.3) that

g′(s) =
1

AQ(s)
.

Using symbolic integration and algebraic computation of h, such that g(h(x)) = x for

all x, the procedure continues as follows.

g(s) =

∫
g′(s) ds =

∫
1

AQ(s)
ds ,

u(x) = q0(h(x)) .

Kamke [32] already mentions such a procedure where he restricts to continuously dif-

ferentiable functions q0 and q1 which satisfy F (q0(s), q1(s)) = 0. However, he does not

mention where to get these functions from.

In general g is not a bijective function. Hence, when we talk about an inverse function

we actually mean one branch of a multivalued inverse. Each branch inverse gives us a

solution to the differential equation.

We might add any constant c to the solution of the indefinite integral. Assume g(s) is

a solution of the integral and h its inverse. Then also ḡ(s) = g(s) + c is a solution and

h̄(t) = h(s− c). We know that if u(x) is a solution of the AODE, so is u(x+ c). Hence,

we may postpone the introduction of c to the end of the procedure.

We summarize the procedure for the case of radical parametrizations and solutions (see

Section 2.2.1).

Procedure 3.

Input: An autonomous AODE defined by F (u, u′) = 0, where F is an irreducible non-

constant polynomial, and a radical parametrization Q(s) = (q0(s), q1(s)) of the corre-

sponding curve.

Output: A general solution u of F or “fail”.
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1. Compute AQ(s) = q1(s)
q′0(s)

.

2. Compute g(s) =
∫

1
AQ(s)

ds.

3. Compute h such that g(h(s)) = s.

4. If h is not radical return “fail”, else return q0(h(x+ c)).

The procedure finds a solution if we can compute the integral and the inverse function.

On the other hand it does not give us any clue on the existence of a solution in case

either part does not work. Neither do we know whether we found all solutions.

Step 2 of Procedure 3 is an instance of the problem of integration in finite terms. Liou-

ville’s investigation of the problem ([39, 40, 41], c. f. also [9, 54]) led to his well-known

theorem which proves that an elementary function integral of an algebraic function

is (if it exists) of the form
∫
u dx = w0(x) +

∑m
i=1 ci log(wi(x)), where wi are algebraic

functions and ci are constants. Elementary functions are those obtained by finite compo-

sitions of algebraic functions, logarithms and exponential functions. Hence, an integral

of an algebraic function is not necessarily algebraic again. Furthermore, an elementary

integral of an algebraic function might not exist. In contrast, the integral of a rational

function can always be expressed by elementary functions. Based on a procedure of

Risch [51, 52] the theoretical theorem of Liouville led to algorithms deciding the exis-

tence of an elementary integral and computation thereof in the affirmative case. The

case which is of interest in our procedure was solved by Trager [67, 68]. Improvements of

this algorithm have been investigated and several generalizations of Liouville’s theorem

and algorithms resulting thereof have been found. Be refrain from listing them but refer

to Bronstein [9] for details and a general treatment of symbolic integration.

For computing h in Step 3 there is no general algorithm for deciding whether h is

rational, radical or algebraic. However, Ritt [53] investigated the special case when g is

a polynomial. For details see Theorem 2.12 in Section 2.2.1. In any case it would be

possible to either return an implicit solution or to solve the algebraic equation in Step 3

by approximation with truncated Puiseux series. Nevertheless, we restrict to finding

exact solutions here.

So far Procedure 3 fails if it does not find a radical solution. In Section 2.2.2 we see how

this case can be further investigated. Now, we focus on the case when the procedure

computes a result and show that it is indeed a general solution.
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2. Solution Method for AODEs

Lemma 2.4. (Aroca, Cano, Feng, Gao [5, 17])

Let F (u, u′) be a first-order autonomous AODE and let u(x) be an algebraic solution of

F = 0. Then u(x+ c), with an arbitrary constant c, is an algebraic general solution. If

u(x) is rational, then u(x+ c) is a rational general solution.

Corollary 2.5.

Let F (u, u′) be a first-order autonomous AODE and let u(x) = q0(h(x + c)) be an

algebraic function computed by Procedure 3. Then u is an algebraic general solution of

F = 0.

Proof. Let u(x) = q0(h(x+ c)). We need to show that u′(x) = q1(h(x+ c)):

u′(x) = h′(x+ c)q′0(h(x+ c)) = h′(x+ c)
q1(h(x+ c))

AQ(h(x+ c))

= h′(x+ c)g′(h(x+ c))q1(h(x+ c)) =
dg(h(x+ c))

dx
q1(h(x+ c))

= q1(h(x+ c))

Hence, u is a solution of F = 0. Lemma 2.4 implies that it is a general algebraic

solution.

We show now that Algorithm 1 accords with Procedure 3. Assume we are given

an AODE with a proper parametrization Q(s) = (q0(s), q1(s)). Assume further that

AQ(s) = a ∈ K or AQ(s) = a(s− b)2. Then we get from Procedure 3

AQ(s) = a , AQ(s) = a(s− b)2 ,

g′(s) =
1

a
, g′(s) =

1

a(s− b)2
,

g(s) =
s

a
+ c , g(t) = − 1

a(s− b)
+ c ,

h(s) = a(s− c) , h(s) =
−1 + ab(s− c)

a(s− c)
.

We see that q0(h(s)) is exactly what Feng and Gao found aside from the sign of c. Feng

and Gao [17] already proved that there is a rational general solution if and only if A is

of the special form mentioned above and all rational general solutions can be found by

the algorithm.

However, as mentioned above, in case the indicator A is not of such a special type,

Procedure 3 does not answer the question whether the AODE has a rational solution.

It might, however, find non rational solutions for some AODEs.
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2.2. Non-rational Solutions

2.2.1. Radical Solutions

The research area of radical parametrizations is rather new. Sendra and Sevilla [60]

recently published a paper on parametrizations of curves using radical expressions. In

this paper Sendra and Sevilla define the notion of radical parametrization and they

provide algorithms to find such parametrizations in certain cases which include but

are not restricted to curves of genus less or equal 4. Every rational parametrization

is a radical one but obviously not the other way round. Further considerations of

radical parametrizations can be found in Schicho and Sevilla [59], Harrison [24] and

Schicho, Schreyer and Weimann [58]. First approaches for the computation of radical

parametrization of surfaces can be found in [61]. Nevertheless, for the beginning we

restrict to the case of first-order autonomous equations and hence to algebraic curves.

We summarize important definitions here and refer to Appendix B.2 for further details

on radical parametrizations.

Definition 2.6.

Let K be an algebraically closed field of characteristic zero. A field extension K ⊆ L
is called a radical field extension iff L is the splitting field of a polynomial of the form

xk−a ∈ K[x], where k is a positive integer and a 6= 0. A tower of radical field extensions

of K is a finite sequence of fields

K = K0 ⊆ K1 ⊆ K2 ⊆ . . . ⊆ Km

such that for all i ∈ {1, . . . ,m}, the extension Ki−1 ⊆ Ki is radical.

A field E is a radical extension field of K iff there is a tower of radical field extensions

of K with E as its last element.

A polynomial h(x) ∈ K[x] is solvable by radicals over K iff there is a radical extension

field of K containing the splitting field of h.

Let now C be an affine plane curve over K defined by an irreducible polynomial f(x, y).

According to [60], C is parametrizable by radicals iff there is a radical extension field E
of K(s) and a pair (p1(s), p2(s)) ∈ E2 \K2 such that f(p1(s), p2(s)) = 0. Then the pair

(p1(s), p2(s)) is called a radical parametrization of the curve C.

We call a function f(x) over K a radical function iff there is a radical extension field

of K(x) containing f(x). Hence, a radical solution of an AODE is a solution that is a

radical function. A radical general solution is a general solution which is radical.
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2. Solution Method for AODEs

Computing radical parametrizations as in [60] goes back to solving algebraic equations

of degree less or equal four. Depending on the degree we might therefore get more than

one solution to such an equation. Each solution yields one branch of a parametrization.

Therefore, we use the notation a
1
n for any n-th root of a.

In fact we do not need to restrict to rational or radical parametrizations. More generally

a parametrization of f is a generic zero of the prime ideal generated by f in the sense

of van der Waerden [69].

Now we extend our set of possible parametrizations and also the set, in which we are

looking for solutions, to functions including radical expressions. In the following we

investigate special cases for which the procedure yields solvability information.

Theorem 2.7.

Let Q(t) = (q0(s), q1(s)) be a radical parametrization of the curve F (z, p) = 0. Assume

AQ(s) = a(b+ s)n for some n ∈ Q \ {1}, a 6= 0.

Then q0(h(x)), with h(x) = −b+ (−(n− 1)a(x+ c))
1

1−n , is a radical general solution of

the AODE F (u, u′) = 0.

Proof. From the procedure we get

g′(s) =
1

AQ(s)
=

1

a(b+ s)n
,

g(s) =

∫
g′(s) ds =

(b+ s)1−n

a(1− n)
,

h(s) = −b+ (−(n− 1)as)
1

1−n .

Then u(x) = q0(h(x)) is a solution of F and q0(h(x+ c)), for some arbitrary constant c,

is a general solution of F .

The result of the algorithm of Feng and Gao is therefore a special case of Theorem 2.7

with n = 0 or n = 2 using rational parametrizations. In exactly these two cases h is a

rational function. Feng and Gao [17] used rational parametrizations for finding rational

solutions. The existence of a rational parametrization is of course a necessary condition

for rational solvability. However, in Procedure 3 we might use a radical parametrization

of the same curve which is not rational and we might still find a rational solution.

If AQ = a(b + 1), i. e. the exceptional case n = 1 of Theorem 2.7, then g contains a

logarithmic part and hence its inverse contains an exponential term.
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2.2. Non-rational Solutions

Example 2.8.

The differential equation F (u, u′) = u5−u′2 = 0 gives rise to the radical parametrization(
1
s
,− 1

s5/2

)
with corresponding A(s) = 1√

s
. We can compute g(s) = 2s3/2

3
and h(s) =(

3
2

)2/3
t2/3. Hence,

( 2
3)

2/3

(x+c)2/3
is a solution of the AODE.

As a corollary of Theorem 2.7 we get the following statement for AODEs with another

special type of the indicator A.

Corollary 2.9.

Let F (u, u′) = 0 be an autonomous AODE. Assume we have a radical parametrization

Q(s) = (q0(s), q1(s)) of the corresponding curve F (z, p) = 0 and assume A(s) = a(b+sk)n

ksk−1

with k ∈ Q \ {0}. Then F has a radical solution.

Proof. Transforming the parametrization by f(t) = s1/k to the radical parametrization

Q̄(s) = (q0(f(s)), q1(f(s))) we get

AQ̄(s) =
q1(f(s))

∂
∂s

(q0(f(s)))
=
A(f(s))

f ′(s)
=
a(b+ f(s)k)n

kf(s)k−1f ′(s)

=
a(b+ s

k
k )n

ks
k−1
k

1
k
s

1−k
k

= a(b+ s)n ,

which is of the form described in Theorem 2.7.

In the rational situation there were exactly two possible cases for A in order to guarantee

a rational solution. Here, in contrast, there are more possible forms for A. In the

following we see another rather simple form of A which might occur. In this case we do

not know immediately whether or not the procedure leads to a solution.

Theorem 2.10.

Let Q(s) = (q0(s), q1(s)) be a radical parametrization of the curve F (z, p) = 0. Assume

A(s) = asn

b+sm
for some a, b ∈ Q \ {0} and m,n ∈ Q with m 6= n − 1 and n 6= 1. Then

the AODE, F (u, u′) = 0, has a radical solution if the equation

b(m− n+ 1)h1−n − (n− 1)hm−n+1 + (n− 1)(m− n+ 1)as = 0 (2.4)

has a non-zero radical solution for h = h(s). A general solution of the AODE is then

q0(h(x+ c)).

23



2. Solution Method for AODEs

Proof. The procedure yields

g′(s) =
1

AQ(s)
=
b+ sm

asn
,

g(s) =

∫
g′(s) ds =

1

a
s1−n

(
b

1− n
+

sm

1 +m− n

)
.

The inverse of g can be found by solving the equation

1

a
h(s)1−n

(
b

1− n
+

h(s)m

1 +m− n

)
= s

for h(s). By a reformulation and the assumptions for m and n this is equivalent to

(2.4).

In the excluded cases n = 1 or m = n − 1 the integral in Step 2 of Procedure 3 is not

radical.

Example 2.11.

For the AODE, F (u, u′) = −u5− u′ + u8u′ = 0, we compute the radical parametrization

Q(s) =
(

1
s
, s3

1−s8

)
with corresponding A(s) = s5

−1+s8
. Then equation (2.4) has a solution,

e. g. −
(
2s−

√
−1 + 4s2

)1/4
. Hence, we get the solution of the AODE

u(x) = −
(

2(x+ c)−
√

4(x+ c)2 − 1
)−1/4

.

It remains to show when (2.4) is solvable by radicals (i. e. when g(t) in the proof of

Theorem 2.10 has an inverse which is expressible by radicals). The following theorem

due to Ritt [53] helps us to do so.

Theorem 2.12.

A polynomial g has an inverse expressible by radicals if and only if it can be decomposed

into

• linear polynomials,

• power polynomials xn for n ∈ N,

• Chebyshev polynomials and

• degree 4 polynomials.

24



2.2. Non-rational Solutions

Certainly also polynomials of degree 2 and 3 are invertible by radicals but it can be

shown, that Theorem 2.12 applies to them. We prove now that a certain polynomial is

not decomposable into non-linear factors.

Theorem 2.13.

Let g(t) = C1t
α +C2t

β ∈ K[t] where K is a field of characteristic zero, C1, C2 ∈ K \ {0},
α, β ∈ N, gcd(α, β) = 1, β > α > 0 and β > 4. Assume g = f ◦ h for some polynomials

f and h. Then deg f = 1 or deg h = 1.

Proof. Assume g(t) = f(h(t)) with f =
∑n

i=0 aix
i and h =

∑m
k=0 bkx

k, where an 6= 0,

bm 6= 0, m,n > 1. In case b0 6= 0 it follows that g(t) = f̄(h̄(t)) where f̄(t) = f(b0 + t)

and h̄(t) = h(t)− b0. Hence, without loss of generality we can assume that b0 = 0 and

therefore also a0 = 0.

We denote the coefficient of order k in a polynomial g by coefk(g). Let now τ ∈
{1, . . . ,m} such that bτ 6= 0 and bl = 0 for all l ∈ {1, . . . , τ − 1}. Similarly let π ∈
{1, . . . , n} such that aπ 6= 0 and al = 0 for all l ∈ {1, . . . , π − 1}. This implies that

coef l(g) = 0 for all l ∈ {1, . . . , τπ − 1} and coefτπ(g) = aπb
π
τ 6= 0. Hence, α = τπ.

Assume now that π < n. Then α = τπ < m(n− 1) + l and therefore

0 = coefm(n−1)+l(g)

= coefm(n−1)+l

(
an

(
m∑
j=τ

bjx
j

)n)

= nanb
n−1
m bl +

∑
ε̄∈E

(
n

εl+1, . . . , εm

)
an

m∏
j=l+1

b
εj
j

for all l ∈ {τ, . . . ,m− 1} where ε̄ = (εl+1, . . . , εm) and

E =

{
ε̄ |

m∑
k=l+1

εk = n,
m∑

k=l+1

kεk = m(n− 1) + l

}
.

This yields, that 0 = coefmn−1(g) = nanb
n−1
m bm−1, hence, bm−1 = 0. By induction it

follows that bl = 0 for all l ∈ {τ, . . . ,m− 1} which contradicts bτ 6= 0.

Therefore, τ = m or π = n. But then we have m | α and m | β or n | α and n | β which

contradicts gcd(α, β) = 1 since m,n 6= 1.
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2. Solution Method for AODEs

Let us now consider the function

g(t) =
1

a
t1−n

(
b

1− n
+

tm

1 +m− n

)
from the proof of Theorem 2.10. In general g is not a polynomial. Our aim is to find

a radical function h with a radical inverse such that ḡ = g(h) is a polynomial. Then g

has a radical inverse if and only if ḡ has a radical inverse.

Let z1, z2 ∈ Z, d1, d2 ∈ N such that 1 − n = z1
d1

, m − n + 1 = z2
d2

and gcd(z1, d1) =

gcd(z2, d2) = 1. Then g(t) = ḡ(h(t)) where h(t) = t
d

d1d2 and

ḡ(t) =
1

a
tn̄
(

b

1− n
+

tm̄−n̄

1 +m− n

)
, (2.5)

with exponents n̄ = (1−n)d1d2
d

, m̄ = (m−n+1)d1d2
d

and d = gcd(z1d2, z2d1). Hence, m̄, n̄ are

integers with gcd(m̄, n̄) = 1. The function h has an inverse expressible by radicals. If

m− n+ 1, 1− n are positive integers, then also m̄, n̄ are positive. On the other hand if

n−m− 1, n− 1 ∈ N we get a polynomial by a further composition with f(t) = t−1.

If not both n̄ and m̄ are positive and not both are negative but |m̄|+ |n̄| ≤ 4, computing

the inverse function of ḡ is the same as solving an equation of degree less or equal 4,

which can be done by radicals.

We summarize this discussion using Theorem 2.12 and 2.13 as follows.

Corollary 2.14.

The function g from the proof of Theorem 2.10,

g(t) =
1

a
t1−n

(
b

1− n
+

tm

1 +m− n

)
,

has an inverse expressible by radicals in the following cases (where we use the notation

from above):

• b = 0,

• m̄, n̄ ∈ N and max(|m̄|, |n̄|) ≤ 4,

• −m̄,−n̄ ∈ N and max(|m̄|, |n̄|) ≤ 4 ,

• −m̄, n̄ ∈ N and |m̄|+ |n̄| ≤ 4,

• m̄,−n̄ ∈ N and |m̄|+ |n̄| ≤ 4.
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2.2. Non-rational Solutions

It has no inverse expressible by radicals in the cases

• m̄, n̄ ∈ N and max(m̄, n̄) > 4,

• −m̄,−n̄ ∈ N and max(|m̄|, |n̄|) > 4.

Proof. In the cases where m̄ and n̄ have the same sign and |m̄|+ |n̄| > 4 the function ḡ

as discussed above fulfills the requirements of Theorem 2.13. Hence, if ḡ = f1 ◦ f2 either

f1 or f2 is of degree one. It is not difficult to show, that the other one can neither be a

power polynomial nor a Chebyshev polynomial. Hence, by the Theorem of Ritt ḡ has

no radical inverse.

The case b = 0 is obvious. In all the other cases mentioned in the theorem and not

discussed so far we end up in solving an algebraic equation of degree less or equal four

and hence, there is a radical inverse.

Hence, in some cases we are able to decide the solvability of an AODE with properties as

in Theorem 2.10. Nevertheless, the procedure is not complete, since even Corollary 2.14

does not cover all possible cases for m and n.

2.2.2. Other Solutions

So far we were looking for rational and radical solutions of AODEs. However, the proce-

dure is not restricted to these cases but might also solve some AODEs with non-radical

solutions as we can see in the following examples where trigonometric and exponential

solutions are found. This is the case when Step 2 (integration) or 3 (solving algebraic

equation) cannot be computed in the field of rational functions but in some field exten-

sion. For the integration problem the existing algorithms provide information on the

necessary field extensions. Further investigation of non-algebraic results of the procedure

are subject to further research.

Example 2.15. (c. f. Example 1.371 of [32])

Consider the equation F (u, u′) = ±u3 + u2 + u′2 = 0. The corresponding curve has

the parametrization Q(s) = ∓(1 + s2, s(1 + s2)). We get A(s) = 1
2
(1 + s2) and hence,

g(s) = 2 arctan(s). The inverse function is h(s) = tan( s
2
) and thus, u(x) = ∓(1 +

tan(x+c
2

)2) = ∓ sec(x+c
2

)2 is a solution.
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2. Solution Method for AODEs

Example 2.16.

Consider the AODE, F (u, u′) = u2 + u′2 + 2uu′ + u = 0. We get the rational parame-

trization
(
− 1

(1+s)2
,− s

(1+s)2

)
. With A(s) = −1

2
s(1 + s) we compute g(s) = −2 log(s) +

2 log(1+s) and hence h(s) = 1
−1+es/2

, which leads to the solution −e−(x+c)(−1+e(x+c)/2)2.

These examples show that we can find non-radical solutions even with rational param-

etrizations.

2.2.3. Investigation of the Procedure

In many books on differential equations we can find a method for transforming an

autonomous ODE of any order F (u, u′, . . . , u(n)) = 0 to an equation of lower order by

substituting v(u) = u′ (see for instance [32, 73]). For the case of first-order ODEs this

method yields a solution. It turns out that this method is somehow related to our

procedure. The method does the following:

• Substitute v(u) = u′.

• Solve F (u, v(u)) = 0 for v(u).

• Solve
∫

1
v(u)

du = x for u.

These computations are a special case of our general procedure where a specific form of

parametrization is used, i. e. Q(s) = (s, q1(s)).

We now give some arguments concerning the possibilities and benefits of the general

procedure. Since in the procedure any radical parametrization can be used we might

take advantage of picking a good one as we see in the following example.

Example 2.17.

We consider the AODE, F (u, u′) = u′6 + 49uu′2 − 7 = 0, and find a parametrization of

the form (s, q1(s)): s,
√(

756 + 84
√

28812s3 + 81
)2/3 − 588s

√
6
(
756 + 84

√
28812s3 + 81

)1/6

 .
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2.2. Non-rational Solutions

Computing the corresponding integral is not very efficient and might not be done in some

computer algebra systems. Nevertheless, we can input another parametrization to our

procedure. An obvious one to try next is

(q0(s), q1(s)) =

(
−−7 + s6

49s2
, s

)
.

It turns out that here we get g(s) = 2
21s3
− 4s3

147
. Its inverse can be computed h(s) =

1
2

(
−147s−

√
7
√

32 + 3087s2
)1/3

. Applying h(x+ c) to q0(t) we get the solution

u(x) =
7− 1

64

(
−147(x+ c)−

√
7
√

32 + 3087(x+ c)2
)2

49
4

(
−147(x+ c)−

√
7
√

32 + 3087(x+ c)2
)2/3

.

The procedure might find a radical solution of an AODE by using a rational param-

etrization as we have seen in Example 2.11 and 2.17. As long as we are looking for

rational solutions only, the corresponding curve has to have genus zero. Now we can

also solve some examples where the genus of the corresponding curve is greater than

zero and hence no rational parametrization exists. The AODE in Example 2.18 below

corresponds to a curve with genus 1.

Example 2.18.

Consider the AODE, F (u, u′) = −u3− 4u5 + 4u7− 2u′− 8u2u′+ 8u4u′+ 8uu′2 = 0. We

compute a parametrization and get(
1

s
,

−4 + 4s2 + s4

s
(
4s2 − 4s4 − s6 −

√
−16s4 + 16s8 + 8s10 + s12

))

as one of the branches. The procedure yields

A(s) = − s (−4 + 4s2 + s4)

4s2 − 4s4 − s6 −
√
−16s4 + 16s8 + 8s10 + s12

,

g(s) =
2s4 + s6 +

√
s4 (2 + s2)2 (−4 + 4s2 + s4)

4s2 + 2s4
,

h(s) = −
√

1 + s2

√
1 + s

,

u(x) = −
√

1 + c+ x√
1 + (c+ x)2

.
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2. Solution Method for AODEs

2.3. Extension to Higher-Order AODEs

Higher-order AODEs have already been studied in [29]. We present how the key idea

corresponds to these investigations. Before doing so, we show some simple methods for

special kinds of higher-order AODEs.

In Section 2.2 we presented a procedure for solving AODEs of the form F (u, u′) =

0. Obviously we can use this procedure just as well for solving differential equations

F (u(n−1), u(n)) = 0 for any n ≥ 1. We do so by first solving F (v, v′) = 0 and then

computing u from u(n−1) = v by integration (compare [32, Example 7.18, p. 604]).

Second-Order AODEs of the form F (u, u′′) = 0

In the following we show an attempt to extend the procedure to second-order AODEs

of the form F (u, u′′) = 0. Note, that the content of this section is mainly a collection

of ideas. A more elaborate investigation is subject to further research. Already Kamke

gave a special case of the method in [32, Section 23.1 and Example 7.19, p. 605]. He

restricts to ODEs which are solvable for the highest derivative u(n). Later we show

difficulties arising in the general setting for higher n.

Assume we are given a differential equation F (u, u′′) = 0 and a rational or radical

parametrization Q = (q0, q1) of the corresponding curve. The method will, as we see

later, in general yield a radical solution. We assume (as usual) that Q = L(g) for some

function g(s), where L is the parametrization corresponding to the solution. Then the

following equations have to be fulfilled

q0 = u(g) , q1 = u′′(g) .

We take derivatives of the first equation and get

q′0 = g′u′(g) ,

q′′0 = g′2u′′(g) + g′′u′(g) = g′2q1 + g′′
q′0
g′
. (2.6)

This yields an ODE of order 2 in g which can be reduced to an ODE in ḡ of order 1 by

setting ḡ = g′. This quasilinear ODE can be solved:

ḡ =
q′0√

c1 − 2
∫
−q1q′0 ds

,

g = c2 +

∫
ḡ ds .
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Using this method we can solve differential equations of the form F (u(n−2), u(n)) = 0

with n ≥ 2 by first solving F (v, v′′) = 0 and then u(n−2) = v.

Example 2.19. (Example 2.6 of Kamke [32])

We consider the AODE, F (u, u′′) = u′′ − u. It is easy to see that Q = (s, s) is a

parametrization of the associated curve. Equation (2.6) simplifies to sg′3 + g′′ = 0 which

can be reduced to sḡ3 + ḡ′ = 0. Thus, we get ḡ = − 1√
s2−2c1

and hence g = log(s +
√
s2 − 2c1) + c2. Computing the inverse h of g we get the solution h = 1

2
e−s+c2 + es−c2c1,

since q0 = s.

Now we would like to generalize this idea to AODEs of the form F (u, u(n)) = 0. The

Formula of Faà di Bruno describes the higher-order derivatives of a function composi-

tion:

q
(η)
0 =

∂ηu(g)

∂sη
=

∑
(κ1,...,κη)∈Rη

(
η

κ1, . . . , κη

)
∂κ1+...+κηu

∂sκ1+...+κη
(g)

η∏
m=1

(
∂mg
∂sm

m!

)km

, (2.7)

where Rη = {(κ1, . . . , κη) ∈ Nη |
∑η

i=1 iκi = η}. Using Bell polynomials this can be

denoted in a different way

∂ηu(g)

∂sη
=

η∑
k=1

∂ku

∂sk
(g)Bη,k(g

′(s), . . . , g(η−k+1)(s)) ,

where

Bη,k(x1, . . . xη−k+1) =
∑

j1,...,jη−k+1∑
ji=k∑
iji=η

(
η

j1, . . . , jη−k+1

) η−k+1∏
i=1

(xi
i!

)ji
.

Equation (2.7) yields a system of algebraic equations in the indeterminates u(k)(g).

Indeed, it is possible to eliminate u(k)(g) for all k ∈ {1, . . . , n − 1}. In the resulting

equation we replace the remaining u(n)(g) by q1. Hence, we get a differential equation

in g of order n. It is easy to see that g itself does not appear in the equation. Therefore,

we can transform to a differential equation of order n − 1. However, this ODE is in

general not linear and not quasilinear either. For n = 3 for instance we get

G(ḡ, ḡ′, ḡ′′) = 3ḡḡ′q′′0 + q′0
(
ḡḡ′′ − 3ḡ′2

)
− ḡ2q

(3)
0 + ḡ5q1 = 0 .
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2. Solution Method for AODEs

These considerations lead over to the investigation of general second-order autonomous

AODEs, F (u, u′, u′′) = 0.

General second-order autonomous AODEs

Using our general idea, we need a parametrization of the corresponding surface. How-

ever, the solution only yields a parametrization of some curve on the surface. We can

avoid these circumstances and consider the AODE to be in fact an APDE of the form,

F (u, ux, uxx) = 0. Given a solution v(x, y) of the APDE, we can compute a solution

v(x, c) of the AODE for some constant c. Of course this feels like cracking a nut with a

sledgehammer but nevertheless it could work as we see on the next example. A method

for solving the related APDE is presented in 3.4.

Example 2.20. (Example 6.107 of Kamke [32])

We consider the AODE, F (u, u′, u′′) = uu′′ + u′2 = 0. For simplicity we chose the

constant of the original Example in Kamke to be zero. In Example 3.28 we solve the

APDE, F (u, ux, uxx) = uuxx + u2
x = 0, and get u(x, y) =

√
2t3/2√
s−t −

√
2s
√
t√

s−t as a solution.

Hence, v(x) = u(x+ c1, c2) is a solution of the AODE.

This idea can be easily generalized to higher-order AODEs.

General higher-order AODEs

First we consider a general autonomous AODE, F (u, u′, . . . , u(n)) = 0. We assume the

equation to be in fact an APDE, F (u, u(1,0,...,0), . . . , u(n,0,...,0)) = 0, in n independent

variables. Such APDEs can be solved with Procedure 6. Let u(x1, . . . , xn) be a solution

of the APDE. Then u(x1−c1, c2, . . . , cn), with arbitrary constants c1, . . . , cn, is a solution

of the AODE.

Note, that if u is rational, the arbitrary constants c1, . . . , cn are indeed independent since

by Lemma 3.30 a rational solution computed by Procedure 6 is proper.

Example 2.21. (Example 3.3.13 of [49])

We consider the AODE, F (u, u′, u′′) = uu′′′ − u′u′′ = 0. This coincides with Exam-

ple 3.3.13 of [49] for a = 1. In Example 3.29 we solve the APDE, F (u, ux, uxx) =

uuxxx − uxuxx = 0, and get u(x1, x2, x3) =
ex1
√
x2(e−2x1

√
x2−2x2x3)

2x2
as a solution. Hence,

u(x+ c1, c2, c3) is a solution of the AODE.
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2.3. Extension to Higher-Order AODEs

The same can be done for non-autonomous AODEs, F (x, u, u′, . . . , u(n)) = 0, by applying

Procedure 7 to the APDE, F (x1, u, u
(1,0,...,0), . . . , u(n,0,...,0)) = 0, in n + 1 independent

variables. Let u(x1, . . . , xn+1) be a solution of the APDE. Then u(x1, c1, c2, . . . , cn) is a

solution of the AODE with arbitrary constants c1, . . . , cn.

Remark 2.22.

In Procedure 7 the method of characteristics yields a system of ODEs. In case n = 1,

this system coincides with the associated system from [44], which is described in (2.1) in

Section 2.1.2. For higher order, the system coincides with the associated system defined

in [29]. Hence, the algorithms in [29, 44] are special cases of the Procedure for computing

rational solutions. To this effect those algorithms (respectively the corresponding papers)

also provide more information on solvability.
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3. Solution Method for APDEs

In this chapter we investigate the general idea of Section 1.4 for the case of two and

more variables and present a method for solving first-order autonomous APDEs. The

procedure is a generalization of Procedure 3.

For APDEs (n ≥ 2), the system (1.2) definitely consists of more than one equation. We

first (Section 3.1) present the case of two variables and show how the system can be

transformed to a single quasilinear equation in one component which we know how to

solve.

The separate presentation of the three variable case (Section 3.2) shall depict the es-

sentially new steps needed for the generalization to an arbitrary number of variables.

The difference is now that we transform system (1.2) to a set of independent quasilin-

ear equations, i. e. PDEs which are linear in the derivatives but possibly non-linear in

the dependent function and the variables (see Appendix D for further information). We

show in detail how to find these equations but omit further elaboration in this section.

Finally, we show the general case for an arbitrary number of variables in Section 3.3

including all details and restrictions. Furthermore, we prove properties of the computed

solutions. As in the case of AODEs we provide evidence that the method is not restricted

to finding rational solutions.

Several examples illustrate the procedure and its capabilities. Further examples con-

taining well-known equations from literature can be found in Appendix C.3.

At the end of this chapter, in Section 3.4 we present further approaches for solving

APDEs. These techniques are related to the previously investigated procedures. They

include a glimpse of an idea of a generalization to higher order and a systematic way

of computing solutions that are not proper. Furthermore, a procedure for degenerate

APDEs, where only derivatives by one variable appear, is presented. This procedure

can be used for solving higher-order AODEs.
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3. Solution Method for APDEs

3.1. Two Variables

In this section we present the generalization of Procedure 3 to APDEs in two variables.

The general approach is the same. However, new ideas are needed to solve system (1.2)

which now really is a system of PDEs in the unknowns g1 and g2. It turns out that

this system can be transformed to a quasilinear equation in one of the components of g.

Such equations can be solved by a well-known method. We present all important details

in this section and join them to a procedure similar to the AODE case.

The content of this section is in a large part based on results in [22]. Nevertheless,

additional information is incorporated.

We recall the idea of Section 1.4 for the specific setting of n = 2. Let F (u, ux, uy) = 0

be an algebraic partial differential equation.

We consider the surface F (z, p, q) = 0 and assume it admits a proper (rational) surface

parametrization

Q(s, t) = (q0(s, t), q1(s, t), q2(s, t)) .

An algorithm for computing a proper rational parametrization of a surface can be found

for instance in [56]. For further information on rational parametrization of surfaces we

refer to Appendix B.1.2. Here, we stick to rational parametrizations, but the proce-

dure which we present works as well with other kinds of parametrizations, for instance

radical ones. First results on radical parametrizations of surfaces can be found in [61].

Assume that L(s, t) = (v0(s, t), v1(s, t), v2(s, t)) is the corresponding parametrization of

a solution of the APDE. Furthermore we assume that the parametrization Q can be

expressed as

Q(s, t) = L(g(s, t))

for some invertible function g(s, t) = (g1(s, t), g2(s, t)). This assumption is motivated

by the fact that in case of rational algebraic curves every non-constant rational solution

of an AODE yields a proper rational parametrization of the associated algebraic curve

and each proper rational parametrization can be obtained from any other proper one by

a linear rational transformation. However, in the case of APDEs, not all rational solu-

tions provide a proper parametrization, as mentioned in the remark after Definition 1.4.

Nevertheless, we will see later that it does still make sense to stick to the assumption.

Now, using the assumption, if we can compute g−1 we have a solution Q(g−1(s, t)).
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3.1. Two Variables

Let J be the Jacobian matrix. Then we have

JQ(s, t) = JL(g(s, t)) · Jg(s, t) .

Taking a look at the first row we get the specific case of system (1.2)

∂q0

∂s
=
∂v0

∂s
(g)

∂g1

∂s
+
∂v0

∂t
(g)

∂g2

∂s
= q1(s, t)

∂g1

∂s
+ q2(s, t)

∂g2

∂s
,

∂q0

∂t
=
∂v0

∂s
(g)

∂g1

∂t
+
∂v0

∂t
(g)

∂g2

∂t
= q1(s, t)

∂g1

∂t
+ q2(s, t)

∂g2

∂t
.

(3.1)

This is a system of quasilinear equations in the unknown functions g1 and g2. In case

q1 or q2 is zero the problem reduces to ordinary differential equations. Hence, from now

on we assume that q1 6= 0 and q2 6= 0. First we divide by q1 and simplify notation:

a1 =
∂g1

∂s
+ b

∂g2

∂s
,

a2 =
∂g1

∂t
+ b

∂g2

∂t

(3.2)

with

a1 =
∂q0
∂s

q1

, a2 =
∂q0
∂t

q1

, b =
q2

q1

. (3.3)

By taking derivatives we get

∂a1

∂t
=
∂2g1

∂s∂t
+
∂b

∂t

∂g2

∂s
+ b

∂2g2

∂s∂t
,

∂a2

∂s
=
∂2g1

∂t∂s
+
∂b

∂s

∂g2

∂t
+ b

∂2g2

∂t∂s
.

(3.4)

Subtraction of the two equations yields

∂b

∂t

∂g2

∂s
− ∂b

∂s

∂g2

∂t
=
∂a1

∂t
− ∂a2

∂s
. (3.5)

This is a single quasilinear differential equation which can be solved by the method

of characteristics (see for instance [73] and Appendix D). In case ∂b
∂t

= 0 or ∂b
∂s

= 0

equation (3.5) reduces to a simple ordinary differential equation.

Remark 3.1.

If both derivatives of b are zero then b is a constant. Hence, the left hand side of (3.5)

is zero. In case the right hand side is non-zero we get a contradiction, and therefore, no
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3. Solution Method for APDEs

proper solution exists. In case the right hand side is zero as well we get from (3.5) that

0 =
∂a1

∂t
− ∂a2

∂s
=

∂

∂t

(
∂q0
∂s

q1

)
− ∂

∂s

(
∂q0
∂t

q1

)

=
∂2q0
∂t∂s

q1 − ∂q0
∂s

∂q1
∂t

q2
1

−
∂2q0
∂s∂t

q1 − ∂q0
∂t

∂q1
∂s

q2
1

= −
∂q0
∂s

∂q1
∂t
− ∂q0

∂t
∂q1
∂s

q2
1

,

hence,

0 =
∂q0

∂s

∂q1

∂t
− ∂q0

∂t

∂q1

∂s
.

Moreover, since b is constant, q1 = kq2 for some constant k. But this means that the

rank of the Jacobian of Q is 1, a contradiction to Q being proper.

Therefore, we assume from now on, that the derivatives of b are non-zero. According

to the method of characteristics, we need to solve the following system of first-order

ordinary differential equations

ds(t)

dt
= −

∂b
∂t

(s(t), t)
∂b
∂s

(s(t), t)
,

dv(t)

dt
=

∂a1
∂t

(s(t), t)− ∂a2
∂s

(s(t), t)

− ∂b
∂s

(s(t), t)
.

The second equation is linear and separable but depends on the solution of the first.

The first ODE can be solved independently. Its solution s(t) = η(t, k) depends on

an arbitrary constant k. Hence, also the solution of the second ODE depends on k.

Finally, the function g2 we are looking for is g2(s, t) = v(t, µ(s, t))+ν(µ(s, t)) where µ is

computed such that s = η(t, µ(s, t)) and ν is an arbitrary function. In case we are only

looking for rational solutions we can use the algorithm of Ngô and Winkler [44, 45, 46]

for solving these ODEs.

Knowing g2 we can compute g1 by using (3.1) which now reduces to a separable ODE

in g1. The remaining task is to compute h1 and h2 such that g(h1(s, t), h2(s, t)) = (s, t).

Then q0(h1, h2) is a solution of the original PDE.

Finally the method reads as
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3.1. Two Variables

Procedure 4.

Input: An autonomous APDE, F (u, ux, uy) = 0, where F is irreducible and F (z, p, q) = 0

is a rational surface with a proper rational parametrization Q = (q0, q1, q2).

Output: A solution of the APDE or “fail”.

1. Compute the coefficients b and ai as in (3.3).

2. If ∂b
∂s

= 0 and ∂b
∂t
6= 0 compute g2 =

∫ ∂a1
∂t
− ∂a2

∂s
∂b
∂t

ds+ κ(t) and go to step 6 otherwise

continue.

If ∂b
∂s

= ∂b
∂t

= 0 return “No proper solution”.

3. Solve the ODE, ds(t)
dt

= −
∂b
∂t

(s(t),t)
∂b
∂s

(s(t),t)
, for s(t) = η(t, k) with arbitrary constant k.

4. Solve the linear ODE, dv(t)
dt

=
∂a1
∂t

(η(t,k),t)− ∂a2
∂s

(η(t,k),t)

− ∂b
∂s

(η(t,k),t)
, by computing the integral

v(t) = v(t, k) =
∫ ∂a1

∂t
(η(t,k),t)− ∂a2

∂s
(η(t,k),t)

− ∂b
∂s

(η(t,k),t)
dt+ ν(k).

5. Compute µ such that s = η(t, µ(s, t)) and then g2(s, t) = v(t, µ(s, t)).

6. Use the second equation of (3.2) to compute g1(s, t) = m(s) +
∫
a2 − b∂g2∂t dt.

7. Determine m(s) by using the first equation of (3.2).

8. Compute h1, h2 such that g(h1(s, t), h2(s, t)) = (s, t).

9. Return the solution q0(h1(x, y), h2(x, y)).

Observe that the proper rational parametrization Q can be computed applying Schicho’s

algorithm (see [56]). In addition, we also observe that the procedure can be extended

to the non-rational algebraic case, if one has an injective parametrization, in that case

non-rational, of the surface defined by F (z, p, q) = 0.

In general ν depends on a constant c2 and m on a constant c1. As a special case of

the procedure we fix ν = c2. This choice is done for simplicity reasons but we may

sometimes refer to cases with other choices which are a subject of further research.

Furthermore, the procedure can be considered symmetrically in Step 2 for the case

that ∂b
∂t

= 0 and ∂b
∂s
6= 0. In such a case the rest of the procedure has to be changed

symmetrically as well. We do not go into further details.

39



3. Solution Method for APDEs

Theorem 3.2.

Let F (u, ux, uy) = 0 be an autonomous APDE. If Procedure 4 returns a function v(x, y)

for input F , then v is a solution of F .

Proof. By the procedure we know that v(x, y) = q0(h1(x, y), h2(x, y)) with hi such that

g(h1(s, t), h2(s, t)) = (s, t). Since g is a solution of system (3.1) it fulfills the assumption

that u(g1, g2) = q1 for some solution u of the APDE. Hence, v is a solution. We have

seen a more detailed description at the beginning of this section.

Remark 3.3.

In Step 3 and 4 ODEs have to be solved. Depending on the class of functions to which

the requested solution should belong, these ODEs do not necessarily have a solution.

Furthermore, an explicit inverse (Step 8) does not necessarily exist.

It will be a subject of further research, to investigate conditions on cases for which the

procedure does definitely not fail.

Now, we show that the result of Procedure 4 does not change if we postpone the intro-

duction of c1 and c2 to the end of the procedure. It is easy to show that if u(x, y) is

a solution of an autonomous APDE then so is u(x + c, y + d) for any constants c and

d. From the procedure we see that in the computation of g1 we use the derivative of g2

only (and hence c2 disappears). We can write

g2 = ḡ2 + c2 , g1 = ḡ1 + c1

for some functions ḡ1 and ḡ2 which do not depend on c1 and c2. Let g = (g1, g2) and

ḡ = (ḡ1, ḡ2). In Step 8 we are looking for a function h such that g ◦ h = id. Now

g ◦ h = ḡ ◦ h + (c1, c2). Take h̄ such that ḡ ◦ h̄ = id. Then g ◦ h̄(s − c1, t − c2) = id.

Hence, we can introduce the constants at the end.

In case the original APDE is in fact an AODE, the ODE in Step 4 turns out to be

trivial and the integral in Step 7 is exactly the one which appears in the Procedure 3

for AODEs. Of course then g is univariate and so is its inverse. In this sense, this new

procedure generalizes Procedure 3. We do not specify Procedure 4 to handle this case

separately.

In the following we show some examples which can be solved by Procedure 4. Note,

that the examples have more solutions than those computed below. In Example 3.4

for instance, other solutions can be found by choosing different ν, e. g. ν(x) = c2 + x2.
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3.1. Two Variables

However, the results might not be rational solutions then. In general the procedure,

as stated in this thesis, yields only one solution containing two arbitrary independent

constants. Hence, it cannot be a general solution in the sense of depending on an

arbitrary function.

3.1.1. Rational Solutions

In this section we concentrate on APDEs with rational solutions. Further investigation

on such solutions is done in Section 3.3.1 for the more general case of arbitrary many

variables. Here, we give some well-known equations with rational solution and we prove

that APDEs of a certain class have a rational solution which can be found by the

procedure. We start with a simple well-known APDE which has a rational solution.

Example 3.4. (Inviscid Burgers Equation [3, p. 7])

We consider the autonomous APDE,

F (u, ux, uy) = uux + uy = 0 .

Since F is of degree one in each of the derivatives, it is easy to compute a parametrization

Q =
(
− t
s
, s, t

)
. We compute the coefficients

a1 =
t

s3
, a2 = − 1

s2
, b =

t

s
.

In Step 3 we find s(t) = kt and in Step 4 we compute v(t) = 1
kt

+ν(k). Then, µ(s, t) = s
t

and hence (with ν = c2),

g2 =
1

s
+ c2 , g1 = − t

s2
+m(s) .

Using Step 7 we find out that m(s) = c1. Computing the inverse of g we get

h1 =
1

t− c2

, h2 =
−s+ c1

(t− c2)2 .

Finally, u(x, y) = x−c1
y−c2 is a solution of the APDE.

The inviscid Burgers Equation is linear in u. This fact can be used for a more general

treatment of such APDEs.
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3. Solution Method for APDEs

Lemma 3.5.

Let F (u, ux, uy) = B(ux, uy)u + A(ux, uy) = 0 be an APDE with coprime polynomials

A,B ∈ C[p, q], B 6= 0. Let γ(s, t) = A(s,t)
B(s,t)

and assume that γ(s, t) = γ̄( t
s
) for some

function γ̄. Then γ(t,−s) is a rational solution.

Proof. Due to the assumptions on A and B, we know that F is irreducible and Q =

(−γ(s, t), s, t) is a proper parametrization of the surface F (z, p, q) = 0. We show that

P(s, t) = Q(−ta2(−t, s), ta1(−t, s)) yields a solution, where ai are defined as in (3.3).

Indeed we have

P(s, t) =

(
−γ̄(

ta1(−t, s)
−ta2(−t, s)

),−ta2(−t, s), ta1(−t, s)
)

=

(
−γ̄(−s

t
),

1

t
γ̄′(−s

t
),− s

t2
γ̄(−s

t
)

)
.

Now it is easy to prove that this yields a solution

∂
(
−γ̄(− s

t
)
)

∂s
=

1

t
γ̄′(−s

t
) ,

∂
(
−γ̄(− s

t
)
)

∂t
= − s

t2
γ̄′(−s

t
) .

Procedure 4 can also handle more complicated APDEs.

Example 3.6.

We consider the APDE,

0 = F (u, ux, uy) = uu4
x + u3

xuy − uu3
xuy − u2

xu
2
y + uu2

xu
2
y + uxu

3
y − uuxu3

y + uu4
y .

A proper parametrization of the corresponding algebraic surface is for instance

Q =

(
− t (1− t+ t2)

1− t+ t2 − t3 + t4
, tγ(s, t), γ(s, t)

)
,

with γ(s, t) =
t(−10+7t)(−9+t2)(−1+2t−3t2+3t4−2t5+t6)

2s(45−63t+5t2)(1−t+t2−t3+t4)2
. This parametrization is not easy to

find. It is computed by first using parametrization by lines and then applying a linear

transformation in s. Alternatively one could use the parametrization by lines directly.
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3.1. Two Variables

In that case Procedure 4 would find the same solution, but the intermediate steps would

need more writing space. Using the procedure with the parametrization Q we get

g1 = s

(
7

10− 7t
− 1

t
+

2t

−9 + t2

)
, g2 =

2s (45− 63t+ 5t2)

(−10 + 7t) (−9 + t2)
,

h1 = −t (−90s3 − 63s2t+ 10st2 + 7t3)

2s (45s2 + 63st+ 5t2)
, h2 =

−t
s
,

and finally the solution u(x, y) =
xy(x2+xy+y2)

x4+x3y+x2y2+xy3+y4
. As mentioned before, u(x+c1, y+c2)

with constants c1 and c2 is also a solution.

Parametrization by lines (see Appendix B.1.2 and B.1.3) can be used if there is a (d−1)-

fold point, where d is the degree of the APDE. In such cases the resulting parametrization

is of the form (sD(s, t), tD(s, t), D(s, t)), assuming the singular point to be in the origin.

The following Lemma describes solvability assuming that such a parametrization by lines

fulfills further conditions.

Lemma 3.7.

Assume we have an APDE, F (u, ux, uy) = 0, with a parametrization of the form Q =

(sn+1B(t), tsnB(t), snB(t)) where B(t) = N(t)
D(t)
6∈ K with N(t), D(t) ∈ K[t], gcd(N,D) =

1 and n ∈ Z. Then F has an algebraic solution.

Proof. Assume we have Q = (sn+1B(t), tsnB(t), snB(t)) with B(t) 6∈ K (the constant

case is shifted to Lemma 3.8). Then we can use the procedure to get the following:

b =
1

t
, a1 =

n+ 1

t
, a2 =

s

t

B′

B
,

and hence, ∂b
∂s

= 0 but ∂b
∂t
6= 0. Therefore

g2 =

∫ ∂a1
∂t
− ∂a2

∂s
∂b
∂t

ds =

∫ −n+1
t2
− 1

t
B′

B

− 1
t2

ds =

∫
(n+ 1) + t

B′

B
ds

= s(n+ 1 + t
B′

B
) ,

g1 =

∫
a2 − b

∂g2

∂t
dt+m(s) =

∫
sB′

tB
− s

t

(tB′′ +B′)B −B′B′

B2
dt+m(s)

=

∫
s

t

B′B − tB′′B −B′B +B′B′

B2
dt+m(s)

=

∫
s

t

t(−B′′B +B′B′)

B2
dt+m(s) =

∫
−s
(
B′

B

)′
dt+m(s)

= −sB
′

B
+m(s) .
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Now we need to find m(s). We do so by using the equation as in the procedure

∂q1

∂s
= q2

∂g1

∂s
+ q3

∂g2

∂s

(n+ 1)snB = sntB

(
−B

′

B
+m′(s)

)
+ snB

(
n+ 1 + t

B′

B

)
(n+ 1)snB = −sntB′ + sntBm′ + sn(n+ 1)B + sntB′

0 = sntBm′

0 = m′ .

Hence, m is a constant and we choose m = 0. Finally we need to find h1, h2 fulfilling

g1(h1, h2) = s , g2(h1, h2) = t ,

−h1
B′(h2)

B(h2)
= s , h1

(
n+ 1 + h2

B′(h2)

B(h2)

)
= t .

Since B is non-constant we can eliminate h1 and get

−s B(h2)

B′(h2)
= t

(
n+ 1 + h2

B′(h2)

B(h2)

)−1

−sB(h2)

(
n+ 1 + h2

B′(h2)

B(h2)

)
= tB′(h2)

B(h2)s(n+ 1) +B′(h2)(sh2 + t) = 0 .

Hence, we have an algebraic equation for h2 and therefore also for h1 (since the equations

are linear in h1). Thus, we get an algebraic solution.

In Lemma 3.7 the case of B(t) ∈ K was excluded. It is shifted to the next Lemma.

Lemma 3.8.

Assume we have an APDE, F (u, ux, uy) = 0, with a parametrization of the form Q =

(sn+1β, tsnβ, snβ) where β ∈ K. Then F has a rational solution.

Proof. Assume we have Q = (sn+1β, tsnβ, snβ) with B(t) = β ∈ K. According to the

procedure we get g2 = (n+ 1)s+ κ(t). We choose κ(t) = t2. Then g1 =
∫
a2− b∂g2∂t dt+

m(s) = −
∫ κ′(t)

t
dt = −2t + m(s). As before we get that m is constant and we choose

m = 0. Finally we need to find h1, h2 fulfilling

s = g1(h1, h2) = −2h2 , t = g2(h1, h2) = h1(n+ 1) + h2
2 .
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3.1. Two Variables

Then h2 = − s
2

and hence h1 =
t−h22
n+1

. Thus, q0(h1(x, y), h2(x, y)) = h1(x, y)n+1β =

β

(
y−x

2

4

n+1

)n+1

is a rational solution.

Note, that we might get algebraic solutions with other choices of κ.

Using the results of Lemma 3.7 we can prove that certain APDEs have rational solu-

tions.

Lemma 3.9.

Assume we have an autonomous APDE, F (u, ux, uy) = 0, with a parametrization Q =

(sn+1B(t), tsnB(t), snB(t)). Let B(t) = kN(t)
D(t)

, where N(t), D(t) ∈ K[t] are monic, k ∈ K
and gcd(N,D) = 1. The APDE has a rational solution if one of the following holds.

1. n = −1

2. deg(N) = deg(D) = 0

3. deg(N) = 0, deg(D) > 0 and

(a) D(t) = (t− β1)δ(t− β2)n+1−δ with β1 6= β2, δ ≥ 1 and n ≥ 1, or

(b) D(t) = (t− β1)δ with δ 6= n+ 1 and δ ≥ 1

4. deg(D) = 0, deg(N) > 0 and

(a) N(t) = (t− α1)ε(t− α2)−n−1−ε, with α1 6= α2, ε ≥ 1 and n ≤ −3, or

(b) N(t) = (t− α1)ε with −ε 6= n+ 1 and ε > 1

5. N = (t− α1)ε and D = (t− β1)n+1+ε with ε ≥ 1 and n+ ε ≥ 0

Proof. In the proof of Lemma 3.7 we concluded that an APDE of the type under con-

sideration has an implicitly given solution. The algebraic equation we found was

B(h2)s(n+ 1) +B′(h2)(sh2 + t) = 0 . (3.6)

Since the equations in the proof of Lemma 3.7 are linear in h1 it suffices to show that in

all the cases of this lemma, the algebraic equation (3.6) has a rational solution. In the

following we will write N = N(ζ) and D = D(ζ). We need to show that the equation

E(ζ) := s ((n+ 1)DN + ζ(N ′D −ND′)) + t(N ′D −ND′) = 0

has a rational solution for ζ.
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3. Solution Method for APDEs

1. n = −1: E(ζ) has the factor sζ + t.

2. This was shown in Lemma 3.8.

3. deg(N) = 0, deg(D) > 0: In this case E(ζ) = N (s ((n+ 1)D − ζD′)− tD′).

(a) D(ζ) = (ζ − β1)δ(ζ − β2)n+1−δ with β1 6= β2, δ > 1 and n > 1: Then

D′ = δ(ζ − β1)δ−1(ζ − β2)n+1−δ + (n+ 1− δ)(ζ − β1)δ(ζ − β2)n−δ and

E(ζ) = N(ζ − β1)δ−1(ζ − β2)n−δ · Ē(ζ) ,

Ē(ζ) : = (n+ 1)(β1 − ζ)(β2s+ t)− δ(β1 − β2)(sζ + t) .

Thus, Ē is linear in ζ.

(b) D(ζ) = (ζ − β1)δ with δ 6= n+ 1 and δ > 1: Then

E(ζ) = N(ζ − β1)δ−1((n+ 1)s(ζ − β1)− δ(sζ + t))

has a linear factor that depends on s and t.

4. deg(D) = 0, deg(N) > 0: In this case E(ζ) = D(s ((n+ 1)N + ζN ′) + tN ′).

(a) N(ζ) = (ζ − α1)ε(ζ − α2)−n−1−ε, with α1 6= α2, ε > 1 and n < −3: Then

E(ζ) = D(ζ − α1)ε−1(ζ − α2)−n−2−εĒ(ζ) ,

Ē(ζ) : = ε(α1 − α2)(sζ + t) + (n+ 1)(α1 − ζ)(sα2 + t) .

Thus, Ē(ζ) is linear in ζ.

(b) N(ζ) = (ζ − α1)ε with −ε 6= n+ 1 and ε > 1: Then

E(ζ) = D(ζ − α1)ε−1 (s(n+ 1)(ζ − α1) + ε(ζs+ t))

has a linear factor that depends also on s and t.

5. N = (ζ − α1)ε and D = (ζ − β1)n+1+ε with ε ≥ 1 and n+ ε ≥ 0: Then

E(ζ) = (ζ − α1)ε−1(ζ − β1)n+εĒ(ζ) ,

Ē(ζ) : = ε(α1 − β1)(sζ + t) + (n+ 1)(α1 − ζ)(sβ1 + t) .

Thus, Ē(ζ) is linear in ζ.
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3.1. Two Variables

Example 3.10.

We give examples for all cases of Lemma 3.9.

1. F = −u4
x − 2uu2

xu
2
y + uxu

3
y − u4

y with Q =
(
−1+t−t4

2t2
, −1+t−t4

2st
, −1+t−t4

2st2

)
2. F = 2u− u2

y with Q = (2s2, 2st, 2s)

3. (a) F = 4u− u2
x − 2uxuy − 2u2

y with Q =
(
− 4s2

−2−2t−t2 ,−
4st

−2−2t−t2 ,−
4s

−2−2t−t2

)
F = −u5

x + 8u4
xuy − 25u3

xu
2
y + 38u2

xu
3
y − 28uxu

4
y + 8u5

y + 3u4 with Q =(
3s5

(−2+t)3(−1+t)2
, 3s4t

(−2+t)3(−1+t)2
, 3s4

(−2+t)3(−1+t)2

)
(b) F = −10u3ux − 2u3

y with Q =
(
− 1

5s2t
,− 1

5s3
,− 1

5s3t

)
F = −u6

x + 7u2u3
y with Q =

(
7s3

t6
, 7s2

t5
, 7s2

t6

)
4. (a) F = −u3 + u2

x − 10uxuy − u2
y with Q =

(
−1−10t+t2

s2
,
t(−1−10t+t2)

s3
, −1−10t+t2

s3

)
F = 6u4 + 5u3

x + 5u2
xuy with Q =

(
−5t2+5t3

6s3
,− t(5t2+5t3)

6s4
,−5t2+5t3

6s4

)
(b) F = 4ux − 4uy + u2

y with Q = (−s(−4 + 4t),−t(−4 + 4t), 4− 4t)

F = −7u2u2
x + 6u5

y with Q =
(

7s3t2

6
, 7s2t3

6
, 7s2t2

6

)
5. F = −u4ux + 4u6

x + u4uy with Q =

(
− s(s4−s4t)

4t6
,− s4−s4t

4t5
,− s4−s4t

4t6

)

3.1.2. Algebraic Solutions

We have seen in Lemma 3.7 that solutions computed by the procedure might be consid-

ered implicitly. Hence, Procedure 4 is not restricted to rational solutions nor to rational

parametrizations as we see in the following examples. In certain steps of the procedure

we might do computations in a radical field extension. For instance Step 8 might be

an algebraic equation without rational solution. In this case h is an algebraic function.

The following example illustrates such a case.

Example 3.11. (Eikonal Equation [4, p. 2])

We consider the APDE,

F (u, ux, uy) = u2
x + u2

y − 1 = 0 .
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3. Solution Method for APDEs

From the rational parametrization of a circle it is easy to see that

Q =

(
s,

1− t2

1 + t2
,

2t

1 + t2

)
is a parametrization of the corresponding surface. Using the procedure we get some

rational g1 and g2 which yield

h2 =
−s+ c1 ±

√
s2 + t2 − 2sc1 + c2

1 − 2tc2 + c2
2

t− c2

,

h1 = ±
√
s2 + t2 − 2sc1 + c2

1 − 2tc2 + c2
2 .

Finally, we get the radical solution

u(x, y) = ±
√

(x− c1)2 + (y − c2)2 .

We can use Lemma 3.7 to show that a certain class of APDEs has algebraic solutions,

i. e. we show that a suitable parametrization exists to apply Lemma 3.7.

Corollary 3.12.

Let the APDE be of the form F (u, ux, uy) = λum + γm−1(ux, uy) = 0 , where m ∈ N, λ ∈
C \ {0} and γm−1(p, q) be a form of degree m− 1. Then F has an algebraic solution.

Proof. Observe that F (z, p, q) is irreducible, and can be parametrized as

Q(s, t) =

(
−sγm−1(t, 1)

λsm
,−tγm−1(t, 1)

λsm
,−γm−1(t, 1)

λsm

)
,

which corresponds to the parametrization form in Lemma 3.7 with n = −m and B(t) =

−γm−1(t, 1)/λ. Hence, there is an algebraic solution.

3.1.3. Other Solutions

As in the AODE case we might do certain steps in the procedure by doing computations

in some extension field. Investigation of such computation will be subject to future

research. Nevertheless, we want to give a brief glimpse of what might be possible. In a

further example we compute an exponential solution of an APDE.
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3.1. Two Variables

Example 3.13. (Convection-Reaction Equation [3, p. 7])

We consider the APDE,

F (u, ux, uy) = ux + cuy − du = 0 ,

where d 6= 0 and c 6= 0. We compute a parametrization Q =
(
s+ct
d
, s, t

)
and the coeffi-

cients

a1 =
1

ds
, a2 =

c

ds
, b =

t

s
.

Solving the ODEs of Step 3–6 we get

g2 =
c log(t)

d
+ c2 , g1 = c1 +

log(s)

d
.

Computing the inverse of g we find

h1 = eds−dc1 , h2 = e
dt
c
− dc2

c .

Finally, we get the solution u(x, y) = ed(x−c1)+ce
d(y−c2)

c

d
.

Table 3.1 presents a list of some well-known equations in two variables and the solutions

found by the procedure. For the sake of readability we neglect the arbitrary constants

and present only specific solutions.

Name APDE Parametrization Solution

Burgers (inviscid) [73] uux + uy
(
− t
s
, s, t

)
x
y

Traffic [10] uy − ux
(

2uvm
rm
− vm

) (
rm(t+svm)

2svm
, s, t

)
rm(−x+yvm)

2vmy

Eikonal [4] u2
x + u2

y − 1
(
s, 1−t2

1+t2
, 2t

1+t2

)
±
√
x2 + y2

Convection-Reaction

[3]

ux + cuy − du
(
s+ct
d
, s, t

)
edx+ce

dy
c

d

Generalized Burgers

(special case) [73]

uy + uux + αu+ βu2 (sB, tB,B)
e−xβ(1−exβ)α

(1+eαy)β

B = − (1+sα)
st+s2β

Table 3.1.: Well-known APDEs and their solutions found by Procedure 4.
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3. Solution Method for APDEs

3.2. Three Variables

In this section we consider the system (1.2) for n = 3. This case is discussed separately

since it is still suitable to show step by step details but it is also general enough to

intuitively lead to the overall picture presented in Section 3.3. Without loss of generality

we assume that q1 6= 0. Hence, we might divide by q1 and get

a1 =
∂g1

∂s1

+ b1
∂g1

∂s1

+ b2
∂g2

∂s1

,

a2 =
∂g1

∂s2

+ b1
∂g1

∂s2

+ b2
∂g2

∂s2

,

a3 =
∂g1

∂s3

+ b1
∂g1

∂s3

+ b2
∂g2

∂s3

,


(3.7)

with ai =
∂q0
∂si

q1
and bi = qi

q1
. Now we take derivatives of these equations

∂a1

∂s2

=
∂2g1

∂s2∂s1

+
∂b1

∂s2

∂g1

∂s1

+ b1
∂2g1

∂s2∂s1

+
∂b2

∂s2

∂g2

∂s1

+ b2
∂2g2

∂s2∂s1

,

∂a1

∂s3

=
∂2g1

∂s3∂s1

+
∂b1

∂s3

∂g1

∂s1

+ b1
∂2g1

∂s3∂s1

+
∂b2

∂s3

∂g2

∂s1

+ b2
∂2g2

∂s3∂s1

,

∂a2

∂s1

=
∂2g1

∂s1∂s2

+
∂b1

∂s1

∂g1

∂s2

+ b1
∂2g1

∂s1∂s2

+
∂b2

∂s1

∂g2

∂s2

+ b2
∂2g2

∂s1∂s2

,

∂a2

∂s3

=
∂2g1

∂s3∂s2

+
∂b1

∂s3

∂g1

∂s2

+ b1
∂2g1

∂s3∂s2

+
∂b2

∂s3

∂g2

∂s2

+ b2
∂2g2

∂s3∂s2

,

∂a3

∂s1

=
∂2g1

∂s1∂s3

+
∂b1

∂s1

∂g1

∂s3

+ b1
∂2g1

∂s1∂s3

+
∂b2

∂s1

∂g2

∂s3

+ b2
∂2g2

∂s1∂s3

,

∂a3

∂s2

=
∂2g1

∂s2∂s3

+
∂b1

∂s2

∂g1

∂s3

+ b1
∂2g1

∂s2∂s3

+
∂b2

∂s2

∂g2

∂s3

+ b2
∂2g2

∂s2∂s3

.

Choosing aj,k =
∂aj
∂sk
− ∂ak

∂sj
and bi,k = ∂bi

∂sk
and subtracting suitable equations we get

a1,2 = b2,2
∂g2

∂s1

− b2,1
∂g2

∂s2

+ b3,2
∂g3

∂s1

− b3,1
∂g3

∂s2

,

a1,3 = b2,3
∂g2

∂s1

− b2,1
∂g2

∂s3

+ b3,3
∂g3

∂s1

− b3,1
∂g3

∂s3

,

a2,3 = b2,3
∂g2

∂s2

− b2,2
∂g2

∂s3

+ b3,3
∂g3

∂s2

− b3,2
∂g3

∂s3

.


(3.8)

By a linear combination we get

b2,3a1,2 + b2,1a2,3 − b2,2a1,3

= (b2,3b3,2 − b2,2b3,3)
∂g3

∂s1

+ (b2,1b3,3 − b2,3b3,1)
∂g3

∂s2

+ (b2,2b3,1 − b2,1b3,2)
∂g3

∂s3

.
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3.3. The General Case

This is a quasilinear PDE in g3. Hence, it can be solved by the well-known method of

characteristics. Once we have g3 we get a quasilinear PDE in g2 adding the two first

equations of (3.8):

a1,2 + a1,3 −
(

(b3,2 + b3,3)
∂g3

∂s1

− b3,1
∂g3

∂s2

− b3,1
∂g3

∂s3

)
= (b2,2 + b2,3)

∂g2

∂s1

− b2,1
∂g2

∂s2

− b2,1
∂g2

∂s3

.

Again, this can be solved by the method of characteristics. Finding g1 is finally com-

puting an integral from (3.7).

Note, here we have shown a recursive way. However, some computations can also be

done in parallel, since there is no reason for the particular choice of the roles of the gi.

Indeed, we may as well consider another quasilinear PDE in g2 which is similar to the

one for g3:

b3,3a1,2 + b3,1a2,3 − b3,2a1,3

= (b2,2b3,3 − b2,3b3,2)
∂g2

∂s1

+ (b2,3b3,1 − b2,1b3,3)
∂g2

∂s2

+ (b2,1b3,2 − b2,2b3,1)
∂g2

∂s3

.

In fact, the two quasilinear PDEs can be expressed as

1

q2
1

det


∂q0
∂s1

∂q0
∂s2

∂q0
∂s3

∂q1
∂s1

∂q1
∂s2

∂q1
∂s3

b2,1 b2,2 b2,3

 = det


∂g3
∂s1

∂g3
∂s2

∂g3
∂s3

b2,1 b2,2 b2,3

b3,1 b3,2 b3,3


− 1

q2
1

det


∂q0
∂s1

∂q0
∂s2

∂q0
∂s3

∂q1
∂s1

∂q1
∂s2

∂q1
∂s3

b3,1 b3,2 b3,3

 = det


∂g2
∂s1

∂g2
∂s2

∂g2
∂s3

b2,1 b2,2 b2,3

b3,1 b3,2 b3,3



3.3. The General Case

Based on the ideas of Section 3.1 and 3.2 we can finally derive the generalization to

arbitrary many variables. Furthermore, in this section we elaborate details which we

omitted in the previous ones. These include but are not restricted to exceptional cases

and properties of the computed solutions.

Note that, when we talk about the differential equation and its solution we use the vari-

ables x1, . . . , xn, whereas in the parametrization problem we use the variables s1, . . . , sn.
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3. Solution Method for APDEs

We recall system (1.2) from the introduction.

∂q0

∂s1

=
n∑
i=1

∂v0

∂si
(g)

∂gi
∂s1

=
n∑
i=1

qi(s1, . . . , sn)
∂gi
∂s1

,

...

∂q0

∂sn
=

n∑
i=1

∂v0

∂si
(g)

∂gi
∂sn

=
n∑
i=1

qi(s1, . . . , sn)
∂gi
∂sn

.


(3.9)

This is a system of quasilinear equations in the unknown functions g1 to gn. In case qi is

zero for some i the problem reduces to lower order. Since Q is a proper parametrization

of a hypersurface, at most one of its components can be zero. So, we can ensure that

there exists a non-zero qi with i > 0. Let us assume that q1 6= 0. If this is not the case,

we can always change the role of x1 and xi with i > 1. We proceed as in the case for

three variables. First we divide by q1:

a1 =
∂g1

∂s1

+
n∑
i=2

bi
∂gi
∂s1

,

...

an =
∂g1

∂sn
+

n∑
i=2

bi
∂gi
∂sn

.


(3.10)

with ai =
∂q0
∂si

q1
and bi = qi

q1
. For each j ∈ {1, . . . , n} we take derivatives of the j-th

equation in (3.10) with respect to the variables sk for j 6= k. This yields a new system

of PDEs, which are henceforth of second order.

∂aj
∂sk

=
∂2g1

∂sk∂sj
+

n∑
i=2

∂bi
∂sk

∂gi
∂sj

+ bi
∂2gi
∂sk∂sj

for j 6= k . (3.11)

Obviously, we would like to get rid of the second-order terms. Thus, we take pairwise

differences of equations in (3.11) and get the following equations where the second

derivatives vanish.

aj,k =
n∑
i=2

bi,k
∂gi
∂sj
− bi,j

∂gi
∂sk

, for j < k , (3.12)

with aj,k =
∂aj
∂sk
− ∂ak

∂sj
and bi,k = ∂bi

∂sk
.

The aim now is to take suitable linear combinations of the equations from (3.12) such

that all derivatives of gi vanish except for i = n, i. e. we are left with a quasilinear PDE
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3.3. The General Case

in gn. In Section 3.1 this was shown for n = 2 and in Section 3.2 we did so for n = 3.

Now we prove the general case.

Theorem 3.14.

Let n ≥ 2 be the number of independent variables. Let M = (bk,`)2≤k≤n,1≤`≤n, where bi,j

are as in (3.12). Then system (3.10) yields a quasilinear PDE in gn of the following

form

∑
i,j∈{1,...,n}

i<j

ai,j(−1)i+j+n det(M{n},{i,j}) =
n∑
i=1

∂gn
∂si

(−1)i det(M∅,{i}) , (3.13)

where MR,S denotes the matrix which is obtained from M by deleting all rows with index

in R and all columns with index in S.

Proof. We proceed by rearranging the left hand side of equation (3.13) as long as equality

to the right hand side is shown. Laplace expansion plays an important role in the proof.

We use equation (3.12) for replacing the ai,j and we rearrange the sums. Then, the left

hand side of (3.13) reads as

∑
i,j∈{1,...,n}

i<j

(
n∑
k=2

bk,j
∂gk
∂si
− bk,i

∂gk
∂sj

)
(−1)i+j+n det(M{n},{i,j})

=
n∑
k=2

n∑
i=1

n∑
j=i+1

(
bk,j

∂gk
∂si
− bk,i

∂gk
∂sj

)
(−1)i+j+n det(M{n},{i,j})

=
n∑
k=2

(
n∑
i=1

n∑
j=i+1

bk,j
∂gk
∂si

(−1)i+j+n det(M{n},{i,j})

−
n∑
i=1

n∑
j=i+1

bk,i
∂gk
∂sj

(−1)i+j+n det(M{n},{i,j})

)

=
n∑
k=2

(
n∑
i=1

n∑
j=i+1

bk,j
∂gk
∂si

(−1)i+j+n det(M{n},{i,j})

−
n∑
i=2

i−1∑
j=1

bk,j
∂gk
∂si

(−1)i+j+n det(M{n},{i,j})

)
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=
n∑
k=2

(
n∑
j=2

bk,j
∂gk
∂s1

(−1)1+j+n det(M{n},{i,j})

+
n∑
i=2

∂gk
∂si

(
n∑

j=i+1

bk,j(−1)i+j+n det(M{n},{i,j})

−
i−1∑
j=1

bk,j(−1)i+j+n det(M{n},{i,j})

))

=
n∑
k=2

(
n∑
i=1

∂gk
∂si

(
n∑

j=i+1

bk,j(−1)i+j+n det(M{n},{i,j})

−
i−1∑
j=1

bk,j(−1)i+j+n det(M{n},{i,j})

))

=
n∑
i=1

∂gn
∂si

(
n∑

j=i+1

bn,j(−1)i+j+n det(M{n},{i,j})−
i−1∑
j=1

bn,j(−1)i+j+n det(M{n},{i,j})

)

=
n∑
i=1

∂gn
∂si

(−1)i det(M∅,{i}) .

In the last two steps we used backward Laplace expansion and got a matrix with an

additional line. This line does already appear in the matrix except for k = n.

There is no reason for the special role of gn. Hence, we can give a similar quasilinear

equation for each gν for ν > 1. Since there is no dependence between these equations

we can solve them in parallel. The equations we have to solve are
∑

i,j∈{1,...,n}
i<j

ai,j(−1)i+j+ν det(M{ν},{i,j}) =
n∑
i=1

∂gν
∂si

(−1)i det(M∅,{i})


ν∈{2,...,n}

. (3.14)

Finally, knowing g2, . . . , gn, we are left with computing g1 by using the system (3.10).

The system of quasilinear PDEs in (3.14) can be expressed as (compare to the case of

three variables) (−1)ν

q2
1

det

 ∇q0

∇q1

M{ν},∅

 = det

(
∇gν
M

)
ν∈{2,...,n}

.
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This is a consequence of using backward Laplace expansion by the first row, of the right

hand side determinant, and generalized Laplace expansion by the first two rows of the

left hand side determinant.

Note, that the determinants on the right hand side of (3.14) do not depend on ν. In the

following we see some cases where the determinants on the right hand side have special

properties. Mainly, we are asking some or all of them to be zero.

Remark 3.15.

If det(M∅,{i}) = 0 for all but one index i ∈ {1, . . . , n} \ {`}, and det(M∅,{`}) 6= 0, then

the equations (3.14) reduce to n− 1 ODEs with solution

gν =

∫ ∑
i,j∈{1...n}

i<j

ai,j(−1)i+j+ν det(M{ν},{i,j})

(−1)` det(M∅,{`})
ds` +K(s1, ..., s`−1, s`+1, ..., sn) .

In the following remark and theorem we see what happens if the right hand side of (3.14)

is zero. Two possible cases might occur: Either the left hand side is zero as well, or it

is not.

Remark 3.16.

If det(M∅,{i}) = 0 for every i ∈ {1, . . . , n} and∑
i,j∈{1,...,n}

i<j

ai,j(−1)i+j+ν det(M{ν},{i,j}) 6= 0

for some ν ∈ {1, . . . , n}, then we get a contradiction, and hence, the assumption Q =

L(g) was wrong. This, however, means that there is no proper rational solution (compare

Lemma 1.3). Nevertheless, there might be a non-proper rational solution, which we

cannot find with the procedure presented here.

From this we conclude for instance that the linear transport equation cannot have a

proper rational solution.

Example 3.17. (Linear Transport Equation [3])

We consider the transport equation F (u, ux, uy) = ux + duy = 0. We choose the proper

parametrization Q = (s1,−ds2, s2). Then det(M∅,{i}) = 0 but the left hand side of (3.14)

is
∑

i,j∈{1,...,n}
i<j

ai,j(−1)i+j+ν det(M{ν},{i,j}) = − 1
ds22

.

Indeed, the general solution of the linear transport equation is u(x, y) = ϕ(y − dx) for

some arbitrary function ϕ, (see for instance [3]). The Jacobian of the corresponding

parametrization has rank 1 and hence, this solution cannot be proper.
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We show now that the left hand side cannot be zero according to our assumptions. Note,

that the proof can also be applied in the case when Q is not rational.

Theorem 3.18.

If det(M∅,{i}) = 0 for every i ∈ {1, . . . , n}, and∑
i,j∈{1,...,n}

i<j

ai,j(−1)i+j+ν det(M{ν},{i,j}) = 0

for every ν ∈ {1, . . . , n}, then Q turns out to be a parametrization of a variety of

dimension strictly less than n.

Proof. In order to prove this statement, we take the matrix M = (bk,`)2≤k≤n
1≤`≤n

. From the

fact that det(M∅,{i}) = 0 for every i ∈ {1, . . . , n}, the rank of M is, at most, n− 2. By

definition of the bk,` we know

bk,` =
∂bk
∂s`

=
∂

∂s`

(
qk
q1

)
= q−2

1

(
∂qk
∂s`

q1 −
∂q1

∂s`
qk

)
for every k ∈ {2, . . . , n} and ` ∈ {1, . . . , n}. Let M? = (∂qk

∂s`
)2≤k≤n

1≤`≤n
. Then each row in M

is obtained from a linear combination of the corresponding row in M? and the vector

(∂q1
∂s`

)1≤`≤n. More precisely, the ν-th row in M is given by

∇(qν+1)
1

q1

−∇(q1)
qν+1

q2
1

for every ν ∈ {1, . . . , n− 1}, and where ∇(qj) = (
∂qj
∂s1
, ...,

∂qj
∂sn

). So the rank of

(
∇q1

M?

)
is

upper bounded by n−1. It remains to prove that this rank is preserved when the vectors

(∂q0
∂sj

)1≤j≤n and (∂q1
∂sj

)1≤j≤n are incorporated to M? as new rows. If this occurs, then the

matrix (
∂qj
∂sk

)0≤j≤n
1≤`≤n

would have rank strictly smaller than n, and the parametrization does

not correspond to a variety of dimension n.

From their definition,

ai,j =
∂ai
∂sj
− ∂aj
∂si

=
∂

∂sj

(
∂q0
∂si

q1

)
− ∂

∂si

(
∂q0
∂sj

q1

)
=

1

q2
1

(
∂q0

∂sj

∂q1

∂si
− ∂q0

∂si

∂q1

∂sj

)
.
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By the assumption of the theorem the left hand side of equation (3.14) vanishes for

every ν ∈ {2, . . . , n}, hence,

∑
i,j∈{1,...,n}

i<j

(
∂q0

∂sj

∂q1

∂si
− ∂q0

∂si

∂q1

∂sj

)
(−1)i+j det(M{ν},{i,j}) = 0 (3.15)

for ν ∈ {2, . . . , n}. Regarding the generalized Laplace expansion (see for instance [16]),

the left hand side of (3.15) is the determinant of a single n× n-matrix and we get

det

 ∇q0

∇q1

M{ν},∅

 = 0 .

Hence, all such n × n matrices have rank n − 1. We still need to show, that the

rank of

(
∇q0

M?

)
is at most n − 1. Assume to the contrary, that the rank is n. Then

(∇q2, . . . ,∇qn) are linearly independent. Since the rank of

(
∇q1

M?

)
is at most n − 1,

we know that (∇q1, . . . ,∇qn) are linearly dependent. Hence, ∇q1 can be written as a

linear combination of ∇q1 =
∑n

j=2 λj∇qj. We take k such that λk 6= 0. Then ∇qk =

1
λk

(
∇q1 −

∑n
j=2
j 6=k

λj∇qj
)

. Hence, the rank of

(
∇q0

M?

)
equals the rank of

 ∇q0

∇q1

M{k},∅


which we have shown to be at most n− 1 so we have a contradiction.

From this we conclude that the rank of (
∂qj
∂sk

)0≤j≤n
1≤k≤n

is, at most, n − 1, and the parame-

trization does not correspond to a variety of dimension n.

For the rest of the thesis we assume that the quasilinear equations (3.14) are non-trivial,

i. e. we are not in one of the special cases described above.

Method of characteristics

The quasilinear equations (3.14) can be solved by using the method of characteristics

(see for instance [73] and Appendix D). Doing so we need to solve the following system
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3. Solution Method for APDEs

of ordinary differential equations.

∂si
∂t

= (−1)i det(M∅,{i}) for 1 ≤ i ≤ n ,

dv

dt
=

∑
i,j∈{1,...,n}

i<j

ai,j(−1)i+j+ν det(M{ν},{i,j}) .

 (3.16)

In case n = 2 we have seen in Section 3.1 that this can be transformed to a decoupled

system which can be solved by methods presented in [44, 45, 46]. For n ≥ 3 system

(3.16) is no longer uncoupled in general. The first n equations form a possibly coupled

system, whereas (as in the case n = 2) the last one can then be solved by integration.

Hence, an arbitrary constant is involved. We show later that the introduction of these

constants can be postponed.

Constants also appear in the solutions of the first n equations of (3.16). We get si(t) =

χi(t, k2, . . . , kn) where ki are arbitrary constants. Finally the solution of the last equation

is v(t) = v(t, k2, . . . , kn) = v̄(t, k2, . . . , kn) + ω(k2, . . . , kn) for some v̄ and an arbitrary

function ω. To resolve these constants, we compute ξk such that si = χi(ξ1, . . . , ξn) for

all i. Note, that it is not always possible to find an explicit solution. In the negative case

the procedure fails to find a solution of the APDE and we do not know whether a solution

exists. If we are able to find an explicit solution, then gν(s1, . . . , sn) = v̄(ξ1, . . . , ξn) +ω.

In general ω depends on a constant c. For simplicity reasons we fix ω = c. This might

restrict the solution set which can be computed, but it still allows useful investigation.

Other choices and a survey for arbitrary ω are a subject of further research.

Note, that the first n equations of (3.16) do not depend on ν since the right hand side

of (3.14) did not either. This means we can solve this part of the system of ODEs once

for each APDE. What remains is to solve the last equation of (3.16). This needs to be

done for every ν > 1, but it can be done in parallel.

Solution procedure

Finally, using the results from the previous sections we obtain a procedure for solving

APDEs in n variables.

Procedure 5.

Input: An autonomous APDE, F (u, ux1 , . . . , uxn) = 0, where F is an irreducible and non-

constant polynomial, and a proper rational parametrization Q(s1, . . . , sn) = (q0, . . . , qn)

58



3.3. The General Case

of the corresponding hypersurface defined by F .

Output: A solution of the APDE or “fail”.

1. Compute the coefficients ai =
∂q0
∂si

q1
, and bi = qi

q1
. Compute further aj,k =

∂aj
∂sk
− ∂ak

∂sj

and bi,` = ∂bi
∂s`

.

2. Compute det(M∅,{i}) for all i. If only one of them is non-zero, solve the ODEs by

integration as described in Remark 3.15 and continue with Step 4.

If all determinants are zero, compute
∑

i,j∈{1,...,n}
i<j

ai,j(−1)i+j+ν det(M{ν},{i,j}). If

this is non-zero, there is no proper rational solution. The procedure stops. If this

is zero, then Q does not fulfill the requirements.

3. Solve (in parallel) the quasilinear PDEs (3.14) for gν , n ≥ ν > 1, respectively.

Using the method of characteristics proceed as follows.

a) Solve the system of ODEs, ∂si
∂t

= (−1)i det(M∅,{i}), for all 1 ≤ i ≤ n and get

solutions si(t) = χi(t, k2, . . . , kn).

b) Solve the ODE, dv
dt

=
∑

i,j∈{1,...,n}
i<j

ai,j(−1)i+j+ν det(M{ν},{i,j}), by integration.

c) Compute ξk such that si = χi(ξ1, . . . , ξn) for all i.

d) Compute gν(s1, . . . , sn) = v̄(ξ1, . . . , ξn) + cν .

4. Use (3.10) to compute g1.

5. Compute h1, . . . , hn such that g(h1(s1, . . . , sn), . . . , hn(s1, . . . , sn)) = (s1, . . . , sn).

6. Compute the solution q0(h1(x1, . . . , xn), . . . , hn(x1, . . . , xn)).

We want to prove now that Procedure 5 actually computes solutions of APDEs. Prop-

erties of the output solutions are presented later on.

Theorem 3.19.

Let F (u, ux1 , . . . , uxn) = 0 be an autonomous APDE. If Procedure 5 returns a function

v(x1, . . . , xn) for input F , then v is a solution of F = 0.
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Proof. By the last step of the procedure we know that

v(x1, . . . , xn) = q0(h1(x1, . . . , xn), . . . , hn(x1, . . . , xn)) .

with hi such that g(h1(s1, . . . , sn), . . . , hn(s1, . . . , sn)) = (s1, . . . , sn). Since g is a solution

of the system (3.12), it fulfills the assumption that u(g1, . . . , gn) = q0 for some solution

u of the APDE. Hence, v is a solution. We have seen a more detailed description at the

beginning of this section.

Now, we show that the result does not change if we postpone the introduction of the

constants c1, . . . , cn to the end of the procedure. It is easy to see that if u(x1, . . . , xn) is

a solution of an autonomous APDE then so is u(x1 + c1, . . . , xn + cn) for any constants

ci, 1 ≤ i ≤ n. From the procedure we get for i ≥ 2 that gi = ḡi + ci with ḡi not

depending on cj for all j. Furthermore, we see that in the computation of g1 we use the

derivatives of gi only (and hence the ci disappear). Therefore, we have that g1 = ḡ1 + c1.

Let g = (g1, . . . , gn) and ḡ = (ḡ1, . . . , ḡn). In Step 5 we are looking for a function h such

that g ◦ h = id. Now g ◦ h = ḡ ◦ h + (c1, . . . , cn). Take h̄ such that ḡ ◦ h̄ = id. Then

g ◦ h̄(s1 − c1, . . . , sn − cn)) = id. Hence, we can introduce the constants at the end.

In case the original APDE is in fact an AODE, the ODE in (3.16) turns out to be trivial

and the integral in Step 4 is exactly the one which appears in Procedure 3. Of course

then g is univariate and so is its inverse. We do not specify Procedure 5 to handle this

case. Furthermore, if n = 2 this procedure specifies to Procedure 4. In this sense, this

new procedure generalizes Procedure 3 and 4.

Remark 3.20.

Procedure 5 might fail in several steps. First of all, we avoided to talk about parametriz-

ability by assuming there is a parametrization of the corresponding hypersurface. In case

such a parametrization does not exist in a certain class there cannot exist a solution in

this class either. Further we use the method of characteristics which might not give an

explicit solution (compare [73]).

Later we compute g1 by integration where a solution might only be found in a field

extension, i. e. we might get out of the class of functions we are looking for. Nevertheless,

if we find an integral in a field extension and the subsequent steps are successful as well,

we might still get a solution. See for instance the examples in Section 3.3.2.
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Finally, in Step 5 it might happen that there is no explicit solution for hi. In all of these

cases, we say that the procedure fails and then we do not know anything about solvability

of the input APDE. In the latter case, however, we might state the solution implicitly.

3.3.1. Rational Solutions

For first-order autonomous AODEs the algorithm of Feng and Gao [17] gives an answer

on whether or not a rational solution exists. As Procedure 5 is a generalization of

Procedure 3 for AODEs, it also generalizes this algorithm. As in Procedure 4, any

final result of the procedure is a solution of the differential equation, but however, the

procedure might fail and then it does not tell us whether a solution might exist. In the

following we collect properties of rational solutions and compute some examples.

Properties of Rational Solutions

Now we discuss the properties of rational solutions computed by Procedure 5. In par-

ticular we show that these solutions are proper and complete of suitable dimension.

Lemma 3.21.

If Procedure 5 yields a rational solution, then the solution is proper.

Proof. Let L be the corresponding parametrization of the output solution. In the pro-

cedure we start with a proper parametrization Q of the associated surface. When the

procedure is successful we know that L(g) = Q and the inverse h of g exists. Hence,

L = Q(h) is proper as well.

Recall Remark 1.2 which proves that the Jacobian of the corresponding parametrization

of a proper solution computed by the procedure has generic rank n.

Theorem 3.22.

Assume Procedure 5 yields a rational solution u(x1, . . . , xn). Then the solution u is

complete of suitable dimension.
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Proof. From the investigation below Theorem 3.19 we know that u(x1, . . . , xn) = u∗(x1+

c1, . . . , xn + cn) for some u∗. As usual, let L be the corresponding parametrization of u.

For the case of two variables we see that

J c1,c2
L =

 ux(x+ c1, y + c2) uy(x+ c1, y + c2)

uxx(x+ c1, y + c2) uxy(x+ c1, y + c2)

uyx(x+ c1, y + c2) uyy(x+ c1, y + c2)

 = J x,y
L = JL .

The equation J c1,...,cn
L = J x1,...,xn

L also holds in general. From Lemma 3.21 we know that

L is proper and from Remark 1.2 we know that a proper solution has a Jacobian of rank

n.

APDEs with Rational Solutions

We start with a full computation of an example. Examples and classes of APDEs in

two variables with rational solutions can be found in Section 3.1.1 and Appendix C.3.

Therefore, we focus on an example with more than two variables.

Example 3.23. (Example 7.11 of Kamke [31])

We consider the APDE, F (u, ux1 , ux2 , ux3) = d1u
2
x1

+ d2u
2
x2

+ d3u
2
x3
− u = 0, where d1,

d2 and d3 are non-zero constants. A possible parametrization is

Q =

s1, s2,
−
√
−d2
d3
s1 + d1

√
−d2
d3
s2

2 +
√
−d2
d3
d3s

2
3

2d2s3

,
s1 − d1s

2
2 + d3s

2
3

2d3s3

 .

The coefficients as computed in the procedure are

a1 =
1

s2

, a2 = 0, a3 = 0 ,

b2 =
−
√
−d2
d3
s1 + d1

√
−d2
d3
s2

2 +
√
−d2
d3
d3s

2
3

2d2s2s3

, b3 =
s1 − d1s

2
2 + d3s

2
3

2d3s2s3

.

Then we have to solve the following quasilinear equations

−s1 + d1s
2
2 + d3s

2
3

2d3s3
2s

2
3

= −

√
−d2
d3

(
s3

∂g2
∂s3

+ s2
∂g2
∂s2

+ 2s1
∂g2
∂s1

)
2d2s3

2s3

,

−

√
−d2
d3

(s1 − d1s
2
2 + d3s

2
3)

2d2s3
2s

2
3

= −

√
−d2
d3

(
s3

∂g3
∂s3

+ s2
∂g3
∂s2

+ 2s1
∂g3
∂s1

)
2d2s3

2s3

.
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Simplifying these equations and using the ideas of the method of characteristics, we have

to solve the following system of ODEs.

s′1 =
2s1s3√
−d2
d3
d3

,

s′2 = −

√
−d2
d3
s2s3

d2

,

s′3 = −

√
−d2
d3
s2

3

d2

,

v′ =
d1s

2
2 + d3s

2
3 − s1

d3

, resp. v = −

√
−d2
d3

(−d1s
2
2 + d3s

2
3 + s1)

d2

.

The first three equations are independent from the last one. They yield solutions

s1 =
c2(

c1

√
−d2
d3
d3 + t

)2 , s2 =
c3

c1d2 −
√
−d2
d3
t
, s3 = − d2

c1d2 −
√
−d2
d3
t
,

for some arbitrary constants c1, c2, c3. Resolving t and the constants results in

t = −

√
−d2
d3
d3

s3

, c2 = −d2d3s1

s2
3

, c3 = −d2s2

s3

. (3.17)

Solving the last equation of the system of ODEs by integration yields

v =

c23d1
d2

+ c2
d3

+ d2d3

t
, resp. v =

√
−d2
d3

(c2
3d1d3 + c2d2 − d2

2d
2
3)

d2
2t

Using (3.17) we get the solutions

g2 =

√
−d2
d3

(−s1 + d1s
2
2 + d3s

2
3)

s3

, g3 =
s1 − d1s

2
2 + d3s

2
3

s3

.

Now, we need to compute g1. We do so be taking the first equation of (3.10). Thus,

g1 = m1(s2, s3) ,

where m1 is an arbitrary function. Using the second equation of (3.10) we compute m1

and get

m1 = 2d1s2 +m2(s3) .
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Finally, we compute m2 = c1 using the last equation in (3.10). We choose c1 to be 0.

Hence,

g1 = 2d1s2 .

Solving the system gi(h) = si, we get

h1 =
1

4

(
s2

1

d1

+
s2

2

d2

+
s2

3

d3

)
, h2 =

s1

2d1

, h3 =

s2√
− d2
d3

+ s3

2d3

.

Hence,

q0(h(x1, x2, x3)) = h1(x1, x2, x3) =
1

4

(
x2

1

d1

+
x2

2

d2

+
x2

3

d3

)
is a solution of the APDE and q0(h(x1 + c1, x2 + c2, x3 + c3)) is a complete one.

3.3.2. Other Solutions

So far we concentrated on rational solutions. For the case of n = 2 we additionally saw

on examples that non-rational solutions might be computed by the procedure. In the

general case we can as well try to do computations in some field extension and as before

this will be subject to further investigation. Though, before we show some examples for

the general case, we also prove some properties of any result of the procedure regardless

of the class of functions. Similarly to Lemma 3.21 we get the following.

Lemma 3.24.

If Procedure 5 yields a solution, then the corresponding parametrization is injective al-

most everywhere.

Proof. Let L be the corresponding parametrization of the output solution. In the pro-

cedure we start with a proper parametrization Q of the associated surface. When the

procedure is successful we know that L(g) = Q and the inverse h of g exists. Hence,

L = Q(h) is injective almost everywhere.

A parametrization which is injective almost everywhere is also called almost injective.

Note, that the Jacobian of an almost injective parametrization P(s1, . . . , sn) has generic

rank n. Indeed, since P is almost injective, there exists a map R such that id = R ◦ P
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generically. Thus Jid = JR◦P = JR(P) · JP . Taking into account, that the rank of a

product of two matrices is less than or equal to the minimal rank of the two matrices,

we get that rank(JP) = n.

Theorem 3.25.

Assume Procedure 5 yields a solution u(x1, . . . , xn). Then the solution u is complete of

suitable dimension.

Proof. As usual, let L be the corresponding parametrization of u. Then the equation

J c1,...,cn
L = J x1,...,xn

L holds in general. From Lemma 3.24 we know that L is almost

injective and the notes above show that an almost injective solution has a Jacobian of

expected rank.

The following examples show that the method is not restricted to finding rational solu-

tions. It might happen that the steps in Procedure 5 can be done by doing computations

in some extension field. In this case we can of course continue in the procedure and might

get a non-rational solution.

Example 3.26. (Eikonal Equation with 5 variables)

We consider the APDE, F (u, ux1 , . . . , ux5) =
(∑5

i=1 u
2
xi

)
− 1 = 0. A possible rational

parametrization of the corresponding hypersurface is

Q =

(
s1,

s2
2 + s2

3 + s2
4 + s2

5 − 1

D
,
2s2

D
,
2s3

D
,
2s4

D
,
2s5

D

)
,

where D = s2
2 + s2

3 + s2
4 + s2

5 + 1. The parametrization is proper. Indeed, the inverse is

given by

s1 = z , s2 = − p2

p1 − 1
, s3 =

p3(p1 + 1)

p2
2 + p2

3 + p2
4 + p2

5

,

s4 =
p4(p1 + 1)

p2
2 + p2

3 + p2
4 + p2

5

, s5 =
p5(p1 + 1)

p2
2 + p2

3 + p2
4 + p2

5

.

The coefficients appearing in the procedure are

a1 =
s2

2 + s2
3 + s2

4 + s2
5 + 1

s2
2 + s2

3 + s2
4 + s2

5 − 1
, ai = 0 , for i ≥ 2 ,

bi =
2si

s2
2 + s2

3 + s2
4 + s2

5 − 1
.
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Then we get the following quasilinear equations for 2 ≤ i ≤ 5.

32si

(s2
2 + s2

3 + s2
4 + s2

5 − 1)
5 =

16 (s2
2 + s2

3 + s2
4 + s2

5 + 1) ∂gi
∂s1

(s2
2 + s2

3 + s2
4 + s2

5 − 1)
5 .

Here we are in the case of Remark 3.15 and hence, by integration we get

gi =
2s1si
D

, for i ≥ 2 .

Note, that for simplicity we chose the arbitrary functions which occur in the solutions

of the ODEs to be 0. Now we need to compute g1. We do so by taking the first equation

of (3.10). As a solution we get g1 =
s1(s22+s23+s24+s25−1)

D
+ m1(s2, s3, s4, s5), where m1

is an arbitrary function. Step by step we compute m1 by using the other equations of

(3.10). Using the second equation we have an ODE in m1. We get m1 = m2(s3, s4, s5).

Continuing like this we finally get m1 = c1 for an arbitrary constant. Since, we can deal

with constants at the end of the procedure, we choose c1 to be zero for the moment. Now

we have to solve the system gi(h) = si. A solution of this system is

h1 =

√
s2

2 (s2
1 + s2

2 + s2
3 + s2

4 + s2
5)

s2

,

hi =
s1s2si − si

√
s2

2 (s2
1 + s2

2 + s2
3 + s2

4 + s2
5)

s2 (s2
2 + s2

3 + s2
4 + s2

5)
, for i ≥ 2 .

Hence we conclude that

q0(h(x)) = h1(x) =
√
x2

1 + x2
2 + x2

3 + x2
4 + x2

5

is a solution of the APDE.

Example 3.27.

We consider the APDE, F (u, ux1 , ux2 , ux3) = (ux1 +d1)ux2 − (u+d2)ux3 = 0. A possible

proper parametrization is Q = (s1, s2, s3,
(s2+d1)s3
s1+d2

). The coefficients are

a1 =
1

s2

, a2 = 0 , a3 = 0 ,

b2 =
s3

s2

, b3 =
(s2 + d1)s3

(s1 + d2)s2

.

Then we have to solve the following quasilinear equations

d1 + s2

(d2 + s1)s3
2

=
1

(d2 + s1)2s3
2

s3

(
(d1 + s2)s3

∂g2

∂s3

+ s2

(
(d1 + s2)

∂g2

∂s2

+ (d2 + s1)
∂g2

∂s1

))
,

− 1

s3
2

=
1

(d2 + s1)2s3
2

s3

(
(d1 + s2)s3

∂g3

∂s3

+ s2

(
(d1 + s2)

∂g3

∂s2

+ (d2 + s1)
∂g3

∂s1

))
.
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Omitting the details and intermediate steps we get the solutions

g2 = −(d2 + s1)(d1 − log(s2)s2)

(d1 + s2)s3

, g3 =
(d2 + s1)2(d1 − log(s2)s2)

(d1 + s2)2s3

.

Now, we need to compute g1. We do so be taking the first equation of (3.10). This

results in

g1 =
(1 + log(−s2))s1

d1 + s2

+m1(s2, s3) ,

where m1 is an arbitrary function. Using the second equation of (3.10) we compute

m1 =
d2(1 + log(−s2))

d1 + s2

+m2(s3)

Finally, we compute m3 = c1 using the last equation in (3.10). We choose c1 to be 0.

Hence,

g1 =
(1 + log(−s2))(d2 + s1)

d1 + s2

.

Solving the system gi(h) = si, we get

h1 = −d2s2 + d1s3 − e
−1− s1s2

s3 s3

s2

,

h2 = −e
−1− s1s2

s3 ,

h3 =
e
−1− s1s2

s3

(
−s1s2 +

(
−1 + d1e

1+
s1s2
s3

)
s3

)
s2

2

.

Hence,

q0(h(x)) = h1(x1, x2, x3) = −d2x2 + d1x3 − e
−1−x1x2

x3 x3

x2

is a solution of the APDE.

3.4. Further approaches

In this section we present some approaches which might be used for extending the class

of APDEs for which we can compute solutions. The approaches under consideration

connect methods described in Chapter 2 respectively 3 and other known methods. The

67



3. Solution Method for APDEs

first approach helps to find solutions of AODEs, whereas the second idea, which is based

on a known method, computes non-proper solutions of APDEs. The ideas are briefly

discussed but more elaborate treatment is subject to further research.

Solving AODEs via ideas from APDEs

In Section 2.3 we introduced some ideas for higher-order AODEs referring to a similar

idea for APDEs which we present here. Let us consider an autonomous second-order

APDE, F (u, ux, uxx) = 0. Assume we have a proper rational parametrization Q =

(q0, q1, q2) of the surface F (z, p1, p2) = 0. As usual, we assume that Q = L(g) for some

function g, where L is the parametrization corresponding to a solution. Then, similar

to system (1.2) for the first-order case we now get the following equations.

q0(s, t) = u(g1(s, t), g2(s, t)) ,

q1(s, t) = ux(g1(s, t), g2(s, t)) ,

q2(s, t) = uxx(g1(s, t), g2(s, t)) ,

which yield by taking first derivatives

∂q0

∂s
=
∂g2

∂s
uy(g1, g2) +

∂g1

∂s
ux(g1, g2) =

∂g2

∂s
uy(g1, g2) +

∂g1

∂s
q1 ,

∂q0

∂t
=
∂g2

∂t
uy(g1, g2) +

∂g1

∂t
ux(g1, g2) =

∂g2

∂t
uy(g1, g2) +

∂g1

∂t
q1 ,

∂q1

∂s
=
∂g2

∂s
uxy(g1, g2) +

∂g1

∂s
uxx(g1, g2) =

∂g2

∂s
uxy(g1, g2) +

∂g1

∂s
q2 ,

∂q1

∂t
=
∂g2

∂t
uxy(g1, g2) +

∂g1

∂t
uxx(g1, g2) =

∂g2

∂t
uxy(g1, g2) +

∂g1

∂t
q2 .

Elimination of uy(g1, g2) from the first two equations and uxy(g1, g2) from the last two

equations yields

∂g2

∂s

∂q0

∂t
− ∂g2

∂t

∂q0

∂s
=

(
∂g2

∂s

∂g1

∂t
− ∂g2

∂t

∂g1

∂s

)
q1 , (3.18)

∂g2

∂s

∂q1

∂t
− ∂g2

∂t

∂q1

∂s
=

(
∂g2

∂s

∂g1

∂t
− ∂g2

∂t

∂g1

∂s

)
q2 . (3.19)

Combining these two equations we get a quasilinear PDE in g2.

q1

(
∂q1

∂t

∂g2

∂s
− ∂g2

∂t

∂q1

∂s

)
= q2

(
∂q0

∂t

∂g2

∂s
− ∂g2

∂t

∂q0

∂s

)
. (3.20)

We can solve the quasilinear equation by the method of characteristics to get g2. Equa-

tion (3.18) is a quasilinear equation in g1, when g2 is given. Once knowing g1 and g2
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we compute, as usual, h1 and h2 such that (g1(h1, h2), g2(h1, h2)) = (s, t). The following

example illustrates the procedure.

Example 3.28.

The usability of this example is shown in Example 2.20 where the solution of this APDE

is needed to solve a second-order AODE. We consider the APDE, F (u, ux, uxx) =

uuxx + u2
x = 0. It is easy to see that Q =

(
s, t,− t2

s

)
is a proper parametrization of

the corresponding surface. In this case equation (3.20) is

t
∂g2

∂s
− t2

s

∂g2

∂t
= 0 .

Using the method of characteristics we need to solve the ODEs

ds(t)

dt
= −s(t)

t
,

dv(t)

dt
= 0 .

The solution of the first equation is s(t) = k
t
, which yields k = st. The solution of the

second equation is v(t) = ν2(k) for some function ν2. Then g2(s, t) = ν2(st). Now we

take equation (3.18) to compute g1:

−q1
∂g2

∂t

∂g1

∂s
+ q1

∂g2

∂s

∂g1

∂t
=
∂g2

∂s

∂q0

∂t
− ∂g2

∂t

∂q0

∂s

−stν ′2(st)
∂g2

∂s
+ t2ν ′2(st)

∂g1

∂t
= −sν ′2(st)

Using again the method of characteristics we have to solve the ODEs

ds(t)

dt
= −s(t)

t
,

dv(t)

dt
= −s(t)

t2
.

The first equation yields s(t) = k
t
, i. e. k = st. Solving the second equation by integration

we get v(t) =
∫

k
t3

dt = − k
2t2

+ ν1(k) for some function ν1. Then g1(s, t) = − s
2t

+ ν1(st).

We choose ν1 = ν2 = id. Then we can compute h1 and h2:

h1 =

√
2t3/2√
s− t

−
√

2s
√
t√

s− t
, h2 = −

√
t√

2s− 2t
.

Since q0 = s we know that h1(x, y) is a solution of the APDE and so is h1(x+c1, y+c2).
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This idea can be generalized to higher order. Let F (u, u(1,0,...,0), . . . , u(n,0,...,0)) = 0, where

u(k1,...,kn) = ∂k1

∂x
k1
1

(
. . .
(
∂knu

∂x
k1
n

))
. Let Q(s1, . . . , sn) = (q0, . . . , qn) be a proper rational

parametrization of the corresponding hypersurface. As usual, we assume that Q = L(g),

where g is an invertible function and L is the parametrization induced by a solution.

Then the following equations have to be fulfilled.

qk = u(k,0,...,0)(g) , for k ∈ {0, . . . , n} , (3.21a)(
∂qk
∂si

)
i∈{1,...,n}

= G ·
(
∂u(k,0,...,0)

∂xi
(g)

)
i∈{1,...,n}

, for k ∈ {0, . . . , n− 1} , (3.21b)

where G = ( ∂gi
∂sj

)i,j∈{1,...,n}. Since g is an invertible function, the matrix G has an inverse.

We pick the first row in each equation of (3.21b) and use (3.21a) to get

(qi)i∈{1,...,n} = M · ((G−1)1)T ,

where M =
(
∂qi
∂sj

)
i∈{0,...,n−1}
j∈{1,...,n}

and (G−1)1 is the first row of the inverse of G. By Cramer’s

rule we know that

(G−1)1,k =
det(M̃k)

det(M)
,

where M̃k is constructed from M by replacing the i-th column by (q1, . . . , qn)T . Using

the definition of an inverse we conclude that

n∑
i=1

∂g1

∂si
det(M̃i) = det(M) , (3.22a)

n∑
i=1

∂gk
∂si

det(M̃i) = 0 , for k > 1 . (3.22b)

These are quasilinear PDEs and can be solved by the method of characteristics. Finally,

we summarize the procedure.

Procedure 6.

Input: An autonomous APDE, F (u, u(1,0,...,0), . . . , u(n,0,...,0)) = 0, with an irreducible

and non-constant polynomial F , and a proper rational parametrization Q(s1, . . . , sn) =

(q0, . . . , qn) of the corresponding hypersurface defined by F .

Output: A solution u(x1, . . . , xn) of the APDE or “fail”.

• Solve the quasilinear PDE from (3.22b) with the method of characteristics and

take n− 1 independent solutions to get g2, . . . , gn.
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• Solve the quasilinear PDE (3.22a) with the method of characteristics to get g1.

• Compute h such that g(h) = id.

• Return q0(h(x1, . . . , xn)).

Note, that for n = 2 this procedure indeed specializes to the idea from above.

Example 3.29.

The solution of this example is used in Example 2.21. We consider the APDE,

F (u, ux, uxx, uxxx) = uuxxx − uxuxx = 0 .

It is easy to see that Q =
(
s1, s2, s3,

s2s3
s1

)
is a proper parametrization of the correspond-

ing hypersurface. In this case M = In and hence, (3.22) yields

∂g1

∂s1

s2 +
∂g1

∂s2

s3 +
∂g1

∂s3

s2s3

s1

= 1 ,

∂g2

∂s1

s2 +
∂g2

∂s2

s3 +
∂g2

∂s3

s2s3

s1

= 0 ,

∂g3

∂s1

s2 +
∂g3

∂s2

s3 +
∂g3

∂s3

s2s3

s1

= 0 .

Using the method of characteristics we need to solve the system of ODEs

ds2(t)

dt
=
s3(t)

s2(t)
,

ds3(t)

dt
=
s3(t)

t
.

We get s2 = −
√
t2k1 + 2k2 and s3 = tk1. Since the right hand side of the quasilinear

equations for g2 and g3 is zero we conclude that g2 = ν2(k1, k2) and g3 = ν3(k1, k2) for

some arbitrary functions ν2, ν3. We choose g2 = k1 and g3 = k2. It remains to compute

g1. For this we integrate 1
s2(t)

and get −
log
(√

k1
√
k1t2+2k2+k1t

)
√
k1

. We resolve k1 and k2 which

yields k1 = s3
t

and k2 = 1
2
(s2

2 − ts3). Hence,

g1 = −
log
(
s3 +

√
s3
s1

√
s2

2

)
√

s3
s1

, g2 =
s3

s1

, g3 =
1

2

(
s2

2 − s1s3

)
.
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Finally, we compute h such that g(h) = id and get

h1 =
es1
√
s2
(
e−2s1

√
s2 − 2s2s3

)
2s2

,

h2 =
es1
√
s2
(
2s2s3 + e−2s1

√
s2
)

2
√
s2

,

h3 =
1

2
es1
√
s2
(
e−2s1

√
s2 − 2s2s3

)
.

Therefore, q0(h1(x1, x2, x3), h2(x1, x2, x3), h3(x1, x2, x3)) = h1(x1, x2, x3) is a solution of

the APDE.

The idea can be further generalized to non-autonomous APDEs. Let F be such an

APDE, i. e. F (x1, u, u
(1,0,...,0), . . . , u(n,0,...,0)) = 0, in n+1 variables. Let Q(s1, . . . , sn+1) =

(q−1, q0, . . . , qn) be a proper rational parametrization of the corresponding hypersurface.

As usual, we assume that Q = L(g). Then the following equations have to be fulfilled.

qk = u(k,0,...,0)(g) , for k ∈ {0, . . . , n} , (3.23a)(
∂q−1

∂si

)
i∈{1,...,n+1}

= G · (1, 0, . . . , 0)T , (3.23b)(
∂qk
∂si

)
i∈{1,...,n+1}

= G ·
(
∂u(k,0,...,0)

∂xi
(g)

)
i∈{1,...,n+1}

, for k ∈ {0, . . . , n− 1} , (3.23c)

where G = (
∂gj
∂si

)i,j∈{0,...,n}. Since g is an invertible function, the matrix G has an inverse.

We pick the first row of each equation in (3.23c) and the first row of (3.23b). Using

(3.23a) we get

(1, q1, . . . , qn)T = M · ((G−1)1)T ,

where M =
(
∂qi
∂sj

)
i∈{−1,...,n−1}
j∈{1,...,n}

and (G−1)1 is the first row of the inverse of G. By Cramer’s

rule we conclude that

n∑
i=1

∂gk
∂si

det(M̃i) = 0 , for k ≥ 1 , (3.24)

where M̃k is constructed from M by replacing the i-th column by (1, q1, . . . , qn)T . These

are quasilinear PDEs and can be solved by the method of characteristics. Finally, we

summarize the procedure.
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Procedure 7.

Input: A non-autonomous APDE, F (x1, u, u
(1,0,...,0), . . . , u(n,0,...,0)) = 0, with an irre-

ducible and non-constant polynomial F , and moreover a proper rational parametriza-

tion Q(s1, . . . , sn+1) = (q−1, q0, . . . , qn) of the corresponding hypersurface defined by F .

Output: A solution u(x1, . . . , xn+1) of the APDE or “fail”.

• Solve the quasilinear PDE from (3.24) with the method of characteristics and take

n independent solutions to get g1, . . . , gn.

• Compute h such that g(h) = id.

• Return q0(h(x1, . . . , xn+1)).

Lemma 3.30.

If Procedure 6 or Procedure 7 yields a rational solution, then the solution is proper.

Proof. Let L be the corresponding parametrization of the output solution. The input

Q is a proper parametrization of the associated surface. We know that L(g) = Q and

the inverse h of g exists. Hence, L = Q(h) is proper as well.

Complete solutions which are not of suitable dimension

The previous idea for solving APDEs might help to solve certain AODEs. Now we look

at an idea for finding solutions of APDEs by transforming the problem to AODEs. In

[31, p. 94] Kamke describes the basics of this method for finding a complete solution of

a first-order autonomous partial differential equation.

We consider an APDE, F (u, ux, uy) = 0. We assume that u(x, y) is a solution of the

form u(x, y) = f(ξ) where ξ = x − cy for some constant c. Then the equation reduces

to an AODE, F (u, ux, uy) = F (f, f ′,−cf ′) = 0. Note, that the ODE is not necessarily

irreducible even if the PDE was. Kamke [31] continues only in case this equation can

be solved for f ′. Taking into account the methods presented in Chapter 2, this ODE

might be solved, provided that a parametrization is given.

The general framework of the method works as follows:
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Procedure 8.

Input: An autonomous APDE, F (u, ux, uy) = 0, where F is irreducible and non-

constant.

Output: A set of solutions (ui(x, y))i∈{1,...,η} of the APDE, where each element is of the

form f(x− cy), or “fail”.

• Compute G(f, f ′) = F (f, f ′,−c2f
′).

• Take all irreducible factors of G, say G1, . . . , Gη.

• Compute parametrizations of Gi(y, z) = 0, if possible.

• Use methods from Chapter 2 for computing solutions fi of Gi(f, f
′) = 0.

Return “fail” if the computation fails.

• Compute u = (ui(x, y))i∈{1,...,η} = (fi(x− c2y))i∈{1,...,η}.

From the above discussion it is easy to show that the result is indeed a solution.

Theorem 3.31.

Let v be the result of Procedure 8 for a given input F . Then vi is a solution of F = 0

for each i.

An autonomous APDE, F (u, ux, uy) = 0, has a rational solution of the form f(x− cy) if

and only if there is an i such that Gi(f, f
′) has a rational solution. By Theorem 2.1 this

is the case if and only if for any proper rational parametrization P(t) = (r1(t), r2(t)) of

Gi the quotient r2
r′1

is either in the ground field of P or a quadratic polynomial a(t−b)2.

As usual, we are interested in the properties of solutions computed by Procedure 8.

Lemma 3.32.

If Procedure 8 computes a list of non-constant rational solutions u, then each component

v is non-proper.

Proof. If v is a solution of an APDE computed by Procedure 8, then v(x, y) = f(x−c2y)

for some rational function f . Let L = (v, vx, vy) be the corresponding parametrization

of v. Then the Jacobian of L is

J x,y
L =

 f ′(x− c2y) −c2f
′(x− c2y)

f ′′(x− c2y) −c2f
′′(x− c2y)

−c2f
′′(x− c2y) c2

2f
′′(x− c2y)

 .
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It is easy to prove that rank(J x,y
L ) ≤ 1. Due to Remark 1.2, L is not proper and so

neither is v.

Note, that rationality of the solution is only required in the definition of proper. The

fact that the rank of the Jacobian equals 1 is also valid for non-rational solutions.

Lemma 3.33.

Let u be the output of Procedure 8. Let v = ui(x + c1, y) for some i. Assume v is

non-constant and rational. Then v is a complete solution.

Proof. If u is computed by Procedure 8, then v(x, y) = f(x+ c1− c2y) for some rational

function f . Since ui is a solution we know by Theorem 3.31, and the fact that the APDE

is autonomous, that v is a solution as well. Let L = (v, vx, vy) be the corresponding

parametrization of v. Then the Jacobian of L with respect to c1 and c2 is

J c1,c2
L =

 f ′(x+ c1 − c2y) −yf ′(x+ c1 − c2y)

f ′′(x+ c1 − c2y) −yf ′′(x+ c1 − c2y)

−c2f
′′(x+ c1 − c2y) −f ′(x+ c1 − c2y) + c2yf

′′(x+ c1 − c2y)

 .

Since, v is non-constant and rational, it is easy to verify that rank(J c1,c2
L ) = 2.

Note, if v is not rational, then the statement is not necessarily true. Assume for instance,

that f(ξ) = eξ. Then

J c1,c2
L =

 ec1+x−c2y −c2ec1+x−c2y

ec1+x−c2y −c2ec1+x−c2y

−c2ec1+x−c2y c2
2ec1+x−c2y

 ,

which has only rank 1.

Corollary 3.34.

A solution computed by Procedure 8 is not complete of suitable dimension.

Proof. In the proof of Lemma 3.32 we have shown that the Jacobian has rank ≤ 1.

We show on some examples how the procedure works and describe the connection and

differences to the methods in Chapter 2 and 3.
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Example 3.35.

We consider the APDE, F (u, ux, uy) = 6u4 + 5u3
x + 5u2

xuy = 0. Using Procedure 4 we

find the solution 10
3(x+c1−y−c2)2(y+c2)

which is complete of suitable dimension.

Now we use Procedure 8 to get G(f, f ′) = 6f 4 + 5f ′3(1 − c2). We find a proper ratio-

nal parametrization P = (5
6
t3(c2 − 1), 5

6
t4(c2 − 1)). Hence, A = 1

3
t2. This fulfills the

requirements for a rational solution of the AODE (c. f. Theorem 2.1). A solution of the

AODE is f(x) = 5
2

9(1−c2)
(x+c1)3

. Hence, we get a solution u(x, y) = 5
2

9(1−c2)
(x−c2y+c1)3

of F = 0.

This solution is complete, but not of suitable dimension.

In the following example G contains f ′ as a factor which always leads to a constant

solution. Furthermore there is a factor not depending on f and f ′ at all, but only on c.

Such factors give solutions with arbitrary functions f .

Example 3.36.

Consider the APDE, F (u, ux, uy) = ux−uy = 0. By the transformation we get f ′(1+c) =

0. Now either f ′ = 0 and hence f is constant, or c = −1. In the latter case we get that

u(x, y) = f(x+ y) is a solution for any f .

The following lemma shows some cases in which Procedure 8 finds a rational solution.

Lemma 3.37.

Let F (u, ux, uy) = 0 be an APDE such that the origin is a (d−1)-fold point of F (z, p, q) =

0, where d is the total degree of F . Furthermore, we assume that there is a parame-

trization of F of the form Q = (sn+1B(t), tsnB(t), snB(t)) where n ∈ Z \ {−1} and

B(t) ∈ K(t). Then Procedure 8 yields a rational solution.

Proof. Procedure 8 defined G to be G(a, b) = F (a, b,−c2b). Let P(s) = (p1(s), p2(s)) =

(sn+1B(− 1
c2

),−sn 1
c2
B(− 1

c2
)). Then

G(p1, p2) = F (p1, p2,−c2p2) = F (Q(s,− 1

c2

)) = 0 .

Hence, P is a parametrization of Gi for some i. We compute A = p2
p′1

= −1
c2(n+1)

.

By Theorem 2.1 there is a rational solution f(ξ) = (− ξ+c1
c2(n+1)

)n+1B(− 1
c2

). Hence,

(−x−c2y+c1
c2(n+1)

)n+1B(− 1
c2

) is a rational solution of the APDE.
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Note, that by Lemma 3.7 Procedure 4 yields an algebraic (but not necessarily rational)

solution for an APDE which fulfills the requirements of the above lemma. Recall, that

Lemma 3.9 describes cases in which the solution is indeed rational. By Lemma 3.37 we

can now find rational (but non-proper) solutions even if none of the cases of Lemma 3.9

is fulfilled.

Using Procedure 3 instead of Algorithm 1 for solving the ODEs in Procedure 8 might

result in non-algebraic solutions.

Example 3.38.

We consider the APDE, F (u, ux, uy) = u2 + uxuy = 0. Procedure 8 computes G =

f 2 +cf ′2 = (f+
√
c2f
′)(f−√c2f

′). Hence, we get P = (±√c2s, s) with A = s
±√c2 . Then

g(s) =
∫

1
A

ds = ±√c2 log(s) and its inverse h(s) = e
± s√

c2 . Thus, f(ξ) = ±√c2e
± ξ√

c2 is

a solution of G and hence, ±√c2e
± c1+x−c2y√

c2 is a solution of F .

The ideas of Procedure 8 are easily generalized to an arbitrary number of independent

variables. In this case we have two choices. Either we reduce to an AODE directly, or

we just reduce to an APDE with less variables.

Reduction of the number of variables

We consider an APDE, F (u, ux1 , . . . , uxn) = 0 and assume that u(x1, . . . , xn) is a solution

of the form u(x1, . . . , xn) = f(ξ, x3, . . . , xn), where ξ = x1 − c2x2 for some constant

c2. Then the APDE reduces to another APDE of lower order, F (u, ux1 , . . . , uxn) =

F (f, fξ,−c2fξ, fx3 , . . . , fxn) = 0. Now, in fact, this PDE (or to be precise, its factors)

might be solved by Procedure 5. Note, that we could solve F directly by Procedure 5.

However, we would get other solutions.

Procedure 9.

Input: An autonomous APDE, F (u, ux1 , . . . , uxn) = 0, where F is irreducible and non-

constant.

Output: A set of solutions (ui(x1, . . . , xn))i∈{1,...,η} of the APDE, where each element is

of the form f(x1 + c1 − c2x2, x3, . . . , xn), or “fail”.

• Compute G = F (f, fξ,−c2fξ, fx3 , . . . , fxn).

• Take all irreducible factors of G, say G1, . . . , Gη.

• Compute parametrizations of Gi, if possible.
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• Use Procedure 5 for computing solutions fi of Gi = 0.

Return “fail” if the computation fails.

• Compute u = (ui(x1, . . . , xn))i∈{1,...,η} = (fi(x1 + c1 − c2x2, x3, . . . , xn))i∈{1,...,η}.

Theorem 3.39.

Let v be the result of Procedure 9 for a given input F . Then vi is a solution of F = 0

for each i.

Of course we can take any number of linear combinations xi− ci,jxj for reduction. Fur-

thermore, we could take linear combinations involving more than two variables. A special

case using relations for all variables reduces to an ODE as we see in the following.

Reduction to ODE

We consider an APDE, F (u, ux1 , . . . , uxn) = 0. The following idea has been already

mentioned in [31, 13.2]. However, we can now incorporate the methods from Chapter 2.

We assume that u(x1, . . . , xn) is a solution of the form u(x1, . . . , xn) = f(ξ) where

ξ = x1 −
∑n

i=2 cixi for some constants ci. Then the equation reduces to an ODE

F (u, ux1 , . . . , uxn) = F (f, f ′,−c2f
′, . . . ,−cnf ′) = 0. Now, in fact, this ODE (or to be

precise, its factors) might be solved by Algorithm 1 or by Procedure 3.

Procedure 10.

Input: An autonomous APDE, F (u, ux1 , . . . , uxn) = 0, where F is irreducible and non-

constant.

Output: A set of solutions (ui(x1, . . . , xn))i∈{1,...,η} of the APDE, where each element is

of the form f(x1 + c1 −
∑n

i=2 cixi)), or “fail”.

• Compute G(f, f ′) = F (f, f ′,−c2f
′, . . . ,−cnf ′).

• Take all irreducible factors of G, say G1, . . . , Gη.

• Compute parametrizations of Gi, if possible.

• Use methods from Chapter 2 for computing solutions fi of Gi(f, f
′) = 0.

Return “fail” if the computation fails.

• Compute u = (ui(x1, . . . , xn))i∈{1,...,η} = (fi(x1 + c1 −
∑n

i=2 cixi))i∈{1,...,η}.
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Theorem 3.40.

Let v be the result of Procedure 10 for a given input F = 0. Then vi is a solution of F

for each i.

The ideas from above can be easily extended to higher-order autonomous APDEs. We

briefly discuss the case for two variables.

Higher-Order APDEs

We consider an APDE, F (u, ux, uy, . . . ,
∂νu
∂xν

, ∂νu
∂xν−1∂y

, . . . , ∂
νu
∂yν

) = 0. We assume that

u(x, y) is a solution of the form u(x, y) = f(ξ) where ξ = x − cy for some constant

c. Then our equation reduces to an ODE

F (u, ux, uy, . . . ,
∂νu

∂yν
) = F (f, f ′,−cf ′, . . . , f (ν),−cf (ν), . . . , (−c)νf (ν)) = 0 .

We can use the method described in Section 2.3 for solving the ODE. Note, that it is

of course also possible to combine higher order and arbitrary many variables, but in

the general case notation will be rather long and hence, we refrain from explicitly doing

so.

Example 3.41. (Laplace Equation)

We consider the Laplace equation F (u, ux, uy, uxx, uxy, uyy) = uxx + uyy = 0. Then we

get the ODE, F (f, f ′,−cf ′, f ′′,−cf ′′, c2f ′′) = f ′′ + c2f ′′ = f ′′(1 + c2) = 0. This ODE

has the solution f(ξ) = c1 + c2ξ. Hence, u(x, y) = f(x− cy) = c1 + c2(x− cy) which is

definitely a solution of F = 0.

Note, that we did not define the notions of complete and suitable dimension for higher

order.
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Transformations are widely used in different sense for solving differential equations (see

for instance [73, Chapter I.B] for transformations of both ODEs and PDEs). The main

aim is usually to transform a differential equation to another one which is easier to

solve. After solving the new equation, the solution can be transformed back to obtain a

solution of the original equation.

The kind of transformations we are investigating here are linear ones which transform

implicit differential equations and likewise the parametrizations of their corresponding

hypersurfaces. Linear transformations have been used in [42] for classifying AODEs.

Using this classification it can be decided whether a given AODE can be transformed to

an autonomous one, i. e. whether the class under consideration contains an autonomous

AODE. It was shown in [42] that the associated system (see Section 2.1.2) remains

invariant under linear transformations.

Here, we want to use the same idea for transforming non-autonomous APDEs to au-

tonomous ones. This approach helps to solve some non-autonomous APDEs. Though,

we do not have the associated system as an invariant, but there are still certain properties

which are preserved by the transformation.

The idea of linear transformations can be generalized to transformations by birational

maps (see [43] for AODEs). However, investigation of using this idea for APDEs is not

topic of the current work.

In Section 4.1 we consider first-order APDEs in several variables. Specifying the number

of variables to n = 1 yields the known transformations for AODEs. Many conclusions

from the ODE case can be adopted rather easily. However, we will see that some nice

results are not true for APDEs in general. A main question under consideration is

whether some given APDE can be linearly transformed to an autonomous one. Later

in Section 4.2 we show how the approach can be extended to higher order whereat for

notational reasons we focus on the case of second order.
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4.1. Linear Transformations of First-Order APDEs

In this section we introduce linear transformations for partial differential equations. For

now we focus on first-order APDEs. The definitions work quite analogously to the case

of AODEs in [42]. Let F (x1, . . . , xn, u, ux1 , . . . , uxn) = 0 be a first-order APDE. Let L

be a linear map defined by

L : K(x1, . . . , xn)2n+1 −→ K(x1, . . . , xn)2n+1 ,

w 7−→ Aw +B ,

where A is an invertible ((2n+ 1)× (2n+ 1))-matrix and B a column vector. We are in-

terested in such L which map any tuple (x1, . . . , xn, u, ux1 , . . . , uxn) ∈ K(x1, . . . , xn)2n+1

to a similar one, say (x1, . . . , xn, v, vx1 , . . . , vxn).

Obviously not every matrix is suitable. Using some simple examples for the function u,

we find out that the matrix A and the vector B have to be of the form

A =



1 0 · · · 0 0 0 · · · 0

0 1
. . .

... 0 0
. . .

...
...

. . . . . . 0
...

. . . . . . 0

0 · · · 0 1 0 · · · 0 0

β1 β2 · · · βn α 0 · · · 0

0 0 · · · 0 0 α
. . .

...
...

. . . . . . 0
...

. . . . . . 0

0 · · · 0 0 0 · · · 0 α


, B =



0

0
...

0

δ

β1

...

βn


,

with α, δ, βi ∈ K, α 6= 0. In short notation we write

A =

 In 0

β̄

0
αIn+1

 , B =

 0

δ

β̄T

 , (4.1)

where β̄ is a row vector. Let x̄ = (x1, . . . , xn)T . Then we get that

L(x1, . . . , xn, u, ux1 , . . . , uxn) = A ·

 x̄

u

∇u

+B =

 x̄

β̄ · x̄+ αu+ δ

α∇u+ β̄T

 .

We need to show that ∂
∂xj

(β̄ · x̄+ αu+ δ) = (α∇u+ β̄T )j. But this is easy to see.
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Now we define the set G as the set of pairs [A,B] with A and B of the form (4.1).

Let L1 = [A1, B1] and L2 = [A2, B2] be elements of G. We define the operation ◦ as

follows.

L1 ◦ L2 = [A1 · A2, A1 ·B2 +B1] =


 In 0

β̄1 + α1β̄2

0
α1α2In+1

 ,

 0

α1δ2 + δ1

α1β̄
T
1 + β̄T2


 ,

which is again in G. There is a neutral element N = [I2n+1, 0] with respect to ◦. It is

easy to see that 
 In 0

− 1
α1
β̄1

0
1
α1
In+1

 ,

 0

− δ1
α1

− 1
α1
β̄T1




is the inverse of L1. Hence, (G, ◦) is a group. We call it the group of linear transforma-

tions . Note, that this is a direct generalization of the ODE case which was investigated

in [42]. For n = 1 the group G exactly accords with the group described in that paper.

Lemma 4.1.

The group (G, ◦) forms a group action on the set of algebraic partial differential equa-

tions, APDE.

� : G ×APDE −→ APDE ,
(L, F ) 7−→ L � F = (F ◦ L−1) .

Proof. Obviously, N � F = F ◦N = F . Furthermore

(L1 ◦ L2) � F = F ◦ (L1 ◦ L2)−1 = F ◦ (L−1
2 ◦ L−1

1 ) = (F ◦ L−1
2 ) ◦ L−1

1 = L1 � (L2 � F ) .

From this we see that linear transformations keep the degrees of u and its derivatives

uxi invariant. However, the degrees of the independent variables xi might change.

Lemma 4.2.

The group action (G, ◦) as defined in Lemma 4.1 can be extended to the set of parametriz-

able APDEs. Indeed if P is a proper parametrization of the corresponding hypersurface,

F (x1, . . . , xn, z, p1, . . . , pn) = 0, then L ◦ P is a proper parametrization of the hypersur-

face L � F (x1, . . . , xn, z, p1, . . . , pn) = 0.
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Proof. The proof works the same way as in the ODE case [42]. Let F ∈ APDE and

let P be a proper parametrization of the hypersurface F (x1, . . . , xn, z, p1, . . . , pn) = 0.

Then

(L � F )(L ◦ P) = (F ◦ L−1)(L ◦ P) = F (P) = 0

and hence, L ◦ P is a proper parametrization, since L is invertible.

Remark 4.3.

Note, that the solution u of an APDE, F (x1, . . . , xn, u, ux1 , . . . , uxn) = 0, induces a

parametrization

P = (x1, . . . , xn, u(x1, . . . , xn), ux1(x1, . . . , xn), . . . , uxn(x1, . . . , xn))

of a lower dimensional hypersurface on the hypersurface, e. g. if n = 2 it parametrizes

a surface on the hypersurface. In this sense the parametrization P cannot be proper.

Nevertheless, we can consider properness according to the surface defined by the param-

etrization (u(x, y), ux(x, y), uy(x, y)).

We show by an example how linear transformations might be applied to solve non-

autonomous APDEs.

Example 4.4.

Consider the APDE, F (x, y, u, ux, uy) = −6 +u+ 4ux−u2
x + 2uy +u2

y− 2x+ y = 0. We

are interested in whether this can be linearly transformed to an autonomous APDE. Let

L ∈ G be an arbitrary linear transformation. Then

L � F = F (x, y,−β1

α
x− β2

α
y +

1

α
u− δ

α
,
ux − β1

α
,
uy − β2

α
)

= −3− δ

α
+
u

α
−
(
−2− β1

α
+
ux
α

)2

+

(
1− β2

α
+
uy
α

)2

− 2x− β1x

α
+ y − β2y

α
,

which is autonomous for −2− β1
α

= 0 and 1− β2
α

= 0. For instance take α = 1, β1 = −2,

β2 = 1. Then we get

L � F = −3− δ + u− u2
x + u2

y .

This APDE can be solved by the procedure from Chapter 3. The solution is ū = 3 + δ +
1
4

(x− c1)2 − 1
4

(y − c2)2. Hence, (x, y, u, ux, uy) = L−1(x, y, ū, ūx, ūy) yields a solution
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of F = 0. We get the following complete solution

u = −β1

α
x− β2

α
y +

1

α
ū− δ

α

= 2x− y + ū− δ

= 2x− y + 3 +
1

4
(x− c1)2 − 1

4
(y − c2)2 .

Note, that the solution is not complete of suitable dimension. Note further, that here we

cannot, as in the autonomous case, add arbitrary constants to x and y respectively but

of course c1 and c2 can still be chosen arbitrarily.

This is, however, not always possible. Some APDEs cannot be transformed to a non-

autonomous one. Consider for instance the APDE, F (u, ux, uy) = u+ ux + uy + x2 = 0.

Applying a general linear transformation yields u−β1x−β2y−δ+ux−β1+uy−β2+αx2 =

0, which is not autonomous for any choice of α, β1, β2 and δ. The reason is the relation

of degrees which is described in Section 4.1.2.

The question whether a given APDE can be linearly transformed to an autonomous one,

is decidable. We can always apply a general linear transformation and solve a system of

equations to check the existence of a suitable choice of the parameters α, βi, δ. In some

cases we can even decide linear transformability in advance as we see in Section 4.1.2.

4.1.1. Properties Preserved by Linear Transformations

In this section we investigate whether properties of solutions are preserved under linear

transformations. Since, some of these properties were so far just defined for autonomous

APDEs we first have to generalize them. For proving properties of a solution u(x, y) we

sometimes need the tuple (u, ux, uy).

Definition 4.5.

Let u(x1, . . . , xn) be a solution of some APDE. Then u yields a parametrization L =

(x1, . . . , xn, u, ux1 , . . . , uxn) of the hypersurface defined by F = 0. We define L∗ =

(u, ux1 , . . . , uxn) and call it the corresponding parametrization. We call a solution

proper iff the corresponding parametrization is proper. Similarly we define solutions

to be complete or complete of suitable dimension as for APDEs using the corresponding

parametrization L∗.
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The fist result on preservation of properties is disillusioning.

Remark 4.6.

It is easy to see, that properness is not necessarily preserved. Consider for instance

F (x, y, u, ux, uy) = u2
x − 4u+ 3 + 4y = 0 .

Then obviously v(x, y) = x2 +x+1+y is a solution. The corresponding parametrization

is L∗(s, t) = (s2 + s+ t+ 1, 2s+ 1, 1) which is proper.

Now we take the linear transformation with α = 1, β2 = −1 and β1 = δ = 0. We get

the new equation L � F = u2
x − 4u+ 3 = 0 and the corresponding solution is x2 + x+ 1

which is definitely not proper.

The example shows that properness is not preserved in general. However, there are

certain cases, in which properness can be proven to be preserved. The proofs are rather

simple and are based on the following. Let u be a proper rational solution of some

APDE, F = 0 and let v be the transformed solution. We assume that the rank of

the Jacobian of the parametrization induced by v is less than or equal to 1, i. e. that

determinants of all (2× 2)-submatrices are 0.

0 = vxvxy − vyvxx = (β1 + αux)uxy − (β2 + αuy)uxx , (4.2a)

0 = vxvyy − vyvxy = (β1 + αux)uyy − (β2 + αuy)uxy , (4.2b)

0 = vxxvyy − v2
xy = uxxuyy − u2

xy . (4.2c)

From this we conclude the following lemmata.

Lemma 4.7.

Let u be a proper rational solution of an APDE, F = 0, and let v be the trans-

formed solution of the transformed APDE. Let (p0, p1, p2) be the proper parametriza-

tion corresponding to u. Assume there is a rational function ϕ such that ϕ(p1, p2) =

(ϕ1(p1, p2), ϕ2(p1, p2)) = (x, y). Then v is proper.

Proof. Since, u is proper there is a rational function R such that R(p0, p1, p2) = (x, y).

Let (q0, q1, q2) be the parametrization corresponding to v. We define a rational function

T using R and ϕ:

T (ω0, υ1, υ2) := R

(
ω0 − β1ϕ1(υ1, υ2)− β2ϕ2(υ1, υ2)− δ

α
, υ1, υ2

)
,

T (ω0, ω1, ω2) := T (ω0,
ω1 − β1

α
,
ω2 − β2

α
) .
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Then T proves the properness of v since

T (q0, q1, q2) = R(p0, p1, p2) = (x, y) .

Lemma 4.8.

Let u be a proper rational solution of an APDE, F = 0, and let v be the transformed

solution of the transformed APDE. Let ux 6= −β1
α

, uy 6= −β2
α

. Let further uxy = 0 or

uxx = 0 or uyy = 0. Then the Jacobian of the parametrization corresponding to v has

rank 2.

Proof. If uxx = 0 we conclude from (4.2c) that uxy = 0. If uyy = 0 we conclude from

(4.2c) that uxy = 0. Since, uxy = 0 and ux 6= −β1
α

, uy 6= −β2
α

we conclude from (4.2)

that uxx = uyy = 0 which is a contradiction to u being proper. Hence, the Jacobian of

the parametrization corresponding to v has rank 2.

Lemma 4.9.

Let u be a proper rational solution of an APDE, F = 0 and let v be the transformed

solution of the transformed APDE. Assume that ux = −β1
α
∈ K or uy = −β2

α
∈ K. Then

v is not proper.

Proof. Let ux = −β1
α
∈ K. Then, obviously, uxx = uxy = 0. The equations in (4.2) are

satisfied, hence, v is not proper. The same holds for the other case.

This can be easily generalized to the following Lemma.

Lemma 4.10.

Let u(x, y) = (λβ2 − β1)x + G(y + λx) or u(x, y) = (λβ1 − β2)y + G(x + λy), for some

λ ∈ K and some rational function G, be a proper rational solution of an APDE, F = 0,

and let v be the transformed solution of the transformed APDE. Then v is not proper.

Proof. Let u(x, y) = (λβ2 − β1)x + G(y + λx). From the definition of u we get that

λuy = ux − (λβ2 − β1). Hence, the Jacobian of the corresponding parametrization of v

is α(ux + β1) α
λ
(ux + β1)

λαuxy αuxy

αuxy
α
λ
uxy

 ,
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which has rank less than or equal to 1. Hence, v is not proper. The other case works

analogously.

After this short consideration of properness we continue with other possible properties

of solutions. Though, properness is not preserved, we are more lucky with completeness

of solutions.

Lemma 4.11.

If L∗ is a parametrization corresponding to a complete solution of some APDE, F = 0,

then (L ◦ L)∗ is a parametrization corresponding to a complete solution of L � F .

Proof. Let u(x1, . . . , xn, c1, . . . , cn) be a complete solution of the APDE, F = 0, and let

L = (x1, . . . , xn, u, ux1 , . . . , uxn). Then L ◦ L = A · L + B = (x1, . . . , xn, v, vx1 , . . . , vxn),

where [A,B] ∈ G. Since u is complete, the Jacobian of L∗ = (ux1 , . . . , uxn) with respect

to c1, . . . , cn has rank n. Hence, J c1,...,cn
(L◦L)∗ = αJ c1,...,cn

L∗ . Therefore, we have shown that v

is a complete solution.

Unfortunately, this proof does not extend to completeness of suitable dimension. The

next remark shows why.

Remark 4.12.

It is easy to see, that completeness of suitable dimension is not necessarily preserved.

Consider for instance

F (x, y, u, ux, uy) = u2
x − 4u+ 3 + 4y = 0 .

Then obviously v(x, y) = (x − c1 − c2y)2 + 3
4

+ y is a solution. The Jacobians of L∗ =

(v, vx, vy) with respect to c1, c2 and x, y respectively are

J c1,c2
L∗ =

−2(x− c1 − c2y) −2y(x− c1 − c2y)

−2 −2y

2c2 −2(x− c1 − 2c2y)

 ,

J x,y
L∗ =

2(x− c1 − c2y) −2c2(x− c1 − c2y) + 1

2 −2c2

−2c2 2c2
2

 ,

which have rank 2 and hence, v is complete of suitable dimension. Now we take the

linear transformation with α = 1, β2 = −1 and β1 = δ = 0. We get the new equation
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4.1. Linear Transformations of First-Order APDEs

L � F = u2
x − 4u + 3 = 0 and the corresponding solution is (x − c1 − c2y)2 + 3

4
. This

solution yields Jacobians of the corresponding parametrization with respect to c1, c2 and

x, y respectively

J c1,c2
(L◦L)∗ =

−2(x− c1 − c2y) −2y(x− c1 − c2y)

−2 −2y

2c2 −2(x− c1 − 2c2y)

 ,

J x,y
(L◦L)∗ =

2(x− c1 − c2y) −2c2(x− c1 − c2y)

2 −2c2

−2c2 2c2
2

 ,

which have rank 2 and 1 and hence, the solution is complete but not of suitable dimension.

4.1.2. Linear Transformations of Special Equations

In this section we investigate how some classes of APDEs behave under linear trans-

formation. For instance, we consider APDEs which are solvable for some variables and

examine whether the transformed APDE is again solvable for the same variable. Fur-

thermore, we check whether degrees are preserved and how this is related to the question

whether certain APDEs can be linearly transformed to an autonomous one.

Generalizing Example 4.4 we get the following result for APDEs which are linear in u

and the independent variables.

Corollary 4.13.

Let F (x1, . . . , xn, u, ux1 , . . . , uxn) = G(ux1 , . . . , uxn) +u+ c+
∑n

i=0 aixi = 0 where G is a

polynomial which does not depend on x1, . . . , xn, u. Then there is a linear transformation

from F to an autonomous APDE, F = 0, with F (0, . . . , 0) = 0.

Proof. This is done by the choice α = 1, βi = ai for all i ∈ {1, . . . , n}, and δ =

c+G(−β1, . . . ,−βn).

This corollary can be easily generalized.

Corollary 4.14.

Let F (x1, . . . , xn, u, ux1 , . . . , uxn) =
∑m

k=0 (u+ c+
∑n

i=0 aixi)
k
Gk(ux1 , . . . , uxn) = 0 with

polynomials Gk which do not depend on x1, . . . , xn, u. Then there is a linear transfor-

mation from F to an autonomous APDE.
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4. Linear Transformations

Proof. This is done by the choice α = 1, βi = ai for all i ∈ {1, . . . , n}, and arbitrary

δ.

As mentioned before, the degrees in some variables are invariant whereas other degrees

change under linear transformations. Starting from an autonomous APDE, we examine

how the degrees might change under linear transformation.

Corollary 4.15.

Let F (x1, . . . , xn, u, ux1 , . . . , uxn) = F (u, ux1 , . . . , uxn) = 0 be an autonomous APDE and

let G = L � F . Then

degxi(G) =

degu(F ) if βi 6= 0 ,

0 if βi = 0 ,

degu(G) = degu(F ) ,

deguxi (G) = deguxi (F ) .

The converse statement of this corollary can be used in some cases for deciding whether

an APDE can be linearly transformed to an autonomous one.

Corollary 4.16.

Let F (x1, . . . , xn, u, ux1 , . . . , uxn) = 0 be an arbitrary APDE. Then F can not be linearly

transformed to an autonomous APDE if one of the following holds.

• 0 6= degxi(F ) 6= degu(F ) for some i ∈ {1, . . . , n}.

• 0 6= degxi(F ) 6= degxj(F ) 6= 0 for some pair (i, j) ∈ {1, . . . , n}2.

Given some condition on the monomial with highest degree in u we can go further.

Corollary 4.17.

Let F (x1, . . . , xn, u, ux1 , . . . , uxn) =
∑m

i=0 u
iGi(x1, . . . , xn, ux1 , . . . , uxn) for some poly-

nomials Gi ∈ K[x1, . . . , xn, ux1 , . . . , uxn ]. If Gm 6∈ K[ux1 , . . . , uxn ], then F cannot be

linearly transformed to an autonomous APDE.

Proof. We see that

L � F = um
1

αm
(L �Gm) +

m−1∑
k=0

uk
m∑
i=k

(
i

k

)
1

αi

(
−δ −

n∑
j=0

βjxj

)i−k

(L �Gi) .
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4.1. Linear Transformations of First-Order APDEs

Since L � Gm ∈ K[x1, . . . , xn, ux1 , . . . , uxn ] \ K[ux1 , . . . , uxn ], Corollary 4.16 implies that

L � F is not autonomous.

The next paragraphs show results on APDEs which are solvable for some elements. Here,

by solvable we mean rationally solvable, i. e. the APDE is linear in some variable.

Equations solvable for uxi

We consider an APDE whose defining polynomial is linear in some first derivative

(w. l. o. g. say ux1), i. e.

0 = F (x1, . . . , xn, u, ux1 , . . . , uxn) = ux1 −G(x1, . . . , xn, u, ux2 , . . . , uxn)

for some rational function G. Then the transformed equation

L � F =
ux1 − β1

α
−G(x1, . . . , xn,

1

α
(u− δ −

n∑
k=0

βkxk),
ux2 − β2

α
, . . . ,

uxn − βn
α

)

is again solvable for ux.

Equations solvable for u

We consider an APDE whose defining polynomial is linear in u, i. e.

0 = F (x1, . . . , xn, u, ux1 , . . . , uxn) = u−G(x1, . . . , xn, ux1 , . . . , uxn)

for some rational function G. Then the transformed equation

L � F =
1

α

(
u− δ −

n∑
k=0

βkxk

)
−G(x1, . . . , xn,

ux1 − β1

α
, . . . ,

uxn − βn
α

)

is again solvable for u.

Equations solvable for xi

We consider an APDE whose defining polynomial is linear in some independent variable

(w. l. o. g. say x1), i. e.

0 = F (x1, . . . , xn, u, ux1 , . . . , uxn) = x1 −G(x2, . . . , xn, u, ux1 , . . . , uxn)

for some rational function G. In this case the transformed equation

L � F = x1 −G(x2, . . . , xn,
1

α
(u− δ −

n∑
k=0

βkxk),
ux1 − β1

α
, . . . ,

uxn − βn
α

)

is not necessarily solvable for x1, since the degree of x1 in L � F depends on the degree

of u in G.
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4.2. Linear Transformations of Higher-Order APDEs

The group G from Section 4.1 can be easily generalized to higher-order PDEs. For

notational reasons we restrict to second order. For the case of n variables and order 2

we have n+
(
n
2

)
= n(n+1)

2
different second derivatives uxixj with i ≤ j. By ∇2 we denote

the vector of these derivatives ordered lexicographically by the pair (i, j).

A =

 In 0

β̄

0
αIn(n+3)/2

 , B =


0

δ

β̄T

0

 ,

where β̄ is a row vector of dimension n. Similarly, let x̄ = (x1, . . . , xn)T . Then we get

that

L(x1, . . . , xn, u, ux1 , . . . , uxn , ux1x1 , . . . , uxnxn) = A ·


x̄

u

∇u
∇2u

+B =


x̄

β̄ · x̄+ αu+ δ

α∇u+ β̄T

α∇2u

 .

We need to show that ∂
∂xj

(β̄ · x̄ + αu + δ) = (α∇u + β̄T )j and ∂
∂xj

(α∇u + β̄T )i =

(α∇2u)(i−1)(2n−i)/2+j. But this is easy to see.

Again we let G be the group consisting of pairs [A,B] with A and B of the form above.

The proof, that G is indeed a group, works similarly to the first-order case. Also the

proofs for the group action are the same.

Applying the group action in the case of two variables yields

L � F = F ◦ L−1 = F (x, y,
u− β1x− β2y − δ

α
,
ux − β1

α
,
uy − β2

α
,
uxx
α
,
uxy
α
,
uyy
α

) .

This implies that the exponents of the second derivatives remain invariant under linear

transformations, i. e.

L �

(∑
i,j,k

uixxu
j
xyu

k
yyGi,j,k(x, y, u, ux, uy)

)
=
∑
i,j,k

uixxu
j
xyu

k
yy

αi+j+k
(L �Gi,j,k)(x, y, u, ux, uy) .

Hence, the degree of second derivatives is preserved. Likewise the property of F being

solvable for some second derivatives remains invariant. Similarly to the case of first

order we can conclude, that the degrees of u and its derivatives are invariant under linear

transformations. Furthermore, invariance of solvability for some variable is inherited:
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4.2. Linear Transformations of Higher-Order APDEs

• Solvability for xi is not invariant as we have seen for the first-order case.

• Solvability for u is invariant, since second derivatives do not interfere in the degrees.

• Solvability for uxi is invariant, since second derivatives do not interfere in the

degrees.

• Solvability for uxi,xj is invariant, since second derivatives are transformed to con-

stant factors of itself.

The following example illustrates the usage of linear transformations for higher-order

APDEs.

Example 4.18.

We consider the non-autonomous APDE,

F (x, y, u, ux, uy, uxx, uxy, uyy) = −2− u+ uux + uy + x− uxx+ 2y − 2uxy − uxxµ = 0 .

By a general linear transformation we get

L � F = −2− u

α
+
uux
α2

+
uy
α

+ x− uxx

α
+ 2y − 2uxy

α
− uβ1

α2
+

2xβ1

α
− uxxβ1

α2

+
2yβ1

α
+
xβ2

1

α2
− β2

α
+
yβ2

α
− uxyβ2

α2
+
yβ1β2

α2
+
δ

α
− uxδ

α2
+
β1δ

α2
− uxxµ

α
.

With the choice α = 1, β1 = −1, β2 = −2, δ = 0 we get

L � F = uux + uy + µuxx ,

which is the viscid Burgers equation.

Elliptic, parabolic and hyperbolic APDEs

For second-order PDEs there is a classification by using the discriminant. There are

three different types: elliptic, parabolic and hyperbolic. We recall this classification.

Given an APDE, F = 0, by

a(x, y)uxx + b(x, y)uxy + c(x, y)uyy + d(x, y)ux + e(x, y)uy + f(x, y)u− g(x, y) = 0 .

Let D = D(F ) = a(x, y)c(x, y)− b(x,y)2

2
. D is called the discriminant. Then the equation

is called
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Elliptic in (x, y) iff D > 0,

Parabolic in (x, y) iff D = 0,

Hyperbolic in (x, y) iff D < 0.

A second-order APDE is called elliptic, parabolic or hyperbolic if the respective property

holds for all points (x, y). Now we apply a general linear transformation L to the

equation F = 0 above and we get

F ◦ L−1 =
a(x, y)

α
uxx +

b(x, y)

α
uxy +

c(x, y)

α
uyy

+
d(x, y)

α
(−β1 + ux) +

e(x, y)

α
(−β2 + uy)

+
f(x, y)

α
(−β1x− β2y − δ + u)− g(x, y) .

Hence,

D(F ◦ L−1) =
a(x, y)

α

c(x, y)

α
− b(x, y)2

2α2
=

1

α2
D(F ) .

Thus, the type of a second-order APDE is invariant under linear transformations.
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5. Conclusion

Several exact procedures are presented in the preceding chapters. They are all based

on the same idea but work for different kinds of differential equations. As mentioned

throughout the text the procedures generalize several existing methods. Summarizing

the new achievements; there are methods for autonomous algebraic ordinary differential

equations of any order (Procedure 3 and 6) and there is a procedure for autonomous first-

order algebraic partial differential equations with an arbitrary number of independent

variables (Procedure 5). Furthermore, previously known methods induce a procedure

for higher-order autonomous APDEs (see Section 3.4) and linear transformations allow

to solve some non-autonomous AODEs and APDEs (see Chapter 4).

All these methods have in common, that they assume the existence of a transformation

from an arbitrary given parametrization of a hypersurface to a parametrization induced

by a solution. This assumption is well reasoned but not always valid. Hence, the

methods might fail to find a solution. This, however, does not mean that no solution

exists. If the problem is computationally too expensive, a different input parametrization

might lead to success. Furthermore, some intermediate steps of the procedures do not

necessarily yield explicit symbolic solutions. But even if the methods fail to yield an

explicit solution, they still very often lead to an implicit description.

It is desirable to extend the procedures to decision algorithms, i. e. algorithms which

compute a solution in a certain class of functions or show that such a solution cannot

exist. However, this remains to be an open problem.

Nevertheless, the procedures represent a useful tool to tackle differential equations. As

shown in Appendix C the procedures work for a wide range of well-known differential

equations from literature. The main procedures for AODEs and APDEs (Procedure 3

and 5 respectively) compute proper and complete solutions of suitable dimension. All

other procedures for first-order ADEs yield at least complete solutions.

More detailed investigation of the idea for higher-order AODEs is currently under de-

velopment. Further generalizations of the method might be worth considering:
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• higher-order APDEs

• (1-dimensional) systems of AODEs

• non-autonomous APDEs

The latter is currently work in progress.
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A. More Differential Algebra

In this chapter we recall further definitions of differential algebra which are not essential

for the main part of the thesis but useful for a more comprehensive understanding of the

basics. Most of these notions can be found in standard textbooks on differential algebra

such as [33, 55].

We start with the main definition of a differential field.

Definition A.1. (c. f. Ritt [55])

Let K be an algebraically closed field of characteristic zero. Let δ : K −→ K be an

operation on that field with the following properties

δ(x+ y) = δ(x) + δ(y) , linearity,

δ(x · y) = δ(a) · b+ a · δ(b) , Leibniz rule.
(A.1)

Then we call (K, δ) a differential field.

Let δ1, . . . , δm be operations on the field K each of them fulfilling (A.1). Assume also

that

δi(δj(z)) = δj(δi(z)) ,

for all z ∈ K. Then we call (K, δ) a partial differential field.

Similarly to commutative ring theory we can think about ideals which should now also

be closed under derivation.

Definition A.2. (c. f. Ritt [55])

Let K(x){u} be the ring of differential polynomials and let I ⊆ K(x){u}. Then, I is a

differential ideal iff the following conditions hold.

• For all p1, . . . , pk ∈ I and c1, . . . , ck ∈ K(x){u} the linear combination c1p1 + . . .+

ckpk is also in I.

• For all p ∈ I the derivative δ(p) is in I.
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Let K(x1, . . . , xn){u} be the ring of partial differential polynomials and let I be a subset

of K(x1, . . . , xn){u}. Then, I is a partial differential ideal iff the following conditions

hold.

• For all p1, . . . , pk ∈ I and c1, . . . , ck ∈ K(x1, . . . , xn){u} the linear combination

c1p1 + . . .+ ckpk is also in I.

• For all p ∈ I the derivatives δj(p) are in I for all j ∈ {1, . . . , n}.

Standard notions from commutative algebra transfer to differential algebra.

Definition A.3. (c. f. Ritt [55])

Let I, J be (partial) differential ideals.

• I is called prime iff ∀p, q ∈ K(x1, . . . , xn){u} : pq ∈ I ⇒ (p ∈ I ∨ q ∈ I).

• Let J̄ ⊆ J be an ideal. Then J is called a divisor of J̄ .

If J is prime, then J is called a prime divisor.

• Let J be a prime divisor of J̄ . Then J is called essential iff J is not a divisor of

any other prime divisor of J̄ .

• The (partial) differential ideal
√
I = {p ∈ K(x1, . . . , xn){u} |∃n ∈ N : pn ∈ I} is

called the radical differential ideal of I.

• A differential ideal I is called perfect iff I =
√
I.

Let P be a set of (partial) differential polynomials P ⊆ K(x1, . . . , xn){u}. Let [P ] be

the set of all linear combinations of elements of P . Then [P ] is a (partial) differential

ideal. We say [P ] is generated by P . In fact, [P ] is the smallest (partial) differential

polynomial containing P .

We write {P} for the smallest perfect ideal containing P . We call {P} the radical

differential ideal generated by P or the perfect differential ideal generated by P .

Let ν be an element of some extension field of K(x1, . . . , xn). We call ν a zero of P iff

for all p ∈ P we have p(ν) = 0.

The following definition of an ordering on the derivatives is needed for the notion of

separants in partial differential algebra.
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Definition A.4. (Ritt [55])

Let K(x1, . . . , xn){u} be the ring of partial differential polynomials. We define an order-

ing on the derivatives as follows. For each xi we fix positive integers αi,1, . . . , αi,ν for

some ν. Let v1 and v2 be compositions of derivations:

v1 =
∂i1+...+in

∂xi11 . . . ∂x
in
n

,

v2 =
∂j1+...+jn

∂xj11 . . . ∂x
jn
n

.

We define the marks of v1 as βj =
∑ν

k=1 αk,jik for each j. Let γj be the marks of v2.

We say that v1 is of higher rank than v2 iff there is an index ι such that βι > γι and

βj = γj for all j < ι.

Let F be a partial differential polynomial. We call a derivative v = ∂i1+...+in

∂x
i1
1 ...∂x

in
n

the leader

of F iff it is the derivative with highest rank occurring in F .
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In this chapter we present some more details on the problem of parametrization of hyper-

surfaces. We mainly focus on special classes of curves, surfaces and general hypersurfaces

which can be parametrized easily. We further give references of general algorithms if

they exist and remarks on available implementations. Sometimes it might be interesting

to use a known parametrization for finding another one which is in some sense simpler

or better. This approach is called reparametrization. We also give references to such

algorithms.

In the methods presented in Chapter 2 and Chapter 3 we assume a parametrization as

input. Therefore, information on how to actually compute parametrizations is in large

part omitted. We make up for this topic here. In Section B.1 we present rational pa-

rametrizations, whereas in Section B.2 we give further ideas of radical parametrizations.

Finally, Section B.3 contains ideas on other kinds of parametrizations.

B.1. Rational Parametrization

In this section we summarize different algorithms from literature for computing rational

parametrizations of algebraic curves, surfaces and hypersurfaces. The problem for curves

and surfaces can be considered to be solved in general, whereas for hypersurfaces there

is still no general algorithm.

All important definitions of rational parametrizations and their properties can be found

in Chapter 1.

In the following sections we present algorithms, ideas and references for special kinds of

curves, surfaces and hypersurfaces respectively. For the sake of the readers who might

be interested in parametrization of varieties of a certain dimension, some of the methods

are presented in each of the subsections even if they are just specialized versions of more

general methods.
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B.1.1. Rational Parametrization of Curves

The problem of rational parametrizability of curves is fully solved. An algebraic curve

has a rational parametrization if and only if it has genus1 zero. There is a general

algorithm for computing proper rational parametrizations of curves (see for instance

[63]). An implementation of such an algorithm can be found for instance in the computer

algebra systems Maple2 (package algcurves, available since Version V R5, based on an

algorithm described in [70]) and Magma3 (since version V2.8 [11]). For certain classes

of curves, special algorithms exist.

Linear Occurrence of a Variable

Let f(x, y) be the defining polynomial of an algebraic curve. We assume that f(x, y) =

g0(x) + yg1(x) for some polynomials g0 and g1. Then obviously Q(s) =
(
s,−g0(s)

g1(s)

)
is a

rational parametrization of the curve. It is easy to see that the parametrization is also

proper. This works analogously if x appears linearly.

Parametrization by Lines

Let f(x, y) be the defining polynomial of an algebraic curve. Let d be the degree of

f . We assume that f(x, y) = fd(x, y) + fd−1(x, y), where fk is a non-zero form of

degree k, i. e. a homogeneous polynomial of degree k, i. e. a polynomial of the form∑k
i=0 cix

iyk−i. This means the curve has a (d−1)-fold point in the origin. Then Q(s) =(
−fd−1(1,s)

fd(1,s)
,− sfd−1(1,s)

fd(1,s)

)
is a proper parametrization of the curve. This parametrization

is achieved by considering a pencil of lines through the origin. The idea can be easily

generalized to curves with any (d − 1)-fold point. See for instance [63] for further

details.

Figure B.1 illustrates parametrization by lines for the ellipse defined by.

f(x, y) = (x+ 4)2 + 4y2 − 16 = x2 + 4y2 + 8x = 0 .

This curve is of degree d = 2 and hence, any point of the curve can be used for the

parametrization. In the figure the origin is chosen.

1For a definition see for instance [63].
2Waterloo Maple Inc., Maple, Waterloo, Canada
3Magma is distributed by the Computational Algebra Group at the University of Sydney.
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-8 -7 -6 -5 -4 -3 -2 -1

-2
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1
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Figure B.1.: Parametrization by lines

B.1.2. Rational Parametrization of Surfaces

The problem of rational parametrizability of surfaces is fully solved. An algebraic sur-

face has a rational parametrization if and only if the arithmetic genus and the second

plurigenus4 vanish. There is a general algorithm for computing proper rational param-

etrizations of surfaces [56]. An implementation based on the algorithm in [56] can be

found for instance in the computer algebra system Magma5 (since version V2.15 [12]).

For certain classes of surfaces, special algorithms exist.

Linear Occurrence of a Variable

Let f(x, y, z) be the defining polynomial of an algebraic surface. We assume that it is of

the form f(x, y, z) = g0(x, y)+zg1(x, y) for some polynomials g0 and g1. Then obviously

Q(s1, s2) = (s1, s2,−g0(s1,s2)
g1(s1,s2)

) is a rational parametrization of the surface. It is easy to

see that the parametrization is also proper. This works analogously if x or y appears

linearly.

A Simple Approach

Let f(x, y, z) be the defining polynomial of an algebraic surface. In this case we can

try to compute a curve parametrization over the field K(z). Assume we have such a

rational parametrization P(s1) = (p1(s1, z), p2(s1, z)). In general this parametrization

might be over some field extension of K(z). Assume now, that this is not the case, i. e.

4For definitions of arithmetic genus and plurigenus see for instance [7, 64].
5Magma is distributed by the Computational Algebra Group at the University of Sydney.
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B. Parametrizations

P is also rational in z. Then, Q(s1, s2) = (p1(s1, s2), p2(s1, s2), s2) is a rational surface

parametrization. There is no reason for the special choice of z.

Parametrization by Lines

Let f(x, y, z) be the defining polynomial of an algebraic surface. Let d be the degree of

f . We assume that f(x, y, z) = fd(x, y, z) + fd−1(x, y, z), where fk is a non-zero form of

degree k. This means the surface has a (d− 1)-fold point in the origin. Then

Q(s1, s2) =

(
−fd−1(1, s1, s2)

fd(1, s1, s2)
,−s1

fd−1(1, s1, s2)

fd(1, s1, s2)
,−s2

fd−1(1, s1, s2)

fd(1, s1, s2)

)
is a proper parametrization of the surface. This can be easily generalized to surfaces

with any (d− 1)-fold point by using linear point transformations. See Section B.1.3 and

for instance [47] for further details. Obviously, this method always works for quadrics,

i. e. surfaces with defining polynomial of degree 2. Figure B.2 was created with Math-

ematica6.

Figure B.2.: Parametrization by lines

Cubic Surfaces

Cubic surfaces are those with defining polynomial of degree 3. Non-singular cubic sur-

faces are rational (c. f. [64, p. 256]). In [6] non-singular cubic surfaces are divided in

6Wolfram Research, Inc., Mathematica, Version 10.0, Champaign, IL (2014)
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B.1. Rational Parametrization

five families, for four of which a rational parametrization is computed, whereas the fifth

involves square roots in the parametrization and hence is a radical one. For radical

parametrizations see also Section B.2.

Revolution Surfaces

Revolution surfaces are constructed by a rotation of a so called profile curve around

some axis. Obviously, if the profile curve is rational, the surface is rational as well, since

the circle is rational. Let P = (p1(s1), p2(s1)) be the rational parametrization of the

profile curve in the yz-plane. We consider rotation around the z-axis. Then(
p1(s1)

1− s2
2

1 + s2
2

, p1(s1)
2s2

1 + s2

, p2(s1)

)
is a rational parametrization of the surface. However, not all rational revolution surfaces

can be constructed like this (compare for instance [1, Example 2.3]).

According to [1] the problem of deciding whether an implicitly given surface is a revo-

lution surface, seems to be unsolved.

Figure B.3 shows a revolution surface constructed by rotating the semicubical parabola,

i. e. P = (s2
1, s

3
1). The implicit equation of the surface is y6−z4 +3y4x2 +3y2x4 +x6 = 0.

Figure B.3 was created with Surfer7.

Figure B.3.: Revolution surface

7Surfer is a program by the Mathematisches Forschungsinstitut Oberwolfach (MFO) in collaboration

with the Martin Luther University Halle-Wittenberg.
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Swung Surfaces

By definition these are surfaces which can be parametrized by

Q(s1, s2) = (p1(s1)q1(s2), p1(s1)q2(s2), p2(s1)) .

This kind of surfaces is a generalization of revolution surfaces. A swung surface can

be constructed by two space curves [1]: a profile curve in the yz-plane and a trajectory

curve in the xy-plane. We consider the swinging of the profile curve around the z-axis

along the trajectory curve. The resulting surface is the one in question.

The parametrization of the profile curve is then (0, p1(s1), p2(s1)) and the trajectory

curve is parametrized by (q1(s2), q2(s2), 0).

Reparametrization of swung surfaces is considered in [1].

Figure B.4 shows a swung surface constructed with the semicubical parabola as profile

curve and the astroid as trajectory curve i. e.

q1(s, t) =
8t3(1 + 6t+ 12t2 + 8t3)

1 + 12t+ 63t2 + 184t3 + 315t4 + 300t5 + 125t6
,

q2(s, t) =
(1 + 2t+ t2)(1 + 10t+ 36t2 + 54t3 + 27t4)

1 + 12t+ 63t2 + 184t3 + 315t4 + 300t5 + 125t6
.

The implicit equation of the surface is

0 =x18 + 9x16y2 + 36x14y4 + 84x12y6 + 126x10y8 + 126x8y10 + 84x6y12 + 36x4y14

+ 9x2y16 + y18 − 3x12z4 + 468x10y2z4 − 4662x8y4z4 + 9417x6y6z4 − 4662x4y8z4

+ 468x2y10z4 − 3y12z4 + 3x6z8 + 252x4y2z8 + 252x2y4z8 + 3y6z8 − z12 .

Figure B.4 was created with Surfer8.

8Surfer is a program by the Mathematisches Forschungsinstitut Oberwolfach (MFO) in collaboration

with the Martin Luther University Halle-Wittenberg.
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B.1. Rational Parametrization

Figure B.4.: Swung surface

Canal Surfaces

Canal surfaces are defined as the envelope of spheres centered around a space curve (the

spine curve). The spheres thereby might have a rationally changing radius. If the radius

is constant the surface is also called a pipe surface. It is known that if the spine curve

is rational then the canal surface is unirational (see [34, 48]).

Algorithms for computing rational parametrization of canal and pipe surfaces can be

found in [35, 36, 48].

Ruled Surfaces

A main property of rational ruled surfaces is that they admit a parametrization of the

form

Q = (p1(s1) + s2q1(s1), p2(s1) + s2q2(s1), p3(s1) + s2q3(s1)) .

We omit a precise definition here and refer to [7, 64, 65] for more details. An algorithm for

deciding whether an implicitly given algebraic surface is a rational ruled surface can be

found in [65]. In the affirmative case, this algorithm also computes a parametrization.

Algorithms for the purpose of reparametrization in the case of ruled surfaces can be

found for instance in [2, 38].
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B. Parametrizations

Figure B.5 shows the one-sheeted hyperboloid which is a ruled surface, in fact it is even

doubly ruled. Its parametrization is Q(s1, s2) =
(

1−s21
s21+1
− 2s1

s21+1
s2,

2s1
s21+1

+
1−s21
s21+1

s2, s2

)
and

the implicit equation is x2 + y2 − z2 = 1. Note, the hyperboloid is also a revolution

surface, rotating a hyperbola. Figure B.5 was created with Mathematica9.

Figure B.5.: Ruled surface

Del Pezzo Surfaces

Del Pezzo surfaces play a role in the general parametrization algorithm in [56]. For in-

stance smooth cubic surfaces are a subset of Del Pezzo surfaces (c. f. [7, Theorem IV.13]).

We omit a definition here. A general approach is given in [56]. Further contributions to

the parametrization of such surfaces can be found in [13, 20, 25]. The computer algebra

system Magma10 (c. f. [12]) contains particular functions for parametrizing Del Pezzo

surfaces.

Tubular Surfaces

A tubular surface is defined by a polynomial of the form f(x, y, z) = a(z)x2+b(z)y2+c(z).

A parametrization algorithm can be found in [57].

9Wolfram Research, Inc., Mathematica, Version 10.0, Champaign, IL (2014)
10Magma is distributed by the Computational Algebra Group at the University of Sydney.
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B.1. Rational Parametrization

B.1.3. Rational Parametrization of Hypersurfaces

So far there is no general algorithm for parametrizing algebraic hypersurfaces. Even

parametrization of special kinds of hypersurfaces is not very much investigated. Nev-

ertheless, for simple kinds of hypersurfaces some of the following approaches might be

worth trying.

Linear Occurrence of a Variable

Let f(x1, . . . , xn) be the defining polynomial of an algebraic hypersurface. We assume

that

f(x1, . . . , xn) = g0(x1, . . . , xn−1) + xng1(x1, . . . , xn−1)

for some polynomials g0 and g1. Then obviously

Q(s1, . . . , sn−1) =

(
s1, . . . , sn−1,−

g0(s1, . . . , sn−1)

g1(s1, . . . , sn−1)

)
is a rational parametrization of the hypersurface. It is easy to see that the parametriza-

tion is also proper. This works analogously for any other variable appearing linearly.

A Simple Approach

Let f(x1, . . . , xn) be the defining polynomial of an algebraic surface. In this case we can

try to compute a curve parametrization over the field K(xκ, . . . , xn) for some 2 ≤ κ ≤ n.

Assume we have such a rational parametrization of a hypersurface of lower dimension,

P(s1, . . . , sκ−2) = (p1(s1, . . . , sκ−2, xκ, . . . , xn), . . . , pκ−1(s1, . . . , sκ−2, xκ, . . . , xn)) .

In general such a parametrization might be found (if it exists) over some field extension

of K(xκ, . . . , xn). Assume now, that this is not the case, i. e. P is also rational in

xκ, . . . , xn. Then,

Q(s1, . . . , sn−1) = (p1(s1, . . . , sn), . . . , pκ−1(s1, . . . , sn), sκ−1, . . . , sn−1)

is a rational hypersurface parametrization.

Parametrization by Lines

Let f(x1, . . . , xn) be the defining polynomial of an algebraic hypersurface. Let d be the

degree of f . We assume that f(x1, . . . , xn) = fd(x1, . . . , xn) + fd−1(x1, . . . , xn), where fk
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is a non-zero form of degree k. This means the surface has a (d − 1)-fold point in the

origin. Let R(s1, . . . , sn−1) = −fd−1(1,s1,...,sn−1)

fd(1,s1,...,sn−1)
. Then

Q(s1, . . . , sn−1) = (R(s1, . . . , sn−1), s1R(s1, . . . , sn−1), . . . , sn−1R(s1, . . . , sn−1))

is a parametrization of the hypersurface. This can be easily generalized to hypersurfaces

with any (d−1)-fold point by using linear point transformations. Let us briefly consider

how the above parametrization is derived. We take a pencil of lines through the origin

xk = sn−1x1 for k > 1. Note, that there is no reason for the special role of x1, any

other xi could be chosen as well. Each of these lines intersects the hypersurface in an

additional point. We obtain

0 = f(x1, s1x1 . . . , sn−1x1) = xd1fd(1, s1 . . . , sn−1) + xd−1
1 fd−1(1, s1 . . . , sn−1) .

This has two factors. One yields the origin, the other the new intersection point.

B.2. Radical Parametrization

The definition of radical parametrizations can be found in Section 2.2.1. Since this

definition accords to intuitive ideas on radicality, it is easy to come up with certain

radical parametrizations of some specific hypersurfaces, e. g. those where all variables

have degree less than or equal to four. Regardless of these ideas, detailed investigation

of radical parametrization started rather recently. Here we give a brief overview on

existing algorithms and other knowledge on computing such parametrizations for curves

and surfaces. So far there seems to be no general treatment of radical parametrizations

of hypersurfaces. Nevertheless, simple approaches might help.

B.2.1. Radical Parametrization of Curves

The curves of genus zero are exactly those that can be parametrized rationally. For

curves of higher genus we want to find radical parametrizations if they exist. In [60]

algorithms for computing radical parametrizations for curves of genus up to four are

presented. For curves of genus five and six algorithms can be found in [24]. Zariski

[71, 72] already proved that for the general curve of genus seven, there is no radical
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parametrization. Algorithms using gonality (i. e. the smallest possible degree d such that

there is a d : 1-map from the curve to the projective line) can be found in [58, 59].

As for the rational case there are some classes of curves which allow a simple computation

of radical parametrizations.

Variable with degree less than or equal to 4

Let f(x, y) be the defining polynomial of an algebraic curve. We assume that f(x, y) =∑4
i=0 y

igi(x) for some polynomials gi. Since the equation has degree less than or equal

to 4, there is a solution for y in terms of radicals. This works analogously if x appears

with degree less than or equal to 4.

Parametrization by Lines

Let f(x, y) be the defining polynomial of an algebraic curve. Let d be the degree of

f . We assume that f(x, y) =
∑r

i=0 fd−i(x, y) with r ≤ 4, where fk is a non-zero form

of degree k, i. e. a polynomial of the form
∑k

i=0 cix
iyk−i. This means the curve has a

(d − r)-fold point in the origin. Intersecting a pencil of lines y = sx with the curve

yields

0 = f(x, sx) =
r∑
i=0

xd−ifd−i(1, s) = xd−r
r∑
i=0

xr−ifd−i(1, s) ,

which has a factor of degree r ≤ 4 and hence is solvable by radicals for x. This can be

easily generalized to curves with any (d− r)-fold point. See for instance [60] for further

details.

B.2.2. Radical Parametrization of Surfaces

So far not very much investigation was done in this field. In [61] first algorithms for

radical parametrization of surfaces are presented. For instance parametrization by lines

is introduced and used for radically parametrizing irreducible curves of degree 5 and

singular curves of degree 6. Furthermore, an algorithm for computing radical parame-

trizations of surfaces with a pencil of curves that has low genus is described. Again we

can consider some special classes of surfaces which can be parametrized easily.
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Variable with degree less than or equal to 4

Let f(x, y, z) be the defining polynomial of an algebraic surface. We assume that

f(x, y, z) =
∑4

i=0 z
igi(x, y) for some polynomials gi. Since the equation has degree

less than or equal to 4, there is a solution for z in terms of radicals. This works analo-

gously if x or y appears with degree less than or equal to 4. Obviously, cubic surfaces

can be parametrized like this.

Parametrization by Lines

Let f(x, y, z) be the defining polynomial of an algebraic surface. Let d be the degree of

f . We assume that f(x, y, z) =
∑r

i=0 fd−i(x, y, z) with r ≤ 4, where fk is a non-zero form

of degree k. This means the surface has a (d− r)-fold point in the origin. Intersecting

a pencil of lines y = s1x, z = s2x with the surface yields

0 = f(x, s1x, s2x) =
r∑
i=0

xd−ifd−i(1, s1, s2) = xd−r
r∑
i=0

xr−ifd−i(1, s1, s2) ,

which has a factor of degree r ≤ 4 and hence is solvable by radicals for x. This can be

easily generalized to curves with any (d− r)-fold point. See for instance [61] for further

details.

B.2.3. Radical Parametrization of Hypersurfaces

So far no general methods for radical parametrization of hypersurfaces are known. Nev-

ertheless, the two standard classes of hypersurfaces can be easily parametrized.

Variable with degree less than or equal to 4

Let f(x1, . . . , xn) be the defining polynomial of an algebraic hypersurface. We assume

that f(x1, . . . , xn) =
∑4

i=0 x
i
ngi(x1, . . . , xn−1) for some polynomials gi. Since the equa-

tion has degree less than or equal to 4, there is a solution for xn in terms of radicals.

This works analogously if any other xi appears with degree less than or equal to 4.

Parametrization by Lines

Let f(x1, . . . , xn) be the defining polynomial of an algebraic hypersurface. Let d be the

degree of f . We assume that f(x1, . . . , xn) =
∑r

i=0 fd−i(x1, . . . , xn) with r ≤ 4, where
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fk is a non-zero form of degree k. This means the hypersurface has a (d− r)-fold point

in the origin. Intersecting a pencil of lines xk = sn−1x1, k > 1, with the hypersurface

yields

0 = f(x1, s1x1 . . . , sn−1x1) =
r∑
i=0

xd−i1 fd−i(1, s1, . . . , sn−1)

= xd−r1

r∑
i=0

xr−i1 fd−i(1, s1, . . . , sn−1) .

which has a factor of degree r ≤ 4 and hence is solvable by radicals for x1. This can be

easily generalized to curves with any (d− r)-fold point.

B.3. Other Parametrizations

In [26] trigonometric parametrizations of curves are defined to be of the form(
m∑
k=0

a1,k sin(kφ) + a2,k cos(kφ),
n∑
k=0

b1,k sin(kφ) + b2,k cos(kφ)

)
.

A curve is called trigonometric if it admits such a parametrization. It is shown in [26]

that the trigonometric curves are a subset of rational curves.
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C. List of Differential Equations

This chapter contains a collection of examples together with the parametrizations in use

and the solutions found by the procedures presented in Chapter 2 and 3. For reference

we use the same numbering as in the literature. We prepend a letter to distinguish the

referenced books.

K Kamke [32] and [31] for ODEs and PDEs respectively

PS Polyanin and Sajzew [49]

PZ Polyanin and Zaitsev [50]

In Section C.1 first-order AODEs are collected. Right afterward some examples of

higher-order AODEs are solved. First-order APDEs can be found in Section C.3.

Intermediate steps of the procedures are skipped. Due to readability also the arbi-

trary constants are sometimes omitted. However, they can be easily introduced for

autonomous first-order equations.

Note, that these lists are by no means complete. They are just a selection of examples

which can be solved using the presented methods. Other equations also listed in the

above mentioned collections might be solved as well. Furthermore, the methods do solve

plenty of differential equations which are not listed in the collections.

C.1. First-Order AODEs

In this section we present a list of autonomous first-order AODEs which can be solved

by Procedure 3. Table C.1 shows a selection of such examples from [32].

Note, that for K.1.209 the original ODE in [32] is not an algebraic one, but solutions of

the AODE here imply solutions of the original ODE.
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Source AODE Parametrization Solution

K.1.12 u2 + u′ − 1 (s, 1− s2) e2x−1
e2x+1

K.1.23 u′ + au2 − b (s, b− as2)
√
b tanh(

√
a
√
bx)√

a

K.1.209 u′2u2 − au2 − b
(
s,
√
as2+b
s

) √
a2x2−b√

a

K.1.369 u2 + u′2 − a2
(
a1−s2
s2+1

, 2as
s2+1

)
a cos(x)

K.1.371 u2 − u3 + u′2 (1 + s2, s(1 + s2)) sec2
(
x
2

)
K.1.389 (1 + 4u)(u− u′) + u′2

(
− s(s−5)

(2s−5)2
, 5s

(2s−5)2

)
ex (ex + 1)

K.1.462 uu′2 − 1
(

1
s2
, s
)

− 3
√
−1
(

3
2

)2/3
x2/3

K.1.486 u2 + u2u′2 − a2
(
s,−

√
a2−s2
s

)
±
√
a2 − x2

Table C.1.: Well-known AODEs and their solutions found by Procedure 3.

C.2. Higher-Order AODEs

In this section we present examples of second-order autonomous AODEs which can be

solved by the methods presented in Section 2.3. Table C.2 lists some AODEs where

the first derivative does not appear and hence, equation (2.6) can be used for finding

solutions. In Table C.3 a pool of examples can be found for which the approach from

Section 3.4 using APDEs yields a solution of the AODE. Here erf is the non-elementary

error function and sn the Jacobi elliptic function. The solutions of the examples in

Table C.2 were computed by the method from Section 2.3 for AODEs of the form

F (u, u′′) = 0. In Table C.3 the general method for higher-order AODEs (Procedure 6)

is applied.

The solutions shown in Table C.3 are just an arbitrary choice. Other solutions might be

found as well with the same procedure by choosing different intermediate solutions in

the ODEs of the method of characteristics. Note, that K.6.71 can as well be solved using

Procedure 3 for 8v′ + v4 and integration. Example K.7.16 was solved by first solving

3uu′′ − 5u′2.
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Source AODE Parametrization Solution

K.2.2 u′′ + u (s,−s) √
c1 sin(x− c2)

K.2.6 u′′ − u (s, s) 1
2
e−x+c2 + ex−c2c1

K.2.9 u′′ + au (s,−s) −
√
c1 sin(

√
a(c2−x))
a

K.6.7 u′′ − au3 (s, as3) −
4√−2c1 sn( 1

2
(−2)3/4 4√ac1(x−c2)|−1)

4√a

K.6.104 uu′′ − a
(
s, a

s

)
c1e
− erf−1

(
−i
√

2a
π

1
c1

(x−c2)
)2

K.6.209 u′′u3 − a
(
s, a

s3

)
−
√
a+c21(c2−x)2
√
c1

Table C.2.: Well-known second-order AODEs with solutions found by the procedure

from Section 2.3.

C.3. First-Order APDEs

In this section examples of first-order autonomous APDEs which are solvable by Pro-

cedure 5 are given. Table C.4 shows rational solutions, Table C.5 radical solutions

and Table C.6 non-algebraic solutions of first-order APDEs in two variables. Table C.7

collects solutions of APDEs with more than two variables. In Table C.8 a list of non-

autonomous APDEs is solved with the aid of linear transformations.

Note, that in Table C.6 W is the Lambert W function. Note, that in Table C.7 we used

ui for u(i). The polynomials G,H ∈ K[u1, u2, u3] are used for abbreviation. They are

defined as G(u1, u2, u3) = Ga1,a2,a3(u1, u2, u3) = a1u
2
1 + a2u

2
2 + a3u32 and H(u1, u2, u3) =

Hb1,b2,b3(u1, u2, u3) = b1u1u2 + b2u1u3 + b3u2u3. The rational function S in the solution

of Example PZ.4.1.4.4 is defined as

S =− d

c
+

(x2
3 (4a1a2 − b2

1) + x2
2 (4a1a3 − b2

2) + x2
1 (4a2a3 − b2

3))c

4 (4a1a2a3 − a1b2
3 − a2b2

2 − a3b2
1 + b1b2b3)

+
(x3x2(b1b2 − 2a1b3) + x1x3(b1b3 − 2a2b2) + x1x2(b2b3 − 2a3b1))c

2 (4a1a2a3 − a1b2
3 − a2b2

2 − a3b2
1 + b1b2b3)

.

Using linear transformation we can also solve some non-autonomous APDEs. The trans-

formations in Table C.8 are given in the form α, β̄, δ. In Example K.6.33 Kamke [31]

already describes the linear transformation.
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Source AODE Parametrization Solution

K.2.1 u′′ (s, t, 0) (x− c1)c2

K.6.71 8u′′ + 9u′4
(
s, t,−9

8
t4
)

x−c1
3√x−c1

+ c2

K.6.107 uu′′ + u′2 − a
(
s, t, a−t

2

s

) √
x−c1+a2(x−c1−c2)2

√
a

K.6.110 u′′u− u′2 + 1
(
s, t, t

2−1
s

)
1
2
c2e
−x−c1

c2

(
e

2(x−c1)
c2 − 1

)
K.6.111 u′′u− u′2 − 1

(
s, t, t

2+1
s

)
c2

√
sinh2

(
x−c1
c2

)
+ 1

K.6.125 u′′u− au′2
(
s, t, at

2

s

)
−c2((a− 1)(x− c1))

1
1−a

K.6.138 2u′′u− u′2 + a
(
s, t, t

2−a
2s

)
−4ac22+(x−c1)2

4c2

K.6.150 2u′′u− 3u′2
(
s, t, 3t2

2s

)
4c32

(c2−x+c1)2
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Table C.3.: Well-known higher-order AODEs with solutions found by Procedure 6.
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C.3. First-Order APDEs
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Table C.4.: Well-known APDEs with rational solutions found by Procedure 5.
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C. List of Differential Equations
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Table C.5.: Well-known APDEs with radical solutions found by Procedure 5.
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C.3. First-Order APDEs
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Table C.6.: Well-known APDEs with non-algebraic solutions found by Procedure 5.
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C. List of Differential Equations
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Table C.7.: Well-known APDEs in three variables with solutions found by Procedure 5.
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C.3. First-Order APDEs
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Table C.8.: Non-autonomous APDEs solved by linear transformations and Procedure 5.
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D. Method of Characteristics

Here we briefly describe the idea of the method of characteristics for solving quasilinear

APDEs. For more details we refer to literature, for instance [73]. A generalization of

the method of characteristics to arbitrary first-order partial differential equations was

investigated by Lagrange and Charpit (compare [66]). Nevertheless, we describe it just

for the quasilinear case. A first-order APDE is quasilinear iff it is linear in the derivatives

(and possibly non-linear in the dependent function u). Let F define a quasilinear APDE,

i. e.

F (x1, . . . , xn, u, ux1 , . . . , uxn) = −b(x1, . . . , xn, u) +
n∑
i=0

ai(x1, . . . , xn, u)uxi = 0 .

A characteristic curve (x1(t), . . . , xn(t), v(t)) is defined by the following characteristic

equations.

dxi
dt

= ai(x1, . . . , xn, v) , for i ∈ {1, . . . , n} ,

dv

dt
= b(x1, . . . , xn, v) .

Let us consider some initial data

u = g(x1, . . . , xn) = 0 on h(x1, . . . , xn) = 0 .

These can be written parametrically with parameters k2, . . . , kn as xi = σi(k2, . . . , kn)

and u = υ(k2, . . . , kn). These parametric expressions can be used as initial data (for

t = 0) in solving the system of characteristic equations. Finally, a solution u of the above

ODE still depends on k2, . . . , kn. Let χi(t, k2, . . . , kn) be solutions of the characteristic

equations. Then we solve the system xi = χi(t, k2, . . . , kn) for k2, . . . , kn. Note, that this

might not always be possible. In case it is possible we get ki = ξi(x1, . . . , xn). Then,

u(x1, . . . , xn) = v(x1, ξ2(x1, . . . , xn), . . . , ξn(x1, . . . , xn)) is a solution of the quasilinear

APDE.

Note, that the method of characteristics does not necessarily result in a complete solution

of suitable dimension. Compare for instance [66, Problem 3.12], where a complete
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D. Method of Characteristics

solution of the eikonal equation is found by the method of characteristic. This solution

is not of suitable dimension and envelope computations are needed to get the same

solution of suitable dimension as in Example 3.11.

Example D.1. ([66, Problem 3.12])

Applying the generalized method of characteristics yields u(x, y) = c2x+
√
a− c2

2y+c1 as

a solution of the eikonal equation u2
x+u2

y−1. Then the Jacobians of the parametrization

L induced by the solution with respect to x, y and c1, c2 respectively, are

J x,y
L =


c2

√
1− c2

2

0 0

0 0

 , J c1,c2
L =


1 x− c2y√

1−c22

0 1

0 − c2y√
1−c22

 .

Hence, the solution is complete, but not of suitable dimension (and not proper). The so-

lution
√
x2 + y2 which was found by Procedure 4 in Example 3.11 is complete of suitable

dimension. It can be obtained from the one considered here by envelope computations

(as shown in [66]).
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solution, 5

surface, 6

almost injective, 64

AODE, 4

APDE, 4

associated system, 15

autonomous, 4

Burgers equation

inviscid, 41, 49

viscid, 93

canal surface, 107

characteristic

curve, 125

equation, 125

method of, 57, 125

convection-reaction equation, 49

corresponding

curve, 8

hypersurface, 8

parametrization, 8, 85

surface, 8

Cremona transformation, 8

cubic surface, 104

curve, see hypersurface

trigonometric, 113

defining polynomial, 7

Del Pezzo surface, 108

differential

field, 4, 97

partial, 4, 97

ideal, 97

generated by, 98

partial, 98

perfect, 98

prime, 5

radical, 98

polynomial, 4

discriminant, 93

divisor, 98

essential, 98

prime, 98

eikonal equation, 47, 49, 65, 126

elementary function, 19

elliptic, 94

envelope, 11

essential, 5

form, 102, 104, 110

general

component, 5, 6

solution, 5, 11

generic zero, 4

hyperbolic, 94

hypersurface
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method of characteristics, 57, 125
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parametrization, 22
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proper, 7
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rational, 7, 101

trigonometric, 113

pipe surface, 107

polynomial

defining, 7

homogeneous, 102

profile curve, 105, 106

proper, 7

parametrization, 7

solution, 9, 85

quadratic transformation, 8

quadric surface, 104

quasilinear, 125

radical

extension field, 21

field extension, 21

tower of, 21

function, 21

parametrization, 21

solution, 21

rank, 99

rational

hypersurface, 7

parametrization, 7

solution, 5, 9

revolution surface, 105

ruled surface, 107

separant, 5

singular

component, 5, 6

solution, 5, 6, 11

solution

algebraic, 5

complete, 9, 85

of suitable dimension, 9, 85

general, 5

non-singular, 5, 6

proper, 9, 85

radical, 21

rational, 5, 9

singular, 5, 6

solvable by radicals, 21

spine curve, 107
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swung surface, 106

traffic equation, 49

trajectory curve, 106

transformation
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ulation. Springer-Verlag, Berlin Heidelberg, 2013.

[11] J. Cannon and Bosma W. (editors). Handbook of Magma functions. Sydney, 2.8

edition, 2001.

[12] J. Cannon and Bosma W. (editors). Handbook of Magma functions. Sydney, 2.15

edition, 2008.
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[27] Y. Huang, L. X. C. Ngô, and F. Winkler. Rational General Solutions of Trivariate

Rational Systems of Autonomous ODEs. In Proceedings of the Fourth Interna-

tional Conference on Mathematical Aspects of Computer and Information Sciences,

MACIS 2011, pages 93–100, 2011.
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[34] W. Lü and H. Pottmann. Pipe surfaces with rational spine curve are rational.

Computer Aided Geometric Design, 13(7):621–628, 1996.

[35] G. Landsmann, J. Schicho, and F. Winkler. The parametrization of canal sur-

faces and the decomposition of polynomials into a sum of two squares. Journal of

Symbolic Computation, 32(1–2):119–132, 2001.

[36] G. Landsmann, J. Schicho, F. Winkler, and E. Hillgarter. Symbolic Parametrization

of Pipe and Canal Surfaces. In Proceedings of the 2000 International Symposium on

Symbolic and Algebraic Computation, ISSAC ’00, pages 202–208, New York, 2000.

ACM.
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[66] I. Shingareva and C. Lizárraga-Celaya. Solving nonlinear partial differential equa-

tions with Maple and Mathematica. Springer-Verlag, Wien, 2011.

[67] B. M. Trager. Integration of simple radical extensions. In E. W. Ng, editor, Sym-

bolic and algebraic computation, EUROSAM ’79, volume 72 of Lecture Notes in

Computer Science, pages 408–414, Berlin Heidelberg, 1979. Springer.

[68] B. M. Trager. On the integration of algebraic functions. PhD thesis, Massachusetts

Institute of Technology, 1984.

[69] B. L. van der Waerden. Algebra, volume II. Springer-Verlag, New York, 1991.

[70] M. van Hoeij. Rational Parametrizations of Algebraic Curves using a Canonical

Divisor. Journal of Symbolic Computation, 23(2–3):209–227, 1997.

136



BIBLIOGRAPHY
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