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II

Kurzfassung

In dieser Arbeit untersuchen wir den Zusammenhang zwischen Gröbnerbasen und ver-
allgemeinerten Sylvestermatrizen. Motiviert durch nützliche Resultate im univariaten
Fall mit zwei Input-Polynomen, zeigen wir, wie verallgemeinerte Sylvestermatrizen im
multivariaten Fall mit mehreren Input-Polynomen dazu verwendet werden können, eine
Gröbnerbasis für die Inputmenge zu berechnen. Teilmatrizen der Sylvestermatrix wer-
den schon seit geraumer Zeit dazu verwendet, die Gröbnerbasenberechnung zu beschle-
unigen. In dieser Arbeit zeigen wir, wie eine Gröbnerbasis berechnet werden kann,
indem man eine große Matrix, bestehend aus bestimmten Shifts der Input-Polynome,
konstruiert und diese trianguliert. Bestimme Zeilen dieser triangulierten Matrix bilden
eine minimale Gröbnerbasis. Wir geben eine obere Schranke für die Größe dieser Ma-
trix an, die vom größten Grad der Input-Polynome, der Anzahl der Variablen und der
Anzahl der Input-Polynome abhängt. Als einen Spezialfall untersuchen wir den uni-
variaten Fall mit mehr als zwei Input-Polynomen und geben schärfere Schranken an als
die in der Literatur bekannten.
Im zweiten Teil der Arbeit untersuchen wir als einen wichtigen Spezialfall Binomide-
ale. Wir betrachten den Fall mit zwei multivariaten Input-Binomen. Als ersten Schritt
behandeln wir das Membership-Problem und geben obere Schranken für den Grad der
Kofaktoren eines potentiellen Elementes in der reduzierten Gröbnerbasis an. Diese
Schranken sind schärfer als die Schranken, die man von der Hermannschranke durch
Spezialisierung bekommt. Als zweiten Schritt geben wir obere Schranken für die Größe
der verallgemeinerten Sylvestermatrix an, die ausreichen, um nach obiger Methode eine
Gröbnerbasis für bestimmte Fälle von Binomidealen, abhängig vom Support der zwei
Input-Binome, zu berechnen. Diese Schranken sind schärfer als die, die man von der
Schranke aus dem ersten Teil der Arbeit durch Spezialisierung bekommt.



Abstract III

Abstract

In this thesis we investigate the connection between Gröbner bases computation and
generalized Sylvester matrices. Motivated by useful results in the univariate case with
two input polynomials, we show how generalized Sylvester matrices can be used in the
multivariate case with several input polynomials to compute a Gröbner basis of the
input set. Submatrices of the Sylvester matrix have been used for quite some time to
speed up the Gröbner bases computation. In this thesis we show how we can compute
a Gröbner basis by constructing one big matrix consisting of certain shifts of the input
polynomials and triangularizing this matrix. Certain rows of the triangularized matrix
form a minimal Gröbner basis. We give an upper bound on the size of this matrix that
depends on the highest degree of the input polynomials, the number of variables and
the number of input polynomials. As a special case, we treat the univariate case with
more than two input polynomials and give sharper bounds than were previously known
in the literature.
In the second part of the thesis we investigate as an important special case binomial
ideals. We consider the case of two multivariate input binomials. As a first step we
treat the membership problem and give upper bounds on the degree of the cofactors of
a potential element in the reduced Gröbner basis. These bounds are sharper than the
ones obtained by the Hermann bound after specialization. As a second step we give
upper bounds for the size of the generalized Sylvester matrix for computing a Gröbner
basis for certain cases of binomial ideals depending on the support of the two input
binomials. These bounds are sharper than the ones derived from the bound in the first
part of the thesis by specialization.
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Notation

We denote the set of natural numbers (including 0) by N, the set of integers by Z, the
set of rational numbers by Q, the set of real numbers by R, the set of positive real
numbers by R+ and the set of positive real numbers including 0 by R+

0 . For k ∈ N we
define

Nk := {i ∈ N | 1 ≤ i ≤ k}.

In this paper we use a special kind of representation for polynomials. Let K be a field,
X a finite set of indeterminates and n := |X|. We denote the monoid of terms over X
by [X] and the degree of a term t by deg(t). We define the ring of polynomials over
K and X by K[X] := {f : [X]→ K | supp(f) is finite} where, for any f : [X] → K,
supp(f) := {t ∈ [X] | f(t) 6= 0}. For any f, g ∈ K[X], u ∈ [X], c ∈ K,

f + g : [X] → K,

t 7→ f(t) + g(t),

f · g : [X] → K,

t 7→
∑

v,w∈[X]
v w=t

f(v)g(w),

u f := u∗ · f,

c f := c∗ · f,

where u∗and c∗ are u and c seen as a polynomials, respectively. Furthermore, for
f 6= 0

deg(f) := max({deg(t) | t ∈ supp(f)}).

The ideal generated by a set F ⊆ K[X] over K[X] will be denoted by ideal(F ).

For F ⊆ K[X] we define hull(F ) to be the set of all polynomials of the form
∑m

i=1 ci fi

with m ∈ N, ci ∈ K and fi ∈ F for i ∈ Nm.

in some papers called power products



Notation VII

For a finite sequence s over any set, we denote its length by len(s) and the i-th element
in the sequence by si for i ∈ Nlen(s). If s is a nested sequence, we use notation si,j for
(si)j and si,j,k for ((si)j)k, where i ∈ Nlen(s), j ∈ Nlen(si) and k ∈ Nlen((si)j).
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Chapter 1

Introduction

1.1 Problem and Previous Work

In his PhD thesis [9], Buchberger introduced the notion of Gröbner bases and gave the
first algorithm for computing them. Since then, extensive research has been done in
order to reduce the complexity of the computation, the first of them being two criteria
given by Buchberger (the product criterion [9, 10] and the chain criterion [12]) to reduce
the number of unnecessary S-polynomials. Nevertheless, even for small examples, the
computation can be quite time consuming, reflecting the known fact that Gröbner bases
computation is intrinsically complex. Still, more theoretical knowledge may improve
the concrete complexity of algorithms.

The classical approach for computing a Gröbner basis is introduced by the Buchberger
algorithm: We start from the initial set F , execute certain reduction steps (consisting
of multiplication of polynomials by terms — called shifts — and subtraction of poly-
nomials). Due to Buchberger’s theorem, which says that the computation is finished
if all the S-polynomials reduce to zero, we know that after finitely many iterations of
this procedure we obtain a Gröbner basis of the ideal generated by F . In two talks
[13, 15] and a technical report [14], Buchberger proposed a second approach: We start
from F , execute certain shifts of the initial polynomials in F , arrange them as rows
in a matrix, triangularize this matrix and from the resulting matrix extract a Gröbner
basis by formation of the “contour”.

In this thesis we pursue the second approach and seek to improve the theory in order to
speed up the Gröbner bases computation. This approach has been studied a couple of
times in the past, but never thoroughly. The immediate question is: Can we give an a
priori upper bound on the degrees of the necessary shifts such that a triangularization
of the matrix built by these shifts yields a Gröbner basis?
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In the univariate case, Gröbner bases computation amounts to the computation of a
gcd of the input polynomials. Going back to work of Sylvester [62], Habicht [37] and
later Collins [19, 20] and Brown and Traub [8, 7] built up the theory of polynomial sub-
resultants, which are determinant polynomials of certain submatrices of the Sylvester
matrix, and showed that they are the same as the remainders of the Euclidean algo-
rithm up to certain constant factors. For an overview of this topic see for example [48]
and [66].

These results serve as a motivation to find similar connections between Gröbner bases
and generalized Sylvester matrices. This topic has been studied by various authors ([47],
[49], [50], [45], [36], [61]). Although not intended to compute Gröbner bases as a whole
but as an efficient method for solving a system of equations under a special condition,
the families of XL ([22, 23, 24]) and later MXL algorithms ([18, 53, 52, 17]) proceed in
this linear algebra spirit and have interesting connections with Gröbner bases algorithms
([4, 2]). In his F4 algorithm [31] Faugére uses submatrices of a generalized Sylvester
matrix to reduce several S-polynomials at once. His F5 algorithm [32] uses two new
criteria based on signatures. Due to these criteria the F5 algorithm does not perform
any zero-reductions for a certain class of polynomial systems, called regular sequences,
and it is also implemented in the matrix style of F4. By computer experiments Faugére
showed that F5 is much faster than previous algorithms. There is a lot of ongoing
research in improving the F5 algorithm even further (e.g. [3, 29, 33, 38, 54, 60, 67]). In
a similar style as F5 are the algorithms G2V [34] and GVW [35].

However, none of the above papers answers the question of how big a generalized
Sylvester matrix should be in order to compute a Gröbner basis by triangularizing this
one matrix.

1.2 Outline of the Thesis

In Chapter 2, after introducing the basic notions of Gröbner bases and Sylvester ma-
trices, we investigate the connection between the two. We give a theorem that specifies
which shifts of the input polynomials should be put into the Sylvester matrix in order to
compute a Gröbner basis by triangularizing this matrix. We also give an upper bound
on the size of this matrix. As a special case, we treat the univariate case with more
than two input polynomials and give sharper bounds than were previously known in
the literature.

In Chapter 3 we investigate the membership problem for binomial ideals and treat the
case of two multivariate binomials as a generating set. We give upper bounds on the
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degree of the cofactors of a potential element in the reduced Gröbner basis. These
bounds are sharper than the ones obtained by the Hermann bound after specializing
to the case at hand. We accomplish this by translating the problem to a combinatorial
problem.

In Chapter 4 we use the results of Chapter 3 to give an upper bound for the generalized
Sylvester matrix for computing a Gröbner basis for certain cases of binomial ideals.
Again we treat the case of two multivariate binomials as a generating set. We give
sharp bounds for the case where one input binomial is a monomial. We give bounds
for the case where both binomials are proper binomials (i.e. their support consists of
two terms) and their structure is linearly dependent. We also give bounds for the case
where both binomials are proper, their structure is linearly independent and one of the
two satisfies a certain property that has to do with the relative position of the terms
in the support of the two binomials. These bounds are sharper than the ones derived,
by specialization, from the bound in Chapter 2.
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Chapter 2

Gröbner Bases Computation by

Gaussian Elimination

In [13], [15] and [16] Buchberger proposed to investigate whether it is possible to com-
pute a Gröbner basis of an input set F of polynomials over a field by generating, in
a first step, a finite set of shifts of the elements in F (i.e. multiplications of these ele-
ments by power products), arranging them in a matrix and, then, triangularizing this
matrix.

In this chapter we use results by Hermann and Dubé to give a set of shifts of the input
polynomials that depends on the highest degree of the polynomials in F , the number
of variables and the number of polynomials in F , for generating such a matrix that
suffices for computing a Gröbner basis by triangularization afterwards. We also give a
set of shifts to decide in this way whether the system F = 0 is solvable or not. This
set of shifts is smaller than the set used for Gröbner bases computation.

In Subsection 2.4 we treat the univariate case and give a smaller set of shifts than
previously known in the literature. In Chapter 4 we investigate the case of binomial
ideals and give degree bounds on the shifts that depend on the support of the input
binomials but not on their coefficients.

2.1 Gröbner Bases

Definition 2.1.1 (Admissible order). A total order ≺ on [X] is called admissible iff
for all u, v, w ∈ [X]

1. 1 ≺ u
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2. if v ≺ w then u v ≺ uw.

From now on, we fix an admissible order ≺ on [X].

Definition 2.1.2 (Leading term/coefficient/monomial, maxdeg, mindeg). For any
non-zero polynomial f ∈ K[X], we define the leading term, the leading coefficient
and the leading monomial of f by lt(f) := max≺(supp(f)), lc(f) := f(lt(f)) and
lm(f) := lc(f) lt(f), respectively. For a non-empty set F 6= {0} of polynomials and a
subset U of [X] we define lt(F ) := {lt(f) | f ∈ F \ {0}}, U F := {tf | t ∈ U ∧ f ∈ F}
and, for finite F , maxdeg(F ) := max({deg(f) | f ∈ F \ {0}}) and mindeg(F ) :=
min({deg(f) | f ∈ F \ {0}}).

Definition 2.1.3 (Reduction). Let f, g ∈ K[X] \ {0} have the same leading term. The
reduction of f by g is defined as red(f, g) = f − lc(f)

lc(g) g.

Definition 2.1.4 (S-polynomial, Polynomial reduction; cf. [9, 10]). Let f, f1, f2 ∈
K[X] \ {0}.

1. The S-polynomial of f1 and f2 is defined as

spol(f1, f2) = red(u1f1, u2f2),

where ui = lcm(lt(f1), lt(f2))/ lt(fi), i = 1, 2.

2. We say f1 reduces by f2 to h (and we write f1 →f2 h), if for some term u ∈
supp(f1), lt(f2) divides u and h = f1− f1(u)(u/ lm(f2))f2. (If u in the definition
is the leading term of f1, we say that f1 head-reduces by f2 to h.)
We say f reduces to h w.r.t. a set of polynomials F (written f →F h) if there
exists h′ ∈ F such that f →h′ h. For any binary relation → we denote by →∗ the
reflexive transitive closure of →.
The polynomial f is irreducible w.r.t. F iff there is no h ∈ K[X] such that f →F h.
If f →∗F h and h is irreducible w.r.t. F then we call h a normal form of f w.r.t.
F .

The relation →F is Noetherian (see any textbook on Gröbner bases; e.g. [26]). There-
fore, for any f ∈ K[X], a normal form of f always exists. However, it does not need to
be unique. It turns out, uniqueness is guaranteed, if F is a Gröbner basis. The theory
of Gröbner bases was introduced by Buchberger ([9],[10]), the name “Gröbner basis”
first appeared in [11]:

Definition 2.1.5 (Gröbner basis). A set G ⊆ K[X] \ {0} is a Gröbner basis iff it
satisfies the following condition:

For all u ∈ lt(ideal(G)) there exists a v ∈ lt(G) such that v | u.
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We call a Gröbner basis G reduced iff for every g ∈ G, lc(g) = 1 and g is irreducible
w.r.t. G \ {g}, and head-reduced iff no g ∈ G can be head-reduced by any polynomial
in G \ {g}. For a set F ⊆ K[X] we say that G is a (head-/reduced) Gröbner basis of
F , if G is a (head-/reduced) Gröbner basis and ideal(G) = ideal(F ).

The following are basic facts about Gröbner bases and are contained in any textbook
on Gröbner bases (e.g. [26]).

Lemma 2.1.6. Let G ⊆ K[X] be a Gröbner basis and let f, g ∈ G, f 6= g, such that
lt(g) | lt(f). Then G \ {f} is a Gröbner basis of G.

Lemma 2.1.7. Let G ⊆ K[X] be a Gröbner basis and let G′ ⊆ ideal(G) \ {0} be such
that lt(G) ⊆ lt(G′). Then G′ is a Gröbner basis of G.

Theorem 2.1.8. Let G,G′ ⊆ K[X] be reduced Gröbner bases with ideal(G) = ideal(G′).
Then G = G′.

Theorem 2.1.9 (Buchberger [9, 10]). A set G ⊆ K[X] \ {0} is a Gröbner basis if and
only if

for all f, g ∈ G, spol(f, g)→∗G 0.

Algorithm 2.1.10 (Gröbner basis; Buchberger algorithm).
Input: F , a finite set of non-zero polynomials
Output: G, a Gröbner basis for F
G← F ;
B ← {{f, g} | f, g ∈ G, f 6= g};
while B 6= ∅

take a pair {f, g} from B;
B ← B \ {{f, g}};
h← a normal form computed by reduction from spol(f, g) with respect to G;
if h 6= 0 then B ← B ∪ {{h, g′} | g′ ∈ G};

G← G ∪ {h};
end if;

end while;

Return G;

2.2 Matrices

For a finite, non-empty set A ⊂ [X] and f : A→ K we define

polA(f) : [X] → K,
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t 7→

f(t), if t ∈ A,

0, else,

lt(f) := lt(polA(f))

and
lc(f) := f(lt(f)).

Definition 2.2.1 (Matrix). Let I and J ⊆ [X] be non-empty, finite sets. We call
KI×J := {m : I × J → K} the set of matrices over K with index sets I and J .

For m,m′ ∈ KI×J , we define

m+m′ : I × J → K,

(i, j) 7→ m(i, j) +m′(i, j).

For i ∈ I and m ∈ KI×J , we denote the i-th row of m by

m(i) : J → K,

j 7→ m(i, j),

and we say that r : J → K is a row in m, if there exists an i′ ∈ I such that r = m(i′).

Let m ∈ KI×J , c ∈ K and r, r′, r′′ be rows in m. We define

c r : J → K,

j 7→ c r(j),

r′ + r′′ : J → K,

j 7→ r′(j) + r′′(j).

In the sequel we assume that if F is a finite set, Fi is the i-th element in F in some
1-to-1 enumeration of F .

Definition 2.2.2 (mat(F )). For finite, non-empty F ⊂ K[X] we define

mat(F ) : N|F | ×A → K,

(i, t) 7→ Fi(t),

where A =
⋃
f∈F supp(f).
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Definition 2.2.3. Let I and J ⊆ [X] be non-empty, finite sets and m ∈ KI×J . We
define lt(m) := {lt(m(i)) | i ∈ I and m(i) 6= 0}.

In the next definition we give an exact specification of what we mean by row operations
which are well known from linear algebra and are usually defined to be operations on
one or two rows of a matrix producing a new row with the implicit understanding
that the other rows in the matrix not affected by these operations are not changed.
Since the exact understanding of the actions of these operations is crucial for our
investigation, in the subsequent definition, we formulate the “row” operations in fact as
matrix operations.

Definition 2.2.4 (Row operation). Let I and J ⊆ [X] be non-empty, finite sets. A
row operation on a matrix m ∈ KI×J is defined to be one of the following functions that
generate from the given matrix a new matrix, where c, c′, c′′ ∈ K \ {0}, and i′, i′′ ∈ I
with i′ 6= i′′:

exchange(m, i′, i′′) : I × J → K,

(i, j) 7→


m(i′′, j) if i = i′,

m(i′, j) if i = i′′,

m(i, j) else

, (2.1)

const-multiply(m, i′, c) : I × J → K,

(i, j) 7→

cm(i, j) if i = i′,

m(i, j) else
, (2.2)

add(m, i′, c′, i′′, c′′) : I × J → K,

(i, j) 7→

c′m(i, j) + c′′m(i′′, j) if i = i′,

m(i, j) else
. (2.3)

Definition 2.2.5 (Triangular matrix, triangularization). Let I and J ⊆ [X] be non-
empty, finite sets. We call a matrix m ∈ KI×J triangular iff no two rows of m have
the same leading term. We say that matrix m′ results by triangularization from matrix
m if m′ is triangular and it is obtained from m by a finite sequence of row operations.

Definition 2.2.6 (Gaussian row operations). Let I and J ⊆ [X] be non-empty, finite
sets and m ∈ KI×J . A Gaussian row operation on m is defined to be one of the
operations (2.1), (2.2) or (2.3) from Defintion 2.2.4, where (2.3) may only be executed
if either

add(m, i′, c′, i′′, c′′)(i′) is constant zero
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or
lt((add(m, i′, c′, i′′, c′′))(i′)) ≺ lt(m(i′)).

We say that matrix m′ results by Gaussian elimination from matrix m if it is obtained
from m by a finite sequence of Gaussian row operations.

Remark 2.2.7. One way to triangularize a matrix is by performing Gaussian elimina-
tion. If we consider a matrix mat(F ) for some non-empty F ⊆ K[X], then the reduction
of a non-zero row r by another non-zero row r′, where lt(r) = lt(r′), i.e. replacing row
r by red(r, r′) := r − lc(r)

lc(r′)r
′, is an example of a row operation.

Definition 2.2.8 (Reduced row echelon form). Let I and J ⊆ [X] be non-empty, finite
sets. A matrix m ∈ KI×J is in reduced row echelon form iff it is triangular and for all
i ∈ I with m(i) 6= 0 and all j ∈ lt(m), j 6= lt(m(i)),

m(i, lt(m(i))) = 1 and m(i, j) = 0.

Consider the following problem.

Problem 2.2.9 (Gcd computation of two univariate polynomials).
Given: Two polynomials f, f ′ ∈ K[x] of degrees deg(f),deg(f ′) ≥ 1.
Find: A gcd of f and f ′.

Definition 2.2.10. For a univariate polynomial h ∈ K[x] and a k ∈ N we define

shifts(h, k) := {xi h | 0 ≤ i ≤ k}.

The following theorem was explicitly formulated by Laidacker in [46] but probably
could have been deduced from a detailed analysis of Habicht [37]: Problem 2.2.9 can be
solved by triangularizing the Sylvester matrix of the two input polynomials.

Theorem 2.2.11 (Laidacker). Let f, f ′ ∈ K[x] of degrees deg(f), deg(f ′) ≥ 1,

S = shifts(f,deg(f ′)− 1) ∪ shifts(f ′,deg(f)− 1)

and m be a matrix resulting by triangularization from mat(S).
Let A = {xi | 0 ≤ i ≤ deg(f) + deg(f ′) − 1}, let j be the smallest leading term of
m and let i ∈ Ndeg(f)+deg(f ′) such that lt(m(i)) = j. Then polA(m(i)) is a gcd of the
polynomials f and f ′.

Corollary 2.2.12. Let f , f ′ and m be as in Theorem 2.2.11 and let g be a gcd of f
and f ′. Then deg(g) = deg(f) + deg(f ′)− rank(m).



11

2.3 Gröbner Bases Computation by Matrix

Triangularization

For the remainder of this subsection let F ⊆ K[X] \ {0} with |F | = r. We want to
compute a Gröbner basis of F .

Definition 2.3.1. (contour(m)) Let I and J ⊆ [X] be non-empty, finite sets and
m ∈ KI×J a triangular matrix. We define

contour(m) := {polJ(m(i)) | i ∈ I and m(i) 6= 0 and

lt(m(i′)) does not divide lt(m(i)) for any i′ ∈ I \ {i}}.

Lemma 2.3.2. Let I and J ⊆ [X] be non-empty, finite sets and m ∈ KI×J a triangular
matrix. Furthermore, let M = {polJ(m(i)) | i ∈ I} and g ∈ hull(M). Then lt(g) ∈
lt(m).

Proof. Since g ∈ hull(M), there exist ci ∈ K (i ∈ I) such that g =
∑

i∈I ci polJ(m(i)).
First we observe that for all i ∈ I such that lt(g) ≺ lt(m(i)) we have ci = 0, because m
is triangular. Second we observe that, again because m is triangular, there must exist
an i ∈ I such that lt(g) = lt(m(i)), hence lt(g) ∈ lt(m).

Theorem 2.3.3. Let G be a Gröbner basis of F and let S ⊆ [X]F be finite such that
for all g ∈ G there exist q1, . . . , qr ∈ K[X] such that g =

∑r
i=1 qi Fi and supp(qi)Fi ⊆ S

for all i ∈ Nr. Let m be a matrix resulting by triangularization from mat(S). Then
contour(m) is a head-reduced Gröbner basis of F .

Proof. Let A =
⋃
s∈S supp(s) and M = {polA(m(i)) | i ∈ N|S|}. We know G ⊆

hull(S) = hull(M). By Lemma 2.3.2, lt(G) ⊆ lt(m). Since M ⊆ ideal(F ) we know
by Lemma 2.1.7 that M \ {0} is a Gröbner basis of F and hence by Lemma 2.1.6,
contour(m) is a head-reduced Gröbner basis of F .

The following theorem is due to Hermann [39] (also see [51] for a corrected proof).

Theorem 2.3.4. Let g ∈ ideal(F ) \ {0} and d = maxdeg(F ). Then there exist
q1, . . . , qr ∈ K[X] such that

g =
r∑
i=1

qiFi

and, if qi 6= 0,

deg(qi) ≤ deg(g) +
n−1∑
j=0

(rd)2
j

for all i ∈ Nr.
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This theorem can be used to find a candidate set for S as in Theorem 2.3.3 under the
assumption that we have a degree bound for the elements in a Gröbner basis. Such a
bound was given by Dubé in [28].

Theorem 2.3.5. Let G be the reduced Gröbner basis of F and d = maxdeg(F ). Then

deg(g) ≤ 2(
d2

2
+ d)2

n−1

for all g ∈ G .

Note that this bound holds for every ordering ≺. Now we can derive the following two
theorems.

Theorem 2.3.6. Let d = maxdeg(F ) and d′ = 2(d
2

2 + d)2
n−1

+
∑n−1

j=0 (rd)2
j
. Let

furthermore U = {t ∈ [X] : deg(t) ≤ d′} and S =
⋃r
i=1 UFi. Let m be a matrix resulting

by triangularization from mat(S). Then contour(m) is a head-reduced Gröbner basis of
F . Moreover, if m is in reduced row echelon form, contour(m) is the reduced Gröbner
basis of F .

Proof. Let G be the reduced Gröbner basis of F and g ∈ G. By Theorem 2.3.5 we have

deg(g) ≤ 2(
d2

2
+ d)2

n−1
.

By Theorem 2.3.4 there exist q1, . . . , qr ∈ K[X] such that g =
∑r

i=1 qiFi and, if qi 6= 0,
deg(qi) ≤ deg(g) +

∑n−1
j=0 (rd)2

j ≤ d′ for all i ∈ Nr. Therefore, supp(qi) ⊆ U for all
i ∈ Nr, hence, supp(qi)Fi ⊆ S for all i ∈ Nr. By Theorem 2.3.3, contour(m) is a
head-reduced Gröbner basis of F .

For the second part of the proof letm be in reduced row echelon form, A =
⋃
s∈S supp(s)

and M = {polA(m(i)) | i ∈ N|S|}. We prove G = contour(m).
Let g ∈ G. We show g ∈ contour(m). Since g is head-reduced with respect to G \ {g},
there exists a g′ ∈ contour(m) such that lt(g) = lt(g′). Suppose, g 6= g′. Note that
lc(g) = lc(g′) = 1. Then g − g′ 6= 0. Let t = lt(g − g′). Since g, g′ ∈ hull(M), also
g − g′ ∈ hull(M). By Lemma 2.3.2, t ∈ lt(m), so there exists an i ∈ N|S| such that
lt(m(i)) = t. Since g is irreducible with respect to G \ {g}, we know g(t) = 0 and since
m is in reduced row echelon form, we know m(i′, t) = 0 for all i′ ∈ N|S|, i′ 6= i, hence
g′(t) = 0. This contradicts the assumption that (g − g′)(t) 6= 0. Therefore, g = g′ ∈
contour(m). From the definition of contour we easily derive G = contour(m).

Theorem 2.3.7. Let d = maxdeg(F ) and d′′ =
∑n−1

j=0 (rd)2
j
. Let furthermore U = {t ∈

[X] : deg(t) ≤ d′′} and S =
⋃r
i=1 UFi. Let m be a matrix resulting by triangularization

from mat(S). Then the polynomial system F = 0 is unsolvable if and only if there
exists a non-zero row in m with leading term 1.
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Proof. Let A =
⋃
s∈S supp(s). If there is a row h in m with leading term 1, then

polA(h) ∈ ideal(F ) is a non-zero constant polynomial and hence F = 0 is unsolvable.

If F = 0 is unsolvable then {1} is a Gröbner basis of F . By Theorem 2.3.4, there exist
q1, . . . , qr ∈ K[X] such that

1 =
r∑
i=1

qiFi

and, if qi 6= 0,

deg(qi) ≤
n−1∑
j=0

(rd)2
j

for all i ∈ Nr. By Theorem 2.3.3 it follows that contour(m) is a head-reduced Gröbner
basis of F . Since 1 ∈ ideal(F ), there exists a g ∈ contour(m) such that lt(g) divides
lt(1). Row g|A has leading term 1.

In [45], Kühnle and Mayr use a similar technique for proving that Gröbner bases com-
putations can be done in exponential space. They use systems of linear equations
which have a similar structure as the matrix mat(S) used in Theorem 2.3.6 and by
repeatedly solving these systems they get the reduced Gröbner basis of the input set
F . For bounding the size as well as the number of these systems they also use the
bounds given by Hermann and Dubé. More specifically, they enumerate all terms up
to the degree bound given by Dubé and for every such term t and its direct divisors
(a term u is a direct divisor of t iff it divides t but there is no term v /∈ {u, t} such
that u divides v and v divides t) they construct a system of linear equations of the
form H = FC. For describing the structure of this system, let ≺ be given by n2 in-
teger weights bounded by A (for details on this see the paper; note that A ≥ 1), let
d := maxdeg(F ), N := ((2A(d

2

2 + d)2
n−1

+ 1)n deg(t))n+1 and D := N + (rd)2
n
. Now,

the rows of the system are indexed by the terms in {u ∈ [X] : deg(u) ≤ d + D} with
increasing degree, H is the unit vector with 1 as the entry indexed by t, C is a vector
of unknowns, and F is a matrix with the first k := |{u ∈ [X] : deg(u) ≤ N}| columns
being the unit vectors e1, . . . , ek, i.e. transposed shifts of the polynomial 1 up to degree
N , and the following r|{u ∈ [X] : deg(u) ≤ D}| columns being transposed shifts of the
input polynomials. The first k entries of the solution vector C give the coefficients of
(not necessarily fully) reduced forms of t with respect to the reduced Gröbner basis
of F . A certain minimal solution of the system w.r.t. ≺ gives the coefficients of the
normal form NF(t) of t with respect to the reduced Gröbner basis of F . This solution
is computed by finding a certain maximal regular minor F ′ of F and computing its
inverse matrix. Now, the polynomial t − NF(t) is added to the intermediate Gröbner
basis if it is not 0 and its direct divisors are irreducible, i.e. their normal forms are the
same as the direct divisors themselves. In the end, this yields the reduced Gröbner
basis of F .



14 Gröbner Bases Computation by Gaussian Elimination

The authors obtain the system H = FC by setting up the equation t − NF(t) =∑r
i=1 ciFi, using a similar argument as we do for deriving the bounds N and D on

t − NF(t) and the ci, and then comparing coefficients. For deriving N , the authors
use Dubé’s bound 2(d

2

2 + d)2
n−1

, and D is the combination of N and Hermann’s bound∑n−1
j=0 (rd)2

j ≤ (rd)2
n
. Note that in the smallest case (deg(t) = 0) the input polynomials

are shifted up to degree d + (rd)2
n
, already in the case deg(t) = 1 they are shifted up

to degree d+ ((2A(d
2

2 +d)2
n−1

+ 1)n)n+1 + (rd)2
n
>> d+d′ with d′ as in Theorem 2.3.6

and in the biggest case (deg(t) = 2(d
2

2 + d)2
n−1

) they are shifted up to degree

d+ ((2A(
d2

2
+ d)2

n−1
+ 1)n 2(

d2

2
+ d)2

n−1
)n+1 + (rd)2

n
>> d+ d′.

Additionally to these shifts, the matrix F contains shifts of the polynomial 1 up to
degree N . The number of systems to be solved in this way is at least |{u ∈ [X] :
deg(u) ≤ 2(d

2

2 + d)2
n−1}|. In this thesis, in contrast, we build one matrix consisting

of shifts of the input polynomials up to degree d + d′, triangularize this matrix and
extract its contour as a head-reduced Gröbner basis of F . We do not make any claims
about the size of the space needed for Gröbner bases computations but solve a different
problem. Although the matrices in Kühnle and Mayr are similar to the matrix of shifts
we are using, we do not see how the proof in Kühnle and Mayr could be used for
showing that the matrices used in Kühnle and Mayr solve our problem and, also, our
proof for the bounds for our problem is much shorter. Additionally, their matrix F is
much bigger than ours in every case except the case deg(t) = 0. However, for solving
their systems of linear equations they avoid using the whole matrix F by computing a
certain maximal regular minor F ′ and using this one instead.

For more recent results on the problem investigated by Kühnle and Mayr see Ritscher’s
PhD thesis [55].

2.4 GCD Computation of Several Univariate

Polynomials

We consider the following problem.

Problem 2.4.1 (Gcd computation of several univariate polynomials).
Given: F ∈ K[x] \ {0} such that |F | = r ≥ 2, with mindeg(F ) ≥ 1.
Find: A gcd of F .

Let d := maxdeg(F ) and d′ := maxdeg(F \ {f}), where f ∈ F is such that deg(f) = d,
and let d′′ := mindeg(F ). In [65] and [5] direct generalizations of the Sylvester matrix
to the case of r univariate polynomials with r ≥ 2 are given. In [65] the block size (i.e.
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the number of shifts) for every polynomial is d, resulting in a d r × 2d matrix. In [5]
the block size of one of the polynomials with degree d is d′ and the block sizes of all
of the other polynomials are d, resulting in a (d′ + (r − 1)d)× (d+ d′) matrix. As can
been seen in Theorem 2.4.4, our block sizes are d for a polynomial with smallest degree
d′′ and d′′ for the other polynomials, resulting in a (d + (r − 1)d′′) × (d + d′′) matrix.
Since

2d ≥ d+ d′ ≥ d+ d′′

and

d r ≥ d′ + (r − 1)d = d+ d′ + (r − 2)d

≥ d+ d′′ + (r − 2)d′′ = d+ (r − 1)d′′,

the matrix given in this thesis is smaller and it is equal to the other two if and only if
all of the polynomials have the same degree. The difference is of course not big if the
degrees are very close to each other. For example if r = 10, d = 30, d′ = 29 and d′′ = 27,
we get a 300 × 60 matrix with [65], a 299 × 59 matrix with [5] and a 273 × 57 matrix
using our block sizes. But if the degrees are not close to each other, the difference is
significant. For example if r = 10, d = 50, d′ = 35 and d′′ = 7, we get a 500 × 100
matrix with [65], a 485 × 85 matrix with [5] and a 113 × 57 matrix using our block
sizes.

Definition 2.4.2. Let P ⊆ K[x] \ {0} be a non-empty set with mindeg(P ) ≥ 1, and let
p ∈ P . Then define

Sylv(P, p) :=

 ⋃
h∈P\{p}

shifts(h,mindeg(P )− 1)

 ∪ shifts(p,maxdeg(P )− 1).

Lemma 2.4.3. Let f ∈ F such that deg(f) = mindeg(F ) and g be a gcd of F . Then
g ∈ hull(Sylv(F, f)) and xi ∈ lt(hull(Sylv(F, f))) for any i such that deg(g) ≤ i ≤
maxdeg(F ) + mindeg(F )

Proof. We proceed by induction on |F |. For |F | = 2, the claim follows by Theo-
rem 2.2.11 and Corollary 2.2.12.
Now fix r > 1. Take F with |F | = r+1, let f ∈ F such that deg(f) = mindeg(F ), g be a
gcd of F and assume (induction hypothesis) that for all F̃ with |F̃ | ≤ r and for all f̃ ∈ F̃
such that deg(f̃) = mindeg(F̃ ) and for any gcd g̃ of F̃ we have g̃ ∈ hull(Sylv(F̃ , f̃)) and
xi ∈ lt(hull(Sylv(F̃ , f̃))) for any i such that deg(g̃) ≤ i ≤ maxdeg(F̃ ) + mindeg(F̃ ).
Let f ′ ∈ F \ {f} such that deg(f ′) = mindeg(F \ {f}) and let g′ be a gcd of F \ {f ′}.
Note that maxdeg(F \ {f ′}) = maxdeg(F ) and mindeg(F \ {f ′}) = mindeg(F ). By the
induction hypothesis,

g′ ∈ hull(Sylv(F \ {f ′}, f)) (2.4)
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and

xi ∈ lt(hull(Sylv(F \ {f ′}, f))) for any i such that (2.5)

deg(g′) ≤ i ≤ maxdeg(F ) + mindeg(F ).

The polynomial g is a gcd of g′ and f ′. Note that deg(g′) ≤ deg(f) ≤ deg(f ′), so again
by the induction hypothesis,

g ∈ hull(Sylv({f ′, g′}, g′)) (2.6)

and

xi ∈ lt(hull(Sylv({f ′, g′}, g′))) for any i such that (2.7)

deg(g) ≤ i ≤ deg(f ′) + deg(g′).

In order to prove g ∈ hull(Sylv(F, f)), it suffices by (2.6) to show that
hull(Sylv({f ′, g′}, g′)) ⊆ hull(Sylv(F, f)). For this we have to prove that

shifts(f ′,deg(g′)− 1) ⊆ hull(Sylv(F, f))

and
shifts(g′,deg(f ′)− 1) ⊆ hull(Sylv(F, f)).

Since deg(g′)− 1 ≤ mindeg(F )− 1, it immediately follows that

shifts(f ′, deg(g′)− 1) ⊆ hull(Sylv(F, f)).

So we now show shifts(g′,deg(f ′)− 1) ⊆ hull(Sylv(F, f)). We have

hull(Sylv(F \ {f ′}, f)) ⊆ hull(Sylv(F, f)), (2.8)

because the set Sylv(F \ {f ′}, f) can be rewritten as

Sylv(F \ {f ′}, f) =

=

 ⋃
h∈F\{f,f ′}

shifts(h,mindeg(F \ {f ′})− 1)

 ∪ shifts(f,maxdeg(F \ {f ′})− 1)

=

 ⋃
h∈F\{f,f ′}

shifts(h,mindeg(F )− 1)

 ∪ shifts(f,maxdeg(F )− 1).

So it suffices to prove that

shifts(g′,deg(f ′)− 1) ⊆ hull(Sylv(F \ {f ′}, f)).
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Let k ∈ Ndeg(f ′)−1. We show xkg′ ∈ hull(Sylv(F \ {f ′}, f)) in two steps. First, we
show that there exists an h ∈ hull(Sylv(F \ {f ′}, f)) which has the same coefficients as
xkg′ with respect to the terms of degree deg(g′) and higher. Second, we show complete
equality of h and xkg′. Since deg(g′) ≤ mindeg(F ), and k ≤ maxdeg(F )− 1 it follows
that

deg(g′) ≤ deg(xkg′) ≤ maxdeg(F ) + mindeg(F )− 1.

By (2.5) for any i such that deg(g′) ≤ i ≤ maxdeg(F ) + mindeg(F ) there is a p ∈
hull(Sylv(F \{f ′}, f)) such that lt(p) = xi. So there exists an h ∈ hull(Sylv(F \{f ′}, f))
such that

h(xj) = (xkg′)(xj)

for all j such that deg(g′) ≤ j ≤ maxdeg(F ) + mindeg(F )− 1. If h 6= xkg′, then there
exists a j ∈ Ndeg(g′)−1 such that h(xj) 6= (xkg′)(xj). But then we have that

h− xkg′ ∈ ideal(F \ {f ′}) \ {0}

and
deg(h− xkg′) < deg(g′),

which contradicts the fact that g′ is a gcd of F \ {f ′}. So in fact,

xkg′ = h ∈ hull(Sylv(F \ {f ′}, f))

and we get

shifts(g′,deg(f ′)− 1) ⊆ hull(Sylv(F \ {f ′}, f)) ⊆ hull(Sylv(F, f)).

Altogether we obtain

g ∈ hull(Sylv({f ′, g′}, g′)) ⊆ hull(Sylv(F, f)). (2.9)

Now we show xi ∈ lt(hull(Sylv(F, f))) for any i such that deg(g) ≤ i ≤ maxdeg(F ) +
mindeg(F ). By (2.7) and (2.9) we obtain xi ∈ lt(hull(Sylv(F, f))) for any i such that
deg(g) ≤ i ≤ deg(f ′) + deg(g′). By (2.5) and (2.8) we obtain xi ∈ lt(hull(Sylv(F, f)))
for any i such that deg(g′) ≤ i ≤ maxdeg(F ) + mindeg(F ). Since deg(f ′) + deg(g′) ≥
deg(g′), this proves the claim.

Theorem 2.4.4. Let f ∈ F such that deg(f) = mindeg(F ) and let m be a matrix
resulting by triangularization from mat(Sylv(F, f)).
Then contour(m) contains only one element, which is a gcd of F .

Proof. Let g be a gcd of F . By Lemma 2.4.3, g ∈ hull(Sylv(F, f)). We derive that
Sylv(F, f) ⊆ [X]F is such that there exist q1, . . . , qr ∈ K[x] such that g =

∑r
j=1 qjFj
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and supp(qj)Fj ⊆ Sylv(F, f) for all j ∈ Nr. Hence, by Theorem 2.3.3, contour(m) is a
head-reduced Gröbner basis of F , i.e. it consists of a gcd of F .

As in the case r = 2, we can infer the following two corollaries.

Corollary 2.4.5. Let f ∈ F such that deg(f) = mindeg(F ) and let g be a gcd of F .
Then deg(g) = maxdeg(F ) + mindeg(F )− rank(mat(Sylv(F, f))).

Proof. The claim follows immediately from Theorem 2.4.4, Lemma 2.4.3 and Lem-
ma 2.3.2.

Corollary 2.4.6. Let f ∈ F such that deg(f) = mindeg(F ) and let g be a gcd of
F . The polynomials in F are co-prime, i.e. the degree of their gcd is 0, if and only if
rank(mat(Sylv(F, f))) = maxdeg(F ) + mindeg(F ).

Proof. The claim follows immediately from Corollary 2.4.5.
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Chapter 3

New Bounds for the Membership

Problem for Binomial Ideals

3.1 Introduction and Summary of the Main Results

In this and the following chapter we investigate the case of binomial ideals, where the
input basis consists of two binomials. Binomial ideals arise in many interesting problems
in different fields, for example integer programming (e.g. [21, 1, 63, 64, 40, 58, 25]; for
a general introduction to linear and integer programming, see [56]), computational
statistics ([27]) and dynamical systems (e.g. [41]). Toric ideals are the pure difference
prime binomial ideals, where a pure difference binomial is a binomial of the form Xα−
Xβ. There is a large amount of literature studying toric ideals (e.g. [57, 58, 6]). For
more literature on binomial ideals see e.g. [30, 42, 43, 44, 59].

We want to find an upper degree bound for the shifts of the input polynomials needed
to compute a Gröbner basis the way described in the last chapter for the case, where the
input polynomials are two binomials. For this, we solve in this chapter the subproblem
of finding an upper bound on the shifts of the two input binomials needed to compute
a particular given element of a Gröbner basis.

In this subsection we give a summary of the main results in this chapter. The proofs
follow in Subsections 3.2 and 3.3.

Definition 3.1.1 (Binomial). A polynomial f ∈ K[X] \ {0} is a binomial iff
| supp(f)| ≤ 2. If | supp(f)| = 2, we call f a proper binomial.

Definition 3.1.2 (Binomial ideal). An ideal is a binomial ideal if it is generated by a
set of binomials.
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Note the following basic fact (see for example [30]).

Theorem 3.1.3. For a set H of binomials, the reduced Gröbner basis of H is a set of
binomials.

For the rest of the thesis we denote by F the set of input polynomials and assume that
it consists of two binomials.

Remark 3.1.4. Since we want to generate a Gröbner basis, we have to have the nec-
essary shifts to generate, by linear combinations, enough polynomials such that their
leading terms include all the terms in lt(G). If there is a g ∈ G such that lt(g) ∈ lt(F ),
then lt(g) is already taken care of since the polynomials in F will be contained in the
shifts. Hence, such a g needs not to be considered for our investigation of how big the
shifts should get. The ones that are interesting are the g ∈ G with lt(g) /∈ lt(F ). The
reduced Gröbner basis G of F has the property that it contains only binomials (c.f. The-
orem 3.1.3) and that for every g in G, g is irreducible with respect to G\{g}. From this
follow the weaker properties that for every g ∈ G with lt(g) /∈ lt(F ), g is irreducible with
respect to F and, if g is a proper binomial, supp(g) 6⊆ ideal(F ). Therefore, it suffices
if for our investigation we only consider those g ∈ ideal(F ) which are binomials, are
irreducible with respect to F and, if g is a proper binomial, supp(g) 6⊆ ideal(F ).

If F contains only monomials, then F already is a Gröbner basis. For the other cases
we analyze the following problem.

Problem 3.1.5.

Find an explicit expression d′ in six terms such that for all F, g, r, r′, s, s′, t, t′

if supp(F1) ⊆ {r, r′}, supp(F2) ⊆ {s, s′}, supp(g) ⊆ {t, t′}, g ∈ ideal(F ), g is irre-
ducible with respect to F and, if g is a proper binomial, supp(g) 6⊆ ideal(F ),

then there exist q1, q2 ∈ K[X] such that g = q1F1 + q2F2 and, if qi 6= 0, deg(qiFi) ≤
d′(r, r′, s, s′, t, t′) for all i = 1, 2.

Note that with this we want to improve the Hermann part of the bound in Theo-
rem 2.3.6.

Let for the rest of this chapter g be a binomial such that g ∈ ideal(F ), g is irreducible
with respect to F and, if g is a proper binomial, supp(g) 6⊆ ideal(F ).

Definition 3.1.6 (Trailing term, trailing coefficient, trailing monomial). For any bino-
mial f ∈ K[X], we define the trailing term, trailing coefficient and trailing monomial of
f by tt(f) := min≺(supp(f)), tc(f) := f(tt(f)) and lm(f) := tc(f) tt(f), respectively.
For any set H of binomials we define tt(H) := {tt(h) | h ∈ H}.
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If f is a monomial, then lm(f) = tm(f).

Remark 3.1.7. Since g is irreducible with respect to F , it follows for any t ∈ supp(g)
that lt(f) does not divide t for any f ∈ F , but tt(f) divides t for some f ∈ F .

Before we summarize our main results we need a few definitions.

Definition 3.1.8 (e(t)). For any term t ∈ [X], we define e(t) to be the exponent
vector of t. The function e : [X] → Nn is bijective. For any set T ⊆ [X], we define
e(T ) := {e(t) | t ∈ T}.

Definition 3.1.9 (Degree of a point). The degree of an A ∈ Zn is the sum of its
components. For a finite U ⊆ Zn we define maxdeg(U) := max({deg(A) | A ∈ U}) and
mindeg(U) := min({deg(A) | A ∈ U}).

Definition 3.1.10 (gcd, lcm, ≤). For A,B ∈ Nn we define

gcd(A,B) := e(gcd(e−1(A), e−1(B))),

lcm(A,B) := e(lcm(e−1(A), e−1(B)))

and
A ≤ B (or B ≥ A respectively) iff Ai ≤ Bi for all i ∈ Nn.

Definition 3.1.11 (overlap(H)). Let H be a set of two binomials in K[X]. We define
overlap(H) := lcm(ξ(1), ξ(2)), where ξ(i) = gcd(e(lt(Hi)), e(tt(Hi))) for i = 1, 2.

Definition 3.1.12 (vect(h)). For a proper binomial h ∈ K[X], we define

vect(h) := e(lt(h))− e(tt(h)).

Lemma 3.1.13. Let P ∈ Nn such that e(tt(F1)) ≤ P and e(tt(F2)) ≤ P . Then
P ≥ overlap(F ).

Proof. We have gcd(e(lt(Fi)), e(tt(Fi))) ≤ P for all i = 1, 2, and hence P ≥ overlap(F ).

Definition 3.1.14 (step(P ), overlapshift(P )). For a P ∈ Nn with e(tt(f)) ≤ P for a
proper binomial f ∈ F , we define step(P ) and overlapshift(P ) the following way.

Take a proper binomial f ∈ F such that e(tt(f)) ≤ P . Which one does not matter (see
below). Then

step(P ) :=

max
({⌈

overlap(F )j − Pj
vect(f)j

⌉
| j ∈ Nn, vect(f)j 6= 0, overlap(F )j > Pj

}
∪ {0}

)
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and
overlapshift(P ) := P + step(P ) vect(f).

The choice of f does not matter, because if both F1 and F2 are suitable choices for
f , then by Lemma 3.1.13 we have P ≥ overlap(F ) and hence step(P ) = 0 and
overlapshift(P ) = P , no matter the choice.

We now summarize our main results by distinguishing three cases and give some ex-
amples.

Case 1: F consists of a proper binomial and a monomial (c.f. Theorem 3.2.1).
Then g is a monomial and d′ = maxdeg(e(lt(g)), overlapshift(e(lt(g)))) solves Prob-
lem 3.1.5 and is optimal among all the solutions.

Example 3.1.15. Suppose F = {X5
1X2 + 2X3

1 , 4X5
2} and g = X4

1 and assume the
terms are ordered with respect to the lexicographic ordering with X2 ≺ X1. We have
that g ∈ ideal(F ) and g is irreducible with respect to F . We obtain e(lt(g)) = (4, 0),
vect(F1) = (2, 1), overlap(F ) = (3, 5), step(e(lt(g))) = 5, overlapshift(e(lt(g))) =
(14, 5) and hence the optimal d′ = maxdeg((4, 0), (14, 5)) = 19. Using the Hermann
bound in Theorem 2.3.4 we get 166 as an upper degree bound on the shifts necessary to
generate g.

Example 3.1.16. Suppose F = {X1X2X
5
3 + 3X3

1X
2
2 , 2X7

3} and g = X5
1X

3
2 and

assume the terms are ordered with respect to the degree lexicographic ordering with
X3 ≺ X2 ≺ X1. We have that g ∈ ideal(F ) and g is irreducible with respect to
F . We obtain e(lt(g)) = (5, 3, 0), vect(F1) = (−2,−1, 5), overlap(F ) = (1, 1, 7),
step(e(lt(g))) = 2, overlapshift(e(lt(g))) = (1, 1, 10) and hence the optimal d′ =
maxdeg((5, 3, 0), (1, 1, 10)) = 12. Using the Hermann bound in Theorem 2.3.4 we get
38641 as an upper degree bound on the shifts necessary to generate g.

Case 2: F consists of two proper binomials f, f ′ such that r vect(f) = vect(f ′) for
some r ∈ Q \ {0} and g is a monomial (c.f. Theorem 3.2.2).
Then d′ = maxdeg(e(lt(g)), overlapshift(e(lt(g))) + vect(f) + vect(f ′)) solves Prob-
lem 3.1.5.

Example 3.1.17. Suppose F = {X6
1X

8
2 + 5X2

1X
10
2 , 3X11

1 − 2X5
1X

3
2} and g = X2

1X
15
2

and assume the terms are ordered with respect to the lexicographic ordering with
X2 ≺ X1. We have that g ∈ ideal(F ) and g is irreducible with respect to F . We
obtain e(lt(g)) = (2, 15), vect(F1) = (4,−2), vect(F2) = (6,−3), overlap(F ) = (5, 8),
step(e(lt(g))) = 1, overlapshift(e(lt(g))) = (6, 13) and hence

d′ = maxdeg((2, 15), (6, 13) + (4,−2) + (6,−3))

= maxdeg((2, 15), (16, 8)) = 24.
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Using the Hermann bound in Theorem 2.3.4 we get 843 as an upper degree bound on
the shifts necessary to generate g and the optimal bound is 23.

Case 3: F consists of two proper binomials f, f ′ and g is a proper binomial (c.f. The-
orem 3.3.35).
Let A = e(lt(g)), B = e(tt(g)) and m = |deg(vect(f))| + |deg(vect(f ′))|. Then
d′ = max(maxdeg(A,B), maxdeg(overlapshift(A), overlapshift(B)) + m) solves Prob-
lem 3.1.5.

Example 3.1.18. Consider F = {X2
1X

3
2 − X4

2 , X
6
1 − X3

1X
2
2} and g = X7

2 − X6
2 and

assume the terms are ordered with respect to the lexicographic ordering with X2 ≺ X1.
We have that g ∈ ideal(F ), g is irreducible with respect to F and supp(g) 6⊆ ideal(F ).
Let A = (0, 7) and B = (0, 6). We calculate overlap(F ) = (3, 3), vect(F1) = (2,−1),
vect(F2) = (3,−2), overlapshift(A) = A + 2 vect(F1) = (4, 5) and overlapshift(B) =
B + 2 vect(F1) = (4, 4). We obtain d′ = max(7, 9 + 1 + 1) = 11 as a solution for
Problem 3.1.5. Using the Hermann bound in Theorem 2.3.4 we get 169 as an upper
degree bound on the shifts necessary to generate g and the optimal bound is 10.

Section 3.2 treats the case where g is a monomial, Section 3.3 the case where g is a
proper binomial.

3.2 Degree Bounds on the Shifts for Generating a

Monomial in a Gröbner Basis

Theorems 3.2.1 and 3.2.2 treat all the possible structures for F where it is possible for
g to be a monomial and give expressions for d′ of Problem 3.1.5.

Note that k as described in Theorems 3.2.1 and 3.2.2 is the value we receive if we apply
the step function defined in Definition 3.1.14 to the exponent vector of lt(g). There the
function is given in a closed form, whereas in this section k is given in implicit form.
Also note that in Theorems 3.2.1 and 3.2.2 and in their proofs there occur expressions

of the form t
(

lt(f)
tt(f)

)i
or t

(
lm(f)
tm(f)

)i
for some monomial t and i ∈ Q. In these cases,(

lt(f)
tt(f)

)i
resp.

(
lm(f)
tm(f)

)i
need not be monomials but can rather have negative integer

exponents. However, the whole expression t
(

lt(f)
tt(f)

)i
resp. t

(
lm(f)
tm(f)

)i
is a monomial.
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Theorem 3.2.1. Let F contain a proper binomial f and a monomial f ′. Then g is

a monomial and there exists a k ∈ N \ {0} such that f ′ divides g
(

lt(f)
tt(f)

)k
. Let k be

minimal with this property. Then

d′ = maxdeg

(
g, g

(
lt(f)
tt(f)

)k)

solves Problem 3.1.5 and is optimal among all the solutions.

Proof. It is easy to see that g is a monomial that is divided by tt(f). The existence of
k is a necessary condition for g to be generated by both f and f ′. So if k did not exist,
then g would be generated by f alone, which contradicts the fact that g is a monomial.
We can write g as

g = qf + q′f ′,

where

q =
g

tm(f)

(
k−1∑
i=0

(
− lm(f)

tm(f)

)i)
∈ K[X] \ {0},

q′ =
g
(
− lm(f)

tm(f)

)k
f ′

∈ K[X] \ {0}

and k is as in the theorem. We obtain

deg(q′f ′) ≤ deg(qf)

= maxdeg

(
g, g

(
lm(f)
tm(f)

)k)
(3.1)

= d′

Note that by choosing k minimally, q and q′ are such that their degree is minimal among
all the possible cofactors of g with respect to F . With this and (3.1) we obtain that d′

is optimal among the solutions of Problem 3.1.5.

Theorem 3.2.2. Let F consist of two proper binomials f, f ′ such that(
lt(f)
tt(f)

)m
=
(

lt(f ′)
tt(f ′)

)m′
for some m,m′ ∈ N \ {0}. Assume, g is a monomial and tt(f) divides g. There exists

a k ∈ N such that gcd(lt(f ′), tt(f ′)) divides g
(

lt(f)
tt(f)

)k
. Let k be minimal with this

property. Then

d′ = maxdeg

(
g, g

(
lt(f)
tt(f)

)k+1( lt(f ′)
tt(f ′)

))
,

solves Problem 3.1.5.
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Proof. Let k be as in the theorem. If k did not exist, then g would be generated by f
alone, which contradicts the assumption that g is a monomial. Let q, q′ ∈ K[X] such
that g = qf + q′f ′. Note that q, q′ 6= 0, since otherwise g cannot be a monomial. For

all ξ ∈ supp(qf) ∪ supp(q′f ′) we obtain ξ = lt(g)
(

lt(f)
tt(f)

)l
for a nonnegative l ∈ Q. If

deg(lt(f)) ≤ deg(tt(f)), we get deg(qf) ≤ deg(g) = d′ and deg(q′f ′) ≤ deg(g) = d′.

Now let us assume that deg(lt(f)) > deg(tt(f)). Since lt(qf) = lt(q′f ′) it follows that

deg(qf) = deg(lt(qf)) = deg(lt(q′f ′)) = deg(q′f ′).

We can assume q, q′ to be chosen in such a way that deg(qf) = deg(q′f ′) is minimal.
We show

deg(qf) ≤ deg

(
g

(
lt(f)
tt(f)

)k+1( lt(f ′)
tt(f ′)

))
= d′.

Assume for a contradiction, deg(qf) > deg
(
g
(

lt(f)
tt(f)

)k+1 (
lt(f ′)
tt(f ′)

))
. Then there exists

an l′ ∈ Q such that lt(qf) = lt(g)
(

lt(f)
tt(f)

)l′
and l′ > k + 1 + m

m′ . We obtain

lt(q′) tt(f ′) = lt(g)
(

lt(f)
tt(f)

)l′− m
m′

and k + 1 < l′ − m
m′ < l′. Since lt(f) divides both lt(g)

(
lt(f)
tt(f)

)k+1
and lt(g)

(
lt(f)
tt(f)

)l′
, it

also divides lt(q′) tt(f ′).
Also,

lt(q) tt(f) = lt(g)
(

lt(f)
tt(f)

)l′−1

and k + m
m′ < l′ − 1 < l′. Since lt(f ′) divides both lt(g)

(
lt(f)
tt(f)

)k+ m
m′ and lt(g)

(
lt(f)
tt(f)

)l′
,

it also divides lt(q) tt(f). Hence, g = q′′f + q′′′f ′ for

q′′ = q − lm(q) +
lm(q′) tm(f ′)

lm(f)
∈ K[X] \ {0}

and
q′′′ = q′ − lm(q′) +

lm(q) tm(f)
lm(f ′)

∈ K[X] \ {0},

and deg(q′′f) < deg(qf) and deg(q′′′f ′) < deg(q′f ′), which contradicts the choice of q
and q′.
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X1

X2

F1

F2

lt(h)

tt(h)

Figure 3.1: Graphical representation of a proper binomial in the ideal.

3.3 Degree Bounds on the Shifts for Generating a Proper

Binomial in a Gröbner Basis

In this section, assume that F consists only of proper binomials and assume that g is a
proper binomial such that g is irreducible with respect to F and supp(g) 6⊆ ideal(F ).

3.3.1 Graphical Interpretation

We show how the representation of a proper binomial in the ideal in terms of the input
polynomials can be viewed graphically.

Example 3.3.1. Given F = {X2
1x

3
2 + X4

2 , X
6
1 + X3

1X
2
2}, the binomial h = X7

2 + X6
2

lies in ideal(F ), since

h = (−X5
1 +X4

1 +X3
1X2 −X2

1X
2
2 −X2

1X2 +X3
2 +X2

2 )F1 + (X1X
3
2 −X3

2 )F2, (3.2)

and it can be expressed as shifts of F1 and F2 graphically as in Figure 3.1.
The two dashed lines represent the two input polynomials, which have support
supp(F1) = {X2

1X
3
2 , X

4
2} and supp(F2) = {X6

1 , X
3
1X

2
2}, and the polygon line consists
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of the shifts of F1 and F2 as described in (3.2). Starting point and ending point of the
polygon chain form the support supp(h) = {X7

2 , X
6
2} of h.

Question: Is there always such a connection between a proper binomial in the ideal
and a polygon chain connecting the elements in the support of the binomial?

This question will be answered in Theorems 3.3.14 and 3.3.17.

Definition 3.3.2 (posshift(f), negshift(f), shifts(H)). For any proper binomial f ∈
K[X], we define

posshift(f) := (e(tt(f)), e(lt(f)))

and
negshift(f) := (e(lt(f)), e(tt(f)))

and for any τ ∈ Nn and any ξ, ξ′ ∈ Nn, we define

τ + (ξ, ξ′) := (τ + ξ, τ + ξ′).

For any set H of proper binomials we define

shifts(H) := {posshift(f) | f ∈ H} ∪ {negshift(f) | f ∈ H}

and
Nn + shifts(H) := {τ + h | τ ∈ Nn and h ∈ shifts(H)}.

For any proper binomial f ∈ K[X] we call h ∈ Nn + shifts({f}) a positive shift of f if
h = τ + posshift(f) and a negative shift of f if h = τ + negshift(f) for some τ ∈ Nn,
or simply a shift of f , and for any f ′ ∈ shifts({f}) we call h a shift of f ′ if h = τ + f ′

for some τ ∈ Nn.

We extend Definition 3.1.12.

Definition 3.3.3 (vect of a shift). For any h ∈ Nn × Nn we define

vect(h) := h2 − h1.

Definition 3.3.4 (Valid polygon chain (vpc)). Let A,B ∈ Nn, A 6= B. We call a finite
sequence z of elements in Nn + shifts(F ) a valid polygon chain (vpc) (from A to B) if
zk,2 = zk+1,1 for all k ∈ Nlen(z)−1 (and z1,1 = A and zlen(z),2 = B).

Example 3.3.5. Let F = {X2
1X2 + 3X2, 2X1X

3
2 − 2X2}. The sequence

z = (((0, 2), (1, 4)), ((1, 4), (3, 4)), ((3, 4), (2, 2)))
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X1

X2

z

(a) Vpc z from (0, 2) to (2, 2).

X1

X2

z′

(b) Not a vpc.

Figure 3.2: Figure for Example 3.3.5.

X1

X2

z′′

Figure 3.3: Figure for Example 3.3.5. Not a vpc.

is a vpc from (0, 2) to (2, 2) (see Figure 3.2a), the sequence

z′ = (((0, 2), (1, 4)), ((2, 4), (4, 4)), ((4, 4), (3, 2)))

is not a vpc since z′1,2 = (1, 4) 6= (2, 4) = z′2,1 (see Figure 3.2b). Also the sequence

z′′ = (((0, 2), (1, 4)), ((1, 4), (3, 4)), ((3, 4), (2, 2)), ((2, 2), (1, 0)))

is not a vpc since z′′4 = ((2, 2), (1, 0)) 6∈ Nn+shifts(F ), which means that z′′4 isn’t a valid
shift of an input binomial (see Figure 3.3).

Definition 3.3.6 (Degree of a vpc). The degree of a ξ = (ξ1, ξ2) ∈ Zn × Zn is defined
as

deg(ξ) := max(deg(ξ1),deg(ξ2)).
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For a vpc z,
deg(z) := max({deg(zk) | k ∈ Nlen(z)}).

Example 3.3.7. Let F and z be as in Example 3.3.5. Then deg(z) = 7.

Definition 3.3.8 (Minimal vpc). Let A,B ∈ Nn. A vpc z from A to B is minimal iff
for all vpc’s z′ from A to B

len(z) ≤ len(z′) and if len(z) = len(z′) then deg(z) ≤ deg(z′).

Minimal vpcs are not unique.

Example 3.3.9. Let F = {X1X
3
2 + 2X2, 2X2

1X2 − 2X2}. The sequences

z = (((1, 7), (0, 5)), ((0, 5), (2, 5)), ((2, 5), (1, 3)), ((1, 3), (0, 1)) ((0, 1), (2, 1)))

and

z′ = (((1, 7), (0, 5)), ((0, 5), (2, 5)), ((2, 5), (1, 3)), ((1, 3), (3, 3)) ((3, 3), (2, 1)))

are both minimal vpcs from (1, 7) to (2, 1) with

len(z) = len(z′) = 5

and
deg(z) = deg(z′) = 8.

See Figure 3.4.

Minimal vpcs may even have a different number of respective shifts.

Example 3.3.10. Let F = {X1 + 2X2, 2X3
1 −X3

2}. The sequences

z = (((0, 3), (1, 2)), ((1, 2), (2, 1)))

and
z′ = (((0, 3), (3, 0)), ((3, 0), (2, 1)))

are both minimal vpcs from (0, 3) to (2, 1), where z consists of two shifts of F1 and no
shifts of F2, and z consists of one shift of F1 and one shift of F2.

The following two lemmas are needed for the proof of Theorem 3.3.14.

Lemma 3.3.11. Let f ∈ ideal(F ) such that | supp(f)| = 3 and t, t′ ∈ supp(f) such
that t 6= t′ and t, t′ 6∈ ideal(F ). Let q1, q2 ∈ K[X] such that f = q1F1 + q2F2. Then
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X1

X2

z

(a) Minimal vpc from (1, 7) to (2, 1).

X1

X2

z′

(b) Minimal vpc from (1, 7) to (2, 1).

Figure 3.4: Minimal vpcs are not unique.

there exist q′1, q
′
2 ∈ K[X] and a c ∈ K\{0} such that supp(q′i) ⊆ supp(qi) for all i = 1, 2

and q′1F1 + q′2F2 = f(t)t+ ct′.

Proof. We proceed by induction on | supp(q1)|+ | supp(q2)|.
We assume | supp(q1)| + | supp(q2)| = 2. We distinguish three cases: | supp(q1)| = 2,
| supp(q2)| = 2 and | supp(q1)| = | supp(q2)| = 1. Consider the case where | supp(q1)| =
2. Let supp(q1) = {ξ, ξ′}. We have

f = q1(ξ)ξF1 + q1(ξ′)ξ′F1.

Let t′′ ∈ supp(f)\{t, t′}. Exactly one of the terms t, t′, t′′ lies in supp(ξF1)∩supp(ξ′F1).
If t ∈ supp(ξF1) ∩ supp(ξ′F1), assume w.l.o.g. t′ ∈ supp(ξF1). We then have

f(t)
F1(t/ξ)

ξF1 =
f(t)

F1(t/ξ)
(F1(t/ξ)t+ F1(t′/ξ)t′)

= f(t)t+
f(t)F1(t′/ξ)
F1(t/ξ)

t′

= q′1F1 + q′2F2,
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where f(t)F1(t′/ξ)
F1(t/ξ) 6= 0, q′1 = f(t)

F1(t/ξ)ξ, q
′
2 = 0, supp(q′1) = {ξ} ⊆ supp(q1) and supp(q′2) =

∅ ⊆ supp(q2).
If t′ ∈ supp(ξF1) ∩ supp(ξ′F1), assume w.l.o.g. t ∈ supp(ξF1). It follows

q1(ξ)ξF1 = f(t)t+ q1(ξ)F1(t′/ξ)t′ = q′1F1 + q′2F2,

where q1(ξ)F1(t′/ξ) 6= 0, q′1 = q1(ξ)ξ, q′2 = 0, supp(q′1) = {ξ} ⊆ supp(q1) and
supp(q′2) = ∅ ⊆ supp(q2).
If t′′ ∈ supp(ξF1) ∩ supp(ξ′F1), assume w.l.o.g. t ∈ supp(ξF1) and t′ ∈ supp(ξ′F1). We
then have

q1(ξ)ξF1 −
q1(ξ)F1(t′′/ξ)
F1(t′′/ξ′)

ξ′F1 = f(t)t+
q1(ξ)F1(t′′/ξ)F1(t′/ξ′)

F1(t′′/ξ′)
t′

= q′1F1 + q′2F2,

where q1(ξ)F1(t′′/ξ)F1(t′/ξ′)
F1(t′′/ξ′) 6= 0, q′1 = q1(ξ)ξ − q1(ξ)F1(t′′/ξ)

F1(t′′/ξ′) ξ′, q′2 = 0, supp(q′1) = {ξ, ξ′} ⊆
supp(q1) and supp(q′2) = ∅ ⊆ supp(q2).
The cases | supp(q2)| = 2 and | supp(q1)| = | supp(q2)| = 1 work analogously.

Let now k ∈ N, k ≥ 2. Let f , t, t′, q1 and q2 be as in the lemma and assume,
| supp(q1)|+ | supp(q2)| = k + 1.
Let t′′ ∈ supp(f) \ {t, t′} and let Y1 ⊆ supp(q1), Y2 ⊆ supp(q2) such that for

h :=

∑
µ∈Y1

q1(µ)µ

F1 +

∑
ν∈Y2

q2(ν)ν

F2

we have | supp(h)| = 2, t ∈ supp(h) and that |Y1|+ |Y2| is maximal. Such Y1, Y2 exist,
since there are i ∈ {1, 2} and s ∈ supp(qi) such that t ∈ supp(qi(s)sFi), where qi(s)sFi
is a proper binomial. If h(t′) 6= 0, it follows that

f(t)
h(t)

h = f(t)t+
f(t)h(t′)
h(t)

t′

= q′1F1 + q′2F2,

where f(t)h(t′)
h(t) 6= 0, q′1 = f(t)

h(t)

(∑
µ∈Y1

q1(µ)µ
)

, q′2 = f(t)
h(t)

(∑
ν∈Y2

q2(ν)ν
)
, supp(q′1) =

Y1 ⊆ supp(q1) and supp(q′2) = Y2 ⊆ supp(q2).
We now assume h(t′) = 0. Similar to before, let Y ′1 ⊆ supp(q1)\Y1 and Y ′2 ⊆ supp(q2)\
Y2 such that for

h′ :=

∑
µ∈Y ′1

q1(µ)µ

F1 +

∑
ν∈Y ′2

q2(ν)ν

F2
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we have | supp(h′)| = 2, t′ ∈ supp(h′) and that |Y ′1 | + |Y ′2 | is maximal. By the same
argument as above, such Y ′1 , Y

′
2 exist, since t′ ∈ supp(f − h). Let

h′′ := f − h− h′

and l, l′ ∈ [X] such that supp(h) = {t, l} and supp(h′) = {t′, l′}.
If l = t′′, then

f(t′′)
h(t′′)

h =
f(t′′)h(t)
h(t′′)

t+ f(t′′)t′′,

hence,

f − f(t′′)
h(t′′)

h = f(t′)t′ + (f(t)− f(t′′)h(t)
h(t′′)

)t,

where f(t)− f(t′′)h(t)
h(t′′) 6= 0 since otherwise t′ would be an element of ideal(F ). We obtain

f(t)

f(t)− f(t′′)h(t)
h(t′′)

(f − f(t′′)
h(t′′)

h) = f(t)t+
f(t)f(t′)

f(t)− f(t′′)h(t)
h(t′′)

t′

= q′1F1 + q′2F2,

where
c =

f(t)f(t′)

f(t)− f(t′′)h(t)
h(t′′)

6= 0,

q′1 =
c

f(t′)

q1 − f(t′′)
h(t′′)

∑
µ∈Y1

q1(µ)µ

 ,

q′2 =
c

f(t′)

q2 − f(t′′)
h(t′′)

∑
ν∈Y2

q2(ν)ν

 ,

supp(q′1) ⊆ supp(q1) and supp(q′2) ⊆ supp(q2).
If l′ = t′′, then

f(t′′)
h′(t′′)

h′ =
f(t′′)h′(t′)
h′(t′′)

t′ + f(t′′)t′′,

hence,

f − f(t′′)
h′(t′′)

h′ = f(t)t+ (f(t′)− f(t′′)h′(t′)
h′(t′′)

)t′

= q′1F1 + q′2F2,

where f(t′)− f(t′′)h′(t′)
h′(t′′) 6= 0 since otherwise t would be an element of ideal(F ),

q′1 = q1 −
f(t′′)
h′(t′′)

∑
µ∈Y ′1

q1(µ)µ

 ,
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q′2 = q2 −
f(t′′)
h′(t′′)

∑
ν∈Y ′2

q2(ν)ν

 ,

supp(q′1) ⊆ supp(q1) and supp(q′2) ⊆ supp(q2).
If l′ = t, then

f(t)
h′(t)

h′ = f(t)t+
f(t)h′(t′)
h′(t)

t′

= q′1F1 + q′2F2,

where f(t)h′(t′)
h′(t) 6= 0, q′1 = f(t)

h′(t)

(∑
µ∈Y ′1

q1(µ)µ
)

, q′2 = f(t)
h′(t)

(∑
ν∈Y ′2

q2(ν)ν
)

, supp(q′1) =
Y ′1 ⊆ supp(q1) and supp(q′2) = Y ′2 ⊆ supp(q2).
If l = l′, then

f(t)
h(t)

(h− h(l)
h′(l)

h′) =
f(t)
h(t)

(h(t)t+ h(l)l − h(l)l − h(l)h′(t′)
h′(l)

t′)

= f(t)t− f(t)h(l)h′(t′)
h(t)h′(l)

t′

= q′1F1 + q′2F2,

where −f(t)h(l)h′(t′)
h(t)h′(l) 6= 0,

q′1 =
f(t)
h(t)

∑
µ∈Y1

q1(µ)µ

− h(l)
h′(l)

∑
µ∈Y ′1

q1(µ)µ

 ,

q′2 =
f(t)
h(t)

∑
ν∈Y2

q2(ν)ν

− h(l)
h′(l)

∑
ν∈Y ′2

q2(ν)ν

 ,

supp(q′1) ⊆ supp(q1) and supp(q′2) ⊆ supp(q2).

Additionally to h(t′) = 0 (see earlier in the proof), hence l 6= t′, we now assume
l 6= t′′, l′ 6= t′′, l′ 6= t and l 6= l′.
From l 6= t′ and l 6= l′ it follows that h(l) = h′′(l). From l′ 6= t and l′ 6= l it follows
that h′(l′) = h′′(l′). We have supp(h′′) = {t′′, l, l′} and l, l′ 6∈ ideal(F ) since otherwise

1
h(t)(h−h(l)l) = t ∈ ideal(F ) and 1

h′(t′)(h
′−h′(l′)l′) = t′ ∈ ideal(F ), respectively, which

is a contradiction to the assumptions in the lemma. With

q′′1 :=
∑

µ∈supp(q1)\(Y1∪Y ′1)

q1(µ)µ

and
q′′2 :=

∑
ν∈supp(q2)\(Y2∪Y ′2)

q2(ν)ν
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we have
h′′ = q′′1F1 + q′′2F2,

and, since |Y1 ∪ Y ′1 | + |Y2 ∪ Y ′2 | ≥ 2, | supp(q′′1)| + | supp(q′′2)| < k. By the induction
assumption there exist q′′′1 , q

′′′
2 ∈ K[X] and c′ ∈ K \ {0} such that supp(q′′′i ) ⊆ supp(q′′i )

for all i = 1, 2 and
q′′′1 F1 + q′′′2 F2 = h′′(l)l + c′l′ =: h′′′.

From this follows

f(t)
h(t)

(h− h′′′) =
f(t)
h(t)

(h(t)t+ h(l)l − h′′(l)l − c′l′)

=
f(t)
h(t)

(h(t)t+ h(l)l − h(l)l − c′l′)

= f(t)t− f(t)c′

h(t)
l′

and hence

f(t)
h(t)

(h− h′′′) +
f(t)c′

h(t)h′(l′)
h′ = f(t)t+

f(t)c′h′(t′)
h(t)h′(l′)

t′

= q′1F1 + q′2F2,

where f(t)c′h′(t′)
h(t)h′(l′) 6= 0,

q′1 =
f(t)
h(t)

∑
µ∈Y1

q1(µ)µ− q′′′1

+
f(t)c′

h(t)h′(l′)

∑
µ∈Y ′1

q1(µ)µ

 ,

q′2 =
f(t)
h(t)

∑
ν∈Y2

q2(ν)ν − q′′′2

+
f(t)c′

h(t)h′(l′)

∑
ν∈Y ′2

q2(ν)ν

 ,

supp(q′1) ⊆ supp(q1) and supp(q′2) ⊆ supp(q2).

Lemma 3.3.12. Let f ∈ ideal(F ) be a proper binomial such that tt(f) 6∈ ideal(F ).
Then for every f ′ ∈ ideal(F ) with supp(f ′) = supp(f), there exists a c ∈ K \ {0} such
that f = cf ′.

Proof. Let f ′ ∈ ideal(F ) with supp(f ′) = supp(f) and c = lc(f)
lc(f ′) ∈ K \ {0}. We have

cf ′ = c lc(f ′) lt(f ′) + c tc(f ′) tt(f ′)

= lc(f) lt(f) + c tc(f ′) tt(f).
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If c tc(f ′) 6= tc(f), we get

f − cf ′ = (tc(f)− c tc(f ′)) tt(f) ∈ ideal(F ),

which contradicts tt(f) 6∈ ideal(F ). Hence f = cf ′.

Definition 3.3.13. For f ∈ ideal(F ) let

mincofsupp(f) := min({| supp(q1)|+ | supp(q2)| | q1, q2 ∈ K[X] and f = q1F1 + q2F2}).

Theorem 3.3.14. Let f ∈ ideal(F ) be a proper binomial such that lt(f) 6∈ ideal(F ).
Then there exists a vpc from e(lt(f)) to e(tt(f)).

Proof. First note that tt(f) 6∈ ideal(F ), since otherwise

lt(f) =
1

lc(f)
f − tc(f)

lc(f)
tt(f) ∈ ideal(F ),

which contradicts lt(f) 6∈ ideal(F ). We proceed by induction on mincofsupp(f). Sup-
pose mincofsupp(f) = 1. Then there exist t ∈ [X], i ∈ {1, 2} and c ∈ K \ {0} such that
f = ctFi. A vpc z from e(lt(f)) to e(tt(f)) is given by

z = (e(t) + e(lt(Fi)), e(t) + e(tt(Fi))) = (e(t) + negshift(Fi)) .

Let now k ∈ N\{0}. Let f be as in the theorem and assume mincofsupp(f) = k+1. Let
q1, q2 ∈ K[X] such that f = q1F1 + q2F2 and | supp(q1)|+ | supp(q2)| = mincofsupp(f).
There are i ∈ {1, 2} and t ∈ supp(qi) such that t lt(Fi) = lt(f) or t tt(Fi) = lt(f). Let
w.l.o.g. i = 1 and let q′1 := q1 − q1(t)t and f ′ := f − q1(t)tF1.
We first consider the case where t lt(F1) = lt(f). We obtain

f ′ = lm(f) + tm(f)− (q1(t)t lm(F1) + q1(t)t tm(F1))

= (lc(f)− q1(t) lc(F1))t lt(F1) + tm(f)− q1(t)t tm(F1).

Note that tt(f) 6= t tt(F1), since otherwise either f = ctF1 for some c ∈ K \ {0},
which contradicts the assumption that mincofsupp(f) = k+ 1 > 1, or lt(f) ∈ ideal(F ),
which contradicts the assumption lt(f) /∈ ideal(F ). If lc(f) − q1(t) lc(F1) 6= 0, then
by Lemma 3.3.11 there exist q′′1 , q

′′
2 ∈ K[X] and c ∈ K \ {0} such that supp(q′′1) ⊆

supp(q′1) ⊂ supp(q1), supp(q′′2) ⊆ supp(q2) and

q′′1F1 + q′′2F2 = (lc(f)− q1(t) lc(F1))t lt(F1) + c tt(f)

= (lc(f)− q1(t) lc(F1)) lt(f) + c tt(f).
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By Lemma 3.3.12 there exists a c′ ∈ K \ {0} such that

c′(lc(f)− q1(t) lc(F1)) lt(f) + c′c tt(f) = f,

hence f = c′q′′1F1 + c′q′′2F2. But since

| supp(c′q′′1)|+ | supp(c′q′′2)| < | supp(q1)|+ | supp(q2)|,

this contradicts | supp(q1)|+ | supp(q2)| = mincofsupp(f). Therefore,

lc(f)− q1(t) lc(F1) = 0.

We have t tt(F1) 6∈ ideal(F ) because otherwise

lt(f) = t lt(F1) =
1

lc(F1)
tF1 −

tc(F1)
lc(F1)

t tt(F1) ∈ ideal(F ),

which contradicts the assumption in the lemma.
Let w.l.o.g. tt(f) ≺ t tm(F1). According to the induction assumption there exists a vpc
z′ from e(t tm(F1)) to e(tt(f)). A vpc z from e(lt(f) to e(tt(f)) then is given by

zj :=

e(t) + negshift(F1) if j = 1

z′j−1 if 2 ≤ j ≤ len(z′) + 1.

The case t tt(F1) = lt(f) proceeds analogously, the definition of the vpc z reads as

zj :=

e(t) + posshift(F1) if j = 1

z′j−1 if 2 ≤ j ≤ len(z′) + 1.

If for a proper binomial f ∈ ideal(F ) we have lt(f) ∈ ideal(F ). Then there need not
exist a vpc from e(lt(f)) to e(tt(f)).

Example 3.3.15. Let F1 = X2
1X

6
2 − 2X4

2 and F2 = X7
1X

3
2 − 3X4

1 . We have f =
X4

1 + X4
2 ∈ ideal(F ) with supp(f) ⊆ ideal(F ), hence also lt(f) ∈ ideal(F ) w.r.t. any

ordering, but the equation

e(lt(f))− e(tt(f)) = k vect(F1) + k′ vect(F2)

in k and k′, which reads
(4,−4) = k(2, 2) + k′(3, 3),

has no solution in Z2. Such a solution is a necessary (although not sufficient) condition
for the existence of a vpc from e(lt(f)) to e(tt(f)).
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Proposition 3.3.16. Let A,B ∈ Nn. If there is a vpc from A to B, then there is a vpc
from B to A.

Proof. Let z be a vpc from A to B. Then a vpc z′ from B to A is given by

z′j := (zlen(z)+1−j, 2, zlen(z)+1−j, 1)

for j ∈ Nlen(z).

Theorem 3.3.17. Let A,B ∈ Nn, A 6= B, and z be a vpc from A to B. Then there
exist f ∈ ideal(F ) and q1, q2 ∈ K[X] such that e(supp(f)) = {A,B}, f = q1F1 + q2F2

and, if qi 6= 0, deg(qiFi) ≤ deg(z) for all i = 1, 2.

Proof. Every sequence element in z is of the form τ + posshift(Fk) or τ + negshift(Fk)
for some τ ∈ Nn and some k ∈ {1, 2}. Let k1 ∈ {1, 2} and τ (1) ∈ Nn such that
z1 = τ (1) + posshift(Fk1) or z1 = τ (1) + negshift(Fk1). Then we define

f (1) := e−1(τ (1))Fk1

and for i ∈ {1, 2}

q
(1)
i :=

e−1(τ (1)) if i = k1

0 else.

For j with 2 ≤ j ≤ len(z) let now kj ∈ {1, 2} and τ (j) ∈ Nn such that zj = τ (j) +
posshift(Fkj

) or zj = τ (j) + negshift(Fkj
). Then we define

f (j) := f (j−1) + ξ(j)Fkj

and for i ∈ {1, 2}

q
(j)
i :=

q
(j−1)
i + ξ(j) if i = kj

q
(j−1)
i else,

where

ξ(j) :=


−f (j−1)(e−1(zj,1))

tc(Fkj
) e−1(τ (j)) if zj = τ (j) + posshift(Fkj

)

−f (j−1)(e−1(zj,1))
lc(Fkj

) e−1(τ (j)) if zj = τ (j) + negshift(Fkj
).

We have f (len(z)) ∈ ideal(F ), e(supp(f (len(z)))) = {A,B}, f = q
(len(z))
1 F1 + q

(len(z))
2 F2

and, if q(len(z))
i 6= 0, deg(q(len(z))

i Fi) ≤ deg(z) for all i = 1, 2.

Together with Lemma 3.3.12, Theorems 3.3.14 and 3.3.17 show that in order to find a
d′ that solves Problem 3.1.5 for the proper binomial g, it suffices to find a degree bound
on a vpc from e(lt(g)) to e(tt(g)). The latter is a combinatorial problem.
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3.3.2 Upper Degree Bound on a Valid Polygon Chain

Recall that in the beginning of Section 3.3 we required lt(g), tt(g) 6∈ ideal(F ). Let
in this whole section U, V ∈ Nn be such that e(supp(g)) = {U, V }. We know from
Theorem 3.3.14 and Proposition 3.3.16 that there exists a vpc from U to V .

Recall Definition 3.1.11.

Theorem 3.3.18. Let z be a vpc and let k ∈ Nlen(z)−1. Assume, zk is a shift of f and
zk+1 is a shift of f ′ with f, f ′ ∈ F and f 6= f ′, then zk,2 = zk+1,1 ≥ overlap(F ).

Proof. We show
zk,2 ≥ gcd(e(lt(Fi)), e(tt(Fi))) for all i = 1, 2.

Depending on whether the shifts are positive or negative, we distinguish four cases. We
show one of them, the others work analogously. If zk is a positive shift of f and zk+1

is a positive shift of f ′, then zk,2 ≥ e(lt(f)) and zk,2 ≥ e(tt(f ′)). It follows that

zk,2 ≥ gcd(e(lt(Fi)), e(tt(Fi))) for all i = 1, 2.

So we obtain

zk,2 ≥ lcm(gcd(e(lt(F1)), e(tt(F1))), gcd(e(lt(F2)), e(tt(F2))))

= overlap(F ).

We conclude that interactions between shifts of F1 and F2 in a vpc occur only in the
area Aoverlap(F ) := {P ∈ Nn | P ≥ overlap(F )}. Outside of this area there can only
be a sequence of shifts of F1 or a sequence of shifts of F2. The length of these sequences
is given by the step function of Definition 3.1.14. Note that for any P ∈ Nn with
e(tt(f)) ≤ P for some f ∈ F , if there exists a vpc from P to some P ′ ≥ overlap(F ), we
have overlapshift(P ) ∈ Aoverlap(F ). Details follow in the next subsection.

3.3.2.1 Structure of a Minimal Valid Polygon Chain

We investigate the structure of a minimal vpc z from U to V . As an illustration, see
Figure 3.5. Recall, that we assumed U 6= V and, since g is irreducible with respect to F ,
U, V 6≥ e(lt(f)) for all f ∈ F . So z1 has to be a positive shift of f ′ and zlen(z) has to be
a negative shift f ′′, where f ′, f ′′ ∈ F . Recall that shifts of F1 and F2 can only interact



39

X1

X2

F1

F2

U

U ′

V ′

V

Aoverlap(F )

Figure 3.5: Minimal vpc from U to V . Here we denote overlapshift(U) as U ′ and
overlapshift(V ) as V ′.

in the area Aoverlap(F ). So the first step(U) elements in z will be positive shifts of
f ′ going from U to overlapshift(U) and the last step(V ) elements in z will be negative
shifts of f ′′ going from overlapshift(V ) to V . If overlapshift(U) = overlapshift(V ), then
z is given by

zj =


(U − e(tt(f ′))) + posshift(f ′) if j = 1,

vect(f ′) + zj−1 if 2 ≤ j ≤ step(U),

− vect(f ′′) + zj−1 if step(U) + 1 ≤ j ≤ step(U) + step(V ).

If overlapshift(U) 6= overlapshift(V ), we need to investigate the structure of that part
of z going from overlapshift(U) to overlapshift(V ). This part is again a minimal vpc.

Lemma 3.3.19. Let A,B ∈ Nn with A 6= B and let z be a vpc from A to B of minimal
length. Let j ∈ Nlen(z)−1 such that zj and zj+1 are shifts of the same binomial f ∈ F .
Then zj and zj+1 are either both positive shifts of f or both negative shifts of f .

Proof. For a contradiction, assume w.l.o.g. that zj is a positive shift of f and zj+1 is a
negative shift of f . Then z′ with

z′j′ =

zj′ if 1 ≤ j′ ≤ j − 1

zj′+2 if j ≤ j′ ≤ len(z)− 2
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is a vpc from A to B with len(z′) = len(z)− 2 < len(z), hence z cannot have minimal
length.

In the following theorem we show that a vpc of minimal length (hence also a minimal
vpc) starting and ending in Aoverlap(F ) lies in Aoverlap(F ) in its entirety.

Theorem 3.3.20. Let A,B ∈ Aoverlap(F ) such that A 6= B, let z be a vpc from A to
B of minimal length and let k ∈ Nlen(z). Then zk,1 ∈ Aoverlap(F ).

Proof. We proceed by induction on k. If k = 1, then zk,1 = z1,1 = A ∈ Aoverlap(F ).
Let now k ∈ Nlen(z)−1 and assume that zk,1 ≥ overlap(F ). We show that zk+1,1 ≥
overlap(F ). Let zk+1 be a shift of f , where f ∈ shifts(F ). Assume zk+1,1 = zk,1 +
vect(f) 6≥ overlap(F ). If zj is a shift of the same input binomial as f for all j with
k + 1 ≤ j ≤ len(z), then by Lemma 3.3.19 zj is a shift of f for all these j and

B = zk,1 + (len(z)− k + 1) vect(f).

Since zk,1 + vect(f) 6≥ overlap(F ), there must be an i ∈ Nn such that

zk,1,i + vect(f)i < overlap(F )i,

and since zk,1,i ≥ overlap(F )i it follows that vect(f)i < 0. Hence,

Bi = zk,1,i + (len(z)− k + 1) vect(f)i < overlap(F )i,

since len(z)− k + 1 > 1. This contradicts B ≥ overlap(F ).

If z, after the (k + 1)-th shift, also contains shifts of f ′, where f ′ ∈ shifts(F ) such that
f and f ′ are shifts of two different input binomials, then let k′ ∈ Nlen(z) with k′ > k+ 1
be minimal such that zk′ is a shift of f ′. We first show that zk′,1 ∈ Aoverlap(F ).
Since zk′,1 is a shift of f ′, we have zk′,1 ≥ gcd(f ′1, f

′
2). Since zk′−1,1 is a shift of f we

have zk′,1 = zk′−1,2 ≥ gcd(f1, f2). Therfore, we obtain zk′,1 ≥ overlap(F ). Now the
same argument as before with zk′,1 instead of B and k′ − 1 instead of len(z) leads to a
contradiction. Therefore, zk,1 ∈ Aoverlap(F ).

In Theorem 3.3.22 we show that for A,B ∈ Aoverlap(F ) with A 6= B and f ∈ F , a
vpc from A to B of minimal length (hence also a minimal vpc) cannot contain both a
positive shift of f and a negative shift of f . But first we need the following lemma.

Lemma 3.3.21. Let A ∈ Aoverlap(F ) and f ∈ F . If A + vect(f) ≥ overlap(F ), then
(A−e(tt(f))+posshift(f)) is a vpc from A to A+vect(f). If A−vect(f) ≥ overlap(F ),
then (A− e(lt(f)) + negshift(f)) is a vpc from A to A− vect(f).
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Proof. Assume, A+ vect(f) ≥ overlap(F ) and (A− e(tt(f)) + posshift(f)) is not a vpc
from A to A + vect(f). This can only be the case if A − e(tt(f)) 6∈ Nn. Let therefore
i ∈ Nn such that

Ai < e(tt(f))i. (3.3)

From this we derive

Ai + vect(f)i = Ai + e(lt(f))i − e(tt(f))i

< e(lt(f))i. (3.4)

From A ≥ overlap(F ) and (3.3) we get

Ai ≥ gcd(e(lt(f)), e(tt(f)))i

= min(e(lt(f))i, e(tt(f))i)

= e(lt(f))i,

hence, e(lt(f))i < e(tt(f))i. From A+ vect(f) ≥ overlap(F ) and (3.4) we get

Ai + vect(f)i ≥ gcd(e(lt(f)), e(tt(f)))i

= min(e(lt(f))i, e(tt(f))i)

= e(tt(f))i,

hence, e(tt(f))i < e(lt(f))i. This is a contradiction.
The proof for the second claim in the lemma proceeds analogously.

Theorem 3.3.22. Let A,B ∈ Aoverlap(F ), A 6= B. Then for any f ∈ F , a vpc from
A to B of minimal length cannot contain both a positive shift of f and a negative shift
of f .

Proof. Let z be a vpc from A to B of minimal length. Now assume there is an f ∈ F
such that z contains a nonzero number of positive shifts of f and of negative shifts of
f , respectively. Then by Lemma 3.3.19 there must be m,m′ ∈ Nlen(z) with m+ 1 < m′

such that zm, w.l.o.g., is a positive shift of f , zm′ is a negative shift of f and zj is either
a negative shift of f ′ for all j with m+ 1 ≤ j ≤ m′ − 1 or zj is a positive shift of f ′ for
all j with m+ 1 ≤ j ≤ m′ − 1, where f ′ ∈ F \ {f}. Let w.l.o.g. the latter be the case.
From Theorem 3.3.20 we know that

zm,1 ≥ overlap(F ) (3.5)

and (note that either zm′,2 = B or else zm′,2 = zm′+1,1)

zm′,2 ≥ overlap(F ). (3.6)
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We also know that

zm′,2 = zm,1 + vect(f) + (m′ − 1−m) vect(f ′)− vect(f)

= zm,1 + (m′ − 1−m) vect(f ′).

We show that for all ξ ∈ Nm′−1−m

zm,1 + ξ vect(f ′) ≥ overlap(F ).

Assume, there is a ξ′ ∈ Nm′−1−m such that zm,1 + ξ′ vect(f ′) 6≥ overlap(F ). Because
of (3.5), this means that vect(f ′)i < 0 for some i ∈ Nn. But then it follows directly
that zm′,2 = zm,1 + (m′ − 1 − m) vect(f ′) 6≥ overlap(F ), which contradicts (3.6). By
inductive use of Lemma 3.3.21, it follows that z′ given by

z′j =

(zm,1 − e(tt(f ′))) + posshift(f ′) if j = 1

(z′j−1,2 − e(tt(f ′))) + posshift(f ′) if 2 ≤ j ≤ m′ − 1−m

is a vpc from zm,1 to zm′,2 with len(z′) = m′ − 1−m. Therefore, z′′ given by

z′′j =


zj if 1 ≤ j ≤ m− 1

z′j−(m−1) if m ≤ j ≤ m′ − 2

zj+2 if m′ − 1 ≤ j ≤ len(z)− 2

is a vpc from A to B, since

z′′m,1 = ((z′′m−1,2 − e(tt(f ′))) + posshift(f ′))1

= (z′′m−1,2 − e(tt(f ′))) + (posshift(f ′))1

= (z′′m−1,2 − e(tt(f ′))) + e(tt(f ′))

= z′′m−1,2

and

z′′m′−2,2 = ((z′′m′−3,2 − e(tt(f ′))) + posshift(f ′))2

= (z′′m′−3,2 − e(tt(f ′))) + (posshift(f ′))2

= (z′′m′−3,2 − e(tt(f ′))) + e(lt(f ′))

= z′′m′−3,2 + vect(f ′)

= z′′m−1,2 + (m′ − 1−m) vect(f ′)

= zm−1,2 + (m′ − 1−m) vect(f ′)

= zm,1 + (m′ − 1−m) vect(f ′)

= zm′,2 = zm′+1,1 = z′′m′−1,1.
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We obtain len(z′′) = (m−1) + len(z′) + (len(z)−m′) = len(z)−2, hence z cannot have
minimal length.
Therefore, z cannot contain both a positive shift of f and a negative shift of f .

3.3.2.2 Degree Bound on a Minimal Valid Polygon Chain

In the next part we derive an upper bound on the degree of a minimal vpc from
U to V . In Subsection 3.3.2.1, we described the structure of z in the case where
overlapshift(U) = overlapshift(V ). There,

deg(z) = maxdeg(U, V, overlapshift(U)).

So from now on assume overlapshift(U) 6= overlapshift(V ). We investigate the
subproblem of finding a degree bound on a minimal vpc from overlapshift(U) to
overlapshift(V ).

Definition 3.3.23 (Peak/Valley of a vpc). Let A,B ∈ Nn, A 6= B, and z be a vpc
from A to B of minimal length. Assume z consists of a nonzero number of shifts of f
and f ′, respectively, where f, f ′ ∈ shifts(F ), deg(vect(f)) ≥ 0 and deg(vect(f ′)) < 0.

An S ∈ Zn is a peak of z iff there is an m ∈ Nlen(z)−1 such that S = zm,2 and zm is a
shift of f and zm+1 is a shift of f ′.

An element T ∈ Zn is a valley of z iff there is an m ∈ Nlen(z)−1 such that T = zm,2

and zm is a shift of f ′ and zm+1 is a shift of f .

Example 3.3.24. Let F = {X3
1X

4
2 +X2

2 , 2X
2
1X

2
2 − 1} (c.f. Figure 3.6). The sequence

z = (((0, 2), (3, 4)), ((3, 4), (1, 2)), ((1, 2), (4, 4)), ((4, 4), (2, 2)), ((2, 2), (0, 0)))

is a vpc from (0, 2) to (0, 0) of minimal length. We have posshift(F1) = ((0, 2), (3, 4))
and negshift(F2) = ((2, 2), (0, 0)). It therefore consists of two positive shifts of F1 and
three negative shifts of F2, where

deg(vect(posshift(F1))) = deg((3, 2)) = 5 ≥ 0

and
deg(vect(negshift(F2))) = deg((−2,−2)) = −4 < 0.

S = ((3, 4)) and S′ = (4, 4) are peaks of z since z1 and z3 are positive shifts of F1 and
z2 and z4 are negative shifts of F2. T = (1, 2) is a valley of z since z2 is a negative
shift of F2 and z3 is a positive shift of F1.
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X1

X2

T

S S′

Figure 3.6: Peak and valley of a vpc.

Given a vpc from A to B of minimal length, where A,B ∈ Nn with A 6= B, we show in
the following theorem under which circumstances we can turn a peak into a valley and
again obtain a vpc from A to B of minimal length.

Theorem 3.3.25. Let A,B ∈ Nn, A 6= B, and z be a vpc from A to B of minimal
length. Let m ∈ Nlen(z)−1 and f, f ′ ∈ shifts(F ) such that zm,2 is a peak of z, zm is a
shift of f and zm+1 is a shift of f ′. Let z′ be defined as

z′j =



zj if 1 ≤ j ≤ m− 1

− vect(f) + zj+1 if j = m

vect(f ′) + zj−1 if j = m+ 1

zj if m+ 2 ≤ j ≤ len(z)

.

If z′m,2 ≥ lcm(f1, f
′
2), then z′ is also a vpc from A to B of minimal length. Furthermore,

z′m,2 is a valley of z′.

Proof. We first show that

z′m−1,2 = z′m,1, (3.7)

z′m,2 = z′m+1,1, (3.8)

z′m+1,2 = z′m+2,1. (3.9)

Ad (3.7):

z′m,1 = zm+1,1 − vect(f)

= (zm−1,2 + vect(f))− vect(f)

= zm−1,2
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= z′m−1,2.

Ad (3.8):

z′m+1,1 = zm,1 + vect(f ′)

= (zm+1,2 − vect(f ′)− vect(f)) + vect(f ′)

= zm+1,2 − vect(f)

= z′m,2.

Ad (3.9):

z′m+1,2 = zm,2 + vect(f ′)

= (zm+2,1 − vect(f ′)) + vect(f ′)

= zm+2,1

= z′m+2,1.

Since z is a vpc and z′m,2 ≥ lcm(f1, f
′
2), it remains to show that z′m, z

′
m+1 ∈ Nn +

shifts(F ). We know that z′m is a shift of f ′ and z′m+1 is a shift of f . From z′m,2 ≥
lcm(f1, f

′
2) ≥ f ′2 it follows that z′m ≥ f ′, hence z′m ∈ Nn + shifts(F ). From z′m+1,1 =

z′m,2 ≥ lcm(f1, f
′
2) ≥ f1 it follows that z′m+1 ≥ f , hence z′m+1 ∈ Nn + shifts(F ).

Furthermore, since z′m is a shift of f ′ and z′m+1 is a shift of f , z′m,2 is a valley of z′.

If changing a peak of a vpc into a valley does lead to a new vpc, we can use this to
reduce the degree of a vpc.

We now state one of our main theorems in this section. It gives a degree bound on a
minimal vpc from overlapshift(U) to overlapshift(V ).

Theorem 3.3.26. Let A,B ∈ Aoverlap(F ), A 6= B, and z be a minimal vpc from A

to B. Then deg(z) ≤ maxdeg(A,B) + |deg(vect(F1))|+ | deg(vect(F2))|.

The proof requires four more lemmas and three definitions. First, let us extend the
definitions of gcd(A,B), lcm(A,B) and A ≤ B to A,B ∈ Rn.

Definition 3.3.27 (gcd, lcm, ≤ in Rn). For A,B ∈ Rn we define gcd(A,B) and
lcm(A,B) by

gcd(A,B)i = min(Ai, Bi) for i ∈ Nn

and
lcm(A,B)i = max(Ai, Bi) for i ∈ Nn,

and
A ≤ B (or B ≥ A respectively) iff Ai ≤ Bi for all i ∈ Nn.
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Lemma 3.3.28. Let A,B,R ∈ Zn such that A ≥ R and B ≥ R. Then gcd(A,B) ≥ R.

Proof. Let i ∈ Nn. From Ai ≥ Ri and Bi ≥ Ri it follows that min(Ai, Bi) ≥ Ri. Hence,
gcd(A,B) ≥ R.

Lemma 3.3.29. Let A,B,R ∈ Zn. Then R+ gcd(A,B) = gcd(R+A,R+B).

Proof. Let i ∈ Nn. We get

(R+ gcd(A,B))i = Ri + min(Ai, Bi)

= min(Ri +Ai, Ri +Bi)

= gcd(R+A,R+B)i.

Lemma 3.3.30. Let f, f ′ ∈ shifts(F ) such that they are not shifts of the same input
binomial and such that deg(vect(f)) ≥ 0 and deg(vect(f ′)) < 0. Let R ∈ Zn such that

R 6≥ lcm(f1, f
′
2),

R+ vect(f) ≥ overlap(F ),

R− vect(f ′) ≥ overlap(F ).

Then R 6≥ overlap(F ).

Proof. Assume, R ≥ overlap(F ). Since R 6≥ lcm(f1, f
′
2), it follows that R 6≥ f1 or

R 6≥ f ′2. Assume w.l.o.g. R 6≥ f1. We know

R ≥ overlap(F ) ≥ gcd(f1, f2)

and
R+ vect(f) ≥ overlap(F ) ≥ gcd(f1, f2).

By, first, Lemma 3.3.28 and, then, Lemma 3.3.29 we get

gcd(f1, f2) ≤ gcd(R,R+ vect(f))

= R+ gcd(0, vect(f))

= R+ gcd(0, f2 − f1),

which by Lemma 3.3.29 leads to

gcd(f1, f2) + f1 ≤ R+ gcd(f1, f2),
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hence f1 ≤ R, which contradicts our assumption that R 6≥ f1.
Therefore, R 6≥ overlap(F ).

Let us extend our view from Zn to Rn.

Definition 3.3.31 (coneN(H,A,B),coneR(H,A,B)). For H,A,B ∈ Zn, we define

coneN(H,A,B) := {H + λA+ µB | λ, µ ∈ N \ {0}},

and
coneR(H,A,B) := {H + λA+ µB | λ, µ ∈ R+}.

Note that coneN(H,A,B) ⊂ coneR(H,A,B).

Definition 3.3.32. For A,B ∈ Rn we define conn(A,B) := {(1−λ)A+λB | λ ∈ [0, 1]}
to be the connecting line between A and B.

Lemma 3.3.33. Let H,A,B ∈ Zn, R ∈ coneR(H,A,B) and C,D ∈ Zn such that
there exist k, k′ ∈ R+ such that C = H + kA and D = H + k′B. Then there exist
L ∈ conn(C,D) and λ ∈ R+ such that R = H + λ(L−H).

Proof. Let l, l′ ∈ R+ such that R = H + lA+ l′B. We obtain that the following should
hold for some λ ∈ R+ and some µ ∈ [0, 1]:

lA+ l′B = R−H

= λ(L−H)

= λ((1− µ)C + µD −H)

= (1− µ)λkA+ µλk′B + (1− µ)H + µH −H

= (1− µ)λkA+ µλk′B.

This leads to the following system of equationsl = (1− µ)λk

l′ = µλk′,

which we solve for λ and µ and obtain λ = k′l+kl′

kk′ ∈ R+ and µ = kl′

k′l+kl′ ∈ [0, 1].

Proof of Theorem 3.3.26. By Theorem 3.3.22, z consists either of a nonzero num-
ber of shifts of f for an f ∈ shifts(F ) or of a nonzero number of shifts of f and f ′,
respectively, where f, f ′ ∈ shifts(F ) are shifts of two different input binomials.
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If z only consists of a nonzero number of shifts of f , where f ∈ shifts(F ), we obtain

deg(z) = maxdeg(A,B)

≤ maxdeg(A,B) + | deg(vect(F1))|+ |deg(vect(F2))|.

Let now f, f ′ ∈ shifts(F ) be shifts of two different input binomials such that z consists
of a nonzero number of shifts of f and f ′. We distinguish two cases.

In the case that (deg(vect(f)) ≥ 0 and deg(vect(f ′)) ≥ 0) or (deg(vect(f)) ≤ 0 and
deg(vect(f ′)) ≤ 0) we again obtain

deg(z) = maxdeg(A,B)

≤ maxdeg(A,B) + | deg(vect(F1))|+ |deg(vect(F2))|.

For the second case assume deg(vect(f)) ≥ 0 and deg(vect(f ′)) < 0. Let z′ be a vpc
from A to B of minimal length len(z) consisting of k shifts of f and k′ shifts of f ′,
where k, k′ ∈ N \ {0}. Starting from z′, we successively generate new vpcs by turning
peaks into valleys if the resulting valleys R fulfill R ≥ lcm(f1, f

′
2) (c.f. Theorem 3.3.25).

Their degrees do not increase and their number of respective shifts remains unchanged
in each iteration step. The procedure stops if either there are no more peaks in the
current vpc or no remaining peak may be changed anymore, because the resulting
valley R would not fulfill R ≥ lcm(f1, f

′
2). The number of operations is bounded by

(k + 1)(k′ + 1) − (k + k′ − 1) − 2, since the number of peaks in a vpc from A to B of
minimal length k + k′ is bounded by (k + 1)(k′ + 1) − (k + k′ − 1) − 2 (note that A
and B cannot be peaks). In the case that the procedure stops with a vpc that does not
contain any peaks, this vpc is a minimal vpc and has degree

deg(z) = maxdeg(A,B) ≤ maxdeg(A,B) + |deg(vect(F1))|+ | deg(vect(F2))|.

So now assume that it stops with a vpc z′′ that does contain peaks. We know len(z) =
len(z′′) and deg(z) ≤ deg(z′′), so it suffices to find an upper bound on

deg(z′′) = max({deg(A),deg(B)} ∪ {deg(P ) ∈ Zn | P is a peak in z′′}). (3.10)

Let H := A+k vect(f) = B−k′ vect(f ′). H is not necessarily an element of Nn. Every
vpc z′′′ from A to B consisting of k shifts of f and k′ shifts of f ′ fulfills

z′′′j,2 ∈ coneN(H,− vect(f), vect(f ′))

for all j ∈ Nlen(z)−1. Let P be a peak in z′′. Then there exists an R ∈ Zn such that
R 6≥ lcm(f1, f

′
2) and R+ vect(f)− vect(f ′) = P . Note that R is the valley we couldn’t

change P into. This point R fulfills the following:

R ∈ coneN(H,− vect(f), vect(f ′)), (3.11)
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P = R+ vect(f)− vect(f ′), (3.12)

R 6≥ lcm(f1, f
′
2), (3.13)

R+ vect(f) ≥ overlap(F ), (3.14)

R− vect(f ′) ≥ overlap(F ). (3.15)

By Lemma 3.3.30, from (3.13)–(3.15) additionally follows

R 6≥ overlap(F ). (3.16)

We show deg(R) ≤ maxdeg(A,B). Let a, b ∈ N be maximal such that

A′ := A− a vect(f) ≥ overlap(F )

and
B′ := B + b vect(f ′) ≥ overlap(F ).

Since deg(A′) ≤ deg(A) ≤ maxdeg(A,B) and deg(B′) ≤ deg(B) ≤ maxdeg(A,B), it
suffices to show deg(R) ≤ maxdeg(A′, B′).
Since A′ ≥ overlap(F ) and B′ ≥ overlap(F ), we have

L′′ ≥ overlap(F ) for all L′′ ∈ conn(A′, B′). (3.17)

Additionally, we know

deg(L′′) ≤ maxdeg(A′, B′) for all L′′ ∈ conn(A′, B′). (3.18)

Note that A′ = H + (k+ a)(− vect(f)) and B′ = H + (k′ + b)(vect(f ′)) with k+ a > 0
and k′ + b > 0. By Lemma 3.3.33 and (3.11), there are L ∈ conn(A′, B′) and λ ∈ R+

such that R = H + λ(L−H). We show that λ ∈ (1,∞).

Assume λ ∈ (0, 1]. Then there are two cases: H ≥ overlap(F ) and H 6≥ overlap(F ).
First assume H ≥ overlap(F ). Since by (3.17) L ≥ overlap(F ), we also know that
R′ ≥ overlap(F ) for all R′ ∈ conn(H,L). But since by case assumption R ∈ conn(H,L),
this implies R ≥ overlap(F ), which contradicts (3.16).
Now assume H 6≥ overlap(F ). From (3.14) and (3.15) we obtain

R′ ≥ overlap(F ) for all R′ ∈ L := conn(R+ vect(f), R− vect(f ′)). (3.19)

Furthermore, we have

R ∈ coneR(H,R+ vect(f)−H,R− vect(f ′)−H), (3.20)
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since

R = H +
r

r + r′ − 1
(R+ vect(f)−H) +

r′

r + r′ − 1
(R− vect(f ′)−H),

where r, r′ ∈ N \ {0} such that R = H − r vect(f) + r′ vect(f ′), which exist because of
(3.11). We also have

R+ vect(f) = H + 1(R+ vect(f)−H), (3.21)

and
R− vect(f ′) = H + 1(R− vect(f ′)−H). (3.22)

By (3.20)–(3.22) and Lemma 3.3.33, there exist L′ ∈ L and λ′ ∈ R+ such that R =
H + λ′(L′ − H). Since H 6≥ overlap(F ) by case assumption and L′ ≥ overlap(F ) by
(3.19), there exists a minimal ξ ∈ [0, 1] such that H + µ(L′ −H) 6≥ overlap(F ) for all
µ ∈ [0, ξ) and H + µ(L′ −H) ≥ overlap(F ) for all µ ∈ [ξ, 1]. We obtain λ′ ∈ (0, ξ) and
hence λ′ ∈ (0, 1).
Let now ζ ∈ [0, 1] such that L′ = (1− ζ)(R+ vect(f)) + ζ(R− vect(f ′)). We obtain

R = H + λ′(L′ −H)

= H + λ′((1− ζ)(R+ vect(f)) + ζ(R− vect(f ′)))− λ′H,

= H + λ′R+ λ′ vect(f) + λ′ζ(− vect(f)− vect(f ′))− λ′H,

hence,
(1− λ′)R = (1− λ′)H + λ′(1− ζ) vect(f)− λ′ζ vect(f ′)

and therefore,

R = H − λ′(1− ζ)
1− λ′

(− vect(f))− λ′ζ

1− λ′
vect(f ′).

We have λ′ ∈ (0, 1), 1 − λ′ ∈ (0, 1), ζ ∈ [0, 1], 1 − ζ ∈ [0, 1], λ′ζ ∈ [0, 1)
and λ′(1 − ζ) ∈ [0, 1). Therefore, −λ′(1−ζ)

1−λ′ ∈ R−0 and − λ′ζ
1−λ′ ∈ R−0 . This im-

plies R 6∈ coneN(H,− vect(f), vect(f ′)), which contradicts (3.11). We conclude that
λ ∈ (1,∞).

For all L′′ ∈ coneR(H,− vect(f), vect(f ′)) we know that deg(L′′) ≤ deg(H), hence
deg(H + ζ ′(L′′ − H)) ≤ deg(H + ζ ′′(L′′ − H)) for any ζ ′, ζ ′′ ∈ R+

0 , ζ ′ ≥ ζ ′′. Since
L ∈ coneR(H,− vect(f), vect(f ′)), this leads to

deg(R) = deg(H + λ(L−H))

≤ deg(H + 1(L−H))

= deg(L).
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Since deg(L) ≤ maxdeg(A′, B′) by (3.18), it follows that

deg(R) ≤ maxdeg(A′, B′)

≤ maxdeg(A,B).

Therefore, by (3.10) and (3.12),

deg(z) ≤ deg(z′′)

≤ maxdeg(A,B) + deg(vect(f))− deg(vect(f ′))

≤ maxdeg(A,B) + |deg(vect(f))|+ |deg(vect(f ′))|

≤ maxdeg(A,B) + |deg(vect(F1))|+ |deg(vect(F2))|.

Together with the remarks at the beginning of subsections 3.3.2.1 and 3.3.2.2, this
theorem leads to the following bound for deg(z).

Theorem 3.3.34. Let A,B ∈ Nn such that A 6= B, e(lt(f)) 6≤ A and e(lt(f)) 6≤ B for
any f ∈ F , and let z be a minimal vpc from A to B. Then

deg(z) ≤ max(maxdeg(A,B), maxdeg(overlapshift(A), overlapshift(B)) +m),

where m = |deg(vect(F1))|+ | deg(vect(F2))|.

From this we derive the following theorem.

Theorem 3.3.35. Let F consist of two proper binomials and let g ∈ ideal(F ) be a
proper binomial irreducible with respect to F such that supp(g) 6⊆ ideal(F ). Further-
more, let A = e(lt(g)), B = e(tt(g)) and m = |deg(vect(F1))|+ |deg(vect(F2))|. Then

d′ = max(maxdeg(A,B), maxdeg(overlapshift(A), overlapshift(B)) +m)

solves Problem 3.1.5.

Note that in Theorems 3.2.1 and 3.2.2, k = step(e(lt(g))), so the formulas for the degree
bounds of the cofactors are similar.
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Chapter 4

New Bounds for Gröbner Bases

Computation for Binomial Ideals

4.1 Introduction and Summary of the Main Results

In this chapter we give degree bounds for the shifts of the input polynomials needed to
compute a Gröbner basis the way described in Chapter 2 for the case, where the input
polynomials are two binomials.

In this subsection we give a summary of the main results in this chapter. The proofs
follow in Subsections 4.2, 4.3, 4.4 and 4.5.

We consider the following two problems.

Problem 4.1.1.

Find an explicit expression d in two natural numbers and four terms such that for all
F,m, n, r, r′, s, s′

if m = maxdeg(F ), n = |[X]|, supp(F1) ⊆ {r, r′} and supp(F2) ⊆ {s, s′}

then there exists a Gröbner basis G such that for all g ∈ G there exist q1, q2 ∈ K[X]
such that g = q1F1 + q2F2 and, if qi 6= 0, deg(qiFi) ≤ d(m,n, r, r′, s, s′) for all
i = 1, 2.

Problem 4.1.2.

Find an explicit expression d in four terms such that for all F, r, r′, s, s′

if supp(F1) ⊆ {r, r′} and supp(F2) ⊆ {s, s′}

then there exists a Gröbner basis G such that for all g ∈ G there exist q1, q2 ∈ K[X]
such that g = q1F1 + q2F2 and, if qi 6= 0, deg(qiFi) ≤ d(r, r′, s, s′) for all i = 1, 2.
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If we have a d as specified in Problem 4.1.1 or 4.1.2, respectively, then by Theorem 2.3.3
this is a degree bound for the shifts in the generalized Sylvester matrix.

As mentioned in the last chapter, if F contains only monomials, then F already is a
Gröbner basis, so we will not consider this case.

Before we summarize our main results we give the following definitions and algorithm.
Recall also the definitions at the beginning of Chapter 3.

Definition 4.1.3 (A+, A−). Let A ∈ Zn. We define A+ and A− by

(A+)i :=

Ai if Ai > 0

0 otherwise

and

(A−)i :=

−Ai if Ai < 0

0 otherwise

for i ∈ Nn. Note that A = A+ −A−.

Definition 4.1.4. We define Ω≺ := {v ∈ Zn | v− ≺ v+}. For a v ∈ Zn and an H ⊆ Zn

we define negind(v) := {i ∈ Nn | vi ≤ 0} and negind(H) :=
⋃
v∈H negind(v).

Algorithm 4.1.5.

Input: F , a set of two proper binomials
Output: V (F ), a finite sequence of tuples of the form ((k, k′), w) ∈ Z2 ×Nn, where

k vect(F1) + k′ vect(F2) = w, w ∈ Ω≺ and
⋃
j∈len(V ) negind(Vj,2) = Nn,

such that Vi ∈ {v,−v} for all i ∈ Nlen(V ), where
v = V (F )max({j∈Ni−1 |V (F )j,1,1>0}) − V (F )max({j∈Ni−1 |V (F )j,1,2>0})

V ← (((1, 0), vect(F1)), ((0, 1), vect(F2)));
E ← negind(vect(F1)) ∪ negind(vect(F2));
c← 1;
c′ ← 2;
while E 6= Nn

v ← Vc − Vc′;
if v2 ∈ Ω≺ then V ← append(V, v); c← len(V ); E ← E ∪ negind(v2);

else V ← append(V,−v); c′ ← len(V ); E ← E ∪ negind(−v2);
end if;

end while;

Return V ;

In the algorithm above, append(V, v) appends the tuple v to the sequence V .
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Example 4.1.6. For input F = {X6
1X

3
2X

2
3X

2
4−X2

1X
6
2X4, X

9
1X

2
2X

3
4−X4

3} with respect
to the degree lexicographic ordering with X4 ≺ X3 ≺ X2 ≺ X1, Algorithm 4.1.5 yields

V (F ) = (((1, 0), (4,−3, 2, 1)), ((0, 1), (9, 2,−4, 3)), ((−1, 1), (5, 5,−6, 2)),

((−2, 1), (1, 8,−8, 1)), ((3,−1), (3,−11, 10, 0)), ((5,−2), (2,−19, 18,−1)),

((−7, 3), (−1, 27,−26, 2)))

A correctness and termination proof of Algorithm 4.1.5 is given in Theorem 4.5.6. The
termination proof also proves an upper bound on the iterations of the while loop. Let

m := max({max(vect(F1)j , vect(F2)j) | j ∈ Nn, vect(F1)j > 0, vect(F2))j > 0}).

Then there are at most m iterations of the while loop in Algorithm 4.1.5. This number
itself is bounded by

m′ := max({vect(Fi)j | i ∈ {1, 2}, j ∈ Nn}).

Example 4.1.7. Assume F is such that vect(F1) = (2, 3,−4, 6) and vect(F2) =
(1, 4,−4, 0). Then there are at most m = 4 iterations of the while loop.

We now summarize our main results and give some examples.

General Bound using the results from Chapter 3 and Dubé:

(c.f. Corollary 4.2.3). Let

d′′ := max({ step(e(tt(f))) deg(vect(f)) |

f ∈ F, | supp(f)| = 2, deg(vect(f)) ≥ 0} ∪ {0}).

Then

d :=

⌊
2
(

maxdeg(F )2

2
+ maxdeg(F )

)2n−1⌋
+ d′′ + | deg(vect(F1))|+ |deg(vect(F2))|

solves Problem 4.1.1.

Example 4.1.8. Consider F = {4X8
1X

3
2X

2
3 − 3X5

2X3, X1X
7
2 + 2X2

1X3}. As the term
ordering we choose the degree lexicographic ordering with X3 ≺ X2 ≺ X1. We have
maxdeg(F ) = 13, n = 3, overlap(F ) = (1, 3, 1), vect(F1) = (7,−2, 1), vect(F2) =
(−1, 7,−1), step(e(tt(F1))) = 1 and step(e(tt(F2))) = 1. We compute d′′ = max(6, 5) =
6 and get d = 180 737 595 as a degree bound on the shifts in the Sylvester matrix. The
bound in Theorem 2.3.6 yields 181 195 269 for the degree of the shifts. The optimal
number is 20.
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Even though here, the Hermann part of the bound in Theorem 2.3.6 has been signifi-
cantly improved, the Dubé part still yields a very high bound. In the following we give
improved bounds for certain cases of input binomials. Case 1: F consists of a proper
binomial f and a monomial f ′ (c.f. Theorem 4.3.2).
Let P = lcm(overlapshift(e(tt(f))), overlap(F )). Then

d = maxdeg(P, P − step(e(tt(f))) vect(f))

solves Problem 4.1.2 and is optimal among all the solutions.

Example 4.1.9. Suppose F = {X1X2X
5
3 + 3X3

1X
2
2 , 2X7

3} and assume the terms
are ordered with respect to the degree lexicographic ordering with X3 ≺ X2 ≺ X1.
With the notation above we have f = X1X2X

5
3 + 3X3

1X
2
2 and f ′ = 2X7

3 . We
compute overlap(F ) = (1, 1, 7), vect(f) = (−2,−1, 5), step(e(tt(f))) = 2 and
overlapshift(e(tt(f))) = (−1, 0, 10). We get P = (1, 1, 10) and hence the optimal

d = maxdeg((1, 1, 10), (5, 3, 0)) = max(12, 8) = 12.

Using Theorem 2.3.6 we get 2 007 753 as an upper degree bound on the necessary shifts
in the Sylvester matrix, using the general bound above we get 1 969 126.

Case 2: F consists of two proper binomials f, f ′ such that r vect(f) = vect(f ′) for
some r ∈ Q \ {0} (c.f. Theorem 4.4.1).
Let V := vect(f)+vect(f ′), P := lcm(overlapshift(e(tt(f)))+V, overlap(F )) and P ′ :=
lcm(overlapshift(e(tt(f ′))) + V, overlap(F )). Then

d = maxdeg(P, P − step(e(tt(f))) vect(f)− V, P ′, P ′ − step(e(tt(f ′))) vect(f ′)− V )

solves Problem 4.1.2.

Example 4.1.10. Suppose F = {X6
1X

8
2 + 5X2

1X
10
2 , 3X11

1 − 2X5
1X

3
2} and assume the

terms are ordered with respect to the degree lexicographic ordering with X2 ≺ X1.
With the notation above we have f = X6

1X
8
2 + 5X2

1X
10
2 , f ′ = 3X11

1 − 2X5
1X

3
2 ,

vect(f) = (4,−2), vect(f ′) = (6,−3) and r = 3
2 . We compute V = (10,−5),

overlap(F ) = (5, 8), step(e(tt(f))) = 1, step(e(tt(f ′))) = 0, overlapshift(e(tt(f))) =
(6, 8) and overlapshift(e(tt(f ′))) = (5, 3). We get P = (16, 8), P ′ = (15, 8) and hence

d = maxdeg((16, 8), (2, 15), (15, 8), (5, 13)) = 24.

Using Theorem 2.3.6 we get 25 914 as an upper degree bound on the necessary shifts in
the Sylvester matrix, using the general bound above we get 25 095. The optimal bound
is 22.
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Case 3: F consists of two proper binomials f, f ′ such that r vect(f) 6= vect(f ′) for any
r ∈ Q \ {0} and step(e(tt(f ′))) = 0 (c.f. Theorem 4.5.30).
Let V (F ) be the output of Algorithm 4.1.5 and

T = gcd(e(tt(f)) + step(e(tt(f))) vect(f), overlap(F ))

and
T ′ = gcd(T + vect(f) + vect(f ′), overlap(F ))− (vect(f) + vect(f ′)).

Then

d = maxdeg(T ′, T ′ + vect(f) + vect(f ′))

+ max({maxdeg((V (F )i,2)−, (V (F )i,2)+) | i ∈ Nlen(V (F ))})

+ max(0, step(e(tt(f))) deg(− vect(f)))

solves Problem 4.1.2.

Example 4.1.11. Consider F = {X8
1X

4
2 − X4

1X
3
2 , X

11
1 X2 − X4

1X
2
2}. As the term

ordering we choose the lexicographic ordering with X2 ≺ X1. With the notation above
we have f = X8

1X
4
2 −X4

1X
3
2 , f ′ = X11

1 X2−X4
1X

2
2 , vect(f) = (4, 1), vect(f ′) = (7,−1),

overlap(F ) = (4, 3) and step(e(tt(f))) = step(e(tt(f ′))) = 0. Algorithm 4.1.5 returns

V (F ) =(((1, 0), (4, 1)), ((0, 1), (7,−1)), ((−1, 1), (3,−2)), ((2,−1), (1, 3)),

((−3, 2), (2,−5)), ((−5, 3), (1,−8)), ((7,−4), (0, 11))).

We compute T = e(tt(f)) = (4, 3) and T ′ = T , and obtain

d = max(7, 7 + 11) + max(5, 7, 3, 4, 5, 8, 11) + 0 = 29.

Using the bound in Theorem 2.3.6 we obtain 14 724 as an upper degree bound on the
necessary shifts in the Sylvester matrix and using the general bound above we get 14 123.
The optimal number is 22.

Example 4.1.12. Consider F = {X8
1X

4
2X

2
3−X4

1X
3
2X3, X

10
1 X2X

3
3−X4

1X
2
2X

4
3}. As the

term ordering we choose the degree lexicographic ordering with X3 ≺ X2 ≺ X1. With
the notation above we have f = X8

1X
4
2X

2
3 − X4

1X
3
2X3, f ′ = X10

1 X2X
3
3 − X4

1X
2
2X

4
3 ,

vect(f) = (4, 1, 1), vect(f ′) = (6,−1,−1), overlap(F ) = (4, 3, 3), step(e(tt(f))) = 2
and step(e(tt(f ′))) = 0. Algorithm 4.1.5 returns

V (F ) = (((1, 0), (4, 1, 1)), ((0, 1), (6,−1,−1)), ((1,−1), (−2, 2, 2))).

We compute T = (12, 5, 3) and T ′ = T , and obtain

d = max(20, 20 + 10) + max(6, 6, 4) + max(0,−12) = 36.
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Using the bound in Theorem 2.3.6 we obtain 315 319 354 as an upper degree bound on
the necessary shifts in the Sylvester matrix and using the general bound above we get
314 703 894. The optimal number is 26.

Example 4.1.13. Consider F = {X8
1X

4
2X

2
3−X4

1X
3
2X3, X

10
1 X2X

3
3−X4

1X
2
2X

6
3}. As the

term ordering we choose the degree lexicographic ordering with X3 ≺ X2 ≺ X1. With
the notation above we have f = X8

1X
4
2X

2
3 − X4

1X
3
2X3, f ′ = X10

1 X2X
3
3 − X4

1X
2
2X

6
3 ,

vect(f) = (4, 1, 1), vect(f ′) = (6,−1,−3), overlap(F ) = (4, 3, 3), step(e(tt(f))) = 2
and step(e(tt(f ′))) = 0. Algorithm 4.1.5 returns

V (F ) = (((1, 0), (4, 1, 1)), ((0, 1), (6,−1,−3)), ((1,−1), (−2, 2, 4))).

We compute T = (12, 5, 3) and T ′ = (12, 5, 5), and obtain

d = max(22, 22 + 8) + max(6, 6, 6) + max(0,−12) = 36.

Using the bound in Theorem 2.3.6 we obtain 315 319 354 as an upper degree bound on
the necessary shifts in the Sylvester matrix and using the general bound above we get
314 703 892. The optimal number is 26.

This case includes the case where F is saturated, i.e. where gcd(lt(Fi), tt(Fi)) = 1
for every i = 1, 2. In this case, we can simplify the bound the following way (c.f.
Corollary 4.5.31). Let V (F ) be the output of Algorithm 4.1.5 and T := (vect(F1) +
vect(F2))−. Then

d = maxdeg(T, T + vect(F1) + vect(F2))

+ max({maxdeg(((V (F )i)2)−, ((V (F )i)2)+) | i ∈ Nlen(V (F ))}))

solves Problem 4.1.2.

Example 4.1.14. Consider F1 = X1X
3
3X

2
4 − 2X6

2 and F2 = 9X1X
4
2 + 3X4

3 . As the
term ordering we choose the degree lexicographic ordering with X4 ≺ X3 ≺ X2 ≺ X1.
We have vect(F1) = (1,−6, 3, 2) and vect(F2) = (1, 4,−4, 0). Algorithm 4.1.5 returns

V (F ) = (((1, 0), (1,−6, 3, 2)), ((0, 1), (1, 4,−4, 0)), ((−1, 1), (0, 10,−7,−2))).

We compute T = (0, 2, 1, 0) and obtain

d = max(3, 3 + 1) + max(6, 5, 10) = 14.

Using the bound in Theorem 2.3.6 we obtain 220 580 630 946 as an upper degree bound
on the necessary shifts in the Sylvester matrix and using the general bound above we
get 220 150 628 353. The optimal number is 10.
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Case 4: F consists of two proper binomials f, f ′ such that r vect(f) 6= vect(f ′) for any
r ∈ Q \ {0} and step(e(tt(f))) > 0 and step(e(tt(f ′))) > 0 (c.f. Subsection 4.5.3).
Unfortunately we cannot give a better bound for the Sylvester matrix for this case as
of yet.

4.2 Degree Bound on the Shifts using the Results from

Chapter 3 and Dubé

In Theorem 4.2.2 we use the results of the last chapter to give a bound on the necessary
shifts for the case where a bound on the reduced Gröbner basis is already known. For
its proof we need the following lemma.

Lemma 4.2.1. Let f ∈ F be a proper binomial and P ∈ Nn such that P ≥ e(tt(f)).
Then step(P ) ≤ step(e(tt(f))).

Proof. Assume step(P ) > step(e(tt(f)). It follows that step(P ) > 0. Let j ∈ Nn such
that vect(f)j 6= 0, overlap(F )j > Pj and step(P ) =

⌈
overlap(F )j−Pj

vect(f)j

⌉
. We obtain

⌈
overlap(F )j − Pj

vect(f)j

⌉
>

⌈
overlap(F )j − e(tt(f))j

vect(f)j

⌉
. (4.1)

Now we distinguish two cases: vect(f)j < 0 and vect(f)j > 0.
If vect(f)j < 0, then by (4.1) and the fact that step(P ) > 0, we get Pj > overlap(F )j ,
which contradicts overlap(F )j > Pj . If vect(f)j > 0, then by (4.1) we get Pj <
e(tt(f))j , which contradicts P ≥ e(tt(f)).

Theorem 4.2.2. Let d′ ∈ N be a degree bound on the reduced Gröbner basis of F and
let

d′′ := max({ step(e(tt(f))) deg(vect(f)) |

f ∈ F, | supp(f)| = 2,deg(vect(f)) ≥ 0} ∪ {0}).

Then
d := d′ + d′′ + |deg(vect(F1))|+ | deg(vect(F2))|

gives an upper degree bound on the necessary shifts in the Sylvester matrix.

Proof. Let G be the reduced Gröbner basis of F . For g ∈ G∩F , we have g = 1F1 +0F2

or g = 0F1 + 1F2.
Now let g ∈ G \ F . If g is a term, let f ∈ F be such that tt(f) divides g and let
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f ′ ∈ F \ {f}. By Lemma 4.2.1 we have step(e(tt(f))) ≥ step(e(g)). By Theorems 3.2.1
and 3.2.2 there exist q, q′ ∈ K[X] \ {0} such that g = qf + q′f ′ and

maxdeg(qf, q′f ′) ≤ maxdeg(e(g), e(g) + step(e(g)) vect(f))

≤ d′ + d′′

≤ d

and

maxdeg(qf, q′f ′) ≤ maxdeg(e(g), e(g) + (step(e(g)) + 1) vect(f) + vect(f ′))

≤ d,

respectively.
If g is a proper binomial, let A = e(lt(g)), B = e(tt(g)) and m = | deg(vect(F1))| +
|deg(vect(F2))|. Then by Theorem 3.3.35 there exist q, q′ ∈ K[X] \ {0} such that
g = qf + q′f ′ and

maxdeg(qf, q′f ′) ≤ max(maxdeg(A,B), maxdeg(overlapshift(A), overlapshift(B)) +m)

≤ d′ + d′′ +m

= d,

where we again used Lemma 4.2.1.

Corollary 4.2.3. Let d′′ be as in Theorem 4.2.2. Then

d :=

⌊
2
(

maxdeg(F )2

2
+ maxdeg(F )

)2n−1⌋
+ d′′ + | deg(vect(F1))|+ |deg(vect(F2))|

solves Problem 4.1.1.
Proof. The claim follows immediately from Theorems 4.2.2 and 2.3.5.

Even though the Hermann part of the bound in Theorem 2.3.6 has been significantly
improved, the Dubé part still yields a very high bound in Corollary 4.2.3. In the rest
of this chapter we improve the whole bound for certain cases of input binomials.

4.3 Degree Bound on the Shifts for a Monomial and a

Proper Binomial as Input

Theorem 4.3.2 gives a degree bound on the shifts for the case where F consists of a
proper binomial and a monomial. But first we need the following lemma.
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Lemma 4.3.1. Let f ∈ F be a proper binomial and k ∈ Nstep(e(tt(f))). Then

lcm(e(tt(f)) + k vect(f), overlap(F )) ≤ lcm(overlapshift(e(tt(f))), overlap(F )).

Proof. Let i ∈ Nn. We show

max( e(tt(f))i + k vect(f)i, overlap(F )i)

≤ max(e(tt(f))i + step(e(tt(f))) vect(f)i, overlap(F )i). (4.2)

If vect(f)i ≥ 0, then

e(tt(f))i + k vect(f)i ≤ e(tt(f))i + step(e(tt(f))) vect(f)i,

hence (4.2) holds. Now assume vect(f)i < 0. Then

e(tt(f))i + k vect(f)i > e(tt(f))i + step(e(tt(f))) vect(f)i.

But in this case,

overlap(F )i ≥ min(e(lt(f))i, e(tt(f))i)

= e(lt(f))i

≥ e(tt(f))i + k vect(f)i,

therefore (4.2) holds.

Theorem 4.3.2. Let f ∈ F be a proper binomial and f ′ ∈ F a monomial. Let

P = lcm(overlapshift(e(tt(f))), overlap(F )).

Then
d = maxdeg(P, P − step(e(tt(f))) vect(f))

solves Problem 4.1.2 and is optimal among all the solutions.

Proof. Let G be the reduced Gröbner basis of F . For g ∈ G ∩ F , we either have
g = 0f+1f ′ and deg(f ′) ≤ d or g = 1f+0f ′. The latter can only happen if P 6= e(tt(g))
because otherwise e(tt(g)) ≥ overlap(F ) and hence f ′ would divide tt(g). Therefore,
deg(f) ≤ d.
Now let g ∈ G \ F . Then g is a term that is divided by tt(f) and not by f ′ and hence
does not lie in Aoverlap(F ). By Lemma 4.2.1, step(e(g)) ∈ Nstep(e(tt(f))). Let

Q := lcm(e(tt(f)) + step(e(g)) vect(f), overlap(F )).
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We first show that
Q− step(e(g)) vect(f) = e(g).

Note that by construction,

Q− step(e(g)) vect(f) ≤ Q′

for all Q′ ∈ Nn such that step(Q′) = step(Q) = step(e(g)) and e−1(Q′) ∈ ideal(F ),
hence also

Q− step(e(g)) vect(f) ≤ e(g).

Since g is irreducible with respect to G \ {g}, equality follows.
From Theorem 3.2.1 we get (note that there, k = step(e(g)) = step(Q))

deg(q′f ′) ≤ deg(qf) = maxdeg(Q,Q− step(Q) vect(f)) (4.3)

for some q, q′ ∈ K[X]\{0} such that g = qf+q′f ′. From Lemma 4.3.1 we know Q ≤ P ,
hence deg(Q) ≤ deg(P ). So if deg(vect(f)) ≥ 0, then

d = deg(P ) ≥ deg(Q) = maxdeg(Q,Q− step(Q) vect(f)).

If deg(vect(f)) < 0, then

d = deg(P − step(e(tt(f))) vect(f))

= deg(P )− step(e(tt(f))) deg(vect(f))

≥ deg(Q)− step(e(tt(f))) deg(vect(f))

≥ deg(Q)− step(Q) deg(vect(f))

= deg(Q− step(Q) vect(f))

= maxdeg(Q,Q− step(Q) vect(f)).

Note that there is a g′ ∈ G ∩ F such that step(e(g)) = step(e(tt(f))), so because of
(4.3), d is optimal.

4.4 Degree Bound on the Shifts for Proper Binomials

with Linearly Dependent Vectors as Input

Theorem 4.4.1 gives a bound on the shifts for the case where F consists of two proper
binomials f and f ′ whose exponent vectors vect(f) and vect(f ′) are linearly depen-
dent.



63

Theorem 4.4.1. Let F consist of two proper binomials f, f ′ such that r vect(f) =
vect(f ′) for some r ∈ Q \ {0} and let

P := lcm(overlapshift(e(tt(f))) + V, overlap(F ))

and
P ′ := lcm(overlapshift(e(tt(f ′))) + V, overlap(F )),

where V := vect(f) + vect(f ′). Then

d = maxdeg(P, P − step(e(tt(f))) vect(f)− V, P ′, P ′ − step(e(tt(f ′))) vect(f ′)− V )

solves Problem 4.1.2.

Proof. Let G be the reduced Gröbner basis of F . For g ∈ G ∩ F , we have either
g = 0f + 1f ′ or g = 1f + 0f ′. It can be easily checked that deg(f),deg(f ′) ≤ d .
Now let g ∈ G \ F . First note that either tt(f) divides both lt(g) and tt(g) or tt(f ′)
divides both lt(g) and tt(g). Assume the first case. Let q, q′ ∈ K[X] such that g =

qf + q′f ′. Then for all ξ ∈ supp(qf) ∪ supp(q′f ′) we get ξ = tt(g)
(

lt(f)
tt(f)

)l
for some

nonnegative l ∈ Q. Let

l′ := max({l ∈ Q | l ≥ 0, tt(g)
(

lt(f)
tt(f)

)l
∈ supp(qf) ∪ supp(q′f ′)}).

It follows that lt(qf) = lt(q′f ′) = tt(g)
(

lt(f)
tt(f)

)l′
. With the same argument as in the

proof of Theorem 3.2.2 we can assume that q and q′ were chosen in such a way that

l′ ≤ step(e(tt(g))) + 1 + r.

Let
Q := lcm(e(tt(f)) + step(e(tt(g))) vect(f) + V, overlap(F )).

Since g is irreducible with respect to G \ {g}, we have

e(tt(g)) + (step(e(tt(g)))+1 + r − l′)(vect(f))− =

= Q− step(e(tt(g))) vect(f)− V (4.4)

and
e(lt(qf)) + (step(e(tt(g))) + 1 + r − l′)(vect(f))+ = Q. (4.5)

By Lemma 4.3.1, Q ≤ P (it is easily checked that because of the addition of V , here
this also holds if step(e(tt(g))) = 0), hence we obtain from (4.4)

e(tt(g)) ≤ Q− step(e(tt(g))) vect(f)− V

≤ P − step(e(tt(g))) vect(f)− V



64 New Bounds for Gröbner Bases Computation for Binomial Ideals

and from (4.5)

e(lt(qf)) ≤ Q

≤ P.

Now if deg(vect(f)) ≤ 0, then using Lemma 4.2.1,

deg(q′f ′) ≤ deg(qf)

= deg(tt(g))

≤ deg(P − step(e(tt(g))) vect(f)− V )

≤ deg(P − step(e(tt(f))) vect(f)− V )

≤ d.

If deg(vect(f)) > 0, then

deg(q′f ′) = deg(qf)

= deg(lt(qf))

≤ deg(Q)

≤ deg(P )

≤ d.

In the case where tt(f ′) divides both lt(g) and tt(g), we proceed analogously.

4.5 Degree Bound on the Shifts for Proper Binomials

with Linearly Independent Vectors as Input

Like in Section 3.3, let from now on, until stated otherwise, F consist only of proper bi-
nomials. We additionally assume that their exponent vectors are linearly independent.
Then every element g of the reduced Gröbner basis is a proper binomial, whose terms
are not divided by any element in lt(F ) unless g ∈ F , and supp(g) 6⊆ ideal(F ). Further-
more, any element in supp(g) is either a multiple of tt(F1) or a multiple of tt(F2). In
Subsection 4.5.1 we investigate the case where every element in supp(g) is a multiple of
the trailing term of the same input binomial. In Subsection 4.5.2 we use these results
to give an upper degree bound on the shifts needed for computing a Gröbner basis in
the case where the trailing term of one of the input binomials has step 0. This includes
the case where F is saturated, i.e. where gcd(lt(Fi), tt(Fi)) = 1 for every i = 1, 2.
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4.5.1 Gröbner Bases Elements Whose Leading and Trailing Terms are

Multiples of the Trailing Term of the Same Input Binomial

If in a Gröbner basis we exchange an element by another element in the ideal that
has the same leading term, then by Lemma 2.1.7, the resulting set of polynomials is
again a Gröbner basis. In this subsection we will determine for every proper binomial
g in the reduced Gröbner basis of F , for which supp(g) ⊆ [X] tt(f) for an f ∈ F ,
a proper binomial g′ ∈ ideal(F ) of a certain structure (contained in the output of
Algorithm 4.1.5) such that lt(g′) = lt(g) (c.f. Theorems 4.5.2, 4.5.3, 4.5.4, 4.5.5 and,
summarizing, Theorem 4.5.18). Then there exists a Gröbner basis G′ of F such that
every g′ ∈ G′ with supp(g′) ⊆ [X] supp(f) has this special structure and we give an
upper degree bound on the shifts needed for generating these g′ (c.f. Theorem 4.5.27).

Definition 4.5.1. For a shift f ∈ Nn + shifts(F ) we say that f lies in Aoverlap(F ) iff
f1, f2 ∈ Aoverlap(F ). We say that f lies outside of Aoverlap(F ) iff f1 /∈ Aoverlap(F )
or f2 /∈ Aoverlap(F ).

The following theorem treats the elements g in the reduced Gröbner basis which fulfill
vect(g) = k vect(f) for some k ∈ N \ {0} and f ∈ F .

Theorem 4.5.2. Let h ∈ ideal(F ) \ {0} such that vect(h) = k vect(f) for some k ∈
N \ {0} and f ∈ F and such that no element in lt(F ) divides any element in supp(h).
Then there exists an h′ ∈ ideal(F )\{0} such that lt(h′) = lt(h) and vect(h′) = vect(f).

Proof. Let f and k be as in the theorem, f ′ ∈ F \ {f} and let z be a vpc of minimal
length from e(lt(h)) to e(tt(h)). We distinguish two cases: e(lt(h)) ≥ overlap(F ) and
e(lt(h)) 6≥ overlap(F ).
Assume e(lt(h)) ≥ overlap(F ). If z1 is a positive shift of f , then there cannot be any
negative shifts of f inside of Aoverlap(F ). Let m > 0 be the number of positive shifts
of f in z. Then there have to be m+k negative shifts of f in z outside of Aoverlap(F ).
Any shifts of f ′ have to be inside of Aoverlap(F ) and since the number of positive shifts
of f ′ and of negative shifts of f ′, respectively, have to be the same and not both kind of
shifts can be inside of Aoverlap(F ), this number is zero. But then, z consist of m > 0
positive shifts of f and m+k > 0 negative shifts of f . This contradicts the assumption
that z has minimal length.
If z1 is not a positive shift of f , then, since lt(f ′) does not divide lt(h), it has to be a
positive shift of f ′. Let m > 0 be the number of positive shifts of f ′ in z. The number
of positive shifts of f ′ equals the number of negative shifts of f ′ in z, so the last m
elements in z must be negative shifts of f ′, because there can be no positive shifts of
f ′ inside of Aoverlap(F ). The chain z contains exactly k negative shifts of f , all inside
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of Aoverlap(F ), and no positive shifts of f . Let i ∈ Nm+1 be minimal such that zi is a
negative shift of f . We show that z′, defined as

z′j :=

zj if 1 ≤ j ≤ i

(k − 1) vect(f) + zlen(z)−2i+1+j if i+ 1 ≤ j ≤ 2i− 1

for j ∈ N2i−1, is a vpc from e(lt(h)) to e(lt(h))− vect(f). We have

z′1,1 = z1,1 = e(lt(h)),

z′len(z′),2 = (k − 1) vect(f) + zlen(z),2

= (k − 1) vect(f) + e(tt(h))

= (k − 1) vect(f) + (e(lt(h))− k vect(f))

= e(lt(h))− vect(f)

and

z′i,2 = zi,2

= e(lt(h)) + (i− 1) vect(f ′)− vect(f)

= (e(tt(h)) + k vect(f)) + (i− 1) vect(f ′)− vect(f)

= (k − 1) vect(f) + (e(tt(h)) + (i− 1) vect(f ′))

= (k − 1) vect(f) + zlen(z)−i+2, 1

= z′i+1,1,

so it remains to show that for all j with i+ 1 ≤ j ≤ 2i− 1

(k − 1) vect(f) + zlen(z)−2i+1+j ∈ Nn + shifts(F ).

Suppose there is a j′, i+ 1 ≤ j′ ≤ 2i− 1, such that

(k − 1) vect(f) + zlen(z)−2i+1+j′ /∈ Nn + shifts(F ).

Let τ ∈ Nn such that
zlen(z)−2i+1+j′ = τ + negshift(f ′).

It follows that
τ + (k − 1) vect(f) /∈ Nn.

So let l ∈ Nn be such that
τl + (k − 1) vect(f)l < 0.
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Since τl ≥ 0, we obtain vect(f)l < 0 and hence τl + k vect(f)l < 0. Therefore,

zlen(z)−j′+1 = (τ + k vect(f)) + posshift(f ′) /∈ Nn + shifts(F ),

which contradicts the fact that z is a vpc. Hence, z′ is a vpc from e(lt(h)) to
e(lt(h)) − vect(f). By Theorem 3.3.17 there exists an h′ ∈ ideal(F ) \ {0} with
lt(h′) = lt(h) and tt(h′) = lt(h) tt(f)

lt(f) , hence vect(h′) = vect(f).

Now assume e(lt(h)) 6≥ overlap(F ). Suppose z1 is a positive shift of f , and let
m and m′ be the number of positive shifts of f and f ′ in z, respectively. Then, the
number of negative shifts of f and f ′ is m+ k and m′, respectively, and since in a vpc
of minimal length there cannot be a negative shift of f right after a positive shift of f ,
we know m′ > 0. The positive shifts of f ′ have to lie inside of Aoverlap(F ) and the last
m′ shifts of z are the negative shifts of f ′, lying all outside of Aoverlap(F ). If it was
the other way around, this would violate our assumption that lt(f ′) does not divide
tt(h). Furthermore, the first m elements in z are positive shifts of f . This means that
all m + k negative shifts of f in z lie in Aoverlap(F ). Let i ∈ Nm+m′+1 be minimal
such that zi is a negative shift of f . In order to prove that this case cannot occur, we
show that z′, defined as

z′j :=

− vect(f) + zj+1 if 1 ≤ j ≤ i− 2

zj+2 if i− 1 ≤ j ≤ len(z)− 2,

is a vpc from e(lt(h)) to e(tt(h)) with smaller length than z. We have

z′1,1 = − vect(f) + z2,1

= z1,1

= e(lt(h)),

z′len(z′), 2 = zlen(z), 2 = e(tt(h))

and

z′i−2,2 = − vect(f) + zi−1,2

= zi,2

= zi+1,1

= z′i−1,1,

so it remains to show that for all j ∈ Ni−2

− vect(f) + zj+1 ∈ Nn + shifts(F ).
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For j ∈ Nm−1 this follows from the fact that in this case − vect(f) + zj+1 = zj . For the
rest, suppose there is a j′, m ≤ j′ ≤ i− 2 such that

− vect(f) + zj′+1 /∈ Nn + shifts(F ).

Let τ ∈ Nn such that
zj′+1 = τ + posshift(f ′).

It follows that
τ − vect(f) /∈ Nn.

So let l ∈ Nn be such that
τl − vect(f)l < 0.

We obtain 0 ≤ τl < vect(f)l, hence τl − k vect(f)l < 0. Therefore,

zlen(z)+m−j′ = (τ − k vect(f)) + negshift(f ′) /∈ Nn + shifts(F ),

which contradicts the fact that z is a vpc.
If z1 is not a positive shift of f , then it has to be a positive shift of f ′. If zlen(z) is a
shift of f , then it has to be positive one, since otherwise lt(f) would divide tt(h). So
if zlen(z) is a shift of f , let m ∈ Nk−1 be maximal such that the last m elements in z

are negative shifts of f , and if zlen(z) is a shift of f ′, let m := 0. Let m′ be the number
of positive shifts of f ′ in z. We can derive that m < k, because otherwise the last k
entries of z would form a vpc from e(lt(h)) to e(tt(h)), which would mean that, since z
has minimal length, z would only consist of k negative shifts of f , which in turn would
violate the assumption that z1 is a positive shift of f ′. Let z′ be defined as z′j := zj for
j ∈ Nlen(z)−m. It is a vpc of minimal length from e(lt(h)) to e(lt(h))− (k −m) vect(f)
and its last element is a shift of f ′. Therefore, the first m′ shifts of z′ are the positive
shifts of f ′ and the rest of the shifts lie in Aoverlap(F ), namely m′ negative shifts of f ′

and (m− k) negative shifts of f . Let i ∈ Nlen(z′) be minimal such that z′i is a negative
shift of f . Analogously to the case e(lt(h)) ≥ overlap(F ) and z1 is not a positive shift
of f , we can prove that z′′, defined as

z′′j :=

z′j if 1 ≤ j ≤ i

(m− k − 1) vect(f) + z′len(z′)−2i+1+j if i+ 1 ≤ j ≤ 2i− 1

for j ∈ N2i−1, is a vpc from e(lt(h)) to e(lt(h)) − vect(f). So there exists an h′ ∈
ideal(F ) \ {0} such that lt(h′) = lt(h) and tt(h′) = lt(h) tt(f)

lt(f) , hence vect(h′) = vect(f).

The following theorem treats the elements g in the reduced Gröbner basis which fulfill
vect(g) = k vect(F1) + k′ vect(F2) for some k, k′ ∈ N \ {0}.
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Theorem 4.5.3. Let h ∈ ideal(F )\{0} such that vect(h) = k vect(F1)+k′ vect(F2) for
some k, k′ ∈ N \ {0} and such that no element in lt(F ) divides any element in supp(h).
Then there exists an h′ ∈ ideal(F )\{0} such that lt(h′) = lt(h) and vect(h′) = vect(F1)
or vect(h′) = vect(F2).

Proof. Let k and k′ be as in the theorem and z be a vpc of minimal length from e(lt(h))
to e(tt(h)). We distinguish two cases: e(lt(h)) ≥ overlap(F ) and e(lt(h)) 6≥ overlap(F ).
Assume e(lt(h)) ≥ overlap(F ). If z1 is a positive shift of F1, then there cannot be any
negative shifts of F1 inside of Aoverlap(F ). Let m > 0 be the number of positive shifts
of F1 in z. Then the last m+ k > k elements in z have to be negative shifts of F1, all
outside of Aoverlap(F ). Consequently, z′ defined as z′j := zj for j ∈ Nlen(z)−k is a vpc
from e(lt(h)) to e(lt(h)) − k′ vect(F2). By Theorems 3.3.17 and 4.5.2, there exists an
h′ ∈ ideal(F ) \ {0} such that lt(h′) = lt(h) and vect(h′) = vect(F2).
If z1 is not a positive shift of F1, then, since lt(F2) does not divide lt(h), it has to be a
positive shift of F2. This case works analogously to the first one.
Now assume e(lt(h)) 6≥ overlap(F ). Suppose z1 is a positive shift of F1, and let m and
m′ be the number of positive shifts of F1 and F2 in z, respectively. Then the number
of negative shifts of F1 and F2 is m + k and m′ + k′, respectively. If m′ > 0, then all
the positive shifts of F2 have to lie in Aoverlap(F ) and the last m′ + k′ > k′ elements
in z have to be negative shifts of F2, all outside of Aoverlap(F ). Consequently, z′

defined as z′j := zj for j ∈ Nlen(z)−k′ is a vpc from e(lt(h)) to e(lt(h))− k vect(F1). By
Theorems 3.3.17 and 4.5.2, there exists an h′ ∈ ideal(F ) \ {0} such that lt(h′) = lt(h)
and vect(h′) = vect(F1). If m′ = 0 then we again distinguish two cases: there is a
positive shift of F1 inside of Aoverlap(F ) and there is no positive shift of F1 inside of
Aoverlap(F ). First suppose, there is a positive shift of F1 inside of Aoverlap(F ). Then
there cannot be any negative shifts of F1 inside of Aoverlap(F ), which means that the
lastm+k > k elements in z are negative shifts of F1. Consequently, z′ defined as z′j := zj

for j ∈ Nlen(z)−k is a vpc from e(lt(h)) to e(lt(h))−k′ vect(F2). By Theorems 3.3.17 and
4.5.2, there exists an h′ ∈ ideal(F )\{0} such that lt(h′) = lt(h) and vect(h′) = vect(F2).
Now suppose, there is no positive shift of F1 inside of Aoverlap(F ). Then the only shifts
in Aoverlap(F ) are negative shifts of F1 and F2 and the first m shifts in z are all the
positive shifts of F1. Let i ∈ Nlen(z) be such that zi is the m-th negative shift of F1 in
z. Then z′ defined as z′j := zj for j ∈ Ni is a vpc from e(lt(h)) to e(lt(h))− l vect(F2)
for some l ∈ Nk′ . By Theorems 3.3.17 and 4.5.2, there exists an h′ ∈ ideal(F ) \ {0}
such that lt(h′) = lt(h) and vect(h′) = vect(F2).
If z1 is not a positive shift of F1, then, since lt(F2) does not divide lt(h), it has to be a
positive shift of F2. This case works analogously to the case where z1 is a positive shift
of F1.

Theorems 4.5.4 and 4.5.5 treat the elements g in the reduced Gröbner basis which fulfill
vect(g) = k vect(f)− k′ vect(f ′) for some k, k′ ∈ N \ {0} and f, f ′ ∈ F , f 6= f ′.
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Theorem 4.5.4. Let ξ ∈ e(tt(F )) and A,B ∈ Nn, A,B ≥ ξ and A,B 6≥ e(lt(h))
for any h ∈ F , such that there is a vpc from A to B. Let f, f ′ ∈ F , f 6= f ′, and
k, k′ ∈ N \ {0} such that A + k vect(f) − k′ vect(f ′) = B. Furthermore, let l ∈ Nk,
l′ ∈ Nk′ such that l′

l ≥
k′

k and l′

l+1 ≤
k′

k if ξ = e(tt(f))
l′−1
l ≤

k′

k if ξ = e(tt(f ′)).

Then there exists a vpc from B − (l vect(f)− l′ vect(f ′)) to B.

Proof. Let z be a vpc of minimal length from A to B and v := l vect(f) − l′ vect(f ′).
The first element in z can be a positive shift of f or f ′, the last only a negative shift of
f or f ′. Assume, z does not already go through B − v.
We first assume that ξ = tt(f). Then every shift of f ′ lies in Aoverlap(F ), hence there
are no positive shifts of f ′ in z and z1 is a positive shift of f . If there are positive shifts
of f in Aoverlap(F ), then all the negative shifts of f (if any) have to occur as the last
elements of z, outside of Aoverlap(F ). If there are negative shifts of f in Aoverlap(F ),
then all the positive shifts of f have to occur as the first elements of z and their number
exceeds the number of negative shifts of f by at least k at any index greater than k.
Note that B − (l vect(f) − l′ vect(f ′)) = A + (k − l) vect(f) − (k′ − l′) vect(f ′). Let
i ∈ Nlen(z) be such that zi is the (k′− l′+1)-th negative shift of f ′ in z. Let m ∈ Z\{0}
be such that zi,1−m vect(f) = B−v. First assume m > 0. We show zi,1−vect(f) ≥ ξ.
Let i′ ∈ Ni−1 be maximal such that zi′ is a shift of f . Then there are i− i′− 1 negative
shifts of f ′ between zi′ and zi (excluding zi) and there are (k′− l′)− (i− i′−1) negative
shifts of f ′ before zi′ . First assume that zi′ is a positive shift of f . If i = i′ + 1, then
zi,1 − vect(f) = zi′,1 ≥ ξ. So let now i− i′ − 1 > 0.
If m < l + 1, then for

P := zi′,1 −
(

((k − l) +m− 1)
k′

k
− ((k′ − l′)− (i− i′ − 1))

)
vect(f ′)

= A+ ((k − l) +m− 1) vect(f)− ((k − l) +m− 1)
k′

k
vect(f ′)

=
(

1− (k − l) +m− 1
k

)
A+

(k − l) +m− 1
k

B

we have P ∈ conn(A,B) and

zi,1 − vect(f) = (1− λ)zi′,1 + λP ∈ conn(zi′,1, P ),

where λ = i−i′−1

((k−l)+m−1) k′
k
−((k′−l′)−(i−i′−1))

∈ (0, 1], since, because of l′

l ≥
k′

k , also
l′

l−m+1 ≥
k′

k , hence k′−l′
(k−l)+m−1 ≤

k′

k and therefore

i− i′ ≤ ((k − l) +m− 1)
k′

k
− ((k′ − l′)− (i− i′)).
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From this and i− i′ − 1 > 0 it also follows that

((k − l) +m− 1)
k′

k
− ((k′ − l′)− (i− i′ − 1)) > 0.

Since zi′,1 ≥ ξ and P ≥ ξ, we get zi,1 − vect(f) ≥ ξ.
If m ≥ l + 1, then there is an i′′ with i + 1 ≤ i′′ ≤ len(z) such that zi′′ is a negative
shift of f and

zi′,1 −m′ vect(f ′) = zi′′,2

for some m′ ∈ Nl′+(i−i′−1). We then have zi,1 − vect(f) ∈ conn(zi′,1, zi′′,2) and since
zi′,1 ≥ ξ and zi′′,2 ≥ ξ, also zi,1 − vect(f) ≥ ξ.
Now assume that zi′ is a negative shift of f . We first show that zi,1 ≥ ξ. If i = i′ + 1,
then zi,1 = zi′,2 ≥ ξ. So let now i− i′ − 1 > 0.
If m < l, then for

P := zi′,2 −
(

((k − l) +m)
k′

k
− ((k′ − l′)− (i− i′ − 1))

)
vect(f ′)

= A+ ((k − l) +m) vect(f)− ((k − l) +m)
k′

k
vect(f ′)

= (1− (k − l) +m

k
)A+

(k − l) +m

k
B,

we have P ∈ conn(A,B) and

zi,1 = (1− λ)zi′,2 + λP ∈ conn(zi′,2, P ),

where λ = i−i′−1

((k−l)+m) k′
k
−((k′−l′)−(i−i′−1))

∈ (0, 1], since, because of l
′

l ≥
k′

k , also l′

l−m ≥
k′

k ,

hence k′−l′
m+(k−l) ≤

k′

k and therefore

i− i′ − 1 ≤ ((k − l) +m)
k′

k
− ((k′ − l′)− (i− i′ − 1)).

From this and i− i′ − 1 > 0, it also follows that

((k − l) +m)
k′

k
− ((k′ − l′)− (i− i′ − 1)) > 0.

Since zi′,2 ≥ ξ and P ≥ ξ, we get zi,1 ≥ ξ. For

P ′ := (1− k′ − l′

k′
)A+

k′ − l′

k′
B

we have zi,1−vect(f) ∈ conn(zi,1, P ′) and since zi,1 ≥ ξ and P ′ ≥ ξ, also zi,1−vect(f) ≥
ξ.
If m ≥ l, then there is an i′′ with i+ 1 ≤ i′′ ≤ len(z) such that zi′′ is a negative shift of
f and

zi′,2 −m′ vect(f ′) = zi′′,2



72 New Bounds for Gröbner Bases Computation for Binomial Ideals

for some m′ ∈ Nl′+(i−i′−1). We then have zi,1 ∈ conn(zi′,2, zi′′,2) and since zi′,2 ≥ ξ and
zi′′,2 ≥ ξ, also zi,1 ≥ ξ and, like before, zi,1 − vect(f) ≥ ξ.
With the P ′ above we have zi,1 − j vect(f) ∈ conn(zi,1 − vect(f), P ′) and hence zi,1 −
j vect(f) ≥ ξ for all j ∈ Nm. This shows that z′ defined as

z′j :=


((B − v)− e(tt(f)) + posshift(f) if j = 1

(z′j−1,2 − e(tt(f)) + posshift(f) if 2 ≤ j ≤ m

zi−m−1+j if m+ 1 ≤ j ≤ 2m+ l + l′

is a vpc from B − v to B, which concludes the case m > 0.

Now assume m < 0. This means that the number of positive shifts of f exceeds
the number of negative shifts of f between zi and zlen(z) by more than l, namely by
−m+ l. It also means that if there are any negative shifts of f in z, they must be the
last elements of z, outside of Aoverlap(F ). So until zi we have exactly k + m − l ≥ 1
positive shifts of f (recall that z1 is one of those), hence −m + l < k. Let i′ with
i + 1 ≤ i′ ≤ len(z) be minimal such that zi′ is a shift of f . With the above remark it
follows that zi′ is a positive shift of f , namely the (m+ (k − l) + 1)-th one. With

P := A+ (m+ (k − l)) vect(f)− (m+ (k − l))k
′

k
vect(f ′)

=
(

1− m+ (k − l)
k

)
A+

m+ (k − l)
k

B

we have P ∈ conn(A,B) and zi,1 ∈ conn(zi′,1, P ). Since zi′,1 ≥ ξ and P ≥ ξ, we get
zi,1 ≥ ξ. Because of the condition l′

l+1 ≤
k′

k , every point zi,1 + j vect(f) for j ∈ N|m|−1

lies in conn(zi,1, P ′) for

P ′ := A+ (k′ − l′) k
k′

vect(f)− (k′ − l′) vect(f ′)

=
(

1− k′ − l′

k′

)
A+

k′ − l′

k′
B,

hence zi,1 + j vect(f) ≥ ξ. From this follows that z′ defined as

z′j :=


((B − v)− e(lt(f)) + negshift(f) if j = 1

(z′j−1,2 − e(lt(f)) + negshift(f) if 2 ≤ j ≤ m

zi−m−1+j if m+ 1 ≤ j ≤ 2m+ l + l′

is a vpc from B− v to B, which concludes the case ξ = e(tt(f)). The case ξ = e(tt(f ′))
works analogously, where instead of the condition l′

l+1 ≤
k′

k , we use l′−1
l ≤

k′

k .

Theorem 4.5.5. Let ξ ∈ e(tt(F )) and A,B ∈ Nn, A,B ≥ ξ and A,B 6≥ e(lt(h))
for any h ∈ F , such that there is a vpc from A to B. Let f, f ′ ∈ F , f 6= f ′, and
k, k′ ∈ N \ {0} such that A+ k vect(f)− k′ vect(f ′) = B and let l ∈ Nk, l′ ∈ Nk′−1 ∪{0}
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such that l′

l <
k′

k and B − (l vect(f) − l′ vect(f ′)) ≥ ξ. Then there exists a vpc from
B − (l vect(f)− l′ vect(f ′)) to B.

Proof. We will adapt the proof of Theorem 4.5.4. Let z be a vpc of minimal length
from A to B and v := l vect(f) − l′ vect(f ′). The first element in z can be a positive
shift of f or f ′, the last only a negative shift of f or f ′. Assume, z does not already go
through B − v.
We first assume that ξ = tt(f). Then every shift of f ′ lies in Aoverlap(F ), hence there
are no positive shifts of f ′ in z and z1 is a positive shift of f . If there are positive shifts
of f in Aoverlap(F ), then all the negative shifts of f (if any) have to occur as the last
elements of z, outside of Aoverlap(F ). If there are negative shifts of f in Aoverlap(F ),
then all the positive shifts of f have to occur as the first elements of z and their number
exceeds the number of negative shifts of f by at least k at any index greater than k.
Note that B − v = A + (k − l) vect(f) − (k′ − l′) vect(f ′). Let r ∈ Nlen(z) be such
that zr is the (k′ − l′)-th negative shift of f ′ in z and let m ∈ Z \ {0} be such that
zr,2 − m vect(f) = B − v. First assume m > 0. We show zr,2 − vect(f) ≥ ξ. If

k′−l′
(k−l)+m−1 >

k′

k , then for

P :=
(

1− k′ − l′

k′

)
A+

k′ − l′

k′
B

we have P ∈ conn(A,B) and

zr,2 − vect(f) = (1− λ)(B − v) + λP ∈ conn(B − v, P ),

where λ = m−1
(k′−l′) k

k′−(k−l) ∈ [0, 1], since m − 1 < (k′ − l′) kk′ − (k − l) if and only if
k′−l′

(k−l)+m−1 >
k′

k . Since B − v ≥ ξ and P ≥ ξ, it follows that zr,2 − vect(f) ≥ ξ.
For the rest of case m > 0 assume k′−l′

(k−l)+m−1 ≤
k′

k . Let r′ ∈ Nr−1 be maximal such
that zr′ is a shift of f .
First assume that zr′ is a positive shift of f . If m ≤ l + 1, then for

P := zr′,1 −
(

((k − l) +m− 1)
k′

k
− ((k′ − l′)− (r − r′))

)
vect(f ′)

= A+ ((k − l) +m− 1) vect(f)− ((k − l) +m− 1)
k′

k
vect(f ′)

=
(

1− (k − l) +m− 1
k

)
A+

(k − l) +m− 1
k

B

we have P ∈ conn(A,B) and

zr,2 − vect(f) = (1− λ)zr′,1 + λP ∈ conn(zr′,1, P ),

where λ = r−r′
((k−l)+m−1) k′

k
−((k′−l′)−(r−r′))

∈ (0, 1]. Since zr′,1 ≥ ξ and P ≥ ξ, it follows

that zr,2 − vect(f) ≥ ξ.
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If m > l + 1, then there is an r′′ with r + 1 ≤ r′′ ≤ len(z) such that zr′′ is a negative
shift of f and

zr′,1 −m′ vect(f ′) = zr′′,2

for some m′ ∈ Nl′+(r−r′). We then have zr,2 − vect(f) ∈ conn(zr′,1, zr′′,2) and since
zr′,1 ≥ ξ and zr′′,2 ≥ ξ, also zr,2 − vect(f) ≥ ξ.
Now assume that zr′ is a negative shift of f . If m ≤ l, then for

P := zr′,2 −
(

((k − l) +m)
k′

k
− ((k′ − l′)− (r − r′))

)
vect(f ′)

= A+ ((k − l) +m) vect(f)− ((k − l) +m)
k′

k
vect(f ′)

= (1− (k − l) +m

k
)A+

(k − l) +m

k
B,

we have P ∈ conn(A,B) and

zr,2 = (1− λ)zr′,2 + λP ∈ conn(zr′,2, P ),

where λ = r−r′
((k−l)+m) k′

k
−((k′−l′)−(r−r′))

∈ (0, 1], since from k′−l′
(k−l)+m−1 ≤

k′

k it follows that
k′−l′

(k−l)+m ≤
k′

k . Since zr′,2 ≥ ξ and P ≥ ξ, we get zr,2 ≥ ξ and since zr,2 −m vect(f) =
B − v ≥ ξ, it follows that zr,2 − vect(f) ≥ ξ.
If m > l, then there is an r′′ with r + 1 ≤ r′′ ≤ len(z) such that zr′′ is a negative shift
of f and

zr′,2 −m′ vect(f ′) = zr′′,2

for some m′ ∈ Nl′+(r−r′)). We then have zr,2 ∈ conn(zr′,2, zr′′,2) and since zr′,2 ≥ ξ and
zr′′,2 ≥ ξ, also zr,2 ≥ ξ and, like before, zr,2 − vect(f) ≥ ξ.
So zr,2 −m′′ vect(f) ≥ ξ for every m′′ ∈ Nm. This shows that z′ defined as

z′j :=


((B − v)− e(tt(f)) + posshift(f) if j = 1

(z′j−1,2 − e(tt(f)) + posshift(f) if 2 ≤ j ≤ m

zr−m−1+j if m+ 1 ≤ j ≤ 2m+ l + l′

is a vpc from B − v to B, which concludes the case m > 0.

Now assume m < 0. This means that the number of positive shifts of f exceeds
the number of negative shifts of f between zr and zlen(z) by more than l, namely by
−m+ l. It also means that if there are any negative shifts of f in z, they must be the
last elements of z, outside of Aoverlap(F ). So until zr we have exactly k + m − l ≥ 1
positive shifts of f (recall that z1 is one of those), hence −m + l < k. Let r′,
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r + 1 ≤ r′ ≤ len(z), be minimal such that zr′ is a shift of f . With the above remark it
follows that zr′ is a positive shift of f , namely the (m+ (k − l) + 1)-th one. With

P := A+ (m+ (k − l)) vect(f)− (m+ (k − l))k
′

k
vect(f ′)

=
(

1− m+ (k − l)
k

)
A+

m+ (k − l)
k

B

we have P ∈ conn(A,B) and zr,2 ∈ conn(zr′,1, P ). Since zr′,1 ≥ ξ and P ≥ ξ, we get
zr,2 ≥ ξ. Because of the condition l′

l+1 ≤
k′

k , every point zr,2 + j vect(f) for j ∈ N|m|−1

lies in conn(zr,2, P ′) for

P ′ := A+ (k′ − l′) k
k′

vect(f)− (k′ − l′) vect(f ′)

=
(

1− k′ − l′

k′

)
A+

k′ − l′

k′
B,

hence zr,2 + j vect(f) ≥ ξ. From this follows that z′ defined as

z′j :=


((B − v)− e(lt(f)) + negshift(f) if j = 1

(z′j−1,2 − e(lt(f)) + negshift(f) if 2 ≤ j ≤ m

zr−m−1+j if m+ 1 ≤ j ≤ 2m+ l + l′

is a vpc from B− v to B, which concludes the case ξ = e(tt(f)). The case ξ = e(tt(f ′))
works analogously.

While Theorems 4.5.2 and 4.5.3 give a concrete structure for the new binomial we
exchange the old one with, Theorems 4.5.4 and 4.5.5 do not tell us which l and l′ to
choose. Algorithm 4.1.5 yields a list of possible structures and Theorem 4.5.18 tells us
exactly which one of those to take. Before we state Theorem 4.5.18, we analyse the
properties of the output of Algorithm 4.1.5 necessary for proving Theorem 4.5.18.

Theorem 4.5.6. Algorithm 4.1.5 is correct and terminates.

Proof. Correctness: Let V (F ) be the output of Algorithm 4.1.5 and i ∈ Nlen(V (F )),
i ≥ 2. Let also E, c and c′ be the corresponding values after the (i− 2)-th iteration of
the while loop. We then have

E =
⋃
j∈Ni

negind((V (F )j)2),

V (F )i,2 = V (F )i,1,1 vect(F1) + V (F )i,1,2 vect(F2),

V (F )i,2 ∈ Ω≺
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and, since c = max({j ∈ Ni−1 | V (F )j,1,1 > 0}) and c′ = max({j ∈ Ni−1 | V (F )j,1,2 >
0}), also

V (F )i ∈ {v,−v}

with v as in the output condition.
Termination: Let l ∈ Nn. If vect(F1)l ≤ 0 or vect(F2)l ≤ 0, then l is added to E already
before the first iteration of the while loop. Otherwise, we show that there is an i > 2
such that V (F )i,2,l ≤ 0, i.e. l is added to E during the (i− 2)-th iteration of the while
loop. Assume there is no such i. Then for each i ∈ N let J (i) := {j ∈ Ni | V (F )j,1,1 > 0}
and J ′(i) := {j ∈ Ni | V (F )j,1,2 > 0}. We have

for all j, j′ ∈ J (i), if j < j′ then V (F )j,2,l > V (F )j′,2,l

and
for all j, j′ ∈ J ′(i), if j < j′ then V (F )j,2,l > V (F )j′,2,l.

Since J (i) ∪ J ′(i) = Ni and J (i) ∩ J ′(i) = ∅ and since there are no infinitely descending
chains of natural numbers, there has to be an i > 2 such that V (F )i,2,l ≤ 0.

Since vect(F1) = V (F )1,2 and vect(F2) = V (F )2,2, the termination proof also proves
an upper bound on the iterations of the while loop. Let

m := max({max(vect(F1)j , vect(F2)j) | j ∈ Nn, vect(F1)j > 0, vect(F2))j > 0}).

Then there are at most m iterations of the while loop in Algorithm 4.1.5. This number
itself is bounded by

m′ := max({vect(Fi)j | i ∈ {1, 2}, j ∈ Nn}).

Lemma 4.5.7. Let V (F ) be the output of Algorithm 4.1.5 and let us fix an iteration
of the while loop in the algorithm. Let E, c and c′ be the corresponding values after this
iteration. Then

negind(V (F )c,2) ∪ negind(V (F )c′,2) = E.

Proof. We write V for V (F ) and proceed by induction on i ∈ Nlen(V ), i ≥ 2. For i = 2,
i.e. before the first iteration, we have

negind(Vc,2) ∪ negind(Vc′,2) = negind(V1,2) ∪ negind(V2,2)

= negind(vect(F1)) ∪ negind(vect(F2))

= E.

Let now i ∈ Nlen(V ), i > 2, and let c, c′ and E be the current values after the (i− 2)-th
iteration of the while loop. Assume that until this iteration, i.e. for all i′ ∈ Nlen(V ),
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2 ≤ i′ < i, the claim in the theorem holds. Clearly, negind(Vc,2) ∪ negind(Vc′,2) ⊆ E.
Assume, there is an l ∈ E such that l /∈ negind(Vc,2) ∪ negind(Vc′,2). Assume w.l.o.g.
c < c′ and let c′′ ∈ Nc′−1 such that Vc′ = Vc′′−Vc. Since l /∈ negind(Vc′,2) = negind(Vi,2),
we know that l has been added to E in an earlier iteration than the (i−2)-th one. Hence,
by the induction assumption, l ∈ negind(Vc′′,2) ∪ negind(Vc,2). Since l /∈ negind(Vc,2),
we obtain l ∈ negind(Vc′′,2) and since Vc′ + Vc = Vc′′ and Vc′′,2,l ≤ 0, we get Vc′,2,l ≤ 0
or Vc,2,l ≤ 0, hence l ∈ negind(Vc,2) ∪ negind(Vc′,2), which is a contradiction.

Corollary 4.5.8. Let V (F ) be the output of Algorithm 4.1.5 and c, c′ ∈ Nlen(V (F ))

maximal such that V (F )c,1,1 > 0 and V (F )c′,1,2 > 0. Then

negind(V (F )c,2) ∪ negind(V (F )c′,2) = Nn.

Proof. Since c and c′ are the corresponding values after the last iteration of the while
loop, the claim follows directly from Lemma 4.5.7 and the abort condition for the while
loop in Algorithm 4.1.5.

Let us now consider the following procedure which is simply Algorithm 4.1.5 without
the termination condition. We will denote the list V ′ generated by the procedure as
V ′(F ).

Procedure 4.5.9.

Input: F , a set of two proper binomials
V ′ ← (((1, 0), vect(F1)), ((0, 1), vect(F2)));
c← 1;
c′ ← 2;
while 1 = 0
v ← V ′c − V ′c′;
if v2 ∈ Ω≺ then V ′ ← append(V ′, v); c← len(V ′);

else V ′ ← append(V ′,−v); c′ ← len(V ′);
end if;

end while;

In Lemmas 4.5.10 to 4.5.14 we prove a few properties of the infinite sequence generated
by Procedure 4.5.9 which we will need later.

Lemma 4.5.10. Let V ′(F ) be the infinite list produced by Procedure 4.5.9 and i ∈ N,
i ≥ 3. Let j ∈ {1, 2} be such that V ′(F )i,1,j > 0, and j′ ∈ {1, 2}, j′ 6= j. Furthermore,
let i′ ∈ Ni−1 be maximal such that V ′(F )i′,1,j′ > 0. Then

V ′(F )i′,1,j′V ′(F )i,1,j − V ′(F )i′,1,jV ′(F )i,1,j′ = 1.
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Proof. We write V ′ for V ′(F ) and proceed by induction on i. For the base case, we
investigate i = 3. We get (V ′i,1,j , V

′
i,1,j′) = (1,−1) and (V ′i′,1,j , V

′
i′,1,j′) = (0, 1), hence

V ′i′,1,j′V
′
i,1,j − V ′i′,1,jV ′i,1,j′ = 1 · 1− 0 · (−1) = 1.

For the induction step, let i′′ ∈ Ni−1 be maximal such that V ′i′′,1,j > 0. Then V ′i =
V ′i′′ − V ′i′ . By the induction assumption,

V ′i′,1,j′V
′
i′′,1,j − V ′i′,1,jV ′i′′,1,j′ = 1,

hence

V ′i′,1,j′V
′
i,1,j − V ′i′,1,jV ′i,1,j′

= V ′i′,1,j′(V
′
i′′,1,j − V ′i′,1,j)− V ′i′,1,j(V ′i′′,1,j′ − V ′i′,1,j′)

= V ′i′,1,j′V
′
i′′,1,j − V ′i′,1,jV ′i′′,1,j′

= 1

Lemma 4.5.11. Let V ′(F ) be the infinite list produced by Procedure 4.5.9 and let
i ∈ N \ {0} and j, j′ ∈ {1, 2} be such that V ′(F )i,1,j > 1 and V ′(F )i,1,j′ < −1. Let
i′ ∈ Ni−1 be maximal such that V ′(F )i′,1,j′ > 0. Then

−V ′(F )i,1,j′
V ′(F )i,1,j

<
V ′(F )i′,1,j′
−V ′(F )i′,1,j

.

Proof. From the conditions in the lemma we know that i′ ≥ 3, hence −V ′(F )i′,1,j > 0.
Therefore the fractions are well-defined and by Lemma 4.5.10 the claim follows.

Lemma 4.5.12. Let V ′(F ) be the infinite list produced by Procedure 4.5.9 and i ∈
N\{0}. Let j ∈ {1, 2} be such that V ′(F )i,1,j > 0, and j′ ∈ {1, 2}, j′ 6= j. Furthermore,
let i′ > i be minimal such that V ′(F )i′,1,j > 0. Then

−V ′(F )i,1,j′
V ′(F )i,1,j

<
−V ′(F )i′,1,j′
V ′(F )i′,1,j

.

Proof. We write V ′ for V ′(F ). If i ∈ {1, 2} then either i′ = 3, i = j and

(V ′i′,1,j , V
′
i′,1,j′) = (1,−1) = (V ′i,1,j ,−V ′j′,1,j′)

and so
−V ′i,1,j′
V ′i,1,j

=
0
1
<
−(−1)

1
=
−V ′i′,1,j′
V ′i′,1,j

,
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or i′ > 3, i = j and

(V ′i′,1,j , V
′
i′,1,j′) = (i− 2,−1) = (V ′i,1,j − V ′i′−1,1,j ,−V ′i′−1,1,j′)

and so
−V ′i,1,j′
V ′i,1,j

=
0
1
<
−(−1)
i− 2

=
−V ′i′,1,j′
V ′i′,1,j

.

Now let i ∈ N, i ≥ 3. There exists an i′′ ∈ Ni′−1 such that V ′i′′,1,j′ > 0 and V ′i′ = V ′i −V ′i′′ .
Note that for all a, b, c, d ∈ N \ {0} we have a+c

b+d >
a
b if and only if c

d >
a
b . Therefore,

since
V ′

i′′,1,j′

−V ′
i′′,1,j

>
−V ′

i,1,j′

V ′i,1,j
and V ′i′′,1,j′ ,−V ′i′′,1,j > 0, we obtain by Lemma 4.5.11,

−V ′i′,1,j′
V ′i′,1,j

=
−V ′i,1,j′ + V ′i′′,1,j′

V ′i,1,j − V ′i′′,1,j
>
−V ′i,1,j′
V ′i,1,j

.

Lemma 4.5.13. Let V ′(F ) be the infinite list produced by Procedure 4.5.9 and let
i ∈ N \ {0} and j, j′ ∈ {1, 2} be such that V ′(F )i,1,j > 1 and V ′(F )i,1,j′ < −1. Let
i′ ∈ Ni−1 be maximal such that V ′(F )i′,1,j′ > 0. Then

V ′(F )i′,1,j′ − 1
−V ′(F )i′,1,j

≤
−V ′(F )i,1,j′ − 1

V ′(F )i,1,j

and
V ′(F )i′,1,j′

−V ′(F )i′,1,j + 1
≤
−V ′(F )i,1,j′
V ′(F )i,1,j + 1

.

Proof. We write V ′ for V ′(F ). We know that i′ ≥ 3, hence −V ′i′,1,j > 0. So the fractions
are well-defined. We have

V ′i′,1,j′ − 1

−V ′i′,1,j
≤
−V ′i,1,j′ − 1

V ′i,1,j

if and only if
V ′i′,1,j′V

′
i,1,j − V ′i,1,j ≤ V ′i′,1,jV ′i,1,j′ + V ′i′,1,j

if and only if
V ′i′,1,j′V

′
i,1,j − V ′i′,1,jV ′i,1,j′ ≤ V ′i,1,j + V ′i′,1,j . (4.6)

There exists an i′′ ∈ Ni−1, i′′ ≥ 3, such that V ′i′′,1,j > 0 and V ′i = V ′i′′ − V ′i′ , hence

V ′i,1,j + V ′i′,1,j = V ′i′′,1,j ≥ 1,

and by Lemma 4.5.10,
V ′i′,1,j′V

′
i,1,j − V ′i′,1,jV ′i,1,j′ = 1,

which proves (4.6).
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Similarly,
V ′i′,1,j′

−V ′i′,1,j + 1
≤
−V ′i,1,j′
V ′i,1,j + 1

if and only if
V ′i′,1,j′V

′
i,1,j + V ′i′,1,j′ ≤ V ′i′,1,jV ′i,1,j′ − V ′i,1,j′

if and only if
V ′i′,1,j′V

′
i,1,j − V ′i′,1,jV ′i,1,j′ ≤ −V ′i,1,j′ − V ′i′,1,j′ . (4.7)

With the same i′′ as above, we get

−V ′i,1,j′ − V ′i′,1,j′ = −V ′i′′,1,j′ ≥ 1,

which proves (4.7).

Lemma 4.5.14. Let V ′(F ) be the infinite list produced by Procedure 4.5.9 and let
i ∈ N \ {0} and j, j′ ∈ {1, 2} be such that V ′(F )i,1,j > 1 and V ′(F )i,1,j′ < −1. Let
i′ ∈ Ni−1 be maximal such that V ′(F )i′,1,j > 0. Then

−V ′(F )i′,1,j′
V ′(F )i′,1,j

≥
−V ′(F )i,1,j′ − 1

V ′(F )i,1,j

and
−V ′(F )i′,1,j′
V ′(F )i′,1,j

≤
−V ′(F )i,1,j′
V ′(F )i,1,j + 1

.

Proof. We write V ′ for V ′(F ). Let i′′ ∈ Ni−1 be maximal such that V ′i′′,1,j′ > 0. We
have V ′i = V ′i′ − V ′i′′ , hence

−V ′i′,1,j′
V ′i′,1,j

≥
−V ′i,1,j′ − 1

V ′i,1,j

if and only if
−V ′i′,1,j′V ′i,1,j ≥ −V ′i,1,j′V ′i′,1,j − V ′i′,1,j

if and only if

(−V ′i,1,j′ − V ′i′′,1,j′)V ′i,1,j ≥ −V ′i,1,j′(V ′i,1,j + V ′i′′,1,j)− (V ′i,1,j + V ′i′′,1,j)

if and only if
−V ′i′′,1,j′V ′i,1,j ≥ −V ′i,1,j′V ′i′′,1,j − V ′i,1,j − V ′i′′,1,j

if and only if
(−V ′i,1,j′ − 1)(−V ′i′′,1,j) ≥ (V ′i′′,1,j′ − 1)V ′i,1,j

if and only if
−V ′i,1,j′ − 1

V ′i,1,j
≥
V ′i′′,1,j′ − 1

−V ′i′′,1,j
,

which follows from Lemma 4.5.13.
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Likewise,
−V ′i′,1,j′
V ′i′,1,j

≥
−V ′i,1,j′
V ′i,1,j + 1

if and only if
−V ′i,1,j′
V ′i,1,j + 1

≥
V ′i′′,1,j′

−V ′i′′,1,j + 1
,

which again follows from Lemma 4.5.13.

The following lemma takes care of a special case in the proof of Theorem 4.5.18.

Lemma 4.5.15. Let V ′(F ) be the infinite list produced by Procedure 4.5.9, j ∈ {1, 2}
such that V ′(F )3,1,j = 1, j′ ∈ {1, 2} such that j′ 6= j, and i ∈ N, i ≥ 4, minimal such
that V ′(F )i,1,j = −1. Let l, l′ ∈ Z \ {0}, one being positive and one being negative, and
let ξ ∈ e(tt(F )) and A,B ∈ Nn, A,B ≥ ξ, A,B 6≥ e(lt(Fi)) for any i ∈ {1, 2}, such that
A+ l vect(Fj) + l′ vect(Fj′) = B and such that there is a vpc from A to B. If l > 0 and
1 ≥ −l′l , then there exists a vpc from B − V ′(F )3,2 to B. If l < 0 and 1

i−2 ≥
−l
l′ , then

there exists a vpc from B − V ′(F )i,2 to B.

Proof. We write V ′ for V ′(F ). Assume ξ = e(tt(Fj)). Consider first the case l < 0 and
1
i−2 ≥

−l
l′ . We have 1 ≤ −l and because of l′ ≥ (i− 2)(−l) also i− 2 ≤ l′, so we can use

Theorem 4.5.4. Since
−V ′i,1,j
V ′i,1,j′

=
−(−1)
i− 2

≥ −l
l′

and
−V ′i,1,j − 1
V ′i,1,j′

=
0

i− 2
<
−l
l′
,

there exists a vpc from B − V ′i,2 to B.
Now consider l > 0 and 1 ≥ −l′l . We have

−V ′3,1,j′
V ′3,1,j

=
−(−1)

1
≥ −l

′

l

but in general,
−V ′

3,1,j′

V ′3,1,j+1
= 1

2 is not necessarily smaller than or equal to −l
′

l . So let z be
a vpc of minimal length from A to B and assume that it does not already go through
B − V ′3,2. All the shifts of Fj′ are negative ones. Let r ∈ Nlen(z) be such that zr is the
last negative shift of Fj′ in z. Let m ∈ Z \ {0} such that zr,1 −m vect(Fj) = B − V ′3,2.
Recall that in the proof of Theorem 4.5.4, condition

−V ′3,1,j′
V ′3,1,j + 1

=
1
2
≤ −l

′

l

was only needed for the case m < 0. After zr there can only be negative shifts of
Fj . Since zr,1 − m vect(Fj) = B − V ′3,2, their number is at most m + V ′3,1,j . But
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m + V ′3,1,j = m + 1 ≤ 0, so r = len(z). But then B − V ′3,2 = zr,1 − vect(Fj), hence
m = 1 which contradicts m < 0. So the case m < 0 can actually not occur and by
Theorem 4.5.4 there exists a vpc from B − V ′3,2 to B. The case ξ = e(tt(Fj′)) works
analogously.

The following lemma is needed in the proof of Theorem 4.5.18 and connects the output
of Procedure 4.5.9 to the question if a certain vector generated by vect(F1) and vect(F2)
lies in Ω≺ or not.

Lemma 4.5.16. Let V ′(F ) be the infinite list produced by Procedure 4.5.9 and j, j′ ∈
{1, 2}, j 6= j′. Let l, l′ ∈ Z such that l > 0 and l′ < 0. Let i ∈ N be maximal such
that 0 < V ′(F )i,1,j ≤ l and −V ′(F )i,1,j′ ≤ −l′. If

−V ′(F )i,1,j′
V ′(F )i,1,j

< −l′
l , then l vect(Fj) +

l′ vect(Fj′) /∈ Ω≺.

Proof. We write V ′ for V ′(F ) and proceed by induction on i. For the base case we
either have l = 1 or l′ = −1. If l = 1, then V ′i,1,j = 1 and −V ′i,1,j′ < −l′. But then

(V ′i+1,1,j , V
′
i+1,1,j′) = (−1,−V ′i,1,j′ + 1)

and
(−l,−l′) = (−1,−l′) = (V ′i+1,1,j , V

′
i+1,1,j′) + (−l′ + V ′i,1,j′ − 1)(0, 1).

Since −l′ + V ′i,1,j′ − 1 ≥ 0, V ′i+1,2 ∈ Ω≺ and (V ′j′,1,j , V
′
j′,1,j′) = (0, 1) and V ′j′,2 ∈ Ω≺, it

follows that

−l vect(Fj)− l′ vect(Fj′) = V ′i+1,2 + (−l′ + V ′i,1,j′ − 1)V ′j′,2 ∈ Ω≺,

hence
l vect(Fj) + l′ vect(Fj′) /∈ Ω≺.

If l′ = −1, then V ′i,1,j′ ∈ {0,−1}. If V ′i,1,j′ = −1, then from
−V ′

i,1,j′

V ′i,1,j
< −l′

l we get
V ′i,1,j > l, which contradicts the condition V ′i,1,j ≤ l. So V ′i,1,j′ = 0 and V ′i,1,j = 1, hence
i = j. Let i′ ∈ N be such that V ′i′,1,j′ = −1. This i′ is unique and i′ > i. Also, V ′i′,1,j > l.
It follows that i′ > l + 2 and hence,

(V ′l+2,1,j , V
′
l+2,1,j′) = (−l, 1) = (−l,−l′).

We obtain
−l vect(Fj)− l′ vect(Fj′) = V ′l+2,2 ∈ Ω≺,

hence
l vect(Fj) + l′ vect(Fj′) /∈ Ω≺.
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We now proceed with the induction step. We know l > 1 and l′ < −1. Let i′ ∈ N be
maximal such that V ′i′,1,j′ > 0, −V ′i′,1,j ≤ l and V ′i′,1,j′ ≤ −l′. In the lemma we assume

−V ′i,1,j′
V ′i,1,j

<
−l′

l
, (4.8)

and by Lemma 4.5.10 we have

V ′i,1,jV
′
i′,1,j′ − V ′i,1,j′V ′i′,1,j = 1. (4.9)

If −V ′i′,1,j = l and V ′i′,1,j′ = −l′, then −l vect(Fj) − l′ vect(Fj′) = V ′i′,2 ∈ Ω≺, hence
l vect(Fj) + l′ vect(Fj′) /∈ Ω≺.
If −V ′i′,1,j < l and V ′i′,1,j′ = −l′, then from (4.8) we get

−V ′i,1,j′
V ′i,1,j

<
V ′i′,1,j′

l
,

which, by (4.9) is equivalent to

−V ′i,1,j′(l + V ′i′,1,j) < V ′i,1,jV
′
i′,1,j′ − V ′i,1,j′V ′i′,1,j = 1.

Since −V ′i,1,j′ and (l+V ′i′,1,j) are both positive natural numbers, this cannot be. There-
fore this case cannot occur.
If −V ′i′,1,j = l and V ′i′,1,j′ < −l′, then

(l, l′) = (−V ′i′,1,j ,−V ′i′,1,j′) + (0, l′ + V ′i′,1,j′)

and since −V ′i′,2 /∈ Ω≺ and, because of l′ + V ′i′,1,j′ < 0, also (l′ + V ′i′,1,j′) vect(Fj′) /∈ Ω≺,
we get

l vect(Fj) + l′ vect(Fj′) = −V ′i′,2 + (l′ + V ′i′,1,j′) vect(Fj′) /∈ Ω≺.

Now assume −V ′i′,1,j < l and V ′i′,1,j′ < −l′. We prove

l vect(Fj) + l′ vect(Fj′) + V ′i′,2 /∈ Ω≺

by using the induction hypothesis. For this we first show

−V ′i,1,j′
V ′i,1,j

<
−l′ − V ′i′,1,j′
l + V ′i′,1,j

. (4.10)

The inequality in (4.10) holds if and only if

V ′i,1,jV
′
i′,1,j′ − V ′i,1,j′V ′i′,1,j < V ′i,1,j(−l′) + V ′i,1,j′ l,
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which by (4.9) is equivalent to

1 < V ′i,1,j(−l′) + V ′i,1,j′ l. (4.11)

From (4.8) we obtain 0 < V ′i,1,j(−l′) + V ′i,1,j′ l, hence

V ′i,1,j(−l′) + V ′i,1,j′ l ∈ N \ {0}.

So in order to prove (4.11), it remains to show that

V ′i,1,j(−l′) + V ′i,1,j′ l 6= 1.

Assume for a contradiction that V ′i,1,j(−l′) + V ′i,1,j′ l = 1. The linear Diophantine equa-
tion

V ′i,1,j x+ V ′i,1,j′ y = 1 (4.12)

has (x̃, ỹ) = (V ′i′,1,j′ ,−V ′i′,1,j) as a particular solution. All the other solutions (x, y) are
given by

(x, y) = (x̃+mV ′i,1,j′ , ỹ −mV ′i,1,j)

= (V ′i′,1,j′ +mV ′i,1,j′ , −V ′i′,1,j −mV ′i,1,j)

for m ∈ Z. Since (−l′, l) is also a solution to 4.12, there is an m ∈ Z such that

(−l′, l) = (V ′i′,1,j′ +mV ′i,1,j′ ,−V ′i′,1,j −mV ′i,1,j).

Since −l′ ≥ V ′i′,1,j′ and l ≥ −V ′i′,1,j , it follows that m ≤ 0, and since

−l′ < |V ′max(i,i′)+1, 1, j′ | = V ′i′,1,j′ − V ′i,1,j′

and
l < |V ′max(i,i′)+1, 1, j | = −V

′
i′,1,j + V ′i,1,j ,

it follows that m > −1. Therefore, m = 0 and

(−l′, l) = (V ′i′,1,j′ ,−V ′i′,1,j),

which contradicts the assumption that −V ′i′,1,j < l and V ′i′,1,j′ < −l′. This concludes
the proof for (4.10).

We have 0 < −l′ − V ′i′,1,j′ < −V ′i,1,j′ and 0 < l + V ′i′,1,j < V ′i,1,j and so there exists a
maximal i′′ ∈ Ni−1 such that V ′i′′,1,j > 0, V ′i′′,1,j ≤ l+V ′i′,1,j and −V ′i′′,1,j′ ≤ −l′−V ′i′,1,j′ .
By Lemma 4.5.12 we have

−V ′i′′,1,j′
V ′i′′,1,j

<
−V ′i,1,j′
V ′i,1,j
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and so by (4.10),
−V ′i′′,1,j′
V ′i′′,1,j

<
−l′ − V ′i′,1,j′
l + V ′i′,1,j

.

Now we can use the induction assumption, which yields

l vect(Fj) + l′ vect(Fj′) + V ′i′,2 /∈ Ω≺.

Since −V ′i′,2 /∈ Ω≺, it follows that

l vect(Fj) + l′ vect(Fj′) = (l vect(Fj) + l′ vect(Fj′) + V ′i′,2)− V ′i′,2 /∈ Ω≺.

Lemma 4.5.17. Let V (F ) be the output of Algorithm 4.1.5 and V ′(F ) the infinite list
produced by Procedure 4.5.9. Let j ∈ {1, 2} and let i ∈ Nlen(V (F )) be maximal such
that V (F )i,1,j > 0. Let i′ ∈ N, i′ > i, such that V ′(F )i′,1,j > 0 and let r ∈ Nn. If
V (F )i,2,r > 0, then V ′(F )i′,2,r ≥ V (F )i,2,r.

Proof. Let j′ ∈ {1, 2} such that j′ 6= j and let i′′ ∈ Nlen(V (F )) be maximal such that
V (F )i′′,1,j′ > 0. We have V ′(F )i′ = mV (F )i − m′V (F )i′′ for some m,m′ ∈ N \ {0}.
Since V (F )i,2,r > 0, it follows from Corollary 4.5.8 that V (F )i′′,2,r ≤ 0. Hence,

V ′(F )i′,2,r = mV (F )i,2,r −m′V (F )i′′,2,r ≥ V (F )i,2,r.

Now comes the first of the two main theorems in this subsection (the other one being
Theorem 4.5.27). It says that for every binomial g in the reduced Gröbner basis such
that supp(g) ⊆ [X] tt(f) for some f ∈ F , there exists an h ∈ ideal(F ) such that
lt(h) = lt(g) and vect(h) is contained in the output of Algorithm 4.1.5.

Theorem 4.5.18. Let V (F ) be the output of Algorithm 4.1.5 and ξ ∈ e(tt(F )). Let
A,B ∈ Nn, A,B ≥ ξ, A,B 6≥ e(lt(Fr)) for any r ∈ {1, 2}, B −A ∈ Ω≺, such that there
exists a vpc from A to B. Then there exists an i ∈ Nlen(V (F )) such that there is a vpc
from B − V (F )i,2 to B.

Proof. Since there is a vpc from A to B, there exist k, k′ ∈ Z such that

A+ k vect(F1) + k′ vect(F2) = B.

If k = 0 or k′ = 0, then we have k′ > 0 or k > 0, respectively, and the claim follows
from Theorem 4.5.2. If k, k′ ≥ 1, then the claim follows from Theorem 4.5.3. The
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numbers k and k′ cannot both be negative, since this would contradict B − A ∈ Ω≺.
Now assume that k, k′ 6= 0 and that they have different sign. Let w.l.o.g. k > 0 and
k′ < 0 and let V ′(F ) be the infinite list produced by Procedure 4.5.9. We write V and
V ′ for V (F ) and V ′(F ), respectively. Since B − A ∈ Ω≺, we get by Lemma 4.5.16 the
existence of an i′ ∈ N \ {0} such that 0 < V ′i′,1,1 ≤ k, −V ′i′,1,2 ≤ −k′ and

−V ′i′,1,2
V ′i′,1,1

≥ −k
′

k
.

We choose i′ to be minimal with these properties and first show the existence of a
vpc from B − V ′i′,2 to B. Note that i′ ≥ 3. First assume V ′i′,1,1, −V ′i′,1,2 > 1. If
−V ′

i′,1,2
−1

V ′
i′,1,1

> −k′
k or

−V ′
i′,1,2

V ′
i′,1,1

+1
> −k′

k , then let i′′ ∈ Ni′−1 be maximal such that V ′i′′,1,1 > 0.
By Lemma 4.5.14,

−V ′i′′,1,2
V ′i′′,1,1

≥
−V ′i′,1,2 − 1

V ′i′,1,1

and
−V ′i′′,1,2
V ′i′′,1,1

≥
−V ′i′,1,2
V ′i′,1,1 + 1

,

hence
−V ′i′′,1,2
V ′i′′,1,1

>
−k′

k
.

Since also 0 < V ′i′′,1,1 ≤ k, −V ′i′′,1,2 ≤ −k′, this contradicts the minimality of i′. So in
fact we have

−V ′i′,1,2 − 1

V ′i′,1,1
≤ −k

′

k

and
−V ′i′,1,2
V ′i′,1,1 + 1

≤ −k
′

k

and with Theorem 4.5.4 we get the existence of a vpc from B − V ′i′,2 to B.

Now assume V ′i′,1,1 = 1 and V ′i′,1,2 < −1. If
−V ′

i′,1,2

V ′
i′,1,1

+1
> −k′

k , then since

V ′i′−1,1 = V ′i′,1 + (0, 1),

also
−V ′i′−1,1,2

V ′i′−1,1,1

>
−k′

k
,

which contradicts the minimality of i′. So also in this case we can use Theorem 4.5.4
to get the existence of a vpc from B − V ′i′,2 to B.
If i′ = 3 or −V ′i′,1,2 = 1, then the conditions of Lemma 4.5.15 are fulfilled and we get
the existence of a vpc from B − V ′i′,2 to B.
Now we prove the existence of a vpc from B−Vi,2 to B for an i ∈ Nlen(V ). If i′ ≤ len(V ),
this follows with i := i′. So now assume i′ > len(V ). Let i ∈ Nlen(V ) be maximal such
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that Vi,1,1 > 0. We show that B−Vi,2 ≥ ξ. Let r ∈ Nn. If Vi,2,r ≤ 0, then from Br ≥ ξr
follows Br − Vi,2,r ≥ ξr. If Vi,2,r > 0, then by Lemma 4.5.17 we get

V ′i′,2,r − Vi,2,r ≥ 0. (4.13)

Since Vi,1,1 ≤ V ′i′,1,1 ≤ k, −Vi,1,2 < −V ′i′,1,2 ≤ −k′,
−V ′

i′,1,2

V ′
i′,1,1

≥ −k′
k and −Vi,1,2

Vi,1,1
< −k′

k ,

there exists a unique P ∈ conn(A,B) ∩ conn(B − V ′i′,2, B − Vi,2). For this P , we have
P ≥ ξ (hence Pr ≥ ξr) and either

Br − Vi,2,r ≤ Pr ≤ Br − V ′i′,2,r

or
Br − V ′i′,2,r ≤ Pr ≤ Br − Vi,2,r.

Because of (4.13), the latter is the case and we get Br − Vi,2,r ≥ ξr. Finally, by
Theorem 4.5.5, there exists a vpc from B − Vi,2 to B.

Definition 4.5.19. For A,B ∈ Nn we define

par(A,B) := {A+ λ(B −A) + λ′(vect(F1) + vect(F2)) | λ, λ′ ∈ [0, 1]}.

Note that par(A,B) is a parallelogram with delimiter points A, B, A + vect(F1) +
vect(F2) and B + vect(F1) + vect(F2).

We extend Definitions 3.3.2, 3.3.4, 3.3.6 and the definition of Aoverlap(F ) from Nn to
(R+

0 )n.

Definition 4.5.20. For any τ ∈ (R+
0 )n and any ξ, ξ′ ∈ (R+

0 )n, we define

τ + (ξ, ξ′) := (τ + ξ, τ + ξ′).

For any set H of proper binomials we define

(R+
0 )n + shifts(H) := {τ + h | τ ∈ (R+

0 )n and h ∈ shifts(H)}.

Definition 4.5.21 (Vpc in (R+
0 )n). Let A,B ∈ (R+

0 )n, A 6= B. We call a finite
sequence z of elements in (R+

0 )n+shifts(F ) a valid polygon chain (vpc) in (R+
0 )n (from

A to B) if zk,2 = zk+1,1 for all k ∈ Nlen(z)−1 (and z1,1 = A and zlen(z),2 = B).

Definition 4.5.22 (Degree of a vpc in (R+
0 )n). The degree of an A ∈ (R+

0 )n is the sum
of its components, the degree of a ξ = (ξ1, ξ2) ∈ (R+

0 )n × (R+
0 )n is defined as deg(ξ) :=

max(deg(ξ1),deg(ξ2)). For a vpc z in (R+
0 )n, deg(z) := max({deg(zk) | k ∈ Nlen(z)}).

Definition 4.5.23 (AoverlapR(F )). We define

AoverlapR(F ) := {P ∈ (R+
0 )n | P ≥ overlap(F )}.
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Definition 4.5.24 (bAc). For A ∈ (R+
0 )n we define (bAc)i := bAic for all i ∈ Nn.

The following theorem gives sufficient conditions for the existence of a vpc inside of
Aoverlap(F ) together with an upper bound on its degree.

Theorem 4.5.25. Let A,B ≥ overlap(F ) and k, k′ ∈ N\{0} such that A+k vect(F1)−
k′ vect(F2) = B, A+ vect(F1) + vect(F2) ≥ overlap(F ) and B + vect(F1) + vect(F2) ≥
overlap(F ). Let A′, B′ ∈ par(A,B) such that B′ − A′ = B − A. Then there exists a
vpc z in (R+

0 )n from A′ to B′ such that zi,2 ∈ par(A,B) for all i ∈ Nlen(z) and hence
deg(z) ≤ maxdeg(A,B) + max(deg(vect(F1) + vect(F2)), 0).

Proof. Let z be defined as

zj :=



(A′ − e(tt(F1)) + posshift(F1) if j = 1 and A′ + vect(F1) ∈ par(A,B)

(A′ − e(lt(F2)) + negshift(F2) if j = 1 and A′ + vect(F1) /∈ par(A,B)

(zj−1,2 − e(tt(F1)) + posshift(F1) if 2 ≤ j ≤ k + k′ and φ

(zj−1,2 − e(lt(F2)) + negshift(F2) if 2 ≤ j ≤ k + k′ and not φ,

where φ is the condition

zj−1,2 + vect(F1) ∈ par(A,B) and

zj−1,2 = A′ + l vect(F1)− l′ vect(F2) for some l ∈ Nk−1 ∪ {0}, l′ ∈ Nk′ ∪ {0}.

It is easy to see that zi,2 = zi+1,1 for all i ∈ Nlen(z)−1. We show that for all i ∈ Nlen(z)

we have
zi,2 ∈ par(A,B)

and
zi,2 = A′ + l vect(F1)− l′ vect(F2)

for some l ∈ Nk ∪ {0}, l′ ∈ Nk′ ∪ {0} by induction on i. Let λ ∈ [0, 1] such that

A′ = A+ λ(vect(F1) + vect(F2)).

If A′ + vect(F1) ∈ par(A,B), then z1,2 = A′ + vect(F1) ∈ par(A,B) and 1 ∈ Nk ∪ {0}
and 0 ∈ Nk′ ∪ {0}. If A′ + vect(F1) /∈ par(A,B), then

A′ + vect(F1) = A′ +
1

k + k′
(B −A) +

k′

k + k′
(vect(F1) + vect(F2))

= A+
1

k + k′
(B −A) + (λ+

k′

k + k′
)(vect(F1) + vect(F2)),

hence λ+ k′

k+k′ ∈ (1, 2]. So

A′ − vect(F2) = A′ +
1

k + k′
(B −A) +

−k
k + k′

(vect(F1) + vect(F2))
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= A+
1

k + k′
(B −A) + (λ+

−k
k + k′

)(vect(F1) + vect(F2)),

and λ + −k
k+k′ = λ + k′

k+k′ − 1 ∈ (0, 1]. Hence z1,2 = A′ − vect(F2) ∈ par(A,B) and
0 ∈ Nk ∪ {0} and 1 ∈ Nk′ ∪ {0}.
Let now i be such that 2 ≤ i ≤ k + k′ and assume

zi−1,2 ∈ par(A,B)

and
zi−1,2 = A′ + l vect(F1)− l′ vect(F2)

for some l ∈ Nk ∪ {0}, l′ ∈ Nk′ ∪ {0}. Let again λ ∈ [0, 1] such that

A′ = A+ λ(vect(F1) + vect(F2)).

So we have

zi−1,2 = A′ + µ(B −A) + µ′(vect(F1) + vect(F2))

= A+ ζ(B −A) + ζ ′(vect(F1) + vect(F2)),

where µ = l+l′

k+k′ , µ
′ = lk′−l′k

k+k′ , ζ = µ ∈ [0, 1] and ζ ′ = λ + µ′ ∈ [0, 1]. If the condition φ

holds, then
zi,2 = zi−1,2 + vect(F1) ∈ par(A,B)

and
zi,2 = A′ + (l + 1) vect(F1)− l′ vect(F2)

where l + 1 ∈ Nk, l′ ∈ Nk′ ∪ {0}. If the condition φ does not hold, then either zi−1,2 +
vect(F1) /∈ par(A,B) or l = k. Suppose, zi−1,2 + vect(F1) /∈ par(A,B). Note that
l + l′ = i− 1 < k + k′. Then

zi−1,2 + vect(F1) = zi−1,2 +
1

k + k′
(B −A) +

k′

k + k′
(vect(F1) + vect(F2))

= A+
(
ζ +

1
k + k′

)
(B −A) +

(
ζ ′ +

k′

k + k′

)
(vect(F1) + vect(F2))

with ζ + 1
k+k′ = l+l′+1

k+k′ ∈ [0, 1] and ζ ′ + k′

k+k′ ∈ (1, 2]. So

zi−1,2 − vect(F2) = zi−1,2 +
1

k + k′
(B −A) +

−k
k + k′

(vect(F1) + vect(F2))

= A+
(
ζ +

1
k + k′

)
(B −A) +

(
ζ ′ +

−k
k + k′

)
(vect(F1) + vect(F2))

with ζ + 1
k+k′ = l+l′+1

k+k′ ∈ [0, 1] and ζ ′ + −k
k+k′ = ζ ′ + k′

k+k′ − 1 ∈ (0, 1]. Hence

zi,2 = zi−1,2 − vect(F2) ∈ par(A,B)
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and
zi,2 = A′ + l vect(F1)− (l′ + 1) vect(F2),

where l ∈ Nk ∪{0}. If l′+ 1 /∈ Nk′ ∪{0}, then l′ = k′ and B′ = zi−1,2 + (k− l) vect(F1).
Since zi−1,2 ∈ par(A,B) and B′ ∈ par(A,B), also zi−1,2 + vect(F1) ∈ par(A,B), which
contradicts the assumption that zi−1,2 + vect(F1) /∈ par(A,B). Hence, also l′ + 1 ∈
Nk′ ∪ {0}.
Suppose now, l = k. Then l′ < k′ and B′ = zi−1,2 − (k′ − l′) vect(F2). Since zi−1,2 ∈
par(A,B) and B′ ∈ par(A,B), also

zi,2 = zi−1,2 − vect(F2) ∈ par(A,B)

and
zi,2 = A′ + l vect(F1)− (l′ + 1) vect(F2),

where l ∈ Nk∪{0} and l′ ∈ Nk′∪{0}. This proves that zi,2 ∈ par(A,B) for all i ∈ Nlen(z).
And since zlen(z),2 = A′ + l vect(F1)− l′ vect(F2) with l ∈ Nk ∪ {0}, l′ ∈ Nk′ ∪ {0} and
k + k′ = len(z) = l + l′, it follows that l = k and l′ = k′ and hence, zlen(z),2 = B′.
Note that par(A,B) ⊆ AoverlapR(F ). Therefore by Lemma 3.3.21, which can be
trivially extended to the case (R+

0 )n, z is a vpc in (R+
0 )n. Finally,

deg(z) ≤ maxdeg(par(A,B))

= maxdeg(A,B) + max(deg(vect(F1) + vect(F2)), 0).

Theorem 4.5.26 gives an upper bound on the degree of a vpc connecting points P ′, Q′ ∈
Nn that lie in a certain area inside of Aoverlap(F ), fulfill P ′ − Q′ = V (F )i,2, where
V (F ) is the output of Algorithm 4.1.5 and i ∈ Nlen(V (F )), and are minimal w.r.t. ≤
among all points satisfying the above conditions. This theorem is needed for the proof
of Theorem 4.5.27.

Theorem 4.5.26. Let V (F ) be the output of Algorithm 4.1.5, T ∈ Nn such that T ≥
overlap(F ), and

T ′ := gcd(T + (vect(F1) + vect(F2)), overlap(F ))− (vect(F1) + vect(F2)).

Let i ∈ len(V (F )) and P ∈ Nn, P ≥ T , with P + V (F )i,2 ≥ T such that there exists a
vpc from P to P + V (F )i,2. Then there is a P ′ ∈ Nn, P ′ ≥ T , with P ′ + V (F )i,2 ≥ T

and P ′ ≤ P such that there exists a vpc z from P ′ to P ′ + V (F )i,2 with

deg(z) ≤maxdeg(T ′ + (V (F )i,2)−, T ′ + (V (F )i,2)+)

+ max(0, deg(vect(F1) + vect(F2))).
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Proof. We write V for V (F ). Note that T ′ is minimal w.r.t. ≤ such that T ′ ≥ T and
T ′ + (vect(F1) + vect(F2)) ≥ overlap(F ). Let A := T ′ + (Vi,2)− and B := T ′ + (Vi,2)+.
Note that par(A,B) ⊆ AoverlapR(F ) and

maxdeg(par(A,B)) = maxdeg(T ′ + (Vi,2)−, T ′ + (Vi,2)+)

+ max(0, deg(vect(F1) + vect(F2))).

First suppose, vect(F1) + vect(F2) ≥ 0. Then T ′ = T . Let P ′ := A. Note that
P ′ + Vi,2 = B and P ′ ≤ P , so it suffices to show that there exists a vpc z from P ′ to
P ′ + Vi,2 with deg(z) ≤ maxdeg(par(A,B)). This follows from Theorem 4.5.25.

Now suppose, vect(F1) + vect(F2) 6≥ 0. Then T ′ ≥ T , but not necessarily T ′ = T . We
can assume that

P = T + (Vi,2)− + λ(vect(F1) + vect(F2))− + µ(vect(F1) + vect(F2)),

where λ ∈ R+
0 and µ ∈ [0, λ], otherwise there would exist a P ′′ ≤ P of this form with

P ′′ ≥ T and P ′′ + Vi,2 ≥ T . There exists a λ′ ∈ [0, 1] such that

T ′ + (Vi,2)− = T + (Vi,2)− + λ′(vect(F1) + vect(F2))−.

If λ = λ′, then let the claim follows with Theorem 4.5.25. If λ > λ′, then

P ′′ := T + (Vi,2)− + λ′(vect(F1) + vect(F2))− +
µλ′

λ
(vect(F1) + vect(F2))

= P − ((λ− λ′)(vect(F1) + vect(F2))− + (µ− µλ′

λ
)(vect(F1) + vect(F2)))

≤ P.

Since P ′′, P ′′ + Vi,2 ∈ par(A,B), by Theorem 4.5.25 there exists a vpc z′ from P ′′ to
P ′′ + Vi,2 with

deg(z′) ≤ maxdeg(par(A,B)).

Let P ′ := bP ′′c and τ := P ′′ − P ′ ≥ 0. Then z := −τ + z′ is a vpc from P ′ to P ′ + Vi,2

with
deg(z) = deg(−τ) + deg(z′) ≤ maxdeg(par(A,B)).

If λ < λ′, then let z be a minimal vpc from P to P + Vi,2. Assume that deg(z) >
maxdeg(par(A,B)). We distinguish two cases: deg(vect(F1) + vect(F2)) ≥ 0 and
deg(vect(F1) + vect(F2)) < 0. If deg(vect(F1) + vect(F2)) ≥ 0, let

A′ := T + (Vi,2)− + λ(vect(F1) + vect(F2))−

and
B′ = A′ + Vi,2
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and consider par(A′, B′). We have P, P + Vi,2 ∈ par(A′, B′). Note that

par(A′, B′) + (λ′ − λ)(vect(F1) + vect(F2))− = par(A,B),

hence
maxdeg(par(A′, B′)) < maxdeg(par(A,B)).

If deg(vect(F1) + vect(F2)) = 0, then

deg(z) = maxdeg(P, P + Vi,2))

= maxdeg(par(A′, B′))

< maxdeg(par(A,B)),

which contradicts the assumption that deg(z) > maxdeg(par(A,B)). So assume now
that deg(vect(F1) + vect(F2)) > 0. Since deg(z) > maxdeg(par(A,B)), there exists an
r ∈ Nlen(z) such that

deg(zr,2) = deg(z).

This means that zr,2 /∈ par(A′, B′) and

zr,2 −m(vect(F1) + vect(F2)) ∈ par(A′, B′)

for some m ∈ N \ {0}. Note that zr,2 ≥ overlap(F ) and that zr,2 is a peak. Like in the
proof of Theorem 3.3.26 we can construct a vpc z′ that differs from z only in that z′

goes through zr,2− (vect(F1) + vect(F2)) instead of zr,2. If there is another r′ ∈ Nlen(z′)

such that deg(z′r′,2) = deg(z), we repeat the process. This can only happen a finite
number of times and the resulting vpc z′′ goes from P to P + Vi,2 and has degree
deg(z′′) < deg(z). This contradicts the minimality of z.
The case deg(vect(F1) + vect(F2)) < 0 works analogously to this, but with

A′ := T + (Vi,2)− + (λ′ − λ)(vect(F1) + vect(F2))−

and m ∈ N \ {0} such that

zr,2 +m(vect(F1) + vect(F2)) ∈ par(A′, B′).

We now state the second main theorem in this subsection. It says that there exists
a Gröbner basis G of F such that every g ∈ G with supp(g) ⊆ [X] supp(f) for some
f ∈ F can be generated by shifts with degree at most the bound given in (4.14).

Theorem 4.5.27. Let V (F ) be the output of Algorithm 4.1.5 and f ∈ F . There is
a Gröbner basis G of F such that for every g ∈ G with supp(g) ⊆ [X] supp(f) there
exists a vpc z from e(tt(g)) to e(lt(g)) with
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deg(z) ≤maxdeg(T ′, T ′ + vect(F1) + vect(F2)) (4.14)

+ max({maxdeg((V (F )i,2)−, (V (F )i,2)+) | i ∈ Nlen(V (F ))})

+ max(0, step(e(tt(f))) deg(− vect(f))),

where

T ′ = gcd(T + vect(F1) + vect(F2), overlap(F ))− (vect(F1) + vect(F2))

and
T = gcd(e(tt(f)) + step(e(tt(f))) vect(f), overlap(F )).

Proof. We write V for V (F ). From Theorem 4.5.18 follows that we need only consider
the cases where e(lt(g)) ≥ e(tt(f)) and e(lt(g))− e(tt(g)) = Vi,2 for an i ∈ Nlen(V ). So
let i ∈ Nlen(V ) and let A ∈ Nn such that A ≥ e(tt(f)), A − Vi,2 ∈ Nn + e(supp(f))
and such that there exists a vpc from A to A − Vi,2. First consider the case that
A−Vi,2 ≥ e(tt(f)). Suppose, step(A) = step(A−Vi,2). Let P := overlapshift(A). Then
P = A+ step(A) vect(f) ≥ T ′′ and

P − Vi,2 = overlapshift(A− Vi,2) = A− Vi,2 + step(A) vect(f) ≥ T ′′,

where
T ′′ := gcd(e(tt(f)) + step(A) vect(f), overlap(F )).

Let
T ′′′ := gcd(T ′′ + vect(F1) + vect(F2), overlap(F )).

With Theorem 4.5.26 follows that there exists a P ′ ≥ T ′′ with P ′ − Vi,2 ≥ T ′′ and
P ′ ≤ P such that there exists a vpc z′ from P ′ to P ′ − Vi,2 with

deg(z′) ≤maxdeg(T ′′′ + (Vi,2)−, T ′′′ + (Vi,2)+)

+ max(0, deg(vect(F1) + vect(F2))).

Because of Lemma 4.3.1 we have T ′′′ ≤ T ′ and hence

deg(z′) ≤maxdeg(T ′ + (Vi,2)−, T ′ + (Vi,2)+)

+ max(0, deg(vect(F1) + vect(F2))).

Let A′ := P ′ − step(A) vect(f). Then z defined as

zj :=



(A′ − e(tt(f)) + posshift(f) if j = 1

(zj−1,2 − e(tt(f)) + posshift(f) if j ∈ Nstep(A) \ {1}

z′j−step(A) if j ∈ Nstep(A)+len(z′) \ Nstep(A)

(zj−1,2 − e(lt(f)) + negshift(f) if j ∈ N2 step(A)+len(z′) \ Nstep(A)+len(z′)
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is a vpc from A′ to A′ − Vi,2 with an upper bound for deg(z) as in the theorem.
Suppose now, step(A) 6= step(A− Vi,2). Let w.l.o.g. step(A) > step(A− Vi,2) and

T ′′ := gcd(e(tt(f)) + step(A) vect(f), overlap(F ))

and
T ′′′ := gcd(T ′′ + vect(F1) + vect(F2), overlap(F )).

Note that A ≥ T ′′. Let P := overlapshift(A). If

P − Vi,2 + (step(A)− step(A− Vi,2)) vect(f) ≥ T ′′,

then we proceed like before. If

P − Vi,2 + (step(A)− step(A− Vi,2)) vect(f) 6≥ T ′′,

then let z be a minimal vpc from A to A− Vi,2. Consider the vpc z′ defined by

z′j := zj+step(A)

for j ∈ Nlen(z)−step(A). Analogously to the case λ < λ′ in the proof of Theorem 4.5.26
we can show that

deg(z′) ≤maxdeg(T ′′′ + (Vi,2)−, T ′′′ + (Vi,2)+)

+ max(0, deg(vect(F1) + vect(F2))),

and like before,

deg(z′) ≤maxdeg(T ′ + (Vi,2)−, T ′ + (Vi,2)+)

+ max(0, deg(vect(F1) + vect(F2))).

We obtain that deg(z) is not bigger than the bound given in the theorem. This concludes
the case that A − Vi,2 ≥ e(tt(f)). Now suppose that A − Vi,2 6≥ e(tt(f)). Then
A− Vi,2 ≥ e(lt(f)) and A− Vi,2 ≥ overlap(F ). This case works analogously to the first
case with 0 instead of step(A− Vi,2).

4.5.2 Degree Bound on the Shifts if the Trailing Term of One Input

Polynomial Has Step 0

We use the results from Subsection 4.5.1 to give a degree bound on the cofactors for
a Gröbner basis in the case where the trailing term of one of the input binomials has
step 0. This includes the case where F is saturated, i.e. where gcd(lt(Fi), tt(Fi)) = 1
for every i = 1, 2.
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The following two theorems are adaptations of Theorems 4.5.4 and 4.5.18 for the case
where A and B are multiples of the trailing terms of different input polynomials and
where A ∈ Aoverlap(F ) or B ∈ Aoverlap(F ).

Theorem 4.5.28. Let f, f ′ ∈ F , f 6= f ′, and let A,B ∈ Nn, A 6= B, with A ≥
e(tt(f)), B ≥ e(tt(f ′)), A,B 6≥ e(lt(h)) for any h ∈ F , and A ≥ overlap(F ) or
B ≥ overlap(F ), such that there is a vpc from A to B. Also, let k, k′ ∈ N \ {0} such
that A+ k vect(f)− k′ vect(f ′) = B, and l ∈ Nk, l′ ∈ Nk′ such that l′

l ≥
k′

k and l′

l+1 ≤
k′

k if k > k′

l′−1
l ≤

k′

k if k ≤ k′.

Furthermore, let v := l vect(f) − l′ vect(f ′). Then there exists a vpc from B − v to B

and either B − v ∈ Aoverlap(F ) or

B − v ≥

e(tt(f)) if B ≥ overlap(F )

e(tt(f ′)) if A ≥ overlap(F ).

Proof. Assume that B ≥ overlap(F ). The other case proceeds analogously. Let z be
a vpc of minimal length from A to B. It consists of exactly k positive shifts of f and
exactly k′ negative shifts of f ′, z1 being a shift of f and zlen(z) one of f ′. If there is an
r ∈ Nlen(z) such that zr,2 = B − v, then B − v ∈ Aoverlap(F ) and z′ defined by

z′j := zj+r

for j ∈ Nlen(z)−r is a vpc from B − v to B.
Now assume that z does not go through B − v. Let r ∈ Nlen(z) such that zr is the
(k′− l′+ 1)-th shift of f ′ in z. There exists an m ∈ Z \ {0} such that zr,1−m vect(f) =
B − v. First assume, m > 0. We show B − v ≥ e(tt(f)). For

P := (1− k′ − l′

k′
)A+

k′ − l′

k′
B ∈ conn(A,B) (4.15)

we get
B − v = (1− µ)zr,1 + µP,

where µ = 1

m+ kl′−k′l
k′

. Since l′

l ≥
k′

k , we obtain kl′− k′l ≥ 0, which together with m > 0

yields µ ∈ [0, 1], hence
B − v ∈ conn(zr,1, P ). (4.16)

Let now i ∈ Nn. We show (B − v)i ≥ e(tt(f))i. If vect(f)i ≤ 0, then

e(lt(f))i ≤ overlap(F )i ≤ zr,1,i
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and so

(B − v)i = zr,1,i −m vect(f)i

= zr,1,i − vect(f)i − (m− 1) vect(f)i

≥ e(tt(f))i − (m− 1) vect(f)i

≥ e(tt(f))i.

If vect(f)i > 0, then
e(tt(f))i ≤ overlap(F )i ≤ zr,1,i. (4.17)

With overlap(F )i ≤ Bi, it follows from this that e(tt(f))i ≤ Bi. Because of (4.15),
either Ai ≤ Pi ≤ Bi or Bi ≤ Pi ≤ Ai, so e(tt(f))i ≤ Pi. Because of (4.16) we have
Pi ≤ (B−v)i ≤ zr,1,i, so together with (4.17) we get e(tt(f))i ≤ (B−v)i. We conclude,
B − v ≥ e(tt(f)). So together with Lemma 3.3.21, we obtain that z′ defined by

z′j :=


(B − v − e(tt(f)) + posshift(f) if j = 1

(z′j−1,2 − e(tt(f)) + posshift(f) if 2 ≤ j ≤ m

zr+j−m−1 if m+ 1 ≤ j ≤ m+ len(z)− (r − 1),

is a vpc from B − v to B.

Now assume, m < 0. We show B − v ≥ overlap(F ). Let i ∈ Nn. If vect(f)i ≥ 0, then

(B − v)i = zr,1,i −m vect(f)i

≥ zr,1,i
≥ overlap(F )i.

Now assume, vect(f)i < 0. If k = 1, then also l = 1, and since l′

l ≥
k′

k , we have
l′ = k′. So in this case, B − v = A, which contradicts the assumption, that z does not
go through B − v. So in fact, we have k > 1. One can show that from the conditions
on l and l′, it follows that l′−1

l ≤
k′−1
k−1 , and hence, that B − v lies in the quadrangle

defined by the points A, A+ vect(f), B + vect(f ′) and B, all four of them lying in the
same plane. Since A+ vect(f), B + vect(f ′) and B are all in Aoverlap(F ), we know

(A+ vect(f))i ≥ overlap(F )i,

(B + vect(f ′))i ≥ overlap(F )i

and
Bi ≥ overlap(F )i.

Since vect(f)i < 0, we also get

Ai = (A+ vect(f))i)− vect(f))i ≥ overlap(F )i.
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Therefore, (B−v)i ≥ overlap(F )i. We conclude, B−v ≥ overlap(F ). By Lemma 3.3.21
we obtain that z′ defined by

z′j :=


(B − v − e(lt(f)) + negshift(f) if j = 1

(z′j−1,2 − e(lt(f)) + negshift(f) if 2 ≤ j ≤ m

zr+j−m−1 if m+ 1 ≤ j ≤ m+ len(z)− (r − 1)

is a vpc from B − v to B.

Theorem 4.5.29. Let V (F ) be the output of Algorithm 4.1.5, f, f ′ ∈ F , f 6= f ′, and
let A,B ∈ Nn, A 6= B, with A ≥ e(tt(f)), B ≥ e(tt(f ′)), A,B 6≥ e(lt(h)) for any h ∈ F ,
B−A ∈ Ω≺, and A ≥ overlap(F ) or B ≥ overlap(F ), such that there exists a vpc from
A to B. Then there exists an i ∈ Nlen(V (F )) such that there is a vpc from B − V (F )i,2
to B.

Proof. The proof of the theorem is mostly the same as the proof for Theorem 4.5.18,
except that we use Theorem 4.5.28 instead of Theorem 4.5.4. Let V ′(F ) be the output
of Procedure 4.5.9. We again write V and V ′ for V (F ) and V ′(F ), respectively. As in
the proof of Theorem 4.5.18, let w.l.o.g. k ∈ N \ {0}, k′ ∈ Z \ N such that

A+ k vect(f) + k′ vect(f ′) = B

and let i′ ∈ N \ {0} be minimal such that 0 < V ′i′,1,1 ≤ k, −V ′i′,1,2 ≤ −k′ and

−V ′i′,1,2
V ′i′,1,1

≥ −k
′

k
.

The only changes that we have to make are the cases i′ = 3 and −V ′i′,1,2 = 1 for the
proof that there exists a vpc from B − V ′i′,2 to B, and the proof that there exists a vpc
from B − Vi,2 to B for an i ∈ Nlen(z).

Let z be a vpc of minimal length from A to B. Like in Theorem 4.5.28 it consists
of exactly k positive shifts of f and exactly −k′ negative shifts of f ′, z1 being a shift

of f and zlen(z) one of f ′. If i′ = 3, then it follows from 1
1 =

−V ′
i′,1,2

V ′
i′,1,1

≥ −k′
k that

−k′ ≤ k. We do not necessarily have 1
2 ≤

−k′
k , so we can only use Theorem 4.5.28

if we prove that this condition is not needed. The last shift of f ′ in z is zlen(z). We
have B − V ′i′,2 = zlen(z) −m vect(f) with m = 1. In the proof of Theorem 4.5.28 the
condition in question was only needed for the case m < 0. So in fact we can apply
Theorem 4.5.28 also here. So there exists a vpc from B − V ′i′,2 to B.
If −V ′i′,1,2 = 1, then from 1

V ′
i′,1,1

≥ −k′k it follows again that −k′ ≤ k. We have B−V ′i′,2 =

zlen(z) −m vect(f) with m = V ′i′,1,1 > 0. So like above, the condition 1
V ′

i′,1,1
+1
≤ −k′k is

not needed and we can apply Theorem 4.5.28 to get a vpc from B − V ′i′,2 to B.



98 New Bounds for Gröbner Bases Computation for Binomial Ideals

Now we prove the existence of a vpc from B−Vi,2 to B for an i ∈ Nlen(V ). If i′ ≤ len(V ),
this follows with i := i′. So now assume i′ > len(V ). Let i ∈ Nlen(V ) be maximal such
that Vi,1,1 > 0. Let z be a vpc of minimal length from B − V ′i′,2 to B. It consists of
exactly V ′i′,1,1 positive shifts of f and exactly −V ′i′,1,2 negative shifts of f ′. Note that
Vi,1,1 ∈ NV ′

i′,1,1
and −Vi,1,2 ∈ N−V ′

i′,1,2
∪ {0}. Since also

−Vi,1,2
Vi,1,1

<
−V ′i′,1,2
V ′i′,1,1

we conclude that in fact Vi,1,2 6= V ′i′,1,2. We assume that z does not already go through
B − Vi,2. By Theorem 4.5.28, B − V ′i′,2 ≥ overlap(F ) or B − V ′i′,2 ≥ e(tt(f)).
First assume B−V ′i′,2 ≥ overlap(F ). We show that B−Vi,2 ≥ overlap(F ). Let j ∈ Nn.
If Vi,2,j ≤ 0, then from Bj ≥ overlap(F )j follows Bj−Vi,2,j ≥ overlap(F )j . If Vi,2,j > 0,
then by Lemma 4.5.17 we get

V ′i′,2,j − Vi,2,j ≥ 0 (4.18)

and so, since Bj − V ′i′,2,j ≥ overlap(F )j , also

Bj − Vi,2,j = Bj − V ′i′,2,j + (V ′i′,2,j − Vi,2,j) ≥ overlap(F )j .

Let r ∈ Nlen(z) such that zr is the (k′−Vi,2,j)− th negative shift of f ′ in z. There exists
an m ∈ Z\{0} such that zr,2−m vect(f) = B−Vi,2. By Lemma 3.3.21 we obtain that,
if m > 0, then z′ defined by

z′j′ :=


(B − Vi,2 − e(tt(f)) + posshift(f) if j′ = 1

(z′j′−1,2 − e(tt(f)) + posshift(f) if 2 ≤ j′ ≤ m

zr+j′−m if m+ 1 ≤ j′ ≤ m+ len(z)− r

is a vpc from B − Vi,2 to B, and if m < 0, then z′ defined by

z′j′ :=


(B − Vi,2 − e(lt(f)) + negshift(f) if j′ = 1

(z′j′−1,2 − e(lt(f)) + negshift(f) if 2 ≤ j′ ≤ m

zr+j′−m if m+ 1 ≤ j′ ≤ m+ len(z)− r

is a vpc from B − Vi,2 to B.
Now assume B − V ′i′,2 ≥ e(tt(f)). Let r ∈ Nlen(z) such that zr is the (k′ − Vi,1,2) − th
negative shift of f ′ in z. There exists an m ∈ Z\{0} such that zr,2−m vect(f) = B−Vi,2.
Assume m > 0. We show B − Vi,2 ≥ e(tt(f)). Let j ∈ Nn. If vect(f)j ≤ 0, then

e(lt(f))j ≤ overlap(F )j ≤ zr,2,j
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and so

(B − Vi,2)j = zr,2,j −m vect(f)j

= zr,2,j − vect(f)j − (m− 1) vect(f)j

≥ e(tt(f))j − (m− 1) vect(f)j

≥ e(tt(f))j .

If vect(f)j > 0, then
e(tt(f))j ≤ overlap(F )j ≤ Bj .

If here Vi,2,j ≤ 0, then
Bj − Vi,2,j ≥ e(tt(f))j ,

and if Vi,2,j > 0, then we obtain from Lemma 4.5.17 that V ′i′,2,j ≥ Vi,2,j , so with
(B − V ′i′,2)j ≥ e(tt(f))j also

(B − Vi,2)j = Bj − V ′i′,2,j + (V ′i′,2,j − Vi,2,j) ≥ e(tt(f))j .

We conclude B − Vi,2 ≥ e(tt(f)). So z′ defined by

z′j′ :=


(B − Vi,2 − e(tt(f)) + posshift(f) if j′ = 1

(z′j′−1,2 − e(tt(f)) + posshift(f) if 2 ≤ j′ ≤ m

zr+j′−m if m+ 1 ≤ j′ ≤ m+ len(z)− r,

is a vpc from B − Vi,2 to B.
Now assume m < 0. We show B−Vi,2 ≥ overlap(F ). Let j ∈ Nn. If vect(f)j ≥ 0, then

(B − Vi,2)j = zr,2,j −m vect(f)j

≥ zr,2,j
≥ overlap(F )j .

Assume now vect(f)j < 0. If here Vi,2,j ≤ 0, then Bj − Vi,2,j ≥ overlap(F )j . For
the case Vi,2,j > 0 note that since there exists a vpc from B − V ′i′,2 to B, we have
B − V ′i′,2 + step(B − V ′i′,2) vect(f) ≥ overlap(F ), where step(B − V ′i′,2) ∈ N. Since
vect(f)j < 0, we get (B − V ′i′,2)j ≥ overlap(F )j . By Lemma 4.5.17 we get

V ′i′,2,j − Vi,2,j ≥ 0,

hence
Bj − Vi,2,j = (Bj − V ′i′,2,j) + (V ′i′,2,j − Vi,2,j) ≥ overlap(F )j
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and we conclude B − Vi,2 ≥ overlap(F ). So z′ defined by

z′j′ :=


(B − Vi,2 − e(lt(f)) + negshift(f) if j′ = 1

(z′j′−1,2 − e(lt(f)) + negshift(f) if 2 ≤ j′ ≤ m

zr+j′−m if m+ 1 ≤ j′ ≤ m+ len(z)− r

is a vpc from B − Vi,2 to B.

The following theorem gives a solution for Problem 4.1.2 for the case where the trailing
term of one of the input binomials has step 0.

Theorem 4.5.30. Let f, f ′ ∈ F , f 6= f ′, such that step(e(tt(f ′))) = 0. Let V (F ) be
the output of Algorithm 4.1.5 and

T = gcd(e(tt(f)) + step(e(tt(f))) vect(f), overlap(F ))

and
T ′ = gcd(T + vect(f) + vect(f ′), overlap(F ))− (vect(f) + vect(f ′)).

Then

d = maxdeg(T ′, T ′ + vect(f) + vect(f ′))

+ max({maxdeg((V (F )i,2)−, (V (F )i,2)+) | i ∈ Nlen(V (F ))})

+ max(0, step(e(tt(f))) deg(− vect(f)))

solves Problem 4.1.2.

Proof. We write V for V (F ). Recall that we only need to consider elements h ∈ ideal(F )
such that t ∈ [X] tt(F ) and t /∈ [X] lt(F ) for any t ∈ supp(h). Since step(e(tt(f ′))) = 0,
for any such h different from f ′ with t ∈ [X]{tt(f ′)} for a t ∈ supp(h), we have
e(t) ≥ overlap(F ). By Theorems 4.5.18 and 4.5.29 it follows that for each such h

there exists a g ∈ ideal(F ) such that e(lt(g)) − e(tt(g)) = Vi,2 for an i ∈ Nlen(V )

and e(lt(g)) = e(lt(h)) and e(tt(g)) ≥ R for a R ∈ e(supp(f)) ∪ Aoverlap(F ). The
cases supp(g) ⊆ supp(f) and supp(g) ⊆ supp(f ′) follow from Theorem 4.5.27. The
only case that remains is e(t) ≥ e(tt(f)) and e(t′) ≥ lcm(e(tt(f ′), overlap(F ))) for
t, t′ ∈ supp(g), t 6= t′. So let i ∈ Nlen(V ) and let w.l.o.g. P ∈ Nn, P ≥ e(tt(f)) such
that P − Vi,2 ≥ lcm(e(tt(f ′), overlap(F ))) and such that there exists a vpc from P to
P − Vi,2. If P ∈ Aoverlap(F ), then with Theorem 4.5.26 it follows that there exists a
P ′ ∈ Aoverlap(F ) with P ′ − Vi,2 ∈ Aoverlap(F ) and P ′ ≤ P such that there exists a
vpc z′ from P ′ to P ′ − Vi,2 with

deg(z′) ≤maxdeg(T ′′ + (Vi,2)−, T ′′ + (Vi,2)+)

+ max(0, deg(vect(f) + vect(f ′))) ≤ d,
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where T ′′ := overlap(F ) + (vect(f) + vect(f ′))− ≤ T ′. If P /∈ Aoverlap(F ), then
the proof proceeds analogously to the case step(A) 6= step(A − Vi,2) in the proof of
Theorem 4.5.27.

Corollary 4.5.31. Assume F is saturated. Let V (F ) be the output of Algorithm 4.1.5
and T := (vect(F1) + vect(F2))−. Then

d = maxdeg(T, T + vect(F1) + vect(F2))

+ max({maxdeg(((V (F )i)2)−, ((V (F )i)2)+) | i ∈ Nlen(V (F ))}))

solves Problem 4.1.2.

4.5.3 Degree Bound on the Shifts if the Trailing Terms of Both Input

Polynomials Have Step Greater than 0

The general case, where the trailing terms of both input binomials have step greater
than 0 is intricate, because there may occur an element g in the reduced Gröbner
basis where one term of g is a multiple of tt(F1) and the other term of g is a multiple
of tt(F2). The structure of g depends highly on the positioning of the support of the
input binomials in Nn with respect to each other. In our experiments we discovered that
vect(g) is a linear combination of the vectors given by the output of Algorithm 4.1.5.
Unfortunately we cannot give a better bound for the Sylvester matrix for this case as
of yet.
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ment to Accelerate Gröbner Bases Computation over F2. AFRICACRYPT’2010,
pages 69–81, 2010.

[18] J. Buchmann, J. Ding, M.S.E. Mohamed, and W.S.A.E. Mohamed. MutantXL:
Solving Multivariate Polynomial Equations for Cryptanalysis. Symmetric Cryp-
tography. In: Dagstuhl Seminar Proceedings 09031, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany, 2009.

[19] G.E. Collins. Polynomial Remainder Sequences and Determinants. Amer. Math.
Monthly, 73:708–712, 1966.



References 105

[20] G.E. Collins. Subresultants and Reduced Polynomial Remainder Sequences. J.
ACM, 14:128–142, 1967.

[21] P. Conti and C. Traverso. Buchberger Algorithm and Integer Programming. In
Proceedings of the 9th International Symposium, on Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes, AAECC-9, pages 130–139, London, UK,
UK, 1991. Springer-Verlag.

[22] N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient Algorithms for Solv-
ing Overdefined Systems of Multivariate Polynomial Equations. Eurocrypt’2000,
1807:392–407, 2000.

[23] N. Courtois and J. Patarin. About the XL Algorithm over GF(2). In: Topics in
Cryptology - CT-RSA 2003, pages 141–157, 2003.

[24] N. Courtois and J. Pieprzyk. Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations. In: Advances in Cryptology - ASIACRYPT 2002, pages
267–287, 2002.

[25] D.A. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry, volume 185 of
Graduate Texts in Mathematics. Springer-Verlag, NY, 1998.

[26] D.A. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: An In-
troduction to Computational Algebraic Geometry and Commutative Algebra, 3rd
Edition. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[27] P. Diaconis and B. Sturmfels. Algebraic Algorithms for Sampling from Conditional
Distributions. The Annals of Statistics, 26:363–397, 1998.
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on Computing, 19(4):750–773, 1990.

[29] C. Eder and J. Perry. F5C: A Variant of Faugére’s F5 Algorithm with Reduced
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Computations in Finite Fields. PASCO’10, pages 89–97, 2010.

[34] S. Gao, Y. Guan, and F. Volny. A New Incremental Algorithm for Computing
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