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Abstract

In this dissertation, we explore spatial overconstrained closed linkages with six
revolute joints and a single-degree-of-freedom (6R linkages). The first 6R linkage
was invented by Pierre Frédéric Sarrus in 1853. In the literature, a lot of 6R
linkages were found by numerous methods. New 6R linkages are still being found
by new methods, too. But the answer on the classification question of 6R linkages
is open. The aim of this dissertation is to try to fill the gap. We will use two
new methods: bond theory and factorization of motion polynomial to analyze 6R
linkages. These two methods, which were invented by my supervisor Josef Schicho
and his collaborators, are based on algebraic geometry and computer algebra.

In the first part, we will recall bond theory. Simultaneously, we give the genus bound
for mobile 6R linkages. Using this new theory, we introduce a new technique for de-
riving equational conditions on the Denavit-Hartenberg parameters of 6R linkages
that are necessary for movability. Several new families of 6R linkages are derived by
this new technique. In the second part, we will recall the method of factorization of
motion polynomials. There are cases where the factorization does not exist. But,
even in these cases, we can do some reduction to the cases where the factorization
does exist. Using the factorization method and bond theory, we construct several
new 6R linkages. In the third part, we will give the sub classification of 6R linkages
that have three equal pairs of opposite rotation angles (angle-symmetric 6R link-
ages). In the classification, there are three families. Two families are known and
one family is new. This new 6R linkage has an additional parallel property, namely,
three parallel pairs of joints. We also give the classification of the parallel 6R link-
ages. The new angle-symmetric family appears in both classifications. In addition,
we find two other types. One has the translation property: three rotational axes
can be obtained by a single translation from other three axes. The other one is a
special case of the known family of angle-symmetric 6R linkages.

In the final part, we will give an overview of results and open questions on the
classification of 6R linkages.
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Zusammenfassung

In dieser Dissertation werden räumliche überbestimmte geschlossene Gelenkme-
chanismen mit Drehgelenken und einem Freiheitsgrad der Bewegung (6R-Mecha-
nismen) untersucht. Erstmals wurde ein solcher Mechanismus von Pierre Frédéric
Sarrus 1853 gefunden. Seither wurden viele weitere Konstruktionen von 6R-Mecha-
nismen in der Literatur angegeben, und bis heute werden noch bisher neue Mecha-
nismen mit verschiedenen Methoden gefunden. Die Klassifikation aller 6R-Mecha-
nismen ist ein offenes Problem. Diese Dissertation zielt auf diese offene Frage hin.
Wir verwenden zwei neue Methoden zur Analyse von 6R-Mechanismen: Bond-
Theorie und Faktorisierung von Bewegungspolynomen. Beide Methoden wurden
von meinem Betreuer Josef Schicho und Ko-Autoren entwickelt und basieren auf
algebraischer Geometrie und Computer-Algebra.

Im ersten Teil wird Bond-Theorie eingeführt und gleichzeitig ein Schranke für das
Geschlecht der Bewegungskurve eines 6R-Mechanismus angegeben. Mithilfe der
Bond-Theorie und einer neuen Technik leiten wir notwendige Bedingungen für die
Beweglichkeit eines 6R-Mechanismus in Form von Gleichungen in den Denavit-
Hartenberg-Parametern her. Mit der gleichen Technik werden auch noch mehrere
bisher unbekannte Familien von 6R-Mechanismen hergeleitet.

Im zweiten Teil führen wir Bewegungspolynome und deren Faktorisierung ein. Zwar
gibt es Fälle, in denen keine Faktorisierung existiert, die Methode also nicht anwend-
bar scheint. Jedoch gelingt in diesen Fällen eine Reduktion auf solche Fälle, für die
eine Faktorisierung existiert. Mit diesem Trick und den beiden erwähnten neuen
Methoden werden nun mehrere neue 6R-Mechanismen konstruiert.

Im dritten Teil geben wir die Teilklassifizierung aller 6R-Mechanismen an, deren
Bewegungswinkel drei Paare von jeweils gleichen gegenüberliegenden Winkeln bil-
den (winkel-symmetrische 6R-Mechansimen). Diese lassen sich unterteilen in drei
Familien. Davon sind zwei wohlbekannt, die dritte ist jedoch neu. Die dritte Fa-
milie besitzt eine zusätzliche Eigenschaft, nämlich drei Paare von jeweils parallelen
Drehachsen. In der Folge geben wir auch die Klassifikation dieser “parallelen 6R-
Mechanismen” an. Die oben erwähnte Familie findet man auch in dieser Klassifika-
tion wieder. Darüber hinaus existieren noch zwei weitere. Eine ist durch folgende
Translations-Eigenschaft charakterisiert: drei der Drehachsen erhält man durch eine
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einzige Translation der anderen drei. Die andere Famile erweist sich als Spezialfall
einer der beiden bekannten Familien von winkel-symmetrischen 6R-Mechanismen.

Im letzten Teil geben wir einen Überblick über die Ergebnisse und offene Fragen
über die Klassifizierung von 6R-Mechanismen.
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Chapter 1

Introduction

In kinematics, a closed linkage is a mechanical structure that consists of a finite
number of rigid bodies – its links – and a finite number of joints that connect the
links cyclically together, so that they possibly produce a self-motion. The degree
of freedom (dof) of a closed linkage is the number of independent parameters that
define its configuration. A self-motion means that the dof is bigger than zero. For
the links, one could take different shapes without changing the self-motion property.
But the joints do impact the self-motion. So we mainly focus on the joints in this
dissertation. There will be four types of joints in the dissertation:

1. (R) revolute joints: allow rotations around a fixed axis (1-dof);

2. (P) prismatic joints: allow translations in a fixed direction (1-dof);

3. (C) cylindrical joints: allow rotations around a fixed axis and translations in
the the direction of the axis (2-dof);

4. (H) helical joints: allow the motions of a cylindrical joint where the rotation
angle and the translation length are coupled by a linear equation (1-dof).

Whenever two links are connected by a revolute joint, their relative position is
constrained to a rotation around an axis. More precisely, the relative position is
determined by the rotation angle about this joint with respect to a given reference
configuration. The set of all tuples of possible rotation angles is called the linkage’s
configuration space. If it is of dimension one, we call it a configuration curve and
say the linkage has one degree of freedom. If this is the case, we designate one link
as fixed and another as moving and call them fixed and moving frame, respectively.
We view the relative displacements of the moving frame with respect to the fixed
frame as a curve in the special Euclidean group SE3.
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Chapter 1 Introduction

For a closed linkage, the mobility is defined as the dimension of the configuration
space. If the links of the closed linkage move in three-dimensional space, then
in general the mobility of a closed linkage with six revolute joints is 0 from the
mobility formula (Chebychev-Grübler-Kutzbach criterion [52]) 6 − n = 0 where n
is the number of 1-dof joints in the closed loop. A linkage is overconstrained if
it has more mobility than the mobility formula predicted. An overconstrained 6R
linkage is a closed 6R linkage that does produce a one-dimensional (at least) self-
motion in three-dimensional space. It is known that it is mobile when the six joints
are parallel (planar) or intersecting at one point (spherical). We mainly consider
the closed linkage with six revolute joints (6R linkage) in three-dimensional space
(non-planar or non-spherical). Furthermore, we will only focus on the mobility 1
case. When the mobility is more than 1, it can be treated as a 5R linkage with
an extra redundant joint(s). The classification of mobile 5R linkage is known.
There is only one spatial 5R linkage with mobility 1 [28, 36], i.e., the Goldberg
5R linkage, which was first introduced in [24]. It was constructed by merging
two Bennett 4R linkages which have two adjacent common joints, where one of
them has the same rotational speed and the other one does not. The Goldberg
5R linkage is the mechanism with removing the joint with the same speed. For
the 6R case, the first overconstrained 6R linkage (6R linkage with mobility 1) was
invented by Pierre Frédéric Sarrus in 1853 [56]. It is a mechanical linkage which can
produce a linear motion from a limited circular motion. It is a spatial linkage which
consists of two triples of parallel joints. Since that time, a lot of 6R linkages were
found, e.g., Bricard 6R linkages, the Dietmaier 6R linkage, the Hooke linkage which
as considered the generalized Sarrus linkage, the Wohlhart partial symmetric 6R
linkage, the Waldron double Bennett linkage, etc. New 6R linkages are still being
found until now with numerous methods. On these methods, we will not introduce
them in this dissertation, because there is almost no relation with the methods used
in the dissertation. We would like to suggest two review papers [17, 21] on the topic
the 6R linkages which provide an overview on existing methods and further results.

As a rotational joint has a fixed axis, it is equivalent to consider the six rotational
lines in the space. For the lines in the space, there are geometric invariant parame-
ters which are also known as Denavit-Hartenberg parameters. A closed 6R linkage
is uniquely determined by its set of Denavit-Hartenberg parameters [20], which con-
tains 18 real geometric invariants: the six twist angles αi, the six normal distances
di and the six offsets si. where i = 1, . . . , 6 as in Figure 1.1. A generic choice of
these parameters leads to a rigid 6R linkage. From algebraic point of view, the set
of geometric parameters of movable closed 6R linkages is an algebraic variety (affine
set) which is one of the central objects in algebraic geometry, which is defined by
algebraic equations (polynomials). But we do not know its equations, its dimen-
sions or even the numbers of components (families). It is worth mentioning that the
known families are just some subcomponents of this variety. For each genus (≤ 5),
there exist mobile 6R linkages with a configuration curve of such genus.

2



1.1 Main Contributions

Figure 1.1: The four parameters of classic DH convention are shown in red text,
which are θi, di, si, αi.

1.1 Main Contributions

The main contributions of this dissertation include four parts.

The first part is devoted to exploring the main theory we used, i.e., bond theory.
The bond theory was invented by my supervisor Josef Schicho and his collaborators
basing on algebraic geometry and symbolic computation. As there are relative
motions in the mobile closed linkages, the degrees of these motions can be calculated
if we know the linkages. The bond theory could give you an explicit view of these
degrees in items of bond diagrams, which have vertices (corresponding to links),
edges (corresponding to joints) and connections between edges, where the number
of connections between edges is the degree of their relative motion. For instance,
we can see the bond diagram of Bricard’s line symmetric 6R linkage as in Figure 1.2
(c), where the degrees of all relative motions can be read off by making the relative
count of connections which go through the line that connected the two related
vertices. Furthermore, we can say more on the variety of the geometric parameters
of mobile 6R (1-dof) basing on the bond diagram. Using the bond theory and
algebraic geometry, we proved that the genus of the configuration curve is at most
5. For each genus (≤ 5), there exist mobile 6R linkages with a configuration curve
of such genus. The maximal genus was reached by several known examples, e.g., the
Hooke linkage, the Bricard’s orthogonal linkage, etc. Many families of 6R linkages
with merging Bennett linkages have genus 0. We prove the following theorem which

3



Chapter 1 Introduction
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Figure 1.2: Bond diagrams for Hooke’s double spherical linkage (a), Dietmaier’s
linkage (b), Bricard line symmetric linkage (c), and Bricard’s orthogonal
linkage (d).

is for classifying linkages with a genus 5 configuration curve.

Theorem 1.1. If the bond diagram is different from the diagrams Figure 1.2(a),
(b), and (d), then g(K) ≤ 3.

In principle, this is a glimpse of the classification of the components of the variety
of mobile 6R linkages.

The second part is a technique , namely quad polynomial, to derive algebraic equa-
tions on the Denavit-Hartenberg parameters using bond connections. The aim of
this technique is to make a step towards such a complete classification, by deriv-
ing necessary conditions for mobility; up to our knowledge, not a single necessary
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1.1 Main Contributions

equation condition has been known up to now. If we number the joints cyclically,
then a bond connects either joints i and i+ 2 – then we speak of a near connection,
– or it connects joints i and i + 3, and then we speak of a far connection. It was
shown that the existence of a near connection implies the validity of a well-known
condition which also arises frequently in many families, namely Bennett’s condition:
si = 0, and di

sin(φi) = di+1
sin(φi+1) , where si, di, φi are Denavit-Hartenberg parameters.

Bennett’s condition is equivalent to a kinematic condition on three consecutive rota-
tion axes, not all three parallel or intersecting, namely the existence of a fourth axis
such that the closed 4R linkage with these four axes is movable (see [12]). However,
there are many mobile 6R linkages without near connections, for instance Bricard’s
orthogonal linkage or Bricard’s line symmetric linkage. So, the Bennett conditions
are not necessary for mobility. The quad polynomial is a univariate polynomials of
degree 2 with coefficients depending on the Denavit-Hartenberg parameters by an
explicit formula.

Q+
1 (x) =

(
x+ b3c3 − b1c1

2 − s1

2 i
)2

+ i
2 (b1s2 + b3s3 + s2b3c2 + s3b1c2)−

b1b3c2 − s2s3c2

2 + s2
2 + s2

3 − b2
1 + b2

2 − b2
3 − b2

2c
2
2

4 .

For i = 2, . . . , 6, we define the quad polynomial Q+
i (x) by a cyclic shift of in-

dices that shifts 1 to i. Finally, we define Q−i (x) by replacing the parameters
c1, . . . , c6, b1, . . . , b6 and s2, s4, s6 by their negatives, and leaving s1, s3, s5 as they
are. For instance,

Q−1 (x) =
(
x+ b3c3 − b1c1

2 − s1

2 i
)2

+ i
2 (b1s2 − b3s3 − s2b3c2 + s3b1c2)−

−b1b3c2 − s2s3c2

2 + s2
2 + s2

3 − b2
1 + b2

2 − b2
3 − b2

2c
2
2

4 .

The existence of a far connection implies a common root of two such quad polyno-
mials, and this gives rise to necessary equational conditions.

Theorem 1.2. Let k be the number of bond connections of J1 and J4. Then

k ≤ deg(gcd(Q+
1 , Q

+
4 )) + deg(gcd(Q−1 , Q−4 )).

Because every mobile linkage has either near or far connections (or both), it is
then possible to write down necessary equational conditions for mobility (see Re-
mark 3.6). However, the full system of equations is too big and complicated, and
therefore it is better to follow the classification scheme suggested by bond theory
and distinguish cases according to the bond diagram. For any bond diagram, we
could write down the equations of the Bennett conditions for the near connections
and quad conditions for the far connections. In some cases, the equations are even

5



Chapter 1 Introduction

sufficient for mobility. For instance, we could classify the mobile 6R linkages with
genus 5. These introduce two new families but also yield the exist families, e.g., the
Dietmaier’s linkage can be obtained in this way.

The third part focuses on the factorization of motion polynomials . In principle,
the 6R linkage of genus 0 can be constructed in three steps, i.e., finding a motion
polynomial, factoring it into two different factorizations (corresponding to two open
chains) and combining the two open chains to a 6R linkages. It also needs the bond
theory for finding the exact degree of the motion polynomial. We give all possible
bond diagrams (at most 4 connections) of 6R linkages of genus 0. These contains 11
families of 6R linkages. There are only two bond diagrams with 3 bonds, Figure 1.3.
There are only nine bond diagrams with 4 bonds, Figure 1.4. This is based on the

J1

J2

J3

J4

J5

J6

(a)

J1

J2

J3

J4

J5

J6

(b)

Figure 1.3: Bond diagrams for the cube linkage (a) and Waldrons double Bennett
hybrid (b)

following lemma, where notations will be defined in Chapter 5.

Lemma 1.3. For an nR (6R/5R) linkage L = [h1, h2, ..., hn], where n = 5 or 6,
h2
i = −1 and hi 6= ±hi+1, if l123 = l234 = 6, then there is no bond which connects h1

and h4.

Using the factorization of motion polynomials and the bond diagrams above, one
can construct concrete example with each bond diagram (family). One can obtain
them in terms of merging Bennett linkages too.

The fourth part is devoted to considering subclassification problems of 6R linkages.
The classification of angle-symmetric 6R linkages which are linkages with the prop-
erty that the rotation angles of the three opposite joints are equal was obtained.
The classification of angle-symmetric 6R linkages contains three types of linkages.
Type one is the Bricard line symmetry 6R linkage. Type two is new. Type three is
the cube linkages which is constructed by the factorizations of a cubic motion poly-
nomial. The main tool is a λ-matrix, denote by M†, for an angle-symmetric linkage,

6



1.1 Main Contributions
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Figure 1.4: Bond diagrams of 6R linkages with four bonds

to be defined in Section 6.2, and its rank r. Intuitively speaking, the configuration
set of an angle-symmetric linkage can be written as the vanishing set of r equations
in three variables, namely the cotangents of the half of the rotation angles. We show
that the rank r can be only 2, 3, or 4. For r = 2, the angle-symmetric linkage is line
symmetric. For r = 3, we get the new linkage with three pairs of parallel axes. For
r = 4, we obtain the cube linkage constructed in [29, 30] using motion polynomials.
The new linkage has three pairs of parallel axes. Two pairs are neighbor axes. The
other pair is opposite. We call the linkage with this property parallel 6R linkage.
A classification of parallel 6R linkages was obtained. Namely, a parallel 6R linkage
either has the translation property, or is angle-symmetric.
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Chapter 1 Introduction

1.2 Aim and Open Questions

In the beginning of 2012, I came to Linz for joining DK (doctoral program). My
supervisor Prof. Josef Schicho and colleagues, namely, Prof. Hans-Peter Schröcker
and Dr. Gábor Hegedüs, just finished the conference paper of the bond theory. I am
very happy to join them. At the same time, I got a good exercise on the calculation
of bonds for a 6R linkage. This was a really good exercise for me. I decided to
study 6R linkages using bond theory in my thesis. After three years living with
bond theory, I understand the bond theory better, even derived advance results to
refine the bond theory. This gives me quite a lot profit on understanding the classes
of 6R linkages.

The aim of this dissertation is to try to fill the gap between the final classification and
the known knowledge on 6R linkages. We mainly explore two algebraic methods:
bond theory and factorization of motion polynomial to analyze 6R linkages. These
two new methods which were invented by my supervisor Josef Schicho and his
collaborators are based on algebraic geometry and symbolic computation. We use
the language of dual quaternions (see also [14, 16, 26, 33, 34, 58, 59]). The use
of algebra and geometry for studying linkages is very classical and goes back to
Sylvester, Kempe, Cayley and Chebyshev. We also hope that the reader will be
inspired to use these two methods in kinematics by this process of exploring.

Concerning that the readers are from different area, we can only try our best to
introducing everything as simple as possible. We use a lot of computation with
the software Maple. It is not necessary to rebuilt every computation if the reader
trusts us. Linear algebra is necessary. Especially, knowledge on polynomials and
computational algebraic geometry are quite helpful. Even less, basics of computer
algebra should suffice. General Lie group theory is quite enough. For a general
reference for the starting point of this topic we suggest some chapters from [58,
Chapter 2-4]. The overlap between existing methods [5, 8, 10, 11, 21, 55, 62, 65]
and these new methods is minor.

For the open questions, we have to say the classification of 6R linkage is not solved
by the dissertation. We are not near to the final gap. We would like to suggest
several subclassification problems which are useful for the final classification.

First one is the classification of the mobile 6R linkages of genus 3. Using quad
polynomial, we already can get several families of such linkages that have genus 3.
But the explicit formulas on Denavit-Hartenberg parameters are not yet well done.
Namely, we knew the formulas for the known families, but there are new families
which we do not know.

Second one is to find an example of mobile 6R linkage of genus 2 with the bond
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diagram 1.5. One can find a special case of Bricard line symmetric 6R linkage such
that it has the bond diagram 1.5. But the genus of that is 1.

J1

J2

J3

J4

J5

J6

Figure 1.5: Bond diagrams for the mobile 6R linkage of genus 2.

Third one is the classification of the mobile 6R linkages of genus 1. This might be
the most difficult one. There are several families known, but the quad polynomial
helps quite little. We have no suggestion on this one.

Forth one is concerning the genus 0 case. One problem is to find all possible bond
diagrams. The other one is formulas for each bond diagram. The quad polynomial
can only give several equations, which are not sufficient for mobility. Other methods
might be helpful for this case.

1.3 Structure of the Thesis

The remaining part of this thesis is set up as follows.

Chapter 2 gives the framework of the first method, namely, bond theory which is
based on dual quaternions. Simultaneously, we give the genus bound (maximal 5)
for mobile 6R linkages (1-dof). On the proof (Section 2.4), it is quite related to
algebraic geometry. If one is not interested in algebraic geometry, one can just
accept the results instead of going through all the proofs. The maximal genus cases
are reached by several known families. The classifications of maximal genus cases
are also given with bond diagrams.

Chapter 3 introduces a technique for deriving equational conditions on the Denavit-
Hartenberg parameters of mobile 6R linkages that are necessary for mobility. This
new technique is based on the bond theory. Furthermore, the classifications of
maximal genus cases in Denavit-Hartenberg parameters equational conditions are
derived by the quad polynomial. The classification contains two new families.

9



Chapter 1 Introduction

Chapter 4 gives the framework of the second method, namely, factorization of mo-
tion polynomials. The main part is the first factorization algorithm. We also fix
the gap arising when the algorithm does not work. Namely, we can find one factor-
ization on the motion polynomial by multiplying a real polynomial which does not
change the motion.

Chapter 5 presents a combinatorial classification on the bond diagram with less
than or equal to four bonds for mobile 6R linkages. All of them have a rational
configuration curve. We also give the construction for each.

Chapter 6 is dedicated to the classification of angle-symmetric 6R linkages which is
very related to the factorization of motion polynomials. These are linkages with the
property that the rotation angles of the three pairs of opposite joints are equal for
all possible configurations, or at least for infinitely many configurations (it could
be that a certain linkage has two components, where only one of them is angle-
symmetric). A full classification of these linkages is obtained. The classification
of angle-symmetric 6R linkages contains three types of linkages. Type one is the
Bricard line symmetry 6R linkage. Type two is new. Type three is the cube linkages
which were constructed by the factorizations of a cubic motion polynomial.

In Chapter 7, three types of parallel 6R linkages are presented and the classification
theorem is also included. A parallel linkage either has the translation property,
or is angle-symmetric. The translation property means that there is a translation
relation between three continuous axes and the other three continuous axes from
the 6R linkages.

Chapter 8 focuses on the conclusion of the classification obtained and gives an
overview about future work.

At several places, we used the computer algebra system Maple for more elaborate
computations: examples, discussions of systems of equations, the derivation of the
quad polynomials, construction of new 6R linkages etc. Because of the length of
these computations, it is not reasonable to reproduce all them in the dissertation.
We only show results with skipping details of the computation. These can be found
at http://people.ricam.oeaw.ac.at/z.li/softwares.html. They can be read
with any text editor and verified using Maple 16 or a later version.

10
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Chapter 2

Bond Theory

In this chapter, we will recall some elementary definitions and properties of the
bond theory. These definitions and properties are recollected from [27, 28, 31]. The
bond theory was introduced for the first time in the conference of Latest Advances
in Robot Kinematics in 2012 [28]. It was used to prove the classification of the
overconstrained 5R linkages in [31]. The first proof [36] of the classification needs
the aid of a computer algebra system. Using bond theory, one can produce a proof
without computer aid. It is also worth mentioning that one should not be confused
with the exist concept of a “kinematic bond” [3, Chapter 5]. For this dissertation,
the bond theory helps us quite a lot on understanding 6R linkages. I hope one can
get more impression from this chapter in contrast to the individual paper [27, 28, 31].
The results presented below evolved from a collaboration with Gábor Hegedüs, Josef
Schicho, Hans-Peter Schröcker and have recently been published in [27].

Structure of the chapter The remaining part of this chapter is set up as follows.
In Section 2.1, we introduce all preliminary definitions we need. In Section 2.2, we
give the definition of the bond. Its main properties are introduced in Section 2.3.
Section 2.4 contains a result on bounding the genus of mobile 6R linkages (1-dof).
It also contains the classification on the highest genus (genus 5) case.

2.1 Preliminary Notations

In the beginning, we first recall several classical concepts and definitions: dual
quaternions, the Study quadric, linkages, their configuration set and coupler maps.

We denote by SE3 the group of Euclidean displacements, i.e., the group of maps from
R3 to itself that preserve Euclidean distances and orientation. It is well-known that
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SE3 is a semidirect product of the translation subgroup and the orthogonal group
SO3, which may be identified with the stabilizer of a single point.

We denote by D := R + εR the ring of dual numbers, with multiplication defined
by ε2 = 0. The algebra H is the non-commutative algebra of quaternions, and
DH := D ⊗R H. The conjugate dual quaternion h of h is obtained by multiplying
the vectorial part of h by −1. The dual numbers N(h) = hh and h + h are called
the norm and trace of h, respectively.

By projectivizing DH as a real 8-dimensional vector space, we obtain P7. The
condition that N(h) is strictly real, i.e., its dual part is zero, is a homogeneous
quadratic equation. Its zero set, denoted by S, is called the Study quadric. The
linear 3-space represented by all dual quaternions with zero primal part is denoted
by E. It is contained in the Study quadric. The complement S − E is closed
under multiplication and multiplicative inverse and therefore forms a group, which
is isomorphic to SE3 (see [34, Section 2.4]).

A nonzero dual quaternion represents a rotation if and only if its norm and trace
are strictly real and its primal vectorial part is nonzero. It represents a translation
if and only if its norm and trace are strictly real and its primal vectorial part is zero.
The 1-parameter rotation subgroups with fixed axis and the 1-parameter translation
subgroups with fixed direction can be geometrically characterized as the lines on S
through the identity element 1. Among them, translations are those lines that meet
the exceptional 3-plane E.

Let n ≥ 4. For the analysis of the configurations of a closed nR linkage with
links o1, . . . , on, the actual shape of links is irrelevant; it is enough to know the
position of the rotation axes. Exploiting the fact that there is a bijection between
lines in R3 and involutions in SE3, we describe a closed nR linkage by a sequence
L = (h1, . . . , hn) of dual quaternions h1, . . . , hn such that h2

i = −1 and hi 6= ±hi+1
for i = 1, . . . , n (we set hi+kn = hi and oi+kn = oi for all k ∈ Z). The line hi specifies
the joint connecting the links oi−1 and oi. The subgroup of rotations with axis hi
is parametrized by (t − hi)t∈P1 . The pose of oi with respect to on is then given by
a product (t1 − h1)(t2 − h2) · · · (ti − hi), with t1, . . . , ti ∈ P1. Setting i := n, we get
the closure condition

(t1 − h1)(t2 − h2) · · · (tn − hn) ∈ R∗. (2.1)

The set K of all n-tuples (t1, . . . , tn) ∈ (P1)n fulfilling equation (2.1) is called the
configuration set of the linkage L.

The dimension of the configuration set is called the mobility of the linkage. We
are mostly interested in linkages of mobility one. Let L = (h1, . . . , hn) be such a
linkage. Let K be its configuration curve. For any pair (oi, oj) of links, there is a
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map
fi,j : K → P7, (t1, . . . , tn)→ (ti+1 − hi+1) · · · (tj − hj)

parametrizing the motion of oj with respect to oi. This map is is called coupler map,
and the image Ci,j is the coupler curve. The algebraic degree of the coupler curve
is defined as deg(Ci,j) deg(fi,j), where deg(Ci,j) is the degree of Ci,j as a projective
curve, and deg(fi,j) is the degree of fi,j as a rational map K → Ci,j.

For a given nR linkage L with n lines h1, h2, . . . , hn, we compute the configuration
set by Algorithm 1. The main idea is following. We expand the left hand side
of the closure equation (2.1). The coordinates 2,. . . ,8 have to be zero, this gives
7 polynomial equations in t1, . . . , t6. One of these equations is redundant, namely
the 5th (the coefficient of ε). The reason is that the left hand side is always in
the Study quadric S, and if an element of the form a + bε is in S then it follows
that b = 0. In order to exclude unwanted solutions, we add the inequality (t21 +
1)(t22 + 1)(t23 + 1)(t24 + 1)(t25 + 1)(t26 + 1) 6= 0. In order to solve this system with the
computer program Maple, we introduce an extra variable u and add the equation
(t21 + 1)(t22 + 1)(t23 + 1)(t24 + 1)(t25 + 1)(t26 + 1)u− 1 = 0, and compute a Gröbner basis
that eliminates u again.

Algorithm 1 configuration set
Input: An nR linkage L with one initial configuration, namely, n lines h1, h2, . . .,

hn.
Output: A list of equations in t1, t2, . . . , tn such that its solution set equals the

configuration set of L.

1: Write F := (t1 − h1)(t2 − h2) · · · (tn − hn) ∈ DH.
2: Take the seven coefficients of polynomial F except the first coefficient and add

them to list E.
3: Supplement E by one more polynomial, namely, (t21 + 1)(t22 + 1)(t23 + 1)(t24 +

1)(t25 + 1)(t26 + 1)u− 1.
4: Compute the Gröbner basis G of the elimination ideal of E with respect to u.
5: Return G –the elimination ideal.

One can find a Maple code for this computation in [1]. We add one example to
support our algorithm. As we mainly focus on 6R linkages, we will only take care
the case of when n = 6. It is worth mentioning that it also works for the cases of
4R and 5R linkages.

The solution set has some zero-dimensional components, which are not interesting,
and a one-dimensional component:
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Example 2.1.

h1 = 3
5 i + 4

5k + εj, h2 = k + εi, h3 = 4
5j + 3

5k + 2εj,

h4 = 3
5 i− 4

5k− εj, h5 = −k + εi, h6 = −4
5j− 3

5k− 2εj.

t1 − t4, t2 − t5, t3 − t6, 15t2t6 + 16t2 + 20t4 − 9,
−375t4t26 + 1000t24 − 400t4t6 + 375t26 − 750t4 + 820t6 + 583,

50t2t4 + 25t4t6 − 15t2 − 25t6 − 28.

We call the case when we have lines (hs) as homogeneous case. One can ask the
question what can we do if we do not have such input, namely, if we do not know the
lines? The later case, when we do not have the lines, we call inhomogeneous case.
One well-known technique for treating the inhomogeneous case is using Denavit-
Hartenberg parameters [20]. For the detail of using this technique, we put it in the
next chapter. Till end of this chapter, we only consider the homogeneous case.

2.2 Definition

The fundamentals of bond theory will be recalled from [31]. Let n ≥ 4 be an
integer. Let L = (h1, . . . , hn) be a closed nR linkage with mobility 1. We assume,
for simplicity, that the configuration curve K ⊂ (P1

R)n (defined by equation (2.1))
has only one component of dimension 1 (see Remark 2.19 for a comment on the
reducible case).

Let KC ⊂ (P1
C)n be the Zariski closure of K. We set

B := {(t1, . . . , tn) ∈ KC | (t1 − h1)(t2 − h2) · · · (tn − hn) = 0}. (2.2)

The set B is a finite set of conjugate complex points on the configuration curve’s
Zariski closure. If K is a nonsingular curve, then we define a bond as a point of
B. If K has singularities, then it is necessary to pass to the normalization N(K)
of K as a complex algebraic curve, and a bond is then a point on N(K) lying over
B. Zero-dimensional components of K never fulfill the equation above and so they
have no effect on bonds.

Let β be a bond lying over (t1, . . . , tn). By Theorem 2 in [31], there exist indices
i, j ∈ [n], i < j, such that t2i + 1 = t2j + 1 = 0. If there are exactly two coordinates
of β with values ±i, then we say that β connects joints i and j. In general, the
situation, is more complicated. Let β ∈ N(K) be a bond; we assume, for simplicity,
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that it lies over a point (t1, . . . , tn) such that no ti is the infinite point in P1. For
i, j ∈ {1, . . . , n}, we define

Fi,j(β) = (ti(β)− hi) · · · (tj(β)− hj) ∈ DH, (2.3)
The distinction between Fi,j and fi,j is necessary because Fi,j may vanish at the
bonds, and then it does not give a well-defined pose in P7. We define vτ (i, j) as the
vanishing order of Fi,j at τ . We define the connection number

kβ(i, j) := vβ(i, j) + vβ(i+ 1, j − 1)− vβ(i, j − 1)− vβ(i+ 1, j). (2.4)

We visualize bonds and their connection numbers by bond diagrams. We start with
the link diagram, where vertices correspond to links and edges correspond to joints.
Then we draw kβ(i, j) connecting lines between the edges hi and hj for each set
{β, β} of conjugate complex bonds. Since we cannot exclude that kβ(i, j) < 0,
we visualize negative connection numbers by drawing the appropriate number of
dashed connecting lines (because the dash resembles a “minus” sign). No linkage
in this dissertation has a negative connection number. Actually, the authors do not
know if closed 6R linkages may or may not have bonds with negative connection
numbers.

For a given nR linkage L with n lines h1, h2, . . . , hn, we compute the bond connec-
tions (bond diagram) for the linkage L by Algorithm 2. The main idea is as follow:
We calculate the connection numbers for all bonds together instead of calculating
one by one. This is based on the formula

kB(i, j) := vB(i, j) + vB(i+ 1, j − 1)− vB(i, j − 1)− vB(i+ 1, j),
where we can get vB(i, j) by counting the solutions of an intersection of K and
Fi,j = 0. This counting includes the multiplicity. In order to catch the case ti =∞,
one might need to do linear transformations of ti in P1 such that this counting is
proper.

One can find a Maple code for this computation in [1]. We treat the same example
(Example 2.1) as in the computation of configuration set. The bond connection for
this Bricard line symmetric 6R linkage is

D := [[1, 4, 2], [2, 5, 2], [3, 6, 2]],
where the three integers [a, b, c] means that there are c bonds which connect a and
b (e.g. Figure 2.1).

2.3 Main Properties

We start to introduce the main properties from [27, 31].
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Algorithm 2 BondConnectionsI
Input: L := [h1, h2, . . . , hn], an nR linkage with one configuration at h1, h2, . . . , hn.
Output: A list D = [D1, D2, . . . , Dm], where Ds = [p, q, r] for s = 1, . . . ,m, p =

1, 2, . . . , n, |q − p| = 2, . . . , n− 2, r is a nonzero integer.

1: Use Algorithm 1 to get a list of polynomials G which give the configuration set.
2: Set P := {1, 2, . . . , n− 2}.
3: repeat
4: Take p ∈ P and set P ← P − {p}, Q := {p+ 2, . . . , n}.
5: repeat
6: Take q ∈ Q and set Q← Q− {q}.
7: Compute the vanishing orders of

v1 := vB(p, q), v2 := vB(p+ 1, q − 1),
v3 := vB(p, q − 1), v4 := vB(p+ 1, q).

8: Set r := v1+v2−v3−v4
2 .

9: If r 6= 0, then D ← D + [p, q, r].
10: until Q = NULL.
11: until P = NULL.
12: Return D = [D1, D2, . . . , Dm] for some integer m.

Theorem 2.2. The algebraic degree of the coupler curve Ci,j can be read off from
the bond diagram as follows: Cut the bond diagram at the vertices oi and oj to
obtain two chains with endpoints oi and oj; the algebraic degree of Ci,j is the sum of
all connections that are drawn between these two components (dashed connections
counted negatively).

Proof. This is a consequence of Theorem 5 in [31]. Note that here we give a different
definition of connection numbers, but Lemma 2 in [31] shows that the definitions
are equivalent.

The basic idea of the proof is that the algebraic degree of Ci,j is 1
2 times the number

of points τ in the configuration curve such that N(fi,j(τ)) = 0. All these points are
bonds, and a closer investigation leads to the statement above.

Example 2.3. We illustrate the procedure for computing the degrees in Figure 2.2.
In order to determine the algebraic degree of the coupler curve C4,6, we cut the bond
diagram along the line through o4 and o6 and count the connections between the two
chain graphs. There are precisely two of them. Thus, the algebraic degree d(4, 6) of
C4,6 is two.

For a sequence hi, hi+1, . . . , hj of consecutive joints, we define the coupling space
Li,i+1,...,j as the linear subspace of R8 generated by all products hk1 · · ·hks , where
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J1

J2

J3

J4

J5

J6

Figure 2.1: Bond diagrams for the Bricard line symmetric linkage.

o1

o2

o3o4

o5

o6 o6 o1

o2

o3o4o4

o5

o6

Figure 2.2: Computing the degree of coupler curves by counting connections in the
bond-diagram. There are two connections between the two chains, hence
the algebraic degree of the coupler curve C4,6 is two.

s ≥ 0 and k1, . . . , ks are integers such that i ≤ k1 < · · · < ks ≤ j. (Here, we
view dual quaternions as real vectors of dimension eight.) The empty product
corresponding to s = 0 is included, its value is 1. The coupling dimension li,i+1,...,j
is the dimension of Li,i+1,...,j and the coupling variety Xi,i+1,...,j ⊂ P7 is the set of all
products (ti − hi) · · · (tj − hj) with tk ∈ P1 for k = i, . . . , j or, more precisely, the
set of all equivalence classes of these products in the projective space.

The coupling variety is a subset of the projectivization of the coupling space. The
relation between the coupler curve and the coupling variety is described by the
“coupler equality” Ci,j = Xi+1,...,j ∩Xi,...,−n+j+1.

The relation between bonds and coupling dimensions is described in the following

Theorem 2.4. All coupling dimensions l1,...,i with 1 ≤ i ≤ n are even. We have
l1,2 = 4 and kβ(1, 2) = 0 for every bond β. If kβ(1, 3) 6= 0 for some β, then l1,2,3 ≤ 6.
If l1,2,3 = 4, then the lines h1, h2, h3 are parallel or have a common point.
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Proof. This is part of Theorem 1, Theorem 3, and Corollary 3 in [31]. The first
statement is a consequence of the fact that the coupling spaces can be given the
structure of a complex vector space, because they are closed under multiplication
by h1 from the left.

We will also use a more precise description of the coupling varieties in each of the
three possible cases, which is interesting in itself.

Theorem 2.5. If l1,2,3 = 4, then X1,2,3 is a linear projective 3-space, and its
parametrization by t1, t2, t3 is a 2:1 map branched along two quadrics in this 3-space.

If l1,2,3 = 6, then X1,2,3 is a complete intersection of two quadrics in a 5-space and
its parametrization by t1, t2, t3 is birational.

If l1,2,3 = 8, then X1,2,3 is a Segre embedding of (P1)3 in P7, and its parametrization
by t1, t2, t3 is an isomorphism.

Proof. The first statement is well-known in kinematics. For non-parallel axes it
is, for example, implicit in the exposition of [58, Section 5]. Branching occurs for
co-planar joint axes. There are two components of the branching surface, and each
of the component is the image of a subset of (P1)3 in which t2 is constant.

If l1,2,3 = 6, then (i − h1)(s2 − h2)(±i − h3) = 0 for some s2 ∈ P1
C, by the proof

of Theorem 1 in [31]; we may assume that the third factor is (+i − h3). Clearly
there is also a complex conjugate relation (−i − h1)(s̄2 − h2)(−i − h3) = 0. The
parametrization p : (P1)3 → X1,2,3 has two base points (i, s2, i) and (−i, s2,−i). We
distinguish two cases.

If s2 6= s2, then we apply projective transformations moving the base points to
(0, 0, 0) and (∞,∞,∞). The transformed parametrization is

(P1)3 → P5, (y1, y2, y3) 7→ (x0:x1:x2:x3:x4:x5) = (y1:y2:y3:y1y2:y1y3:y2y3),

which is birational to the quartic three-fold defined by x0x5 = x1x4 = x2x3.

If s2 = s2, then we apply projective transformations moving the base points to
(0,∞, 0) and (∞,∞,∞). The transformed parametrization is

(P1)3 → P5, (y1, y2, y3) 7→ (x0:x1:x2:x3:x4:x5) = (1:y1:y3:y1y2:y1y3:y2y3),

which is birational to the quartic three-fold defined by x0x4 = x1x2, x1x5 = x2x4.

If l1,2,3 = 8, then the eight products generating L1,2,3 are linearly independent, and it
follows that the parametrization is the Segre embedding in the projective coordinate
system induced by this basis.
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All bonds connecting h1 and h4 satisfy t1, t4 ∈ {+i,−i}. We will prove a lemma
that is useful to give an upper bound for the number of bonds in some situations;
before that, we need an algebraic lemma.

Lemma 2.6. Let h1, h2 ∈ DH be dual quaternions representing lines (i.e. h2
1 =

h2
2 = −1). Let DC := D ⊗R C and DHC := DH ⊗R C be the extensions of the dual

numbers/quaternions to C.

(a) The left annihilator of (i− h1) is equal to the left ideal DHC(i + h1).

(b) The intersection of this left ideal and the right ideal (i − h2)DHC is a free DC-
module of rank 1.

(c) The set of all complex dual quaternions x such that (i − h2)x(i − h1) = 0 is a
free DC-module of rank 3.

Proof. For h1 = h2 = i, the proofs for all three statements are straightforward.

The group of unit dual quaternions acts transitively on lines by conjugation, so
there exist invertible g1, g2 ∈ DH such that h1 = g1ig−1

1 and h2 = g2ig−1
2 . Then

{q | q(i− h1) = 0} = {q | qg1(i− i)g−1
1 = 0} = {q | qg1(i− i) = 0} =

DHC(i + i)g−1
1 = DHCg

−1
1 (i + h1) = DHC(i + h1),

which shows (a). The DC-linear bijective map DHC → DHC, q 7→ g−1
2 qg1 maps the

left ideal DHC(i + h1) to the left ideal DHC(i + i) and the right ideal (i − h2)DHC
to the right ideal (i − i)DHC, which shows (b). The same map also maps the set
{x | (i− h2)x(i− h1) = 0} to the set {x | (i− i)x(i− i) = 0}, which shows (c).

Lemma 2.7. Assume that l1,2,3 = l4,5,6 = 8. Then there are at most 2 bonds
β := (t1, . . . , t6) connecting h1, h4 for fixed values of t1 and t4 in {+i,−i} (counted
with multiplicity).

Proof. Without loss of generality, we may assume t1 = t4 = +i; the other situations
can be reduced to this case by replacing h1 or h4 or both by its negative.

By the algebraic lemma above, the intersection of the left annihilator of (t4−h4) and
the right ideal (t1 − h1)DHC is a 2-dimensional C-linear subspace. Let G ⊂ P7 be
its projectivization. Let q := f3,6(β) be image of a bond β = (t1, . . . , t6) connecting
h1 and h4 with t1 = t4 = +i. Then we have q = (t1 − h1)(t2 − h2)(t3 − h3),
hence q is in the right ideal (t1 − h1)DHC. Since β connects h1 and h4, we have
q(t4−h4) = F3,6(β) = 0, q is in the left annihilator of (t4−h4), and therefore q ∈ G.
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There exist no two bonds β1, β2 with the same bond image q, because the parame-
terization of X1,2,3 by t1, t2, t3 is an isomorphism, hence q determines the first three
coordinates, and the parametrization of X6,5,4 by t4, t5, t6 is also an isomorphism,
hence q determines the second three coordinates. This shows that the number of
bonds connecting h1 and h4 with t1 = t4 = +i is equal to the number of intersections
of G and C3,6; tangential intersections give rise to higher connection numbers.

On the other hand, C3,6 is generated by quadrics, so it does not have any tritangents,
so the number of such bonds is at most 2.

2.4 Bounding the Genus

In this section, we prove that the genus of the configuration curve of a closed 6R
linkage is at most 5.

Let L = (h1, . . . , h6) be a closed 6R linkage with mobility 1. We use the notation
of the previous section. As before, we assume that the configuration curve K has
only one irreducible one-dimensional component. We write g(K) for the genus of
this component.

Here is an auxiliary Lemma.

Lemma 2.8. Let C1, C2 be two curves of genus at most 1. Let C ⊂ C1 × C2 be an
irreducible curve such that the two projections restricted to C are either birational
or 2:1 maps to C1 resp. C2. Then g(C) ≤ 5, with equality only if g(C1) = g(C2) = 1
and both projections being 2:1.

Proof. If one of the two projections is birational, say the projection to C1, then
g(C) = g(C1) ≤ 1. So we may assume both projections are 2:1 maps.

If C1 and C2 are isomorphic to P1, then C is a curve in P1×P1 of bi-degree 2, which
has arithmetic genus 1. The geometric genus is 1 in the nonsingular case and 0 if
C has a double point.

If C1 = P1 and C2 is elliptic, then the numerical class group is generated by the two
fibers F1 ∼= C2 and F2 ∼= C1 of the two projections. The class of C is 2F1 + 2F2,
and the canonical class is −2F2. Hence the arithmetic genus of C is C(C+K)

2 + 1 =
2(F1 + F2)F1 + 1 = 3.

If C1 and C2 are elliptic, then the canonical class of C1 × C2 is zero. If F1, F2 are
fibers of the projections, then F1C = F2C = 2 and (F1 + F2)2 = 2. By the Hodge
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2.4 Bounding the Genus

index theorem, (C − 2F1 − 2F2)2 ≤ 0, which is equivalent to C2 ≤ 8.

Hence the arithmetic genus of C is at most C2

2 + 1 = 5.

Lemma 2.9. If l1,2,3 = 4, then g(K) ≤ 5.

Proof. Let C1, C2 ⊂ (P1)3 be the projections of K to (t1, t2, t3) and (t4, t5, t6), re-
spectively. Let p1 : K → C1 and p2 : K → C2 be the projection maps. The coupler
curve C3,6 is a common image of C1 and C2, by the two sides of the closure equation

(t1 − h1)(t2 − h2)(t3 − h3) ≡ (t6 − h6)(t5 − h5)(t4 − h4),

where we write ≡ for equality in the projective sense, modulo scalar multiplication.
Let f1 : C1 → C3,6 and f2 : C2 → C3,6 be these two maps. Then K is a component
of the pullback of f1, f2. We distinguish several cases.

Case 1: l6,5,4 = 4. Then C3,6 is the intersection of two linear subspaces, hence a line
by the mobility 1 assumption. One can introduce an additional joint, rotational
or translational, between links o3 and o6, and the linkage decomposes into two 4-
bar linkages which are planar or spherical. The configuration curves of these two
linkages are isomorphic to C1 and C2. The maps f1, f2 are restrictions of the 2:1
parametrizations of X1,2,3 and X6,5,4, hence they are either 2:1 or birational to the
line C3,6. Therefore p1 and p2 are also either 2:1 or birational. The configuration
curve of a planar or spherical 4-bar linkage is the intersection curve of two quadrics
(see [15, Chapter 11, § 8] for the planar and [53, § 21] for the spherical case). Hence
its genus is at most 1. By Lemma 2.8, g(K) ≤ 5.

Case 2: l6,5,4 = 6. Then X6,5,4 is an intersection of quadrics in a 5-space and X1,2,3
is a linear 3-space contained in the Study quadric. The intersection of both linear
spaces is either a line or a plane, because the vector space L6,5,4 does not contain
any 4-dimensional subalgebras. Hence the intersection C3,6 is either a line or a
plane conic. If C3,6 is a line, then we have a similar situation as before: the linkage
decomposes into two 4-bar linkages, one planar or spherical and the second being
a Bennett linkage. In any Bennett linkage, the maps from K to P1 parametrizing
the 4 rotations are isomorphisms. Therefore K is isomorphic to the configuration
curve of the planar or spherical component, hence g(K) ≤ 1. If C3,6 is a plane
conic, then we decompose it into two rotational linear motions with coplanar axes.
These two axes form together with h4, h5, h6 a closed 5R linkage, which is known
as the Goldberg 5R linkage (see [24]). Its configuration curve is rational, more
precisely the coupling map to the plane conic is an isomorphism (see [31]). Hence
K is isomorphic to C1. Now f1 : C1 → C3,6 has 8 branching points (counted with
multiplicity), namely the intersections of C3,6 with the branching surface. By the
Hurwitz genus formula, it follows that g(K) = 3; the genus may drop in case of
singularities.
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Chapter 2 Bond Theory

Case 3: l6,5,4 = 8. Then C3,6 is a curve in a Segre embedding of (P1)3 in P7 cut out
by four hyperplane sections. This is only possible if C3,6 is a twisted cubic. Then
the lines h4, h5, h6 could be re-covered from C3,6 by factoring the cubic motion
parametrized by C3,6 described in [30]. On the other hand, C3,6 is either a planar
or spherical motion, hence the whole linkage is either planar or spherical, and this
contradicts the mobility 1 assumption, as planar and spherical 6R linkages have
mobility 3. So this case is impossible.

Remark 2.10. If g(K) ≥ 4, then we are in Case 1, and the linkage is a composite
of two planar or spherical 4-bar linkages with one common joint, which is removed
from the 6-loop. The most general linkage of this type is Hooke’s linkage [7], using
two spherical linkages. The genus of its configuration curve is generically 5, but it
may drop in the presence of singularities. If we take two planar RRRP linkages and
remove the common translational joint, then we obtain the Sarrus linkage [56] with
two triples of parallel consecutive axes. The bond diagrams of both linkages can be
seen in Figure 2.3(a).

Lemma 2.11. If l1,2,3 = l6,5,4 = 6, then g(K) ≤ 5.

Proof. Let V := L1,2,3 ∩ L6,5,4. Then 4 ≤ dim(V ) ≤ 5. The dim(V ) = 6 case is not
possible by Lemma 6 in [31]. If dim(V ) = 4, then C6,3 is embedded into a three
dimensional projective space P3. The coupler varieties are defined by quadrics in
P5, therefore the ideal of C6,3 is generated by linear forms and quadrics, and so its
genus is at most 1. The coupler map f6,3 is birational, therefore g(K) ≤ 1. So we
may assume dim(V ) = 5.

By Theorem 2.5, the varieties X1,2,3 and X6,5,4 are complete intersections of two
quadrics. We may assume in each case that one of the defining equations is the
equation of the Study quadric. Then the coupler curve C6,3 = X1,2,3 ∩ X6,5,4 is
defined by three quadratic equations and the linear forms defining V . It follows
that C6,3 is a complete intersection of three quadrics in P4, which implies g(K) ≤ 5,
with equality in the case that there are no singularities.

Remark 2.12. In [21], Dietmaier found a new linkage by a computer-supported
numerical search. It turns out, by comparing the geometric parameters, that his
family is exactly the family of linkages with l1,2,3 = l4,5,6 = 6 and dim(L1,2,3∩L6,5,4) =
5. See Figure 2.3(b) for the bond diagram of the Dietmaier linkage.

Lemma 2.13. If l1,2,3 = 6 and l6,5,4 = 8, then g(K) ≤ 3.

Proof. If Y := X6,5,4∩L1,2,3 has dimension 1, then its Betti table coincides with the
Betti table of X6,5,4 and it follows that Y is a union of curves with genus at most 1
(the genus 1 case occurs only if Y is irreducible). Since C6,3 ⊆ Y , it follows that
g(C6,3) ≤ 1, and by birationality of f6,3 we get g(K) ≤ 1.
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Figure 2.3: Bond diagrams for Hooke’s double spherical linkage (a), Dietmaier’s
linkage (b), Wohlhart’s partially symmetric linkage (c), and Bricard’s
orthogonal linkage (d).

Assume Y is a surface. The preimage Z of Y under the parametrization p : (P1)3 →
X6,5,4 is defined by two equations of tri-degree (1, 1, 1), and because Y is a surface,
the two equations must have a common divisor F which defines Z. Up to permuta-
tion of coordinates, the tri-degree of F is either (1, 0, 0) or (1, 1, 0). In the first case,
one of the angles would be constant throughout the motion. Hence the 6R linkage
is actually a 5R linkage with an extra immobile axis somewhere; then g(K) = 0 by
the classification of 5R linkages (see [31] ) (if one does not want to exclude this de-
generate case). In the second case, we consider the preimage C ′ of C6,3 under p. It is
defined by F and the pullback of the quadric equations which defines X1,2,3. Hence
C ′ is a component of the complete intersection of two equations, with tri-degree
(1, 1, 0) and (2, 2, 2). Using the first equation, we can express the first variable by
the second, and so we get an isomorphic image of C ′ in (P1)2 of bi-degree (4, 2),
which has arithmetic genus 3. But p is is an isomorphism by Theorem 2.5, hence
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Chapter 2 Bond Theory

g(C6,3) ≤ 3 and g(K) ≤ 3.

Remark 2.14. An example of a linkage where Y is a surface is Wohlhart’s partially
symmetric linkage [66] (see Figure 2.3(c) for the bond diagram). We do not know
if there exist also other linkages with l1,2,3 = 6 and l6,5,4 = 8 and g(K) = 3 in the
literature.

Lemma 2.15. If li,i+1,i+2 = 8 for i = 1, . . . , 6, then g(K) ≤ 5.

Proof. By Theorem 2.4, all bonds connect opposite joints: the bond diagram con-
sists of b1 connections between h1 and h4, b2 connections between h2 and h5, and b3
connections between h3 and h6. By Theorem 2.2, the degree of f6,1 and the degree
of f3,4 are both equal to b1. Note that f6,1 and f3,4 are the projections from K to
the first and to the fourth coordinate, respectively, up to isomorphic parameteriza-
tion of the line describing rotations around h1 and h4, respectively. Similarly, the
projections to t2, t5, t3, t6 have (respective) degrees b2, b2, b3, b3.

Let b+
1 be the number of pairs of complex conjugate bonds connecting h1 and h4

such that t1 = t4 and b−1 be the number of pairs such that t1 = −t4 (recall that
t21 = t24 = −1). The numbers b+

2 , b
−
2 , b

+
3 , b

−
3 are defined analogously. By Lemma 2.7,

we have b+
1 , . . . , b

−
3 ≤ 2.

We consider the projection q1,4 : K → (P1)2, (t1, . . . , t6) 7→ (t1, t4). The image of
this curve has bi-degree (r1, r1), with r1 deg(q1,4) = b1. The preimage of (±i,±i)
consists entirely of bonds; moreover, if one of the coordinates of a point on C1,4
is equal to ±i, then it must already be a bond. If, say, b+

1 = b+
2 = 2, and q1,4 is

birational, then +i is a branching point for both projections, hence it must be a
double point. If q1,4 is not birational, then it is a 2:1 map, because the preimage of
any of the 4 points (±i,±i) is at most 2. In this case, the numbers b+

1 and b−1 are
either 0 or 2, and the bi-degree of C1,4 is (1, 1) or (2, 2). It follows that, in the 2:1
case, the curve C1,4 has genus 0 or 1. We now have to sort out several cases.

Case 1: the three maps q1,4, q2,5 and q3,6 are 2:1 maps. It is not possible that all
three maps factor through the same 2:1 quotient, because K is contained in the
product C1,4 × C2,5 × C3,6. Assume, without loss of generality, that q1,4 and q2,5 do
not factor by the same 2:1 quotient. Then (q1,4, q2,5) : K → C1,4×C2,5 is birational.
By Lemma 2.8, the image has genus at most five, and therefore g(K) ≤ 5.

For the remaining cases, we may assume that q1,4 is birational.

Case 2: b1 = 3. Then the arithmetic genus of C1,4 is (b1−1)2 = 4. Since b+
1 +b−1 = 3,

at least one of the two numbers is equal to two; assume, without loss of generality,
that b+

1 = 2 and b−1 = 1. Then (+i,+i) and (−i,−i) are double points of C1,4, and
therefore g(K) ≤ 4− 2 = 2.
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2.4 Bounding the Genus

Case 3: b1 ≤ 2. Then the arithmetic genus of C1,4 is (b1 − 1)2 ≤ 1.

Case 4: b1 = 4, hence b+
1 = b−1 = 2. Then the arithmetic genus of C1,4 is (b1−1)2 = 9,

and all four points (±i,±i) are double points. Then g(C1,4) ≤ 9 − 4 = 5, and
therefore g(K) ≤ 5.

Corollary 2.16. The maximal genus 5 is reached in Case 1 when all C1,4, C2,5,
and C3,6 are elliptic and have bi-degree (2, 2), and in Case 4; in both cases, we have
b1 = b2 = b3 = 4.

As a consequence of Lemma 2.9, Lemma 2.11, Lemma 2.13, and Lemma 2.15 above,
we finally obtain our bound for the genus.

Theorem 2.17. The genus of the configuration curve of a closed 6R linkage is at
most 5.

By re-examining the proof of Lemma 2.15 more closely, we can prove the following
theorem which will be useful later for classifying linkages with a genus 5 configura-
tion curve.

Theorem 2.18. If the bond diagram is different from the diagrams Figure 2.3(a),
(b), and (d), then g(K) ≤ 3.

Proof. In view of Remark 2.10, Lemma 2.13, and the proofs of Lemmas 2.15 and
2.11, we just need to consider the case where li,i+1,i+2 = 8 for i = 1, . . . , 6. Assume
indirectly that b1 < 4 (using the notation as in the proof of Lemma 2.15). If q1,4 is
birational, then it follows g(K) ≤ 3, hence we may assume that q1,4 is a 2:1 map.
Hence b1 = 2 and C1,4 is a curve of bi-degree (1, 1), which is rational. Consequently
K is hyperelliptic (or g(K) ≤ 1 and the proof is finished).

If the other two maps q2,5, q3,6 are also 2:1 maps, then we have a 2:1 map from K to
a rational curve and another 2:1 map to a curve of genus at most 1; by Lemma 2.8,
we obtain g(K) ≤ 3.

So we may assume there is another map, say q2,5 : K → C2,5 ⊂ (P1)2, which is
birational. Its image has then bi-degree (b2, b2), and if b2 ≤ 3 then we again get
g(K) ≤ 3. So we assume b2 = 4. Then C2,5 has bi-degree (4, 4) and 4 double points
(±i,±i). The canonical map of C1,4 is defined by the polynomials of bi-degree (2, 2)
passing to all m-fold singular points with order m − 1. If there is at most one
double point, then it would just pass to the 4 double points (±i,±i) and maybe one
additional double point, but this map maps (P1)2 birational to a rational surface,
and this contradicts to the fact that C1,4 is hyperelliptic, because the canonical map
of a hyperelliptic curve is 2:1. Hence there must be at least two more double points
or a triple point on C2,5, and so g(K) ≤ 3.
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Chapter 2 Bond Theory

Remark 2.19. If the configuration curve has more than one one-dimensional com-
ponent, then one can define bonds for the individual components. These bonds add
up to a diagram which satisfies the same conditions we just proved for bond diagrams
of irreducible configuration curves. We conclude that the genus of any component
is at most 3 in a linkage with more than one component.
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Quad Polynomials

In this chapter, we will introduce a powerful technique, namely, quad polynomial,
which is quite related to the bond theory. It is used to derive necessary equation
condition for mobile 6R linkages. These equations are defined over the Denavit-
Hartenberg parameters [20]. A closed 6R (six revolute joints) linkage is uniquely
determined by its set of Denavit-Hartenberg parameters, which contains 18 real
geometric invariants: the twist angles, the normal distances and the offsets. A
generic choice of these parameters leads to a rigid 6R linkage. In the literature, there
are many families of special choices of parameters such that the linkage is mobile,
or in other words, numerous sufficient conditions for mobility are known [5, 21]. An
overview on known families of 6R linkages can be found in [17, 21]. However, we
are still far away from a complete classification of all mobile 6R linkages.

The aim of this technique is to make a step towards such a complete classification,
by deriving necessary conditions for mobility; up to our knowledge, not a single
necessary equational condition has been known up to now. These results presented
below evolved from a collaboration with Hamid Ahmadinezhad, Josef Schicho and
have recently been published in [2, 44].

Structure of the chapter The remaining part of the chapter is set up as follows.
Section 3.1 introduces the overview relation between the bond theory and the quad
polynomial. In section 3.2, we introduce all preliminary definitions for a new def-
inition of bond. In section 3.3, we give the definition of the quad polynomial and
its main property. Section 3.4 contains some known examples. Section 3.5 focuses
on new examples which are derived by the quad polynomial. In the section 3.6, we
introduce one technique for constructing 6-bar linkages with helical (screw) joints.
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3.1 Relationship with Bond Theory

The bond theory already provides a classification scheme for 6R linkages: for any
mobile 6R linkage, one can calculate a certain combinatorial structure describing
algebraic relations between the joints, namely, the bond diagram. This diagram
consists of bonds, which are connections between two joints of the linkage. Any joint
is connected to at least one other joint, and adjacent joints are never connected.
If we number the joints cyclically, then a bond connects either joints i and i + 2 –
then we speak of a near connection, – or it connects joints i and i+ 3, and then we
speak of a far connection.

It was shown that the existence of a near connection implies the validity of a well-
known condition which also arises frequently in many families, namely Bennett’s
condition: si = 0, and di

sin(φi) = di+1
sin(φi+1) , where the si, di, φi are Denavit-Hartenberg

parameters (see section 3.2 for the precise definitions). Bennett’s condition is equiv-
alent to a kinematic condition on three consecutive rotation axes, not all three par-
allel or intersecting, namely the existence of a fourth axis such that the closed 4R
linkage with these four axes is movable (see [12]). However, there are many mobile
6R linkages without near connections, for instance Bricard’s orthogonal linkage or
Bricard’s line symmetric linkage. So, the Bennett conditions are not necessary for
mobility.

Chapter 2 contains no equational condition implied by the existence for a far con-
nection. The main aim of this chapter is to fill this gap by introducing the quad
polynomials: these are univariate polynomials of degree 2 with coefficients depend-
ing on the Denavit-Hartenberg parameters by an explicit formula. The existence
of a far connection implies a common root of two such quad polynomials, and this
gives rise to necessary equational conditions.

Because every mobile linkage has either near or far connections (or both), it is
then possible to write down equational conditions for movability (see Remark 3.6).
However, the full system of equations is too big and complicated, and therefore it is
better to follow the classification scheme suggested by bond theory and distinguish
cases according to the bond diagram. For any bond diagram, we will derive a non-
trivial system of algebraic equations, consisting of Bennett conditions for the near
connections and quad polynomial conditions for the far connections. In some cases,
the equations are even sufficient for movability, hence the equations characterize all
linkages with this particular bond diagram.

In section 3.4, we illustrate the method by deriving the equational conditions for
various well-known linkages. The bond diagram studied in section 3.5 leads to a new
movable 6R linkage L: we show that for every known family, there is an algebraic
condition which is not satisfied by the set of Denavit-Hartenberg parameters of L.
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In order to show that L is indeed movable, we calculate the configuration set by
solving the corresponding algebraic system of equations and observe that it is one-
dimensional (there is no geometric proof for mobility for this example). We find
this new family of linkages especially remarkable because two of its R-joints can be
replaced by H-joints (helical joints), and the linkage remains movable.

Our main motivation is not to invent new families of linkages but to make progress
in the complete classification of mobile 6R linkages. It should also be pointed out
the scope of bond theory is much larger than the technique of quad polynomials.
While bond theory is applicable for a large class if linkages (e.g. multiply closed,
linkages with different types of joints), quad polynomials can only be defined for
simply closed linkages with 6 joints/links.

3.2 New Bonds

In this section we recall another method of computing the configuration space of a
closed 6R linkage using dual quaternions and Denavit-Hartenberg parameters. This
is different to the Algorithm 1 in Chapter 2.

First, we start by introducing the set of Denavit-Hartenberg parameters of a closed
6R linkage. For i = 1, . . . , 6, let li be the rotation axis of the i-th joint. The angle
φi is defined as the angle of the direction vectors of li and li+1 (with some choice of
orientation). We also set ci := cos(φi) and wi = cot(φi

2 ) = cos(φi)+1
sin(φi) . The number di

is defined as the orthogonal distance of the lines li and li+1. Note that di may be
negative; this depends on some choice of orientation of the common normal, which
we denote by ni.

If we assume that there are no parallel adjacent lines, which means that the angles
φ1, . . . , φ6 are not equal to 0 or π, then we may set bi := di

sin(φi) (Bennett ratios
[50, 51] (inverse)) as an abbreviation. Finally, we define the offset si as the signed
distance of the intersections of the common normals ni−1 and ni with li.

The Denavit-Hartenberg parameters φi, di, si are invariant when the linkage is mov-
ing. Moreover, it is well-known that they form a complete system of invariants for
all closed 6R linkages without adjacent parallel lines: if two such linkages share all
parameters, then there is a configuration that moves the first into the second. (A
description of invariant parameters for 6-bar linkages with adjacent parallel lines
may be found in [8]). We will treat one subclass of this type of 6R linkages in
Chapter 7.

We give a formulation in the language of dual quaternions, based on the fact that
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SE3 is isomorphic to the multiplicative group of dual quaternions with nonzero real
norm modulo multiplication by nonzero real scalars.

In the isomorphism described in [34, Section 2.4], the rotation with axis determined
by i and angle φ corresponds to the dual quaternion (cos(φ2 ) − sin(φ2 )i), which is
projectively equivalent to (cot(φ2 )− i). The translation parallel to i by a distance d
corresponds to the dual quaternion

(
1− d

2εi
)
. So the closure equation is

(t1 − i)g1(t2 − i)g2 · · · (t6 − i)g6 ∈ R∗, (3.1)

where
gi =

(
1− si

2 εi
)

(wi − k)
(

1− di
2 εk

)
, (3.2)

for i = 1, . . . , 6. This is just the reformulation of the well-known closure equations
[20] in terms of dual quaternions.

Remark 3.1. In (2.1), we used a different formulation of the closure equation,
namely

(t1 − h1)(t2 − h2) · · · (t6 − h6) ∈ R∗,
where h1, . . . , h6 are dual quaternions specifying the rotation axes in some initial
position of the linkage.

The set K of all 6-tuples (t1, . . . , t6) fulfilling (3.1) is the configuration set of the
linkage L with respect to 18 Denavit-Hartenberg parameters, namely, six orthogonal
distances (d1, . . . , d6), six cotangent of the half of the twisted angles (w1, . . . , w6)
and six offsets (s1, . . . , s6). We want to mention that we are mostly interested in
linkages of mobility one again.

We compute the configuration set by Algorithm 3 with 18 given Denavit - Harten-
berg parameters, (d1, . . . , d6), (w1, . . . , w6), and (s1, . . . , s6). The idea of Algorithm 3
is same as the idea of Algorithm 1.

It is worth pointing out that it also works for the cases of 4R and 5R linkages. For a
fixed set of Denavit-Hartenberg parameters, the configuration set can be computed
with the help of the computer algebra system Maple. For example, let L be the
Bricard line symmetric linkage with parameters

Input:

(d1, . . . , d6) =
(3

5 ,
24
13 ,

72
25 ,

3
5 ,

24
13 ,

72
25

)
(w1, . . . , w6) =

(1
3 ,

2
3 ,

3
4 ,

1
3 ,

2
3 ,

3
4

)
,

(s1, . . . , s6) = (4, 5, 1, 4, 5, 1)
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3.2 New Bonds

Algorithm 3 configuration set
Input: Denavit-Hartenberg parameters, (d1, . . . , d6), (w1, . . . , w6) and (s1, . . . , s6).
Output: A list of equations in t1, t2, . . . , tn such that its solution set equals the

configuration set of (3.1).

1: Write F := (t1 − i)g1(t2 − i)g2 · · · (t6 − i)g6, in DH for
gi =

(
1− si

2 εi
)

(wi − k)
(
1− di

2 εk
)
, where i = 1, . . . , 6.

2: Take the seven coefficients of F except the first coefficient and add them to list
E.

3: Supplement E by one more polynomial, namely, (t21 + 1)(t22 + 1)(t23 + 1)(t24 +
1)(t25 + 1)(t26 + 1)u− 1.

4: Compute the Gröbner basis G of the elimination ideal of E with respect to u.
5: Return G –the elimination ideal.

Output: Then all gis of this 6R linkage are

g1 = 1
3 −

3
10ε−

2
3εi− 2εj−

( 1
10ε+ 1

)
k,

g2 = 2
3 −

12
13ε−

5
3εi−

5
2εj−

( 8
13ε+ 1

)
k,

g3 = 3
4 −

36
25ε−

3
8εi−

1
2εj−

(27
25ε+ 1

)
k,

g4 = g1, g5 = g2, g6 = g3.

The solution set has some zero-dimensional components, which are not interesting,
and a one-dimensional component:

171t21t22 − 134t21t2 + 40t1t22 + 49t21 − 160t1t2 − 5t22 − 24t1 + 90t2 − 255,

171t1t22 + 19t22t3 − 134t1t2 + 40t22 − 222t2t3 + 49t1 − 288t2 + 105t3,

171t1t2 − 133t1t3 + 19t2t3 − 134t1 + 40t2 − 222t3 − 323, t1 − t4, t2 − t5, t3 − t6.

Remark 3.2. The configuration set we computed is just with respect to some initial
position of the linkage.

Let L be a closed 6R linkage with mobility 1. Let KC ⊂ (P1
C)6 be the Zariski

closure of the configuration set K, that is, the zero set of all polynomial equations
that vanish on K, including complex points and points at infinity. The set of bonds
is defined as

B := {(t1, . . . , t6) ∈ KC | (t1 − i)g1(t2 − i)g2 · · · (t6 − i)g6 = 0}. (3.3)
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Let β be a bond with coordinates (t1, . . . , t6). By Theorem 2 in [31], there exist
indices 1 ≤ i < j ≤ 6, such that t2i + 1 = t2j + 1 = 0. If there are exactly two
coordinates of β with values ±i (where i denotes the imaginary unit in the field of
complex numbers C), then we say that β connects joints i and j. By [31, Corollary
12], we have

(ti − i)gi(ti+1 − i)gi+1 · · · (tj − i) = 0. (3.4)
In general, the situation is more complicated: a bond may connect several pairs of
joints, or it may connect a single pair of joints with higher connection multiplicity;
we refer to [31] for the technical details in these cases.

In order to draw the bond diagram for a given linkage, we first compute its con-
figuration space as in the previous chapter 2. If K is a Gröbner bases for the
configuration space, then we calculate for any pair (i, j) of indices a Gröbner bases
Kij of the union of K and {t2i + 1, t2j + 1}. The number of bonds connecting joints
Ji, Jj is then the degree of the ideal Kij.

For a given 6R linkage L with 18 given Denavit-Hartenberg parameters, (d1, . . . , d6),
(w1, . . . , w6) and (s1, . . . , s6), we compute the bond connections (bond diagram) for
the linkage L by Algorithm 4. The main idea is as follows. We calculate the
connection numbers for all bonds together instead of calculating them one by one.
This is based on the same formula as in Chapter 2

kB(i, j) := vB(i, j) + vB(i+ 1, j − 1)− vB(i, j − 1)− vB(i+ 1, j),

where we can get vB(i, j) by counting the solutions of a intersection of K and
Fi,j = 0. This counting includes the multiplicity. One might need to do linear
transformations of ti in P such that this counting is proper.

One can find a Maple code (using Maple 16 or later) for this computation in [1].
We treat the same example 3.2 as in the computation of the configuration set. The
bond connection for this Bricard line symmetric 6R linkage is

D := [[1, 4, 2], [2, 5, 2], [3, 6, 2]].

In Figure 3.1, we show some known examples with bond diagrams.

We number the joints cyclically by J1, . . . , J6. By [31, Theorem 3(c)], a bond
cannot connect Ji and Ji+1 (modulo 6). We speak of a near connection if a bond
connects joints Ji and Ji+2, and of a far connection if a bond connects Ji and Ji+3.
For instance, the bond diagram in Figure 3.1(d) has 3 near connections and 6 far
connections.

Theorem 3.3. A near connection implies a Bennett condition: if Ji and Ji+2 are
connected, then bi = ±bi+1 and si+1 = 0.
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Algorithm 4 BondConnectionsII
Input: Denavit-Hartenberg parameters, (d1, . . . , d6), (w1, . . . , w6) and (s1, . . . , s6).
Output: A list D = [D1, D2, . . . , Dm], where Ds = [p, q, r] for s = 1, . . . ,m, p =

1, 2, . . . , n, |q − p| = 2, . . . , n− 2, r is an nonzero integer.

1: Use Algorithm 3 to get a list of polynomials G which give the configuration set.
2: Set P := {1, 2, . . . , n− 2}.
3: repeat
4: Take p ∈ P and set P ← P − {p}, Q := {p+ 2, . . . , n}.
5: repeat
6: Take q ∈ Q and set Q← Q− {q}.
7: Compute the vanishing orders of

v1 := vB(p, q), v2 := vB(p+ 1, q − 1),
v3 := vB(p, q − 1), v4 := vB(p+ 1, q).

8: Set r := v1+v2−v3−v4
2 .

9: If r 6= 0, then D ← D + [p, q, r].
10: until Q = NULL.
11: until P = NULL.
12: Return D = [D1, D2, . . . , Dm] for some integer m.

Proof. This is an immediate consequence of Theorem 1 and Corollary 2 of [31].

For any two links, their relative motion can be described by a curve in the Study
quadric. The degree of this curve can be read off from the bond diagram, using
[31, Theorem 5]. We will not use this theorem in its full generality. The only
consequence which we will use is that every joint is connected to at least one other
joint. Otherwise the relative motion of the two adjacent links would be of degree 0.
Hence, this joint would be frozen throughout the motion of the linkage and can be
deleted from the linkage.

3.3 Quad Polynomials

In this section, we introduce a technique to derive algebraic equations on the
Denavit-Hartenberg parameters which are necessary for the existence of a far con-
nection. Because any mobile linkage has either a near or a far connection, this
allows to deduce necessary conditions for movability.

Assume that β = (i, α, β, i, α′, β′) is a bond connecting J1 and J4 (note that the
first and fourth coordinate must be ±i by the definition of a connection). We define
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Figure 3.1: Bond diagrams for the Cube linkage (a), the Bricard line symmetric
linkage (b), the Bricard plane symmetric linkage (c), the Wohlharts
partially symmetric linkage (d), the first new linkage with genus 3 (e),
the second new linkage with genus 3 (f), the Hooke linkage (g), the
Dietmaier linkage (h), and the Orthogonal Bricard linkage (i). The
joints are labeled by J1, . . . , J6. Each bond connects two joints.

q := (i− i)g1(α− i)g2(β − i)g3. Then we have

(i + i)q = 0 = q(i− i),

where the first equation follows from i2 − i2 = 0 and the second equation is a
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consequence of bond theory. All solutions of the two equations above are scalar
multiples of j + ik, the scalar being an arbitrary dual number. Hence we may write
q = (a + bε)(j + ik) with unique numbers a, b ∈ C. If a 6= 0 (this is the case when
both α and β are not equal to ±i), then q is projectively equivalent (that is, up to
multiplication by a nonzero complex number) to (1 + x0ε)(j + ik) for some x0 ∈ C.
Our goal is to define a polynomial Q+

1 ∈ C[x], with coefficients depending on the
Denavit-Hartenberg parameters, such that Q+

1 (x0) = 0.

The triple of complex numbers (α, β, x0) satisfies the following three equations:

1. the first coordinate (the coefficient of 1) of q is zero;

2. the fifth coordinate (the coefficient of ε) of q is zero;

3. the product of the third coordinate (the coefficient of j) of q and x is equal to
the seventh coordinate (the coefficient of εj) of q.

Conversely, if a triple (α, β, x0) satisfies these three equations, it is straightforward
to show that q as defined above is projectively equivalent to (1 + x0ε)(j + ik). We
define now the quad polynomial Q+

1 (x) as the resultant of the three polynomial
equations above with respect to the variables α, β. In order to achieve unique-
ness, we assume that Q+

1 is normed, that is, its leading coefficient is 1. Using
the computer algebra system Maple, the computation of the resultant can be done
with symbolic expressions for the Denavit-Hartenberg parameters. The result is the
quadric polynomial

Q+
1 (x) =

(
x+ b3c3 − b1c1

2 − s1

2 i
)2

+ i
2 (b1s2 + b3s3 + s2b3c2 + s3b1c2)−

b1b3c2 − s2s3c2

2 + s2
2 + s2

3 − b2
1 + b2

2 − b2
3 − b2

2c
2
2

4 .

For i = 2, . . . , 6, we define the quad polynomial Q+
i (x) by a cyclic shift of in-

dices that shifts 1 to i. Finally, we define Q−i (x) by replacing the parameters
c1, . . . , c6, b1, . . . , b6 and s2, s4, s6 by their negatives, and leaving s1, s3, s5 as they
are. For instance,

Q−1 (x) =
(
x+ b3c3 − b1c1

2 − s1

2 i
)2

+ i
2 (b1s2 − b3s3 − s2b3c2 + s3b1c2)−

−b1b3c2 − s2s3c2

2 + s2
2 + s2

3 − b2
1 + b2

2 − b2
3 − b2

2c
2
2

4 .

Theorem 3.4. Let k be the number of bond connections of J1 and J4. Then

k ≤ deg(gcd(Q+
1 , Q

+
4 )) + deg(gcd(Q−1 , Q−4 )).
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Proof. Assume that β = (±i, α,±β,±i, α′, β′) is a bond connecting J1 and J4. We
may assume that its first coordinate is i; otherwise, we replace β by its complex
conjugate. As above, we define q := (i−i)g1(α−i)g2(β−i)g3. By the construction of
the quad polynomial Q+

1 , there exists x0 ∈ C such that q is projectively equivalent
to (1 + x0ε)(j + ik) and Q+

1 (x0) = 0. Now we apply a cyclic shift and obtain, in
the same way, an x1 ∈ C such that q′ := (i− i)g4(α′ − i)g5(β′ − i)g6 is projectively
equivalent to (1+x1ε)(j+ik) and Q+

4 (x1) = 0. Now β satisfies all algebraic equations
that are valid in the configuration set, in particular the equation expressing that
(t1 − i)g1(t2 − i)g2(t3 − i)g4 is projectively equivalent to the quaternion conjugate
of (t4 − i)g4(t5 − i)g5(t6 − i)g6. Hence q and q′ are conjugate as dual quaternions,
up to complex scalar multiplication. But the scalar parts of both q and q′ vanish,
hence q and q′ are projectively equivalent. Hence x0 = x1, and we have derived the
existence of a common zero of Q+

1 and Q+
4 , under the assumption of the existence of

a bond with t1 = t4 = i. Hence deg(gcd(Q+
1 , Q

+
4 )) is an upper bound for the number

of bond connections of J1 and J4 by bonds with t1 = t4 = i. Similarly, one shows
that deg(gcd(Q−1 , Q−4 )) is an upper bound for the number of bond connections of
J1 and J4 by bonds with t1 = −t4 = i.

Remark 3.5. The argument of the proof of Theorem 3.4 can be partially reversed:
a common root of the quad polynomials Q1 and Q4 implies a common point of
X1,2,3 and X6,5,4 with norm zero. Its preimage α ∈ (P1)6 satisfies the equation
(t1 − h1) . . . (t6 − h6) = 0. But α is not necessarily a bond, because it also could be
an isolated intersection point of X1,2,3 and X6,5,4, and then it is not an element in
the Zariski closure of K.

Remark 3.6. It is well-known that two univariate polynomials have a greatest com-
mon divisor of positive degree if and only their resultant is zero. The resultant of
two quad polynomials is a polynomial expression in the Denavit-Hartenberg param-
eters. Its vanishing gives rise to two equations, because the resultant has a real and
an imaginary part. If the product of all these resultants times, say, the product of
all offsets is not zero, then no bond can exist and the linkage is rigid.

The polynomial conditions obtained in the way described above are big and difficult
to solve. It is therefore more promising to go through some case distinctions on the
bond diagram. In order to obtain the strongest possible algebraic conditions, one
should make the following assumptions on the bond structure.

• For each of the six pairs (Ji, Ji+2) of near joints, we make an assumption
whether they are connected or not.

• For each pair of the three pairs (Ji, Ji+3) of far joints, we make an assumption
on the number of connections by bonds with ti = ti+3 = i and on the number
of connections by bonds with ti = −ti+3 = i. In both cases, this number is in
the set {0, 1, 2}.
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• The assumptions must be consistent with the condition that every joint is
attached to at least one bond. This condition is a consequence of [31, Theorem
5], assuming that every joint is moving.

In the case when the number of connections of (Ji, Ji+3) by bonds with ti = ti+3 = i
is equal to 2, then the two polynomials Q+

i (x) and Q+
i+3(x) must be equal, because

they are both quadratic and normed and have a quadratic greatest common divisor.
This is equivalent to the vanishing of four polynomials in the Denavit-Hartenberg
parameters, namely the real and the complex part of the linear and the constant
coefficient of the difference polynomial.

3.4 Some Known Examples

In this section, we apply the method of quad polynomials to several well-known
families of mobile 6R linkages. The main purpose of this section is to show that
our method is another way to “explain” already known equations with a unifying
method.

As in the section 3.2, we use the Bennett ratios b1, . . . , b6, the angle cosines c1, . . . , c6
and the offsets s1, . . . , s6. In addition, we also use the values fk = ckbk, k = 1, . . . , 6,
as abbreviations; this leads to shorter formulas.

3.4.1 Bricard’s Line Symmetric Linkage

If bi = bi+3, wi = wi+3, and si = si+3 for i = 1, 2, 3, then there is a one-dimensional
set of line symmetric positions which allow the link to move. Apparently, we also
have

Q+
1 = Q+

4 , Q
+
2 = Q+

5 , Q
+
3 = Q+

6 ,

which means that the necessary conditions for a double connection between each
pair of far joints are satisfied. As we saw in Figure 3.1(b), the bond diagram does
indeed have these three double connections.

Conversely, it is not true that the 12 equations (obtained by Q+
i = Q+

i+3 for i =
1, 2, 3) imply that the linkage is line symmetric. A counterexample is Bricard’s
orthogonal linkage, see subsection 3.4.4 below.
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3.4.2 Hooke’s Double Spherical Linkage

By combining two spherical linkages with one joint in common, and then removing
the common joint, we obtain a movable 6R linkage that has two triples of three
joint axes meeting in a point (say the axes of J6, J1, J2 and the axes of J3, J4, J5).
In this case, it is easy to see that b1 = b3 = b4 = b6 = s1 = s4 = 0. Another
equation, namely

s2
2 + s2

3 + b2
2 − f 2

2 + 2s2s3c2 = s2
5 + s2

6 + b2
5 − f 2

5 + 2s5s6c5

can be derived by geometric considerations (see [21]) or an algebraic method (see
[18]). Alternatively, we consider the bond diagram of this linkage, which is shown
in Figure 3.1(g). As we have a fourfold connection of J1 and J4, we get Q+

1 = Q+
4

and Q−1 = Q−4 , and under the assumption that b1 = b3 = b4 = b6 = s1 = s4 = 0,
this is equivalent to the above condition.

3.4.3 Dietmaier’s Linkage

In [21], Dietmaier describes a family of mobile 6R linkages, which he found by a
computer-supported numerical search. It can be characterised by the equations

b6 = b1, b3 = b4, b2 = b5, c2 = c5, f6 + f1 = f3 + f4,

s6 = s2, s3 = s5, s1 = s4 = 0.
Its bond diagram is shown in Figure 3.1(h).

Starting from the assumption on the bond structure, we first obtain the conditions
b6 = b1, b3 = b4, s1 = s4 = 0 as consequences of Bennett conditions implied by
the existence of short connections. Since we have again a fourfold connection of J1
and J4, we again get Q+

1 = Q+
4 and Q−1 = Q−4 . We added the inequality condition

b1b4 6= 0 and did a computer-supported analysis of the solution set using Maple. It
turns out that there are two components. The first one is Dietmaier’s family. The
second is given by the equations

b6 = b1, b3 = b4, b2 = −b5, c2 = c5, f6 + f1 = f3 + f4,

s6 = s2, s3 = s5, s1 = s4 = 0.
We computed the configuration set of a random instance of the second component.
It appeared to be finite, hence the second component is not a family of mobile 6R
linkages. However, the subset of solutions that also fulfill the condition f1+f6 = 0 is
a well-known family, namely the Bricard plane symmetric linkage. Its bond diagram
is shown in Figure 3.1(c).
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3.4.4 Bricard’s Orthogonal Linkage

The well-known family (see [4]) of orthogonal linkages can be described by the
conditions

s1 = · · · = s6 = 0, c1 = · · · = c6 = 0,

b2
1 + b2

3 + b2
5 = b2

2 + b2
4 + b2

6.

(The name of this family already tells the twist angles are right angles.) It is easy
to prove that these equations imply

Q+
1 = Q+

4 , Q
+
2 = Q+

5 , Q
+
3 = Q+

6 , Q
−
1 = Q−4 , Q

−
2 = Q−5 , Q

−
3 = Q−6 , (3.5)

which means that the necessary conditions for the existence of the maximal number
of far connections is fulfilled. Indeed, the bond diagram has all these far connections;
this can be seen in Figure 3.1(i).

The system of equations (3.5) has more solutions, leading to other linkages with
the same bond diagram. This is studied in [27].

3.5 Several New Examples

In this section, we use the method to obtain several new family of mobile 6R link-
ages. These families are remarkable because they have maximal genus.

3.5.1 Linkages with Maximal Genus

In Chapter 2, we give a classification of all closed 6R linkages with a configuration
curve of genus at least four that do not have links with parallel joint axes, in terms of
bond diagrams in Theorem 2.18. Now we will see the classification in terms of their
Denavit–Hartenberg parameters. It turns out there are four irreducible families;
two of them are well-known, the other two are new.

As in Section 3.4, we use the angle cosines c1, . . . , c6, the Bennett ratios b1, . . . , b6 and
the offsets s1, . . . , s6. In addition, we also use the f-values fk = ckbk, k = 1, . . . , 6;
this leads to shorter formulas.

Let L be a linkage such that no adjacent axes are parallel, and assume that the
genus of its configuration curve at least four. By Theorem 2.18, its bond diagram
is Figure 2.3(a), (b), or (d). Cases (a) and (b) are well-known and have been
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described in the Lemmas 2.9 and 2.11: these are the Hooke linkage in Section 3.4.2
and the Dietmaier linkage in Section 3.4.3, respectively. Both of them have short
connections in their bond diagrams. This yields that there is a coupling dimension
less than 8 (4 or 6).

From now on, we assume that lk,k+1,k+2 = 8 for k = 1, . . . , 6; consequently, the bond
diagram is Figure 2.3(d). The number of bonds is maximal, for k = 1, 2, 3, and for
any choice of tk, tk+3 in {+i,−i}, there exist 2 bonds connecting hk and hk+3. By
Theorem 3.4, we get the following equalities of polynomials in C[x]:

Q+
1 = Q+

4 , Q
+
2 = Q+

5 , Q
+
3 = Q+

6 , Q
−
1 = Q−4 , Q

−
2 = Q−5 , Q

−
3 = Q−6 . (3.6)

Each equality of polynomials gives rise to four scalar equations, namely the real and
imaginary part of the linear and the constant coefficient.

Lemma 3.7. The zero set of the 24 equations above is the union of two irreducible
components. For both, we have s1 = · · · = s6 = 0 and the three equations

b1c2b3 = b4c5b6, b2c3b4 = b5c6b1, b3c4b5 = b6c1b2. (3.7)

The two components are

1. f1 = f4, f2 = f5, f3 = f6, b1b3b5 = b2b4b6,
b2

1 + b2
3 + b2

5 = b2
2 + b2

4 + b2
6

2. f1 = f3 = f5, f2 = f4 = f6, b1b3b5f2 = b2b4b6f1,
b2

1 + b2
3 + b2

5 + f 2
2 = b2

2 + b2
4 + b2

6 + f 2
1 .

If no Bennett ratio is zero, then the three equations (3.7) are redundant.

Proof. By comparing the imaginary parts of the linear coefficients, it follows im-
mediately that s1 = · · · = s6 = 0. For the simplified system, we obtained the
decomposition above by Gröbner basis computation using the computer algebra
system Maple.

Theorem 3.8. There are two irreducible families of 6R linkages with coupling di-
mensions 8 such that the configuration curve has genus 5 generically. They are
characterized by cases 1 and 2 in Lemma 3.7.

Proof. The validity of the equations (3.5) implies the existence of 24 points in the
intersection of X1,2,3 and X6,5,4, by Remark 3.5. Intersection theory predicts an
intersection of only 16 points (see [58, Section 11.5.1]), therefore the intersection is
infinite and the linkage moves.
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Since the genus is a lower semicontinuous function in a family of curves, and 5 is
the largest possible value, it suffices to exhibit a single example with a configuration
curve of genus 5 for each of the two families in order to prove that the genus is 5
in the generic case. Here is an example that works for both, because it is in the
intersection of the two families:

b1 = 0, b2 = 40, b3 = 32, b4 = 0, b5 = 25, b6 = 7, c1 = · · · = c6 = 0.

Remark 3.9. A special case of the second family is Bricard’s orthogonal linkage
(see [4]). It can be characterized by the condition s1 = · · · = s6 = c1 = · · · = c6 = 0
and b2

1+b2
3+b2

5 = b2
2+b2

4+b2
6. The example in the proof of Theorem 3.4 is actually an

instance of Bricard’s orthogonal linkage. Therefore we can conclude that the genus
of the configuration curve of Bricard’s orthogonal linkage is 5 generically.
Remark 3.10. The linkages with a configuration curve of genus 4 are contained in
the 4 families described in this section as special cases. A concrete example is the
Bricard orthogonal linkage with (b1, . . . , b6) = (4, 3, 5, 7, 9, 8).

3.5.2 The first new linkage with Genus 3

We first assume that there are no near connections, four connections of J2 and J5,
four connections of J3 and J6, and two connections of J1 and J4 by bonds with
t1 = t4. The bond diagram can be seen in Figure 3.1(e). Then we get the following
equalities of polynomials in C[x]:

Q+
1 = Q+

4 , Q
+
2 = Q+

5 , Q
+
3 = Q+

6 , Q
−
3 = Q−6 , Q

−
2 = Q−5 . (3.8)

Using the computer algebra system Maple, we obtained the following equivalent
system of solutions:

b2
1 + b2

3 + b2
5 + f 2

6 = b2
2 + b2

4 + b2
6 + f 2

3 , f2 + f3 = f5 + f6,

b2c1 − b3 = b2c3 − b1 = b5c4 − b6 = b5c6 − b4 = 0,
s2 = s3 = s5 = s6 = 0, s1 = s4.

(3.9)

The solution set is irreducible. Here is a random numerical example:

b1 = −1
3 , b2 = −61

33 , b3 = 305
429 , b4 = 2000

1001 , b5 = −2900
1001 , b6 = 1740

1001 ,

w1 = 2
3 , w2 = −4, w3 = 6

5 , w4 = 1
2 , w5 =

√
54083849

6619 , w6 = 3
7 ,

s2 = s3 = s5 = s6 = 0, s1 = s4 = 2
3 .

(3.10)
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(a) (b) (c)

Figure 3.2: Three configurations of the new linkage (3.10).

Theorem 3.11. The solution of the system of equations (3.9) is a set of Denavit
- Hartenberg parameters for a mobile linkage. This linkage is different from all
linkages listed in [17, 21].

Proof. We calculate the configuration space using the method described in Sec-
tion 3.2. The Gröbner basis consists of 32 polynomials (1194 terms in total) in
t1, . . . , t6 and the radical number w5, which are too long to be reproduced here.
The dimension of the ideal can be calculated from the Gröbner bases, and it is
indeed 1 and contains infinite real solutions. This shows that the linkage moves.
Some configurations are shown in Figure 3.2.

In order to show that the linkage is different from the known linkages in lists [5, 17,
21], one could compute all bond diagrams of the known linkages and see that the
diagram in Figure 3.1(e) is not among them. (Indeed, this was our first proof.) The
disadvantage of this approach is that we would have to include the bond diagrams
of all known linkages. However, there is a shortcut based on the observation that
almost all linkages in [5, 17, 21] fulfill at least one Bennett condition, while our
Example (3.9) does not satisfy Bennett conditions. We just need to check against
the known examples that do not fulfill the Bennett conditions. There are the Bricard
line symmetric linkage, the Bricard orthogonal linkage, and the cube linkage. For
these four cases, the bond diagrams are Figure 3.1(a),(b), and (i), and these are
clearly different from Figure 3.1(e).

One can observe, in addition, that all points in the configuration space satisfy the
equation t1 = t4. When we vary s1 = s4, we get a configuration set of a CRRCRR
linkage (2 cylindrical joints). This set is an infinite union of curves, so its dimension
is 2. Let a ∈ R. Then we may pose a new constraint like t1 = cot(as1), and still
have dimension 1; the second constraint t4 = cot(as4) is implied because t1 = t4
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and s1 = s4. This defines an HRRHRR linkage (2 helical joints) with movability 1.
This technique is introduced in next section.

3.5.3 The second new linkage with Genus 3

We assume that there are near connections, four connections of J1 and J4, four
connections of J2 and J6 (Spherical condition), and two connections of J3 and J5
(Bennett condition). The bond diagram can be seen in Figure 3.1(f). Then we get
the following equalities of polynomials in C[x]:

Q+
1 = Q+

4 , Q
−
1 = Q−4 . (3.11)

Using the computer algebra system Maple, we obtained the following equivalent
system of solutions:

f 2
2 + c2

2s
2
2 − b2

2 − s2
2 = f 2

5 + c2
5s

2
6 − b2

5 − s2
6,

c3 + c4 = c2s2 − c5s6 + s3 − s5 = 0,
b3 = b4, b1 = b6 = s1 = s4 = 0.

(3.12)

It is worth mentioning that the 6R linkage is still mobile with genus 3 when one
replaces the spherical 3R linkage by a planar 3R linkage.

The solution set is irreducible. Here is a random numerical example:

b1 = 0, b2 = −12
5 , b3 = 5, b4 = 5, b5 = 3, b6 = 0,

w1 = 1, w2 = 1, w3 = 3, w4 = 1
3 , w5 = 1, w6 = 2,

s1 = s4 = s6 = 0, s2 = 9
5 , s3 = s5 = 5

3 .

(3.13)

One can observe, in addition, that all points in the configuration space satisfy the
equation t3 = t5. When we vary s3 = s5, we get a configuration set of a RRCRCR
linkage (2 cylindrical joints). This set is an infinite union of curves, so its dimension
is 2. Let a ∈ R. Then we may pose a new constraint like t3 = cot(as3), and still
have dimension 1; the second constraint t5 = cot(as5) is implied because t3 = t5
and s3 = s5. This defines an RRHRHR linkage (2 helical joints) with movability 1.
This technique is introduced in next section.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.3: Nine configurations of the new linkage (3.13).

3.6 Construction of Linkages with Helical Joints

In this section we give a construction that produces mobile linkages with H-joints
from linkages with C-, P-, and R-joints. We illustrate the construction by several
well-known examples and one example which is new.

We start with a simple construction: take a linkage with r C-joints that has mobility
at least r + 1. For each C-joint jk, impose the additional restriction tk = cot( sk

2gk
)

44



3.6 Construction of Linkages with Helical Joints

on its joint parameters (sk, tk), where gk is a nonzero real constant. Any additional
equation reduces the mobility at most by 1, so we get a mobile linkage where every
C-joint jk is replaced by an H-joint with pitch gk.

We can extend this simple construction using the observation that Q-linear relations
between the angles imply algebraic relations between their tangents. For the general
construction, which we call screw carving , we need the following ingredients.

1. a linkage L with m C-joints jk1 , . . . , jkm and an undetermined number of R-
and P-joints;

2. an irreducible analytic subspace K0 of the configuration space of L;

3. an integer matrix A with m columns that annihilates the vector of analytic
functions (αk1 , . . . , αkm)t ∈ C(K0)m such that cot(αk

2 ) = tk;

4. an m-tuple (gk1 , . . . , gkm) of nonzero real numbers, so that A also annihilates
the vector of functions (ak1 , . . . , akm)t, where ak : K0 → C is the function
(s∗, t∗) 7→ sk

gk
.

As before, the linkage L′ with H-joints instead of C-joints is obtained by imposing
the additional restriction tk = cot( sk

2gk
) on its joint parameters (sk, tk), for each

C-joint tk. To obtain linkages with large mobility, the integer matrix A should
have the largest possible rank, which means that all integral relations between the
analytic angle functions are linear combination of matrix rows. (In the next section,
we will indeed always choose such matrices of maximal rank.) The empty matrix
with zero rows is allowed, then we just get the simple construction above.

Lemma 3.12. Let d := dim(K0) and ` := rank(A). Then the mobility of the linkage
produced by screw carving is at least d−m+ `.

Proof. The subset K ′ of K0 that satisfies the additional restrictions tk = cot( sk

2gk
)

is contained in the configuration space of L′. Since the codimension of an analytic
subset is never bigger than the number of defining equations, we see that dim(K ′) ≥
d−m. We claim that K ′ can be defined (as a subset of K ′) by only m−` equations.

Let αk1 , . . . , αkm ∈ C(K0) be as above. The Q-vector space generated by these m
functions has dimension at most m− `. Without loss of generality, we assume that
{αk1 , . . . , αkm−`

} is a generating set. Any other αk can be expressed as a Q-linear
combination

αk = q1αk1 + · · ·+ qkm−`
αkm−`

,
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with rational coefficients depending on the matrix A. But then we also have
sk
gk

= q1
sk1

gk1

+ · · ·+ qkm−`

skm−`

gkm−`

.

It follows that the equations tk1 = cot( sk1
2gk1

), . . . , tkm−`
= cot( skm−`

2gkm−`

) imply all other
equations.

Example 3.13. Let L be a 4-linkage with 4 cylindrical joints with parallel axes.
Its mobility is 4. For all configurations (t1 = cot(α1

2 ), s1, . . . , t4 = cot(α4
2 ), s4), we

have α1 + α2 + α3 + α4 = 0 and s1 + s2 + s3 + s4 = 0. So we take K0 as the full
configuration set, A as the 1×4 matrix (1, 1, 1, 1), and g1 = g2 = g3 = g4, and apply
screw carving. We obtain a 4-linkage with 4 helical joints and mobility 4-4+1=1.
One can find more examples of such linkages in [19, 38].

Similarly, one can obtain an n-linkage with n H-joints with parallel axes with mo-
bility n− 3, n ≥ 4.

Example 3.14. Here is a variation of the previous example. Set

h1 = k− εi, h2 = k + εi, h3 = h5 = k, h4 = k + 2εj

and let L be the CCRRR linkage with C-joint axes h1, h2 and R-joint axes h3, h4, h5.
Its mobility is 3, and all configurations satisfy s1 + s2 = 0. We define K0 as the
subvariety defined by tan(17 arccot(t1)−11 arccot(t2)) = 0 (this is a rational function
in t1, t2). Its dimension is 2. We set as the 1 × 2 matrix A = (1, 1) and g1 = 1

17 ,
g2 = −1

11 . By screw carving we get an HHRRR linkage with mobility 1. Figure 3.4
shows the trace of the joint j4 when the link with the two H-joints j1, j2 is fixed.

Example 3.15. Let h1, h2, h3 be lines. Reflecting them by the coordinate axes rep-
resented by i, we get h4 = ih1i, h5 = ih2i, h6 = ih3i. Let L be the 6C-linkage with
axes h1, . . . , h6. The zero set of the closure equation

(t1 − h1)(1− εs1h1) · · · (t6 − h6)(1− εs6h6) ≡ 1

has a component of dimension 4, given by the equations

t1 = t4, t2 = t5, t3 = t6, s1 = s4, s2 = s5, s3 = s6, xi + ix = 0,

where x = (t1 − h1)(1− εs1h1)(t2 − h2)(1− εs2h2)(t3 − h3)(1− εs3h3).

With A =

1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

 and g1 = g4, g2 = g5, g3 = g6, the screw

carving procedure gives a line symmetric 6H linkage with mobility 1.

Similarly, one can construct a plane symmetric RHHRHH linkage with mobility 1.
Both linkages are well-known, see [6].
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Figure 3.4: Planar projection of an HHRRR linkage with 5 parallel axes to the plane
orthogonal to the axes (Example 3.14). The helical joints are at j1 and
j2. The ratio of the pitches at the two helical joints j1, j2 is 11:17. The
curve shown is the trace of the joint j4. It is an algebraic curve of large
degree.

Example 3.16. Let h1, h2, h3 be lines with linear independent primal parts that do
not intersect pairwise, such that two offsets s(h1, h2, h3) = s(h3, h1, h2) = 0. Let L
be the RRCRRC linkage with axes h1, h2, h3, h2, h1, h3. The zero set of the closure
equation

(t1 − h1)(t2 − h2)(t3 − h3)(1− εs1h3)(t4 − h2)(t5 − h1)(t6 − h3)(1− εs6h3) ≡ 1

has two components of dimension 2. The first is given by t1 = −t5, t2 = −t4,
t3 = t6 = ∞, s3 = s6 = 0; this is a degenerate motion which does not separate the
pairs of axes at joints (j1, j5) and at (j2, j4). The equations of the second component
K0 can be computed by computer algebra. Two of them are s3 = s6 and t3 = t6; the
remaining are more complicated. With A =

(
1 −1

)
and g3 = g6, the screw carving

procedure gives an RRHRRH linkage with mobility 1. In contrast to all families of
mobile 6-linkages with H-joints that have been known up to now, this linkage has
no parallel axes or apparent geometric symmetries. A distinctive property is the
existence of a starting position with three pairs of coinciding axes.

47





Chapter 4

Factorization of Motion Polynomials

In this chapter, we will recall some elementary definitions and properties of the
factorization of motion polynomials. These definitions and properties are recollected
from [30].

The chapter recalls a factorization algorithm for generic motion polynomials (Algo-
rithm 5) from [30]. For the non-generic case, we give two algorithms (Algorithms 7
and 8). The results presented below evolved from a collaboration with Josef Schicho
and Hans-Peter Schröcker [46].

Factorizations of polynomials over non-commutative ring (e.g. quaternions) have
been studied by many authors. The most recent review can be found in [61]. Es-
pecially concerning quaternion ring, we would like to mention [25, 32, 54] where
one can find the results on the number of roots and explicit solution formulas for
quadratic quaternion polynomials.

One can construct 6R linkages by combining different factorizations of a motion
polynomial which we will define in next section. In other words, every 6R linkage
whose configuration set contains a non-degenerate rational curve can be constructed
by this method. There are lots of such families of 6R linkages. Namely, all the
linkages constructed using Bennett linkages belong to this rational families, e.g.,
Waldrons Double Bennett Hybrid.

Structure of the chapter The remaining part of the chapter is set up as follows.
In Section 4.1, we introduce all preliminary definitions on motion polynomials. In
Section 4.2, we recall the first factorization algorithm from [30]. It only treats the
generic case where there is no real polynomial factor in the primal part of the motion
polynomial. Section 4.3 contains two new algorithms on fixing the gap. Namely, we
can factor the non-generic case under the assumption of bounded motion polynomial
which only admits quadratic irreducible real polynomials factor in the primal part.
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In fact, a linear real polynomial factor can be replaced by quadratic irreducible real
polynomial factor by substitution. In Section 4.4.3, we mention that the general
algorithm can be used for the planar motion. Even more, we can get non-planar
factorization for planar motions.

4.1 Preliminary Preparations

We are still with the dual quaternion model of rigid body displacements. In partic-
ular, we focus on one degree of freedom rational motions that can be parameterized
by motion polynomials [30, 41, 45, 48].

Denote by DH[t] the ring of polynomials in t with dual quaternion coefficients
where multiplication is defined by the convention that the indeterminate t commutes
with all coefficients. We follow the convention to write the coefficients to the left
of the indeterminate t. Similarly, we denote by H[t] the sub-ring of polynomials
with coefficients in H. The conjugate polynomial to C = ∑n

i=0 citi ∈ DH[t] is
C = ∑n

i=0 cit
i and the norm polynomial is CC. Its coefficients are dual numbers. If

C = ∑n
i=0 cit

i, the value C(h) of C at h ∈ DH is defined as C(h) = ∑n
i=0 cih

i. We
also define C(∞) := cn.

A polynomial M = P + εQ ∈ DH[t] is called a motion polynomial if PQ+QP = 0
and its leading coefficient is invertible. Usually we will even assume that the leading
coefficient is one (the polynomial is monic). This can be accomplished by left-
multiplying M with the inverse of the leading coefficient and often constitutes no
loss of generality. The defining conditions of a motion polynomial ensure that its
norm polynomial has real coefficients.

A motion polynomial M = P + εQ acts on a point x = x1i + x2j + x3k according
to

x 7→ PxP + 2PQ
PP

. (4.1)

This equation defines a rigid body displacement for all values t ∈ R∪{∞} that are
not zeros of P . Any map of the shape (4.1) with a motion polynomial M = P + εQ
is called a rational motion. We also say that the motion polynomial parameterizes
the rational motion. The motion’s trajectories (orbits of points for t ∈ R ∪ {∞})
are rational curves. It is known that any motion with only rational trajectories is
parameterized by a motion polynomial [35].

The simplest motion polynomials are of degree one and can be written asM = t−h
where h−h ∈ R and hh ∈ R. They parameterize either rotations about a fixed axis
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or translations in a fixed direction. We speak of the rotation or translation quater-
nion h and the rotation or translation polynomial t−h, respectively. In this chapter
we are concerned with the factorization of motion polynomials into the product of
rotation polynomials. These are distinguished from translation polynomials by hav-
ing a primal part not in R[t].

4.2 Factorization of Generic Cases

In [30] it has been shown that a generic monic motion polynomial M = P + εD of
degree n admits factorizations of the shape

M = (t− h1) · · · (t− hn) (4.2)

with rotation polynomials t − h1, . . . , t − hn. Here, the term “generic” means that
the primal part P ofM has no real factors. The factorization (4.2) can be computed
by the non-deterministic Algorithm 5. The details of this algorithm are explained
in [30] but some comments are appropriate at this place.

• In all our algorithms, we denote concatenation of lists by the operator symbol
“+”. List concatenation is not commutative: The list L1 + L2 starts with the
elements of L1 and ends with the elements of L2.

• By genericity of M , the norm polynomial PP is real and positive. Hence, it
is the product of n quadratic, real factors which are irreducible over R.

• The choice of a quadratic factor in Line 5 is arbitrary. Different choices result
in different factorizations. In general, there are n! factorizations of the shape
(4.2), each corresponding to a permutation of the quadratic factors of PP .

• For left polynomials with dual quaternion coefficients in our sense, right di-
vision is possible: Given two polynomials M , N ∈ H[t] with N monic, there
exist unique polynomials Q, R ∈ H[t] with M = QN +R and degR < degN .

• The dual quaternion hi in Line 6 can be computed as zero of the linear poly-
nomial Ri obtained by writing M = QMi + Ri (polynomial division). The
assumptions on M guarantee existence of a unique zero over the dual quater-
nions but the algorithm may fail at this point if these assumptions are not
met.

• We may exit the algorithm after just one iteration to find a linear right factor
of M , that is, write the motion polynomial as M = M ′(t − h). This we will
often do in our factorization algorithm for non-generic motion polynomials.
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Algorithm 5 GFactor
Input: M = P + εD ∈ DH[t], a monic, generic motion polynomial of degree n.
Output: A list L = [L1, . . . , Ln] such that M = L1 · · ·Ln.

1: L← [] . (empty list)
2: F ← [M1, . . . ,Mn] . Each Mi ∈ R[t], i = 1, . . . , n is a
3: quadratic, irreducible factor of PP ∈ R[t].
4: repeat
5: Choose Mi ∈ F and set F ← F − [Mi].
6: Compute hi such that Mi(hi) = M(hi) = 0.
7: L← [t− hi] + L . (add t− hi to start of list)
8: M ←M/(t− hi) . (polynomial division)
9: until degM = 0.

10: Return L = [L1, L2, . . . , Ln].

For later reference, we state the result of [30, Theorem 3] as a lemma. We do this
in a form that highlights the dependence of the factorization on an ordering of the
norm polynomial’s quadratic factors.

Lemma 4.1. Given a generic, monic motion polynomialM of degree n withMM =
M1 · · ·Mn and monic, quadratic and irreducible real polynomials M1, . . . ,Mn, there
exist rotation quaternions h1, . . . , hn such that M = (t − h1) · · · (t − hn) and Mi =
(t − hi)(t − hi) for i = 1, . . . , n. Different labeling of the quadratic factors of MM
give different factorizations.

Here are examples of non-generic motion polynomials with exceptional factoriza-
tions.

Example 4.2. The motion polynomial M := t2 + 1 + εi is not generic. A straight-
forward computation shows that no linear motion polynomials t − h1 and t − h2
in DH[t] with M = (t − h1)(t − h2) exist. The motion parameterized by M is a
translation with constant direction.

Example 4.3. Non-generic motion polynomials with infinitely many factorizations
exist. One example is M := t2 + 1 − εt(it − j). It can be factorized as M =
(t− h1)(t− h2) where

h1 = k− ε(ai + (b− 1)j), h2 = −k + ε(ai + bj)

and a, b are arbitrary real numbers. The motion parameterized by M is a circular
translation. Any of the infinitely many factorizations of M corresponds two one leg
of a parallelogram linkage that can generate this motion.
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Example 4.4. The motion polynomial M := t2− (1 + j)t+ j− ε((i + k)t− 2k) can
be factored as

M = (t− 1− εi)(t− j− εk) = (t− j− ε(i + 2k))(t− 1 + εk).

The polynomial factors t−1− εi and t−1+ εk parameterize, however, translations,
not rotations. The reason for this is the possibility to factor the primal part of M
as t2− (1 + j)t+ j = (t− 1)(t− j). For t = 1, the motion parameterization becomes
singular and the trajectories pass through infinite points.

We will present a method to factor even the motion polynomials of these examples
into products of linear rotation polynomials. This will be made possible by allowing
alterations of the given motion polynomial that change its kinematic and algebraic
properties in an “admissible” way. This alterations are:

1. Multiplication of M with a strictly positive real polynomial Q and factoriza-
tion of QM instead of M . This is an admissible change because M and QM
parameterize the same motion. This “multiplication trick” has already been
used in [22] for the factorization of planar motion polynomials.

2. Substitution of a rational expression R/Q with R, Q ∈ R[t] for the inde-
terminate t in M and factorization of QdegMM(R/Q) instead of M . This
amounts to a not necessarily invertible re-parameterization of the motion. In
particular, it is possible to parameterize only one part of the original motion.

Multiplication with real polynomials does not change kinematic properties but gives
additional flexibility to find factorizations in otherwise nonfactorizable cases. In
order to explain the meaning and necessity of substitution of real polynomials, we
first give an important definition.

Definition 4.5. A motion polynomial M = P + εD is called bounded, if its primal
part P has no real zeros.

Generic motion polynomials are bounded. Bounded motion polynomials parame-
terize precisely the rational motions with only bounded trajectories. If the motion
polynomial is not bounded, zeros of the primal part belong to infinite points on the
trajectories. For this reason, unbounded motion polynomials can never be written
as the product of linear rotation polynomials. For example, we can never succeed
in finding a factorization (t − h1)(t − h2) with rotation quaternions h1, h2 of the
motion polynomial in Example 4.4 as it has unbounded trajectories.

Unbounded motion polynomials can always be turned into bounded ones by an ap-
propriate substitution. This is the reason, why we henceforth restrict our attention
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to bounded motion polynomials. The kinematic meaning is that only a certain por-
tion of the original trajectories is actually reached during the motion. Finally, we
assume that our motion polynomials are monic. This is no loss of generality. If M
is bounded, the leading coefficient cn of M is invertible and we may factor c−1

n M
instead. This amounts to an admissible change of coordinates.

To summarize and give a precise problem statement: Given a bounded, monic
motion polynomial M , we want to find a real polynomial Q and a list of linear
rotation polynomials L = [t− h1, . . . , t− hn] such that QM = (t− h1) · · · (t− hn).
In this case we say that “M admits a factorization”. We will not only prove existence
of Q and L, we will also provide a simple algorithm for computing appropriate Q and
L, provide a bound on the degree of Q (and hence also on the number of polynomials
in L) and present a more elaborate algorithm that produces a polynomial Q of
minimal degree.

4.3 Factorization of Non-Generic Cases

On particular case for which existence of factorizations of non-generic motion poly-
nomials has already been proved to exist is planar kinematics [22].

Definition 4.6. A motion polynomial M is called planar, if it parameterizes a
planar motion (a subgroup consisting of all rotations around axes parallel to a fixed
direction and translations orthogonal to that direction).

Examples of planar motion polynomials are obtained by picking coefficients in
〈1, i, εj, εk〉. In [22], the authors showed that for every monic, bounded, planar
motion polynomial M of degree n a real polynomial Q of degree degQ ≤ n exists
such that QM admits a factorization of the shape (4.2). Input and output of this
planar factorization algorithm are displayed in Algorithm 6. We list this algorithm
only for the purpose of later reference. For details we refer to [22].

Algorithm 6 PFactor (planar factorization algorithm of [22])
Input: M = P + εD ∈ DH[t], a planar, bounded, monic motion polynomial.
Output: Q ∈ R[t], list L = [L1, L2, . . . , Ln] of linear rotation polynomials such

that QM = L1L2 · · ·Ln.

The first factorization procedure we propose is of theoretical interest. It is displayed
in Algorithm 7. It is based on the algorithm for factorization of planar motion
polynomials and produces a real polynomialQ and a factorization ofQM for a monic
and bounded but not necessarily generic motion polynomial M . It is conceptually
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simpler than Algorithm 8 below but non optimal as far as minimality of degQ is
concerned. In its listing, we denote by GRPF(M) the greatest real polynomial
factor of a quaternion polynomial M ∈ H[t]. Lines 2 to 5 of Algorithm 7 are based
on the factorization

MTT = (R1T + εD)TT = (R1TT + εDT )T

ofMTT into the product of a planar motion polynomial and a polynomial T ∈ H[t].

Algorithm 7 FactorI
Input: M = P + εD ∈ DH[t], a monic, bounded motion polynomial with real

quadratic factor in its primal part, Q ∈ R[t], list L of linear motion polynomials.
Initially, Q = 1 and L = [] (empty list).

Output: Q and L = [L1, L2, . . . , Ln] such that QM = L1L2 · · ·Ln.

1: Write P = R1T where R1 = GRPF(P ).
2: If deg T 6= 0 Then
3: L← L+ GFactor(T ) . Append linear factors of T to L.
4: Q← TT , P ← R1TT , D ← DT , and M ← P + εD
5: End If
6: Factor MP = (P + ε(D1i +D2j +D3k))P = (P + εD1i)(P + εD2j + εD3k).
7: Q1, L1 = PFactor(P + εD1i) . (planar factorization)
8: Q2, L2 = PFactor(P + εD2j + εD3k) . (planar factorization)
9: Q← QQ1Q2 = QP 2 . (because Q1 = Q2 = P )

10: L← L2 + L1 + L . Concatenate lists of linear factors.
11: Return Q, L

Together with [22], Algorithm 7 proves existence of a factorization:

Theorem 4.7. Given a bounded, monic motion polynomialM ∈ DH[t] there always
exists a real polynomial Q such that QM can be written as a product of linear
rotation polynomials.

4.4 Factorizations of Minimal Degree

Now we should further elaborate on the minimal possible degree of the real factor Q
that makes factorization possible. In the planar case, Algorithm 6 gives the bound
degQ ≤ degM and this bound is known to be optimal [22]. The upper bound
achievable with Algorithm 7 is worse. Let m = degM and r = degR1. Then,
the degree of Q in Line 4 is bounded by 2(m− r) and the degree of P in Line 4 is
bounded by r+2(m−r) = 2m−r. Hence, the degree of Q at the end of Algorithm 7
is bounded by 2(m − r) + 2(2m − r) = 6m − 4r. Because of r ≥ 2, this gives the

55



Chapter 4 Factorization of Motion Polynomials

bound degQ ≤ 6m−8. However, also in the spatial case the bound degQ ≤ degM
holds true. This is guaranteed by Algorithm 8.

Algorithm 8 FactorAll
Input: M = P + εD ∈ DH[t], a monic, bounded motion polynomial of complexity

(α, β, γ), Q ∈ R[t], lists Ll, Lr of linear motion polynomials. Initially, Q = 1,
Ll = [], Lr = [].

Output: Q, Ll, Lr such that with Ll + Lr = [L1, L2, . . . , Ln] we have QM =
L1L2 · · ·Ln.

1: If P has no real factors Then
2: Return Q, Ll, Lr + GFactor(M).
3: End If
4: Let R1 be the GRPF of P , i.e., P = R1T , degP = β.
5: Let α := deg(gcd(P, P ,DD)) = deg(gcd(R1, DD)). . comp(M) = (α, β, γ).
6: If gcd(R1, DD) = 1 (α = 0) Then
7: If gcd(R1, TT ) = 1 Then
8: If T = 1, i.e., P is real Then
9: Let P1 be a quadratic real divisor of P , i.e., P = P1P

′.
10: Compute quaternion roots hr, hl of P1 such that
11: hl 6= hr, D(t− hr) = (t− hl)D′, . (Lemma 4.1, Lemma 4.8)
12: (t− hl)D′(t− hr) = DP1.
13: Q← QP1, Ll ← Ll + [t− hl], Lr ← [t− hr] + Lr,
14: M ′ ← P ′(t− hl)(t− hr) + εD′. . comp(M ′) = (0, β − 2, γ).
15: Return FactorAll(M ′, Q, Ll, Lr)
16: Else
17: Let P1 be a quadratic real divisor of TT .
18: Compute a common zero h of P1 and M such that
19: P1 = (t− h)(t− h), M = M ′(t− h). . comp(M ′) = (0, β, γ − 1).
20: Return FactorAll(M ′, Q, Ll, [t− h] + Lr)
21: End If
22: Else
23: Let P1 be a quadratic real divisor of gcd(R1, TT ), i.e., P = P ′P1.
24: Compute quaternions roots hr, hl of P1 such that
25: P1(hr) = 0, T (hr) 6= 0, T (hl) 6= 0, . (Lemma 4.1, Lemma 4.8)
26: DP1 = D(t− hr)(t− hr) = (t− hl)D′(t− hr). . (Lemma 4.1,

Lemma 4.8)
27: Q← QP1, Ll ← Ll + [t− hl], Lr ← [t− hr] + Lr,
28: M ′ ← (t− hl)P ′(t− hr) + εD′. . comp(M ′) = (0, β − 2, γ).
29: Return FactorAll(M ′, Q, Ll, Lr)
30: End If
31: Else (α ≥ 2)
32: Let P1 be a quadratic real divisor of gcd(R1, DD).
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33: Compute quaternion roots hr, hl of P1 such that . (Lemma 4.1)
34: D = (t−hl)Dl = Dr(t−hr) and P = (t−hl)Pl = Pr(t−hr) . (Lemma 4.1)
35: If deg GRPF(Pl) ≤ deg GRPF(Pr) Then
36: Ll ← Ll + [t− hl] , M ′ ← Pl + εDl. . comp(M ′) = (α− 2, β − 2, γ − 1).
37: Return FactorAll(M ′, Q, Ll, Lr)
38: Else
39: Lr ← [t− hr] + Lr M

′ ← Pr + εDr. . comp(M ′) = (α− 2, β, γ − 1)
40: or comp(M ′) = (α− 2, β − 2, γ − 1).
41: Return FactorAll(M ′, Q, Ll, Lr)
42: End If
43: End If

Here are a few remarks on Algorithm 8.

• In Algorithm 8, we mainly treat the case where the primal part P of the mo-
tion polynomial M = P + εD has a non-constant real factor R1 = GRPF(P ).
Otherwise, we just resort to factorization of generic motion polynomials (Al-
gorithm 5).

• The complexity of a monic bounded motion polynomial M = P + εD ∈ DH[t]
in Algorithm 8 is a triple of integers

comp(M) := (α, β, γ),
α := deg(gcd(P, P ,DD)),
β := deg(gcd(P, P )),
γ := deg(P ),

where deg(a) is the degree of the polynomial a and gcd(a, b) ∈ R[t] is the
greatest real common factor of polynomials a and b. With this definition,
gcd(a, a) is the greatest real polynomial factor of a. In each step of the re-
cursive Algorithm 8, we try to construct M ′ such that comp(M ′) < comp(M)
with lexicographic order, e.g., (4, 2, 5) < (4, 4, 3), (4, 2, 2) < (4, 2, 3). Then we
recursively call FactorAll with M ′ as argument. As soon as α = β = γ = 0,
Algorithm 8 terminates.

• The computation of hl and hr in Lines 33–34 is based on Lemma 4.1 and [32,
Theorem 3.2]. One of this theorem’s statements is that the set of quaternion
roots of the irreducible quadratic polynomial Q = t2 + bt+ c ∈ R[t] is{1

2
(
− b+

√
4c− b2(x1i + x2j + x3k)

)
| (x1, x1, x3) ∈ S2

}
(4.3)

where S2 is the unit 2-sphere in R3. In particular, for every unit vector
(x1, x2, x3) ∈ S2, there is a quaternion root q whose vector part is proportional
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to x1i + x2j + x3k. Also note that Q = (t− h)(t− h) if h is a quaternion root
of Q. In the algorithm, we can pick an arbitrary zero hr of P1 and compute
Dr by polynomial division. Then we compute hl as zero of the remainder
polynomial R̃ in the division D = Q̃M̃ + R̃ with M̃ = (t− hr)(t− hr), as in
one iteration of Algorithm 5, and Dl again by polynomial division.

• The computation of quaternions hl and hr in Lines 10–12 and Lines 24–26
of Algorithm 8 is again based on Lemma 4.1 but also on Lemma 4.8 below.
Consider, for example, the situation in Lines 10–12. We may prescribe hr
arbitrarily as a root of P1, see (4.3). Then we use polynomial division (over
DH) to find Q̃, R̃ ∈ H[t] such that (t − hr)D = Q̃P1 + R̃ and compute hl as
unique zero of the linear remainder polynomial R̃. Using polynomial division
once more, we then find D′ such that (t− hr)D = D′(t− hl).

Lemma 4.8. Let Q ∈ R[t] be a quadratic polynomial that is irreducible over R,
D ∈ H[t] a polynomial with gcd(DD,Q) = 1 and O the set of quaternion roots of
Q. Then the map fQ,D : O → O, hl 7→ hr with hr being the common root of (t−hl)D
and Q is a well-defined bijection. Moreover, fQ,D(h) 6= h for all h ∈ O.

Proof. Our proof is based on results of [29] that state that the quaternion roots of
a polynomial P ∈ H[t] are also roots of the quadratic factors of PP . Moreover, h
is a root of P if and only if t− h is a right factor of P [29, Lemma 2].

By (4.3), the set O is not empty. The norm polynomial of (t−hl)D has the quadratic
factor Q. Hence, there exists a quaternion root hr ∈ O of (t − hl)D. This root is
unique because of gcd(DD,Q) = 1 and the map fQ,D is well-defined.

If fQ,D(h) = h for some h ∈ O, there exists D′ ∈ H[t] with D = (t − h)D′(t − h)
and we get a contradiction to gcd(DD,Q) = 1:

DD = (t− h)D′(t− h)(t− h)D′(t− h) = Q(t− h)D′D′(t− h).

By a linear parameter transformation t 7→ at + b with a, b ∈ R we can always
achieve that Q is a real multiple of t2 + 1. Hence, it is no loss of generality to
assume Q = t2 + 1 when proving bijectivity of fQ,D. Using polynomial division we
find K ∈ H[t] and a, b ∈ R with D = K(t2 + 1) + at+ b. Then we have

(t− hl)D = (t− hl)K(t2 + 1) + (t− hl)(at+ b)
= ((t− hl)K + a)(t2 + 1) + (b− hla)t− a− h1b.

As already argued, there is hr = fD(hl) ∈ O such that

(b− hla)hr − a− hlb = 0. (4.4)
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If there is h′l 6= hl with fD(h′l) = hr then we also have

(b− h′la)hr − a− h′lb = 0. (4.5)

Subtracting Equations (4.4) and (4.5) yields

(h′l − hl)ahr + (h′l − hl)b = 0. (4.6)

As h′l − hl 6= 0, we have ahr + b = 0 and this implies D = K(t2 + 1) + a(t − hr).
But then deg gcd(DD, t2 + 1) > 0 would contradict our assumptions. Hence fD is
injective. To prove surjectivity, observe that for any hr ∈ O, there is hl such that
(t− hr)D = D′(t− hl) by injectivity of fD. But then we have fD(hl) = hr.

The termination of Algorithm 8 is guaranteed by the following theorem.

Theorem 4.9. Algorithm 8 terminates.

Proof. The termination of the Algorithm 8 is based on the reduction of the com-
plexity comp(M). As one can see from the comments in the Algorithm 8, after
each recursive step comp(M ′) of the new motion polynomial M ′ strictly decreases.
Furthermore, Lines 17–20 can not happen continually because of β ≤ γ in each
motion polynomial. Then in finitely many steps we can reduce α and β to zero.
After this the algorithm will terminate in one step using Algorithm 5.

4.4.1 A Comprehensive Example

Now we illustrate Algorithm 8 by a comprehensive example where we really enter
each sub-branch once. We wish to factor the motion polynomialM = P +εD where

P = (t2 + 2t+ 2)(t2 + 1)2,

D = −(t2 + 2t+ 2)i + (t5 + t4 + 2t3 + t2 − t− 1)j + (t4 + t2 − 2t− 1)k.
(4.7)

First iteration: The input to Algorithm 8 is M (1) = P (1) + εQ(1) where P (1) = P
and D(1) = D from (4.7). We compute

R1 = GRPF(P (1)) = P (1), T = 1, comp(M (1)) = (2, 6, 6).

Thus, we have to use the branch in Lines 32–41 of Algorithm 8:

2hl = −1− i, hr = −1 + i,
Pl = (t2 + 1)2(t− i + 1), Pr = (t2 + 1)2(t+ i + 1),
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Dl = jt4 + 2jt2 − (i + j + k)t− 1− i− j,
Dr = jt4 + 2jt2 − (i + j + k)t+ 1− i− j.

(4.8)

Note on computation:

• We compute one quaternion root hl of R1 by (4.3). We then have R1 =
(t− hl)(t− hl) and use polynomial division to find Q and R with D = Q(t−
hl)(t − hl) + R. The dual quaternion hr is the zero of the linear remainder
polynomial R.

• The polynomials Pl and Pr are also computed by polynomial division from

P (1) = Pr(t− hr) and P (1) = Pl(t− hl).

A similar computation yields Dl and Dr.

The updated values of Q, Ll and Lr are Q = 1, Ll = [l1], Lr = [ ] where l1 = t+1+i.

Second iteration: The input to Algorithm 8 isM (2) = P (2)+εQ(2) where P (2) = Pl,
D(2) = Dl are taken from (4.8) and (4.8). We compute

R1 = GRPF(P (2)) = (t2 + 1)2, T = t− i + 1, comp(M (2)) = (0, 4, 5).

Because of gcd(R1, D
(2)D(2)) = gcd(R1, TT ) = 1 and T 6= 1, we have to use the

branch in Lines 17–20 of Algorithm 8. Using (4.3) and polynomial division, we find

P1 = t2 + 2t+ 2,
h = −1 + i− 39

25εj−
2
25εk,

M ′ = t4 − 2
25ε(7j + k)t3 + (2 + 12

25jε+ 16
25εk)t2

− 8
25ε(3j + 4k)t+ 1− ε(i + 33

25j− 31
25k).

(4.9)

The updated values of Q, Ll, and Lr are Q = 1, Ll = [l1], Lr = [t − h] where
r3 = t+ h and h is as in (4.9).

Third iteration: The input to Algorithm 8 isM (3) = P (3)+εQ(3) whereM (3) = M ′

is taken from (4.9). We compute

R1 = GRPF(P (3)) = (t2 + 1)2, T = 1, comp(M (3)) = (0, 4, 4).

Because of gcd(R1, D
(2)D(2)) = 1 and T = 1, we have to use the branch in Lines 9–15

of Algorithm 8. Similar to the first iteration we compute

P1 = t2 + 1, P ′ = t2 + 1, hl = 3
7 i + 6

7j− 2
7k, hr = −i,

D′ = (−14
25j− 2

25k)t3 + (16
35 −

8
35 i + 104

175j− 4
25k)t2

−(16
35 −

8
35 i + 188

175j + 12
25k)t+ 24

35 −
67
35 i− 51

175j− 43
175k.

(4.10)
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The updated values of Q, Ll, and Lr are Q = t2 + 1, Ll = [l1, l2], Lr = [r2, r3] where

l2 = t− 3
7 i− 6

7j + 2
7k, r2 = t+ i.

Fourth iteration: The input to Algorithm 8 is M (4) = P (4) + εD(4) where P (4) =
P ′(t− hl)(t− hr) and D(4) = D′ are taken from (4.10). We compute

R1 = GRPF(P (4)) = t2 + 1,
T = t2 − (4

7 i− 6
7j + 2

7k)t+ 3
7 + 2

7j + 6
7k,

comp(M (4)) = (0, 2, 4).

Because of gcd(R1, D
(4)D(4)) = 1 and gcd(R1, TT ) = t2 + 1, we have to use the

branch in Lines 23–29 of Algorithm 8. Similar to the first iteration we compute
P1 = t2 + 1, P ′ = t2 − (4

7 i− 6
7j + 2

7k)t+ 3
7 + 2

7j + 6
7k,

hl = −158
483 i− 218

483j− 401
483k hr = −k,

D′ = (−14
25j− 2

25k)t3 + ( 4
69 −

56
575 i + 196

345j + 8
345k)t2

−(28
75 −

44
575 i + 428

345j + 2096
1725k)t− 2308

1725 −
2069
1725 i− 613

1725j + 553
575k.

(4.11)

The updated values of Q, Ll, and Lr are Q = (t2+1)2, Ll = [l1, l2, l3], Lr = [r3, r2, r1]
where

l3 = t+ 158
483 i + 218

483j + 401
483k, r1 = t+ k.

Fifth iteration: The input to Algorithm 8 is M (5) = P (5) + εD(5) where P (5) =
(t− hl)P ′(t− hr) and D(5) = D′ are taken from (4.11). Because of R1 = 1, we have
to use Line 2 of Algorithm 8 and can compute a factorization of M (5) by means of
Algorithm 5. Because of M (5)M (5) = (t2 + 1)4, the factorization is unique. We find
M (5) = f1f2f3f4 where

f1 = t− 158
483 i− 218

483j− 401
483k− 29

280εi−
37
56jε+ 2

5εk,
f2 = t+ 3

7 i + 6
7j− 2

7k + 43
35εi−

48
175jε+ 51

50εk,
f3 = t− i− 3

2εk, f4 = t− k− 9
8εi + 3

8εj.

Algorithm 8 terminates and the polynomial QM is the product of the ten linear
factors l1, l2, l3, f1, f2, f3, f4, r1, r2, r3.

4.4.2 Degree bound of Q

An upper bound on the degree of Q as returned by Algorithm 8 can be read from
the following theorem. This degree bound is already know to be optimal. It is
attained by certain planar motions [22].
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Theorem 4.10. The degree of Q as returned by Algorithm 8 is less or equal to the
degree of the GRPF of the primal part of M .

Proof. The proof follows from a careful inspection of Algorithm 8. The increase
of the degree of Q happen either in Lines 12–13 or lines 26–27. Furthermore, the
increase of the degree of Q and the decrease of the degree of the GRPF are equal
at these places.

We illustrate Theorem 4.10 by one further example. One achieves the upper bound
of Theorem 4.10, the other does not.

Example 4.11. The first example is the general Darboux motion considered in [49].
Let M = ξP − iηεP ∈ DH[t] with

ξ = t2 + 1, η = 5
2t−

3
4 , P = t− h and h = 7

9 i− 4
9j + 4

9k.

As seen in [49], this give us the factorization M = Q1Q2Q3, where

Q1 = t− 7
9 i− 4

9j + 4
9k− 5

4εi + 43
64εj−

97
64εk,

Q2 = t+ 7
9 i + 4

9j− 4
9k,

Q3 = t− 7
9 i + 4

9j− 4
9k− 5

4εi−
43
64εj + 97

64εk.

Here, no multiplication with a real polynomial is necessary.

Example 4.12. The second example is the vertical Darboux motion which is avoided
in [49]. Let M = ξP − iηεP ∈ DH[t] with

ξ = t2 + 1, η = 5
2t−

3
4 , P = t− i.

As seen in [49], no factorization of the shape M = Q1Q2Q3 with linear motion poly-
nomials Q1, Q2, Q3 exists. However, we can find a factorization by multiplying with
a real polynomial whose degree equals the degree of ξ, the greatest real polynomial
factor of the primal part of M . We have (t2 + 1)M = Q7Q

2
6Q5Q4, where

Q7 = t− j− 3
4εk, Q6 = t+ j− 5

4εi + 3
8εk, Q5 = t− j, Q4 = P = t− i.

It is worth to mentioning that the degree could be smaller if we are non only allowed
to multiplying with real polynomials [47]. For this dissertation, we only consider
multiplying with real polynomials.
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4.4.3 Factorizations in Planar Motion Groups

Algorithm 8 can produce non-planar factorizations for planar motion polynomials.
This is an interesting feature but may not always be desirable. If one wishes to
find a factorization (t− h1) · · · , (t− hn) of a motion polynomial in a planar motion
group, say 〈1, i, εj, εk〉, with rotation quaternions h1, . . . , hn in that group, we have
to pick suitable left and right factors hl and hr in Algorithm 8.

Note that for a planar motion in the subgroup 〈1, i, εj, εk〉, the primal part and the
dual part of a motion have a certain commutativity property. If P is a polynomial
with coefficients in 〈1, i〉 and D is a polynomial with coefficients in 〈εj, εk〉, then
PD = DP , e.g., (t− i)εj = εj(t+ i) or (t− i)εk = εk(t+ i). This allows to transform
right factors into left factors and vice versa. Moreover, from Equation (4.3) it
follows that there are exactly two roots of a real irreducible quadratic polynomial Q
in the planar motion subgroup. We have, for example, Q = t2 + 1 = (t− i)(t+ i) =
(t+i)(t−i). Thus, whenever we compute a quaternion root of a quadratic irreducible
polynomial in Algorithm 8, we should select a solution in the planar motion group
and whenever we transfer a left factor hl to a right factor hr we should do it in
such a way that hr = hl. This ensures that Algorithm 8 really returns a planar
factorization.
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Chapter 5

Construct 6R Linkages of Minimum
Bonds

In the paper [30], the authors constructed a new 6R linkage by using the factoriza-
tion of a cubic motion polynomial. It has bond diagram of Figure 3.1(a) which is
one of the simplest bond diagrams. Also among the simplest bond diagram is Fig-
ure 3.1(b) which is known as the Waldrons double Bennett hybrid (see [21] 4.2.5).
There is no other 6R linkages with bond diagrams of only three bonds. Using [31,
Theorem 23], one can find the reason as an exercise. We consider diagrams with
four bonds, e.g. Figure 3.1(c), (d). We will give all the possibilities of the bond
diagrams with three or four bonds. Using the factorization of motion polynomials,
we can construct concrete examples for each bond diagram.

Structure of the chapter The remaining part of the chapter is set up as follows.
In Section 5.1, we give the classification on the possibilities of the bond diagrams
with 3 or 4 bonds. This classification is based on an interesting lemma (Lemma 5.6)
which is used for telling us the opposite connection numbers. In Section 5.2, we give
the construction for all mobile 6R linkages with 3 bonds. There are two families.
One is the cube linkage, and the other one is the Double Bennett 6R linkage.
Section 5.3 focuses on the 4 bonds case, where we give constructions for each bond
diagrams.

5.1 Minimum Bonds

We first show the minimum number of bonds for the bond diagram of a 6R linkage.
As each joint has at least one bond connected, the minimum number of bonds is 3
for 6R linkages. There are two cases which have this number of bonds.
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In Figure 5.1, we show two bond diagrams with 3 bonds.

J1

J2

J3

J4

J5

J6

(a)

J1

J2

J3

J4

J5

J6

(b)

Figure 5.1: Bond diagrams for the cube linkage (a), the Waldrons double Bennett
hybrid (b)

The next step is to consider 6R linkages with four bonds. Concerning this second
minimum number of bonds, we show that there are 9 cases of bond diagrams as in
Figure 5.2. For proving this, we need some lemmas.

First, let us recall a lemma in [31][Lemma 6].

Lemma 5.1. Let h1, . . . , h6 be six half-turns such that L := L1,2,3 = L4,5,6 and
dim(L) = 6. Then h1 = ±h4 and h3 = ±h6.

Lemma 5.2. For four lines [h1, h2, h3, h4], where h2
i = −1 and no two lines are

equal, if l123 = l324 = 6, then l124 = 6.

Proof. Geometric proof. As b2
12 = b2

23 = b2
42 and o123 = o423 = 0, then we have

b2
12 = b2

42 and o124 = 0 which mean l124 = 6.

Lemma 5.3. For three lines [h1, h2, h3], where h2
i = −1, h1 6= ±h3 and l123 = 6,

then we have l132 = 8.

Proof. If h1 6= ±h3 and l123 = 6, then h3 6∈ L12. Otherwise [31], it is either com-
patible with h1 or h2. This is impossible. Then we have x + yh2 + zh3 = h2h3
with unique x, y, z ∈ L1 by [31]. Similarly, we have x′ + y′h2 + z′h3 = h1h2h3
with unique x′, y′, z′ ∈ L1 by multiplying h1 from the left. Then the vectors
1, h1, h2, h3, h1h2, h1h3 are linearly independent (by the dimension) and L1,2,3 ⊂
L1,3,2 = L. We have l132 ≥ 6. Using Lemma 5.1, assuming l132 = 6, we get
h2 = ±h3 which contradicts l123 = 6. As l132 is an even number and 6 ≤ l132 ≤ 8,
we have l132 = 8.
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(b)

J1

J2

J3

J4

J5

J6

(c)

J1

J2

J3

J4

J5

J6

(d)

J1

J2

J3

J4

J5

J6

(e)

J1

J2

J3

J4

J5

J6

(f)

J1

J2

J3

J4

J5

J6

(g)

J1

J2

J3

J4

J5

J6

(h)

J1

J2

J3

J4

J5

J6

(i)

Figure 5.2: Bond diagrams of 6R linkages with four bonds

Lemma 5.4. For three quaternions [p1, p2, p3], where p2
i = −1. If

(i− p1)(i− p2)(i− p3) = 0

where i is the imaginary unit in the field of complex numbers C, then we have
p1 6= −p2 or p2 6= −p3.

Proof. Letm := (t−p1)(t−p2)(t−p3). As we have (i−p1)(i−p2)(i−p3) = 0, we have
t2 + 1 divide m. This means that we can write m = (t2 + 1)(t− q) = (t− q)(t2 + 1),
where q ∈ H. Assume that p1 6= −p2, we have m1 := m(t + p3)/(t2 + 1) =
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(t − p1)(t − p2) = (t − q)(t + p3). Then m1 is a generic motion polynomial. The
root of m1 is unique defined because the norm of m1 is (t2 + 1)2. Then we have
p2 = −p3.

Lemma 5.5. For three lines [h1, h2, h3], where h2
i = −1 and h1 6= ±h3, if l123 = 6,

then w.o.l.g we have α 6= ±i s.t.

(i− h1)(α− h2)(i− h3) = 0

where i is the imaginary unit in the field of complex numbers C and α ∈ C.

Proof. As l123 = 6, then there exist three complex numbers c1, c2, c3 such that

(c1 − h1)(c2 − h2)(c3 − h3) = 0.

If c1 6= ±i (which means that c1−h1 is invertible) , then we have (c2−h2)(c3−h3) = 0
after multiplying the c1 + h1 from the right. This is impossible, because it means
that h2 = ±h3 which contradicts our assumption of l123 = 6. Therefore, we have

(i− h1)(α− h2)(i− h3) = 0.

Assuming that α = i, then we have

(i− h1)(i− h2)(i− h3) = 0.

By Lemma 5.4, we have that the two lines h1 and h2 are parallel or the two lines
h2 and h3 are parallel. This is impossible because of l123 = 6.

Lemma 5.6. For an nR (6R/5R) linkage L = [h1, h2, ..., hn], where h2
i = −1

,hi 6= ±hi+1 and hi 6= ±hi+2, if l123 = l234 = 6, then there is no bond which connects
h1 and h4.

Proof. First, we assume there is at least one bond which connects the first and the
fourth joints. Then we try to find a contradiction. Let β = (i, b2, b3, i, b5, b6) be the
bond which connects the first and the fourth joints. Furthermore, we assume that
it fulfills the equation

(i− h1)(b2 − h2)(b3 − h3)(i− h4) = 0. (5.1)

(If not, we just chose the complex conjugate solutions such that it fulfills Equa-
tion (5.1).) As l123 = l234 = 6, there exist c2, c3 ∈ C (if not, we just chose the
complex conjugate solutions) such that

(i− h1)(c2 − h2)(i− h3) = 0, (i + h4)(c3 + h3)(i + h2) = 0, (5.2)
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by Lemma 5.5. Now we reformulate the equation (5.1) as follows:

0 = (i− h1)(b2 − h2)(b3 − h3)(i− h4)
= (i− h1)(c2 − h2)(i− h3)(i− h4) + (i− h1)u(b3 − h3)(i− h4)

+(i− h1)(c2 − h2)v(i− h4)
= (i− h1)u(b3 − h3)(i− h4) + (i− h1)(c2 − h2)v(i− h4)
= (i− h1)(u(b3 − h3) + v(c2 − h2))(i− h4).

where u = b2 − c2 and v = b3 − i, they are both complex numbers. We make a case
distinction as follows:

Case I, u = 0 and v 6= 0. Then the equation (5.1) can be reduced to (i − h1)(c2 −
h2)(i − h4) = 0. This means that l124 = 6. As we also have l123 = 6, we can get
l423 = 6 by Lemma 5.2. Furthermore, we have l432 = l234 = 6 by assumption. From
Lemma 5.3, we get contradiction.

Case II, v = 0 and u 6= 0. The proof is similar to Case I.

Case III, v 6= 0 and u 6= 0. Then the equation (5.1) can be reduced to (i−h1)(u(b3−
h3) + v(c2 − h2))(i − h4) = 0. This means that (i − h1)(u(b3 − h3) + v(c2 − h2)) is
in the left ideal DH(i + h4). Using equations (5.2), we have

(i− h1)(u(b3 − h3) + v(c2 − h2))(c3 + h3)(i + h2) = 0. (5.3)

Now we reformulate the equation (5.3) as following:

0 = (i− h1)(u(b3 − h3) + v(c2 − h2))(c3 + h3)(i + h2)
= u(i− h1)(b3 − h3)(c3 + h3)(i + h2) + v(i− h1)(c2 − h2)(c3 + h3)(i + h2)
= u(i− h1)(b3 − h3)(c3 + h3)(i + h2) + vw(i− h1)(c2 − h2)(i + h2)
−v(i− h1)(c2 − h2)(i− h3)(i + h2)

= u(i− h1)(b3 − h3)(c3 + h3)(i + h2) + vwr(i− h1)(i + h2)
= uz(i− h1)(c3 + h3)(i + h2) + u(c2

3 + 1)(i− h1)(i + h2) + vwr(i− h1)(i + h2).

where z = b3 − c3, w = c3 + i and r = c2 − i. As l123 = 6, by Lemma 5.3, we have
l132 = 8. Then the following equation

uz(i− h1)(c3 + h3)(i + h2) + u(c2
3 + 1)(i− h1)(i + h2) + vwr(i− h1)(i + h2) = 0

can be true if and only if all the coefficients of the eight independent vectors

[1, h1, h3, h2, h1h3, h1h2, h3h2, h1h3h2]
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are zeros. This means that we have uz = 0 which gives us z = 0. Then we can find
contradiction by treating the equation (4.3) as follows:

0 = (i− h1)(b2 − h2)(b3 − h3)(i− h4)
= (i− h1)(i− h2)(c3 − h3)(i− h4) + (i− h1)y(b3 − h3)(i− h4)

+(i− h1)(i− h2)z(i− h4)
= (i− h1)y(b3 − h3)(i− h4).

where y = b2− i and z = b3− c3. This means that we have l134 = 6. As l234 = 6, we
have l132 = l231 = 6. This contradicts our assumption of l123 = 6 by Lemma 5.3.

Case IV, u = 0 and v = 0. Then we go to the other direction by taking u′ = b3− c3
and v′ = b2− i. We make the same case distinction as for u and v. The other three
cases when |u′|2 + |v′|2 6= 0 are similar as these previous three cases on u and v. If
u′ = 0 and v′ = 0, then we have

(i− h1)(i− h2)(i− h3)(i− h4) = 0. (5.4)

By Lemma 5.4, we get at least one parallel property of those h1‖h2, h2‖h3 and
h3‖h4. But each of them contradicts our assumption on l123 = l234 = 6.

Using Lemma 5.6, we can classify that there are only nine possible bond diagrams
with 4 bonds. All of them are listed in Figure 5.2.

5.2 Construct 6R Linkages with Three Bonds

The main idea for constructing 6R linkages by factorization of motion polynomials
is from [30]. The first step is to find a rational motion, namely a motion polynomial.
The second step is to do the factorization with respect to this motion polynomial.
If one can get “different” factorizations, then one can combine them to get a closed
linkage.

In [30], the first example of this implementation is a 4R linkage which is known as
Bennett 4R linkage.

Here is the construction and a random example.

Construction 5.7. (Bennett linkages)

I. Choose two rotation axes h1 and h2, i.e. dual quaternions such that h2
1 =

h2
2 = −1.
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II. Choose two random real numbers a, b where b 6= 0 and b 6= ±1 (we usually
take rational numbers).

III. Compute the product m = (t− h1)(t− a− bh2).

IV. Compute another factorization (the one is different from (t−h1)(t−a−bh2))
m = (t− a− bh4)(t− h3) by Algorithm 5.

V. Our Bennett 4R Linkage is determined by L = [h1, h2, h3, h4].

Example 5.8. A random instance of the above construction is

h1 = i,
h2 = −k− εi,

a = 1
3 , b = 3

2 ,

h3 =
( 41

121 i− 36
121j + 108

121k
)

+ ε
(17496

14641 i− 3888
14641j− 7938

14641k
)
,

h4 =
(108

121 i + 24
121j + 49

121k
)

+ ε
( 2977

14641 i + 2592
14641j + 5292

14641k
)
.

Here we found that the configuration curve has one non-degenerate component with
rational parametrization:

(t1, t2, t3, t4) =
(
t,
t− a
b

, t,
t− a
b

)
.

In Figure 5.3, we present ten configuration positions of this linkage.

This construction of Bennett 4R linkage is a basic item for constructing a 6R linkage
with a rational configuration curve. We will show two constructions here. One is
the cube linkage [30] with a relative cubic motion. The other one is the double
Bennett linkage [21].

Let us see the motion polynomial construction for the cube linkage.

Construction 5.9. (Cube linkages)

I. Choose three rotation axes h1, h2 and h3, i.e. dual quaternions such that
h2

1 = h2
2 = h2

3 = −1.

II. Choose four random real numbers a, b, c, d where bd 6= 0, (t−a)2 +b2 6= t2 +1,
(t− c)2 + d2 6= t2 + 1 and (t− a)2 + b2 6= (t− c)2 + d2 (we usually take rational
numbers).

III. Compute the product m = (t− h1)(t− a− bh2)(t− c− dh3).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5.3: These are ten postures of the Bennett linkage in Example 5.8
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IV. Compute another factorization (the one is different from (t − h1)(t − a −
bh2)(t− c− dh3)) m = (t− c− dh6)(t− a− bh5)(t− h4) by Algorithm 5.

V. Our cube 6R Linkage is determined by L = [h1, h2, h3, h4, h5, h6].

Example 5.10. A random instance of the above construction is

h1 = i,

h2 =
(3

5 i + 4
5j
)

+ ε
(4

5 i− 3
5j
)
,

h3 = k + ε(i− j),
a = 1; b = 2; c = 2; d = 2;

h4 = −
(149

221 i− 48
221j + 12

17k
)
− ε

(19464
18785 i− 25478

18785j− 5286
3757k

)
,

h5 = −
( 89931

482885 i + 76308
482885j + 7204

7429k
)

− ε
(2091960164

3587352665 i− 2465911798
3587352665j + 15687

717470533k
)
,

h6 = −
(252

437 i + 328
437j− 141

437k
)
− ε

(133445
190969 i− 44775

190969j + 134340
190969k

)
,

Here we found that the configuration curve has one non-degenerate component with
rational parametrization:

(t1, t2, t3, t4, t5, t6) =
(
t,
t− a
b

,
t− c
d

, t,
t− a
b

,
t− c
d

)
.

In Figure 5.4, we present nine configuration positions of this linkage.

Remark 5.11. The condition of bd 6= 0 is necessary. Because b and d appear in
the denominator of the configuration curve’s parametrization. The conditions of
(t − a)2 + b2 6= t2 + 1, (t − c)2 + d2 6= t2 + 1 and (t − a)2 + b2 6= (t − c)2 + d2

are also necessary. Otherwise, one can not find another useful factorization (if
(t− a)2 + b2 6= t2 + 1) or one will get a Double Bennett 6R linkage.

Let us see the motion polynomial construction for the Double Bennett 6R linkage.

Construction 5.12. (Double Bennett 6R linkage)

I. Choose three rotation axes h1, h2 and h3, i.e. dual quaternions such that
h2

1 = h2
2 = h2

3 = −1.

II. Choose four random real numbers a, b, c, d where bd 6= 0, (t−a)2 +b2 6= t2 +1,
(t− c)2 + d2 6= t2 + 1 (we usually take rational numbers).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.4: These are nine postures of the cube linkage in Example 5.10
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III. Compute the product m = (t− h1)(t− a− bh2)(t− c− dh3).

IV. Compute another factorization (the one is different from (t − h1)(t − a −
bh2)(t− c− dh3)) m = (t− a− bh6)(t− c− dh5)(t− h4) by Algorithm 5.

V. The Double Bennett 6R Linkage is determined by L = [h1, h2, h3, h4, h5, h6].

Example 5.13. A random instance of the above construction is

h1 = i,

h2 =
(3

5 i + 4
5j
)

+ ε
(4

5 i− 3
5j
)
,

h3 = k + ε(i− j),
a = 1; b = 2; c = 2; d = 2;

h4 = −
(149

221 i− 48
221j + 12

17k
)
− ε

(19464
18785 i− 25478

18785j− 5286
3757k

)
,

h5 =
( 3292

23205 i− 12244
23205j− 299

357k
)
− ε

(8741221
8284185 i− 4067647

8284185j + 808648
1656837k

)
,

h6 = −
(19

21 i + 8
21j− 4

21k
)
− ε

(100
441 i− 190

441j + 95
441k

)
,

Here we found that the configuration curve has one non-degenerate component with
rational parametrization:

(t1, t2, t3, t4, t5, t6) =
(
t,
t− a
b

,
t− c
d

, t,
t− c
d

,
t− a
b

)
.

In Figure 5.5, we present nine configuration positions of this linkage.

Remark 5.14. The condition of bd 6= 0 is necessary. Because b and d appear in
the denominator of the configuration curve’s parametrization. The conditions of
(t − a)2 + b2 6= t2 + 1, (t − c)2 + d2 6= t2 + 1 and (t − a)2 + b2 6= (t − c)2 + d2

are also necessary. Otherwise, one can not find another useful factorization (if
(t− a)2 + b2 6= t2 + 1).

5.3 Construct 6R Linkages with Four Bonds

For the construction of 6R linkages with 4 bonds case, we introduce it as follows.
First, let us make our purpose clear. We want to construct a monic quartic polyno-
mial Q in DH[t] such that QQ̄ ∈ R[t]. Furthermore, we can factor Q in two different
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.5: These are nine postures of the Double Bennett 6R linkage in Exam-
ple 5.13
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ways (at least) which both constitute a 3R open chain. Then we can construct a
6R linkage by combining these two factorizations.

For the nine possible bond diagrams in Figure 5.2, we only show the construction
for first bond diagram. The others can be constructed similarly.

Now we introduce our procedure for finding a monic quartic motion polynomial for
constructing a 6R linkage with bond diagram as in Figure 5.2 (a).

Construction 5.15. (6R linkages with 4 bonds)

I. We choose four lines with two different bond connections (3.4) as following

(i− h1)(α− h2)(β − h3)(i− h4) =0,
(i− h1)(α′ − h2)(β′ − h3)(i + h4) =0,

(5.5)

where i is the imaginary unit, complex numbers α and β have the same linear
relation as α′ and β′ i.e.

β = aα + b, β′ = aα′ + b.

II. Use these two bond conditions from Equations (5.5) to calculate quartic (de-
gree 4) motion polynomials

(t1(t)− h1)(t− h2)(at+ b− h3)(t4(t)− h4).

III. Use the generic factorization Algorithm 5 to compute another factorization
of the motion polynomial

(t1(t)− h1)(t− h2)(at+ b− h3).

This procedure contributes the other two lines h5 and h6 which we want.

IV. Return the 6R linkage [h1, h2, h3, h4, h5, h6].

Remark 5.16. There are two options in procedure III (the norm polynomials of
second and third can be exchange), which contribute two kinds of 6R linkage with
bond diagrams 5.2(a) and (c).

As the first step is the most important step, we show the details in the following
subroutine.

I.a Choose h2 and h3 as two random lines with h2
2 = h2

3 = −1.
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I.b Choose two complex number α and α′ where α 6= ±i and α′ 6= ±i.

I.c Choose two random real numbers a, b with a 6= 0.

I.d Assume that the other two lines have the following formula

h1 = (x1i + x2j + x3k) + (y1i + y2j + y3k)ε,
h4 = (u1i + u2j + u3k) + (v1i + v2j + v3k)ε.

I.e Solve the following system for unknowns x1, x2, x3, y1, y2, y3, u1, u2, u3, v1,
v2, v3 

(i− h1)(α− h2)(β − h3)(i− h4) = 0,
(i− h1)(α′ − h2)(β′ − h3)(i + h4) = 0,

h2
1 = −1, h2

4 = −1.

I.f Choose one real solution for the next steps.

We add one example to support our procedure. This is a particularly easy example
which we found by our procedure.

Input: I.a, I.b, I.c

h2 =
(
−3

5 i− 4
5j
)
− 6

5kε,

h3 =
(3

7 i− 2
7j + 6

7k
)

+
(76

49 i + 24
49j− 30

49k
)
ε,

α = −1
5 −

4
3i, α′ = 4

5 −
1
2i,

a = 5
2 , b = −3

4 .

Output: Then one can get a numerical solution with 10 digits as following

x1 = 0.4058453976, x2 = −0.9139192147, x3 = −0.0064173294,
y1 = 1.244931364, y2 = 0.5535129673, y3 = −0.09606363509,
u1 = −0.6219669897, u2 = −0.3316117352, u3 = 0.7093593733,
v1 = −0.5417103337, v2 = −1.024569908, v3 = −0.9539386886.

Then the next two steps are for calculating the factorization. We assume that t1(t)
and t4(t) are quadratic rational functions of t, and we also assume that

t1(α) = i, t1(α′) = i, t4(α) = i, t4(α′) = −i. (5.6)
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The quartic motion polynomial is (t1(t) − h1)(t − h2)(at + b − h3). The other
factorization is obtained by multiplying (t4(t) − h4) from the right. Then (t1(t) −
h1)(t−h2)(at+b−h3)(t4(t)−h4) is a quadratic motion polynomial when we remove
the real denominators and factors. The next step is to factor this quadratic motion
polynomial. We show all these details in the following:

Assumption:

t1(t) = t2 + p2t+ p3

p4t+ p5
, t4(t) = t2 + p′2t+ p′3

p′4t+ p′5
,

α = −1
5 −

4
3i, α′ = 4

5 −
1
2i.

Do: Solve the linear system (5.6) for unknowns p2, p3, p4, p5, p
′
2, p
′
3, p
′
4, p
′
5.

Output: Then one can get a solution of t1(t) and t4(t) as following

t1(t) =
t2 − 3

5t−
62
75

−11
6 t+ 29

30
, t4(t) =

t2 − 3
5t+ 38

75
−5

6t+ 7
6

.

After substituting t1(t) and t4(t) into

(t1(t)− h1)(t− h2)(at+ b− h3)(t4(t)− h4),

we have a numeric quadratic motion polynomial in 10 digits (replacing the real
denominators and factors)

t2 + (−0.3000000000 + 0.6543154994i− 1.037575959j + 0.2365105645k+
1.210540727iε− 0.0349528507jε+ 0.4738323880εk)t−

0.2003149450− 0.0160185109i + 0.3911798525j + .2378984092k−
0.9404081633ε− 1.436504834iε− 0.5526215606jε+ 0.0201175896εk.

As the norm of this quadratic motion polynomial is (t2 + 1)(t2 − 3
5t + 1

4), we can
construct two 6R linkages Lc = [hc1, hc2, hc3, hc4, hc5, hc6] and Ld = [hd1, hd2, hd3, hd4, hd5, hd6]
(with bond diagram 3.1(c) and (d)) basing on these two factorization as following
(numerically in 10 digits).
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Example 5.17.

hc1 = (0.4058453976i− 0.9139192147j− 0.0064173294k) +
(1.244931364i + 0.5535129673j− 0.09606363509k) ε,

hc2 =
(
−3

5 i− 4
5j
)
− 6

5kε,

hc3 =
(3

7 i− 2
7j + 6

7k
)

+
(76

49 i + 24
49j− 30

49k
)
ε,

hc4 = (−0.6219669897i− 0.3316117352j + 0.7093593733k) +
(−0.5417103337i− 1.024569908j− 0.9539386883k) ε,

hc5 = (0.9529670102)i− 0.2884245020j− 0.0930869702k) +
(0.145998817i− 0.4419436106j + 2.863982166εk) ε,

hc6 = (0.2731286954)i− 0.9222061578j + 0.2737453525k) +
(1.152141200i + 0.1418245937j− 0.6717604788k) ε.

Example 5.18.

hd1 = hc1, hd2 = hc2, hd3 = hc3, hd4 = hc4,

hd5 = (0.6843121346i− 0.7290081982j− 0.0162465108k) +
(0.7852041130i + 0.7074301081j + 1.329661169k) ε,

hd6 = (−0.0749915882i− 0.7714194013j + 0.6318926880k) +
(1.063341534i− 1.855957397j− 2.139571953k) ε.

In Figure 5.6 and Figure 5.7, we show 9 configurations for these two sharp link-
ages [40].

Remark 5.19. One can use the new technique, namely, quad polynomials which
is introduced in Chapter 3, to derive some equational conditions on the Denavit-
Hartenberg parameters. But they are not enough for fully constraining these 6R
linkages.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.6: These are nine postures of the sharp linkage in Example 5.17
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.7: These are nine postures of the sharp linkage in Example 5.18
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Chapter 6

Angle-Symmetric 6R Linkages

In this chapter we want to handle a subclassification problem of 6R linkages. We
name it classification of angle-symmetric 6R linkages which are linkages with the
property that the rotation angles of the three opposite joints are equal. The results
presented below evolved from a collaboration with Josef Schicho and have recently
been published in [42].

Structure of the chapter The remaining part of the chapter is set up as follows.
Section 6.1 gives us the motivation of doing such classification for angle-symmetric
6R linkages. In Section 6.2, we give one important tool –the λ-matrix. We also
show that the rank of this matrix is 2, 3, or 4. Section 6.3 contains the main result
(classification) and examples (new 6R linkages).

6.1 Motivation

In this section, we first give the definition of an angle-symmetric 6R linkage. These
are linkages with the property that the rotation angles of the three pairs of opposite
joints are equal for all possible configurations, or at least for infinitely many con-
figurations (it could be that a certain linkage has two components, where only one
of them is angle-symmetric). A full classification of these linkages is obtained. The
classification of angle-symmetric 6R linkages contains three types of linkages. Type
one is the Bricard line symmetry 6R linkage. Type two is new. Type three is the
cube linkages which constructed by the factorizations of a cubic motion polynomial.

The motivation is to find all angle-symmetric 6R linkages. The angle-symmetric
property of the famous Bricard line symmetric 6R linkage is easy to get. This is
because of the line symmetric property. One combination of factorizations of a
motion polynomial could generate a closed linkage with angle-symmetric property.

83



Chapter 6 Angle-Symmetric 6R Linkages

For example, the Bennett linkage is angle-symmetric. The new 6R linkage [30]
(cube linkage) also has the angle-symmetric property. Thus, it is natural to ask
whether these are all angle-symmetric 6R linkages or not. The answer is positive.
There is another type of 6R linkage with angle-symmetric property. In addition, it
fulfills another property which we name parallel property. It is worth mentioning
that this type and several new 6-bar linkages [9, 37, 39, 43] fill a gap in [8, Section
3.8]. An exhaustive study of these linkages with the parallel property will be include
in the next chapter.

Our main tool is a λ-matrix for an angle-symmetric linkage, to be defined in Section
6.2, and its rank r. Intuitively speaking, the configuration set of an angle-symmetric
linkage can be written as the vanishing set of r equations in three variables, namely
the cotangents of the half of the rotation angles. We will show that the rank r can
be only 2, 3, or 4. For r = 2, the angle-symmetric linkage is line symmetric. For
r = 3, we get the new linkage with three pairs of parallel axes. For r = 4, we obtain
the cube linkage constructed in [29, 30] using motion polynomials.

6.2 The λ-matrix

In this section we define, for a given linkage, a matrix whose rows are related to an
algebraic system defining the configuration space. In the next section, we will see
that the rank of this matrix is the basic criterion for classifying angle-symmetric
linkages.

The set of all possible motions of a closed 6R linkage is determined by the position
of the six rotation axes in some fixed initial configuration. (The choice of the initial
configuration among all possible configurations is arbitrary. In some later steps in
the classification, we will occasionally change the initial configuration.)

The algebra DH of dual quaternions is the 8-dimensional real vector space generated
by 1, ε, i, j,k, εi, εj, εk (see [29, 30]). Following [29, 30], we can represent a rotation
by a dual quaternion of the form

(
cot

(
φ
2

)
− h

)
, where φ is the rotation angle and

h is a dual quaternion such that h2 = −1 depending only on the rotation axis. We
use projective representations, which means that two dual quaternions represent
the same Euclidean displacement if only if one is a real scalar multiple of the other.

Let L be a 6R linkage given by 6 lines, represented by dual quaternions h1, . . . , h6
such that h2

i = −1 for i = 1, . . . , 6. A configuration (see [29, 30]) is a 6-tuple
(t1, . . . , t6), such that the closure condition

(t1 − h1)(t2 − h2)(t3 − h3)(t4 − h4)(t5 − h5)(t6 − h6) ∈ R\{0}
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holds. The configuration parameters ti – the cotangents of the rotation angles – may
be real numbers or ∞, and in the second case we evaluate the expression (ti − hi)
to 1, the rotation with angle 0. The set of all configurations of L is denoted by KL.

There is a subset of KL, denoted by Ksym, defined by the additional restrictions
t1 = t4, t2 = t5, t3 = t6. We assume that Ksym is a one-dimensional set, i.e. the
linkage has an angle-symmetric motion. Mostly, we will assume, slightly stronger,
that there exists an irreducible one-dimensional set for which none of the ti is fixed.
Such a component is called a non-degenerate component. We also exclude the case
dimCKsym ≥ 2. Linkages with mobility ≥ 2 do exist, but they are well understood.

The closure condition is equivalent to

(t1 − h1)(t2 − h2)(t3 − h3) = λ(t3 + h6)(t2 + h5)(t1 + h4),

where λ is a nonzero real value depending on t1, t2, t3. By taking norm on both
sides, we get λ2 = 1, i.e. λ = ±1. By multiplying both sides with (t1 + h1) from
the left and with (t1 − h4) from the right, and afterwords dividing by (t21 + 1), we
obtain the equation

(t2 − h2)(t3 − h3)(t1 − h4) = λ(t1 + h1)(t3 + h6)(t2 + h5).

Similarly, we obtain

(t3 − h3)(t1 − h4)(t2 − h5) = λ(t2 + h2)(t1 + h1)(t3 + h6),

(t1 − h4)(t2 − h5)(t3 − h6) = λ(t3 + h3)(t2 + h2)(t1 + h1),
(t2 − h5)(t3 − h6)(t1 − h1) = λ(t1 + h4)(t3 + h3)(t2 + h2),
(t3 − h6)(t1 − h1)(t2 − h2) = λ(t2 + h5)(t1 + h4)(t3 + h3).

We may divide Ksym into two disjoint subsets K+
sym and K−sym, according to whether

λ is equal to +1 or −1 in the equations above. Any irreducible component of Ksym

is either contained in K+
sym or in K−sym. Note that (t1, t2, t3) = (∞,∞,∞) is an

element of K+
sym.

Remark 6.1. When we want to study some component K0 ⊂ K−sym, we may proceed
in the following way: we take a configuration τ ∈ K0, which defines a set of rotations
around the joint axes. Then we apply these rotations, obtaining new positions for
the 6 lines. In the transformed linkage, the component corresponding to K0 contains
(∞,∞,∞). So we will always assume that λ = 1.

When λ = 1, after moving the right parts of the above equations to the left, we get
an equation

M†X = 0,
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where X = [t1t2, t1t3, t2t3, t3, t2, t1, 1]T . If we denote h6 + h3, h5 + h2, h4 + h1 by
g3, g2, g1 respectively, then the coefficient matrix M† is

g3, g2, g1, h5h4 − h1h2, h6h4 − h1h3, h6h5 − h2h3, h6h5h4 + h1h2h3
g3, g2, g1, h1h5 − h2h4, h1h6 − h3h4, h6h5 − h2h3, h1h6h5 + h2h3h4
g3, g2, g1, h2h1 − h4h5, h1h6 − h3h4, h2h6 − h3h5, h2h1h6 + h3h4h5
g3, g2, g1, h2h1 − h4h5, h3h1 − h4h6, h3h2 − h5h6, h3h2h1 + h4h5h6
g3, g2, g1, h4h2 − h5h1, h4h3 − h6h1, h3h2 − h5h6, h4h3h2 + h5h6h1
g3, g2, g1, h5h4 − h1h2, h4h3 − h6h1, h5h3 − h6h2, h5h4h3 + h6h1h2


.

Note that M† is a 6× 7 matrix with entries in dual quaternions. We also consider
M† to be a 48× 7 matrix with real entries. It can be decomposed into submatrices
M †

1 , · · · ,M
†
6 , where M †

i is the real 8 × 7 matrix – or the row vector with 7 dual
quaternion entries – corresponding to the i−th equivalent formulation of the closure
condition above, for i = 1, . . . , 6.

Our classification is based on the following theorem which gives the bounds for the
rank of M†.

Theorem 6.2. Assume that Ksym contains a non-degenerate component of dimen-
sion 1. Then r := rank(M†) ∈ {2, 3, 4}.

Before we prove Theorem 6.2, we give a lemma.

Lemma 6.3. Assume that Ksym contains a non-degenerate component K0 of di-
mension 1 such that ∞3 ∈ K0, and r ≥ 4. Then there exists a polynomial of the
form

bt1 + ct2 + d,

where b, c, d ∈ R and bc 6= 0, which vanishes on Ksym, maybe after some permutation
of the variables t1, t2, t3. Moreover, we can define a matrix N† of rank ≥ r− 2 such
that the projection of Ksym to (t1, t3) is defined by

N†X′ = 0, (6.1)

where X′ = [t21, t1t3, t1, t3, 1]T .

Proof. As r ≥ 4, we have at least four independent equations in three variables
(t1, t2, t3) of tridegree at most (1, 1, 1). We denote four of them by F1, F2, F3, F4.

First, we assume that the F1 is irreducible. The resultants of F1 and Fi, i = 2, 3, 4
with respect to the last variable t3 are denoted by F12, F13, F14. The bidegrees of
them are at most (2, 2). All these polynomials vanish on Ksym. If one of them
is 0, such as F12 = 0, then F1 and F2 must have a non-trivial common factor.
This can only be F1, since F1 is irreducible. Then the tridegree of F1 is less then
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(1, 1, 1). Because F1 vanishes on the non-degenerate component K0, it must contain
at least two variables, and so F1 is a polynomial of degree (1, 1, 0), maybe after some
permutation of variables.

If none of the three resultants vanishes, then letG = gcd(F12, F13, F14). The bidegree
of G is in the set {(2, 2), (2, 1), (1, 1)}, up to permutation of variables t1, t2. If it is
(1, 1), then G can be considered as a polynomial of tridegree (1, 1, 0) that vanishes
on K0. If the bidegree of G is (2, 2) or (2, 1), then we write F12 = GU2, F13 =
GU3, F14 = GU4 with suitable polynomials U2, U3, U4. The bidegrees of U2, U3, U4
are at most (0, 1), hence U2, U3, U4 are linearly dependent, which means that there
are three real number λ2, λ3, λ4 such that

λ2F12 + λ3F13 + λ4F14 = 0.

As a consequence, we have

Res(F1, λ2F2 + λ3F3 + λ4F4) = 0,

where Res denotes the resultant. Then we can continue as in the case F12 = 0
above. Again we get a polynomial of degree (1, 1, 0), maybe after some permutation
of variables.

Second, if F1 is reducible, then it has two factors with degree (1, 1, 0) and (0, 0, 1),
up to permutation of variables t1, t2, t3. Again, F1 vanishes on the non-degenerate
componentK0, and so it must contain at least two variables, and so it is a polynomial
of degree (1, 1, 0), maybe after some permutation of variables.

In all cases above, we have a polynomial of tridegree (1, 1, 0) vanishing on K0. Since
∞3 is in Ksym, it is of the form bt1 + ct2 + d = 0, with b, c, d ∈ R and bc 6= 0, as
stated in the lemma. We can use it to eliminate t2: on K0, we have t2 = − bt1+d

c
.

The equations for the projection of K0 to the (t1, t3)-plane can be obtained by
substituting. We get the equation N†X′ = 0, where N† := M†L, and

L =



−b
c

0 −d
c

0 0
0 1 0 0 0
0 −b

c
0 −d

c
0

0 0 0 1 0
0 0 −b

c
0 −d

c

0 0 1 0 0
0 0 0 0 1


.

This follows from the fact that on K0, we can replace X by LX′. Because rank(L) =
5, we also get rank(N†) ≥ rank(M†)− 2.
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Proof. Proof of Theorem 6.2 r ≥ 2: Assume, indirectly, that r ≤ 1. Then the system
M†X = 0 is equivalent to zero or only one single equation in three variables, and
it will have at least a two-dimensional complex configuration set, which contradicts
our assumption.

r ≤ 4: Assume, indirectly, that r ≥ 5. Then from Lemma 6.3, the projection of
Ksym to (t1, t3) is defined by

N†X′ = 0, (6.2)

where r1 := rank(N†) ≥ r − 2 ≥ 3. The equation (6.2) is equivalent to a system
of r1 polynomial equations of bidegree at most (2, 1). Because Ksym is a curve and
has non-degenerate components, the r1 polynomials have a common factor with
bidegree at least (1, 1). Then r1 ≤ 2 which contradicts to r1 ≥ 3.

6.3 Classification

This section contains three parts. First, we show that the existence of a line sym-
metry implies r = 2. Second, we show that r = 2 or r = 3 implies a line symmetry
or another geometric consequence which we call the “parallel property”. Third, we
relate the case r = 4 to a linkage described in [29, 30].

6.3.1 Line Symmetric Linkages

We now describe line symmetric 6R linkages in terms of dual quaternions. A 6R
linkage L = [h1, h2, h3, h4, h5, h6] is line symmetric if and only if there is a line
represented by a dual quaternion l such that l2 = −1 and

h1 = lh4l
−1, h2 = lh5l

−1, h3 = lh6l
−1. (6.3)

Geometrically, the rotation around l by the angle π takes hi to hi+3 for i = 1, 2, 3.

Lemma 6.4. If L is line symmetric, then r = 2.

Proof. As the norm of l is equal to 1, it follows l−1 = −l and we write (6.3) as

h1 = −lh4l, h2 = −lh5l, h3 = −lh6l. (6.4)

We define a map α from the set of dual quaternions to itself as

α : DH −→ DH, h 7−→ h+ lh̄l,
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where h̄ denotes the dual quaternion conjugate of h. It is true that all entries ofM †
1

are in Im(α). For instance, we have α(h1) = h1 − lh1l = h1 + h4 = g1, α(h5h4) =
h5h4+lh4h5l = h5h4−(lh4l)(−lh5l) = h5h4−h1h2, α(h6h5h4) = h6h5h4−lh4h5h6l =
h6h5h4 + (−lh4l)(−lh5l)(−lh6l) = h6h5h4 + h1h2h3. It is not difficult to prove that
α is a R-linear map. If we consider M †

1 to be an 8 × 7 matrix with real entries,
then r2 := rank(M †

1) is less or equal to the dimension of Im(α). W.l.o.g. we assume
l = i. We compute Im(α) as α(1) = 1 + ii = 1 − 1 = 0, α(ε) = ε + εii = 0, α(i) =
i − iii = 2i, α(j) = j − iji = 0, α(k) = k − iki = 0, α(εi) = εi − εiii = 2εi, α(εj) =
εj− εiji = 0, α(εk) = εk− εiki = 0. Therefore, the dimension of Im(α) is 2. So we
have r2 ≤ 2.

The next step is to prove that all M †
i for i = 1, ..., 6 are equal. It is true that the

first three columns are equal in all M †
i for i = 1, ..., 6. As Im(α) is equal to 〈i, εi〉R

and g1, g2, g3, h6h5 − h2h3 ∈ Im(α), we obtain

g1 × g2 = g1 × g3 = g2 × g3 = (h6h5 − h2h3)× g1 = 0, (6.5)

where g×h denotes the cross product of purely vectorial dual quaternions g, h. The
equalities M †

1 = · · · = M †
6 can be shown from (6.5). For instance, h5h4 − h1h2 −

(h1h5 − h2h4) = h5 × h4 − h1 × h2 − h1 × h5 + h2 × h4 = g2 × h4 − h1 × g2 =
g2 × g1 = 0, h1h5 − h2h4 − (h4h2 − h5h1) = h1h5 − h2h4 + (h1h5 − h2h4) = 0
or h6h5h4 + h1h2h3 − (h1h6h5 + h2h3h4) = −〈h6, h5〉h4 + 〈h2, h3〉h4 − 〈h2, h3〉h1 +
〈h6, h5〉h1 + (h6 × h5) × h4 + h1 × (h2 × h3) − h1 × (h6 × h5) − (h2 × h3) × h4 =
(h6×h5+h3×h2)×g1 = (h6h5−h2h3)×g1 = 0, where 〈g, h〉 denotes the inner product
of purely vectorial dual quaternions g, h. As a consequence, we have r = r2 ≤ 2.
But we have r ≥ 2 by Theorem 6.2, so r = 2.

Remark 6.5. The well-known fact that line symmetric linkages are movable can
also be obtained as a corollary from Theorem 6.2. When r = 2, then the configura-
tion set is defined by 2 equations in 3 variables.

6.3.2 Linkages with Rank 2 and 3

In this section, we show that r = 2 or 3 implies either a line symmetry or another
property, defined as follows. We say that L = [h1, . . . , h6] has the parallel property
if h1 ‖ h4, h2 ‖ h3, h5 ‖ h6, maybe after some cyclic permutation of indices. In this
section, we always assume that the rank of the λ-matrix of L is 2 or 3.

In the following, we use the technique of generic points of algebraic curves. This
simplifies the analysis a lot. Let C be an irreducible algebraic curve. Let F be a
field such C can be defined by equations over F (for instance F = Q). Following
[63, Section 93], we say that some point p ∈ C is generic if it fulfills no algebraic
conditions defined by polynomials with coefficients in F , excerpt those that are a
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consequence of the equations of C. The existence of generic points is shown in [63,
Section 93]; typically, the coordinates of a generic point are transcendental numbers.

Let K0 ⊂ K+
sym be an irreducible non-degenerate component of the linkage L =

[h1, . . . , h6], and let τ0 = (t′1, t′2, t′3) be a generic point of K0. The configuration
τ0 corresponds to a set of rotations around the joint axes. When we apply these
rotations, we get new positions for the 6 lines, and we define the transformed linkage
by L′ = [h′1, h′2, h′3, h′4, h′5, h′6]. Note that L and L′ represent really the same linkage,
just in different initial positions.

Lemma 6.6. If primal(g′1) = 0, then L has the parallel property. Here primal(h)
denotes the primal part of the dual quaternion h. More precisely, we will have
h1 ‖ h4, h2 ‖ h3, h5 ‖ h6, in all configurations in K0.

Proof. Assume that primal(g′1) = 0. The parallelity of the first and fourth axis
can be expressed as a set of polynomial equations in the configuration parameters
(t1, t2, t3). These equations are fulfilled for the generic point τ0. By a well-known
property of generic points it follows that they are fulfilled for all points in K0. For
this reason, the first and fourth axis are parallel at all position.

Let S = [p1, p2, p3, p4, p5, p6], where pi = primal(h′i) for i = 1, . . . , 6. Then S is a
spherical linkage with the first and fourth axis coinciding at all positions. We can
separate S into two 3R linkages S1 = [p1, p2, p3] and S2 = [p4, p5, p6]. A 3R linkage
is necessarily degenerate: either some angles are constant or some axes coincide.
Since t2 is not a constant in K0, we obtain p2 = ±p3 or p1 = ±p2. Since t3 is not
a constant in K0, we obtain p2 = ±p3 or p1 = ±p3. If p2 6= ±p3, then we have
p1 = ±p2 and p1 = ±p3, a contradiction. So we obtain p2 = ±p3. Similarly, we also
have p5 = ±p6.

Therefore, we get a linkage with h′1 ‖ h′4, h′2 ‖ h′3, h′5 ‖ h′6. Since the parallel
property is fulfilled for the generic point of the configuration curve, it is fulfilled for
all points in K0. In particular, the original linkage L has the parallel property.

There is no i such that g′i = 0 for i = 1, 2, 3, because if g′i = 0 would be true, then
the lines h′i and h′i+3 would be equal; the initial configuration was chosen generically,
so the lines hi and hi+3 would be equal for all configurations in K0, and this is not
possible. Moreover, it is not possible that two of gi for i = 1, 2, 3 have 0 primal parts.
In order to prove this, we assume indirectly primal(g′2) = 0 and primal(g′3) = 0. By
Lemma 6.6, we get h2 ‖ h5, h3 ‖ h4, h1 ‖ h6 and h3 ‖ h6, h4 ‖ h5, h1 ‖ h2. It follows
that L is a planar 6R Linkage which has mobility more than one.

Before the main theorem, we give several lemmas in the following.
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Lemma 6.7. Let a, b be two purely vectorial dual quaternions. If a × b = 0, then
there is a dual number α such that b = αa or a = αb, or the primal parts of a and
b both vanish.

Proof. Straightforward.

In the next two proofs, we use the following argument from linear algebra. Let
1 ≤ i1 < · · · < ir < ir+1 < · · · < is ≤ 7 be integers. Let A := a1M

†
1 + · · · + a6M

†
6

be some linear combination of the matrices M †
1 , . . . ,M

†
6 , where a1, . . . , a6 ∈ R. If

the vector space generated by the columns (i1, . . . , is) of M † is already generated
by the columns (i1, . . . , ir) of M †, then the vector space generated by the columns
(i1, . . . , is) of A is also generated by the columns (i1, . . . , ir) of A.

Lemma 6.8. If g′3 × g′1 = g′2 × g′1 = 0, then g′2 × g′3 = 0.

Proof. We distinguish two cases.

Case I: primal(g′1) 6= 0. By Lemma 6.7, there exist α2, α3 ∈ D such that g′2 = α2g
′
1

and g′3 = α3g
′
1, and it follows that g′2 × g′3 = 0.

Case II: primal(g′1) = 0. Then primal(g′2) 6= 0 and primal(g′3) 6= 0. If there exists
α ∈ D such that g′3 = αg′2, then g′2 × g′3 = 0. Otherwise, g′1 is a dual multiple of
g′2 but g′3 is not, so g′1, g′2, g′3 are linearly independent. Then the first three columns
generate the column space of M †. By linear algebra, the first three columns of
A := M †

1 +M †
4 −M

†
3 −M

†
6 also generate the column space of A. But

A = [0, 0, 0, 0, 2g′3 × g′1, 2g′3 × g′2, ∗] (6.6)

(we do not care about the last entry denoted by ∗), and it follows that g′2×g′3 = 0.

Lemma 6.9. We have g′3 × g′1 = g′2 × g′1 = g′2 × g′3 = 0.

Proof. Let r3 be the dimension of the vector space generated by g′1, g′2, g′3. If r3 = 1,
then it follows that g′3 × g′1 = g′2 × g′1 = g′2 × g′3 = 0. If r3 = 2 or r3 = 3, then the
vector space V generated by the first 6 columns of M † is already generated by the
first three and one of the other three columns.

Assume, for instance, that V is generated by columns (1, 2, 3, 6). By linear algebra,
the corresponding columns also generate the space of the first six columns of

M †
1 +M †

4 −M
†
2 −M

†
5 = [0, 0, 0, 2g′2 × g′1, 2g′3 × g′1, 0, ∗].

This implies g′3 × g′1 = g′2 × g′1 = 0, and by Lemma 6.8, we also get g′2 × g′3 = 0.
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If V is generated by columns (1, 2, 3, 4), then the above linear algebra argument
shows g′1 × g′3 = g′2 × g′3 = 0. The equality g′2 × g′1 = 0 follows again from by
Lemma 6.8, applied to the linkage [h3, h4, h5, h6, h1, h2]. The third case, when V is
generated by columns (1, 2, 3, 5), is also similar.

Lemma 6.10. If primal(g′i) 6= 0 for i = 1, 2, 3, then L′ is line symmetric.

Proof. By Lemma 6.7, there exists a dual quaternion u and invertible dual numbers
α1, α2, α3 such that g′i = αiu for i = 1, 2, 3. Let β := uū ∈ D. Because the primal
part of u is nonzero, the primal part of β is positive and 1√

β
is defined. We set

l′ := 1√
β
u. Then l′2 = −1 and g′ih′i = h′i

2 + h′i+3h
′
i = h′i+3

2 + h′i+3h
′
1 = h′i+3g

′
i, hence

h′i+3 = g′ih
′
ig
′
i
−1 = l′h′il

′−1 for i = 1, 2, 3.

Theorem 6.11. If r = 2 or 3, then L has a line symmetry or the parallel property.

Proof. Let K0 ⊂ K+
sym be an irreducible non-degenerate component and τ0 =

(t1, t2, t3, t1, t2, t3) be a generic point of K0. We get L′ = [h′1, h′2, h′3, h′4, h′5, h′6] by ap-
plying the rotations specified in τ . By Lemmas 6.8, 6.9, and 6.10, we conclude that
L′ has a line symmetry or the parallel property. If a line symmetric linkage moves
in an angle-symmetric way, then the transformed linkage is also angle-symmetric.
This implies that when L′ is line symmetric, then L is also line symmetric. On the
other hand, if L′ has the parallel property, then parallelity holds for all points in
K0, in particular L has the parallel property.

Theorem 6.12. If r = 2, then L is line symmetric.

Proof. By Lemma 6.4 and Theorem 6.11, we may assume that L has the parallel
property and r = 2. Let L′ = [h′1, h′2, h′3, h′4, h′5, h′6] be the linkage transformed to a
generic position. We may assume h′1 ‖ h′4, h′2 ‖ h′3, h′5 ‖ h′6. The primal part of g′1 is
0 and the primal parts g′2 and g′3 are not. We define l′ as 1√

g′2g
′
2
g′2. Then l′2 = −1.

By Lemma 6.9, we also get h′2 = −l′h′5l′ and h′3 = −l′h′6l′ (see also the proof of
Lemma 6.10). Moreover, g′1 is a real multiple of εl′, and g′1h′1 = h′4g

′
1. By the last

equation, the primal part of h′1 + l′h′4l
′ is zero. The dual part of h′1 + l′h′4l

′ is equal
to u := g′1 − h′4 + l′h′4l

′. The vectorial part of ul′ = g′1l
′ − h′4l′ − lh′4 vanishes, so u

is a multiple of l′. On the other hand, the scalar product of u with l′ also vanishes,
hence u = 0 and h′1 = −l′h′4l′. It follows that L′ and L are both line symmetric.

In the end of this section, we give a construction of angle-symmetric 6R linkages
with the parallel property. The construction is based on the fact that we have a
partially line symmetry taking h2 to h5 and h3 to h6 (see Lemma 6.7 and Lemma
6.9 above).
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Construction 6.13. (Angle-Symmetric 6R Linkage with Parallel Property)

I. Choose a rotation axis u such that u2 = −1.

II. Choose another rotation axis h1 such that h2
1 = −1 and it is perpendicular to

u.

III. Choose two parallel rotation axes h2 and h3 which are not perpendicular to
u such that h2

2 = h2
3 = −1.

IV. Set h4 = −uh1u+ rεu, where r is a random real number.

V. Set h5 = −uh2u and h6 = −uh3u.

VI. Our angle-symmetric 6R Linkage with parallel property is L = [h1, h2, h3,
h4, h5, h6].

Example 6.14. (Angle-Symmetric 6R Linkage with Parallel Property) We set

u = i,

h1 = − 7
11εi + j,

h2 =
(

2ε− 3
5

)
i−

(3
2ε+ 4

5

)
j− εk,

h3 =
(
−2ε+ 3

5

)
i +

(3
2ε+ 4

5

)
j + 2εk,

r = 14
11 ,

h4 = 7
11εi− j,

h5 =
(

2ε− 3
5

)
i +

(3
2ε+ 4

5

)
j + εk,

h6 =
(
−2ε+ 3

5

)
i−

(3
2ε+ 4

5

)
j− 2εk.

It can be seen that the axes of h1, h4 are parallel, and the axes of h2, h3 and
h5, h6, respectively, are parallel. Furthermore, the configuration curve contains a
non-degenerate component:

(t1, t2, t3, t4, t5, t6) =
(5

4t, t, t,
5
4t, t, t

)
.

Thus, we have an example of angle-symmetric 6R linkage with parallel property.
The rank of M† is 3. In Figure 6.1, we present nine configuration positions of this
linkage.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.1: These nine pictures are different positions of the linkage in Example
6.14.
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Remark 6.15. A random instance of Construction 6.13 produces a linkage where
t1 is parametrized by a quadratic function in t = t2 = t3. This example is special
because t1 is linear in t. (There is a degenerate component of the configuration curve
that is responsible for this drop of the degree.)

6.3.3 Linkages with Rank 4

In this section, we show that the angle-symmetric linkages with Rank 4 are exactly
those that have been constructed in [30, Example 3] by factorization of cubic motion
polynomials.

Recall that a motion polynomial P is a polynomial in one variable t with coefficients
in DH such that PP̄ is a real polynomial that does not vanish identically and the
leading coefficient is invertible. (Multiplication in DH[t] is defined by requiring that
t commutes with the coefficients in DH.) Motion polynomials parametrize motions:
by substituting a real number for t, we obtain an element in the Study quadric.

We give a brief sketch of the construction in [29, 30]. Linear motion polynomials of
the form (t − a − bh), a, b ∈ R, b 6= 0, h ∈ DH, h2 = −1 parametrize revolutions.
When we multiply three such polynomials R1, R2, R3, we get a cubic motion poly-
nomial Q. Generically, there are 6 different factorizations into linear monic polyno-
mials, and there is one of the form R6R5R4 such that the equations R1R̄1 = R4R̄4,
R2R̄2 = R5R̄5, R3R̄3 = R6R̄6 hold. The three linear factors R4, R5, R6 are again
motion polynomials parametrizing revolutions. The six axes of R1, . . . , R6 define a
closed 6R linkage; let us call it a linkage of cubic polynomial type.

We set Ri(t) = t − ai − bihi for i = 1, . . . , 6, ai, bi ∈ R, bi 6= 0, hi ∈ DH, h2
i = −1.

The equations above are equivalent to ai = ai+3 and b2
i = b2

i+3 for i = 1, 2, 3. We
may even assume bi = −bi+3; if not, we replace hi+3 and bi+3 by −hi+3 and −bi+3.
We multiply R1R2R3 = R6R5R4 by R̄4R̄5R̄6 and get that

(t−a1− b1h1)(t−a2− b2h2)(t−a3− b3h3)(t−a1− b1h4)(t−a2− b2h5)(t−a3− b3h6)

is a real polynomial. This shows that the configuration curve is parametrized by

(t1, t2, t3, t4, t5, t6) =
(
t− a1

b1
,
t− a2

b2
,
t− a3

b3
,
t− a1

b1
,
t− a2

b2
,
t− a3

b3

)
.

In particular, the linkage of cubic polynomial type is angle-symmetric.

Here is a converse of the above statement.

Theorem 6.16. If L is an angle-symmetric linkage such that the λ-matrix has rank
r = 4, then L is of cubic polynomial type.
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Proof. By Lemma 6.3, there exist a polynomial of the form bt1+ct2+d that vanishes
on Ksym, b, c, d ∈ R, bc 6= 0, and the projection of Ksym to (t1, t3) is in the common
zero set of two linear independent polynomials of bidegree (2, 1). The equation
of the projection is therefore a common factor of these two equations and must
have bidegree smaller than (2, 1). Since Ksym has a non-degenerate component, the
common factor cannot be constant in t1 or t3, hence it has bidegree (1, 1). Because
(∞,∞) is contained in the projection, the common factor has the form b′t1 +c′t2 +d′
for b′, c′, d′ ∈ R, b′c′ 6= 0. This allows to parametrize Ksym with linear functions

(t1, t2, t3) =
(
t− a1

b1
,
t− a2

b2
,
t− a3

b3

)
for a1, . . . , b3 ∈ R, b1b2b3 6= 0. Now the linkage can be reconstructed from the two
factorizations of the cubic motion polynomial

(t−a1−b1h1)(t−a2−b2h2)(t−a3−b3h3) = (t−a3+b3h6)(t−a2+b2h5)(t−a1+b1h4),

so it is of cubic polynomial type.

In the analysis of the case r = 3, we obtained a new type of linkages (with parallel
property h1 ‖ h4, h2 ‖ h3, h5 ‖ h6). It is not clear from the chapter if every
linkage with parallel property is angle-symmetric. This is not the case: examples
of linkages with parallel property that are not angle-symmetric can be found in
[60, 23]. A complete classification of linkages with parallel property can be found
in the next chapter.
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Chapter 7

Parallel 6R Linkages

In this chapter we want to handle a subclassification problem of 6R linkages. We
name it classification of parallel 6R linkages. The results presented below evolved
from a collaboration with Josef Schicho and have recently been published in [43].

Structure of the chapter The remaining part of the chapter is set up as follows.
Section 7.1 gives us the motivation for the classification of parallel 6R linkages.
In Section 7.2, we give the classification of all parallel 6R linkages which contains
three families. Section 7.3 contains the construction for the first family of parallel
6R linkages which has the translation property. Section 7.4 contains the second and
the third families of parallel 6R linkages which have the angle-symmetric property.

7.1 Motivation

In this section, we first introduce the definition of a parallel 6R linkage. As always,
let L be a 6R linkage given by 6 lines, represented by dual quaternions h1, . . . , h6
such that h2

i = −1 for i = 1, . . . , 6. Let KL denote the set of all configurations of L.

If L = [h1, h2, h3, h4, h5, h6] is a 6R linkage with mobility 1, then we say that L is
a parallel 6R linkage if the axes h1, h6 are parallel and the axes h3, h4 are parallel,
and the non-adjacent axes h2, h5 are parallel for infinitely many configurations in
KL. The parallelity conditions in the initial configuration can be expressed as:

h1 = p1 + εq1, h2 = p2 + εq2, h3 = p3 + εq3,
h6 = −p1 + εq6, h5 = −p2 + εq5, h4 = −p3 + εq4,

(7.1)

where pi are the primal parts of hi and h7−i for i = 1, 2, 3, and qj are the dual parts
of hj for j = 1, . . . , 6.
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Chapter 7 Parallel 6R Linkages

There is a subset of KL, denoted by Kqsym which we call quasi-angle-symmetric
configuration, defined by the additional restrictions t1 = t6, t2 = t5, t3 = t4. For
all configurations in τ ∈ Kqsym, the transformed lines hτ2 and hτ5 are again parallel.
Conversely, if K0 ⊆ KL is an irreducible component of dimension 1 that contains
the initial configuration∞6 and that preserves the parallelity of the second and the
fifth axis, then K0 ⊆ Kqsym.

Remark 7.1. There exist 6R linkages, with a one dimensional K0 ⊆ Kqsym, but
they are not necessary parallel 6R linkages. One possible construction of such linkage
is the special case of the Double Bennett 6R linkage with additional constraint of
a = c, b = d in Construction 5.12.

7.2 Classification

Before introducing the following lemma, we recall the definition of coupling space
and its dimension (see Chapter 2). For a sequence hi, hi+1, . . . , hj of consecutive
joints, we define the coupling space Li,i+1,...,j as the linear subspace of R8 generated
by all products hk1 · · ·hks , i ≤ k1 < · · · < ks ≤ j. (Here, we view dual quaternions
as real vectors of dimension eight.) The empty product is allowed, its value is 1.
The coupling dimension li,i+1,...,j is the dimension of Li,i+1,...,j.

For a parallel 6R linkage L in (7.1), we make a special transformation as following:

h′1 := P1h1P1, h
′
6 := P1h6P1, h

′
3 := P2h3P2, h

′
4 := P2h4P2,

where Pi denote the conjugations of Pi for i = 1, 2, and P1 and P2 are transla-
tions such that h′1, h′2 = h2, h

′
3 meet in a common point. This is equivalent to the

statement that the dimension of coupling space L′123 is 4. Furthermore, we have
(t1 − h6)(t1 − h1) = (t1 − h′6)(t1 − h′1) and (t3 − h3)(t3 − h4) = (t3 − h′3)(t3 − h′4),
and we get the following.

We recall the definition of the translation property in [43]. Let L = [h1, h2, h3, h4,
h5, h6] be a 6R linkage. There exists a translation taking h1 to h6, h2 to h5, and h3
to h6. Then we call that the linkage L has translation property. The classification
is in the following theorem.

Theorem 7.2. If L is a parallel linkage, then it either has the translation property
or is angle-symmetric.

Proof. First, it is straightforward to show that a parallel 6R linkage L and its
transformed linkage L′ as above have the same quasi-angle-symmetric configuration
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space Kqsym. By Lemma 2.9, we have the dimension of the linear coupling space
l′654 = 4 or 6 for the transformed parallel linkage L′.

If l′654 = 4, then the lines h′4, h′5, and h′6 also meet in a common point. There is
an unique translation P that maps the common point of h′1, h2, h′3 to the common
point of h′4, h5, h′6. So, P maps h′1 to h′6, h2 to h5, and h′3 to h′4. But then, P
also maps h1 to h6 and h3 to h4. Conversely, assume that for six lines h1, . . . , h6,
there exists a translation taking h1 to h6, h2 to h5, and h3 to h6. Then the linkage
L = [h1, . . . , h6] is mobile.

If l′654 = 6, then two cases are possible: either L′ is a composition of a spherical
linkage [h′1, h2, h

′
3, h7] and a Bennett linkage [h′6, h5, h

′
4, h7], with a suitable line h7,

or L′ is a composition of a spherical linkage [h′1, h2, h
′
3, h7, h8] and a Goldberg 5R

linkage [h′6, h5, h
′
4, h7, h8], with suitable lines h7, h8 passing through the common

point of h′1, h2, h′3. In both cases, we get t1 = t3, so the linkage L′ – therefore also
L – is angle-symmetric in the sense of Chapter 6. The first case coincides with the
“rank 3” case in Chapter 6, and the second case is subsumed by the “rank 4” case
in Chapter 6.

7.3 Translation Property

Here is a construction of parallel 6R linkage with translation property.

All constructions in this section are given in algebraic terms, using dual quaternions.
The examples have been produced by an implementation of the constructions in
MapleTM.

Construction 7.3. (Parallel 6R Linkage with Translation Property)

I. Choose three rotation axes h1, h2, h3, i.e. dual quaternions such that h2
i = −1.

II. Choose a translation P = 1 + ai + bj + ck, with a, b, c in the set of real
numbers.

III. Set h4 = −Ph3P , h5 = −Ph2P and h6 = −Ph1P .

IV. Our parallel 6R Linkage with translation property is L = [h1, h2, . . . , h6].
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Example 7.4. A random instance of the above construction is

h1 =
(7

9 −
80
81ε

)
i−

(4
9 + 34

81ε
)

j +
(4

9 + 106
81 ε

)
k,

h2 =
(3

5 + 8
25ε

)
i− 8

5εj−
(4

5 −
6
25ε

)
k,

h3 = −
(1

3 −
4
9ε
)

i−
(2

3 + 4
9ε
)

j−
(2

3 −
2
9ε
)

k,

P = 1− 16
27εi−

20
27εj + 8

27εk,

h4 =
(1

3 −
148
81 ε

)
i +

(2
3 + 116

81 ε
)

j +
(2

3 −
14
27ε

)
k,

h5 = −
(3

5 + 1016
675 ε

)
i + 296

135εj +
(4

5 −
254
225ε

)
k,

h6 = −
(7

9 −
112
81 ε

)
i +

(4
9 −

46
81ε

)
j−

(4
9 + 242

81 ε
)

k.

Its configuration curve is irreducible of genus 1. Its equations are:

−21t21 + 9t21t2 + 25t22t1 + 6t1t2 − 9t1 + 6− 9t2 − 15t22 = 0,
−21 + 63t1 + 5t2 − 27t1t2 − 6t3 + 72t3t2 = 0.

Here are the Denavit-Hartenberg parameters [20] of the above linkage. These are
the orthogonal distance between two adjacent joint axes aij, the distance di between
the two footpoints of the two neighboring axes on the i−th axis, and the twist angle
between two adjacent joint axes αij, for i = 1, . . . , 6 and j = i+ 1 (modulo 6). For
any parallel linkage with translation property, the parameters fulfill the conditions

a12 = a56, a23 = a45,

d1 = d4 = 0, d2 = d5, d
2
3 + a2

34 = d2
6 + a2

61,

α34 = α61 = 0, α23 = α45, α56 = α12.

In the example, the values are

a12 = a56 = 58
√

5
225 , a23 = a45 = 2

√
2

3 , a34 = 8
√

305
81 , a61 = 8

√
5

9 ,

α34 = α61 = 0, α23 = α45 = arccos
(1

3

)
, α56 = α12 = arccos

(1
9

)
,

d1 = d4 = 0, d2 = d5 = 11
25 , d3 = 80

81 , d6 = 0.
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7.3 Translation Property

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.1: These are nine postures of a parallel linkage with translation property
constructed from [23]
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7.4 Parallel 6R Linkage with Angle-Symmetric
Property

There are two constructions, corresponding to the two sub cases of angle-symmetric
parallel linkages. The first one appeared in [42] and gives Parallel 6R Linkage with
angle-symmetric property (type 1). Here is the second construction.
Construction 7.5. (Parallel 6R Linkage with angle-symmetric property, type 2)

I. Choose two rotation axes h1 and h2, i.e. dual quaternions such that h2
1 =

h2
2 = −1.

II. Choose another rotation axis h6 parallel to h1; the primal part of h6 should
be the primal part of h1 times −1.

III. Compute two rotation axes m1 and m2 such that h1, h2,m1,m2 form a Ben-
nett 4R linkage. One way to do this is to use the factorization algorithm for
motion polynomials in Chapter 4.

IV. Compute two rotation axes m3 and h5 such that h6,m2,m3, h5 form a Ben-
nett 4R linkage, and such that the configuration curve is equal to the one in
step III. Again, this can be done by factorizing a motion polynomial.

V. Choose a translation P = 1 + bi + cj + dk, where b, c, d are real numbers.

VI. Set h3 = −Pm1P , h4 = −Pm3P .

VII. Our parallel 6R Linkage is L = [h1, h2, h3, h4, h5, h6].
Example 7.6. A random instance of the above construction is

h1 =
(1

3 −
4
9ε
)

i−
(2

3 −
2
9ε
)

j +
(2

3 + 4
9ε
)

k,

h2 = −
(1

3 + 8
9ε
)

i−
(2

3 −
8
9ε
)

j +
(2

3 + 4
9ε
)

k,

h6 = −1
3 i + 2

3j− 2
3k,

m1 =
(119

411 + 124340
168921ε

)
i +

(226
411 −

172130
168921ε

)
j−

(322
411 + 74860

168921ε
)

k,

m2 = −
(119

411 −
100888
168921ε

)
i +

(322
411 −

15560
168921ε

)
j−

(226
411 + 75292

168921ε
)

k,

m3 =
(11601824

8614971 ε−
119
411

)
i−

(226
411 −

13771184
8614971 ε

)
j +

(322
411 + 4651040

2871657ε
)

k,

h5 =
(1

3 −
344
459ε

)
i +

(2
3 −

776
459ε

)
j−

(2
3 + 316

153ε
)

k,
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7.4 Parallel 6R Linkage with Angle-Symmetric Property

P = 1− 2
3εi−

1
2εj + εk,

h3 =
(119

411 + 177770
168921ε

)
i +

(226
411 −

10388
18769ε

)
j−

(322
411 −

79
168921ε

)
k,

h4 = −
(119

411 −
8876894
8614971ε

)
i−

(226
411 −

9760646
8614971ε

)
j +

(322
411 + 3377077

2871657ε
)

k.

Here we found that the configuration curve is reducible. It has one non-degenerate
component in Kqsym, with rational parametrization:

(t1, t2, t3) = (t, t+ 1, t) .

In Figure 7.2, we present twelve configuration positions of this linkage produced by
Maple.

Here are the numeric values of the Denavit-Hartenberg parameters.

a61 = 2
3 , a12 =

√
2

3 , a23 = 4151
√

34
41922 , a34 = 274

√
17

459 , a45 = 6617
√

34
41992 , a56 = 86

√
2

153 ,

α34 = α61 = 0, α23 = α45 = arccos
(135

137

)
, α56 = α12 = arccos

(7
9

)
,

d1 = d4 = 0, d2 = d5 = 923
1224 , d3 = 4795

1836 , d6 = 225
68 .

We do not know the general conditions of the Denavit-Hartenberg parameters of a
linkage obtained by this construction.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.2: A parallel angle-symmetric linkage of type 2 (described in Example 7.6).
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Chapter 8

Conspectuses

In this chapter, we try to make an overview of the known results and open question
on mobile 6R linkages.

This is divided to two parts. The first part is concerning the mobile 6R linkages
with genus bigger than zero. The second part is concerning the genus zero (rational)
mobile 6R linkages. As always, the genus is the one we used in Chapter 2.

8.1 Genus g > 0

By Theorem 2.17 in Chapter 2, we get that the genus of the configuration curve of a
closed 6R linkage is at most 5. We will go through all these five possible cases. We
start from genus 5. If there is one twist angle of 90 degree in the Denavit-Hartenberg
parameters, then we can not using the Bennett ratio to represent it. In this case, we
use the orthogonal distance (d between two axes) instead of the Bennett ratio. The
cosines are still well defined in this situation. But the offsets are not well defined
anymore. We set that the offsets of h1, h2, h3 and h2, h3, h4 are equal when h2 and
h3 are parallel.

8.1.1 Genus g = 4 or 5

By Theorem 2.18 in Chapter 2, there are only six families (only in three different
bond diagrams) of closed 6R linkages with the property that the genus, in general,
of their configuration curve is 5. For the genus 4 cases, they are all special cases
of families of genus 5. A concrete example with genus 4 is the Bricard orthogonal
linkage with (b1, . . . , b6) = (4, 3, 5, 7, 9, 8). We will only give the list of the genus 5
families in the following.

105



Chapter 8 Conspectuses

The first one is the Bennett’s Planar Spherical Linkage [13] with bond diagram as
in Figure 8.1(a). The Denavit-Hartenberg equations are

b1 = b6 = s1 = 0, c3 = c4 = 1
s3 = s4 = s5, s6c5 + s5 = s2c5.

(8.1)

The second one is the Hooke’s Double Spherical Linkage (Bennett’s Planar Spherical
Linkage) [13] with bond diagram as in Figure 8.1(a). The Denavit-Hartenberg
equations are

b1 = b3 = b4 = b6 = s1 = s4 = 0,
s2

2 + s2
3 + b2

2 − f 2
2 + 2s2s3c2 = s2

5 + s2
6 + b2

5 − f 2
5 + 2s5s6c5.

(8.2)

The third one is the Sarrus Linkage [13] with bond diagram as in Figure 8.1(a).
The Denavit-Hartenberg equations are

c1 = c3 = c4 = c6 = 1, c2 = c5, s1 = s2 = s6, s3 = s4 = s5. (8.3)

The fourth one is the Dietmaier’s Linkage [21] with bond diagram as in Fig-
ure 8.1(b). The Denavit-Hartenberg equations are

b6 = b1, b3 = b4, b2 = b5, c2 = c5, f6 + f1 = f3 + f4,

s6 = s2, s3 = s5, s1 = s4 = 0.
(8.4)

The fifth one and the sixth one are derived by the quad polynomial with maximal
bonds (same bond diagrams as in Figure 8.1(b)). The Denavit-Hartenberg equations
are

s1 = s2 = s3 = s4 = s5 = s6 = 0,
b1c2b3 = b4c5b6, b2c3b4 = b5c6b1, b3c4b5 = b6c1b2,

f1 = f4, f2 = f5, f3 = f6, b1b3b5 = b2b4b6,

b2
1 + b2

3 + b2
5 = b2

2 + b2
4 + b2

6,

(8.5)

and
s1 = s2 = s3 = s4 = s5 = s6 = 0,
b1c2b3 = b4c5b6, b2c3b4 = b5c6b1, b3c4b5 = b6c1b2,

f1 = f3 = f5, f2 = f4 = f6, b1b3b5f2 = b2b4b6f1,

b2
1 + b2

3 + b2
5 + f 2

2 = b2
2 + b2

4 + b2
6 + f 2

1 .

(8.6)

The well-known family (see [4]) of orthogonal linkages which can be described by
the conditions

s1 = s2 = s3 = s4 = s5 = s6 = 0,
c1 = c2 = c3 = c4 = c5 = c6 = 0,
b2

1 + b2
3 + b2

5 = b2
2 + b2

4 + b2
6,

(8.7)
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8.1 Genus g>0

also has the property of genus 5. One can see that it is just a special case of first
family in the previous two new families.

For the highest genus families, we already knew all them. Here one should also keep
in mind that these six families could have special examples of lower genus.

J1

J2

J3

J4

J5

J6

(a)

J1

J2

J3

J4

J5

J6

(b)

J1

J2

J3

J4

J5

J6

(c)

Figure 8.1: Bond diagrams for 6R linkages with genus 5, the Hooke linkage (a),
the Dietmaier linkage (b), and the Orthogonal Bricard linkage (c). The
joints are labeled by J1, . . . , J6. Each bond connects two joints.

8.1.2 Genus g = 3

There are two known families of mobile 6R linkages with the property of genus
equals to 3.

The first one is the Wohlhart’s partially symmetric linkage [66] with bond diagram
as in Figure 8.2(a). The Denavit-Hartenberg equations are

b1 = b2, b3 = b4, b5 = b6,

c1 = −c2, c3 = −c4, c5 = c6,

s1 + s3 = s5, s2 = s4 = s6 = 0.
(8.8)

The second one is the Bennett-Spherical linkage with the property of genus equals
to 3 with bond diagram as in Figure 8.2(b). They fulfill the following equational
system derived by the quad polynomial:

Q+
1 = Q+

4 , Q
−
1 = Q−4 .

Using Gröbner basis, we can get equational conditions:
f 2

2 + c2
2s

2
2 − b2

2 − s2
2 = f 2

5 + c2
5s

2
6 − b2

5 − s2
6,

c3 + c4 = c2s2 − c5s6 + s3 − s5 = 0,
b3 = b4, b1 = b6 = s1 = s4 = 0.

(8.9)
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It is worth mentioning that the 6R linkage is still mobile with genus 3 when one
replaces the spherical 3R linkage by a planar 3R linkage.

Using the quad polynomial, we obtained another family of mobile 6R linkages with
the property of genus equals to 3 with bond diagram as in Figure 8.2(c). They fulfill
the following equational system:

b2
1 + b2

3 + b2
5 + f 2

6 = b2
2 + b2

4 + b2
6 + f 2

3 , f2 + f3 = f5 + f6,

b2c1 − b3 = b2c3 − b1 = b5c4 − b6 = b5c6 − b4 = 0,
s2 = s3 = s5 = s6 = 0, s1 = s4.

(8.10)

The complete classification of all mobile 6R linkages with the property of genus
equals to 3 is not clear. This will be one of our future works.

J1

J2

J3

J4

J5

J6

(a)

J1

J2

J3

J4

J5

J6

(b)

J1

J2

J3

J4

J5

J6

(c)

Figure 8.2: Bond diagrams for 6R linkages of genus 3, the Wohlhart’s partially sym-
metric linkage (a), the new 6R linkage (b), and the Bennett-Spherical
linkage (c). The joints are labeled by J1, . . . , J6. Each bond connects
two joints.

8.1.3 Genus g = 2

In this case, we do not have a family of 6R linkages known. One could try to find
special families from the higher genus cases. It is worth mentioning that the bond
diagram in Figure 8.3(a) could be one possible family. But with our computer, we
could not decompose the ideal to find the equational conditions which are generated
by the quad polynomials.

We get the following equalities of polynomials in C[x] by the bond diagram in
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Figure 8.3(a):
Q+

1 = Q+
4 , Q

+
2 = Q+

5 , Q
+
3 = Q+

6 ,

Resultantx(Q−3 , Q−6 ) = 0,
Resultantx(Q−3 , Q−6 ) = 0,
Resultantx(Q−3 , Q−6 ) = 0.

(8.11)

J1

J2

J3

J4

J5

J6

Figure 8.3: Bond diagrams for a possible mobile 6R linkages with genus 2. The
joints are labeled by J1, . . . , J6. Each bond connects two joints.

Finding the complete classification of all mobile 6R linkages with the property of
genus equals to 2 will be one of main future works. Even a concrete example of
genus 2 with bond diagram as in Figure 8.2 is not known. It is worth mentioning
that there is a sub family of the Bricard line symmetric 6R linkage with such a
bond diagram. But the genus is 1. This is constructed by taking the six lines
[h1, h2, h3, h4, h5, h6] with h4 = h1, h5 = h2, h6 = h3.

8.1.4 Genus g = 1

This case is the most interesting case for us. Because there are a lot of known
families. The classification on this case is also open.

The first one is the Bricard line symmetric 6R linkage. We just list its equational
conditions in Denavit-Hartenberg parameters as follows:

b1 = b4, b2 = b5, b3 = b6,

c1 = c4, c2 = c5, c3 = c6,

s1 = s4, s2 = s5, s3 = s6.

(8.12)

Its bond diagram is shown in Figure 8.4(a). As one might know, Bricard Octahedra
can be considered as 6R linkages. There are three types of Bricard Octahedra
[21]. The type I (line-symmetric) is a special case of the Bricard line symmetric 6R
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J1

J2

J3

J4

J5

J6

(a)

J1

J2

J3

J4

J5

J6

(b)

J1

J2

J3

J4

J5

J6

(c)

J1

J2

J3

J4

J5

J6

(d)

J1

J2

J3

J4

J5

J6

(e)

J1

J2

J3

J4

J5

J6

(f)

Figure 8.4: Bond diagrams for 6R linkages with genus 1, the Bricard line symmetric
linkage (a), the isomerization of the Bricard line symmetric linkage with
a Bennett condition (b), the Bricard plane symmetric linkage (c), the
Schatz linkage (d), the Waldron hybrid (Bennett-Spherical) 6R linkage
(e), the isomerization 6R linkage of the Wohlhart’s partially symmetric
linkage (f). The joints are labeled by J1, . . . , J6. Each bond connects
two joints.

linkage. The type III (two flat poses) is a special case of the cube linkage which has
the bond diagram as in Figure 8.5(a). The type II has the same bond diagram as
in Figure 8.4(a). We do not know whether it is special case of some familiy or not.
We list its equational conditions in Denavit-Hartenberg parameters as follows:

b1 = b2 = b3 = b4 = b5 = b6 = 0,
2c6s1s6 + s2

1 + s2
6 = s2

5, 2c3s1s3 + s2
1 + s2

3 = s2
2,

2c4s4s5 + s2
4 + s2

5 = s2
6, 2c1s1s2 + s2

1 + s2
2 = s2

3,

s1 = s4, 2c2s2s3 + s2
2 + s2

3 = 2c5s5s6 + s2
5 + s2

6.

(8.13)

A subfamily of the Bricard line symmetric 6R linkage can be obtained by introducing
a Bennett condition. By line symmetry, there is an opposite Bennett condition too.
Its equational conditions in Denavit-Hartenberg parameters are changed as follows:
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8.1 Genus g>0

b1 = b4 = b3 = b6, b2 = b5,

c1 = c4, c2 = c5, c3 = c6,

s1 = s4 = 0, s2 = s5, s3 = s6.

(8.14)

Its bond diagram is shown in Figure 8.4(b). Another family of 6R linkages with
genus 1 can be obtained by a technique called “isomerization”. It is introduced
by Wohlhart in [68]. This is a technique for changing the equational conditions
without changing the mobility for a mobile 6R linkage. The equational conditions
of the isomered special Bricard line symmetric 6R linkages in Denavit-Hartenberg
parameters are changed as follows:

b1 = b4 = b3 = b6, b2 = b5,

c1 = c3, c2 = c5, c4 = c6,

s1 = s4 = 0, s2 = s5, s3 = s6.

(8.15)

Besides the isomerization technique, two more families of 6R linkages were intro-
duced by Wohlhart in [67]. They are called Wohlharts Goldberg-Goldberg Hybrid
6R linkages. Both of them have the same bond diagram which is shown in Fig-
ure 8.4(b). The equational conditions in Denavit-Hartenberg parameters of one
family are as follows:

b1 = b4 = b3 = b6, b2c2 + b2 = b5c5 + b5,

c1 = c3, c4 = c6,

s1 = s4 = 0, s2 = s3, s5 = s6,

s2
5(1 + c5) = (c2 − c5)(b2

1 − b2b5) + s2
2(1 + c2)

(8.16)

Another family is as follows:

b1 = b4 = b3 = b6, b2c2 + b2 = b5c5 + b5,

c1 = c4, c3 = c6,

s1 = s4 = 0, s2 = s3, s5 = s6,

s2
5(1 + c5) = (c2 − c5)(b2

1 − b2b5) + s2
2(1 + c2)

(8.17)

As one can use this technique to obtain more families from many other families (not
necessary with genus 1), we will not include them all for reasons of brevity. One
good review can be found in [21].

The next one is also from Bricard and it is called Bricard plane symmetric 6R
linkage. The equational conditions in Denavit-Hartenberg parameters are as follows:

b6 = b1, b3 = b4, b2 = −b5, c2 = c5, f6 + f1 = f3 + f4 = 0,
s6 = s2, s3 = s5, s1 = s4 = 0.

(8.18)

Its bond diagram is shown in Figure 8.4(c). The isomerization trick does not work
with this genus 1 family.
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The next one is the Schatz linkage [57]. It is the first one which has been used
in industry application for making the Turbula machine. There is one twist angle
equals to 0 in the Denavit-Hartenberg parameters. Hence we can not using the
Bennett ratio to represent it. We use the orthogonal distance (d). The equational
conditions in Denavit-Hartenberg parameters are as follows:

d1 =
√

3d3, d2 = d6 = 0, d3 = d4 = d5,

c1 = 1, c2 = c3 = c4 = c5 = c6 = 0,
s1 = s2 = s3 = s4 = s5 = s6 = 0.

(8.19)

Its bond diagram is shown in Figure 8.4(d).

The fourth one is the parallel 6R linkages with translation property in Section 7.3.
There are two twist angles equal to 0 in the Denavit-Hartenberg parameters. The
equational conditions in Denavit-Hartenberg parameters are as follows:

d1 = d5, d2 = d4, d
2
3 + 4s2

3 = d2
6 + 4s2

6,

c1 = c5, c2 = c4, c3 = c6 = 0,
s1 = s6, s2 = s5, s3 = s6.

(8.20)

Its bond diagram is shown in Figure 8.4(a).

The next one is the Waldron’s Bennett spherical (planar) hybrid 6R linkages [64, 65].
The equational conditions (planar case can be found in [21]) in Denavit-Hartenberg
parameters are as follows:

(1− c2
1)(s2

6 + 2s5s6c5 + s2
5c

2
5) = c2

5[b2
5(1− c2

5)− b2
1(1− c2

1) + s2
5(1− c2

5)],
s2

3(1− c2
1)(1− c2

2) = [(b2
5 + s2

5)(1− c2
6)− b2

2(1− c2
2)](1− c2

5),
s2 + s3c1c2 + s5c5c6 + s6c6 = 0,
b1 = b6, b3 = b4 = s1 = s4 = 0.

(8.21)

Its bond diagram is shown in Figure 8.4(e).

There are some special cases of families with genus 1 which is obtained by spe-
cializing the families of higher genus. These are also interesting for classification
if there is a Bennett condition in the equational conditions. Then we can use the
isomerization trick to find new families. One interesting example is the 6R linkage
with the bond diagram as in Figure 8.4(g). It is an isomerization of a special case of
the Wohlhart’s partially symmetric linkage (Section 4.6.7 in [21]). The equational
conditions in Denavit-Hartenberg parameters are as follows:

b1 = b3 = b5 = −b2 = −b4 = −b6,

c1 = −c4, c2 = −c5, c3 = c6,

s1 = s2 = s3 = s4 = s5 = s6 = 0.
(8.22)

Its bond diagram is shown in Figure 8.4(f). The study of such examples will be
another part of our future work for the classification.
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8.2 Genus g=0

8.2 Genus g = 0

In Chapter 5, we already introduced eleven families of 6R linkages which are con-
structed by the factorization of motion polynomials. In principle, all 6R linkages
with genus 0 can be constructed by this technique. The only question is how
to find a suitable motion polynomial which is a relative motion of a 6R linkage.
The weakness of this technique is no equational conditions on Denavit-Hartenberg
parameters. The final hope of the classification is to conclude all the equational
conditions including the genus 0 case. There are already some equational condi-
tions known in the literature [5, 17, 21]. We might need to combine other methods
to obtain the equational condition. But it is clear that we are still far away from
the classification even with knowing so many families! In Figure 8.5, we have listed
all the possible bond diagrams for mobile 6R linkages with three or four bonds.

113



Chapter 8 Conspectuses

J1

J2

J3

J4

J5

J6

(a)

J1

J2

J3

J4

J5

J6

(b)

J1

J2

J3

J4

J5

J6

(c)

J1

J2

J3

J4

J5

J6

(d)

J1

J2

J3

J4

J5

J6

(e)

J1

J2

J3

J4

J5

J6

(f)

J1

J2

J3

J4

J5

J6

(g)

J1

J2

J3

J4

J5

J6

(h)

J1

J2

J3

J4

J5

J6

(i)

J1

J2

J3

J4

J5

J6

(j)

J1

J2

J3

J4

J5

J6

(k)

Figure 8.5: Bond diagrams of 6R linkages with three or four bonds
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