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Kurzfassung

Aufgrund ihrer vielen wünschenswerten Eigenschaften nutzen Softwarebibliotheken im

Computer–Aided Design (CAD) seit Jahrzehnten B–Splines und NURBS als Standard zur

Darstellung von geometrischen Objekten mit Splines. Unglücklicherweise mussten Nutzer

von CAD–Software jahrelang mit der Einschränkung leben, dass die Verallgemeinerung von

B–Splines auf höhere Dimensionen, z.B. auf Flächen oder Volumen, auf Tensorprodukt–

Techniken beruht, welche streng lokale Verfeinerungen ausschließen. Die Suche nach

Alternativen zu Tensorprodukt–Splines, welche lokale Verfeinerungen unterstützen, hat in

den letzten Jahren erheblich an Dynamik gewonnen, hauptsächlich durch die Einführung

der Isogeometric Analysis [32]. Dort ist Adaptivität erforderlich, um lokale Verfeinerungen

in numerischen Simulationen vorzunehmen. In dieser Arbeit konzentrieren wir uns auf

eine dieser adaptiven Spline–Techniken; die so genannten truncated hierarchical B–splines

(THB–Splines). Diese unterstützen streng lokale Verfeinerungen und bewahren gleichzeitig

die Haupteigenschaften der Standard–B–Splines.

Nach einer kurzen theoretischen Einführung von hierarchischen Splines und THB–Splines

präsentieren wir eine effiziente Implementation der grundlegenden Algorithmen, welche für

die Manipulation von THB–Splines notwendig sind. Zur Speicherung der Gebietsstruktur

der THB–Spline–Basis nutzen wir eine auf kD-trees beruhende Datenstruktur. Ergänzt wird

dies durch eine weitere Datenstruktur, welche zur Speicherung der Informationen über die

so genannten aktiven Basisfunktionen benötigt wird. Mittels dieser zwei Datenstrukturen

erhalten wir eine effiziente Methode zur Konstruktion und Auswertung von THB–Splines.

Das Hauptaugenmerk unserer Arbeit ist die Anwendung der THB–Spline–Methode sowohl

in Forschung als auch in der Praxis.

Zuerst präsentieren wir eine adaptive und automatische Methode zur Oberflächenrekon-

struktion aus komplexen, der industriellen Anwendung entstammenden Daten. Am Beispiel

kritischer Segmente von Turbinenblättern demonstrieren wir, dass das Fitten von Ober-

flächen mittels THB–Spline–Darstellungen zu einer deutlichen Verbesserung der erzielten

Rekonstruktionen führt. Weiters zeigen wir, dass die lokale Auswertung von THB–Splines
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in Bezug auf B–Spline–Patches mit kommerziellen Modellierkernen kombiniert werden kann,

um mehrstufige Spline–Darstellungen in eine äquivalente CAD–Geometrie in Standard–B–

Spline–Darstellung umzuformen.

Weiterhin untersuchen wir das Modellierungspotenzial der THB–Splines. Mittels einer ein-

fachen Schnittstelle zwischen unserer THB–Spline Implementation und dem Axel Modellierer

erzeugen wir mehrere einfache THB–Spline Geometrien durch interaktive Manipulation der

Kontrollpunkte. Wir hoffen, dass dieses Kapitel einen Weg zur Einführung von THB–Splines

in kommerzielle CAD–Software aufzeigt.

Abschließend untersuchen wir die Leistungsfähigkeit von THB–Splines in numerischen

Simulationen, insbesondere den Einfluss der sog. “truncation” auf das Verhalten von

Multigrid–Lösungsverfahren.
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Abstract

For several decades the Computer–Aided Design (CAD) software libraries have been

using B–splines and NURBS as their basic spline representation for geometric objects. This

is due to the many desirable properties the B–splines possess. Unfortunately, for many years

the users of CAD software had to deal with the fact that the generalization of the B–spline

technology to higher dimensions, e.g. surfaces or volumes, is based on the tensor-product

construction, which precludes strictly localized refinement. The investigation of alternatives

to the tensor-product splines that support local refinement has gained significant momentum

in the past few years, mainly due to the advent of Isogeometric Analysis (IgA) [32] where

adaptivity is needed for performing local refinement in numerical simulations.

In our work we focus on one of these adaptive spline technologies, namely on the recently

introduced truncated hierarchical B–splines (THB–splines). This technology does not only

support strictly localized refinement, but at the same time preserves the main properties of

the standard B–spline basis.

In the first part we present a short theoretical introduction to the topic of hierarchical

and truncated hierarchical splines. Subsequently we introduce an efficient implementation

of the fundamental algorithms needed for manipulation with THB–splines. To store the

subdomain structure of the THB–spline basis we employ a kD-tree data structure. This

is complemented by another data structure used for storing the information about the so

called active basis function. Using these two structures we obtain an efficient technique for

the construction and evaluation of THB–splines.

The main focus of our work is however on the application of the THB–spline technique

in research and real world applications. Firstly, we present an adaptive and automatic

surface reconstruction method used for the reconstruction of complex real world data. Using

both, synthetic and real world point data we demonstrate that surface fitting schemes

based on THB-spline representations lead to significant improvements of the reconstruction.

Furthermore, we show that the local THB-spline evaluation in terms of B-spline patches

can be properly combined with commercial geometric modeling kernels in order to convert
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the multilevel spline representation into an equivalent standard B–spline CAD geometry.

Secondly, we explore the modelling capabilities of the THB–spline technology. Using a

simple interface between our THB–spline implementation and the Axel modeler we created

several simple THB–spline geometries by interactive control grid manipulation. We hope this

chapter also paves the way for introduction of THB–splines into commercial CAD software.

Lastly, we have investigated the performance of THB–splines in numerical simulations,

focusing on the influence of the truncation on the performance of multigrid solvers.
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Chapter 1

Introduction

The Computer–Aided Design (CAD) software, standardly used by designers and engineers,

provide graphical user interfaces that allow manipulation and shaping of geometric models

using a set of functions which are implemented in the geometric modeling kernels, such

as ParasolidTM [41], C3D [6], or the open source Open Cascade Technology [40]. These

kernels, and software use the B–spline technology and its non–uniform rational extension

(NURBS) as their standard spline representation. The success of this representation lies in

its fundamental properties, such as minimal support, non–negativity, partition of unity, and

efficient algorithms for evaluation, refinement and degree elevation. The non–negativity

and partition of unity properties imply that a B–spline is always completely contained in

the convex hull of its control net, which resembles the shape of the underlying B–spline

model. This means that the parametric spline representation can be shaped by the designer

in an intuitive way simply by manipulating the control net of the given object. All these

factors meet the requirements of CAD applications. Unfortunately, the higher-dimensional

extension of the univariate B–splines is based on the tensor-product approach, and thus it

precludes the possibility of strictly localized refinement.

Despite of an increasing interest to overcome this drawback from the side of the CAD

and manufacturing communities, the localized mesh refinement remains a computationally

expensive and non–trivial operation. This effort is more recently also supported by the
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2 Chapter 1 Introduction

Figure 1.1: Hierarchical structure of domains used for construction of hierar-
chical B–splines.

developments in the field of numerical analysis, especially isogeometric analysis.

1.1 Related work

Over the past decades several different approaches were proposed to address the problem of

local refinement by allowing so called T–junctions between the axis–aligned mesh segments.

Among the most popular locally refinable spline technologies are:

1. Hierarchical B–splines:

The original idea to perform modeling by manipulating the parametric representation

at different levels of detail was introduced by Forsey and Bartels [17]. In order

to localize the influence of the control points while editing detailed features, the

refinement is performed on restricted patches of the surface using a sequence of

overlays with nested knot vectors, as shown in Figure 1.1. Although this construction

allowed local refinement of the surface, it did not address the issue of creating a

basis for hierarchical splines. Several years later Kraft [35, 36] showed that the mesh

refinement procedure can be complemented by a simple and automatic identification

of basis functions from tensor-product B–splines of different refinement levels, see

Figure 1.2. The selection process, which computes the hierarchical B–spline basis, is

described in more detail in Section 2.2.2. Exploiting this underlying tensor-product
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Figure 1.2: A hierarchical structure with 2 levels, level 0 black and level 1
blue. Examples of basis functions contributing to the bilinear HB–
spline basis (highlighted by green) represented by their support for
levels 0 (left) and level 1 (right). Some of the basis functions not
contributing to the hierarchical basis are highlighted by grey.

structure at different refinement levels, the hierarchical B–splines (HB–splines) inherit

several desirable properties, such as linear independence, non–negativity, local support,

and completeness of the spline space, all of which are fundamental to define an effective

spline representation.

The potential of HB–splines, especially in isogeometric analysis, has been recently

demonstrated in [44, 53]. Additional results focusing on the partition of unity property,

the approximation power, and the strong stability have been obtained by considering

the truncated basis for the hierarchical B–spline space (THB–splines) in [20, 21, 33, 49].

Generalizations of the truncated basis to wider classes of spline spaces and an extension

to cover arbitrary topologies have also been presented in [45, 57, 58].

2. T–splines:

The more recently introduced T–spline technology (see [46, 47]) chooses a different

approach to local refinement. Instead of using a sequence of nested tensor-product

B–splines and collecting the basis functions from different levels, the definition of

T–splines is using a so called T–mesh. The T–mesh is a rectangular grid which, in

contrast to the tensor-product B–splines, allows so called T–junctions. That means a
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Figure 1.3: Example of a T–mesh with several T-junctions.

row (or column) of vertices of the T–mesh is allowed to terminate without traversing

the mesh from one side to the other. A T–spline surface is computed by using

blending functions which are a variation of the basis functions of standard B–splines.

In contrast to the tensor-product case where all basis functions share the same knot

vectors, in the case of the T–splines we have to determine the knots of every blending

function separately.

Unfortunately, the blending functions are not necessarily linearly independent, and

thus they do not always form a basis of a spline space. To address this issue we might

impose additional restrictions on the T–mesh, as it was shown by Li in [38]. Another

drawback of the T–spline technology, not completely solved yet, is its generalization

to higher dimensions.

3. Locally Refined B–splines:

One of the most recently developed locally refinable spline technology is the Locally

Refined B–splines (LR B–splines) introduced in 2013 by Dokken, Lyche and Pettersen

in [13]. The construction of the LR B–splines is based on the idea of the LR–mesh

which is a special subset of box partitions. A box partition of a given domain Ω in Rd

is a collection of d-dimensional boxes, such that the intersection of any two boxes is

empty and the union of all boxes is Ω. For example see Figures 1.4 and 1.5.

The LR B–splines are then defined as standard tensor-product B–splines that have a
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Figure 1.4: The box mesh on the left is not an LR–mesh. If the boundary
of the rectangle is considered as the original, not refined mesh,
we cannot create the given configuration by adding splits which
always cut a box into 2 parts. The example on the right satisfies
this criteria, and thus it is a LR–mesh.

Figure 1.5: The construction of LR–meshes, and thus LR B–splines can be
generalized any dimension. In the figure we can see a construction
of 3-dimensional LR–mesh.

so called minimal support on a given LR–mesh. An example of a LR B–spline local

refinement is shown in Figure 1.6.

In spite of the fact that the LR B–splines are not necessarily linearly independent

directly by construction, there is a simple algorithm presented in [13] which removes

the redundant basis functions without forcing any restrictions on the LR–mesh.

Similarly, the partition of unity property is not necessarily preserved during the

refinement process of the LR B–splines. Nevertheless, it may be recovered for example

by rational scaling or introducing weights for the basis functions.
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(a) (b)

(c) (d)

Figure 1.6: Construction of a LR–mesh by inserting cuts into a standard tensor-
product mesh. The anchors of basis functions are depicted by the
orange ellipses. The figures were created using the LR B–spline
Introduction app for mobile devices [52].

All these technologies, and some additional ones – for example polynomial splines over

T–meshes (PHT–splines) [10, 11], or hierarchical triangular splines [56] - are used in many

areas of research, although the main motivation for their development in the recent years

comes from the isogeometric analysis community.

Nevertheless we believe that many other research areas could benefit from the locally

refineable spline technologies as well. These areas include – but are not restricted to –

computer graphics and animation for example for simulation of thin materials [39, 37, 4],

creation of free form sculptures [50], or computer vision for contour detection [9] and 3D

model reconstruction from 2D images [48].
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1.2 Outline of the thesis

In the presented work we focus on the hierarchical B–spline approach, more specifically

on the Truncated Hierarchical B–splines (THB–splines). THB–splines offer several desired

properties, for example linear independence of basis functions for every possible mesh

configuration, partition of unity property obtained directly during the construction of the

basis, i.e. without any additional scaling, or natural way of generalisation to any dimension.

These properties are not always present for other spline representations which offers strictly

localized refinement.

Our work consists from two big parts. The first part consists of Chapters 2 and 3, where

we introduce the fundamentals necessary for the construction of the THB–spline basis

and present an efficient way of its implementation. The second part, Chapters 4, 5 and 6,

focuses on the application of THB–splines in different research areas.

In Chapter 2 we provide an introduction to the construction of hierarchical and truncated

hierarchical B–splines and we discuss their main properties, advantages and drawbacks.

Subsequently, in Chapter 3, we present an efficient implementation of suitable data struc-

tures, and algorithms for THB–splines in arbitrary dimension, based on our previous work

shown in [33]. For representation of the d-dimensional domain structure we use a single

kD-tree like data structure. This representation facilitates the frequently needed update of

the domain structure, which may occur during an iterative refinement process, for example

in surface reconstruction methods or design. The selection of active basis functions, as

described in [20], is executed in terms of four queries. The information about these basis

functions is then encoded in lists which provide an efficient access to this data during the

evaluation of THB–splines.

Interpolation or approximation of measured data is required in many industrial appli-

cations, as for example instrument calibration, data analysis, or reverse engineering. An

automatic surface fitting procedure of complex data (for example obtained from turbine

blades of aero engines), with high precision is a non–trivial issue that should be properly

address by several critical steps, see e.g. [54]. In Chapter 4 we present an adaptive and
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automatic framework for surface reconstruction using THB–splines from measured point

data. We use a simple least–squares approximation method combined with a smoothing

term. The main goal of this chapter is to provide a comparison between the results obtained

from surface reconstruction using standard tensor-product B–splines and THB–splines. As

we can see in Sections 4.3.1 and 4.4, in all tested cases the THB–splines provide better

results. Furthermore, due to the fact that B–splines are the standard in the CAD software,

in Section 4.3.2 we provide a method to export THB–splines into standard CAD format.

The results presented in this chapter were published in [34].

In Chapter 5 we present methods which allow manual construction and editing of THB–

splines. The main difficulty posed by using THB–splines for design is to correctly compute

the control point of the refined surface without changing its geometry. For this purpose

we provide an algorithm in Section 5.1, which outputs a so called transfer matrix. This is

subsequently used for computing the control points of the refined surface. Furthermore,

we discuss the possibility of locally reducing the smoothness of THB–splines by increasing

multiplicities of knots in higher levels of refinement. We present several simple examples

created in the Axel modeling tool [1], which uses our THB–spline implementation from the

G+Smo library [25].

In Chapter 6 we present a further application of the THB–spline transfer matrices.

We employ them in the framework of isogeometric analysis to solve elliptic boundary

value problems using multigrid solvers. In this chapter we analyze the influence of the

truncation mechanism to the efficiency of these solvers by comparing the number of iterations

necessary for acquiring a satisfactory solution of the boundary value problem using standard

hierarchical splines and truncated hierarchical splines.

Finally we conclude our work by summarizing our results in Chapter 7.



Chapter 2

Truncated hierarchical B–splines

In many real world applications the standard tensor-product B–spline construction does not

provide sufficient flexibility as an effective modelling option, as especially the multivariate

tensor-product construction prevents the construction of adaptive spline representations

that support local refinement. In this chapter we define the main concepts of truncated

hierarchical B–splines (THB–splines) which provide the possibility of introducing different

levels of resolution in an adaptive framework, while simultaneously preserving the main

properties of standard B–splines.

2.1 B–spline

In many applications the use of curves consisting of only one polynomial segment (e.g.

Bézier curves) is not sufficient, mainly due to the following drawbacks:

• High degree curves required to represent complex shapes are numerically unstable

and inefficient to process.

• Local control of the curve is not possible. Every change in the control polygon (insert,

delete or movement of a control point) influences the shape of the whole curve.

To address these problems one may use piecewise polynomial curves (splines) [42].

9



10 Chapter 2 Truncated hierarchical B–splines

2.1.1 Univariate B–spline

In the following section we define the B–spline basis in the recursive way, as introduced by

deBoor, Cox and Mansfield [7, 8], together with the construction of B–spline curves. We

demonstrate the definitions on several examples.

Definition 2.1.1. Let U = {u0, . . . , um},m ∈ N,m ≥ 2p, where p is a given polynomial

degree, be a non–decreasing sequence of real numbers, i.e. ui ≤ ui+1, i = 0, . . . ,m − 1.

Additionally, let ui < ui+p for i = 0, . . . ,m − p. We call ui knots, the half open interval

[ui, ui+1) the knot span, and the sequence U the knot vector.

Definition 2.1.2. Let us denote the ith B–spline basis function of degree p defined over a

knot vector U by βi,p, i = 0, . . . , n where n = m− p− 2. We may evaluate βi,p at a given

parameter value u by using the following recursive formula:

βi,p(u) = u− ui
ui+p − ui

βi,p−1(u) + ui+p+1 − u
ui+p+1 − ui+1

βi+1,p−1(u)

where

βi,0(u) =

 1 if ui ≤ u < ui+1

0 otherwise

In case ui+p − ui = 0 or ui+p+1 − ui+1 = 0, we consider the corresponding coefficient to be

0. The B–spline basis B is the collection of all βi,p defined over the given knot vector.

Definition 2.1.3. A B–spline curve of degree p is defined by

C(u) =
n∑
i

βi,p(u)Pi

where Pi ∈ Rd are the so called control points, the βi,p(u) are B–spline basis functions and

u ∈ [up, un].

Example 2.1.1. Figure 2.1 shows an example of a B–spline curve of degree p = 2 with

6 control points P0 = [0, 0], P1 = [1, 2], P2 = [2, 1], P3 = [3, 1], P4 = [5,−2], P5 = [5, 4]
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Figure 2.1: Example of a degree 2 curve (left) together with its control poly-
gon(green) and the corresponding basis functions (right).

defined over the knot vector U = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}. The polygon with vertices

Pi, i = 0, . . . , 5 is called the control polygon of the curve and it approximates the spline

function.

2.1.2 Main properties of B–splines

The B–splines have several attributes which are one of the main reasons why they became

de facto a standard in the computer–aided design (CAD) software. In the following list we

highlight the most important of these properties:

1. Local support: {u : βi,p(u) 6= 0} = (ui, ui+p+1)

2. Non–negativity: βi,p(u) ≥ 0 for all u ∈ [ui, ui+p+1)

3. Partition of unity: for all u ∈ (up, un)

n∑
i=0

βi,p(u) = 1
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4. Smoothness related to knot multiplicity: The basis functions at knot ui are

Cp−k continuous where k is the multiplicity of the given knot.

5. Local linear independence: The B–splines having some support in any open set

Ω′ ⊂ Ω are linearly independent.

6. Convex hull property: The B–spline curve is always in the convex hull of its control

polygon.

7. Piecewise linear curve approximation: The control polygon is a piecewise linear

approximation of the corresponding B–spline curve.

Because of these properties, the B–splines provide local control over the shape of the

curve, i.e. the position of a control point influences the shape of only few polynomial

segments of the whole curve. Additionally, the possibility to reduce the smoothness of

the curve also allows to construct more sophisticated shapes, even with sharp features.

Furthermore, as a consequence of the convex hull property and the fact the the control

polygon approximates the shape of the curve B–spines provide a fairly intuitive control

structure for designers.

2.1.3 Knot insertion algorithm

In this section we introduce one of the most important B–spline algorithms. Although it is

not immediately apparent by applying the knot insertion algorithm, we can:

• evaluate points on B–spline curves,

• subdivide B–spline curves,

• extract Bézier curves,

• add control points (coefficients) - for example to increase the flexibility in shape

control.
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The knot insertion algorithm is performed as follows: Let C be a B–spline curve, as

defined in Definition 2.1.3, over a knot vector U = {u0, . . . , um}, with control points P . We

want to insert ū ∈ [uj, uj+1) into U to form a new knot sequence Ū = {ū0 = u0, . . . , ūj =

uj, ūj+1 = ū, ūj+2 = uj+1, . . . , ūm+1 = um}, and to identify the new control points P̄ of the

curve such that

C(u) =
n∑
i=0

βi,p(u)P =
n+1∑
i=0

β̄i,p(u)P̄

where β̄i,p are the B–spline basis functions defined over Ū .

An efficient way to obtain these new coefficients is by applying the equation

P̄i = αiPi + (1− αi)Pi−1 (2.1)

where

αi =


1 if i ≤ j − p,
ū−ui

ui+p−ui
j − p+ 1 ≤ i ≤ j,

0 i ≥ j + 1,

(2.2)

as it was shown in [42].

In matrix representation we can write that P̄ = RP where R is the (n+ 1)× n matrix

R =



α0 0 0 · · · · · · 0

(1− α1) α1 0 · · · · · · 0

0 (1− α2) α2 · · · · · · 0
... ... ... . . . ... ...

0 0 0 0 (1− αn−1) αn−1

0 0 0 0 · · · (1− αn)


.

By using the transfer matrix R one can define the relation between the two bases B and B̄

as follows B = RT B̄.
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Example 2.1.2. Figure 2.2(a) shows the curve C from Example 2.1.1 after inserting the

knot ū = 0.1 into the original knot vector U = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}. We have

computed the new control points P̄0 = [0, 0], P̄1 = [0.4, 0.8], P̄2 = [1.2, 1.8], P̄3 = [2, 1], P̄4 =

[3, 1], P̄5 = [5,−2], P̄6 = [5, 4] using Equation 2.1, where j = 2. Subsequently, we made a

second knot insertion of the knot ū, thus increasing its multiplicity to 2. This additional

knot insertions subdivides C into two B–spline curves - C1 and C2 with control points

P̄0 = [0, 0], P̄1 = [0.4, 0.8], P̄2 = [0.72, 1.2], P̄3 = [1.2, 1.8], P̄4 = [2, 1], P̄5 = [3, 1], P̄6 =

[5,−2], P̄7 = [5, 4] where P̄i, i = 0, 1, 2 are the control points of C1 and P̄i, i = 2, . . . , 7 are

the control points of C2. Note that P̄2 = C(ū), i.e. we can evaluate points on the curve by

inserting a given parameter value into the knot vector exactly p times.

2.1.4 Tensor-product construction

B–spline objects of higher dimensions, e.g. surfaces, volumes, etc. are constructed by taking

the tensor-product of d univariate B–spline functions β1
i1,p1 , . . . , βdid,pd defined over the

corresponding knot vectors U1, . . . , Ud. More precisely, the multivariate B–spline function

S(u1, . . . , ud) has the form

S(u1, . . . , ud) =
n1∑
i1=0

. . .
nd∑
id=0

β1
i1,p1 . . . βdid,pdPi1,...,id

where Pi1,...,id are the control points and n1, . . . , nd are the numbers of basis functions in

the given direction. The resulting B–spline is defined over the Cartesian product of the d

one dimensional domains

[u1, . . . , ud] ∈ [u1
p1 , u1

n1+1]× . . .× [udpd , udnd+1].

The control points form the so called control mesh which is the higher dimensional

generalization of the control polygon concept.
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(a)

(b)

Figure 2.2: We performed two knot insertions using the knot ū = 0.1 on the
curve presented in Figure 2.1. Every inserted knot introduces a
new control point, see (a) and (b). Furthermore, if the multiplicity
of a knot equals to the degree of the spline curve, the evaluated
point lies on the curve and it subdivides the curve into two parts
(b) as described in Example 2.1.2.

Example 2.1.3. Figure 2.3 shows a single basis function (b) of the two dimensional B–

spline basis (c). It is obtained by the tensor-product construction from the highlighted basis
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(a) (b) (c)

Figure 2.3: The two univariate B–spline bases (a) of degree 2 and 3 used for
the construction of the tensor-product B–spline basis (c). Part (b)
shows a selected basis function which was created by applying the
tensor-product construction on the two univariate functions (high-
lighted by red and green). Part (c) depicts all tensor-product basis
functions defined by the knot vectors mentioned in Example 2.1.3.

functions of the two univariate bases of degree 2 and 3 defined over the knot vectors U1 =

{0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1} and U2 = {0, 0, 0, 0, 0.167, 0.334, 0.5, 0.667, 0.833, 1, 1, 1, 1},

respectively.

Naturally, we can use the knot insertion algorithm to obtain better control of the B–spline

object. Similarly to the univariate case the control points of the refined B–spline can be

computed as P̄i1,...,id = (⊗Rj)P where (⊗Rj), j = 1, . . . , d is the tensor-product of the

univariate transfer matrices.

2.2 (T)HB–splines

The simplicity of construction and the favourable properties of the B–splines not only made

them a standard for computer–aided design libraries and modeling software, but also one

of the main building blocks of isogeometric analysis [32]. Unfortunately, the tensor-product

basis lacks the possibility of strictly localized refinement since, due to its construction, the
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(a) initial grid (b) area of interest (c) knot insertion (d) hierarchical grid

Figure 2.4: Adaptive refinement of an initial tensor-product grid (a) with
respect to a localized region (b) may be achieved by avoiding a
propagation of the refinement due to the tensor-product structure
(c) through a hierarchical approach (d).

refinement propagates through the whole mesh, as demonstrated in Figure 2.4(a–c). One

possibility to overcome this drawback is to use the hierarchical B–splines (HB–splines),

where a sequence of nested tensor-product B–spline bases and a sequence of nested domains

are used to create strictly localized refinement as depicted in Figure 2.4(d). In this section

we define the standard hierarchical B–spline basis, first introduced by Kraft in [35, 36], and

discuss its main properties. As we will see in Section 2.2.2, HB–splines do not inherit the

partition of unity property from the underlying set of tensor-product splines. To address

this issue we introduce the truncation mechanism. By combining this technique with the

HB–spline construction we obtain the so called truncated hierarchical B–spline basis, as

described in Section 2.2.3.

2.2.1 The hierarchical setting

In the following sections we define an adaptive extension of the standard tensor-product

B–spline construction based on a sequence of N nested multivariate B–spline spaces

V`, ` = 0, . . . , N − 1, such that

V0 ⊂ V1 ⊂ . . . ⊂ VN−1.
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Figure 2.5: Domain with knot lines of level 0 and 1, shown in black and blue,
and several examples of possible subdomains of level 1, depicted
by green and red. The boxes highlighted by green satisfy our
simplifying assumption, that the boundaries of Ω` have to be
aligned with the knot lines of B`, whereas the red boxes does not
follow this rule.

We assume that the coarsest spline space V0 is spanned by a normalized multivariate

tensor-product B–spline basis B0. The finer bases B` (spaces V`) are obtained by iteratively

applying dyadic refinement, i.e. in every non–empty knot span [uji , u
j
i+1) we insert a knot

ūj = uji + (u
j
i+1−u

j
i

2 ), j = 1, . . . , d by applying the knot insertion algorithm, as described in

Section 2.1.3. This construction assures the nested nature of the spline spaces, as well as of

the knot vectors.

Additionally, we consider a sequence of nested subdomains Ω = {Ω`}`=0,...,N−1 such that

Ω` ⊆ Ω`−1 (2.3)

for ` = 1, . . . , N − 1. For simplicity we assume that the boundary ∂Ω` of these regions is

aligned with the knot lines of the B–spline basis B`, as depicted in Figure 2.5. Each of

these subdomain Ω` represents a region selected to be refined at level `, and it is defined as

a collection of d-dimensional cells created by the knot knot lines of B`, see Example 2.2.1.

Example 2.2.1. Figures 2.6 and 2.7 show three two-dimensional subdomain hierarchies:

• rectangular (refinement over rectangular–shaped regions),
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Figure 2.6: An example of hierarchical refinement over rectangular–shape re-
gions where the central area of the mesh is always refined up to
the maximum level of detail: two levels (left), three levels (middle)
and four levels (right).

• linear (refinement along a diagonal layer),

• curvilinear (refinement along a curvilinear trajectory);

which will be used to demonstrate the performance of our algorithms and data structures

described in Chapter 3.

By starting with an initial tensor-product configuration at level 0, the tensor-product grid

associated with level `+ 1, defined by the knot lines of B`+1, is obtained by subdividing any

cell of the previous level into four parts. Each subdomain Ω` is then defined as a collection

of cells with respect to the grid of level `, so that Equation 2.3 is satisfied. Figure 2.6

illustrates an example of hierarchical refinement over rectangular–shape regions where the

central area of the mesh is always refined up to the maximum level of detail. In the other

two mentioned subdomain hierarchies (see Figure 2.7) the area covered by the highest level

subdomain is gradually decreasing.

2.2.2 Hierarchical B–spline basis

In Section 2.2.1 we described the necessary background machinery for the construction of

the hierarchical B–splines introduced by Kraft in [35, 36] and later generalized in [20, 21].

In this part we define the HB–spline basis and we discuss some of its main properties.
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(a) Ω0 ⊇ Ω1 (b) Ω0 ⊇ Ω1 ⊇ Ω2 (c) Ω0 ⊇ Ω1 ⊇ Ω2 ⊇ Ω3

(d) Ω0 ⊇ Ω1 (e) Ω0 ⊇ Ω1 ⊇ Ω2 (f) Ω0 ⊇ Ω1 ⊇ Ω2 ⊇ Ω3

Figure 2.7: Two nested sequences of subdomains for d = 2 — indicated as linear
(top) and curvilinear (bottom). They satisfy relation (2.3) with
respect to two (left), three (middle) and four (right) hierarchical
levels.

Definition 2.2.1. The hierarchical B–spline basis K is recursively constructed as follows:

I Initialization:

K0 = {β ∈ B0 : supp β 6= 0}

II Recursion:

K`+1 = K`+1
A ∪K`+1

B , for ` = 0, . . . , n− 2 where

K`+1
A = {β ∈ K` : supp β 6⊆ Ω`+1}

K`+1
B = {β ∈ B`+1 : supp β ⊆ Ω`+1}

III Result:

K = KN−1
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where supp β = {x : β(x) 6= 0 ∧ x ∈ Ω0} and x is the vector of the euclidean coordinates

of a point.

In the initialization step we select all basis functions from the B–spline basis B0 the

support of which is completely contained in the domain Ω0 as shown on Figure 2.8(b). The

basis K`+1 is constructed in the recursive step as a union of K`+1
A and K`+1

B where

• the part K`+1
A keeps all the basis functions from the previous iteration the support of

which is not completely contained in Ω`+1 (see Figures 2.8(e) and (g)),

• K`+1
B contains all basis functions from B`+1 the support of which is completely

contained in the subdomain Ω`+1 (see Figures 2.8(f) and (h)).

The resulting HB–spline basis K (Figure 2.8(i)) is obtained in the last iteration of the

algorithm. The basis functions from B`, l = 0, . . . , N − 1 which are present in K are the so

called active functions whereas the functions not considered in K are addressed as passive

functions.

From the Definition 2.2.1 we can see that the HB–basis functions maintain most of the

properties of the standard B–splines, like for example non–negativity and local support.

Less obvious may be the linear independence of the basis functions.

Lemma 2.2.1 ([53]). The functions in K are linearly independent.

Proof. The sum

0 =
∑
β∈K

dββ

can be re-arranged as

0 =
∑

β∈K∩B0

dββ +
∑

β∈K∩B1

dββ + . . .+
∑

β∈K∩BN−1

dββ.

As we know, the basis functions in a B–spline basis are always linearly independent.

Considering this fact we can easily see that functions β ∈ K ∩ B0 are linearly independent

since they are a subset of B0. Taking into account that only these functions are non–zero
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(a) Hierachy Ω (b) K0 = B0 (c) Subdomain Ω0

(d) Ω0 and Ω1 (e) K1
A (f) K1

B

(g) K2
A (h) K2

B (i) Final HB–basis

Figure 2.8: The hierarchical subdomain structure with three levels of refinement
(a) is used for the construction of the hierarchical basis (i). During
the initialization all basis functions from B0 (b), defined on Ω0 (c),
are selected. During the first iteration 4 basis functions, covered by
Ω1 (blue area on (d), are removed from K0, creating K1

A (e). These
4 basis functions are replaced by a set of basis functions from the
refined basis, which are completely contained in Ω1 (K1

B) (f). In
the second iteration no basis functions are removed (g). Four basis
functions from the finest level (h) are added, creating K2 = K.

on Ω0 \Ω1, and using their local independence, we can conclude that dβ = 0 for β ∈ K∩B0.

Considering all next sums in the sequence, we may see that except the functions already
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considered in previous sums, i.e. K ∩ B0, . . . ,K ∩ B`−1, only the functions in K ∩ B` are

non–zero on Ω` \Ω`+1. Using a similar argument as for β ∈ K∩B0, we know that functions

β ∈ K ∩ B` are linearly independent. This implies that dβ = 0 for β ∈ K ∩ B` with

` = 1, . . . , N − 1.

The main drawback of the HB–splines is the loss of the partition of unity and consequently

of the convex hull property as well. As discussed in [53], these features can be restored by

proper scaling of the basis functions with non–negative weights. These weights wβ can be

computed using the fact that the constant function 1 belongs to the span of K (follows

from Lemma 5.1.1), and thus we can write

1 =
∑
β∈K

wββ.

Consequently, we can define a weighted basis function βw for every basis function β in K

such that βw = wββ. The normalized hierarchical B–spline Kw, which forms a partition of

unity, is then defined as follows:

Kw =
{
βw = wββ : β ∈ K ∧ 1 =

∑
β∈K

wββ
}
.

However, without considering additional restrictions on the size of the subdomains Ω`,

we may encounter hierarchical configuration where some of the coefficients associated

to the basis functions in higher refinement levels are zero, thus the contribution of the

refined functions is canceled. To avoid the problem described above, we may use the

truncated hierarchical basis (THB–spline basis), where the overlap of the supports of the

basis functions is significantly reduced by the so called truncation process.

2.2.3 Truncated Hierarchical B–spline basis

In this section we introduce the truncated hierarchical B–spline basis which, compared to the

HB–spline basis, does not only reduce the support of overlapping basis functions, but also
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recovers the partition of unity property automatically during its construction. Furthermore,

THB–splines possess several additional advantages compared to Kraft’s hierarchical basis,

as discussed in [21].

The truncation mechanism

The main idea behind this improved hierarchical construction came from the refinable

nature of the B–splines. This refineble nature allows us to represent a B–spline function of

level ` as a sum of (p+ 1)d (assuming the dyadic refinement as described in Section 2.2.1)

properly scaled functions of level `+ 1. Thanks to the refinable nature, any function τ ∈ V`

can be represented with respect to the refined basis B`+1 of V`+1, as follows:

τ =
∑

β∈B`+1

c`+1
β β, c`+1

β ∈ R. (2.4)

The coefficients c`+1
β can be easily computed using the knot insertion algorithm described

in Section 2.1.3.

The truncation of a basis function τ from level ` with respect to B`+1 and Ω`+1 (see

Figure 2.9) is then defined as

trunc`+1τ =
∑

β∈B`+1,suppβ 6⊆Ω`+1

c`+1
β β. (2.5)

By applying the truncation mechanism during every recursive step of the HB–spline basis

construction, we obtain the THB–spline basis.

Definition 2.2.2 ([20]). The truncated hierarchical B–spline basis T is recursively con-

structed as follows:

I Initialization:

T 0 = K0 = {β ∈ B0 : supp β 6= 0}
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Figure 2.9: A B–spline basis function τ can be represented as a sum of p+ 2
basis functions from the refined basis (left) as already mentioned in
Equation 2.4. If any of these finer functions is completely contained
in a higher level subdomain, for example Ω`+1 (middle), we can
remove its contribution from the representation of τ , as described
in Equation 2.5, creating a truncated function trunc`+1τ (right).

II Recursion:

T `+1 = T `+1
A ∪ T `+1

B , for ` = 0, . . . , n− 2 where

T `+1
A = {trunc`+1β ∈ T ` : supp β 6⊆ Ω`+1}

T `+1
B = {β ∈ B`+1 : supp β ⊆ Ω`+1}

III Result:

T = TN−1

Similarly to the construction of the HB–spline basis, in the recursive step the T `+1 is

obtained as a union of T `+1
A and T `+1

B where

• T `+1
A keeps all the basis functions from the previous iteration, the support of which

is not completely contained in Ω`+1, and applies the truncation mechanism on them

(see Figures 2.11(e) and (g)),

• T `+1
B contains all basis functions from B`+1, the support of which is completely

contained in the subdomain Ω`+1 (see Figures 2.11(f) and (h)).

The truncated hierarchical basis does not only maintains the main properties of B–splines

such as non–negativity and linear independence, but compared to Kraft’s hierarchical basis

we also regain the partition of unity (convex hull property), see Figure 2.10. Additionally,
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(a) Control grid (b) HB–spline

(c) THB–spline

Figure 2.10: The HB–spline surface (b) and the THB–spline surface (c) have
the same control grid (a) where all control points have the z
coordinate set to 1. In the THB–spline case we obtain a flat
surface, thanks to the partition of unity property of the underlying
basis. In contrast, the HB–spline surface is distorted in the areas
influenced by different refinement levels.

we obtain basis functions with smaller supports, what consequently improves the sparsity

pattern of mass matrices used during numerical simulations [22] or of matrices in least–

squares approximation methods [20].
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(a) Hierachy Ω (b) T 0 = B0 (c) Subdomain Ω0

(d) Ω0 and Ω1 (e) T 1
A (f) T 1

B

(g) T 2
A (h) T 2

B (i) Final THB–basis

Figure 2.11: The subdomain structure with three levels of refinement (a) is
used for the construction of the truncated hierarchical basis (i).
The initialization step, similarly to the case of HB–splines, select
all basis functions from B0 (b), defined on Ω0 (c). Again, we omit
the 4 basis functions from T 0, covered by Ω1 (blue area on (d),
and apply the truncation on remaining basis functions, creating
T 1
A (e). The omitted functions are replaced by basis functions

from the refined basis, which are completely contained in Ω1 (T 1
B)

(f). In the second iteration no basis functions are removed. In (g)
we apply the truncation on the basis functions in the T 1. Finally,
four basis functions from the finest level (h) are added, creating
T 2 = T .





Chapter 3

Algorithms and data structures for

THB–splines

The construction of a (truncated) hierarchical basis requires two main ingredients – a

sequence of nested B–spline bases, and a sequence of nested subdomains. As described in

Section 2.2.1, the sequence of nested bases can be constructed from an initial multivariate

B–spline basis B0, defined by d knot vectors with κi, i = 1, . . . , d knot spans, and κi + 1

knots (possibly with higher multiplicity), by using dyadic refinement. The subdomain Ω0

can be seen as a collection of κ12N−1 × . . .× κd2N−1 cells of the grid created by the knot

lines of BN−1. Higher level subdomains are defined as a subset of cells in Ω0, as we can see

on Figures 2.6 and 2.7.

In the Section 3.1 we introduce an efficient way to represent the subdomain structure

of hierarchical splines using a kD-tree data structure, and present the several important

functions of the kD-tree. Afterwards, in Section 3.2, we describe a data structure which

stores the information about the active and passive basis functions and provides fast access

to it during the evaluation algorithm (see Section 3.3). Finally, we present several examples

that show the time and memory consumption of the proposed algorithms in two-dimensional

case.

29
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3.1 Representation of the domain hierarchy

The main tasks of a data structure storing the subdomain hierarchy is to provide an efficient

way to identify active and passive basis functions, as well as offering the possibility to

dynamically change the structure of the nested subdomains. Over the years several different

approaches have been developed to address this topic. For example in [17] a tree–like

representation, where a given refinement level corresponds to a certain level of depth in the

tree, was introduced. More recently an implementation of HB–splines using a tree data

structure, the nodes of which represent the B–splines from different levels was presented in

[3]. A further solution, presented in [44], consists of storing the data related to a knot span

of a certain level, in particular the basis functions acting on it, in each node of the tree.

Our solution presented in this section, which uses a single kD-tree data structure storing

all refinement levels, is a generalization of the concept presented in [33], into arbitrary

dimension. In our previous work we considered a special case where d = 2 (THB–spline

surfaces). This restriction of the dimension allowed us to use data structures specifically

designed to work in the two-dimensional case, for example the quadtree data structure

which was used to store the subdomain hierarchy Ω.

In this section we present our adapted kD-tree data structure which can store subdomain

structures of arbitrary dimension. Additionally, we introduce the insertion algorithm which

allows us to dynamically enlarge the subdomains Ω`, as well as to add new refinement levels.

In the last part of this section we present the query functions which are used for an efficient

identification of active basis functions of the hierarchical basis.

3.1.1 Structure of the kD-tree

The kD-tree is a binary tree data structure used for space partitioning. In our case we use

it for creating a partition of the d-dimensional subdomain hierarchy. Every node of the

kD-tree has the following structure:
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struct kDnode{
aabb box;
int level;
int axis;
int position;
*node a;
*node b;
};

The axis–aligned bounding box aabb box is defined by the coordinates of two opposite

corners (e.g. in the two-dimensional case by the lower left and the upper right corner),

level defines the highest level in which the box is completely contained, and a, b are

pointers to the two children of the node. The children are created by splitting the box

stored in the given node into two parts, in the direction indicated by the value of the

variable axis on the knot line which is defined by the position. An example of a kD-tree

with a corresponding subdomain structure is presented in Figure 3.1.

3.1.2 Adding a box to a subdomain

As every subdomain Ω` can be defined as a collection of cells, we can see the enlargement

(or insertion) of Ω` as insertion of an axis–aligned box into the current subdomain structure

Ω.

Let B be an axis–aligned box defined by the coordinates of two opposite corners in a

global index set I. The following recursive algorithm performs the insertion of B of a given

level ` into a kD-tree:

Algorithm INSERTBOX(box B, kDnode Q, int L)
\\ box B is the box which will be inserted
\\ kDnode Q is the current node of the quadtree
\\ int L is the level to which we insert B

if B == Q.box then {
Q.level = L
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visit all nodes in the subtree with root Q; if the level of a node is less than L,

increase it to L }

else {
for child in {Q.a, Q.b} do {

if child != null then {
if B∩Q.box 6= ∅ then INSERTBOX(B∩Q.box, child, L) }

else {
compute splitting value pos and axis axis

Q.position = pos

Q.axis = axis

create the nodes Q.a and Q.b

SETCHILD(Q.a, Q, 0)

SETCHILD(Q.b, Q, 1)

INSERTBOX(B∩Q.a.box, Q.a, L) }

INSERTBOX(B∩Q.b.box, Q.b, L) }

break()

}

}

}

Algorithm SETCHILD(kDnode C, kDnode Q, int side)
\\ kDnode C is the current node of the kD-tree
\\ kDnode Q parent node to kDnode C

\\ int side defines which side of Q.box is used
compute box using Q.box, Q.axis, Q.position, side

C.box = box

C.level = Q.level

}

The value of pos is determined by one of such edges of the inserted box B that do not

coincide with any of the edges of the Q.box.

Example 3.1.1. To explain the INSERTBOX algorithm, let us consider the subdomain

hierarchy composed of three levels (N = 3). Two of them (level 0 and 1) are initially present
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Figure 3.1: The initial subdomain structure (left) and the corresponding kD-
tree (right) which stores the boxes related to levels 0 and 1 in the
hierarchy. The box B = [4, 8] × [12, 24] (red) has to be inserted
into the kD-tree at level 2.

as shown on Figure 3.1 (left). The kD-tree structure related to the given Ω is shown on the

right–hand side of Figure 3.1. The domain Ω0 has κ1 = 6 and κ2 = 8 knot spans in x and y

direction, respectively. The distance between two grid lines of Ω0 is 2N−1 = 4. The box

B = [4, 8]× [12, 24] will be inserted into the hierarchy at level 2. The cells covered by B

are depicted in red.

The execution of the algorithm is illustrated in Figure 3.2.

At each step, we highlight the current node Q and the corresponding box in the subdomain

hierarchy (Figure 3.2, right and left column, respectively). The insertion starts at the root

of the tree, where the box B is compared to the axis–aligned bounding box stored in the

root. Since these two boxes are not the same, the level of the root remains unchanged.

Subsequently, we have to identify which boxes stored in the two children of the root

overlap with B. In this case B is partly overlapped by both children of the root, and thus

we have to split it into two smaller boxes B1 = [4, 8]× [8, 24] and B2 = [8, 8]× [12, 24].

The recursive call of INSERTBOX is first applied to the left child of the root (Figure 3.2(b)).

Similarly to the previous step, the box B1 is not the same as the box in the considered

node. Since this node has no children, we have to determine the position of the splitting

line. To minimise the necessary number of splits, we use the extended edges of the inserted
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(a) First step

(b) Box considered after the first split

(c) Box considered after the third split

(d) Final kD-tree

Figure 3.2: Different steps performed by the INSERTBOX function to insert the
box B = [4, 8]× [12, 24] of level 2 into the subdomain hierarchy in
Figure 3.1 (as described in Example 3.1.1). In parts (b) and (c)
we omit the right subtree of the structure due to space constrains.
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box to determine their position. First, we use the edges where the two end points have

the same x coordinate, i.e. lines parallel with the y axis, in our case the line x = 4. The

position attribute of the current node is changed to 4 and the axis attribute indicating

the direction of the split to 0. Consequently we create the two child nodes and recursively

call the INSERTBOX on them.

The algorithm proceeds similarly in the next recursive call where the identified splitting

line is y = 8, creating 2 new nodes with boxes [4, 0]× [8, 8] and [4, 8]× [8, 32] where the

latter box contains the inserted box B1.

As shown in Figure 3.2(c), by using y = 24 as the splitting line in the last step of the

insertion of B1 we obtain boxes [4, 8]× [8, 24] and [4, 24]× [8, 32]. The first mentioned box

coincides with B1, therefore we set the level of the corresponding node to 2.

During the insertion of B2 we proceed similarly. The resulting kD-tree structure is shown

in Figure 3.2(d).

Clearly, the box to be inserted does not necessarily become a single node of the kD-tree,

but may be stored in several nodes.

In contrast to the more standard construction of the kD-tree where the splitting directions

are alternating, i.e. first split is in x direction than y,z,. . . ,x,y,z,. . . , in this case we first

apply all splits in the x direction and them proceed to the next direction. On the one hand

this forces us to store the direction of the split in the kD–tree structure, thus increasing the

memory consumption, on the other hand, however, we can avoid degenerate splits which

would occur in the standard case, as shown in Figure 3.3.

After each box insertion we perform a cleaning step, visiting all sub–trees recursively and

deleting those where all nodes have the same level. This reduces the depth of the tree to a

minimal value and optimises the performance of all algorithms that access the tree.

3.1.3 The kD-tree query functions

In order to analyse the position of a basis function with respect to different subdomains

and to create the data structure for storing the information about the active/passive basis
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(a) (b)

Figure 3.3: Inserting box B = [0, 12] × [24, 24], highlighted by red in (a),
using the standard kD-tree construction approach, with alternat-
ing x,y z,. . . split directions, results into several degenerate splits,
highlighted by red on (b), where one of the child stores a box
degenerated into a line.

functions described in Section 3.2, we define four query functions on the kD-tree.

Given a box B defined as a collection of cells with respect to the tensor-product grid of

level `, the first query, ISACTIVE, returns true if

B ⊆ Ω` ∧ B ∩ Ωi = ∅, i > `. (3.1)

Thus, if ISACTIVE returns true, then all the basis functions of level ` the support of which

is completely contained in the box B are active, i.e. they are present in the hierarchical

spline basis.

If the second query ISPASSIVE returns true, then all the basis functions of level ` the

support of which is contained in the box B are passive, i.e. they are not present in the

hierarchical spline basis. This is characterized by the following condition:

B ∩ Ω` = ∅ ∨ B ⊆ Ωi, for some i > `. (3.2)

The third query ISCONTAINED returns the highest level ` with the property that Ω`
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contains the box B.

The last query HIGHESTLEVEL returns the maximum value ` for which the following

condition is satisfied:

B ∩ Ω` 6= ∅, ` = 0, . . . , N − 1. (3.3)

All the four queries can easily be implemented with the help of the kD-tree structure

described in Section 3.1.1. In particular, the structure of queries ISACTIVE and ISPASSIVE

is similar – we visit the kD-tree until we find a node where the result of the query changes

from to true to false. At that point, we can terminate the function and return false. On

the other hand, queries ISCONTAINED and HIGHESTLEVEL require a complete visit of the

kD-tree.

Example 3.1.2. Figure 3.4(b–d) shows the results of the four queries with respect to the

subdomain hierarchy composed of two levels (level 0 and 1) shown in Figure 3.4(a) for

four sampled boxes of level 0. Figures 3.4(b) and (c) display the results of ISACTIVE and

ISPASSIVE for ` = 0, respectively. The boxes highlighted in green correspond to a positive

answer to the query, the boxes highlighted in red to a negative one. Finally, Figure 3.4(d)

shows the results for the queries ISCONTAINED and HIGHESTLEVEL.

3.2 Data structures for active and passive functions

The most important information necessary for an efficient evaluation of the hierarchical

basis is whether a given basis function is active or passive. To obtain this information

purely by using the kD-tree query functions may be relatively slow, since in many cases we

access the same basis functions several times during the computation, for example during

the evaluation of THB–splines. To prevent repeated calls of queries for the same basis

function, we store the information about the active/passive basis functions in a specialized

data structure.
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(a) level 0 and 1 (b) ISACTIVE for level 0

(c) ISPASSIVE for level 0 (d) results of ISCONTAINED
and HIGHESTLEVEL

Figure 3.4: Results of the four query functions with respect to a subdomain hi-
erarchy (a) with two levels. In case of ISACTIVE (b) and ISPASSIVE
(c), the green/red boxes correspond to a positive/negative answer.
ISCONTAINED (d) returns 1 for the green boxes and 0 for the red
and yellow ones, whereas HIGHESTLEVEL returns 1 for the green
and yellow boxes and 0 for the red ones.

3.2.1 Creating the list of active functions

At every level of the subdomain structure Ω we need to identify the tensor-product basis

functions which contribute to the final hierarchical basis. The simplest and at the same time

optimal way (with respect to the access time) is to store the basis functions of every level

in a sorted list, organized by their tensor-product index in the given level, while assigning

them values 1 or 0 – 1 in case the given function is active, 0 if the function is passive. The

sorted list for a given level ` is called a list of active functions X`. To optimize the creation

of this structure, we considered two different approaches:
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• the one–by–one approach where we determine the entries of the lists one by one by

applying ISCONTAINED query to every single basis function,

• the all–at–once approach where we try to set as many values as possible in one single

step. This requires a more sophisticated algorithm.

Using the all–at–once approach, we try to set many entries of the lists at the same time.

In order to do this, the query functions are initially called for a box which covers the whole

initial subdomain Ω0. This box is the collection of all cells defined by the knot lines of B0.

If we cannot decide if all the basis functions in the given box (represented by their supports

in the parameter domain) are active or passive, we split the box into smaller parts and call

the query functions for them separately. The SETLIST algorithm below creates a separate

list of active functions for every level of the subdomain hierarchy.

Algorithm SETLIST(qnode Q, seqlist X)
\\ kDnode Q is the root of the kD-tree which stores the subdomain hierarchy
\\ seqlist X is the sequence of lists of active functions , i.e. X[L] is the list of active

functions in level L

for all levels L do {
Create the index set I for all functions of level L acting on Ω0. I is an axis–aligned

box in an index space.
SETBOX(I,X[L]) }

The function SETLIST calls the algorithm SETBOX. When the answer active/passive cannot

be given for the current call, the considered box is split into 2 disjoint axis–aligned bounding

boxes using the split axis and position from the current kD-node. If the current kD-tree

node is a leaf, we split I in half. The function SETBOX is then recursively applied to the 2

parts.

Algorithm SETBOX(aabbis I, mat XL)
\\ aabbis I is an axis-aligned box in an index space
\\ list XL is a list of active functions of level L
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(a) (b) (c) (d) (e)

Figure 3.5: A subdomain hierarchy with two levels and some of the boxes
I in index space (shown as circles) along with the associated
bounding boxes B in parameter space (grey) considered by SETBOX
when creating the list of active functions X0 for this subdomain
hierarchy (a–d). Active (green) and passive (red) functions of level
0 (e).

\\The level L is a global variable
Create the axis-aligned bounding box B covering all cells of level L which belong to

the supports of functions with indices in I

if ISACTIVE(B, L) then {
for all indices (i) in I do XL[i] = 1 }

elseif ISPASSIVE(B, L) then {
for all indices (i) in I do XL[i]=0 }

elseif I is a single index (i) then {
k = ISCONTAINED(B, L)

if k == L then XL[i]=1

else XL[i]=0 }

else {
split I into 2 disjoint axis-aligned bounding boxes I1 and I2

Apply SETBOX to I1, I2 and XL }

Example 3.2.1. Figure 3.5 shows a subdomain hierarchy with two levels, consisting of Ω0,

shown in black, and a subdomain Ω1 in the lower right corner, shown in blue. The four

pictures (a–d) depict several index sets I (indicated by circles) and their associated boxes B

(grey). These four index sets are examples of boxes considered by SETBOX when creating

X0 for biquadratic splines.

Initially, SETBOX considers the entire set of basis functions (a) and concludes that it has

to be subdivided. The northwestern subset, obtained by a vertical split of the box stored in
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the root of the kD-tree and an additional horizontal split, is shown in (b). Query ISACTIVE

returns 1 for this box and therefore all the corresponding functions are active, no additional

subdivision is needed. The southeastern subset S (c), has to be subdivided, since nor

ISACTIVE nor ISPASSIVE queries can determine if all the considered functions are active or

passive. Considering the southeastern subset of S (d) we can determine that all analyzed

basis functions are passive, since query ISPASSIVE returns 1. The boxes not show in the

example require several additional splits for correct classification of all considered basis

functions, shown in (e).

3.2.2 Using sparse data structures

The representation of THB–splines in terms of lists of active functions, where an entry for

every basis function is stored, allows a fast look-up during the evaluation process, as well

as a simple update of the values when the underlying subdomain hierarchy changes. The

shortcoming of this representation is the rather large memory consumption, especially in

higher dimensions, which can exceed the available physical memory even for relatively small

meshes and low numbers of levels. In fact, the memory consumption grows exponentially

with the number of levels, since the number of basis functions in level `+ 1 is approximately

2d times bigger than in level ` (due to the dyadic refinement).

This problem can be solved by using a suitable data structure that explores the sparsity

of the data. For this reason, we chose the to omit the entries which belong to the passive

basis functions.

As detailed in Section 3.4, this simple trick significantly reduces the memory consumption

of our approach, in many cases even by more than 90%, as detailed in Example 3.4.1.

Besides, the cost paid for reduced memory requirements is only a small increase of the

computational time (see Examples 3.4.2 and 3.4.3).
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3.3 Evaluation algorithm for THB–splines

In addition to the list of active functions {X`}N−1
`=0 , we consider another sequence of lists

{C`}N−1
`=0 of the same size. Moreover, if χ`i = 0, then c`i = 0, what means the coefficients of

the passive functions are zero. This fact may be used to minimise the memory requirements

of these data structures, as described in the previous section. These structures store the

coefficients associated with the (active) basis functions in the representation of a spline

function with respect to the truncated basis. The following simple algorithm performs the

evaluation of a hierarchical spline function which is represented in terms of THB–splines.

The inputs of the evaluation algorithm are the sequences of lists {X`}N−1
`=0 and {C`}N−1

`=0 ,

an array of length d containing the spline degrees of univariate B–splines in every direction,

and the evaluation parameter. The output of EVAL is the value f(u) of the given THB–spline.

The main idea of the algorithm lies in representing the B–spline basis functions acting

on u (basis functions the support of which contains u) from the coarse level as a sum of

basis functions from the finest level (see Equation 2.5 and Definition 2.2.2). These fine

basis functions can be then evaluated for example by the deBoor algorithm. This procedure

of representation of coarse functions in terms of finer functions is done by using the knot

insertion algorithm for dyadic refinement, followed by the adjustment of coefficients to

obtain correct truncation.

Algorithm EVAL(seqlist X, seqlist C, array D, vector U)
\\ seqlist X is the sequence of lists of active functions, i.e. X[L] is the list of active

functions in level L
\\ seqlist C is the sequence of coefficient lists associated with the spline function

f , i.e. C[L] is the coefficient list of level L
\\ array D stores the spline degrees in all directions
\\ vector U stores the evaluation parameters
find Lmin as the minimum level of active basis functions acting on U
find Lmax as the maximum level of active basis functions acting on U
Identify the (D[0]+1)×. . .×(D[d-1]+1) sub–set M of C[Lmin] which contains the

coefficients of those B–splines of level Lmin that are non–zero at U
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for L = Lmin+1 to Lmax do {
Generate list S by applying one step of dyadic refinement to M

Identify T, the sub–list of S, which contains the (D[0]+1)×. . .×(D[d-1]+1)

coefficients of those B–splines of level L that are non–zero at U

for each index i in T do {
if X[L](i) == 1 then T(i) = C[L](i) }

M = T }

return the value f obtained by applying de Boor’s algorithm to M

In this algorithm, the sub–lists M,S, and T are at a certain level always accessed by global

indices, that is indices with respect to the entire array of all tensor-product splines of that

level. The following theorem clarifies the connection between the evaluation algorithm and

the truncated hierarchical B–spline basis.

Theorem 3.3.1. The value f(u) computed by the EVAL algorithm is the value of a function

represented in the THB–spline basis.

This theorem can be proved by applying the algorithm to Kronecker–type coefficient

data (where exactly one coefficient is non–zero and equals to 1).

The cost of the THB–spline evaluation algorithm EVAL is equal to N − 1 times the

application of the B–spline subdivision rule, i.e. the knot insertion, plus the cost due to the

standard de Boor’s algorithm. Consequently it grows linearly with the number of levels

and quadratically with the degree of the splines.

3.4 Results of the THB–spline implementation

Since the current implementation of THB–splines is a crucial part of the G+Smo library

[25] and the code is highly optimised, we are not able to provide a comparison between the

data structures discussed in Section 3.2.1.

Nevertheless, to highlight the importance of using optimized data structures, in this

section we present the memory consumption and computational time results from our
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Figure 3.6: The three subdomain hierarchies considered in Example 3.4.1:
rectangular (left), linear (middle) and curvilinear (right) refinement,
all with six levels.

previous implementation, obtained for a special case of THB–spline surfaces discussed in

our previous work [33]. This special case (d = 2) allowed us to use:

• quadtree data structure for the representation of the subdomain hierarchy

• matrices for storing the information about the active and passive basis functions (we

call these matrices characteristic matrices).

We consider this data relevant, since in our experience the performance of our current

implementation with kD-trees is comparable with the optimized implementation using

quadtrees. This is supported by the fact that the insert and query functions on both

structures have same asymptotic complexity, see [43].

Example 3.4.1. We compare the memory consumption of full characteristic matrices (not

using sparse matrix representation) with the memory consumption of the matrices repre-

sented in the compressed sparse column structure [23] for the three subdomain hierarchies

in Figure 3.6 (rectangular, linear, and curvilinear).

The experimental results in Figure 3.7 show that the memory needed by the sparse matrix

data structure is considerably smaller than the one needed by the full matrix representation.

Moreover, in case of the sparse matrix representation the memory consumption grows only

linearly with the number of degrees of freedom (instead of exponentially with the number

of levels). This is the optimal result, since a coefficient for each active basis function needs

to be stored anyway.
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Figure 3.7: Memory needed to represent the characteristic matrices without
(blue) and with (green) the use of sparse data structures for different
number of degrees of freedom related to the square (top left), the
circle (top right) and the line refinement (bottom). The dashed
red line has slope 1 and indicates linear growth.

We also observe a difference between the results related to the rectangular–shaped

refinement and related to the linear and curvilinear case. The reason is the different nature

of the refinement procedures. In the linear and curvilinear case the refined area is reduced at

each new level and the coarser levels do not change (see Figure 2.7). In the rectangular case

the refined area of the highest level is constant and the size of the lower level subdomains

increases (see Figure 2.6). Thus, in this case using the sparse data structure does not

decrease the order of memory consumption, as the number of degrees of freedom grows

exponentially with the number of levels.

The next example analyses the influence of using the sparse data structures to the time

needed to evaluate the multilevel spline functions using the algorithm EVAL.

Example 3.4.2. Figure 3.8 visualizes the distribution of the computation times needed

to evaluate the multilevel spline function at 1000 points with (blue bars in the plot) and

without (red bars in the plot) the use of sparse data structures for the linear refinement

shown in Figure 3.6. Two facts can be observed:

• the evaluation time does not depend significantly on the location of the point with
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Figure 3.8: The labels t1,. . . ,t20 on the horizontal axis represent uniform time
intervals between the minimal (0.153 ms) and the maximal (0.195
ms) time needed by the evaluation algorithm. The vertical axis
indicates the number of points the evaluation time of which falls
into these intervals.

respect to the subdomain hierarchy,

• using the sparse data structure increases the evaluation time only by a very small

amount.

Note that the evaluation times in this example vary between 0.153 and 0.195 milliseconds.

Finally, we analyze the relation between evaluation time and the number of levels in the

hierarchy.

Example 3.4.3. We consider the curvilinear refinement shown on the right–hand side

of Figure 3.6. Figure 3.9 compares the evaluation times of the spline function with the

curvilinear refinement for 10,000 parameters obtained by using either the full or the sparse

matrix representation. We may note that the computational time grows linearly with the

increasing level of refinement for both representations, with a small overhead on the side

of the sparse data structure. The presented values do not include the time necessary for

creating the corresponding data structures, only the evaluation algorithm EVAL is considered.
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Figure 3.9: The computational time needed to evaluate the multilevel spline
function at 10,000 points for curvilinear refinement with various
numbers of levels with (green) and without (blue) using the sparse
data structure.





Chapter 4

CAD model reconstruction

The idea to use hierarchical splines for reconstruction of point data is not novel. It

has already been considered in [55] where triangular Bézier patches have been used to

approximate measured data. Furthermore, it has been used in [18, 19, 24], where the

standard hierarchical B–splines introduced by Kraft are considered. More recently a

basic framework for approximation with THB–splines was also presented in [20]. This

basic framework however does not provide all necessary elements for a successful surface

reconstruction in real world applications, thus we expand it by adding a smoothing term

which ensures that the system of equations solved in the least-squares approximation

method is never singular. Furthermore, we investigate two different refinement strategies

and their impact on the resulting surface.

The examples presented in Sections 4.3 and 4.4 show that the proposed hierarchical

fitting scheme outperforms standard tensor-product B–spline approximations, not only with

respect to a reduced number of degrees of freedom (control points), but also by the quality

of the computed solution. In the presented work we focus only on surface reconstruction,

nevertheless our method can be generalized to any dimension.

49
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4.1 Least–squares approximation

Our goal is to create a surface which approximates a given set of measured data by

computing a least-squares approximation

s(u, v) =
N−1∑
`=0

∑
i∈A`

c`i τ
`
i (u, v), (u, v) ∈ [0, 1]2 (4.1)

where τ `i are the THB–spline basis functions, N is the number of levels in the subdomain

hierarchy, and A` is the index set of all active functions of level `. The index set A`

corresponds to the basis functions stored in the list of active functions X`. We consider the

given data

x = (x(1),x(2),x(3)) = (x1, . . . ,xm)T ∈ Rm×3

where xi = (xi1, xi2, xi3) are the Cartesian coordinates of the m measured (or sampled)

points with associated parameter values

(u1, v1), . . . , (um, vm) ∈ [0, 1]2.

The parameter values used in all our industrial examples are generated by the standard

parametrisation methods described in [14, 16], while for the synthetic examples we simply

applied the parameter values used for computing the sampled data.

A typical industrial data set which contains points on a fillet of a turbine blade is shown in

Figure 4.1. As we can observe on the right–hand side of this figure, the obtained parameter

distribution is highly non–uniform, mainly due to the shape of the fillet and the fact that

our parameter domain is simply the unit square. As we will see later in Section 4.3.1,

the non–uniformity makes it difficult to deal with this type of data when using standard

tensor-product spline representations.
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Figure 4.1: A turbine blade with the highlighted area of the fillet (left). The
measurements of the fillets often produce non–uniformly sampled
data sets where the upper part has significantly less measured data
points than the bottom (middle). The corresponding distribution
of parameter values is shown on the right.

We are looking for a vector of control points (coefficients)

c = (. . . , c`i , . . .)T ∈ Rn×3,

where n is the number of active basis functions from all levels, for the THB–spline repre-

sentation (see Equation 4.1) that minimises the objective function

F (c) =
m∑
k=1
||s(uk, vk)− xk||2 + λJ(c). (4.2)

The term J(c) is the smoothing (or regularization) term and λ is a positive weight that

controls the influence of the smoothing term. Without the regularization term, the linear

system obtained from F could easily become singular, e.g. when the number of local degrees

of freedom in a certain region of the surface exceeds the number of available data points in

that region. Also, as shown in Section 4.4.2, the higher values of λ increase the fairness of

the approximating surface while they simultaneously increase the approximation error. For

this reason we have to pay particular attention to the choice of the appropriate value of λ.
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More precisely, as the smoothing term, we use the thin plate spline energy [2, 15]

J(c) =
∫ ∫
[0,1]2

(||∂uus||2 + 2 ||∂uvs||2 + ||∂vvs||2)dudv (4.3)

where ∂uus, ∂uvs and ∂vvs denote the partial derivatives of the THB spline surface s.

The solution of the optimisation problem can be computed by solving the sparse linear

system

(ATA+ λE)c(i) = ATx(i) (i = 1, 2, 3)

for every column c(i) of the matrix of coefficients. The k-th row of matrix A contains

the values of the THB–splines at (uk, vk), i.e. A = (τ `i (uk, vk))k,(i,`), and the matrix E is

contributed by the regularization term. More details about the matrices A and E and their

efficient assembly is provided in the next section.

4.1.1 Assembling the system

The matrix ATA has the elements

a(i,`),(i′,`′) =
m∑
k=1

τ `i (uk, vk) τ `
′

i′ (uk, vk),

(`, `′ = 0, . . . , N − 1; i ∈ A`; i′ ∈ A`′)

where A` and A`′ are the index sets of all active functions at level ` and `′, respectively.

The matrix A is similar to a mass matrix in numerical simulations. In our case, the

evaluation points are the parameter values of the given data, whereas in the case of

numerical simulations, the evaluation points are the Gauss nodes of the mesh elements. For

an efficient assembly of the matrix ATA we proceed as follows.

First, we identify all THB–splines that contribute a non–zero value at (uk, vk),

N−1⋃
`=0
{(i, `) | i ∈ A` and τ `i (uk, vk) 6= 0} (4.4)
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for every k = 0, . . . ,m. The computation of this index set starts at level 0. Subsequently we

increase the level until the indices of all (p+ 1)2 B–splines of level `+ 1 that do not vanish

at this point belong to the set of passive basis functions of level `+ 1. The support of the

THB–spline basis functions can have a relatively complicated shape due to the modifications

of the support caused by the truncation (see for example Figures 2.11 (e) and (g) in the

central area). For this reason we simplify the computation of this index set by considering

the support of the original B–splines β`i , which is an axis-aligned box in the parameter

domain. The obtained set, see Equation 4.4, is then a superset of the relevant indices.

Second, we evaluate all THB–splines with indices in this set at (uk, vk). Third, we create

and add the contributions to the matrix elements a(i,`),(i′,`′) for all relevant index pairs. We

may use the same strategy for the efficient assembly of the right–hand side of the linear

system, as well.

The matrix E, generated by the smoothing term, with the elements

e(i,`),(i′,`′) =
∫ ∫
[0,1]2

(∂uuτ `i ∂uuτ `
′

i′ + 2 ∂uvτ `i ∂uvτ `
′

i′ + ∂vvτ
`
i ∂vvτ

`′

i′ )dudv

resembles the stiffness matrix in numerical simulation. It is assembled by using the Gaussian

quadrature on the polynomial pieces of the truncated hierarchical spline functions.

To acquire the polynomial pieces necessary for its construction, we consider all cells

(i.e. the Cartesian products of the knot spans) of level 0. These cells are then repeatedly

split by inserting the knots from higher refinement levels. This procedure, similarly to the

construction of matrix A, terminates when we find such a cell of level ` that the indices of all

B–splines of the next level, that do not vanish on this cell, belong to the set of passive basis

functions of level `+ 1. This cell then defines a polynomial piece of the hierarchical spline

function. Simultaneously, we collect those indices of the THB–splines that do not vanish

on this cell in a list. We evaluate all THB–splines and their derivatives at the Gauss nodes

of the cell and add the contributions to the matrix elements e(i,`),(i′,`′) for all relevant index

pairs. For the evaluation of the derivatives of the THB–splines we use a modified version of

the evaluation algorithm described in Section 3.3 where instead of simply applying deBoor’s
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algorithm we evaluate the derivatives of the B–splines.

4.2 Refinement strategies

After each step of regularized least–squares approximation we perform refinement in the

critical regions of the surface, that is in the areas with the highest approximation error,

thus providing additional degrees of freedom (control points) and a higher resolution for

the next iteration. The procedure is initialized by choosing an initial B–spline basis B0 and

it terminates if one of the following criteria is reached:

1. 90− 95% of data points are approximated with an error below σ = 10−6 (a typical

requirement in high-end applications, such as turbine blades),

2. we arrive at the maximal number of iterations.

We investigated two different refinement strategies.

• The absolute threshold (AT) approach: the points where the error exceeds a given

fixed threshold σ are marked for refinement.

• The relative threshold (RT) approach: a certain percentage of points with the largest

errors is marked for refinement.

Both approaches select a set of indices that identify the points xk, and the parameter

values (uk, vk), where the approximation error is the highest. The areas of the THB–spline

surface corresponding to these points are then refined. For each index k we first compute

the current refinement level of the associated point:

max{` | (uk, vk) ∈ Ω`}.

This operation can be performed by using the query functions described in Section 3.1.3.

Subsequently, we identify the cell of level ` that contains (uk, vk). This cell and a certain

number of neighbouring cells (determined by the value of an extension parameter, see
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Figure 4.2) is then added to the subdomain Ω`+1, provided that `+ 1 ≤ N − 1. This is done

by using the INSERTBOX algorithm described in Section 3.1.2. Note that the refinement

strategies do not necessarily increase the number of refinement levels of the THB–spline.

When the number of refinement levels is unchanged, the already existing subdomains are

usually enlarged.

Figure 4.2: Extension of a selected cell (green) for extension parameters 1
(cyan) and 2 (red).

4.3 Incorporation of THB–splines into CAD systems

The process of converting a measured data set into a CAD object — often referred to as

geometry acquisition and reconstruction — is a crucial part in certain industrial applications,

for example, as in our case, in analyzing manufacturing tolerances with respect to their

aerodynamic and structural mechanical impact. The introduced adaptive fitting framework

with THB–splines improves the required number of degrees of freedom and the overall

stability of the reconstruction process, while maintaining the accuracy of the standard

fitting technique.

It also leads to a dramatic performance enhancement in related industrial applications.

This is illustrated in Section 4.3.1 where the reconstruction process of a crucial part of

an aircraft turbine blade is shown. Additionally, in Section 4.3.2 we present the export of

THB–spline geometries into standard tensor-product B–splines, that provides a useful tool

for integrating hierarchical spline representations into standard CAD software.
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4.3.1 Adaptive geometry reconstruction

Industrial data sets are often generated by an optical measurement system producing a large

amount of non–uniformly distributed points which describe the shape of the object. The

non–uniform sampling and the strongly varying shape of the data cause several problems

during the fitting procedure when using standard techniques. One of these problems is

overfitting which causes oscillations of the resulting surface. This problem is well known and

was already addressed in several publications, as for example in [12] or [31]. This limitation

of the tensor-product structure can be eliminated by using the adaptive THB–splines fitting

framework.

We investigated the reconstruction of the fillet part of a turbine blade as one of the

challenging geometrical parts of an aero engine. Figure 4.1 shows the used point cloud

which was parametrized by the technique described in [14]. The fully automatically

reconstructed fillet geometry by using B–splines and THB–splines is shown in Figure 4.3.

As the noisy reflection lines (see [27]) show, the tensor-product spline surface suffers from

strong oscillations on its upper part, whereas the same region on the hierarchical spline

surface is perfectly smooth. This distortion of the surface results from the fact that within

the standard technique, no optimal number of degrees of freedom exists to avoid oscillations

in the upper fillet part while generating an accurate fitting geometry on the lower fillet part.

Note that the problem of oscillations cannot be solved with standard B–spline surfaces.

Using higher values of the regularization parameter does not lead to an effective solution.

Even if the amplitude and frequency of the oscillations may decrease while we increase the

influence of the smoothing term, the unwanted oscillations will be present until the surface

becomes planar, without obtaining the desired smooth curved surface. See Figure 4.4. For

this reason, an adaptive scheme is needed to compute a flexible and accurate fitting by

exploiting the possibility of identifying different levels of resolution. This demonstrates the

superior behavior of the adaptive fitting framework with truncated hierarchical geometries

in comparison with the use of standard tensor-product geometries.
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(a) global refinement using B–splines and 1849 degrees of freedom

(b) local refinement using THB–splines and 475 degrees of freedom

Figure 4.3: Reconstruction of the fillet part with globally refined B–splines
(top row) and with locally refined THB–splines (bottom row) using
1849 and 475 degrees of freedom, respectively. In both cases the
regularization parameter and the error threshold are set to λ = 10−9

and σ = 10−6, respectively. The quality of the surfaces (leftmost
plots) is visualized using reflection lines. The two rightmost plots
in both rows show an enlarged view of the upper part of the fillet.
Note that the small distortion of these lines in the central part of
the fillet is caused by a measurement error in the provided data.
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Figure 4.4: Reconstructed surface of the fillet using standard tensor-product
B–splines and smoothing parameters λ = 10−7 (left) and λ = 10−5

(right). The oscillations in the upper part of the fillet are not
completely removed by the increased smoothing term.

4.3.2 Conversion to tensor-product patches

Despite the advantages of THB–splines, the standard spline technology in current CAD

libraries are tensor-product B–splines or, more generally, tensor-product NURBS. Therefore,

a procedure for exporting THB–spline geometries into the standard format is needed.

The hierarchical construction of THB–splines offers a natural way to perform this

operation by computing the coefficients of the tensor-product representation directly from

the control points of the original THB–spline surface. To complete this conversion efficiently,

we need to split the original geometry into several B–spline patches according to the different

refinement levels of the THB–spline representation.

The algorithm EXPORT performs the conversion of a THB–spline geometry into several

B–spline patches using the splitting techniques described below. It iterates through every

level of the THB–spline and computes the so called rings which are defined as Ω` \ Ω`+1

where Ω`, ` = 0, . . . , N are the subdomains of the THB–spline which we want to represent

in B–spline form. Every ring can contain several connected components, see for example

Figure 4.5(a) where the ring Ω2 \Ω3,Ω3 = ∅ (corresponds to the red areas) has 2 connected

components. These connected components are subsequently converted into boxes b0, . . . , bj

using the splitting techniques described below. For every box bi, i = 0, . . . , j obtained by
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this procedure we apply the modified EVAL algorithm which takes into account all coarse

basis functions acting on the given box and terminates at level `. This modified evaluation

is indicated as EVAL* in the algorithm below.

Algorithm EXPORT(mat c, int N)
\\ mat c are the THB–spline coefficients
\\ int N is the number of levels
for l from 0 to N-1 do{

create ring r = Ω` \ Ω`+1

create the list R of connected components of r
for i from 0 to |R|-1 do{

boxes = SPLIT_TO_BOXES(R[i])
for j from 0 to |boxes|-1 do{

Compute the coefficients of the restriction of the THB–spline surface

to the box boxes[j] using EVAL* and export the obtained

tensor-product B–spline surface.}}}

This algorithm relies on the SPLIT_TO_BOXES function that splits a connected component

of one refinement level according to one of the following methodologies.

1. Rectangular partition: by using the B–spline representation of rectangular boxes

completing the connected components R[i] (see Figure 4.5(b)).

2. Smallest bounding box: by using the B–spline representation of the smallest axis

aligned bounding box covering the connected component R[i]. Its boundary curve

is defined in the parameter domain of R[i] and is later used for trimming the

tensor-product surface (see Figure 4.5(c) and (d)).

The rectangular partition approach may lead to a larger number of patches compared to

the second approach, depending on the shape of the hierarchical domains. The number of

additional degrees of freedom created by this approach is limited to the number of multiple

copies of common control points between the adjacent patches. The second method leads

to a small number of patches, equal to the number of connected components of rings of all
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levels, however it increases the required memory storage as one needs to store additional

“phantom” control points in the trimmed areas and the trimming curves themselves.

The domain structure of the THB–splines, stored in the kD-tree data structure described

in Section 3.1, provides us naturally with a collection of boxes which necessary for the

rectangular partition procedure. These boxes are stored in the leaves of the kD-tree. To

optimize the number of patches, we have applied an additional step where adjacent areas

of the same refinement level are joined together, creating larger rectangular boxes. The

boxes stored in the kD-tree also allows us to compute the smallest rectangular box that

covers the connected components of Ω` \Ω`+1 for ` = 0, . . . , N − 1, required for the smallest

bounding box procedure.

Finally, we use the capabilities of a CAD system, in our case ParasolidTM by SIEMENS

PLM Software [41], to bridge the gap between the THB–splines and the standard (commer-

cial) applications. The geometric modeling kernel combines the geometric representations

with a topological structure in order to handle trimmed entities and to build up large

complex models based on several (connected) geometries. Thus, Parasolid can combine the

generated B–spline patches into a single topological object referred to as a sheet without

using any approximation. See Figure 4.5. This provides a straightforward and geometrically

exact integration of THB–splines into standard industrial processes and applications.

In Figure 4.5 we present an example for the export of THB–splines into B–spline patches.

The THB–spline surface representing the fillet (a) with 475 control points can be split either

into 36 patches with 1788 control points (b), or into 4 trimmed patches with 1021 control

points (c,d).

4.4 Numerical examples

Our tests were performed on several synthetic data sets created by uniform sampling of

analytical functions, and on more challenging industrial data sets related to turbine blade

parts (see Figures 4.6, 4.7 and Section 4.3). For all synthetic examples we used a sampling

procedure which created a uniform grid with 10000 sampled points over the parameter
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(a) THB–spline representation (b) rectangular partition representation

(c) smallest bounding box representation (d) bounding boxes and trimming curves for
patches in (c)

Figure 4.5: Reconstructed fillet part geometry: the approximated THB–spline
surface is defined by three refinement levels with a corresponding
control grid of 475 control points (a). An optimal rectangular
partition split into standard B–spline surfaces requires 36 patches
with 1788 control points in total (b). The smallest bounding box
split generates four B–spline patches with 1021 control points in
total (c). The corresponding patch layout is shown in (d). The
coloring of patches corresponds to different refinement levels. The
size of the original data set is 3280 measured points.

domain. All tests were initialized with a THB–spline basis of size 8 × 8 and bi-degree

(3,3), resulting in curvature continuous surfaces, as it is standard in demanding engineering

applications.

The THB–splines and the adaptive fitting algorithm were implemented in C++. The

presented tests were executed on PC (Intel XEON E31240 3.30 GHz, 16 GB RAM, 64 bit)
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running SUSE Linux Enterprise Desktop 11. The errors presented in the following examples

are computed as the distance between the data point x with parameters (u, v) and the

corresponding point on the THB–spline surface s(u, v), i.e.

e =
√

(x1 − s1(u, v))2 + (x2 − s2(u, v))2 + (x3 − s3(u, v))2

4.4.1 Comparison of the refinement strategies

The convergence speed and the resulting domain structure of the THB–spline fitting

procedure strongly depends on the refinement strategy considered in the hierarchical

approximation framework. In Section 4.2 we proposed two different approaches to identify

the regions with higher errors: the absolute (AT) and the relative threshold (RT).

In Table 4.1 we compare the number of iterations and degrees of freedom (control points)

of the absolute (AT) and the relative threshold (RT) refinement strategies for the 3 peak

Figure 4.6: Turbine blade fillet represented by truncated hierarchical B–splines.
The different meshes represent control points at different levels
of the THB–spline hierarchy. The size of the original data set is
38240 points.
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Figure 4.7: Adaptive airfoil model based on THB–spline representations. Note
the different resolutions of the hierarchical meshes. The data set
used for the reconstruction contains 31254 points.

data set1 (already considered in [20]), see Figure 4.8. The sampled data points are contained

in an axis–aligned box of size 2× 2× 0.65. The refinement procedure was terminated when

at least 99% of the errors were below the threshold σ = 10−6 (thereby even exceeding

the standard industrial precision requirements mentioned in the Section 4.2), or when the

number of iterations M reached 10. By setting the regularization parameter to λ = 10−9,

we obtain the number of iterations and degrees of freedom reported in Table 4.1. We may

observe that, in general, even if both refinement strategies can achieve the same level of

accuracy, the AT strategy requires less iterations. Furthermore, the choice of the optimal

refinement percentage in case of the RT strategy is not easy and may depend both on the

shape and the distribution of the data in the data set.

In addition, as shown in Figure 4.8, the RT strategy tends to create a more fractal–like

domain structure. This fact has a negative influence on the complexity of the final surface

1The data is computed by uniform sampling points of the function f(x, y) =
1.5(

√
(10x− 3)2 + (10y − 3)2)−1 + 1.5(

√
(10x+ 3)2 + (10y + 3)2)−1 + 1.5(

√
(10x)2 + (10y)2)−1 for

(x, y) ∈ [−1, 1]2.
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strategy # iterations degrees of maximum percentage
freedom error

AT 5 5,637 2.55e-06 99.94
RT (1 %) 10 1,981 5.15e-05 32.16
RT (5 %) 8 6,434 2.24e-06 99.94
RT (10 %) 6 5,053 2.25e-06 99.94
RT (20 %) 5 5,569 2.55e-06 99.94

Table 4.1: Number of iterations and degrees of freedom associated with the
absolute (AT) and relative (RT) threshold strategies for the 3 peak
data set. The last column specifies the percentage of the number
of points that satisfy the error threshold σ = 10−6. Note that the
number of iterations (refinement steps) is not necessarily equal to
the number of refinement levels, as mentioned in Section 4.2

(a) absolute threshold (b) relative threshold

Figure 4.8: THB–spline approximation with the corresponding control mesh
for the 3 peak data set. The absolute threshold approach (a)
generates a less fractal–like subdomain structure in comparison to
the relative threshold strategy (RT 10%) (b). The top views of the
control grids are also shown.

and the required number of tensor-product B–spline patches needed to perform an exact

export of the THB–splines into a standard CAD format, as described in Section 4.3.2. Also,
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the RT strategy does not lead to a substantially smaller number of control points.

The RT strategy has some advantages if one tries to find the optimal THB–spline surface

for a given number of levels. In this situation, one would use a rather small tolerance. The

RT strategy concentrates on the refinement in the regions where the largest errors occur,

unlike the AT refinement, which would quickly produce a large number of control points.

However, in all practical test cases with a given error threshold, AT performed better than

the RT strategy. Therefore in the remaining examples we will only consider the absolute

threshold refinement strategy.

4.4.2 Influence of the regularization term

The regularization parameter assures that the solved system of equations is not singular

even for high refinement levels. At the same time it smooths the resulting surface in case of

noisy input data. Naturally, in case of data sets with sharp features, the smoothing effect

is in contradiction to the required accuracy of the approximation. For these reasons the

choice of λ is essential for generating accurate results and at the same time for minimising

the number of required iterations.

The dependency of the approximation error and of the condition number of the matrix

on the regularization parameter λ is discussed in Table 4.2. Our tests show that in the

two analyzed2 cases the regularization parameter should be smaller then 10−8 to reach the

required accuracy (more than 99% data points with an error below the threshold σ = 10−6).

For larger values of λ the smoothing effect prevents the solution from capturing the fine

details of the original surface, even for high refinement levels. In general, the choice of

λ = 10−9 provided a satisfactory behavior for all tested data sets, including the industrial

examples shown in Section 4.3.

2In addition to the 3 peak data set previously introduced, we consider the Rvachev data set computed
by uniform sampling of the function f(x, y) = (x+y)

2 +
√(

x−y
2
)2 for [x, y] ∈ [0, 1]2.
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(a) 3 peak data set
λ degrees of % condition objective maximum

freedom number function error
10−7 7,077 98.80 2.70e+09 2.70e-03 2.22e-04
10−8 5,587 99.58 7.48e+10 3.90e-04 2.54e-05
10−9 5,629 99.94 7.20e+11 1.26e-04 2.55e-06
10−10 5,629 100 6.27e+12 9.93e-05 2.55e-07

(b) Rvachev data set
λ degrees of % condition objective maximum

freedom number function error
10−7 8,501 95.00 2.41e+09 2.39e-02 1.17e-04
10−8 8,959 97.02 8.97e+09 2.57e-03 1.24e-05
10−9 8,833 99.02 2.07e+10 2.59e-04 1.25e-06
10−10 8,759 100 1.94e+11 2.59e-05 1.25e-07

Table 4.2: The number of degrees of freedom, the condition number and the
value of the objective function (see Equation 4.2) obtained with
different values of the regularization parameters λ for the 3 peak (a)
and the Rvachev (b) data set shown in Figure 4.9. The third column
specifies the percentage of points that satisfy the error threshold
σ = 10−6.

4.4.3 Impact of the extension parameter

The choice of the extension parameter, which is used for determining the size of the refined

area (see Section 4.2), may influence the accuracy of the approximation, as well as the size

of the corresponding THB–spline representation, i.e. the number of resulting degrees of

freedom. By enlarging this parameter, the number of newly introduced degrees of freedom

increases, thereby providing more flexibility in the neighbourhood of the area with high

error.

Table 4.3 compares the number of degrees of freedom and the approximation errors for

different values of the extension parameter, again for the 3 peak data set. As expected,

the optimal value of this parameter is dp2e, where p is the degree of the considered spline.

This corresponds to the smallest possible extension that is required to add at least one new

basis function to the THB–spline basis at the next refinement level. For larger values of the

extension parameter, we may observe that an increase in the number of coefficients does

not always correspond to significant improvements in the accuracy of the approximation.
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Figure 4.9: Approximation of the Rvachev function with THB–splines (left)
with the regularization parameter λ = 10−10. The top view of the
corresponding control mesh is also shown (right).

extension # degrees of % objective maximum
iterations freedom function error

2 5 5,629 99.94 1.26e-04 2.55e-06
3 5 6,170 99.94 9.96e-05 2.55e-06
4 5 6,841 99.94 7.08e-05 2.55e-06
5 5 7,396 99.94 5.93e-05 2.55e-06

Table 4.3: Number of iterations, degrees of freedom and related value for the
objective function with respect to different extension parameters
obtained by sampling 104 data points from the 3 peak data set.
The regularization parameter is set to λ = 10−9, the required error
threshold to σ = 10−6.

4.4.4 Global vs. local refinement

The accurate modeling and reconstruction of surfaces with sharp features and small details

causes many difficulties for the current CAD software based on tensor-product B–splines.

Furthermore, the enormous size of the resulting geometries has a negative influence on all

post–processing steps, as well. In contrast to the standard technology, the local refinement

of THB–splines provides an effective tool for constructing the detailed structures, while

simultaneously minimising the size of the resulting geometry.
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Table 4.4 and Figure 4.10 compare the number of degrees of freedom for different number

of iterations of the fitting procedure for the Rvachev data set. The growth of the size of

the standard B–spline basis is exponential. Thus, the global refinement method reaches its

limits after a few refinement steps and the solving of the underlying system of equations

becomes too expensive in terms of computational time and memory. In contrast to this,

the growth of the THB–spline basis remains fairly moderate.

degrees of objective maximum
freedom function error

# local global local global local global
1 169 169 8.69e+00 8.69e+00 1.28e-02 1.28e-02
2 529 529 2.53e+00 2.53+00 6.36e-03 6.36e-03
3 1,729 1,849 7.97e-01 7.97e-01 2.97e-03 2.97e-03
4 4,147 6,889 2.42e-01 2.42e-01 1.02e-03 1.02e-03
5 8,841 26,569 2.59e-04 2.59e-04 1.26e-06 1.26e-06
6 9,233 104,329 2.51e-04 2.36e-04 1.19e-06 1.15e-06
7 9,625 413,449 2.44e-04 2.25e-04 1.16e-06 1.10e-06
8 10,017 n/a 2.43e-04 n/a 1.15e-06 n/a

Table 4.4: The size of the THB–spline basis remains moderate even for high
refinement levels (first column), while it grows much faster in case
of the tensor-product B–splines (Rvachev data set).

Figure 4.10: While the size of the globally refined tensor-product basis grows
exponentially and the size of the locally refined basis remains
moderate (left), the difference between the resulting values of the
objective function in neglectable (right).

4.4.5 Computing times

Each iteration of the presented adaptive fitting procedure consists of three steps:
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1. the refinement of the THB–spline basis, i.e. the adaptation and maintenance of the

sets of active functions,

2. the assembly of the linear system,

3. the solution of the linear system3.

In our current experimental implementation the total computing time is dominated by the

first two steps. To give an idea, in order to generate the THB–spline approximation of the

fillet data set with 38,260 points (Figure 4.6) where the number of degrees of freedom varies

between 169 for 1 level and 20,553 for 7 levels after several iterations, the first two steps

need a few seconds up to a few minutes, while the solver time is always less than a second.

We are currently exploring various possibilities to speed up these computations. For

example, the B–spline representations of THB–splines is precomputed in order to speed up

their evaluation. More precisely, each THB–spline is represented by its B–spline coefficients

at the coarsest possible level. This precomputation is performed by slightly modifying

the THB–spline evaluation algorithm. More details about the computational times of the

current implementation, which was additionally improved and optimized by Špeh, are

available in [22]. Obviously, a natural way to further optimize the performance for data

sets of high complexity relies on parallel computing techniques.

3We used the biconjugate gradient stabilized method solver (BiCGSTAB) from the Eigen library,
eigen.tuxfamily.org





Chapter 5

Hierarchical construction and editing of

surfaces

As we have already mentioned the tensor-product B–spline technology is the basic spline

representation in most computer–aided geometric design software and libraries. Nevertheless

this representation has a significant drawback when it comes to design of objects with small

details. To create these small features, we have to refine the surface (or volume) to obtain

the necessary resolution in the given areas. However, in case of tensor-product splines the

refinement spreads over the control grid and thus create a big amount of unnecessary control

points. To solve this problem several approaches were proposed, for example HB–splines

[17, 35, 36], T–splines [46, 47] or LR B–splines [13].

These approaches provide the possibility of a strictly localized refinement, nevertheless

suffer from other drawbacks, such as missing convex hull property or difficult generalization

to dimensions higher than 2.

In this chapter we illustrate some of the modeling capabilities of THB–splines. First, we

introduce the TRANSFER_T algorithm, using which we can determine the control points of

the refined THB–spline object without changing its geometry. Furthermore, we comment

on the possibility of creating surfaces with locally reduced smoothness and present several

examples.

71
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5.1 Refinement of THB–splines

As mentioned already in Sections 2.1.3 and 2.1.4 we can easily compute the control points

of a curve, surface or any higher dimensional B–spline object after a refinement step, by

multiplying a transfer matrix R with the matrix storing the control points of the original

B–spline. In this section we present an algorithm which performs the computation of the

matrix R for THB–splines. It proceeds iteratively, determining the refinement coefficient of

every basis function.

5.1.1 Computation of the transfer matrix

Let us consider subdomain sequences Ω and Ω̄ such that Ω` ⊆ Ω̄` for every ` = 0, . . . , N

with the corresponding THB–spline bases T and T̄ . Considering the nested nature of the

subdomain structures Ω and Ω̄ we know the following:

Lemma 5.1.1 ([53]). Consider the two sequence of nested domains

Ω0 ⊇ Ω1 ⊇ . . . ⊇ ΩN = ∅ and Ω̄0 ⊇ Ω̄1 ⊇ . . . ⊇ Ω̄N = ∅

together with the corresponding hierarchical bases T and T̄ . If Ω` ⊆ Ω̄` for every ` = 0, . . . , N

span T ⊆ span T̄ .

Thus for every f ∈ spanT we obtain the following result

f(x) =
∑
i∈I

ciτi(x) =
∑
ī∈Ī

c̄iτ̄i(x) τ ∈ T , τ̄ ∈ T̄

where I and Ī are the index sets for for bases T and T̄ .

Similarly to the B–spline case (see Section 2.1.3) we can compute the control points

P̄ = (c̄i)i∈Ī corresponding to T̄ using the transfer matrix R, i.e. P̄ = RP , where P = (ci)i∈I
are the control pints associated with T . Unfortunately, compared to the knot insertion
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algorithm, it is significantly more difficult to compute the matrix R in case of THB–splines.

We have to consider not only the refinement but also the possible truncation of functions

at different levels as well. Using the list of active functions, described in Section 3.2, for T

and T̄ as well as a sequence storing the transfer matrices between underlying bases B` and

B`+1 for ` = 0, . . . , N − 1, the algorithm TRANSFER_T determines the matrix R for T and T̄ .

The number of rows of the output matrix R is equal to the number of basis functions in T̄

and number of columns to the number of basis functions in T . In the following algorithm

we denote by m`, ` = 0, . . . , N the number of basis functions of the B–spline B`.

Algorithm TRANSFER_T(seqlist OLD, seqlist NEW, seqmat BTRANS)

\\ seqlist OLD sequence of lists of active functions for T
\\ seqlist NEW sequence of lists of active functions for T̄
\\ seqmat BTRANS transfer matrices between B` and B`+1 for ` = 0, . . . , N − 1
create null matrix R

for all levels L do{
for i from 0 to end of OLD[L] do{

create vector M of size mL

M [OLD[L][i]] = 1
for j from L to N − 1 do{

if j>L{
for k from from 0 to end of OLD[j]do{

M [OLD[j][k]] = 0 }}

for k from 0 to end of NEW[j]do{
set the corresponding value of R to M [NEW[j][k]]}

M = BTRANS[L] M}}}

return R}

This algorithm iterates through all basis functions of T (represented by the seqlist OLD)

and determines their representation in the refined basis T̂ .

For completeness we provide the the algorithm TRANSFER_K which computes the transfer

matrices for two nested HB–splines. This algorithm will be used for the computations in

Chapter 6.
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Algorithm TRANSFER_K(seqlist OLD, seqlist NEW, seqmat BTRANS)

\\ seqlist OLD sequence of lists of active functions for T
\\ seqlist NEW sequence of lists of active functions for T̄
\\ seqmat BTRANS transfer matrices between B` and B`+1 for ` = 0, . . . , N − 1
create null matrix R

for all levels L do{
for i from 0 to end of OLD[L] do{

create vector M of size mL

M [OLD[L][i]] = 1
for j from L to N − 1 do{

for k from 0 to end of NEW[j]do{
set the corresponding value of R to M [NEW[j][k]]
M [NEW[j][k]] = 0}

M = BTRANS[L] M}}}

return R}

5.1.2 Local change of THB–spline smoothness

As already mentioned in Section 2.1.2 the smoothness of a B–spline is closely related to its

knot vector. Since the construction of the THB–spline basis is based on the standard B–

spline technology, i.e. every THB–spline can be represented as a sum of standard B–splines

(see Equation 2.5), we observe the same connection between the multiplicity of knots and

the smoothness.

Recall that our work focused on a simple dyadic refinement of the B–spline bases B` where

we inserted exactly one knot to every not empty knot span (although theoretically more

general refinement strategies are possible). In fact the kD-tree data structure described

in Section 3.1 is constructed in a way which only supports dyadic refinement, since the

coordinates of inserted and stored boxes are computed with respect to dyadically refined

mesh. However, for reducing the smoothness of a THB–spline, we exploit the fact that

increasing the multiplicity of a knot u at any refinement level ` does not require any change

of the kD–tree structure. However, to maintain the nested nature of the underlying knot
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vectors we have to increase the multiplicity of the inserted knot at every level higher than `

and adjust all corresponding lists of active functions.

To compute the control points of the THB–spline after the knot insertion we can use an

improved implementation of the TRANSFER_T algorithm presented in the previous section

which also considers the possible function refinements inside of a given level, which occurs

due to the knot insertion. We would like to point out that the reduced smoothness in level

` introduced by a multiple knot u is present in every connected component of Ωk, k > `

which overlaps with the knot line given by u. This is due to the fact that all connected

components of Ωk stare one underlying B–spline basis Bk.

5.2 Examples

In this section we present several THB–spline geometries which are constructed and refined

interactively. All presented examples are created in the Axel [1] modeling tool together

with our THB–spline implementation from the G+Smo library [25]. Despite the fact, that

Axel only offers the most basic modeling options, such as modeling using the control points

of a surface, it provides a fairly simple interface for the integration THB–splines.

Example 5.2.1. We construct a truncated hierarchical surface, where the underlying

B–spline basis B0 is of degree 3 in both direction, defined over the knot vectors U and V

where U = V = {0, 0, 0, 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1, 1, 1, 1}. The B–spline

bases B`, ` > 0 are constructed as described in Section 2.2.1. As we can see in Figure 5.1 the

control points connected to refined areas influence smaller and smaller parts of the surface

as the refinement level grows. Furthermore, we can observe that the refinement is strictly

localized and does not propagate over the mesh. Additionally, thanks to the non–negativity

and partition of unity properties of the THB–spline basis, the created surface is still in the

convex hull of its control net and the control points have clear geometric meaning.

Example 5.2.2. We now present a more advanced example of local multilevel editing

in the bivariate case. Our initial object is a wine glass in B-spline form shown on the
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(a) Control grid (b) THB–spline surface

Figure 5.1: The control grid shows the different levels of refinement where
the colors red, black, green, dark blue and purple correspond to
different levels of refinement (from 0 to 5 respectively). The area
of influence of control points from levels 0, 1, 3, 5, from the upper
left corner of the surface to the lower right corner decreases. This
allows to create complex shapes with relatively small number of
control points in specialized CAD software.

left side of Figure 5.2. We consider three additional refinement steps. The locally refined

subdomain structures and the corresponding THB–spline geometries with their multilevel

control nets are shown in Figure 5.2 (center and right). As we can see the adaptive nature

of THB-spline refinement allows to add additional control points only in the upper part of

the model, what makes it possible for us to modify the bowl part of the model without

any prolongation of the change to the stem or foot area of the glass. These newly created

control points can be interactively moved to change the shape of the bowl of the glass and

introduce additional local features as shown in Figure 5.3. The standard tensor-product

B–spline representation would have required a global refinement of the mesh, what would

introduce a huge amount of degrees of freedom (control points) which are not necessary for

creating the desired shape. The presented wine glass example is already shown in [22].

Example 5.2.3. In this example we would like to demonstrate the possibility of creating

surfaces with locally reduced smoothness. Our initial THB–spline basis is constructed by
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Figure 5.2: Wine glass model considered in Example 5.2.2. The original B–
spline geometry (top left) is shown together with three refined
THB-spline representations (top). The hierarchical subdomain
configurations for the different stages of the refinement are shown
(center). Finally, detail of the knot lines along the THB–spline
surface showing the T-junctions at the interface between two sub-
sequent hierarchical levels is shown (bottom).

using B0 from Example 5.2.1. However, instead of simply refining the surface we insert

the knot u = 0.5 twice into the knot vector U at level 1, while the knot vector V in

level 1 remains unchanged. Using this configuration, the areas of the surface without any

refinement remain C2 continuous, since they are connected with the B–spline B0 where no
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multiple knots are present, whereas the refined areas (to level 1 or higher) around the knot

line u = 0.5 are C0 continuous due to the increased knot multiplicity. This can be easily

observed on Figure 5.4, where the reflection lines on the peak not influenced by the level

1 refinement remained smooth, whereas they are discontinuous on the peak in the lower,

refined, part of the surface (see Figure 5.4 (c)).

Example 5.2.4. We present a more complicated object with locally reduced smoothness

in Figure 5.5. The original surface is a bicubic B–spline with single knots, see Figure 5.5

(a). We increase the multiplicity of the knot u = 0.5 in vertical direction to 3 in level 1 and

higher. Subsequently we refine the right half of the surface and the area corresponding

to the nose. Until the computed control point does not change their location the surface

remains C2 continuous as we can see in the mouth and chin a parts of the face model. On

the upper part of the surface we made small perturbation of the control points around the

edge between the levels 0 and 1. This result into a visible “break” in the surface which

shows that the surface is in deed C0 continuous in the area influenced by the knot u = 0.5,

see Figure5.5 (b). As last step we increased the refinement level around the tip of the nose

to level 2 so we can more clearly see the “blending” area where the C0 part of the surface

(the nose part) is joined with the C2 smooth part of the face model.
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Figure 5.3: Local editing of the wine glass considered in Example 5.2.2. Start-
ing with THB–spline object obtained by 2 refinement steps, intro-
duced in Figure 5.2 (third picture in the top row), we change the
shape of the glass bowl by moving several control points towards
the center of the bowl. This results in the shape shown (top left).
Additionally, we refine a small area on the top of the bowl (top
middle) where we create a small “cusp” (top right and bottom).
The subdomain configurations at the different stages are also shown
(center).
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(a) Control grid (b) THB–spline surface

(c) Deail of the area with reduced smoothness

Figure 5.4: The control net of the refined surface with a multiple knot u = 0.5
in level 1. As we can see the surface in the areas not influenced by
the refinement (upper part of surface (b)) are still smooth as we
can see it on the reflection lines on the left–hand side of (c) whereas
the part of the surface influenced by the level 1 refinement has only
C0 continuity as we can see on the detail on the right–hand side
of (c).



5.2 Examples 81

(a) B–spline face

(b) THB–spline face with reduced smoothness

(c) Additional refinement and detail of the surface on the boundary of C2 and
C0 areas

Figure 5.5: In the original C2 continuous B–spline surface (a), we increased
the multiplicity of the knot u = 0.5 to 3 in level 1, as described in
Example 5.2.4. After refining the surface and changing the position
of several control points on the upper part of the surface, the C0

continuous area is clearly visible (b). In figure (c) we made an
additional refinement of the nose area of the surface and we show
the detail of the surface where the C2 and C0 parts meet.





Chapter 6

Multigrid solvers for isogeometric

analysis with THB–splines

Isogeometric analysis (IgA) is a recently developed technology in numerical analysis that

offers the possibility of integrating methods for analysis and Computer–Aided Design (CAD)

into a single, unified process. The standard approach in numerical analysis, the finite

element analysis (FEA), uses polygonal meshes to describe the geometry of an object, while

the standard technology used by computer–aided design community are B–splines, NURBS

or subdivision surfaces. The data exchange between the FEA and CAD communities

requires re-parametrisation of the CAD geometry, which is an expensive process that may

take more than 80% of the total time required for analysis, and in most cases it introduces

discretization errors. The main idea of isogeometric analysis is to use the same description

of geometry, in this case the CAD representation, for both, design and analysis. The first

results regarding this approach were published by Hughes, Cottrell and Bazilevs in [32],

where B–splines (NURBS) are used as basis functions for finite element analysis. In the

following years the IgA community grew significantly providing many results on different

topics of FEA. In this chapter we use (T)HB–splines as a discretization basis to solve elliptic

partial differential equations using multigrid solvers in the IgA framework. Our goal is to

analyze the impact of the truncation on the efficiency of the multigrid solvers. The results

83
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presented in this chapter are based on our collaboration with C. Hofreiter [28].

6.1 Multigrid methods for adaptively refined isogeometric

discretizations

In this section we introduce the necessary background machinery used in the examples in

Section 6.2.

6.1.1 Nested sequences of hierarchical B-spline spaces

Let us assume that for each k ∈ N, we have a finite sequence of nested subdomains

Ωk = (Ω`
k)`∈N.

Additionally, we make an assumption that

Ω`
k ⊆ Ω`

k+1 ∀k, ` ∈ N.

Schematically, we have the relations

Ω = Ω0
k ⊇ . . . ⊇ Ω`

k ⊇ Ω`+1
k ⊇ . . . ⊇ ∅

= ⊆ ⊆

Ω = Ω0
k+1 ⊇ . . . ⊇ Ω`

k+1 ⊇ Ω`+1
k+1 ⊇ . . . ⊇ ∅.

That means the subdomain structure Ωk+1 is obtained by refining Ωk.

Due to Lemma 5.1.1, this yields

span{T0} ⊆ span{T1} ⊆ . . .

where Ti denotes the truncated hierarchical basis over Ωi. A similar conclusion holds for

the standard hierarchical basis Ki defined over Ωi.
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6.1.2 Construction by adaptive refinement

In practice, we use adaptive refinement based on an a posteriori error estimator to construct

the sequence of nested subdomains Ωk. We start with a coarse tensor-product B–spline

discretization defined over the parameter domain. This means that the initial hierarchy

Ω0 contains only a single domain, namely, the entire parameter domain. Let V0 be the

hierarchical spline space defined over Ω0, which is in this case a standard tensor-product

spline space, and let u0 be a discrete solution of a discretized boundary value problem over

this coarse space.

Based on this solution, we compute an a posteriori error estimator (see [22]) and refine

the parts of the domain where the error is largest. This results in a new hierarchy

Ω1 = (Ω,Ω1
1),

which induces a refined hierarchical spline space V1 ⊃ V0. Now we solve the discretized

boundary value problem in V1 and obtain a new discrete solution u1. Subsequently, we

repeat the process of a posteriori error estimation and adaptive refinement. At every

iteration we introduce at most one new level to the hierarchy, so that after the k-th step we

obtain a hierarchy

Ωk = (Ω,Ω1
k, . . . ,Ωk

k)

and associated hierarchical spline space Vk. We terminate this iterative process once we are

satisfied with the accuracy of the obtained solution uk.

6.1.3 Application of multigrid

The nested sequence of discretization spaces V0 ⊂ V1 ⊂ . . . ⊂ Vk, constructed during

the iterative refinement process in the previous section, allows us to apply a multigrid

framework to the solution of the discretized problem in Vk. The key idea of the multigrid

approach is the projection of a large problem defined over a fine grid into a much smaller

problem defined over a very coarse grid. This procedure is called restriction. Consequently
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Figure 6.1: A discretized problem in Vk is restricted, possibly in several steps
to a coarse problem in V0, where we solve the problem using a
direct solver. Consequently we project this solution back to Vk.

we compute a discrete solution of the restricted problem problem which is finally projected

back onto the original grid, so called prolongation. We call these three steps a V-cycle, see

Figure 6.11. For the computation of the transfer matrices Rj which describe the embedding

of Vj in Vj+1, we use the procedure described in Section 5.1.1. More specifically the matrices

computed by the algorithms TRANSFER_T and TRANSFER_K are the prolongation matres.

The restriction matrix is obtained by inverting the output of these algorithms.

In the multigrid framework it is also required to use a smoothing step after every

restriction and prolongation. In the present work, we use a simple Gauss-Seidel smoother,

i.e. the smoothing matrix Sk on level k is chosen as the lower triangular part of the stiffness

matrix on the same level. It is understood by now, that in the isogeometric setting, this

simple smoothing strategy does not always result in optimal multigrid solvers, especially in

case of higher spline degrees and space dimensions [30]. However, the design of optimal

smoothers for isogeometric analysis is still a field of active research, and we therefore stick

with the simple choice of the Gauss-Seidel smoother.

1For details about the multigrid framework see [5, 26, 51].
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6.2 Numerical experiments

In this section, we present experimental results for three model problems. Example 6.2.1 uses

a synthetically generated sequence of meshes and a smooth solution, while Examples 6.2.2

and 6.2.3 use adaptive refinement by a posteriori error estimation for problems with

non–smooth solutions.

In all examples, we compare the number of V-cycle iterations required for obtaining

a satisfactory solution of a discretized boundary value problem using THB–splines and

HB–splines. Throughout we use V-cycle iteration with one pre- and one post-smoothing

Gauss-Seidel step on each level. The stopping criterion in all cases is the reduction of the

Euclidean norm of the initial residual by a factor of 10−8.

Example 6.2.1. On the square Ω = (−1, 1)2, we construct a hierarchy of THB–spline

spaces by adaptively fitting the function

v(x, y) = exp(52
√

(10x− 2)2 + (10y − 3)2)−1

starting from a coarse tensor-product spline space using the fitting procedure described

in Chapter 4. An example of the mesh resulting after several fitting steps is shown in

Figure 6.2.

We then solve the Poisson equation

−∆u = f in Ω, u|∂Ω = g,

where the right–hand side and Dirichlet data are chosen according to the smooth solution

g(x, y) = sin(πx) sin(πy).

The subdomain structure generated by the fitting process and the corresponding (T)HB–

spline spaces are used as the grids in our multigrid method. The iteration numbers required

to reduce the Euclidean norm of the initial residual by a factor of 10−8 are show in Table 6.1.
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Figure 6.2: The domain structure obtained after five steps of adaptive fitting
with biquadratic THB–splines used in Example 6.2.1.

p = 2 p = 3 p = 4
THB HB THB HB THB HB

` dofs iter iter dofs iter iter dofs iter iter
0 49 64 81
1 109 11 24 169 42 42 196 165 165
2 365 15 47 475 88 548 528 873 13264
3 829 12 31 1174 75 434 1272 629 12802
4 1487 13 29 2266 81 412 2509 433 10701
5 2317 12 29 3580 75 408 4136 415 9075

Table 6.1: Comparison of iteration numbers for Example 6.2.1.
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Example 6.2.2. We solve the Poisson equation

−∆u = f in Ω, u|∂Ω = 0

with the source function

f(x, y) =


1, (x− 0.25)2 + (y − 1.6)2 < 0.22,

0, otherwise.

The domain Ω approximates a quarter annulus in the first quadrant with inner and outer

radius 1 and 2, respectively, by means of quadratic tensor-product B–splines.

Figure 6.3: Left: Subdomain from Example 6.2.2 with quadratic THB-splines
after six adaptive refinement steps (6249 dofs). Right: Solution
field.

Starting from a coarse tensor-product B–spline basis (` = 0), we construct a hierarchy of

THB–spline spaces by means of adaptive refinement based on an a posteriori error estimator.

An example of a THB–spline basis arising from this adaptive refinement process, as well as

a plot of the obtained solution, are shown in Figure 6.3.

We then set up a multigrid method as described above which always has ` = 0 as its coarse

grid and solves the problem on some given level ` by V-cycle iteration. The comparison of
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p = 2 p = 3 p = 4
THB HB THB HB THB HB

` dofs iter iter dofs iter iter dofs iter iter
0 100 121 144
1 182 15 34 195 68 238 226 183 3656
2 343 18 41 353 75 382 381 397 6112
3 701 24 57 668 131 1176 673 478 6113
4 1355 26 64 1326 198 734 1216 2012 25559
5 2822 23 98 2635 144 987 2312 1436 34310

Table 6.2: Iteration numbers for Example 6.2.2.

iteration numbers obtained by HB– and THB–splines is shown in Table 6.2.

Example 6.2.3. We solve the classical benchmark problem for a singularity arising from a

reentrant corner on the L-shape domain

−∆u = 0 in Ω, where Ω = (−1, 1)2 \ [0, 1]2.

We choose pure Dirichlet boundary conditions according to the exact solution, given in

polar coordinates,

g(r, ϕ) = r2/3 sin((2ϕ− π)/3),

where the argument is assumed to have the range ϕ ∈ [0, 2π). The geometry is represented

by piecewise linear splines.

We then perform adaptive refinement using THB–splines as described in Example 6.2.2.

An example of a THB-spline mesh arising from adaptive refinement is shown in Figure 6.4.

We present the resulting iteration numbers for this example in Table 6.3.

All our experiments show that using THB–splines significantly reduces the number of

V–cycle iterations necessary for reduction of the initial residual by factor 10−8 in comparison

to standard HB–splines. The difference in iteration numbers increased for higher spline

degrees. We assume that the smaller iteration numbers in the THB–spline case result from

the reduced size of the support of basis functions. We would like point out that for high
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Figure 6.4: L-shape domain with cubic THB–splines after four adaptive refine-
ment steps (2379 dofs)

p = 2 p = 3 p = 4
THB HB THB HB THB HB

` dofs iter iter dofs iter iter dofs iter iter
0 630 703 780
1 810 18 33 909 71 297 982 392 3487
2 1163 16 35 1252 68 317 1332 370 3300
3 1631 18 33 1721 84 359 1783 557 4266
4 2338 17 41 2379 73 395 2458 446 5873
5 3327 18 32 3414 87 382 3514 615 6804

Table 6.3: Iteration numbers for Example 6.2.3.
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spline degrees, the iteration numbers are not satisfactory even when using THB–splines.

This can be caused by the fact that the used Gauss-Seidel smoother does not perform well

for high spline degrees [29]. As mentioned already before the research of optimal and robust

smoothers for isogeometric multigrid methods is ongoing.
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Conclusion

The presented work addressed the topic of truncated hierarchical B–splines. It is split into

two main parts.

The first part focuses on the theoretical background and definition of the truncated

hierarchical B–spline basis. This is supplemented by a presentation of efficient data

structures and algorithms which are useful for the implementation of THB–splines.

As we have seen in Chapter 2, the construction of the THB–spline basis requires additional

effort during its construction, compared to the standard HB–spline basis, what is caused by

the truncation of the basis functions. However, this additional effort is not that significant

and it is compensated by the improved properties of the basis. These include for example a

reduced overlap between the basis functions of different levels, reduced support of basis

functions, and the regained partition of unity.

For an efficient representation of the nested subdomain hierarchy Ω, which is a basic

building block of the THB–spline representation, we used a kD–tree structure. This

structure is not only a compact representation of Ω, but also provides functions which

enable additional refinement and fast identification of active functions.

The presented work focused only on dyadic refinement. In some applications it may be

beneficial to use different refinement strategies, or even use different refinement strategy in

93
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every refinement level. These generalized approaches would require a more flexible data

structure for storing the subdomain structure of a THB–spline, and could be an interesting

topic for further research.

In this thesis we have proposed two different ways to store information about the basis

functions from different levels contributing to the final basis. The first approach stores

information about all B–spline basis functions from all levels, both active and passive,

thus providing fast access to the data. The second one only stores information about the

active functions. As our examples show, storing only the information about active functions

significantly reduces the memory consumption of our method, in many cases by more than

90 %. This is compensated by a small decrease in the speed of the evaluation algorithm,

usually around 10-15 %. This is due to the slower access to the data in the data structure

which explores the sparsity of the stored data.

Our current implementation of the THB–spline basis is available as a module in the

G+Smo library [25], which is an open source, object-oriented C++ library focused on isoge-

ometric analysis. The library exploits object polymorphism and inheritance techniques to

provide a variety of different discretization bases, for example B–spline, Bernstein, NURBS

bases, hierarchical and truncated hierarchical B-spline bases of arbitrary polynomial order,

etc. The implementation of bases and geometries is dimension-independent. That means

the curves, surfaces, volumes, and other higher dimensional objects are instances of code

templated with respect to the dimension of the parameter domain.

The second part of the thesis concentrates on the application of the THB–spline technology

in various fields, more specifically on surface reconstruction from measured data, interactive

modeling, and isogeometric analysis. Among other results we described a simple regularized

least-squares approximation method for CAD model reconstruction, together with two

different refinement strategies – the absolute and relative threshold strategy. As we have

seen, both can provide results that satisfy the strict industrial requirements on precision.

The absolute threshold strategy is usually more efficient in terms of required iterations,

the relative threshold strategy is nevertheless more preferable in cases when the maximum
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allowed level of refinement is small.

In addition to the simple academic examples, we have tested our reconstruction method

on challenging real world data sets and compared its results to the results obtained

using standard tensor-product B–splines. We observed a significant improvement in the

reconstruction, not only in terms of degrees of freedom, but also in the quality of the surface.

While the results obtained from B–spline reconstruction suffer from strong oscillations, the

THB–spline surface reconstructed the data precisely. This behaviour is most notable in

case of data sets with a strongly varying data density.

Further, we presented two options for exporting THB–splines into a standard CAD

format. The THB–spline surface is in both cases divided into several B–spline patches

which are exported to a format compatible with the standard CAD software (in our case

ParasolidTM). These B–spline patches represent the original THB–spline geometry exactly,

no error is introduced during the export process.

In our work we did not search for a box partition with minimal number of boxes in the

case of the rectangular partition splitting method. Nevertheless, it could be interesting for

industrial applications where the number of resulting patches may influence the speed of

the post–processing steps.

Another topic for future research could be the generalisation of our export algorithm to

higher dimensions, again with special focus on partition of the THB–spline subdomains

into a small number of patches.

A further topic addressed in our work is the possibility to manipulate THB–spline objects

by moving or adding control points, and refining the object interactively. On the one hand

this is important for creating simple test cases necessary for additional research. On the

other hand a suitable modeling tool would make the THB–spline technology more popular

in other areas, for example design or engineering.

We have also presented an algorithm that performs the computation of transfer matrices

between two nested THB–splines. We have realised a connection between our THB–spline

implementation in G+Smo library and the Axel modeler developed by INRIA [1]. Axel

provides only a basic set of modeling tools which may be sufficient for creating simple objects,
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as we have presented in Section 5.2, but they are not sufficient for creating complicated

models needed in real life applications. Nevertheless, the presented locally refined objects,

and the objects with locally reduced smoothness show that the THB–splines can be indeed

a valuable modeling tool. We believe this chapter will motivate further improvements and

research in this area.

The last field where we employed THB–splines is isogeometric analysis. Our goal was

to analyse the influence of the truncation mechanism on the performance of multigrid

solvers. Therefore we used both HB– and THB–splines as a discretization basis in the

multigrid solver framework for isogeometric analysis. We have presented three numerical

examples where we compared the efficiency of both bases in terms of the number of V–cycle

iterations. We observed that in all tests the performance of the THB–splines is superior

to the HB–splines. In most cases the multigrid solver using THB–splines as discretization

basis required significantly fewer V–cycle iterations than with HB–splines to achieve the

same improvement of accuracy. Nevertheless, we would like to point out that the iteration

numbers for THB–splines are still considerably larger than for the standard B–splines,

especially for high degrees. As already mentioned, the smoothers used in standard multigrid

techniques are not optimal in the case of isogeometric analysis. There is an ongoing research

on efficient smoothers for standard B–splines that could later lead to investigation of efficient

smoothers for hierarchical splines as well.
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