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Kurzfassung

Die Modellierung des unvermeidlichen Messfehlers ist von größter Bedeutung für die theo-

retische und praktische Behandlung Inverser und schlecht-gestellter Probleme. Man betrachtet

entweder einen deterministischen, größtmöglichen Fehler oder eine stochastische Formulierung.

Beide Varianten haben Vor- und Nachteile. Einige frühere Veröffentlichungen haben Verbindun-

gen zwischen dem Modellen angedeutet wenn in den Annahmen der deterministischen Theorie

ein stochastisches Fehlermodell angenommen wird. Ein Hauptanliegen dieser Arbeit ist es, diese

Verbindung weiter darzulegen. Als zweites Hauptthema dient eine spezielle Anwendung. Es wer-

den zwei Regularisierungsmethoden für das Problem der atmosphärischen Tomografie für Adap-

tive Optik untersucht. Nach der Klärung des Konzepts Inverser und Schlecht-gestellter Prob-

leme werden grundlegende Regularisierungsmethoden im determinisitischen und stochastischen

Modell diskutiert und ein Überblick über die vorhandene Literatur zur Verbindung der Mod-

elle gegeben. Vor der Präsentation eigener Ergebnisse, werden einige stochastische Konzepte

eingeführt, insbesondere die Ky-Fan-Metrik als Haupttechnik der späteren Analyse. Die er-

sten eigenen Resultate erfolgen für Filter-basierte Regularisierungsmethoden. Bevor Konvergenz

und Konvergenzraten dieser Methoden unter dem stochastischen Modell gezeigt werden, wer-

den zwei spezielle Filtermethoden im deterministischen Modell diskutiert. Diese, beide genannt

fractional Tikhonov regularization, wurden eingeführt um das Überglätten der traditionallen

Tikhonov-Regularisierung zu vermeiden. Es wird gezeigt, dass beide nur in Spezialfällen eine

Verbesserung bringen obwohl beide sowohl mit einer a-priori Parameterwahl als auch mit dem

Diskrepanzprinzip von optimaler Konvergenzordnung sind. Ausgewählte numerische Ergebnisse

untermauern die theoretischen Erkenntnisse. Zur Vorbereitung späterer Kapitel wird dann das

Problem der atmosphärischen Tomografie für Adaptive Optik eingeführt. Dies ist ein System

zur Verbesserung der Bildqualität von auf der Erde stationierter Teleskope. Darauf folgend wird

zu einer wavelet-sparsity basierten Regularisierungsmethode in Besov-Räumen übergeleitet. Das

deterministische Tikhonov-Funktional wird aus einer rein stochastischen Formulierung motiviert,

nämlich dem Bayes’schen Ansatz. Konvergenz und Konvergenzraten unter dem stochastis-

chen Modell werden gezeigt. Durch die Bayes’sche Formulierung werden alle Größen als Zu-

fallsvariablen modelliert. Dies erlaubt die Konstruktion einer neuartigen a-priori Parameter-

wahlregel. Nach einem akademischen numerischen Beispiel wenden wir die Theorie auf die At-

mosphärische Tomografie an, da darin die Unbekannte als Zufallsvariable in einem Besov-Raum

interpretiert werden kann. Danach werden die bisherigen Ergebnisse zur Verbindung zwischen

deterministischem und stochastischen Fehlermodell zusammengefasst und verallgemeinert. Im

numerischen Beispiel nutzen wir das Diskrepanzprinzip zur Bestimmung des Regularisierungspa-

rameters für ein nichtlineares Faltungsproblem mit sparsity-Strafterm. Im letzten Teil der Arbeit

stellen wir einen auf der Methode der Approximativen Inversen beruhenden Algorithmus für das

atmosphärische Tomografieproblem vor. In dieser Regularisierungsstrategie wird der großteil

des Rechenaufwands zur Berechnung sogenannter Rekonstruktionskerne benutzt. Zur Laufzeit

müssen nur innere Produkte zwischen Daten und Rekonstruktionskernen ausgewertet werden.

Numerische Fallbeispiele zeigen die Konkurrenzfähigkeit dieser Methode.
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Abstract

In theory and application of Inverse and Ill-posed Problems, the modeling of the inevitable

measurement noise is of utmost importance. One either works with a worst case deterministic

error model or a stochastic one. Both approaches have their respective advantages and disadvan-

tages. Several works have hinted at connections between both theories when the deterministic

assumptions hold except for a stochastic noise model. A main concern of this thesis is to fur-

ther elaborate this connection. A particular application is the second main thread of the work.

Namely, we investigate two regularization approaches for the problem of Atmospheric Tomog-

raphy in Adaptive Optics. After clarification of the concept of Inverse and Ill-posed Problems

we discuss basic regularization strategies and results in both the deterministic and stochastic

setting. We then proceed to review the existing literature in regard to connections between the

two settings. Before presenting our own contributions, we introduce some stochastic concepts,

in particular the Ky Fan metric which is a main ingredient for our stochastic analysis. We

also discuss its connection to convergence in expectation. Our first results are on convergence

properties of filter-based regularization methods. Before we show convergence and convergence

rates of this type of methods under the stochastic noise assumption, we discuss two particular

filter based methods, both called fractional Tikhonov regularization, in the deterministic setting.

Being designed to reduce the oversmoothing of traditional Tikhonov regularization, we show

that only in special cases they are superior to the standard form although both are of optimal

convergence order with an a priori parameter choice as well as with the discrepancy principle.

Selected numerical examples are presented to experimentally verify the theoretical findings. In

preparation of later parts of the thesis we then introduce the topic of Atmospheric Tomogra-

phy for Adaptive Optics, a hardware system used to correct for image perturbations in large

earth-bound telescopes caused by atmospheric turbulence. Following this we move to the anal-

ysis of a wavelet-sparsity promoting regularization method in Besov spaces. The deterministic

Tikhonov-type functional is motivated from a purely stochastic, namely Bayesian, point of view

and convergence and convergence rates in the stochastic setting are proven. In particular, in

this approach the unknown is modeled as a random variable. We use this construction to intro-

duce a novel a priori parameter choice rule. After an academic numerical example, we apply to

the results to Atmospheric Tomography as the unknown in this problem can be regarded as a

Besov-space valued random variable which fits precisely in the theoretical setting. We proceed by

summarizing and generalizing our results on the lifting of deterministic convergence results into

the stochastic setting for general regularization methods. In our numerical example we use the

discrepancy principle to find the regularization parameter for a nonlinear problem with sparsity

constraints. In the last part of the thesis we present an algorithm for Atmospheric Tomography

based on the method of the Approximate Inverse. In this regularization strategy, most of the

computational effort is moved to the computation of so called reconstruction kernels. A fast

algorithm is expected as the run-time procedure consists solely of evaluating inner products be-

tween the data and the precomputed reconstruction kernels. In our numerical case studies this

method leads to results of the same quality as state-of-the-art techniques.
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Chapter 1

Regularization of Inverse and Ill-posed
problems

1



2 Chapter 1 Regularization of Inverse and Ill-posed problems

1.1 Inverse and Ill-posed Problems

The study of Inverse and Ill-posed Problems is a branch of mathematics which emerged
after the publications of A. Tikhonov [1, 2] in the middle of the 20th century. Inverse
Problems are strongly connected to applications in science and technology. One is often
interested in a certain quantity, the cause, that is not directly accessible, but of which
indirect measurements, the effect, are available. For example, in computerized tomogra-
phy (see, e.g., [3]) one images cross sections of a human body to help with the diagnosis
of many illnesses. In order to not having to open the patient’s body to directly observe
the cause, one sends X-ray beams through the patient and measures the intensity of the
beams after exiting the body. The task then is to recover the interior of the body from
the measured data. The relation or model that connects cause and effect is assumed to
be known. Throughout most parts of this work the cause will be donated by x, the effect
by y and the model by an operator A, such that the three quantities are connected by
an equation

Ax = y. (1.1)

Here, x and y are assumed to be elements of suitable spaces X and Y, respectively,
which will be defined more precisely in the description of the individual sections. In
most cases, we will consider Hilbert spaces and a bounded linear operator A mapping
from X into Y, i.e., A ∈ L(X ,Y) fulfills

A(x1 + x2) = Ax1 +Ax2 ∀x1, x2 ∈ X ,
A(λx) = λAx ∀x ∈ X , λ ∈ R,
||Ax||Y ≤ C||x||X ∀x ∈ X with C > 0.

An Inverse Problem, in its literal meaning, is to find the cause given the effect, in
contrast to the direct or forward problem which is to determine the effect given the
cause. Often, the Inverse Problem is much more difficult to solve than the forward
problem due to the inversion of the model A. This issue becomes even more severe when
the problem is ill-posed. The following definition is due to Hadamard [4].

Definition 1.1.1. An equation Ax = y is called well-posed, if the following three con-
ditions are satisfied:

• (Existence) for every y ∈ Y there exists an x ∈ X with Ax = y

• (Uniqueness) for every y ∈ Y there is exactly one x ∈ X with Ax = y

• (Stability) the solution x ∈ X depends continuously on the data y ∈ Y

If any of the above is violated, the problem is called ill-posed.
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Throughout this work we will drop the explicit reference to ill-posed problems and
assume that, whenever we speak of an Inverse Problem, it is ill-posed. The difficulty
of inversion of Inverse Problems is in particular due to the third condition of Definition
1.1.1. If the solution does not depend continuously on the data, small perturbations
of the measured data may lead to arbitrarily large deviations in the solution. This is
problematic as measured data naturally contains some kind of noise since any measure-
ment device can only operate up to a certain precision. In some cases, the model of the
forward problem A might only be known approximately, which can be interpreted as a
kind of noise. Additionally, the measurements typically do not represent the effect y
itself which often is an infinite dimensional quantity, but a discretized version. One may
directly model the effect of discretization as additional noise [5, 6]. Returning to the
example of Computerized Tomography, this corresponds to the fact that there is only
a finite amount of sensors for the intensity of the X-ray beams, setting a limit to the
amount of data one may acquire. The convention throughout this work is to assume an
additive error to the true data, i.e.,

ymeasured = y + ε, (1.2)

where y from (1.1) is the true data to the unknown object of interest x and ε represents
noise in the measurements. Throughout the whole work we assume that y ∈ R(A)
where R(A) denotes the range of the operator A such that for unperturbed data (1.1)
is solvable. Although the actual value of ε is unknown, typically some information is
available to estimate the magnitude of the error. In Inverse Problems, two approaches
are common. On one hand, there is the deterministic approach where a worst case error
bound on the magnitude of the error is assumed, i.e., there is a real number δ > 0 such
that

∥∥yδ − y∥∥ ≤ δ where yδ is the measured, noisy data and ‖·‖ a suitable norm. Due
to this assumption, it is often possible to find strict upper bounds on the quality of
the solutions. Analogously to yδ, all error-dependent quantities will be denoted with
an index δ whenever we are operating in the deterministic setting. In opposition to the
worst-case scenario, in the stochastic setting noise models are used on the base of, as the
name suggests, stochastic information. Typically one has an idea about the stochastic
distribution of the noise and can approximately quantify properties like expectation and
variance. The stochastic model allows arbitrarily large error magnitudes, but with low
probability. As a result, also estimates about the quality of the solutions have to be
given in a probabilistic formulation since it may be that the noise in the data is so large
that it completely overshadows the true data y. In this work, the stochastic aspect
is assumed to be purely in the noisy data in contrast to the genuine stochastic setting
which also allows for randomness in other quantities such as the solution x, data y or the
operator A. Stochastic algorithms often include repeated sampling of random variables
which is computationally expensive. On the other hand, the error parameters in the
stochastic setting are typically easier to obtain than a sharp worst-error bound for the
deterministic theory. A main concern of this work is to use the stochastic information of
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the noise with reconstruction methods from the deterministic setting. In order to clearly
distinguish the different settings, all quantities involving stochastic noise models will be
denoted by a superscript η, e.g., the noisy data is denoted by yη.

In the following sections, we will address the two approaches separately.

1.2 Deterministic noise model

This section reviews definitions and properties of deterministic regularization methods;
see, e.g., [7, 8, 9, 10] for further details. For simplicity, we will stick to the scenario that
X and Y are Hilbert spaces.

1.2.1 The generalized inverse

Due to the ill-posedness of the Inverse Problem, a straight forward inversion of (1.1) is
not feasible, in particular when the right hand side is contaminated with noise. In order
to include elements y ∈ Y that are not in the range of the operator, it is natural to find
an approximate solution to (1.1) by minimizing the residual functional

J(x) := ||Ax− y||2Y . (1.3)

Denoting the orthogonal projection of Y onto R(A) by PR(A)
one can split the residual

into two parts,
J(x) = ||Ax− PR(A)

y||2Y + ||y − PR(A)
y||2Y .

If y ∈ R(A)⊕R(A)⊥, the first part is solvable exactly while the second part is indepen-
dent of x. Hence, the minimizer of J(x) is given by the solution of

Ax = PR(A)
y.

If this equation has more than one solution, we select among all of them the one with
minimal norm and donate it by x†, i.e.,

||x†|| < ||x̄|| for all x̄ 6= x† : J(x†) = J(x̄) = min
x
J(x).

The element x† is called minimum norm solution. It is unique and exists whenever
y ∈ R(A)⊕R(A)⊥ [10]. Note that one may also define the minimum norm solution with
respect to a fixed element x∗ ∈ X , for example when a reasonable estimate for the true
solution is available; or an (x∗−) minimum norm solutions with respect to appropriate
functionals of x other than the norm in X .

Definition 1.2.1. The operator

A† : D(A†) := R(A)⊕R(A)⊥ ⊂ Y → X

that maps y to x† is called the generalized inverse or Moore-Penrose inverse of A.
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It can be shown that x† = A†y is the unique solution of the normal equation

A∗Ax = A∗y (1.4)

in N (A)⊥ where A∗ is the Hilbert-space adjoint, i.e.,

〈Ax, y〉 = 〈x,A∗y〉 ∀x ∈ X , y ∈ Y.

Here N (A)⊥ denotes the orthogonal complement of the null space of A. We collect
important properties of the generalized inverse in a theorem.

Theorem 1.2.1. Let A ∈ L(X ,Y). Then

• N (A†) = R(A)⊥,

• R(A†) = N (A)⊥ = R(A∗),

• A† is linear,

• A† is continuous if and only if R(A) is closed.

The generalized inverse, by construction, deals with the first two conditions in Def-
inition 1.1.1. Due to the last point of the previous theorem, however, the problem of
stability remains whenever the range of A is not closed. We will assume that this is the
case throughout the whole work. A particular class of operators for which this is true
are compact operators. An operator A is called compact when it maps bounded sets
in X onto relatively compact sets in Y. Integral operators are often compact between
L2-spaces or the space of continuous functions. In the Chapters 3 and 4 we use compact
integral operators in our numerical examples. A non-compact integral operator is the
autoconvolution operator from Chapter 5. In order to deal with the issue of instability,
the generalized inverse has to be approximated by another operator that allows contin-
uous dependence of the solutions on the data. Such so called regularizations will be the
topic of the next section.

1.2.2 Regularization theory

Definition 1.2.2. A regularization method for A† is a family of operators

{Rα}α>0, Rα : Y → X

with the following properties: There is a mapping α : R+ × Y → R+ such that for all
y ∈ D(A†) and all yδ ∈ Y with ‖y − yδ‖Y ≤ δ, it holds

lim
δ→0

Rα(δ,yδ)y
δ = A†y.
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Here α is called the regularization parameter which has to fulfill

lim
δ→0

α(δ, yδ) = 0.

If α does not depend on yδ it is called an a-priori parameter choice, otherwise an a-
posteriori parameter choice.

In the deterministic theory, the quality of a regularization method is determined by
the asymptotics of ‖x†−Rαyδ‖X as δ → 0. Convergence rates can only be achieved under
additional assumptions on the solution as in general the convergence can be arbitrarily
slow. For our analysis, we mostly assume a Hölder-type smoothness assumption, i.e.,
that the minimal norm solution x† of the error-free problem (1.1) satisfies a smoothness
condition of the form

x† ∈ R((A∗A)ν/2) with ‖x†‖ν := {||z||X : x† = (A∗A)ν/2z, z ∈ N (A)⊥} ≤ % (1.5)

for some constant % > 0. An alternative representation of the ν-norm for a certain class
of operators is given in (3.3). One can show that the worst case error

Eν(δ, %,Rα) := sup{||Rαyδ −A†y||Y : ||y − yδ||Y ≤ δ, ||A†y||ν ≤ %}

is bounded by

Eν(δ, %,Rα) ≤ δ
ν
ν+1 %

1
ν+1 (1.6)

where there exists a sequence {δk}k∈N, δk → 0 as k → ∞ such that equality holds. In
other words, (1.6) is the best possible guaranteed rate of decay of the worst case error.
Finding a regularization method fulfilling (1.6) is difficult. In practice, one is usually
content when the optimal rate is achieved up to some constant. A regularization method
is said to be order optimal if there is a constant c independent of δ and % such that

‖Rαyδ −Rαyδ‖X ≤ c δ
ν
ν+1 %

1
ν+1 . (1.7)

The main task in Inverse Problems is to design regularization methods in the sense of
Definition 1.2.2. One is always interested in guaranteeing a decay of the regularization
error ||Rαyδ −Rαyδ|| as fast as possible, i.e., to hit the convergence rate in (1.7) in the
optimal case. We will now review some standard regularization methods in preparation
of the following chapters.

Since for Inverse Problems the minimization of the residual (1.3) need not lead to
meaningful solutions, a common remedy is to alter the problem and approximate (1.3)
by a “close” problem

xδα = min
x∈D(A)

||Ax− yδ||2Y + αΘ(x) (1.8)

where Θ(x) is a proper penalty functional, for example a norm in a function space (which
not necessarily needs to be the one in X ). The residual term ||Ax−yδ||2Y may be replaced
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to fit certain noise types. For example in [11, 12] arbitrary norm powers ||Ax − yδ||qY ,
q > 0, are considered, in [13] the Kullback-Leibler distance is used. We will stick to the
squared residual for the largest parts of this work. The regularization parameter α has
to balance between the residual and the penalty functional: if α is too small, the penalty
has little effect and the problem becomes unstable again; if α is too large, the penalty
dominates and the residual becomes irrelevant. One can also interpret α as a Langrange
multiplier [7]. Tikhonov [1, 2] introduced the method (1.8) with Θ(x) = ||x||22. Therefore
regularization methods of type (1.8) are called Tikhonov-type regularizations. We will
refer to Tikhonov’s classical formulation

xδα = min
x∈D(A)

||Ax− yδ||2 + α||x||2 (1.9)

as Tikhonov regularization in standard form. The minimizer is given by the solution of
a stabilized normal equation

(A∗A+ αI)xδα = A∗yδ. (1.10)

It is well known that Tikhonov regularization in standard form is an order optimal
method, see, e.g., [8]. We will discuss this approach and some convergence properties in
more detail in Chapter 3.

For some Tikhonov-type functionals with a penalty term other than the standard norm
|| · ||2 a normal equation similar to (1.10) can be found, see the example of generalized
Tikhonov regularization in Section 3.2. For other penalty terms, iterative methods are
used to obtain a minimizer. An example can be found in Chapter 4 where we will use a
Besov-space penalty term. In order to minimize the respective Tikhonov functional, we
use an iterative soft-shrinking algorithm (Section 4.4). This algorithm is connected to
the Landweber method which we shall briefly discuss now.

The Landweber method is an iterative algorithm which can be motivated from several
points of view. One may, for example rewrite the normal equation (1.4) into a fixed
point equation or construct a gradient method for the minimization of the residual (1.3)
with the observation that ∇x(||Ax− y||2) = 2(A∗Ax−A∗y) [7, 10]. In any way, starting
from an initial guess x0, one obtains the iterative procedure

xk+1 = xk + γA∗(y −Axk), k = 0, 1, 2, . . . (1.11)

where 0 < γ < 2/||A||2 is a stepsize parameter. For an initial value x0 ∈ X the method
converges to A†y + PN (A)x0 for y ∈ D(A†). However, in the form given by (1.11) it
is not a regularization method. When only noisy data is available, the algorithm at
first converges to a meaningful approximation of the true solution but at some point
starts to diverge. Stopping the iteration early enough, on the other hand, furnishes a
regularization method that is even of optimal order as the following theorem from [7]
shows. In this case, the stopping index takes the role of the regularization parameter.
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Theorem 1.2.2. [7, Theorem 4.3.3.] The Landweber method (1.11) with 0 < γ <
2/||A||2 is a linear regularization method. It is of optimal order (1.7) for all ν > 0 if the
iteration is stopped after k∗ steps where

k∗ = floor

(
γ
(

2
γ

ν
e
) ν
ν+1
(%
δ

) 2
ν+1

)
.

Here, floor(·) maps a real number to the next smallest integer.

In practice, an a-priori parameter choice is often impracticable and a-posteriori rules
are used. A common strategy is the so called discrepancy principle which can also be
used to determine a regularization parameter in non-iterative methods such as Tikhonov
regularization in standard form. The idea is to find a regularization parameter such that
the residual obtained with the regularized solution is of the same order as the magnitude
of the noise. Namely, for iterative methods one chooses k∗ such that

||Axδk∗ − y
δ||Y ≤ τδ < ||Axδk − yδ||Y , k = 0, 1, . . . , k∗ − 1 (1.12)

where τ > 1 is fixed. This definition is common; a slightly different formulation is used
in Chapter 3. One can show, c.f. [10], that the Landweber method with the discrepancy
principle (1.12) is an order optimal regularization method for all ν > 0.

1.3 Stochastic regularization theory

1.3.1 On the noise model

Before addressing regularization methods, we would like to discuss stochastic noise mod-
eling and an intrinsic conflict with the deterministic model. Here, and throughout the
rest of the work, assume

(Ω,F ,P) (1.13)

to be a complete probability space with a set Ω of outcomes of the stochastic event, F
the corresponding σ-algebra and P a probability measure, P : (Ω,F) → [0, 1]. In the
Hilbert-space setting, the noise is typically modeled as follows, see for example [7, 14, 15].
Let ξ : Ω→ Y be a stochastic process. Then for y ∈ Y

〈y, ξ〉 (1.14)

defines a real-valued random variable. Assuming that

E(〈ỹ, ξ〉2) <∞ (1.15)

for all ỹ ∈ Y and that this expectation is continuous in ỹ,

E(〈ỹ, ξ〉〈y, ξ〉)
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defines a continuous, symmetric nonlinear bilinearform. In particular, there exists the
covariance operator

C : Y → Y

with
〈Cỹ, y〉 = E(〈ỹ, ξ〉〈y, ξ〉).

For deterministic infinite dimensional problems, (1.14) is problematic. Namely, if
{un}n∈N is an orthonormal basis in Y, the set {〈un, ξ〉}n∈N consists of infinitely many
identically distributed random variables with 0 < E|〈un, ξ〉|2 = const <∞ [7]. Thus

E

( ∞∑
n=1

|〈un, ξ〉|2
)

(1.16)

is almost surely infinite. Therefore, a realization of the noise is an element of the Hilbert
space Y with probability zero. The problem is similar to the definition of the Besov-space
valued random variable we present in Section 4.2.2. Here, we briefly discuss another
example. Gaussian white noise can be described with the above construction. With
E(〈y, ξ〉) = 0 ∀y ∈ Y and the covariance operator C = η2I where I is the identity and
η the variance parameter, the Gaussian white noise is described [7, 15]. As explained
for example in [15], a realization of such a Gaussian random variable is an element
of an infinite dimensional L2-space with probability zero. It is therefore inappropriate
to use an L2-norm for the residual. Since a realization of Gaussian white noise only
lies (almost surely) in any Sobolev space Hs with s < −d/2 where d is the dimension
of the domain, one should use such a norm instead. However, except for the paper
[15] this issue seems not to have been addressed in the literature. For the practical
solution of the Inverse Problem this is not a large issue since the measurements are finite
dimensional and the unknown requires a finite dimensional representation to be handled
by a computer. In this case, where the sum in (1.16) is finite, the noise lies within
the finite dimensional space almost surely. It is problematic, however, if one seeks to
investigate convergence of the discretized problem to its underlying infinite dimensional
problem. Throughtout this work we will assume that E||ε|| < ∞ or use the slightly
weaker bound on the Ky-Fan metric (see Section 1.3). If we have a finite dimensional
problem then this formulation is clear. For infinite dimensional problems, however, we
have to assume that the noise is smooth enough to be in the respective spaces almost
surely. Due to this, we will not discuss convergence of finite dimensional problems to
their infinite dimensional representation.

1.3.2 The Bayesian approach

We divide the stochastic regularization theory in two subgroups: the Bayesian approach
and other methods. We will start our review with a short explanation of the Bayesian
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framework. For more detailed information, we refer to [6, 16, 17, 18, 19, 20]. In the
Bayesian setting, the solution of the Inverse Problem is given as a distribution of the
random variable of interest, the posterior distribution πpost, determined by Bayes formula

πpost(x|yη) =
πpr(x)πε(y

η|x)

πyη(yη)
. (1.17)

That is, roughly spoken, all values x are assigned a probability of being a solution to
(1.1) given the noisy data yη. In (1.17), the likelihood function πε(y

η|x) represents the
model for the measurement noise whereas the prior distribution πpr represents a-priori
information about the unknown. The data distribution πyη(yη) as well as the normal-
ization constants are usually neglected since they only influence the normalization of the
posterior distribution. In practice, however, one is often more interested in finding a sin-
gle representation as solution instead of the distribution itself. Popular point estimates
are the conditional expectation (conditional mean, CM)

E(πpost(x|yη)) =

∫
xπpost(x|yη)dx (1.18)

and the maximum a-posteriori (MAP) solution

xMAP = argmax
x

πpost(x|yη), (1.19)

i.e., the most likely value for x. Both point estimators are widely used although they can-
not capture the whole picture of the distribution of the posterior distribution. While the
CM-estimate returns the value in the “middle” of the probability density, the MAP gives
the value with maximal probability. If both likelihood and prior distribution are Gaus-
sian, CM and MAP coincide. Since the computation of (1.18) often involves repeated
evaluation of high dimensional integrals, we only consider the maximum a-posteriori ap-
proach because it essentially leads to a Tikhonov-type minimization problem which can
typically be solved much faster. Namely, assuming πε(y

η|x) ∝ exp(−||Ax−yη||2Cη) where

|| · ||2C = 〈C−1·, ·〉 with Cη being the covariance of the noise and πpr(x) ∝ exp(−αΘ(x))
for some proper functional Θ : X → R, then

πpost(x|yη) ∝ exp(−||Ax− yη||2Cη) exp(−αΘ(x)) = exp(−||Ax− yη||2Cη − αΘ(x)).

Thus
xMAP = min

x
||Ax− yη||2Cη + αΘ(x),

which is a Tikhonov-type functional. If, in particular, both likelihood and prior function
are Gaussian, and (1.1) is a finite dimensional problem, then xMAP has an explicit
representation. Finite dimensional Gaussian random variables are defined as follows.
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Definition 1.3.1. Let x0 ∈ Rn and and Γ ∈ Rn×n be a symmetric positive definite
matrix. A Gaussian n-variate random variable X with mean x0 and covariance Γ is a
random variable with the probability density

π(x) =

(
1

2πdet(Γ)

)n/2
exp

(
−1

2
(x− x0)TΓ−1(x− x0)

)
.

We use the notation X ∼ N (x0,Γ).

The following Theorem from [6] fully characterizes the solution to the Inverse Problem
(1.1) in a finite dimensional Gaussian setting.

Theorem 1.3.1. Assume that X : Ω→ Rn and E : Ω→ Rm are mutually independent
Gaussian random variables, X ∼ N (x0,Γpr) and E ∼ N (e0,Γη) where Γpr ∈ Rn×n and
Γη ∈ Rm×m are positive definite. Assume further that we have a linear model for a noisy
measurement Y (1.1),(1.2), where A ∈ Rm×n is a known matrix. Then the posterior
probability density of X given the measurement Y = y is

π(x|y) ∝ exp

(
−1

2
(x− x̄)TΓ−1

post(x− x̄)

)
,

where
x̄ = x0 + ΓprA

T (AΓprA
T + Γη)

−1(y −Ax0 − e0)

and
Γpost = Γpr − ΓprA

T (AΓprA
T + Γη)

−1AΓpr.

One easily sees that x̄ is nothing else than the MAP-solution. Assuming further that
X ∼ N (0, I) and E ∼ N (0, η2I), one obtains

xMAP = (ATA+ η2I)−1AT y

which coincides with the solution of the regularized normal equation (1.10). Convergence
of the MAP-estimator to the true solution in the setting of Theorem 1.3.1 when η → 0
has been investigated in [21, 22, 23]. Recently, analysis of the MAP estiamte in the
infinite dimensional setting has emerged, see [24, 25]. There is plenty of literature
on Inverse Problems in the Bayesian setting. We will give a more detailed review on
sparsity-promoting regularization in Chapter 4. For a general overview we again refer
to [6, 16] and the paper of Lasanen [26]. The latter reference gives a condensed review
of the development of the Bayesian approach in Inverse Problems also in its historical
development.

Since we already introduced the finite dimensional Gaussian random variable, we
present the following theorem where we collect some properties which will be used later
on.
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Lemma 1.3.2. Let e = (ε1, ε2, . . . , εm)T ∈ Rm where εi, i = 1, . . . ,m, are independent
identically distributed Gaussian random variables with zero mean and variance η2. Then
it holds that

i) for any c > 0

P(||e|| > c) =
Γ(m2 ,

c2

2η2 )

Γ(m2 )
. (1.20)

ii) for any s ∈ N it is

E(||ε||s) = 2s/2ηs
Γ( s+m2 )

Γ(m2 )

iii) for any τ > 1

P(‖ε‖ ≥ τE(‖ε‖)) =
Γ(m2 , (τΓ(m+1

2 )/Γ(m2 ))2)

Γ(m2 )
(1.21)

with the gamma functions Γ(·) and Γ(·, ·),

Γ(a) =

∫ ∞
0

ta−1e−tdt, Γ(a, z) =

∫ ∞
z

ta−1e−tdt.

Proof. Let εi ∼ N (0, η2), i = 1 . . .m. Consider the real valued, non-negative random
variable X = ‖ε‖2 =

∑m
i=1 ε

2
i . Then X is χ2-distributed and obeys the probability

density function

fX(ζ) =
1

2
m
2
ηmΓ(m2 )

ζ
m
2
−1e
− ζ

2η2 ,

see, e.g., [27]. Set Y :=
√
X = ‖ε‖, ξ2 = ζ. Then the probability density is given by

fY (ξ) = fX(ξ2) · dξ
2

ξ and hence

f‖ε‖(ξ) =
1

2
m
2
−1ηmΓ(m2 )

ξm−1 exp

(
− ξ2

2η2

)
ξ ≥ 0.

Now i) follows from evaluating

P(||e|| > c) =

∫ ∞
c

f‖ε‖(ξ) dξ,

ii) is the result of

E(||ε||s) =

∫ ∞
0

ξsf‖ε‖(ξ) dξ,

and iii) holds due to i) and ii) with s = 1.
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1.3.3 Other stochastic approaches

We quickly mention some non-Bayesian approaches to stochastic Inverse Problems to
show similarities between stochastic and deterministic approaches. Considering x, y, ε
as realizations of the random variables X,Y, E with

X : Ω→ X, Y, E : Ω→ Y

and
AX = Y + E

as well as assuming E(X) = E(Y ) = 0, that X and E are uncorrelated and that CE is
invertible, the best linear estimator, i.e., the linear operator L minimizing

E(|〈ξ,X − LY 〉|2) ∀ξ (1.22)

is given by
Lmin = CXA∗(ACXA+ CE)−1

where CX and CE are the covariance operators of X and E , respectively [7]. If CX = I
and CE = η2I

Lmin = (A∗A+ η2I)−1A∗,

i.e., Tikhonov regularization with regularization parameter α = η2. Thus, the best linear
estimator is a particular Tikhonov method [7].

In the paper [14], the authors consider convergence of solutions to the linear inverse
problems of type (1.1) in the mean integrated square error (MISE),

E(||xηα − x†||2). (1.23)

Using conditions on their regularization method similar to the ones in Theorem 3.1.2 and
Theorem 3.1.3, they derive convergence rates for the MISE assuming a combination of
both stochastic and deterministic noise. Under similar conditions, in [28] the discrepancy
principle was investigated with particular focus on the Conjugate Gradient Method,
convergence in the MISE was shown. In contrast to the previous previous methods,
where Gaussian noise was used, in [29], a Tikhonov-type regularization for Poisson noise
in the deterministic and stochastic setting was discussed.

The Dissertation of Hofinger [30] was the first and, to the authors knowledge only,
attempt of a rigorous analysis of Inverse Problems in a stochastic setting by lifting results
from the deterministic theory. The author considers a purely stochastic problem

yη(ω) = A(ω)x(ω) + ε(ω),

i.e., also the operator is allowed to be random. One of the main ingredients of his analysis
is the Ky Fan metric, which we will also employ and introduce in the next section.
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1.4 The Ky Fan metric

The Ky Fan metric (cf. [31]) will be the main tool for our stochastic convergence analysis.
It is defined as follows.

Definition 1.4.1. Let X1 and X2 be random variables in a probability space (Ω,F ,P)
with values in a metric space (χ, dχ). The distance between X1 and X2 in the Ky Fan
metric is defined as

ρK(X1, X2) := inf
ε>0
{P({ω ∈ Ω : dχ(X1(ω), X2(ω)) > ε}) < ε}. (1.24)

This metric essentially allows to lift results from a metric space to the space of random
variables as the connection to the deterministic setting is inherent via the metric dχ used
in its definition. Throughout this work the deterministic metric will in most cases be
induced by a norm || · ||. We will also implicitly assume that equation (1.1) is scaled
appropriately since ρK(X1, X2) ≤ 1 ∀X1, X2 by definition. An immediate consequence
of (1.24) is that ρK(X1, X2) = 0 if and only if X1 = X2 almost surely. Convergence
in the Ky Fan metric is equivalent to convergence in probability, i.e., for a sequence
{Xk}k∈N ∈ X and X ∈ X one has

ρK(Xk, X)
k→∞−→ 0 ⇔ ∀ε > 0 : P(||Xk −X||X > ε)

k→∞−→ 0.

Hence convergence in the Ky Fan metric also leads to pointwise (almost sure) convergence
of certain subsequences in the metric dχ [32].

A somewhat more intuitive and more frequently used metric is the expectation, or
more general, a (stochastic) Lp metric. For random variables X1 and X2 with values in
a metric space (χ, dχ) and E(|X1|p),E(|X2|p) <∞,

E(||X1 −X2||pX ) =

∫
Ω
||X1(ω)−X2(ω)||pXdP(ω)

defines the p-th moment of ||X1 −X2|| for p ≥ 1. We will mostly use p = 1 and refer to
it as convergence in expectation.

It is well-known that convergence in expectation implies convergence in probability,
see for example [32]. Hence, convergence in the Ky Fan metric is implied by convergence
in expectation (and also by convergence of higher moments). Namely, with Markovs
inequality (see, e.g., [33]) one has, for an arbitrary nonnegative random variable X with
E(X) ≤ ∞

P(X > C) ≤ E(X)

C
. (1.25)

Under an additional assumption, one can show that convergence in probability implies
convergence in expectation. We have the following definition.
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Definition 1.4.2 ([34], Definition A.3.1.). Let (Ω,F ,P) be a complete probability space.
A family G ⊂ L1(P) is called uniformly integrable if

lim
C→∞

sup
x∈G

∫
|x|>C

|x(t)|P(dt) = 0

Theorem 1.4.1 ([34], Theorem A.3.2.). Let {xk}k∈N ⊂ L1(P) be a sequence conver-
gent almost everywhere (or in probability) to a function x. If the sequence {xk}k∈N is
uniformly integrable, then it converges to x in the norm of L1(P)

We will make use of this result several times. From a practical point of view, uniform
integrability of a sequence of regularized solutions to an Inverse Problem is a rather nat-
ural condition. Since Inverse Problems typically arise from some real-world application,
it is to be expected that the true solution is bounded. For example, in Computer Tomog-
raphy, the density of the tissue inside the body cannot be arbitrarily large. Although
for an Inverse Problem with a stochastic noise model, boundedness of the regularized
solutions can not be guaranteed due to the possibly huge measurement error, one can
enforce the condition from a priori knowledge of the solution.

Assumption 1.4.2. Assume that the true solution x† fulfills ||x†|| ≤ % and |x†| ≤ C
globally for some fixed %, C > 0.

Under this assumption, let {xη(k)
k }k∈N be a sequence of regularized solution with vari-

ance η(k)
k→∞→ 0. Let C1, C2 > 1 and define

x̃ηk :=

{
xηk, ||x

η
k|| ≤ C1%, |xηk| ≤ C1C

0, otherwise
. (1.26)

Then the sequence {x̃ηk}k∈N is uniformly integrable. In other words, by discarding so-
lutions that must be far away from the true solution in regard of a priori knowledge,
convergence in the Ky Fan metric implies convergence in expectation.

Due to the special structure of the Ky Fan metric (1.24) estimates of the Ky Fan
distance between to random variables X1, X2 can easily be obtained from probability
estimates in two ways. If one has a parameter dependent probability estimate of the
form

P(||X1 −X2|| ≥ C1(α)) ≤ C2(α), (1.27)

with, for simplicity, α > 0, then, one may choose α∗ such that C1(α∗) = C2(α∗) (provided
this problem is solvable) and it follows immediately from the definition of the Ky Fan
metric that

ρK(X1, X2) ≤ C1(α∗) = C2(α∗).

We will use this balancing principle in Theorem 4.3.8. If on the other hand

P(||X1 −X2|| ≥ C1) ≤ C2, (1.28)
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without any tuning parameter, then again (1.24) immediately implies

ρK(X1, X2) ≤ max{C1, C2}.

A main application of this property is the following Theorem by Hofinger and Pikkarainen
which proves that pointwise estimates are essentially preserved in the Ky Fan metric.

Theorem 1.4.3. [21], Theorem 6 Let X1, X2 and Y1, Y2 be random variables on metric
spaces (X , dX ) and (Y, dY), respectively. Let

dX (X1(ω), X2(ω)) ≤ Φ(dY(Y1(ω), Y2(ω)))

for almost all ω ∈ Ω, where Φ is a monotonically increasing right-continuous function.
Then

ρK(X1, X2) ≤ max{ρK(Y1, Y2),Φ(ρK(Y1, Y2))}.

The theorem raises the question how to calculate ρK(Y1, Y2) for given random variables
Y1, Y2. To simplify notation let the distance dY be given by a norm ||Y1−Y2||. As pointed
out by Hofinger [30], an upper bound for ρK(Y1, Y2) can be derived from moments of
||Y1 − Y2||.

Theorem 1.4.4. Let Y1, Y2 be random variables in a complete probability space (Ω,F ,P)
and E(||Y1 − Y2||s) <∞ for some s ∈ N. Then

ρK(Y1, Y2) ≤ s+1
√
E(||Y1 − Y2||s) (1.29)

Proof. One has due to Markov’s inequality (1.25) and the monotonicity of the mapping
z 7→ zs for z ≥ 0 it is

P(||Y1 − Y2|| > C) = P(||Y1 − Y2||s > Cs) ≤ E(||Y1 − Y2||s)
Cs

for C ≥ 0. Solving C = E(||Y1−Y2||s)
Cs for C yields the claim.

From the above statement one can already guess that the Ky Fan distance between two
random variables is larger than their expectation. This holds true even if the moments
exist for all s ∈ N. Let us investigate a prominent special case. In practice one often
assumes a normal distribution of the measurement noise. Let therefore ε be a random
vector in Rm, m ∈ N, ε ∼ N (0, η2Im) (see Definition 1.3.1) such that each component
is normally distributed with zero mean and variance η2. In this case, a direct estimate
for the Ky Fan distance was derived by Hofinger and Pikkarainen [21] and refined by
Neubauer and Pikkarainen [23].
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Figure 1.1: mmin from (1.31) vs η. Even for η = 10−10, only 114 measurement points
are necessary to keep the logarithm in (1.30) inactive, i.e., ln−(·) = 0.

Proposition 1.4.5. Let ε be a random variable with values in Rm. Assume that the
distribution of ε is N (0, η2I) with η > 0. Then it holds in (Rm, || · ||2) that

ρK(ε, 0) ≤ min

{
1,
√

2η

√
m− ln−

(
η22πm2

(e
2

)m)}
, (1.30)

where f−(h) := min{0, f(h)}.

The smallest m for which the ln−-term vanishes is at the zero of
ln−

(
η22πm2

(
e
2

)m)
. It is given by

mmin = ceil

(
2

1− ln 2
W

(
1− ln 2

2
√

2π

1

η

))
, (1.31)

where W is the Lambert W-function defined by W (z)eW (z) = z (cf. [35]), and ceil(·) the
function which maps a real number to the smallest following integer. In practice, when
a real-world problem is solved with fixed m and η, m > mmin typically is fulfilled, see
Figure 1.1. Then ρK(ξ, 0) ≤ min

{
1,
√

2η
√
m
}

and the Ky-Fan distance is of the same
order as the expectation of the error.
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Although the theoretical results presented in this work can be used for a huge variety
of applications in Inverse Problems, a particular one will be presented in more detail.
Namely, we will discuss the problem of Atmospheric Tomography in the context of
Adaptive Optics, a strategy needed to improve the image quality of large earth-bound
telescopes. This chapter is meant to introduce the reader to this topic in a condensed
way, aimed at explaining basic concepts and quantities without going too deep into the
matter. For more information, several works are available. We refer to, e.g., [36, 37, 38]
and in particular [39].

2.1 Introduction to Adaptive Optics

Mankind has always been fascinated with the observation of the stars. With the in-
vention of telescopes in the late 17th century people were able to observe more and
more details of the night sky, leading to better and better understanding of astronomi-
cal phenomena. Since often a new discovery leads to further questions, more and more
detailed observations of the sky are necessary. As will be explained in the next section,
the resolution of a telescope is, even in the ideal case, limited by its size. Hence, the
size of telescopes has increased up to a mirror diameter of currently around 10m. The
next generation of telescopes will feature mirrors of up to 40m in diameter. After a long
planning and design phase, the construction of the European Extremely Large Telescope
(E-ELT), see Figure 2.1, was authorized by the European Southern Observatory (ESO)
in 2012. With a primary mirror diameter of (to this point planned) 39.3m it will be the
worlds largest telescope. First light is expected in 2024. However, as with any earth-
bound telescope, the image quality is negatively affected by the turbulence of the air
in the atmosphere. Space based telescopes such as the Hubble Space Telescope, with a
main mirror of 2.4m in diameter, are free from this effect. However they still suffer from
the image degradation from diffraction which can only be improved by increasing the
telescope size. The costs for space telescopes exceed those of earth-bound by far. While
the build cost of the E-ELT is currently estimated at 1.1 billion euro, the construction
of the Hubble telescope was about 2.5 billion dollars. Additionally, service of the tele-
scope in space is very expensive. The overall costs of the Hubble mission until 2010 are
estimated around 10 billion dollars [40]. Hence it is desirable to improve the telescopes
on earth which requires to be able to remove the influence of the atmosphere. This can,
up to a certain extend, be realized with Adaptive Optics (AO). Outside the atmosphere
of the earth, the light from a distant object outside the solar system can be assumed to
be planar, i.e., a lens focuses the light in a single point. However, as the light travels
through the atmosphere of the earth, turbulences of the air cause small local changes in
the refractive index of the air, leading to the light rays traveling at different speed. At
the telescope, the lens no longer focuses the rays in a single point and hence the observed
image is blurred and lacks details. The principle of Adaptive Optics is to “undo” this
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Figure 2.1: Render of the planned E-ELT in comparison with the VLT (Very Large
Telescope, largest mirror diameter 8.2m) and St. Stephen’s Cathedral in
Vienna (Source: ESO)

process using deformable mirrors such that the incoming light can be focused properly
again, see Figure 2.2. With this approach, significantly more details of the astronomical
objects are visible, see again Figure 2.2 for two examples.

2.2 Optical imaging through an ideal telescope

The light observed by a telescope is modeled as a complex field

u(x, t) = A(x, t)eiϕ(x,t),

where A(x, t) is the amplitude and ϕ(x, t) the phase of the signal. Both depend on the
spatial coordinate x = (x1, x2) ∈ R2 and, in general, the time t. We will usually drop the
explicit dependence on the time as we consider a sequence of observations, each frozen
in time, rather than a time-continuous process. The level sets of the phase, i.e., the sets
{x ∈ R2 : ϕ(x) = C} for constants C ∈ R are called wavefronts. Light propagates along
rays normal to these sets. Although optical devices are only sensitive to the intensity
I = |A(x)|2, a non-planar phase also influences the intensity: if the phase is not constant,
the light waves interfere with each other and, according to the superposition principle,
add up or cancel out. However, even without the effects of the turbulent atmosphere, the
quality of an observed image is determined and limited essentially by the diameter of the
telescope aperture. The image of a point light source observed with a telescope is shaped
by diffraction. Mathematically, this can be described with a point spread function (also
called Airy function, see Figure 2.3), modeling the light intensity in the focal plane as a



22 Chapter 2 Introduction to Adaptive Optics

Figure 2.2: Left: The former planar light is distorted when travelling through the
atmosphere. A deformable mirror can correct this. Right: Two examples of
images taken from earth bound telescopes, each without and with Adaptive
Optics. The corrected images are much more detailed. (Sources: [41], ESO)

function of the angular coordinate x. With the wavelength of light λ and the diameter
of the (throughout this work always circular) telescope aperture D, the point spread
function PSF0 for diffraction limited imaging is given by

PSF0 =
πD2

4λ2

[
2J1(πD|x|)
πD|x|/λ

]2

, (2.1)

where J1(·) is the Bessel function of the first kind. The effective focal spot size is
1.22λL/D, where L is the focal distance. It is often taken as a measure of resolution in
an ideal telescope. For any fixed wavelength it depends solely on the geometry of the
telescope. Hence, this quantity, corresponding to the first dark ring in Figure 2.3, is the
reason for building larger and larger telescopes.

The Airy function describes the imaging process of a telescope. Let I(x) be the image
of an astronomical object O(x). Then each point of the object is spread into an airy func-
tion, i.e., the observed image is blurred and its resolution is degraded. Mathematically,
this corresponds to the convolution of the object with the point spread function,

I(x) =

∫
O(x)PSF0(y − x) dy. (2.2)
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Figure 2.3: Example of an Airy function, taken from [39]

This is called the imaging equation. PSF0 corresponds to the least possible degradation
of an image for a given telescope with diameter D, not including additional distortions,
for example from atmospheric processes. Such an ideal image is called diffraction-limited.
Equation (2.2) also holds for real astronomical images, although with a different point
spread function PSF . Due to PSF0 being the best obtainable point spread function,
such a general PSF must be “worse” than PSF0, i.e., it may be broader, with smaller
peak value and also it may not be smooth anymore. Hence, the observed image is
degraded further. Implicitly, we assumed so far the the point spread functions are such
that ∫

R2

PSF (x) dx = 1. (2.3)

They can be interpreted as image of a star of unit intensity. Therefore, the imaging
equation preserves the total flux of light coming from an astronomical object, it only
distributes it differently between, in praxis, the pixels of a sensor. The width of a point
spread function is a measure of the resolution of the telescope, i.e., the minimum distance
between distinguishable objects in an image. Usually, real point spread functions are
irregular, and other numeric measures are taken to compare the resolution of different
telescopes. In this work we use the Strehl ratio S which is the quotient of the central
intensities of the telescopes PSF and the ideal, diffraction-limited PSF0, i.e., S =
PSF (0)/PSF0(0). Since diffraction-limited imaging is best possible, one always has
0 ≤ S ≤ 1. The Strehl value can be calculated also if no ground-truth solution is
available, i.e., for real data. We refer to, e.g., [42] on further information on the definition
of the Strehl ratio. Other measures are the Full Width at Half Maximum (FWHM) and
the Encircled energy, see e.g. [39].

Since the imaging equation is a convolution, it can easily be expressed with the Fourier
transform. Denote with F(A) the Fourier transform of a bivariate function A,

F(A)(f) =
1

2π

∫
R2

A(x) exp(−i〈x, f〉)) dx,
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Figure 2.4: Due to differences in the air refractive index, the light rays propagate with
different speed. A once planar wavefront is therefore deformed.

where 〈·, ·〉 is the R2 euclidean scalar product. Then, due to the Fourier convolution
theorem, (2.2) is equivalent to

F(I)(f) = F(O)(f) · F(PSF )(f). (2.4)

The function F(PSF )(f) is called Optical Transfer Function (OTF). It describes the
change of the modulus and phase of the Fourier Transform of the object O in the imaging
process. For any optical system, it holds |F(PSF )(f)| = 0 for |f | > ωc where ωc is the
cut-off frequency, given by ωc = D/λ. Any information at frequencies larger than ωc
is lost in the image, i.e., the smaller an astronomical object is, the larger a telescope is
needed in order to observe it, again motivating the need for very large telescopes.

2.3 Atmospheric turbulence processes

The main cause of wavefront distortions are small changes in the refractive index of the
air, i.e., changes in the propagation properties of light through that medium. With the
speed of light in vacuum c0 and the phase velocity cϕ of light in an optical medium, the
refractive index n is given by

n =
c0

cϕ
. (2.5)

The refractive index of air is influenced, for example, by temperature, humidity and
pressure. Small local changes in these properties are caused by atmospheric turbulences.
The fluctuations in the refractive index n = n(x) cause local differences in the light prop-
agation speed (reformulating (2.5), one has cϕ(x) = c0

n(x)). Due to the inhomogeneities,
individual light rays travel slightly faster or slower than the neighbouring rays, causing
the once planar wavefronts to be distorted (imagine a formerly flat sheet of paper being
crumpled), see Figure 2.4. The path of a ray through the medium (air) is called optical
path l =

∫
n(z) dz, thus the differences in travel distance appear as local differences in

the optical path ∆l(x). The dependence of l(x) on the wavelength is small and hence
in practice neglected [36]. The phase of the wave ϕ(x) = 2π

λ ∆l(x), however, strongly
depends the wavelength.

The turbulences in the atmosphere can be modelled as a random process. In order
to correct the distortions of the wavefronts caused by the turbulences, it is necessary to
statistically characterize the turbulence. We shall do so in the following. For a more
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detailed discussion, see [37, 36]. In the description of the atmosphere, a random process
u is modelled by the structure function

Du(∆x) = E
(
[u(x + ∆x)− u(x)]2

)
. (2.6)

The structure function is the expected (average) difference between two values of a
random process. The covariance

Cu(∆x) = E (u(x)u(x + ∆x))

and structure functions are connected via

Du(∆x) = 2[Cu(0)− Cu(∆x)] (2.7)

as long as |x| is finite [38]. Another fundamental quantity is the power spectrum, given
by the Fourier transform of the covariance

φu := F(Cu).

It describes how the square of a stationary quantity (i.e., the statistical properties are
independent of shifts in space as well as time) is distributed in frequency.

The fundamental model for the atmospheric turbulence is the Kolmogorov model due
to Kolmogorov [43], see also, e.g., [44, 38]. In this model, the statistical differences
between the air refractive index (and thus phase) fluctuations depends, for any given
two points in space, only on the distance between these points. The structure function
of the refractive index is given by

Dn(∆x) = C2
n(h)|∆x|

2
3 , (2.8)

where C2
n is the refractive index structure constant. Roughly speaking, C2

n(h) describes
the strength of the turbulence at height h above ground. In practice it is obtained
experimentally with weather balloons [37]. Speaking of the turbulence profile often refers
to C2

n in dependence of the altitude. We will again refer to the C2
n profile in Section 2.6.

The power spectrum of the refractive index in the Kolmogorov model is given by

φn(f) = 0.033(2π)−
2
3C2

n|f |−
11
3 .

It is important to note that the Kolmogorov model only holds in a certain frequency
interval called the inertial range 1/L0 ≤ |f | ≤ 1/`0, where `0 and L0 describe the length
of the smallest and largest eddies (i.e., small pockets of air with homogeneous refractive
index) in the turbulence, respectively. From the respective quantities of the refractive
index, one can calculate the structure function of the phase and obtains

Dϕ(∆x) = 6.88

(
|∆x|
r0

) 5
3

(2.9)
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where r0 is the Fried parameter which will be introduced soon. The corresponding power
spectrum reads

φϕ(f) = 0.023r
− 5

3
0 |f |

− 11
3 . (2.10)

The van Karman model (see, e.g., [37]) generalizes this for arbitrary outer scales. Namely,
for all |f | ≥ 0 one has

φn(f) = 0.033(2π)−
2
3C2

n

(
|f |2 +

1

L̃0

)− 11
6

exp

(
− |f |

2

|fm|2

)
, (2.11)

where |fm| = 5.92
`0

and L̃0 stands for the outer scale of the spatial coherence of the
turbulence.

The Fried parameter r0 [45], which occurred in (2.9) and (2.10), can be seen to charac-
terize the size of the so called coherence spots. In coherent spots, parts of the wavefronts
remain locally coherent despite the global turbulence. Typical values for r0 are between
5cm and 20cm for optical wave lengths and 0.5m−1m in the infrared range.

2.3.1 Exposure times

According to the frozen turbulence model, inhomogeneities in the air refractive index are
fixed. The turbulence originates from air flow movements (wind, convection) which move
these inhomogeneities through the atmosphere. In particular, the speed with which a
light beam is crossed corresponds directly to the air flow velocity. Hence, a turbulence
is modeled as fixed layers of inhomogeneities (phase screens) which are driven by the
wind. The temporal behavior not only depends on the wind velocity, but also on the
spatial behavior of the phase distortions. It can be assumed, however, that during very
short time intervals the turbulences are stationary. This is described by the atmospheric
time constant τ0, by

τ0 = 0.31
r0

v̄
, (2.12)

where r0 is the Fried parameter and v̄ the averaged wind velocity over a given altitude.
Typical values for v̄ are around 20ms , leading to values of τ0 from few to tens of mil-
liseconds. This means that during a time interval of length τ0 the atmosphere can be
assumed to be in a fixed state. Hence, τ0 corresponds to the time in which an Adaptive
Optics system has to operate in order to constantly correct for the turbulent atmosphere,
leading to required operation frequencies up to several tens or hundreds of Hz. Images of
astronomical objects are called short exposure images (SE) when the exposure time was
at most τ0. If the exposure time is (significantly) longer, several images of the same ob-
jects are taken with varying atmospheric distortions. Hence, the individual aberrations
are averaged, and a long exposure (LE) point spread function is obtained. Returning to
the notion of optical transfer functions (see (2.4)), the LE PSF can be described by

F(PSFLE)(f) = F(PSF0)(f) · F(PSFa)(f), (2.13)
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where PSF0 is the OTF of the telescope (2.1) and F(PSFa)(f) the Atmospheric Optical
Transfer Function (Atmospheric OTF). The atmospheric OTF is related to the phase
structure function (2.9) by

F(PSFa)(f) = exp

(
−1

2
Dϕ(λf)

)
.

Inserting the structure function of the Kolmogorov model, one obtains

F(PSFa)(f) = exp

(
−3.44

(
λ|f |
r0

) 5
3

)
.

The LE PSF is given by the inverse Fourier transform. The Strehl number of the
atmospheric PSF is exactly the same as in an ideal telescope of diameter r0. Thus,
for a large telescope with diameter D >> r0, the Strehl ratio of the atmospheric PSF
equals S =

(
r0
D

)2
. Assume r0 = 10cm, D = 40m, the Strehl ratio is S = 0.0025,

i.e., far off the best possible value 1. For large telescopes with good optical quality
the resolution is almost entirely defined by the atmosphere. Approximating (2.13) by
F(PSFLE)(f) ≈ F(PSFa)(f) yields the imaging equation for long exposure imaging

F(I)(f) = F(O)(f) · F(PSFa)(f). (2.14)

Another interpretation of the aim of Adaptive Optics is to manipulate the atmospheric
PSF such that it is as close as possible to the diffraction limited PSF (2.1).

Since the structure function of the turbulence is statistically the same everywhere, the
atmospheric PSF is independent of the viewing direction. However, at a fixed moment
of time the phase aberrations depend on the viewing direction (they are anisoplanatic).
This is a crucial effect for Adaptive Optics, as it sets a limit to the distance between guide
star and the object of interest, since then a phase correction in direction of the guide
star does not correct the phase in direction of the object sufficiently. The characteristic
angular difference is called isoplanatic angle θ0 or isoplanatic patch, defined by

θ0 = 0.31
r0

h̄
, (2.15)

where h̄ is some characteristic average turbulence altitude with typical values h̄ ≈ 5km.

2.4 Principle of Adaptive Optics

The principle of an Adaptive Optics system is shown in Figure 2.5, for the simplest case
of one Deformable Mirror (see Section 2.5.2) and one Wavefront Sensor (cf. Section
2.5.1). Before entering the atmosphere, the light from the astronomical object is planar.
Due to changes in the refractive index of the air, the phase is then perturbed. The
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Figure 2.5: Principle of Adaptive Optics for one wavefront sensor and one deformable
mirror.

telescope collects the perturbed light (that is, the sum of all individual perturbations in
the atmosphere), which is then reflected to the science camera by a deformable mirror.
A wavefront sensor measures the incoming wavefront, and a real time computer controls
the shape of the mirror such that after reflection at the mirror the light is planar again.
Thus, the observed image is sharpened.

2.5 Components in Adaptive Optics

2.5.1 Wave front sensors and wavefront reconstruction

Throughout this work, we will assume the we are provided with measurements in form
of incoming wavefronts. The incoming wavefronts cannot be measured directly. Recon-
structing them from the actual measurements is a non-trivial problem itself, as it is in
fact an Inverse Problem [36]. Although stable when considered in in suitable subspaces
of L2 [46], several additional restrictions on the wavefront sensors and reconstruction
algorithms in particular for large telescopes complicate the problem.

Although there exist several different types of wavefront sensors, we will assume that
our telescope uses Shack-Hartman wavefront sensors. There, an array of small identical
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Figure 2.6: Scheme of the Shack-Hartman WFS. Image taken from [39].

lenses (lenslets) is placed in the aperture plane of the telescope. Each lens focuses light
in a small part of the aperture, called subaperture. In each subaperture a CCD sensor,
located in the focal plane of the lenslet array, is used to read the image. In order to keep
the read-out noise minimal, often 4 CCD-pixels are used for each subaperture in a 2× 2
array. Geometries with more CCD pixels are also successfully used. The idea behind
the Shack-Hartmann WFS is as follows, compare Figure 2.6. If the incident wavefront is
planar, the images formed by the lenslet array create a regular grid in the focal plane. If,
however, the wavefront is distorted, the grid becomes non-uniform; in each subaperture
the image is deflected from its original position in the x − y plane. The size of the
deflection is measured from the CCD data separately in x and y direction. From this,
the wavefront can be reconstructed. Many reconstruction method exist for the Shack-
Hartman WFS. In this work, we employ the so called Cumulative Reconstructor with
Domain Decomposition (CuReD) [46, 47, 48]. The idea behind CuRe is to abuse the
fact that the Shack-Hartmann operator approximates the gradient of the wavefronts in
a discrete setting and inverting it by integration of the measurements. CuRe is fast,
parallelizable, pipeline-able and provides results that can compete with other methods.
Adding a domain decomposition step stabilizes the results for large telescope diameters
[48].

2.5.2 Deformable Mirrors and Temporal Control

A Deformable Mirror (DM) is a device with a, as the name suggests, surface that is
able to change its shape up to a certain extend. If a planar wave front is reflected
by a flat mirror, the reflected phase is again planar. If the mirror surface is not flat,
however, the phase of the light is distorted according to the mirror distortions. The idea
behind Adaptive Optics is to revert this process: If the wavefronts of the incoming light
are known, the surface of the mirror is adjusted such that the reflected light is planar
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again. Since the wavefronts change over time, so must the mirror change its shape.
Segmented DMs are quite expensive and gaps between the segments may further distort
the wavefronts. This problem does not occur for continuous DMs. Continuous face-sheet
DM’s, see Figure 2.7, therefore have a significantly lower fitting error. The figure of the
DM is shaped by the movement actuators of typically piezoelectric type. Other types of
Continuous Deformable Mirrors are Bimorph Deformable Mirrors, Micro-Opto-Electro-
Mechanical-Systems or Voice-Coil Deformable Mirrors, see, e.g., [36, 39].

For most types of DMs the phase correction ϕDM can be obtained by the action of a
linear operator H on the actuator commands a,

ϕDM = Ha. (2.16)

Since the incoming phase ϕtur is (approximately) known from the WFS data, a stan-
dard approach [49] is to find the actuator commands a∗ by minimizing a least squares
functional

a∗ = min
a
||Ha− ϕtur||2. (2.17)

In the numerical simulations we use a pseudo open-loop control (POLC) (see below).
POLC has been succesfully used in Adaptive optics, see, e.g., [50]. By adding the
current figure of the DM ϕDM (x, t) to the measured residual phase ϕres(x, t), open loop
data is created artificially, i.e., we can assume that the incoming phase ϕturb(x, t) is
measured. In our simplified model, time delays are neglected. Since we mainly consider
Multi-Conjugate Adaptive Optics (see Section 2.6), we assume that the mirror fitting
step (2.17) is given by H = −I where I is the identity operator. Thus, the minimizer of
(2.17) is simply given by −ϕtur.

As explained in previous sections, new wavefront measurements are produced in short
time intervals and the shape of the DMs has to be adjusted accordingly. Each individual
update will be referred to as a time step. In order to do this in a stable way, a control
algorithm is needed. Adaptive Optics systems often work in closed loop: instead of
measuring the incoming wavefront, the WFSs measure the difference between incoming
phase and the current figure of the DM. Several individual components are involved
in the process of controlling the DM shape, see Figure 2.7. The main components are
the wavefront sensors (WFS), a sampler (analog-to-digital converter, ADC), real time
computer (RTC) doing the computations, digital-to-analog-converter (DAC), a power
amplifier (PA) and the Deformable Mirrors themselves. Mathematically, the temporal
behavior of all these components can be described by transfer functions. We do not
include this lengthy discussion here, as for the numerical simulations presented in later
chapters we use a simplified control algorithm that ignores most of the effects occurring
in practice. For more information on the transfer function we refer the interested reader
to [36].
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Figure 2.7: Left: Block diagram of the AO control loop. Right: Continuous Deformable
Mirror. Image taken from [39].

2.5.3 Guide Stars

In order to measure the incoming wavefronts, proper sources of light crossing the at-
mosphere are needed. Optimally, a bright star is available on the sky close to the
observation area. Since the light of such a star travels an enormous distance in space,
the wavefronts can be assumed to be planar prior to entering the atmosphere of the
earth. Unfortunately, the coverage of the sky with suitable, so called natural guide stars
(NGS), is rather low. A NGS has to be within the isoplanatic patch (see Section 2.3.1)
of the area of observation, i.e., the difference in the turbulence profile in direction be-
tween NGS and astronomical object has to be small. This guarantees that a correction
for the turbulence in direction of the NGS also sufficiently corrects for the turbulences
in direction of the object. Additionally, the probability of finding a suitable guide star
close to an astronomical object (called sky coverage) is related to the brightness (stellar
magnitude) of the star. Namely, the photon noise error in the wavefront measurement is
inversely proportional to the photon flux. The brighter the star, the smaller the photon
noise error. At optical wavelengths, the sky coverage with NGS is only a few percent of
the sky. In order to increase the sky coverage, artificial guide stars are used. These are
created by shooting a laser beam to the sky (cf. Figure 2.8), hence being called laser
guide stars (LGS). A part of the light is backscattered to the telescope and can be used
to measure the wavefronts. There exist two different sources of backscattering, hence
also two implementations of LGS. We will only use Sodium-LGS here. At about 90 km
above ground, there is a layer of sodium with a thickness of about 10 km. The sodium
atoms are excited by the laser beam and the returning light can be used to measure the
wavefront. For a more in-depth introduction see, e.g. [36, 51]. With laser guide stars,
the sky coverage is increased. However, additional physical effects have to be taken into
account. Throughout this work, LGS are modelled as a point light source at altitude 90
km. Since the telescope itself is circular, the propagation of the light from this point to
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Figure 2.8: Left: Laser Guide Star for the very Large Telescope (VLT). Right: The cone
effect for laser guide stars in comparison with cylindrical light propagation
for natural guide stars.

the telescope pupil has the form of a cone rather than a cylinder, as would be the case for
natural guide stars; see Figure 2.8 for a comparison. As result of this so called cone effect
only, LSG AO is deteriorated form NGS AO by three distinct effects: Firstly, turbulences
above the height H = 90000m of the LGS can not be seen by the telescope. Second,
turbulences outside the cone are not visible for the telescope (although some still would
be visible for NGS); and third, the wavefronts are scaled differently: the diameter of a
slice of the cone at height h ≤ H is reduced by µl = 1− h/H compared to the telescope
diameter. The cone effect states a serious limitation of LGS AO in particular for large
telescopes and at short wavelength. Several ideas have been developed to cope with the
cone effect, textcolorredsee REF for an overview. The preferred option is to use multiple
laser guide stars and reconstruct an approximation to the 3-dimensional turbulence pro-
file. This will be the task in atmospheric tomography, see Section 2.6. Two additional
effects of LGS further decrease the expected image quality. In this work we will not
consider them as part of our model. Tip-tilt indetermination [52, 41] makes it impos-
sible to compensate the global tilt of the light path as the tilts upward and downward
compensate completely as the light travel through the same atmosphere twice. Among
various approaches to deal with the incorrect tip/tilt is the approach to measuring the
tip/tilt from a NGS, see the note at the end of section 6.2.1. Spot elongation [53, 54, 55]
takes into account that in reality the light focused by the lenslets of a Shack-Hartman
WFS is shaped like an ellipsis rather that a circle.
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Figure 2.9: Strehl in a cross section of the field ov view for SCAO, LTAO and MCAO.
Image taken from [39]

2.6 Multi Conjugate Adaptive Optics

2.6.1 Introduction

There are several different AO strategies. In the most simple one, one deformable mir-
ror is used to correct for the atmosphere in the direction of one single guide star. This
method, called Single Conjugate Adaptive Optics (SCAO) suffers from the need of a
(preferably) natural guide star in close proximity to the object of interest. Due to the
cone effect and other issues, laser guide stars are not a satisfying solution to this prob-
lem. One idea to remedy this is to use several (laser) guide stars around the object,
and to create a 3-dimensional turbulence profile from which the optimal shape of the
deformable mirror can be calculated. This allows to achieve a peak in Strehl ratio ex-
actly at the point of interest, see Figure 2.9. This approach is called Laser Tomography
Adaptive Optics (LTAO). We will discuss the term tomography in more detail shortly.
Since only one DM is used, however, a good compensation of the wavefront perturba-
tions can only be achieved in a certain direction. In Multi Conjugate Adaptive Optics
(MCAO) systems, several deformable mirrors and several guide stars are used in order
to achieve high imaging quality over a large field of view, see Figure 2.9. This allows in
particular to observe several astronomical objects simultaneously or the observation of
very large single objects, respectively. MCAO uses several laser guide stars as the main
source of wavefront measurements. Additionally, 3 natural guide stars are needed to
obtain wavefront information that can not be recovered with LGS [36]. The combined
wavefront measurements allow to reconstruct the turbulence profile of the atmosphere
in the tomography step mentioned previously for LTAO, which we will now present in
more detail.

Recall the X-ray tomography example from Section 1.1: the measurement of the
intensity of several X-rays which have passed through a body in different angles/positions
allows to reconstruct the inside of the body (that is, one reconstructs location and
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“density” of the material inside the body). Similarly, as the wavefront measurements
are taken from several directions, one can reconstruct the density inside the medium, i.e,
the air refractive index in the atmosphere We later compare the mathematical models
in (2.20) and (2.21). Atmospheric Tomography for telescopes is a variant of limited
angle tomography, which is known to be a severely ill-posed problem, see, e.g., [56,
57]. However, a common assumption in atmospheric tomography is that turbulences
in the atmosphere are restricted to certain heights. As introduced in Section 2.3, the
turbulence strength is measured in the C2

n-profile. In practice there are often only a few
altitudes where most of the turbulence is concentrated. This lead to the layered model for
atmospheric tomography, which is standard in Adaptive Optics [37, 41, 50, 58]: Instead
of one 3-dimensional object, the atmosphere is modeled by several 2-dimensional layers
which are fixed at a certain altitude. The C2

n profile then describes the “thickness” of the
layer, or, in other words, the percentage of overall atmospheric turbulence concentrated
in a certain layer.

As mentioned above, MCAO uses several deformable mirrors for the correction. The
mirrors are conjugated to different heights (that is, they are positioned in the optical path
of the telescopes to achieve the same effect as if they were positioned at the conjugated
altitude in the atmosphere) and are deformed based on the reconstructed turbulence
profile, see Figure 2.10. In the simplest case an MCAO system has as many DMs as
layers. In this case, a single DM is used for correcting the influence of a single layer. In
reality, however, one usually uses a model with more layers than deformable mirrors (e.g.,
the MCAO system at the E-ELT will use 3 DMs). Therefore, the shape of the mirrors
has to be determined by an additional optimization routine, cf. [59, 60], such that the
deformable mirrors correct the turbulence profiles of the atmosphere as good as possible.

Algorithms for the computation of an MCAO system can be separated into two groups:
Those tackling the whole problem at once, considering the operator that maps the wave-
front sensor data to the commands that drive the deformable mirror, and those that split
it into sub problems. The MCAO problem can be written by a matrix-vector equation
Ax = b of high dimensionality. Thus the inversion process involves either the inversion of
large matrices [62, 63] or the solution of large linear systems, which can be achieved, e.g.,
by CG methods [58, 50, 64, 65] or preconditioned CG methods [66, 67, 68, 69, 70]. Also,
Fourier transform based reconstruction methods have been proposed [71, 72, 57, 73]. It-
erative methods using a specific representation of the covariance matrix of the statistics
of the turbulence have been investigated to further speed up the computations, e.g., the
Fractal Iterative Method (FrIM) [74] and a wavelet based method (FEWHA), [75, 76].

Splitting the problem into substeps allows to exploit individual properties of each
operation, thus possibly speeding up the whole process. For MCAO, three such substeps
have to be performed: First, the incoming wavefronts have to be reconstructed from the
WFS data. Then, the atmospheric tomography problem has to be solved. In the last
step, the optimal configuration of the deformable mirrors has to be calculated. Step
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Figure 2.10: Mirrors in an MCAO system, courtesy of [61]

one and three have been discussed in principle in Sections 2.5.1 and 2.5.2, respectively.
From the so called three step methods we would like to mention in particular a Kaczmarz
based method [60, 52, 77, 41].

In this work, we will mainly be concerned with the tomography step, see next sec-
tion for a mathematical description. We assume that the wavefronts have already been
reconstructed. The sought-after atmosphere consists of as many layers as available de-
formable mirrors. The temporal control is realized with POLC, hence the shape of each
DM is set as the negative turbulence profile of its corresponding atmospheric layer as
explained in Section 2.5.2.

2.6.2 Mathematical model of Atmospheric Tomography for MCAO

As mentioned previously, the atmosphere itself is modelled as a vector of two dimensional
functions rather than one three dimensional object. Each of these functions is called a
layer of the atmosphere. All layers together represent an approximation of the turbulence
of the atmosphere. Hence, for MCAO, we aim at the reconstruction of a finite number L
of turbulent layers Φ(l), located at known heights hl, l = 1, ..., L, each corresponding to
a deformable mirror conjugated to height hl. Available data are the incoming wavefronts
ϕβg , g = 1, ..., G which have been reconstructed from the measurements of the wavefronts
sensors in an intermediate step. We identify the guide stars by their direction from the
projection of the guide star onto the plane in which the telescope pupil is situated to
the center of the telescope pupil, given by a vector βg ∈ R2. Let β̄g = (β̄g,1, β̄g,2, h)T ∈
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R3 be the three dimensional vector from the telescope pupil to the guide star. Then
βg ∈ R2 corresponds to the first two components of the vector β̄g at altitude h = 1,
i.e., βg = (βg,1, βg,2)T where β̄g = (βg,1, βg,2, 1)T . Due to the cone effect (see Figure
2.8), the circular part of the atmosphere visible from the telescope in a certain direction
shrinks to a point with increasing height. Therefore we define the shrinkage parameters
µl,βg :=

Hg−hl
Hg

with values between zero and one, where Hg denotes the height of the

LGS point source (typically 90km). In this notation, we allow a different scaling not
only for each layer l, but also in each direction βg. The case of a natural guide star is
covered by setting µl,βg := 1.

At altitude hl, we will only be able to reconstruct what is “seen” by the sensors, i.e.
the layer Φ(l) will only be reconstructed within the area

Ωl =

G⋃
g=1

Ω
µl,βg
D (hlβg),

where
Ω
µl,βg
D (hlβg) := {ρ ∈ R2 : µ−1

l,βg
(ρ− hlβg) ∈ ΩD}, (2.18)

i.e., the shifted and scaled projections of the telescope pupil onto the layers in each
direction. In this notation, ΩD represents the telescope pupil with radius D, i.e.,

ΩD = {r ∈ R2 : ‖r‖ ≤ D}.

We consider Φ(l) ∈ L2(Ωl) and collect all the layers in a vector

Φ := (Φ(1), ...,Φ(L))T ∈
L⊗
l=1

L2(Ωl).

The symbol
⊗L

l=1 denotes the tensor product of the respective spaces. On this tensor
product space, an inner product is defined via

〈Φ,Ψ〉⊗L
l=1 L2(Ωl)

:=

L∑
l=1

1

cl
〈Φ(l),Ψ(l)〉L2(Ωl), (2.19)

where cl is the (known) relative strength of a layer in the atmosphere described in the
C2
n profile. The wavefronts, when traveling through the atmosphere, are perturbed by

the turbulences in the air. Each layer of turbulence the wavefront passes through adds
to the previous perturbations. Additionally, for each guide star direction βg only the

part Ω
µl,βg
D (hlβg) of the layer is visible, c.f. Figure 2.8 and (2.18). Therefore, assuming

geometric propagation of the light, the incoming wavefronts are given as sums of parts
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of the layers [59],

A :
L⊗
l=1

L2(Ωl) −→ (L2(ΩD))G,

Aϕ(r) :=

(
L∑
l=1

Φ(l)(µl,βgr + hlβg)

)
g=1,...,G

, r ∈ ΩD. (2.20)

We can interpret this as a Radon transform operator over a medium that is discretized
in a special way. The Radon transform, see, e.g., [3], of a function f of n variables is
given by

Rf(θ, s) =

∫
θ⊥
f(sθ + y)dy (2.21)

i.e., the integral of f over the hyperplane perpendicular to θ ∈ Sn−1 with signed distance
s ∈ R from the origin. In (2.20), f corresponds to the complete three dimensional
turbulence profile of the atmosphere. Instead of integrals along a certain direction θ,
the atmospheric tomography considers sums over the parts of the layers visible from the
telescope in the direction of each guide star. A detailed discussion justifying the term
“atmospheric tomography” from a mathematical point of view can be found in [57, 49].
In sum, the goal is the reconstruction of Φ from the measured data ϕ = (ϕβ1 , . . . , ϕβG)T

as solution of the equation
AΦ = ϕ.

2.7 Remarks on Numerical Simulation

Whenever we conduct numerical experiments, the computations are performed with the
simulation tool MOST developed by the Austrian Adaptive Optics Team [78]. Since our
study is aimed specifically at the E-ELT telescope, we consider a telescope with 42m
mirror diameter, as originally proposed for the E-ELT. The guide stars are positioned in
a circle of radius 3.75 arcmin for laser guidestars and 5 arcmin for natural guide stars,
respectively. For each guide star, a Shack-Hartmann wavefront sensor with 84 × 84
subapertures is used. The wavefronts ϕβg , g = 1, . . . , G are, if not stated otherwise,
reconstructed with CuReD [47, 48] and used as input for our methods. In case only laser
guide stars are considered, the data is tip/tilt removed. Otherwise, the (full) natural
guide stars are used for the tip/tilt estimation. The simulated field of view is 10 arcmin.
The error on the measurements of the wavefront sensor is assumed to be low due to a
high number of photons per subaperture. The atmosphere is simulated with 9 layers,
moving at a speed of roughly 15 m/s with a Fried parameter r0 = 0.129m at 500nm
in K-band. The isoplanatic angle is θ0 = 2′′, the outer scale for the van Karmann
turbulence model is L̃0 = 20m. This is a standard model employed by ESO. For the
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clarification of the parameters we refer to Sections 2.3. In MCAO, three deformable
mirrors are simulated, conjugated to heights of 0m, 4000m and 12700m, corresponding
to the MAORY configuration [79]. Hence, we seek to reconstruct an artificial atmosphere
consisting of 3 layers at heights h1 = 0m, h2 = 4000m and h3 = 12700m and obtain
the shrinkage parameters µ1 = 1, µ2 = 0.956 and µ3 = 0.859 for laser guide stars. The
relative strength of the layers are c1 = 0.6, c2 = 0.2 and c3 = 0.2, respectively.



Chapter 3

Filter-based reconstruction methods

39
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Many linear regularization methods can be described via the filtering of the singular
value expansion which will be the topic of this chapter. After reviewing some well-known
deterministic convergence results we discuss two particular methods both introduced as
fractional Tikhonov regularization. We prove convergence of both variants and discus
their applicability in comparison to standard Tikhonov regularization both theoretically
and in numerical examples. This part is largely taken from the paper [80]. In the last
section of the chapter, we derive convergence results for general filter methods with the
stochastic noise model.

3.1 Regularization methods and filter factors

We start in the deterministic setting of Section 1.2 and consider a linear operator equa-
tion Ax = y (1.1) between Hilbert spaces X and Y where instead of the correct data we
are only provided with noisy data yδ satisfying ||y − yδ|| ≤ δ for δ > 0. Assume that
A is compact. Then the singular system of A can be used to construct regularization
methods. It is derived as follows, see for example [7, 8]. With A∗ being the adjoint of
A, A∗A is a self-adjoint linear operator and admits a singular value decomposition

(A∗A)x =
∑
n∈N

σ2
n〈x, vn〉vn (3.1)

where σ2
n and vn, n ∈ N, are the eigenvalues and eigenvectors of A∗A satisfying

(A∗A)vn = σ2
nvn.

Let the eigenvalues be arranged in decreasing order and set un := σ−1
n Avn. Then the

triple {σn, un, vn} is called the singular system of A, the σn are called singular values.
The following proposition collects some important properties of the singular system. The
proofs can be found, e.g., in [7, 8].

Proposition 3.1.1. Let {σn, un, vn} be the singular system of the compact operator
A ∈ L(X,Y ). Then it holds

• {vn}, n ∈ N, is a complete orthonormal system for R(A∗) = N (A)⊥

• {un}, n ∈ N, is a complete orthonormal system for R(A) = N (A∗)⊥

• for x ∈ D(A) it is

Ax =
∑
n

σn〈x, vn〉un

• for y ∈ D(A†) it is

A†y =
∑
σn>0

σ−1
n 〈y, un〉vn (3.2)
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The singular vector calculus also allows another characterization of the norm || · ||ν
from (1.5). Namely, it is

||x||2ν =
∑
n

σ−2ν
n |〈x, vn〉|2. (3.3)

For the solution of the Inverse Problem (1.1) in particular the last property of Proposition
3.1.1 is of interest. Given the singular system, the construction of the generalized inverse
of A is straight forward. Since the singular values go to zero for compact operators, their
inverse grows unbounded. If noisy data yδ = y + ε has to be inserted into (3.2), one
obtains

A†yδ =
∑
σn>0

σ−1
n 〈y, un〉vn +

∑
σn>0

σ−1
n 〈ε, un〉vn,

i.e., the noise is amplified and the sum does not converge unless the noise decays fast
enough (which is most often not the case in practice). The idea of filter methods is
to control the noise amplification by introducing a real valued filter function Fα(σ) as
additional factor in (3.2). Here, we excluded the possibility of defining the filter functions
also in dependence of the data yδ since then we no longer obtain linear regularization
methods. Typically, the Fα(σ) depend on the regularization parameter α which has to
be chosen appropriately. Thus,

Rαy
δ :=

∑
σn>0

Fα(σn)σ−1
n 〈yδ, un〉vn (3.4)

furnishes an approximation to the generalized inverse (3.2). Under appropriate condi-
tions on the filter function, Rα : Y → X from (3.4) defines a regularization method in
the sense of Definition 1.2.2.

Theorem 3.1.2. [7, Theorem 3.3.3.] Let the filter Fα fulfill

sup
n
|Fα(σn)σ−1

n | = c(µ) <∞,

lim
µ→0

Fα = 1 pointwise in σn,

|Fα(σn)| ≤ c for all α and σn.

Then the operators Rα from (3.4) are regularizations of A†, i.e., it holds for y ∈ D(A†)

lim
α→0
||A†y −Rαy|| = 0.

The first of the three conditions ensures that the filter does not allow uncontrolled
noise amplification, the second and third one ensure convergence of Rα to A† as α→ 0.
Stricter requirements on the filter functions Fα allow to deduce order optimality (see
Section 1.2.2) of the induced regularization method.



42 Chapter 3 Filter-based reconstruction methods

Theorem 3.1.3. [7, Theorem 3.4.3] Let y ∈ R(A) and
∥∥y − yδ∥∥Y ≤ δ. Assume that,

in addition to the conditions of Theorem 3.1.2, it holds ||x†||ν ≤ % and for 0 ≤ ν ≤ ν∗,

sup
0<σ≤σ1

σ−1|Fα(σ)| ≤ cµ−β (3.5)

sup
0<σ≤σ1

|1− Fα(σ)|σν∗ ≤ cν∗µβν
∗
, (3.6)

where β > 0 and c, cν∗ are constants independent of δ. Then with the a priori parameter
choice

µ = C

(
δ

%

)1/β(ν+1)

, C > 0 fixed, (3.7)

the method induced by the filter Fα is order optimal for all 0 ≤ ν ≤ ν∗.

Proof. We shall include the proof from [7, Theorem 3.4.3] for later reference. It is

||A†y −Rαyδ|| ≤ ||(A† −Rα)y||+ ||Rα(y − yδ)||. (3.8)

For the noise term we obtain with (3.5)

||Rα(y − yδ)|| =

(∑
σn>0

(Fα(σn)σ−1
n )2|〈y − yδ, un〉|2

)1/2

≤ sup
σn>0

|Fα(σn)σ−1
n |δ ≤ cα−βδ. (3.9)

The filter error can be estimated via

||(A† −Rα)y|| =

(∑
σn>0

(1− Fα(σn))2σ−2
n |〈y, un〉|2

)1/2

=

(∑
σn>0

(1− Fα(σn))2|〈x, vn〉|2
)1/2

=

(∑
σn>0

(Fα(σn)− 1)2σ2ν
n σ
−2ν
n |〈x, vn〉|2

)1/2

≤ sup
σn>0

|(Fα(σn)− 1)σνn| ||x||ν ≤ cναβν%. (3.10)

using (3.6) and ||x†||ν ≤ % from (3.3). Inserting the parameter choice (3.7) into (3.10)
and (3.9) in combination with (3.8) yields the order optimality since then

||A†y −Rαyδ|| ≤ c

(
C

(
δ

%

)1/β(ν+1)
)−β

δ + cν

(
C

(
δ

%

)1/β(ν+1)
)βν

%

≤ C̃δ
ν
ν+1 %

1
ν+1
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with a constant C̃ > 0 independent of δ and %.

To close this section, we shortly mention three widely used filter-based regularization
methods. The first one, called truncated singular value decomposition, follows directly
from the observation that the smaller the singular values become, the more the noise
is amplified. This effect is counteracted by dropping all elements in the sum (3.4)
whenever the corresponding singular value is below a threshold α > 0. The parameter
α corresponds to the regularization parameter and has to be chosen appropriately in
order to find an appropriate balance between the noise amplification and the cutting off
of important parts of the solution. The filter function is given by

F truncα (σ) =

{
σ σ ≥ α
0 σ < α

. (3.11)

The other two filter-based methods presented here have been mentioned Chapter 1 al-
ready. Namely, Tikhonov regularization in standard form (1.9) can be written in the
form (3.4) with

F tikhα (σ) =
σ2

σ2 + α
, (3.12)

[7], and the Landweber method corresponds to a filtering with the function

FLWk (σ) = 1− (1− γσ2)k (3.13)

where k is the iteration number, corresponding to the regularization parameter α ∼ 1
k

[81] and γ the stepsize parameter in 1.11.

3.2 Fractional Tikhonov regularization

3.2.1 Fractional Tikhonov regularization in the literature

It is well known that Tikhonov regularization in standard form (1.9) typically determines
a regularized solution xδα that is too smooth, i.e., many details of the desired solution x†

are not represented by xδα. This shortcoming led Klann and Ramlau [81] to introduce
the fractional Tikhonov regularization method. Subsequently another approach, also
referred to as fractional Tikhonov regularization, was investigated by Hochstenbach and
Reichel [82]. The latter approach fits both into the framework of generalized Tikhonov
regularization introduced by Louis [7, Chapter 4] and into the framework presented in
[83]. A more detailed comparison of the three approaches is presented in Section 3.2.2.
Application of the fractional approach of [82] to Lavrentiev regularization is discussed
in [84].

Let us quickly recall that Tikhonov regularization in standard form can be expressed
via the normal equation

(A∗A+ αI)xδα = A∗yδ, (3.14)
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or equivalently by the optimization problem

xδα = min
x∈D(A)

||Ax− yδ||2Y + α||x||2X . (3.15)

The method in [82] can be derived by replacing the Y -norm in the fidelity term in (3.15)
by a weighted seminorm

‖y‖W := ‖W 1/2y‖Y
with

W = (AA∗)(µ−1)/2 (3.16)

for some parameter 0 ≤ µ ≤ 1, where W is defined with the aid of the Moore–Penrose
pseudoinverse of AA∗ when µ < 1. We obtain the minimization problem

min
x∈X
‖Ax− yδ‖2W + α‖x‖2X (3.17)

and denote its solution by x̃δα. It can be computed by solving the associated normal
equations

((A∗A)(µ+1)/2 + αI)x = (A∗A)(µ−1)/2A∗yδ. (3.18)

Oversmoothing in Tikhonov regularization in standard form (which corresponds to µ =
1) is caused by the fact that yδ is multiplied by A∗. Letting 0 < µ < 1 reduces over-
smoothing. We will show that, by the theory presented in [7, 83], choosing −1 < µ ≤ 1
is possible.

Klann and Ramlau [81] propose another approach to reduce oversmoothing. They
advocate that an approximation of x† be computed by solving

(A∗A+ αI)µx = (A∗A)µ−1A∗yδ (3.19)

for some 0 < µ ≤ 1, where (A∗A)µ−1 is defined with the Moore–Penrose pseudoinverse
when µ < 1. This leads to an interpolation between standard Tikhonov regularization
and the generalized inverse. We denote the solution by x̂δα. Also this method simplifies
to Tikhonov regularization in standard form when µ = 1. An associated minimization
problem is not known.

The normal equations (3.18) and (3.19) already resemble the one of Tikhonov regular-
ization in standard form (3.14). The resemblance increases by considering the associated
filter functions. Namely, Tikhonov regularization in standard form can be characterized
by the filter function (3.12). Thus, the minimizer of (1.9),(3.15) can be computed as

xδα =
∑
σn>0

σn
σ2
n + α

〈yδ, un〉vn. (3.20)
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as well as by (3.14). The filter function associated with the fractional Tikhonov regular-
ization method (3.17) is given by

F̃α,µ(σ) =
σµ+1

σµ+1 + α
(3.21)

and gives the associated approximation

x̃δα =
∑
σn>0

σµn

σµ+1
n + α

〈yδ, un〉vn (3.22)

of x†. This expression is provided in [82] with slightly different notation. The fractional
Tikhonov method (3.19) can be written in terms of a filter function in a similar fashion.
We have

F̂α,µ(σ) := (FTikh
α (σ))µ =

(
σ2

σ2 + α

)µ
. (3.23)

The corresponding approximation of x† is given by

x̂δα =
∑
σn>0

(
σ

2−1/µ
n

σ2
n + α

)µ
〈yδ, un〉vn. (3.24)

Graphs of the filter functions for various values of the free parameters can be found in
[81] and [82], respectively. From now on we refer to the method (3.17) of [82] by (3.22),
the method (3.19) of [81] by (3.24) and Tikhonov regularization in standard form by
(3.20).

3.2.2 Order optimality of fractional Tikhonov methods

As mentioned previously, the method (3.22), introduced here as described in [82], can be
treated as a special case of the methods proposed by Louis [7] and Mathé–Tautenhahn
[83]. We will show in this section that the results of [7] and [83] coincide for the special
case of fractional Tikhonov regularization (3.22). It is worth mentioning that neither
in [7] nor [83] the applicability of the methods was discussed; no numerical experiments
were shown. One of the major concerns of this work is to show that fractional Tikhonov
methods are only in certain situations preferable to Tikhonov regularization in standard
form.

Generalized Tikhonov regularization as in [7] is obtained by replacing the penalty term
in (3.15) by ‖Bx‖2X , where B : N (A)⊥ → X is an operator whose domain D(B) is dense
in N (A)⊥ and (B∗B)−1 : N (A)⊥ → X is continuous. The associated functional is

Jµ,B(x) := ‖Ax− yδ‖2Y + α‖Bx‖2X . (3.25)
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Certain conditions on the operator B allow for results on optimality and order opti-
mality of generalized Tikhonov regularization; see [7]. Louis considers a special case of
generalized Tikhonov regularization (3.25) and obtains with B∗B = (A∗A)−ζ the normal
equations

(A∗A+ α(A∗A)−ζ)xδα = A∗yδ, (3.26)

where (A∗A)−ζ is replaced by the Moore–Penrose pseudoinverse if A is not invertible.
He [7, Satz 4.2.3] establishes that this method is order optimal for ζ ≥ −1/2 under an
a priori parameter choice rule if x† fulfills ||x†||ν ≤ % with ν ≤ 2ζ + 2. Multiplying
(3.26) with (A∗A)ζ and setting ζ = µ−1

2 we obtain (3.18). Hence, with this correlation
between the parameters, we can immediately conclude that the fractional Tikhonov
method (3.22) is order optimal for µ ≥ 0 and ν < µ + 1. Results from Louis’s book [7]
make it possible to extend the range of µ to −1 < µ ≤ 1 using Theorem 3.1.3.

Lemma 3.2.1. The regularizing filter F̃α,µ(σ) from (3.21) with −1 < µ ≤ 1 fulfills
(3.5),(3.6) with β = 1

µ+1 and ν∗ = µ+ 1.

Proof. The filter F̃α,µ(σ) is continuous on (0,∞). The regularizing properties of the
Filter Fα,µ are easily verified. One sees that

lim
σ→0

σ−1|F̃α,µ(σ)| = lim
σ→∞

σ−1|F̃α,µ(σ)| = 0,

lim
σ→0
|1− Fα,µ(σ)|σν = 0,

lim
σ→∞

|1− Fα,µ(σ)|σν =


∞ ν > µ+ 1,

1 ν = µ+ 1,

0 ν < µ+ 1.

Hence, as long as ν < µ + 1, the suprema in (3.5),(3.6) are attained as local maxima,
which can be derived by simple calculus. One obtains

sup
0<σ≤σ1

σ−1|Fα,µ(σ)| ≤ cα−
1

µ+1 and sup
0<σ≤σ1

|1− Fα,µ(σ)|σν∗ ≤ cν∗α
1

µ+1
ν
.

Consequently, by Theorem 3.1.3 the fractional method (3.22) is order optimal for
−1 < µ ≤ 1 and 0 ≤ ν ≤ µ+ 1.

Now let us investigate the connection of the fractional Tikhonov regularization (3.22)
to [83]. There, without mentioning the previous work by Louis [7], the authors considered
the solution of the equation

((A∗A)s+1 + µI)xδµ = (A∗A)sA∗yδ, (3.27)
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for s > −1, assuming that

||(A∗A)q/2(y − yδ)|| ≤ δ and x† ∈ {x ∈ X : (A∗A)p/2v, ||v|| ≤ E}. (3.28)

Setting s = µ−1
2 , q = 0, p = ν and E = %, we arrive exactly at the fractional method

(3.22) in the setting introduced in Section 3.2. The following result is shown in [83].

Theorem 3.2.2. Under the assumptions (3.28) and with α =
(
δ
E

)(2s+2)/(p+q+1)
, the

method (3.27) is of optimal order provided that s ≥ max(p−2
2 , q−1

2 ).

Translating this theorem into our notation of the fractional Tikhonov method (3.22),
we obtain order optimality provided that µ ≥ max(ν−1, 0), i.e., ν ≤ µ+1 in case ν > 1.
We summarize the results in the following theorem.

Theorem 3.2.3. Let A : X → Y be a linear compact operator between Hilbert spaces X
and Y. Let x† := A†y satisfy

∥∥x†∥∥
ν
≤ %. Then for all −1 < µ ≤ 1 and 0 ≤ ν ≤ µ + 1

the fractional Tikhonov method (3.22) is of optimal order under the a-priori parameter
choice rule

α = C

(
δ

%

)(µ+1)/(ν+1)

.

While the method (3.22) is order optimal for all −1 < µ ≤ 1 and appropriate ν, this
is not the case for the fractional Tikhonov method (3.24). We have the following result.

Proposition 3.2.4. [81, Proposition 3.2] Let A : X → Y be a compact operator with
singular system {σn, un, vn}n≥0, and let x† := A†y satisfy

∥∥x†∥∥
ν
≤ % for some constant %

and the ν-norm defined by (3.3). Then for α ∈ (1/2, 1], the fractional Tikhonov method
defined (3.24) is order optimal with the parameter choice rule

α = C

(
δ

%

)1/2(ν+1)

for all 0 < ν < 2. Here C is a positive constant independent of δ and %.

Klann and Ramlau [81, Theorem 4.4] show that after appropriate presmoothing of
the error-contaminated data yδ, fractional powers 0 < µ ≤ 1/2 together with a suitable
choice of the regularization parameter α yield quasi-optimal convergence rates.

The above approaches to determine α generally are not very useful for the solution
of specific problems. When an accurate estimate of the norm of the error in the data
‖yδ − y‖Y is known, the discrepancy principle, discussed, e.g., in [8, 85], can be applied
to determine a suitable value of α. We already briefly introduced the concept in Section
1.2.2. Here we will make use of the filter properties and, instead of (1.12) choose the
regularization parameter α = α(δ, yδ) such that

‖Axδα − yδ‖Y = τδ, (3.29)
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where τ > 1 is again a user-supplied constant independent of δ. This is a nonlinear
equation for α. Its solution can be calculated by finding the positive zero of

Gµ(α) :=
∑
n∈N

(1− Fα,µ(σ))2 〈yδ, un〉2 − (τδ)2, (3.30)

for example with Newton’s method; see, e.g., [82] for further details. This reference
discusses linear discrete ill-posed problems, but the results carry over to the setting of
the present work.

Convergence of regularized approximate solutions determined by filtered regularization
methods using the discrepancy principle has been analyzed in the works of Louis [7] and
Mathé and Tautenhahn [83]. As for the a-priori parameter choice, the order optimality
of the fractional Tikhonov method (3.22) is derived immediately from both [7] and [83]
by identifying corresponding parameters as done in the first part of this section. Thus
without going into detail again, the following theorem follows independently from [7,
Theorem 3.5.2] and [83, Theorem 2.4].

Theorem 3.2.5. Let A : X → Y be a linear compact operator between Hilbert spaces X
and Y. Let x† := A†y satisfy ‖x†‖ν ≤ %. Then for all exponents µ > 0 and 0 < ν ≤ µ,
the fractional Tikhonov method (3.22) is order optimal with the regularization parameter
α determined by the discrepancy principle (3.29).

Remark. It might appear appealing to substitute the standard norm in (3.29) by the
weighted norms from (3.17) (or (3.28) for −1 < q < 0, respectively). Then with again
W = (A∗A)(µ−1)/2,

‖Ax̃δα − yδ‖2W =
∑
σn>0

(1− F̃α,µ(σn))2σµ−1
n 〈yδ, un〉2. (3.31)

However, since limσn→0 F̃α,µ(σn) = 0, the sum typically will converge very slowly since
for large n the inner products 〈yδ, un〉 generally are dominated by the error in yδ. In a
discrete setting using finite-precision arithmetic, the quantities 〈yδ, un〉 also are contam-
inated by propagated round-off errors introduced during the computations. The residual
(3.31) therefore will be very large due to error amplification, and the equation

‖Ax̃δα − yδ‖W = τδ

is not guaranteed to have a solution. Hence, the weighted residual norm is in general
not useful for determining the regularization parameter in actual computations.

Order optimality for the fractional Tikhonov method (3.24) can be shown with the
help of the results in [7].
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Theorem 3.2.6. Let A : X → Y be a linear compact operator between Hilbert spaces X
and Y . Let x† := A†y satisfy ‖x†‖ν ≤ %. Then for all exponents µ ∈ (1/2, 1] and 0 <
ν ≤ 1, the fractional Tikhonov method of (3.24) is order optimal with the regularization
parameter α given by the discrepancy principle (3.29).

Proof. Klann and Ramlau showed in [81] that the filter function (3.23) fulfills (3.5),(3.6)
with β = 1

2 and ν∗ = 2 for µ > 1
2 . Hence, by [7, Theorem 3.5.2], the claim follows.

Approximations of x† determined by fractional Tikhonov regularization typically are
closer to x† in theX-norm than approximations obtained with Tikhonov regularization in
standard form; see [82] for computed examples. However, a smaller error does not always
correspond to a more pleasing approximation of x†, because the fractional Tikhonov
approximation may be more oscillatory than the approximation determined by Tikhonov
regularization in standard form. We would like to elucidate in which situations fractional
methods yield more pleasing approximations. The following lemma is helpful. A similar
result has been shown in [82].

Lemma 3.2.7. Let the mappings α 7→ Fα,µ(σ) and µ 7→ Fα,µ(σ) be continuous and
monotonically decreasing for α > 0 and µ in an interval µ < µ < µ. Let α = α(µ) be

determined by the discrepancy principle (3.29). Then dα(µ)
dµ < 0.

Proof. We can write (3.30) in the form G(µ, α(µ)) = 0. Since G is differentiable, we
have

dG

dα
=
∑
σn>0

2(1− Fα,µ(σn)) · (−1) · dFα,µ
dα

· 〈yδ, un〉2 > 0,

because 1−Fα,µ(σ) > 0
dFα,µ
dα =< 0. Analogously, one finds that dG

dµ > 0. Hence, by the
implicit function theorem,

dα

dµ
= −

(
dG

dα

)−1 dG

dµ
< 0.

An immediate consequence of the above lemma is that decreasing µ results in an
increase of the regularization parameter α. It is therefore inappropriate to compare
fractional methods with the standard Tikhonov filter using the same regularization pa-
rameter.

We are now in position to take a closer look at the computed approximations. Again
we will make use of the explicit representation of the solution in terms of the singular
system of A. Let as in (1.2) ε = yδ − y. Since

σn〈x†, vn〉 = 〈x†, A∗un〉 = 〈y, un〉,
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cf. [8], and
〈yδ, un〉 = 〈y, un〉+ 〈ε, un〉,

the approximation error e(δ, α, µ) := x† −Rαyδ is given by

e(δ, α, µ) =
∑
σn>0

(1− Fα,µ(σn)) 〈x†, vn〉vn +
∑
σn>0

Fα,µ(σn)
1

σn
〈−ε, un〉un. (3.32)

Let ε be fixed. The quality of the computed solution then is determined by the positive
coefficients 1 − Fα,µ(σ) and Fα,µ(σ). One immediately sees that the filter Fα,µ(σ) has
to achieve two contradicting properties: Fα,µ(σ) should be close to one to give a small
deviation of the reconstruction from x†, and Fα,µ(σ) should be close to zero in order to
effectively reducing propagation of the error ε into the computed approximation.

It is not obvious from (3.32) in which situations letting µ < 1 improves the quality
of the computed approximation of x†. We can shed some light on this by studying the
derivative d

dµFα,µ(σ). We first consider the filter function (3.21). Since α depends on µ
(the function (3.30) used to calculate α depends on µ via the filter functions Fα,µ(σ)),
we get

d

dµ
F̃α,µ(σ) = − d

dµ

(
1− F̃α,µ(σ)

)
= h(σ, µ, α(µ))

(
lnσ − α′(µ)

α(µ)

)
, (3.33)

where h(σ, µ, α(µ)) is a positive function. The sign of the derivative is determined by

the factor lnσ− α′(µ)
α(µ) . When µ and the error norm δ are fixed, so is α, and the sign only

depends on σ. By Lemma 3.2.7, α′(µ) < 0. Therefore, the derivative (3.33) changes
sign at some 0 < σ̃0 < 1. Only for n with σn < σ̃0, the coefficient of 〈x†, vn〉 in (3.32)
will be reduced by decreasing µ, since then d

dµ(1− F̃α,µ(σn)) > 0. Hence, the coefficient
of 〈ε, un〉 increases. The opposite holds true for the coefficients of the terms associated
with the propagated error. Whereas for large σn the propagated error is damped, it is
amplified for all σn < σ̃0.

The result for the fractional filter (3.23) is analogous. Similarly to (3.33), one has

d

dµ
F̂α,µ(σ) = − d

dµ

(
1− F̂α,µ(σ)

)
= ĥ(σ, µ, α(µ))

(
− ln

(
σ2 + α(µ)

σ2

)
− α α′(µ)

σ2 + α(µ)

)
(3.34)

with ĥ(σ, µ, α(µ)) > 0. The logarithm is positive and α′(µ) < 0. Therefore, the sign of
(3.34) changes at some σ = σ̂0 > 0. Hence, the above discussion also applies to this filter
function. However, it is not clear whether the operator A has singular values that satisfy
σn > σ̂0. If this is not the case, then decreasing µ will result in error amplification in all
components of the computed approximate solution.
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Although it is an open problem how to determine a value of µ that yields the best
approximation of x†, we can identify two situation in which fractional Tikhonov methods
outperform Tikhonov regularization in standard form:

a) the problem is severely ill-posed, i.e., the singular values of A decrease rapidly to
zero, and

b) the error in yδ is concentrated to low frequencies.

In case the problem is severely ill-posed, σ̃0 and σ̂0 are likely to be large enough for
the propagated error to be damped. A slight loss in accuracy of terms in (3.22) and
(3.24) associated with large singular values is typically acceptable, since they are much
larger than the error and therefore usually are recovered quite accurately. On the other
hand, if there is only little error in the high frequency components in (3.22) and (3.24),
the amplification of the error in bδ is largely avoided, while the reconstruction is im-
proved. In other cases, both fractional methods do not perform significantly better than
Tikhonov regularization in standard form. The reason for this can again be found in the
dependency of the filter factors Fµ,α(σ) on the parameters α and µ. By decreasing α,
the Fµ,α(σ) increase. At the same time, decreasing α leads to increasing regularization
parameter µ as shown in Lemma 3.2.7. From the definition of the filter factors (3.21)
and (3.23), respectively, one sees that this leads to decreasing values of the filter factors.
Hence, both effects cancel each others out to some extend. Although α is decreased be-
low one, the filter factors corresponding to larger singular values stay almost constant.
The following section provides some illustrative computed examples.

3.2.3 Numerical examples

Several computed examples that show the performance of the fractional Tikhonov reg-
ularization methods discussed in this paper are provided in [82, 81]. These examples
demonstrate that it may be attractive to use fractional Tikhonov methods instead of
standard Tikhonov regularization. In this paper, we present a few examples that show
the relative performance of the fractional methods (3.22) and (3.24), and that illustrate
the comments in the last paragraph of the previous section.

Our first example is a severely ill-posed Fredholm integral equation of the first kind
given by

y1(s) = [A1x](s) =

∫ 1

0

√
s2 + t2x(t)dt, 0 ≤ s ≤ 1, (3.35)

with error-free data y1(s) = 1
3

(
(1 + s2)3/2 − s3

)
and solution x†1(t) = t. This equation

was first introduced by Fox and Goodwin, cf. [86]. Numerically, the singular values
decrease exponentially until they stagnate around attainable computational precision.
We used the discretization of (3.35) provided in Regularization Tools [87]. This gave a
1000× 1000 matrix.
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The second example is the mildly ill-posed Volterra integral equation of the first kind

y2(s) = [A2x](s) =

∫ s

0
x(t)dt, 0 ≤ s ≤ 1, (3.36)

with error-free data

y2(s) =

{
−s 0 ≤ s ≤ 0.5,

s− 1 0.5 < s ≤ 1,

and solution

x†2(t) =

{
−1 0 ≤ t ≤ 0.5,

1 0.5 < t ≤ 1.

This example has been used in [81]. The coefficients 〈x†1, vn〉 decrease slowly to zero.
The singular system {σn;un, vn}n≥1 of A2 (without discretization) is given in [7]. The
integration problem (3.36) has been discretized with the Nyström method based on the
trapezoidal rule with 1000 equidistant nodes.

In all experiments shown, we equipped both the domain and range of the discretized
operators with the Euclidean vector norm. We added noise with prescribed noise level

θ := ||y−yδ||
||y|| to the error-free data y.

We compare approximate solutions obtained by the two fractional methods (3.22)
(denoted by x̃δα,µ) and (3.24) (denoted by x̂δα,µ) with the approximate solution determined

by Tikhonov regularization in standard form (3.20) (denoted by x̄δα). The key ingredient
for this is a comparable choice of the regularization parameter. For all approximate
solutions, the regularization parameter is determined by the discrepancy principle (3.29).
It turns out, that the relative performance of the fractional methods when compared
to Tikhonov regularization in standard form varies significantly with the choice of the
free parameter τ in (3.29). We therefore conduct the following experiment. For each
τ ∈ {1, 1.05, 1.1, 1.2, 1.3, 1.4, 1.5}, we compute the standard Tikhonov solution x̄δα(τ) and

solutions for the fractional methods (3.22) and (3.24) for the fractional parameters µ from
discrete sets A1 := {−1 + 0.05i, i = 0, 1, 2, . . . , 40} and A2 := {0.05i, i = 0, 1, 2, . . . , 20},
respectively. Out of all these solutions, we select for each fractional method and each τ
the best approximation. In other words, we choose µ∗(τ) such that it gives the minimum
deviation from the true solution x† over all µ-values considered,

µ̃∗ := min
µ∈A1

||x̃δα(τ),µ − x
†|| and µ̂∗ := min

µ∈A2

||x̂δα(τ),µ − x
†||.

We compute for both fractional methods the relative deviation when compared to Tikhonov
regularization in standard form,

r̃e(τ) =

∥∥∥x̃δα(τ),µ̃∗ − x
†
∥∥∥∥∥∥x̄δα(τ) − x†
∥∥∥ and r̂e(τ) =

∥∥∥x̂δα(τ),µ̂∗ − x
†
∥∥∥∥∥∥x̄δα(τ) − x†
∥∥∥ . (3.37)
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The quantities r̃e(τ), r̂e(τ), and the optimal fractional parameters are plotted as func-
tions of τ in Figure 3.1 for the Fox–Goodwin problem (3.35). Only one realization of
perturbed data is used for this experiment. Figure 3.1 is typical for many experiments.
The fractional methods can be seen to yield reconstruction errors that are smaller than
those obtained with Tikhonov regularization in standard form. For τ ≥ 1.05, the er-
ror obtained with the method (3.22) is about half the error obtained with standard
Tikhonov regularization. Also direct inspection of the computed solutions, shown in
Figure 3.6, strongly favors this fractional method. However, for τ = 1, the difference
in performance is almost negligible. In fact, in a direct comparison of the three ap-
proximate solutions computed with the fractional and standard Tikhonov methods, the
difference between these solutions is barely visible. Moreover, for some noisy right-hand
sides, with the same noise characteristics as in Figure 3.1 but different realizations of
the noise, standard Tikhonov regularization with τ = 1 gives the best reconstruction.
The regularization parameters for the fractional methods and Tikhonov regularization
in standard form are shown in Figure 3.2. For all τ ≥ 1, the regularization parameter
for the latter method is much smaller than for the fractional methods.

We now carry out the same experiment as above with the integration problem (3.36).
The result is shown in Figure 3.3. Observe that for this problem Tikhonov regularization
in standard form with the regularization parameter obtained for τ = 1 always gives the
best solution. Although for larger τ -values the fractional methods give a slightly smaller
error, one would nevertheless typically prefer the solution obtained with Tikhonov regu-
larization in standard form since it is smoother than the fractional solutions. A typical
case is shown in Figure 3.7. The plot of the regularization parameters is similar to the
corresponding plot for the Fox–Goodwin problem; see Figure 3.2. We should mention
that the relative performance of the methods in our comparison does not change signif-
icantly if a different true solution x† is chosen. The properties of the operator A are far
more important than the choice of true solution for the performance of the methods.

Our experience with the Fox–Goodwin problem leads us to conclude that it is impor-
tant to carefully chose the parameter τ in a comparison of the methods in order to avoid
a bias towards fractional Tikhonov methods. To make this point even more evident, we
repeat the above experiment, but now calculate the relative reconstruction errors

r̃e1(τ) =

∥∥∥x̃δα(τ),µ̃∗ − x
†
∥∥∥∥∥∥x̄δα(1) − x†
∥∥∥ and r̂e1(τ) =

∥∥∥x̂δα(τ),µ̂∗ − x
†
∥∥∥∥∥∥x̄δα(1) − x†
∥∥∥ , (3.38)

with respect to the solution obtained with Tikhonov regularization in standard form
for fixed τ = 1; see Figure 3.4. For the integration problem the relative reconstruction
errors do not change much, but for the Fox–Goodwin problem they increase by a large
factor. A comparison with Figure 3.1 illustrates that, although for each value of τ the
fractional methods are better than Tikhonov regularization in standard form, this claim
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α∗  for the method (3.24)
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re for the method (3.22)

Figure 3.1: Relative errors from (3.37) and optimal fractional parameters µ∗ as func-
tions of τ for the Fox–Goodwin problem (3.35) with white noise of level
θ = 0.05. The larger τ is chosen, the more favorable in particular the
fractional method (3.22) becomes. For τ = 1, the difference is almost
negligible.

does not hold anymore when τ = 1 is used for Tikhonov regularization in standard form.
Hence, it is important to choose τ carefully when comparing methods.

In the above examples the data was perturbed by white Gaussian noise. The ob-
servation of Section 3.2.2 lead us to repeat the experiments with low-frequency noise.
An example of this kind of noise and a comparison with white noise is displayed in
Figure 3.8. Figure 3.9 shows the fractional methods to give more accurate approxima-
tions of x† than Tikhonov regularization in standard form for low-frequency noise. The
improved performance for low-frequency noise becomes even more evident if instead of
a one-dimensional signal a two-dimensional image is take as the true solution. Figure
3.5 compares he solutions obtained with the methods (3.24), (3.22) and (3.20) for a
chessboard-like image x† of size 75× 75 pixels which has been blurred using a blurring
matrix that is block Toeplitz with Toeplitz blocks with bandwidth 6 and approximates
a Gaussian point-spread function with variance σ = 0.7. The regularization parameter
was determined by the discrepancy principle (3.29) with τ = 1. For this example, the
method (3.24) produces the best approximation of the exact image. The reconstruction
error is only 36% of the reconstruction error determined by Tikhonov regularization in
standard form.

To further illustrate the different behaviors of the methods in our comparison in the
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Figure 3.2: Regularization parameter for the solutions with the methods (3.22), (3.24)
and (3.20) for the Fox–Goodwin problem (3.35) with white noise of level
θ = 0.05, obtained by the discrepancy principle (3.29). For τ = 1 the reg-
ularization parameters almost coincide whereas for larger τ the regulariza-
tion parameter of Tikhonov regularization in standard form is significantly
smaller than for the fractional methods. The same quality of the curves is
obtained for the integration problem (3.36).

settings introduced above, we include tables in which we give regularization parameters
and approximation errors relative to those obtained with Tikhonov regularization in
standard form (3.37). All errors are averages over 20 experiments with different error-
realizations. Table 3.1 shows results for the Fox–Goodwin problem (3.35). In agreement
with Figure 3.6, the fractional method (3.22) performs the best. For the problem (3.36)
with Gaussian white noise, the error in the approximate solutions determined by the
fractional methods is only slightly smaller than the error obtained with Tikhonov reg-
ularization in standard form, as shown in Table 3.2. However, using the same problem
with low-frequency error instead of white Gaussian error, the fractional methods yield
a much better approximations of x† than Tikhonov regularization in standard form; see
Table 3.3.
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Figure 3.3: Relative errors from (3.37) and optimal fractional parameters µ∗ as func-
tions of τ for the integration problem (3.36) with white noise of level
θ = 0.05. Even for large values of τ , there is not a big difference between
the fractional methods and Tikhonov regularization in standard form.

µ 0.05 0.1 0.3 0.5 0.6 0.7 0.9 1

α̃ 6.1e-3 5.9e-3 5.2e-3 4.3e-3 3.8e-3 3.3e-3 2.4e-3 2.0e-3

α̂ 1.1e-1 3.9e-2 8.2e-3 4.4e-3 3.5e-3 2.9e-3 2.2e-3 2.0e-3

r̃e 10.3 5.2 1.5 0.60 0.61 0.72 0.92 1

r̂e 2.4e15 4.7e13 1e7 4.2 0.93 0.91 0.97 1

Table 3.1: Regularization parameter and relative reconstruction error for both frac-
tional filters, tilde standing for (3.22), hat for (3.24); and the Fox–Goodwin
problem (3.35). In both cases µ grows monotonically with decreasing µ.
The reconstruction errors (3.37) are shown in the two bottom rows. For the
method (3.22), there is a minimum clearly below one. Hence, the recon-
structions are significantly improved. Since for µ < 0.5 the filter (3.23) is
not regularizing anymore, the reconstruction error explodes.
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Figure 3.4: Comparison of relative reconstruction errors (3.38). For the integration
problem (3.36), increasing τ does not change the error much. However,
for the Fox–Goodwin problem (3.35), the difference becomes much more
evident.

µ 0.05 0.1 0.3 0.5 0.6 0.7 0.9 1

α̃ 4.7e-3 4.3e-3 2.7e-3 1.6e-3 1.3e-3 1.0e-3 0.6e-3 0.4e-3

α̂ 3.4e-2 1.1e-2 2.3e-3 1.1e-3 0.8e-3 0.7e-3 0.5e-3 0.4e-3

r̃e 2.7 2.3 1.4 1.07 1.02 0.991 0.990 1

r̂e 21.8 12.5 2.3 1.13 1.03 1.007 0.998 1

Table 3.2: Regularization parameter and relative reconstruction error for both frac-
tional filters and the integration problem (3.36). In both cases α grows
monotonically with decreasing µ. The reconstruction errors (3.37) grow
nearly monotonically, only for µ close to one it is slightly below one, i.e., the
fractional methods give a slightly lower residual than Tikhonov regulariza-
tion in standard form.



58 Chapter 3 Filter-based reconstruction methods

solution with (3.22) solution with (3.24) solution with (3.22)

Figure 3.5: Comparison of fractional Tikhonov methods and Tikhonov regularization
in standard form for a two dimensional deblurring problem of size 75× 75
with low-frequency noise of noise level θ = 0.05. The solutions obtained
with the fractional methods provide much sharper edge recovery. The best
fractional parameters were µ∗ = 0.05 for the method (3.24) and µ∗ = −1 for
the method (3.22). The relative reconstruction error to Tikhonov solution
in standard form (see (3.37)) are r̂e = 0.36 and r̃e = 0.48, respectively.

µ 0.05 0.1 0.3 0.5 0.6 0.7 0.9 1

α̃ 6.0e-3 5.5e-3 3.8e-3 2.6e-3 2.1e-3 1.7e-3 1.1e-3 0.9e-3

α̂ 3.9e-2 1.4e-2 3.5e-3 1.9e-3 1.5e-3 1.3e-3 1.0e-3 0.9e-3

r̃e 0.62 0.65 0.75 0.84 0.88 0.91 0.97 1

r̂e 0.54 0.60 0.81 0.91 0.94 0.96 0.99 1

Table 3.3: Regularization parameter and relative reconstruction error for both filters
and the integration problem (3.36) in presence of low frequency noise (cf.
Figure 3.8). The reconstruction errors (3.37) are shown in the two bot-
tom rows. Both fractional filters give a much better result than Tikhonov
regularization in standard form.
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solution with (3.22), µ=0.25, α(0.25)
solution with (3.24), µ=0.55, α(0.55)
solution with (3.20), α(1)
true

Figure 3.6: Comparison of solutions for the severely ill-posed Fox–Goodwin problem
(3.35) with Gaussian white noise of level θ = 0.05, α according to (3.29),
τ = 1.1. For the fractional methods the solutions with smallest reconstruc-
tion error are shown. The solution for the method (3.22) is plotted with
the dashed line. For this type of problems it is to be preferred over the
other two methods. Those are the method (3.24) (solid) and Tikhonov
regularization in standard form (3.20) (dash-dotted).

3.3 Filter-based regularization methods in the stochastic
setting

We now turn to the stochastic setting introduced in Chapter 1. That is, we adopt
the deterministic setting from the previous sections, but substitute the worst case error
bound ||y − yδ|| ≤ δ with a stochastic assumption E(||y − yη||) = E(||ε||) = f(η) where
η is typically the variance of the error ε. The theory here is presented for filter-based
regularization methods in general. Application of the results in particular to the frac-
tional Tikhonov methods will be straight forward. We assume that the filters fulfill the
conditions of Theorem 3.1.2 and thus furnish a regularization for A†. Note that this
definition is independent of the error of the data. For the convergence analysis we use
convergence in expectation as well as the Ky Fan metric as introduced in Section 1.4.
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Figure 3.7: Comparison of solutions for the mildly ill-posed integration problem (3.36)
with Gaussian white noise of level θ = 0.05, α according to (3.29), τ = 1.1.
Upper plot: discontinuous solution, lower plot: smooth solution. In this
case the fractional methods (3.22) and (3.24) do not perform better than
Tikhonov regularization in standard form. On the contrary, the noise is
amplified even more.

3.3.1 Convergence results

In case of an a priori parameter choice, we immediately obtain a result for the stochastic
setting similar to the known deterministic theory by simply considering the expectation
of the norms instead of the norms themselves. Theorem 3.1.3 translates directly into the
new setting.

Theorem 3.3.1. Let y ∈ R(A), yη = Ax+ ε and E ‖ε‖ = f(η) <∞. For all σ ∈ (0, σ1],
let α 7→ |1−Fα,µ| be continuous and monotonically increasing, and assume that the filter
fulfils (3.5),(3.6). Let α = α(η) be chosen as

α = C

(
E(‖ε‖)
%

)1/µ(ν+1)

, C > 0 const. (3.39)

Then there is a constant dν independent of y, η, % such that

E
(∥∥∥A†y −Rαyη∥∥∥) ≤ dνE(‖ε‖)ν/(ν+1)%1/(ν+1). (3.40)
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Figure 3.8: Comparison of typical random draws of white noise and low-frequency noise
w.r.t. the singular values. For white noise, the coefficients are equally
distributed over all singular values. The low-frequency noise decreases with
growing n.

Proof. The proof follows the lines of the deterministic one, see, Theorem 3.1.3. Analo-
gously to (3.8) it is, due to the linearity of the expectation,

E(||A†y −Rαyη||) ≤ E(||(A† −Rα)y||+ ||Rα(y − yη)||)
≤ ||(A† −Rα)y||+ E(||Rα(y − yη)||) (3.41)

since the first part of the sum is deterministic. Hence, for this term we obtain the same
result as in (3.10). For the term featuring the stochastic noise, one has analogously to
(3.9)

E(||Rα(y − yη)||) = E

(∑
σn>0

(Fα(σn)σ−1
n )2|〈yη − y, un〉|2

)1/2


≤ cα−µ/2E ‖ε‖ (3.42)

due to Jensens inequality for concave function. A key ingredient of the proof is that
due to the a priori choice the regularization parameter is not a stochastic quantity,
but in view of the linearity of the expectation, merely a predescribed positive number.
Choosing α according to (3.39) and inserting it into (3.41) with (3.10) and (3.42) again
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Figure 3.9: Comparison of solutions for the mildly ill-posed integration problem (3.36)
with low-frequency noise (c.f. Figure 3.8) of level θ = 0.05, α according
to (3.29), τ = 1.1 The solution of the fractional methods (3.22) (dashed)
and (3.24) (solid) with appropriate µ approximate the discontinuity much
better than the results of Tikhonov regularization in standard form (3.20)
(dash-dotted).

results in the estimate

E(||A†y −Rαyη||) ≤ dνE(‖ε‖)ν/(ν+1)%1/(ν+1).

where dν takes all the previous constants and does not depend on E(‖ε‖), y and %.

Although a-priori parameter choices of the above type may be more viable when the
expectation of the noise is used rather than the worst case bound δ, the constant dν
in (3.39) is still unknown. If by some method, for example through additional a priori
knowledge or a posteriori methods a reasonable value for dnu is found, this explicit
parameter choice is viable in practice, see Section 3.3.2 for numerical experiments. If dnu
remains dubious, a-posteriori methods, in particular the discrepancy principle, may again
be more relevant in application. In the deterministic setting, we defined the discrepancy
principle in (3.29). The obvious translation of this definition to the stochastic setting
is to simply replace δ with E(‖ε‖). However, this leads to a fundamental change in the
properties of α as ε is a stochastic quantity, i.e., ε = ε(η, ω) is one specific realization of
a random variable E(η, ω) in the complete probability space (Ω,Σ,P), see Chapter 1.3.
Therefore, solving

‖Axηα − yη‖ = τE(‖ε‖), τ > 1 (3.43)
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for α implicitly defines a function g : (Ω,Σ) → (Ω,B(R)) such that g(ε(ω)) = α, where
B(R) denotes the Borel σ-algebra of R. Hence, α is the result of a measurable function
applied to a random variable and thus becomes a random variable itself. Consequently,
the regularization operator Rα becomes a random operator.

Before addressing the convergence under such a random regularization parameter, we
discuss a a slightly different formulation of the discrepancy principle (3.29). Namely, if
one finds α such that

E(‖Axηα − yη‖) = τE(‖ε‖), τ > 1, (3.44)

α does no longer depend on ω, i.e., α again becomes a deterministic quantity. The
reason for this is that in this concept one alters the whole distribution of the residual
‖Axηα − yη‖ rather than working with realizations. As a result, convergence results can
be derived from the deterministic results in a straight forward way again. We have the
following theorem.

Theorem 3.3.2. Let y ∈ R(A), yη = Ax+ ε and E ‖ε‖ = f(η) <∞. For all σ ∈ (0, σ1],
let α 7→ |1−Fα,µ| be continuous and monotonically increasing, and assume that the filter
fulfills (3.5),(3.6). Let α = α(η) be determined via (3.44). Then there is a constant dν
independent of y, η, % such that

E
(∥∥∥A†y −Rαyη∥∥∥) ≤ dνE(‖ε‖)ν/(ν+1)%1/(ν+1). (3.45)

Proof. Since α is, by construction, a deterministic quantity, the remainder of the proof
can be retraced from the deterministic one in [7, Theorem 3.5.2] or, in slightly different
formulation of the filter approach, [8, Theorem 4.17]. Again, all inequalities hold in
expectation due to its linearity and the construction of the regularization parameter.
Since the proof is rather long and does not provide any additional insight, we omit it
here.

Although equation (3.44) allows for simple theoretical treatment of the regularization
method, it is not obvious how to solve the problem in practice as the formulation requires
to adjust the distribution of ||Axηα − yη||. Since we do not know the true solution x or
exact data y, this is not possible in practice. Instead, we suggest to approximate the
expectation statistically. Assume that several measurements yηi = y+ε(ωi), i = 1, . . . , N ,
are available. Then we replace E(‖Axηα − yη‖) by the mean of the available data, i.e.

E(‖Axηα − yη‖) ≈
1

N

N∑
i=1

‖Axηα − y
η
i ‖ .

Since ‖Axηα − yηi ‖ is decreasing for α → 0 due to the properties of the filter functions,

we start with a sufficiently large α0 such that 1
N

∑N
i=1 ‖Ax

η
α0 − y

η
i ‖ > τE(‖ε‖). From
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there, we decrease the regularization parameter slowly until we find a first α∗ satisfying

1

N

N∑
i=1

∥∥Axηα∗ − yηi ∥∥ < τE(‖ε‖). (3.46)

The numerical experiments in Section 3.3.2 suggest that this is indeed a viable approach.
Let us now return to the case of finding α according to (3.43). Assume we have a fixed

realization ε of the noise with ||ε|| < ∞. We already discussed convergence properties
in the deterministic setting. Whenever the norm of the given realization of the error
is below the threshold, ||ε|| ≤ τE(||ε||), we can write τE(||ε||) = τ̃ ||ε|| for some τ̃ > 1.
Hence, (3.43) turns into (3.29) and according to deterministic theory we obtain∥∥∥A†y −Rαyη∥∥∥ ≤ dν,τ̃E(‖ε‖)ν/(ν+1)%1/(ν+1)

where dν,τ̃ = dν τ̃
ν/(ν+1). If, however, ||ε|| > τE(||ε||), we can not deduce information

about the reconstructed solution as the error may be arbitrarily large. Therefore,

P
(∥∥∥A†y −Rαyη∥∥∥ ≥ dν,τE(‖ε‖)ν/(ν+1)%1/(ν+1)

)
≤ P (||ε|| > τE(||ε||)) . (3.47)

Whenever the probability on the right goes to zero we have convergence of the regularized
to the true solution in probability. The actual value depends on the distribution of the
noise. However, in general it follows from Markov’s inequality (1.25) that

P(‖ε‖ ≥ τE(‖ε‖)) ≤ 1

τ

independent of the variance of the noise. Lemma 1.3.2 iii) shows that even after an exact
calculation the probability P(‖ε‖ ≥ τE(‖ε‖)) might be independent of the variance. Since
we require P(‖ε‖ ≥ τE(‖ε‖)) to converge to zero we therefore alter the formulation and
allow τ to depend on the variance of the noise. If τ(η) → ∞ for η → 0 slowly enough
such that still τ(η)E(‖ε‖)→ 0, then

P(‖ε‖ ≥ τ(η)E(‖ε‖)) ≤ 1

τ(η)
→ 0 (3.48)

without specifying the type of noise. The speed of convergence might be slow. However,
when better estimates of the probability are available, the situation improves signifi-
cantly. Consider the Gaussian distribution as in Lemma 1.3.2. The term Γ(m2 ,

mτ2

2 )/Γ(m2 )
is, for not too small values of m and τ , close to zero and decays exponentially, see Figure
3.10. Therefore, already moderate values of τ lead to a small probability. This agrees
with the intuition that τ should not be too close to 1 to compensate the uncertainty
between expectation and actual value of the norm of the noise.
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Using this strategy, we implement the variance-dependent τ in the discrepancy prin-
ciple to obtain the equation

‖Axηα − yη‖ = τ(η)E(‖ε‖) (3.49)

where

τ(η)→∞ as η → 0, τ(η) > 1 ∀0 ≤ η ≤ η0 and lim
η→0

τ(η)E(‖ε‖) = 0. (3.50)

The probability estimate (3.47) then leads directly to a convergence Theorem with
the maximum principle of Section 1.4.

Theorem 3.3.3. Let b ∈ R(()A), yη = Ax+ ε and E ‖ε‖ = f(η) <∞. Let α = α(η, yη)
be chosen via (3.49) with τ(η) fulfilling (3.50). Then

ρK(A†y,Rαy
η) ≤ max

{
dν(τ(η)E(‖ε‖))ν/(ν+1)%1/(ν+1),P (||ε|| > τ(η)E(||ε||)) , 1

}
.

(3.51)
In particular it holds that

lim
η→0

ρK(A†y,Rαy
η) = 0.

If additionally Assumption 1.4.2 holds and one sets xηα := 0 if any of the two conditions
is not satisfied, one has

lim
η→∞

E(||A†y −Rαyη||) = 0.

Proof. For any noise model with E(||ε||) <∞ Markov’s inequality gives

P (||ε|| > τ(η)τ0E(||ε||)) ≤ E(||ε||)
τ(η)τ0E(||ε||)

=
1

τ(η)τ0
. (3.52)

Since τ(η) → ∞ for η → 0 the probability goes to zero, i.e., Rµb
η converges to A†b in

probability and hence in the Ky Fan metric. Enforcing boundedness of the solutions
implies convergence in expectation, see Section 1.4

Remark. If operator and noise allow a bias-variance decomposition

E(||x† − xηα||2) = ||x† − xα||2 + E(||xα − xηα||2),

see for example [28, 14], then all convergence theorems including convergence rates an
be stated for stochastic L2 convergence E(||x† − xηα||2)

Lastly, we want to discuss the feasibility of the discrepancy principle in the stochastic
setting. Again, the results follow from the deterministic theory. Let yδ be a given
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realization of noisy measured data. Then, for simplicity assuming the mapping α 7→
|1− Fα(σ)| is continuous, the equation

||ARαyδ − yδ|| = C, C > 0,

is solvable for
||(I − PR(A)

)yδ|| ≤ C ≤ ||yδ||, (3.53)

where PR(A)
) is the projection of yδ onto R(A). Namely, for α→∞ one has ||ARαyδ −

yδ|| → ||yδ|| because limα→∞ Fα(σ) = 0 and supσ,α |Fα(σ)| ≤ ∞, c.f. Theorem 3.1.3 or

[7]. In case C > ||yδ|| one chooses α = ∞. On the other hand, for α → 0 the filter
functions go to one (see again Theorem 3.1.3), and hence the regularization operator
Rα turns in the limit into the generalized inverse A†, compare (3.4) and (3.2). Since
AA†yδ = PR(A)

yδ, the lower bound in (3.53) follows. In the stochastic setting it may

occur that a given realization of the noise is so large that the discrepancy principle based
on that single realization fails. It is therefore advisable to choose τ larger than usual in
the deterministic theory in order to decrease the probability of overly large noise, see
Figure 3.10 for an example with Gaussian noise.

3.3.2 Numerical Results

In this section we will verify our results numerically. Our test problem is the inverse
heat equation

y(t) =

∫ t

0

(s− t)−
3
2

2
√
π

exp

(
− 1

4(s− t)

)
x(s)ds. (3.54)

We used the discretization of (3.54) provided in Regularization Tools [87]. The true

solutions x†ν , depending on smoothness parameter ν, were created by multiplying a vector
h ∈ Rn, hi = 1 for i = 1, . . . , n, with the operator (A∗A)ν/2. Thus x†ν ∈ R((A∗A)ν/2)
and % = ||h||.

We chose to show results for a discretization of the solution on n = 200 points, resulting
in a 200 × 200 matrix A. The reason for not displaying too fine discretization levels is
that in this case the difference between stochastic and deterministic curves becomes
basically invisible, while at the same time the quality of the curves remains the same.
In all experiments shown, we equipped both the domain and range of the discretized
operators with the Euclidean vector norm and added Gaussian noise ε ∼ N (0, η2In) to
the error-free data y.

In a first experiment we address the a priori parameter choice rule (3.39) for Tikhonov
regularization in standard form where we set C := 1. We do not consider fractional
Tikhonov regularization in order to avoid having another free parameter. Tikhonov
regularization in standard form fulfills (3.5) and (3.6) with β = 1

2 , see Lemma 3.2.1 with
µ = 1.



68 Chapter 3 Filter-based reconstruction methods

10
−6

10
−5

10
−4

10
−3

10
−2

10
−3

10
−2

10
−1

10
0

η

a priori convergence rate, ν=1

 

 

error stochastic model
predicted rate stochastic
error deterministic model

10
−5.6

10
−5.5

10
−5.4

10
−5.3

10
−5.2

10
−1

η

a priori convergence rate, ν=0.5

 

 

error stochastic model
predicted rate stochastic
error deterministic model

10
−6

10
−5

10
−4

10
−3

10
−2

10
0

η

a priori convergence rate, ν=0.25

 

 

error stochastic model
predicted rate stochastic
error deterministic model

Figure 3.11: Log-log plots of a priori parameter choice with ν = 1 (top left), ν = 0.5
(top right) and ν = 0.25 (bottom). Shown are the observed stochastic rate
(red), the determinsitic rate (black) and the predicted rate (blue). The
convergence rates are normalized since the constant is unknown. There-
fore, the slope of the curves is of primary interest.

In order to approximate the expectation of the reconstruction error, the reconstruction
error has been averaged over 50 individual noise realizations for each variance η. We plot,
for three values of ν, the predicted bound (3.40), averaged reconstruction error using the
stochastic a-priori parameter choice rule and, for comparison, the reconstruction error
under the well established deterministic a priori parameter choice rule. The values of
the variance η are chosen from a log-uniform grid of 20 values between 0.000001 and
0.01, see Figure 3.11.

In the second experiment we seek to verify the convergence results for the discrepancy
principle based on (3.44). As suggested, we approximate the expectation of the residual
by (3.46). The expectation of the residual is approximated by averaging N = 10 residu-
als obtained from different realizations of the noise. Again we simply employ Tikhonov
regularization in standard form and as before, plot for three values of ν the predicted
bound (3.40), averaged reconstruction error using the stochastic parameter choice rule
(3.44) and, for comparison, the reconstruction error under the well established deter-
ministic discrepancy principle (3.29). The value of τ is identical for both. The values
of the variance η are chosen from a log-uniform grid of 20 values between 0.000001 and
0.01, see Figure 3.12.

Finally the discrepancy principle (3.43) is addressed. We use Landweber’s method in
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Figure 3.12: Log-log plots of a priori parameter choice with ν = 1 (top left), ν = 0.5
(top right) and ν = 0.25 (bottom). Shown are the observed stochastic rate
(red), the determinsitic rate (black) and the predicted rate (blue). The
convergence rates are normalized since the constant is unknown. There-
fore, the slope of the curves is of primary interest.

order to give another example of a filter based regularization method. The Landweber
method has been introduced in Section 1.2.2. The discrepancy principle is used to stop
the iteration early enough. That is, we stop at the first solution for which

||Axηk − y
η|| ≤ τ(η)E(||ε||).

In the experiments we let
τ(η) = 0.3| log(η)|η−0.015

For Gaussian noise it is τ(η)E(||ε||) ≤ 0.3| log(η)|η−0.015η
√
m→ 0 as η → 0.

As before, we compare the predicted convergence rate with the observed rate in both
stochastic and deterministic setting for three particular values of ν, see 3.13. The slope
of the observed stochastic convergence rate in the log-log plots is slightly lower compared
to the deterministic one. This coincides with the analytic result of Theorem 3.3.3 due
to the parameter τ .



70 Chapter 3 Filter-based reconstruction methods

10
−6

10
−5

10
−4

10
−3

10
−2

10
−2

10
−1

10
0

η

convergence rate, ν=1

 

 

error stochastic model
error deterministic model
predicted rate

10
−6

10
−5

10
−4

10
−3

10
−2

10
−2

10
−1

10
0

η

convergence rate, ν=0.5

 

 

error stochastic model
error deterministic model
predicted rate

10
−6

10
−5

10
−4

10
−3

10
−2

10
0

η

convergence rate, ν=0.25

 

 

error stochastic model
error deterministic model
predicted rate

Figure 3.13: Log-log plots of a priori parameter choice with ν = 1 (top left), ν = 0.5
(top right) and ν = 0.25 (bottom). Shown are the observed stochastic rate
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convergence rates are normalized since the constant is unknown. There-
fore, the slope of the curves is of primary interest.
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In Chapter 3 we have shown how deterministic convergence results for a certain type
of linear regularization methods for linear ill-posed problems can be lifted to fit stochas-
tic error models. In this chapter, we stick with linear ill-posed problems, but address
a particular nonlinear regularization method that we seek to apply to the problem of
Atmospheric Tomography. We derive a Tikhonov-type functional from a pure Bayesian
approach and show during the convergence analysis that the lifting arguments in par-
ticular allow the construction of a non-standard a-priori parameter choice rule. Large
parts of this chapter are taken from the paper [88].

4.1 Sparsity promoting regularization methods

4.1.1 Introduction and short survey

Recently, sparsity promoting regularization methods have gained much attention in the
Inverse Problems community. In this framework, it is assumed that the unknown x
can be approximated well with only few coefficients of its expansion with respect to
a preassigned dictionary Λ in X . Let, for example, {φj}j∈N, be an orthonormal basis
(ONB) for the (infinite dimensional) Hilbert space X . Then a function

x =
∑
j∈N
〈x, ψj〉ψj ⊂ X

is sparse in that basis if only finitely many coefficients 〈x, φj〉 are nonzero. At this point,
let us remark that in this chapter, infinite dimensional quantities will be denoted be
bold-face letters. In the deterministic case, where usually Tikhonov-type functionals

||Ax− yδ||2Y + α̂Θw,p(x) (4.1)

are minimized, it is known that penalties of the form

Θw,p(x) =
∑
λ∈Λ

wλ|〈x, ψλ〉|p, 1 ≤ p < 2, (4.2)

w = {wλ}λ∈Λ with wλ ≥ c > 0 ∀λ ∈ Λ, indeed lead to sparse reconstructions, i.e.,
the amount of nonzero coefficients 〈x, ψλ〉, λ ∈ Λ, is small. Pushed by the seminal
paper [89], where the authors studied the so-called iterative soft-shrinking algorithm to
calculate the minimizer of a special Tikhonov-functional under the deterministic error
assumption, sparsity has become a widely used regularization strategy both in the de-
terministic and the stochastic setting. We will base our theory on the paper [89], from
where we also employ the numerical algorithm of iterative soft shrinkage, see Section
4.4. Although it is known to be rather slow, it serves our purpose. The results of [89]
have been refined [90, 91, 92] and alternative minimization procedures for the solution
of (4.1) have been introduced, based on for example, hard thresholding [93] projection
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[94, 95], Newton-type methods [96] or domain decomposition [97]. The idea of spar-
sity has been generalized to nonlinear problems [98, 99, 100, 11], Banach spaces [101],
or nonconvex penalties [102, 103, 104]. Sparsity promoting regularization may even be
beneficial when the sparsity assumption fails [105, 106]. In [107] it has been shown
how Tikhonov-Regularization in standard form can be used to find relevant coefficients
for sparse regularization. Tomography is a particular application of sparsity that is of-
ten used in numerical examples. Other applications include, for example, inpainting
[99, 108], inverse interface problems [109] or parameter identification, see [110] for a
topical review. Sparse regularization also gained attention in the stochastic setting, c.f.
[111, 112, 113]. A particular choice for Θw,p are Besov space norms which have already
been used as sparsity constraints, see for example [89, 98, 114, 115] in the determinsitic
setting or [112, 113, 116, 117, 118, 119] in the stochastic setting. In Section 4.2.1 we
introduce a wavelet-ONB which is later used to characterize Besov spaces in Section
4.2.2.

4.2 From Bayes to Tikhonov

In contrary to the previous chapter we will start here directly in the stochastic setting.
As before, we consider an equation

Ax = y (4.3)

between Hilbert spaces X and Y. Now, however, we want to pay more attention to
the fact the (typically) infinite dimensional problem has to be approximated by a finite
dimensional one when doing calculations on a computer. Therefore, we first introduce
a linear orthogonal projection operator Pm : Y → Rm, modeling the mapping of the
object y on an m-dimensional vector y. The projection depends on the actual measure-
ment device. One might for example think of measured function values or coefficients
with respect to certain basis functions in Y. As before ε ∈ Rm denotes the typically
unavoidable measurement noise. We thus have the practical measurement model

Pmy = PmAx + ε.

Throughout this chapter we assume for simplicity that each component of the error is
normally distributed with zero mean and variance η2, εi ∼ N (0, η2) for i = 1 . . .m,
η > 0. Let {ψλ : λ ∈ Λ} be an orthonormal basis in X , where Λ is an appropriate
index set. In order to characterize the unknown x by its coefficients with respect to
{ψλ : λ ∈ Λ}, we introduce a second operator

T : X → `2 via x 7→ {〈x, ψλ〉}λ∈Λ. (4.4)

T and its adjoint T ∗,

T ∗ : `2 → X via g 7→
∑
λ∈Λ

gλψλ (4.5)
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which allow us to switch between function x and the coefficients xλ := 〈x, ψλ〉. Here 〈·, ·〉
denotes the L2-inner product. Computations on a computer require a finite dimensional
representation of x. Therefore we restrict the index set Λ to a finite set Λn, where n ∈ N
is the number of basis functions used for the discretization. The truncated projectors
with respect to Λn are defined analogously to (4.4) and (4.5), respectively. We have

Tn : X → `2(Rn), x 7→ {〈x, ψλ〉}λ∈Λn ,

T ∗n : `2(Rn)→ X , g 7→
∑
λ∈Λn

gλψλ. (4.6)

Our choice of {ψλ : λ ∈ Λ} will be a wavelet basis as introduced in Section 4.2.1. We
introduce the basis in more detail in Section 4.2.2. The operator Tn then corresponds
to taking the first n coefficients of the wavelet expansion of x and T ∗n corresponds to
using a sequence of n real numbers as coefficients of the series expansion. Although our
theory can be expanded to frames instead of a basis in X , we restrict ourselves to the
latter case for simplicity. Thus we arrive at the computational model

Pmy = PmAT ∗nTnx + ε. (4.7)

To simplify the notation we denote y := Pmy, yη := y + ε, x := Tnx, A := PmAT ∗n and
obtain the linear model

yη = Ax+ ε. (4.8)

Since we use the Bayesian approach (see Section 1.3.2), the variables x, yη and ε are
realizations of the corresponding random variables in the equation

Y η = AX + E . (4.9)

The solution of the Inverse Problem is given, as explained in Chapter 1, by Bayes formula

πpost(x|yη) =
πpr(x)πε(y

η|x)

πyη(yη)
. (4.10)

In order to get a single solution rather than the whole distribution, we use the maximum
a-posteriori (MAP) solution (1.19). Because of the normally distributed error we simply
have

πε ∝ exp

(
− 1

2η2
||Ax− yη||2

)
.

The prior distribution πpr for the Besov space prior can formally be written as

πpr(x) ∝ exp
(
−α

2
||T ∗nx||

p
Bsp,p(Rd)

)
(4.11)
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in the discretized setting. We will define it in more detail in Definition 4.2.2. Bayes’
formula (4.10) thus yields

πpost(x|yη) ∝ exp

(
− 1

2η2
||Ax− yη||2

)
exp

(
−α

2
||T ∗nx||

p
Bsp,p(Rd)

)
.

The maximum a posteriori solution is thus given by

xMAP = argmin
x∈Rn

1

2η2
||Ax− yη||2 +

α

2
||T ∗nx||

p
Bsp,p(Rd)

.

Setting α̂ = αη2 we arrive at

xMAP
α̂ = argmin

x∈Rn
||Ax− yη||2 + α̂||T ∗nx||

p
Bsp,p(Rd)

, (4.12)

which is exactly a discretized version of the Tikhonov functional (4.1) known from the
deterministic setting. Consequently, the same techniques can be used to calculate the
minimizer. In order to avoid confusion with well-known results from deterministic the-
ory, it is important to carefully distinguish between the parameter α originating from
the prior distribution (4.11) and the actual regularization parameter α̂ = αη2 in the
Tikhonov functional (4.1), as they show different asymptotic behavior: in the following
chapters we will see that α̂ goes to zero, whereas α has to grow to infinity.

4.2.1 Wavelets

In this work we focus on a particular type of basis for L2(Rd), namely, the wavelet basis.
The wavelet basis is constructed via a nested sequence of subspaces for L2(R) called
multiresolution analysis (MRA), see for example [120]. In order to generate a MRA, a
family of subspaces {Vj}j∈Z of L2(R) has to fulfil the following conditions.

(1) · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . .

(2)
⋂
j∈Z Vj = {0} and

⋃
j∈Z Vj = L2(R)

(3) x ∈ V0 ⇔ x(· − k) ∈ V0 ∀k ∈ Z

(4) x ∈ Vj ⇔ x(2−j ·) ∈ V0

(5) There exists a function φ ∈ V0 such that {φ(·−k) : k ∈ Z} is an orthonormal basis
of V0

In particular,
φjk(t) := 2j/2φ(2jt− k)
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is an orthonormal basis for Vj . The function φ is called the scaling function. Define Wj

as the orthonormal complement of Vj in Vj+1,

Vj+1 = Vj ⊕Wj for all j ∈ Z. (4.13)

The {Wj}j∈Z inherit the scaling and translation properties (3) and (4) of the {Vj}j∈Z.
Let ψ ∈W0, the mother wavelet, be a compactly supported function such that {ψ(·−k) :
k ∈ Z} constitutes an ONB in W0. Then the functions

ψj,k := 2
j
2ψ(2jt− k), k ∈ Z

are an ONB for Wj . Since (4.13) holds for all j ∈ Z, one can show that the Wj span

L2(R),
⊕

j∈ZWj = L2(R). Due to this and (1), one can represent L2(R) = V0
⊕

j≥0Wj .
The construction of the functions φ and ψ is rather complex and will not be discussed
here. In particular, smoothness properties play a big role in the design process. We
shall just assume that both functions are given and that they are smooth enough, i.e.,
φ ∈ C s̃(R) and ψ ∈ C s̃(R) for some s̃ > 0. For more information see, for example,
[120, 121, 122].

So far we introduced a MRA only for L2(R). Following Meyer [121] we expand this
to a wavelet basis in L2(Rd) by the tensor product method. Let

φdj,k(t) := 2dj/2φ(2jt1 − k1) . . . φ(2jtd − kd)

with the same φ as previously. For each j ∈ Z, the {φdj,k : k ∈ Zd} span a subspace of

L2(Rd) which we denote by V d
j . One can show that the set of these spaces fulfils the

conditions (1)-(5) and hence defines a MRA for L2(Rd). Let E denote the set of all
2d − 1 sequences ν = (ν1, ν2, . . . , νd) with νj ∈ {0, 1} for all j = 1, . . . , d and

∑
j νj > 0.

The spaces W d
j defined by

V d
j+1 = V d

j ⊕W d
j , j ∈ Z

analogously to (4.13) are then spanned by the tensor-wavelets

ψνj,k(t) := 2dj/2ψν1(2jt1 − k1) · · · · · ψνd(2jtd − kd)

with the convention that ψ0 = φ, ψ1 = ψ and vectors k = (k1, k2, . . . , kd) ∈ Zd. Since

again
⊕

j∈ZW
d
j = L2(Rd) the ψνj,k constitute an orthonormal basis for L2(Rd). One also

has
L2(Rd) = V d

0

⊕
j>0

W d
j .

Thus, defining an orthonormal basis of V d
j via

φdj,k(t) := 2dj/2φ(2jt1 − k1) . . . φ(2jtd − kd),
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a function x ∈ L2(Rd) has the form

x =
∑
k∈Zd
〈x, φd0,k〉φd0,k +

∞∑
j=0

∑
k∈Zd
〈x, ψνj,k〉ψνj,k. (4.14)

To simplify the notation we follow [89] and denote the set of all functions φd0,k and ψνj,k,
j = 1, 2, . . . , k ∈ Z, ν ∈ E, in (4.14) by Ψλ. However, in our framework we have to
restrict the index set Λ such that on each scale we have only finitely many wavelets.
This is guaranteed by the following assumptions on the wavelet expansion of x:

• ∃k0
φ ∈ Zd,kφ ∈ Z : 〈x, φd0,k〉 = 0 for all k ∈ Zd: ||k− k0

φ||l1 > kφ. Define `φ := {#k :

||k − k0
φ||l1 ≤ kφ}.

• On each scale j ≥ 0, ∃k0
ψ ∈ Zn, kjψ ∈ Z, kj−ψ ≤ kj+ψ : 〈x, ψdj,k〉 = 0 for all k ∈ Zd:

||k − k0
ψ||l1 > kjψ. Define `jψ := {#k : ||k − k0

ψ||l1 ≤ k
j
ψ}.

• There exists `ψ ∈ N such that `jψ ≤ 2jd`ψ for all j ≥ 0.

These assumptions are for example satisfied for compactly supported functions or func-
tions which are truly sparse, i.e., the number of nonzero inner products in (4.14) is finite.
Thus (4.14) reads

x =
∑

k−φ ≤k≤k
+
φ

〈x, φd0,k〉φd0,k +

∞∑
j=0

∑
kj−ψ ≤k≤k

j+
ψ

〈x, ψνj,k〉ψνj,k. (4.15)

We denote the corresponding index set by Λf . Hence x =
∑

λ∈Λf
〈x, ψλ〉ψλ.

4.2.2 Besov Spaces and random variables therein

The Ψλ = {ψλ : λ ∈ Λ} as introduced in the previous section are not only an orthonormal
basis in L2(Rd) but also a (Riesz) basis for other function spaces including Besov spaces.
The Besov spaces Bs

p,q(Rd) are function spaces on Rd consisting of, roughly spoken,

functions which have s derivatives in Lp(Rd), where q provides some additional fine-
tuning. They form Banach spaces whenever p ≥ 1 and q < ∞. Besov spaces can
be introduced in various ways. From function space theory, they can be motivated as
interpolation spaces between the classical Sobolev spaces Hs [123]. Besov spaces are
often used to measure smoothness of functions, which can be seen from the following
common definition of Besov spaces, see [123, 124, 125].

Definition 4.2.1. Let ∆hx(t) := x(t − h) − x(t) and define the modulus of continuity
by

cl(x, r)p = sup
||h||2≤r

||∆l
hx||Lp , r > 0, l ∈ N.
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Let m > s > 0. A function x is an element of the Besov space Bs
p,q(Rd) if

|x|Bsp,q(Rd) :=

{∫∞
0

∣∣∣ cm(x,r)p
rs

∣∣∣q drr <∞ 0 < q <∞
supr≥0

cm(x,r)p
rs q =∞

. (4.16)

Adding the norm ||x||Lp to the seminorm (4.16) yields a norm in Bs
p,q(Rd) [123, 125].

In this work we restrict ourselves to the case p = q < ∞ for the Besov spaces. In this
case the spaces Bs

p,p coincide with the Sobolev spaces W s
p (Rd) whenever s is not an

integer [123]. For p = 2, Bs
2,2 even coincides with the classical the Sobolev spaces Hs.

Throughout this work we will always assume that

ς := s+ d

(
1

2
− 1

p

)
≥ 0 (4.17)

to ensure Bs
p(Rd) is a subset of L2(Rd) [89]. With this convention, the wavelet basis,

allows for a much less technical definition of the Besov spaces as in Definition 4.2.1.
Namely, using the convention |λ| = j to denote the scale of the wavelets, the norm

||x||Bsp,p(Rd) =

(∑
λ∈Λ

2ςp|λ||〈x,Ψλ〉|p
) 1

p

(4.18)

is equivalent the traditional Besov space norm ||x||Bsp,p = (||x||Lp + |x|Bsp,p(Rd))
1/p. In

this formulation of the norm, the smoothness of the functions is controlled by the decay
of the wavelet coefficients against the weight 2ςpλ|. A more detailed discussion of Besov
spaces can be found, for example, in [120, 121, 123, 124, 125].

Since the convergence analysis of this chapter is performed in the Bayesian setting
(see Section 1.3.2), all occurring quantities have to be understood as random variables.
Defining Besov space random variables will directly lead to the prior distribution nec-
essary in the Bayesian approach. With the wavelet basis Ψλ from the previous section,
we have the following definition, adapted from [112].

Definition 4.2.2. Consider functions on Rd, d ∈ N. Let 1 ≤ p <∞ and Λf from (4.15).
Take s ∈ R such that ς := s + d(1

2 −
1
p) > 0. Let (Xα

λ )λ∈Λf be independent identically
distributed real-valued random variables with probability density function

πXα
λ

(τ) = cαp exp(−α|τ |
p

2
), τ ∈ R, cαp =

(α
2

) 1
p p

2Γ(1
p)

(4.19)

for all α > 0. Let X be the random function

X(t) =
∑
λ∈Λf

2−ς|λ|Xα
λψλ(t), t ∈ Rd.

Then we say X is distributed according to a Bs
p,p-prior with parameter α.
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The following Lemma characterizes the random variables |Xα
λ |p on which the stochastic

properties of ||X|| essentially depend.

Lemma 4.2.1. Let Xα
λ be defined as in Definition 4.2.2. Then the random variables

|Xα
λ |p, 0 < p <∞, are distributed according to the probability density function

π|Xα
λ |p(ξ) =

(α
2

) 1
p ξ

1
p
−1

Γ(1
p)

exp

(
−αξ

2

)
, ξ ≥ 0 (4.20)

and satisfy

E (|Xα
λ |p) =

2

αp
. (4.21)

Proof. Let Xα
λ be defined as in (4.19). We are interested in the probability density of

Y := |Xα
λ |p. Denote FXα

λ
(τ) and FY (ξ) the cumulative distribution functions of Xα

λ and
Y , respectively. Since Y ≥ 0, also ξ ≥ 0. For all ξ > 0,

FY (ξ) = P(Y ≤ ξ) = P(|Xα
λ |p ≤ ξ) = P(− p

√
ξ ≤ Xα

λ ≤ p
√
ξ)

= FXα
λ

( p
√
ξ)− FXα

λ
(− p
√
ξ)

and since p
√
· is continuously differentiable on (0,∞) for 0 < p <∞,

πY (ξ) = d
dξFY (ξ) = d

dξ

(
FXα

λ
( p
√
ξ)− FXα

λ
(− p
√
ξ)
)

= πXα
λ

( p
√
ξ) ·

(
1
pξ

1
p
−1
)
− πXα

λ
(− p
√
ξ) ·

(
−1
pξ

1
p
−1
)

=
(
α
2

) 1
p ξ

1
p−1

Γ( 1
p

)
exp

(
−αξ

2

)
, ξ > 0.

For ξ = 0, FY (ξ) = P(Y ≤ ξ) = P(|Xα
λ |p ≤ ξ) = 0. Now (4.21) is given by

E (|Xα
λ |p) =

∫ ∞
0

ξπY (ξ)dξ.

Since Λf contains infinitely many basis functions, a realization of such a Besov space
random variable is an element of the space of definition with probability zero. To guar-
antee finiteness of the norm, the functions have to be defined in a Besov space which
is smoother than the one where the realizations are measured. The following Lemma
was adopted from [112, Lemma 2], but there the authors considered functions on a d-
dimensional torus instead of Rd, i.e., they used a different definition of the wavelet basis.
Also, their proof does not include the parameter α.

Lemma 4.2.2. Let X be defined in Br
p,p(Rd) as in Definition 4.2.2 for some r > 0 and

2 < α <∞. Then the following three conditions are equivalent:
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(i) ||X||Bsp,p(Rd) <∞ almost surely,

(ii) E exp
(
||X||p

Bsp,p(Rd)

)
<∞,

(iii) s < r − d
p .

Proof. Let (Xα
λ )λ∈Λf be as in Definition 4.2.2. First consider the expectation of ||X||p

Bsp,p(Rd)
.

Because of (4.21) we have

E||X||p
Bsp,p(Rd)

= E
∑
λ∈Λf

2
(s+d

(
1
2
− 1
p

)
)p|λ|

∣∣∣∣2−(r+d
(

1
2
− 1
p

)
)|λ|
Xα
λ

∣∣∣∣p
= E

∑
λ∈Λf

2−(r−s)p|λ||Xα
λ |p =

∑
λ∈Λf

2−(r−s)p|λ|E|Xα
λ |p

=
2

αp

∑
λ∈Λf

2−(r−s)p|λ|. (4.22)

Because of the construction of Λf there are `φ scaling functions and `ψ wavelets on the
coarsest scale. Additionally, on scale j > 0 we have at most 2jd`ψ wavelets. Hence,
the summation in (4.22), which is actually a double some over all wavelets and scales,
reduces to a simple sum and

E||X||p
Bsp,p(Rd)

=
2

αp

`φ +

∞∑
j=0

2−(r−s)pj · 2jd`ψ


=

2

αp

`φ + `ψ

∞∑
j=0

2−j((r−s)p−d)

 (4.23)

The sum converges if and only if (r− s)p− d > 0. Since finiteness of the expectation of
a positive random variable implies almost sure finiteness of the random variable itself,
||X||p

Bsp,p(Rd)
<∞ a.s. and also ||X||Bp,pps(Rd) <∞ a.s., hence (i)⇔ (iii). Now we turn

to condition (ii). It is

E exp
(
||X||p

Bsp,p(Rd)

)
= E exp

(∑
λ∈Λf

2−(r−s)p|λ||Xα
λ |p
)

=
∏
λ∈Λf

E exp
(
2−(r−s)p|λ||Xα

λ |p
)

=
∏
λ∈Λf

(
1− 2−(r−s)p|λ|+1

α

)−1/p

=
(
1− 2

α

)− `φ
p ·
(∏∞

j=0

(
1− 2−(r−s)p|λ|+1

α

)2jd`ψ
)− 1

p

(4.24)
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where we used that the Xα
λ are independent and E exp(c|Xα

λ |p) = (1− 2c
α )−1/p if α > 2c

(which is why we have to require α > 2). Since
∏∞
l=0(1 + al) converges if and only if∑∞

l=0 log(1 + al) converges we find that E exp
(
||X||p

Bsp,p(Rd)

)
<∞ if

∞∑
j=0

2jd`ψ log

(
1− 2−(r−s)p|λ|+1

α

)
<∞. (4.25)

The root test yields

lim
j→∞

(
2jd`ψ log

(
1− 2−(r−s)p|λ|+1

α

)) 1
j

= 2−(r−s)p+d. (4.26)

Hence the sum and by that (4.24) converges if (iii) holds. Since (ii) obviously implies
(i) the proof is complete.

The Lemma shows that, although we define the random variable in the Besov space
Br
p,p(Rd) , its realizations will be elements of Br

p,p(Rd) with probability zero. Instead we
have to reduce the smoothness of the space in which the realizations are measured to
Bs
p,p(Rd), s < r − d/p, so that the tail of the wavelet series is under control. If such a

combination is used for spaces of definition and measurement of the random variables,
finiteness of the norms in the latter space is ensured if condition (iii) is fulfilled. We
will refer to this as the infinite model (MI). A second possibility is to consider a finite
dimensional model: Let Tn, T

∗
n be defined as in (4.6). Then for a function x ∈ L2(Rd)

and arbitrary, but fixed n ∈ N, T ∗nTnx =
∑

λ∈Λn
xλψλ is an element of Bs

p,p(Rd) with
probability one if the wavelet is smooth enough. This allows in particular to measure
the realizations of random variables in the same norm as was used in the definition of
the random function. This will be referred to as the finite model (MII). In order to
derive convergence rates we need to calculate P(||X||Bsp,p(Rd) ≥ %) for given % > 0. The

following Corollary shows how this can be done for model (MI) using Lemma 4.2.2.

Corollary 4.2.3. Consider model (MI). Let X be defined in Br
p,p(Rd) according to Def-

inition 4.2.2 with 2 < α <∞. Let s < r − d
p and % > 0. Then

P(||X||Bsp,p(Rd) > %) ≤ 2

αp%p

`φ + `ψ

∞∑
j=0

2−j((r−s)p−d)

 . (4.27)

Proof. According to Markov’s inequality, for any nonnegative random variable ξ with
Eξ <∞, P(ξ > %) ≤ 1

%Eξ. Since the mapping z 7→ zp is bijective for z ≥ 0 and 1 ≤ p ≤ 2,
we have for given % > 0

P(||X||Bsp,p(Rd) > %) = P(||X||p
Bsp,p(Rd)

> %p) ≤ 1

%p
E||X||p

Bsp,p(Rd)
.
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The expectation of ||X||p
Bsp,p(Rd)

is given by (4.23).

Using the finite model, we get the following result.

Lemma 4.2.4. Consider model (MII). Let X be defined as Bs
p,p(Rd) random function

according to Definition 4.2.2, Tn as in (4.6) and take % > 0. Denote Xn := T ∗nTnX.
Then

P(||Xn||Bsp,p(Rd) > %) =
Γ(np ,

α%p

2 )

Γ(np )
(4.28)

with the Gamma functions

Γ(a) =

∫ ∞
0

ta−1e−tdt, Γ(a, z) =

∫ ∞
z

ta−1e−tdt.

Proof. Let X be as in Definition 4.2.2. Then Xn =
∑

λ∈Λn
2−ς|λ|Xα

λψλ and its norm
||Xn||pBsp,p(Rd)

=
∑

λ∈Λn
|Xα

λ |p reduces to a sum of n i.i.d. random variables with density

(4.20). The resulting density can be calculated using the moment generating function
(c.f., e.g. [27]) of the Xα

λ which is just the Laplace transform L(·) of the probability
density function. The moment generating function of a sum of random variables is given
by the product of the single moment generating functions [27]. With π|Xα

λ |p from (4.20)
we get

L[π|Xα
λ |p ](s) =

(
1 +

2s

α

)−1/p

and obtain the probability density function of π∑
λ∈Λn

|Xα
λ |p(ξ), ξ ≥ 0, via the inverse

Laplace transform L−1,

π∑
λ∈Λn

|Xα
λ |p(ξ) = L−1

[(
1 +

2s

α

)−n/p]
(ξ) =

ξ
n
p
−1

Γ(np )

(α
2

)n
p
e−

α
2
ξ. (4.29)

Because
∑

λ∈Λn
|Xα

λ |p is non-negative, P(||Xn||Bsp,p(Rd) > %) = P(||Xn||pBsp,p(Rd)
> %p).

The claim follows by integrating (4.29) over ξ from %p to infinity.

Remark. Similar to the infinite dimensional setting, Chebyshev’s inequality allows to
estimate

P(||Xn||Bsp,p(Rd) > %) ≤ 2n

αp%p
. (4.30)

This is indeed an upper bound for (4.28).

Remark. The relation between the two models is best seen by comparing (4.27) and
(4.30). Both probabilities solely differ in a term describing the wavelet structure. In
model (MI) the term `φ + `ψ

∑∞
j=0 2−j((r−s)p−d) ensures that E(||X||) is bounded inde-

pendently of n, whereas in the finite model the expectation E(||Xn||) grows unbounded.
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If % is an a-priori estimate of ||X|| or ||Xn||, respectively, it will have to be chosen differ-
ently for the two models, taking into account the different asymptotic behaviour of the
respective random variables.

From the Bayesian point of view, Besov space priors are particularly interesting.
Namely, it has been shown in [111, 112] that Besov priors are discretization invariant,
i.e., fulfills the following three conditions.

• the solution to the Inverse Problem diverges as its discretization is refined

• the solution to the Inverse Problem diverges as the number of measured data point
increase

• the representation of a-priori knowledge is incompatible with discretization

As a counterexample, it has been shown in [126] that discrete (non-Gaussian) total
variation priors (see, e.g. [127]) converge to a smooth Gaussian prior the more the level
of discretization is refined.

4.3 Convergence of maximum a posteriori solutions with Besov
priors

4.3.1 Review of a deterministic result as basis for the lifting approach

Before we analyse convergence properties of Tikhonov regularization in the stochastic
setting, i.e., of the maximum a posteriori solution (4.12), we want to review facts for the
deterministic case. The following theorem has first been proven in the seminal paper
[89]. A relaxed version has been shown in [91].

Theorem 4.3.1. Assume that A is a bounded operator from X to Y, that 1 ≤ p ≤ 2,
and that c < minλwλ, {wλ}λ∈Λ = w for some constant c > 0. Assume that (4.1) has
a unique minimizer. Let x∗α̂ be this minimizer for given data yδ with ||y − yδ|| ≤ δ and
α̂ > 0. If α̂ = α̂(δ) satisfies the requirements

lim
δ→0

α̂(δ)→ 0 and lim
δ→0

δ2

α̂(δ)
= 0,

then we have, for any x0 ∈ X ,

lim
δ→0

[
sup

||y−yδ||≤δ
||x∗α̂ − x†||

]
= 0,

i.e., the regularized solutions converge to x†, where x† is the unique solution of the
equation Ax = y with minimal value of Φ(·) = || · ||Bsp,p(Rd).
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Remark. Careful inspection of the proof in [89] reveals, that injectivity of the operator
A was only needed to guarantee the existence of a unique minimizer of (4.1) if p = 1. It
has been shown in [91], that in this case injectivity on every finite dimensional subspace
is already sufficient. For all p > 1, the functional (4.1) is convex and hence admits a
unique minimizer.

Remark. For Besov spaces as defined in Section 4.2.2 the weights are given by wλ =
2ςp|λ| > 0, ς = s+ d(1

2 −
1
p) ≥ 0, compare (4.2) and (4.18).

It is well-known from deterministic theory (cf. [8]) that in general the convergence
can be arbitrarily slow. In order to guarantee a certain decrease of the reconstruction
error with respect to the noise parameter, i.e., to derive convergence rates, it is necessary
to impose additional conditions on either the true solution, the operator, or both. We
will require a smoothing property of the operator A and an a priori bound of the norm
of the solution. Since we are only interested in convergence with respect to the noise,
we will consider the discretization levels m and n fixed. There are various results on
convergence rates for sparsity promoting inversion, see for example [91, 89, 128, 129].
For our convergence rate analysis, we will follow the concept presented in [89]. Let us
first summarize some results from [89, Section 4.2]. Assume N(A) = {0} for p = 1 and
suppose that we know a priori a bound on the sparsity penalty of the exact solution,
i.e., ||x∗||Bsp,p(Rd) ≤ % for some % > 0. If we also know that y lies within a distance δ of
Ax∗ in Y, then the exact solution can be localized within the set

F(δ, %) := {x ∈ X : ||Ax− y|| ≤ δ, ||x||Bsp,p(Rd) ≤ %}.

The diameter of this set is a measure of the uncertainty of the solution for a given a
priori constant % and noise level δ. The maximum diameter of F is bounded by 2M(δ, %)
where M(δ, %), defined by

M(δ, %) := sup{||h|| : ||Ah|| ≤ δ, ||h||Bsp,p(Rd) ≤ %}, (4.31)

is called the modulus of continuity of A−1 under the a priori constraint. It can also be
interpreted as the worst case error. An upper bound on the reconstruction error is given
by the modulus of convergence

Mα̂(δ, %) := sup{||x∗α̂ − x|| : x ∈ X ,y ∈ Y, ||Ax− y|| ≤ δ, ||x||Bsp,p(Rd) ≤ %} (4.32)

where x∗α̂ denotes the minimizer of the Tikhonov functional (4.1). The decay of this
modulus of convergence as δ → 0 is governed by the decay of the modulus of continuity,
as shown in the following proposition:

Proposition 4.3.2 ([89], Prop. 4.5). The modulus of convergence (4.32) satisfies

M(δ, %) ≤Mα̂(δ, %) ≤M(δ + δ′, %+ %′), (4.33)
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where
δ′ = (δ2 + α̂%p)

1
2 , %′ = (%p + δ2α̂−1)

1
p (4.34)

and M(δ, %) is defined in (4.31).

Thus it suffices to investigate the convergence behaviour of the modulus of continuity.
As in [89], let us additionally assume that the operator A is of smoothing order β, that
is, we assume that for some β > 0 there exist constants Al and Au such that for all
h ∈ L2(Rd)

A2
l

∑
λ∈Λ

2−2|λ|β|〈h, ψλ〉|2 ≤ ||Ah||2 ≤ A2
u

∑
λ∈Λ

2−2|λ|β|〈h, ψλ〉|2. (4.35)

The decay of the modulus of continuity is then characterized as follows.

Proposition 4.3.3 ([89], Proposition 4.7). If the operator A satisfies the smoothing
property (4.35), then the modulus of continuity M(δ, %) satisfies

c

(
δ

Au

) ς
ς+β

%
β
β+ς ≤M(δ, %) ≤ C

(
δ

Al

) ς
ς+β

%
β
β+ς ,

where ς = s+ d(1
2 −

1
p) ≥ 0 and c and C are constants depending on ς and β only.

4.3.2 Convergence in the stochastic setting

For the convergence analysis we mainly use a lifting argument from deterministic theory.
In Theorem 4.1 of his PhD thesis [30], Hofinger proved how by means of the Ky Fan
metric deterministic results can be lifted to the space of random variables. The same
techniques can be used in our situation as well. Since the original source is not easily
accessible, we include the proof for the convenience of the reader. Before the Theorem,
we need the following Lemmata.

Lemma 4.3.4. ([130], see also [32]) Let (Ω,F , µ) be a finite measure space. Let xk
and x be measurable functions from Ω into a metric space χ with metric dχ. Suppose

xk(ω)
dχ→ x(ω) for µ-almost all ω ∈ Ω.Then for any ε > 0 there is a set Ωε with

µ(Ω\Ωε) < ε such that xk
dχ→ x(ω) uniformly on Ωε, that is

lim
k→∞

sup{dχ(xk(ω), x(ω)) : ω ∈ Ωε} = 0.

Lemma 4.3.5 ([30], Proposition 1.10). Let {xk}k∈N be a sequence of random variables
that converges to x in the Ky Fan metric. Then for any ν > 0 and ε > 0 there exist
Ωε ⊂ Ω, P(Ωε) ≥ 1− ε, and a subsequence xkj with

||xkj (ω)− x(ω)|| ≤ (1 + ν)ρK(xkj , x) ∀ω ∈ Ωε.

Furthermore there exists a subsequence that converges to x almost surely.
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Proof. We give a sketch of the proof for the first statement taken from [30].
Set σk := (1 + ν)ρK(xk, x). By definition of the Ky Fan metric (1.24), for given σk,
there exists a set Ωσk with P(Ωσk) ≥ 1 − σk and ω ∈ Ωσk ⇒ ||x(ω) − xk(ω)|| ≤ σk.
For arbitrary ε > 0 and σk → 0 we pick a subsequence (σkj ) with

∑∞
j=1 σkj ≤ ε and

introduce the set Ωε :=
⋂∞
j=1 Ωσ

kj
. One can check that P(Ωε) ≥ 1 − ε. Since Ωε is a

subset of every Ωσ
kj

we have

∀ω ∈ Ωε ⊆ Ωσ
kj

: ||x(ω)− xkj (ω)|| ≤ σkj ,

which proves he first statement. The second one follows since convergence in Ky Fan
metric is equivalent to convergence in probability, which itself implies almost-sure con-
vergence of a subsequence, cf [32].

With this, we are ready for the convergence theorem.

Theorem 4.3.6. Let y = y(ω) be the exact right hand side in (4.8) and {yη̂k(ω)}k∈N
be a sequence of noisy realizations of y(ω) + ε(ω) such that ρK(y, yη̂k) ≤ η̂k, η̂k → 0 as
k →∞. Let α̂(η̂k) be a parameter choice rule such that α̂(η̂k)→ 0 and η̂2/α̂(η̂k)→ 0 as
η̂k → 0. Furthermore let the minimum norm solution x†, defined as in Theorem 4.3.1,
be unique. Denote with x∗α̂(η̂) the minimizer of (4.1). Then

lim
η̂→0

ρK(x†, x∗α̂(η̂)) = 0.

Proof of Theorem 4.3.6. Define θ := lim supk→∞ ρK(x†, x∗α̂(η̂k)). (Note that 0 ≤ θ ≤ 1

due to the properties of the Ky Fan metric). We show in the following that for arbitrary
ε > 0 we have θ/2 ≤ ε and hence lim supk→∞ ρK(x†, x∗α̂(η̂k)) = limk→∞ ρK(x†, x∗α̂(η̂k)) =
0.
As a first step we pick a “worst case” subsequence {yη̂kj } of {yη̂k}, a subsequence for
which the corresponding solutions satisfy ρK(x†, x∗α̂(η̂

kj
)) ≥ θ/2. We now show that even

from this “worst case” sequence we can pick a subsequence {y
η̂
k
j
l } for which we have

lim sup ρK(x†, x∗α̂(η̂
k
j
l

)) ≤ ε for arbitrary ε > 0.

Let ε > 0. According to Lemma 4.3.5 we can pick a subsequence {y
η̂
k
j
l } and a set

Ωε with P(Ωε) ≥ 1 − ε
2 as well as ||y(ω) − y

η̂
k
j
l (ω)|| ≤ 2η̂

kjl
on Ωε. For all ω ∈ Ωε,

the noise tends to zero, we can therefore use the deterministic result and deduce via
Theorem 4.3.1 that x∗α̂(η̂

k
j
l

)(ω) converges to the unique solution x†(ω) for η̂
kjl
→ 0,

ω ∈ Ωε if α̂(η̂) → 0 and η̂2/α̂(η̂) → 0 as η̂ → 0. This convergence is not uniform in ω;
nevertheless, pointwise convergence implies uniform convergence except on sets of small
measure according to Lemma 4.3.4. Therefore there exist Ω′ε ⊂ Ωε, P(Ω′ε) <

ε
2 and
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j0 ∈ N such that ||x∗α̂(η̂
k
j
l

)(ω)− x†(ω)|| < ε ∀ω ∈ Ωε\Ω′ε and j ≥ j0. We thus have

P
({

ω ∈ Ωε : ||x∗α̂(η̂
k
j
l

)(ω)− x†(ω)|| > ε

})
≤ P(Ω′ε) ≤ ε/2.

Since we split Ω = Ω\Ωε ∪Ωε\Ω′ε ∪Ω′ε with P(Ω\Ωε) <
ε
2 , P(Ω\Ωε) +P(Ω′ε) ≤ ε we have

shown existence of a subsequence η̂
kjl

such that

P
({

ω ∈ Ω : ||x∗α̂(η̂
k
j
l

)(ω)− x†(ω)|| > ε

})
≤ ε

for η̂
kjl

sufficiently small. This ε is by definition of the Ky Fan metric an upper bound for

the distance between x∗α̂(η̂
k
j
l

) and x†. Therefore we have lim supl→∞ ρK(x∗α̂(η̂
k
j
l

), x
†) ≤ ε.

On the other hand, the original sequence satisfied lim infj→∞ ρK(x†, x∗α̂(η̂
kj

)) ≥ θ/2.

Since lim infj→∞ ρK(x†, x∗α̂(η̂k)) ≤ lim supl→∞ ρK(x∗α̂(η̂
k
j
l

), x
†) it follows θ/2 ≤ ε. Because

ε > 0 was arbitrary, this implies θ = 0, which concludes the proof.

In our case of Gaussian noise, we have the following corollary.

Corollary 4.3.7. Let α, η > 0, 1 ≤ p ≤ 2 and x† be unique. Let xMAP
α̂ = xMAP

α,η be the

solution of (4.12). If α = α(η) is chosen such that αη2 → 0 and | ln η|α → 0 as η → 0,
then

lim
η→0

ρK(xMAP
α̂ , x†) = 0.

Proof. From the definition of the Ky-Fan metric (1.24), with a (χ, dχ) = (Rm, || · ||2),
one has

ρK(yη, y) = inf
ε>0
{P({ω ∈ Ω : ||y(ω) + ε(ω)− y(ω)|| > ε}) < ε}

= inf
ε>0
{P({ω ∈ Ω : ||ε(ω)− 0|| > ε}) < ε} = ρK(ε, 0). (4.36)

Hence, by (1.30) we have

ρK(y, yη) ≤
√

2η

√
m− ln−

(
η22πm2

(e
2

)m)
=: η̂.

Recall the definition of α̂ = αη2 and that the maximum a posteriori solution (4.12)
coincides with the minimizer of the Tikhonov functional (4.1). Theorem 4.3.6 ensures
convergence of xMAP

α̂ to x† with respect to the Ky Fan metric if α̂ = αη2 → 0 and
η̂2/α̂(η̂)→ 0. From the definitions of η̂ and α̂ the condition(√

2η
√
m− ln−

(
η22πm2

(
e
2

)m))2

αη2

η→0−→ 0
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follows. This is fulfilled if α grows faster than | ln η| as η → 0.

Reviewing the proof of Theorem 4.3.1, one notices that instead of limδ→0
δ2

α̂(δ) = 0,

it is sufficient to require that δ2

α̂(δ) < C for an arbitrary positive constant C. Hence,

as long as the logarithm is inactive, i.e., m > mmin from (1.31), it suffices to keep α
constant with decreasing η. Although this is not important for theoretical purposes as
the logarithm kicks in eventually, this explains why in numerical experiments α starts
to grow only after η is small enough. In particular, this means that we are well situated
in the Bayesian framework, where the prior is a fixed distribution, as long as m > mmin.
Now let us discuss the asymptotic setting. From a stochastic point of view, α can be
interpreted as a measure for the variance of the prior. If α→∞, i.e., this variance goes
to zero, the coefficients |Xα

λ |p are close to zero with high probability, which emphasizes
the sparsity background. From the Bayesian perspective this is counter intuitive as has
already been observed in [21]. If the prior variance is zero, that would mean to take
the mean of the prior distribution as exact solution. However, we have to keep in mind
that the product of α times the variance of the noise has to converge to zero, i.e., the
noise variance decreases faster than the prior variance. Therefore, relative to the noise
variance, the prior variance grows, i.e., the prior becomes non-informative. In other
words, the smaller the noise is, the less (relative) regularization is needed. This seems to
be a common interpretation of convergence results with respect to the noise covariance
for maximum a-posteriori solutions in the Bayesian framework. As mentioned before, in
[21] the authors ended up with a conclusion very similar to ours. Even in [23], where no
regularization parameter is involved for the finite dimensional convergence analysis, one
may conclude that, if the variance of the noise is sufficiently small, the prior does not
influence the convergence behavior much. Hence, asymptotically, the prior distribution
becomes non-informative. The requirement α → ∞ as observed in Corollary 4.3.7 can
be interpreted as keeping the prior informative relative to the likelihood function as long
as possible.

Again using a lifting technique, the deterministic convergence rate from Theorem
4.3.1 can be carried over into the stochastic setting. We will prove convergence rates
using the finite model, then the infinite model. To simplify the notation we denote
Lm(η) := ln−

(
η22πm2

(
e
2

)m)
from Proposition 1.4.5. Additionally we define

E(η,m, α) :=
√

2η
√
m− Lm(η) +

√
2η

√
m− Lm(η) +

α%p

2
.

Theorem 4.3.8. Let Xn = T ∗nTnX be defined as Bs
p,p(Rd)-random variable according to

Definition 4.2.2 for 1 ≤ p ≤ 2 and take s ∈ R such that ς = s+ d(1
2 −

1
p) ≥ 0. Let xMAP

α̂

be the maximum a-posteriori estimate (4.12) for the solution of (4.8) in the Bayesian
framework with a Bs

p,p-Besov space prior (4.11) according to model (MII). Assume we
are given noisy data yη ∈ Rm such that the error in each component of yη is normally
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distributed with zero mean and variance η2. Assume additionally that the operator A
fulfils (4.35) with β > 0, Al > 0. If the minimum norm solution x† is unique and smooth
enough, i.e., there is an a-priori estimate ||x†||Bsp,p(Rd) ≤ % for some % > 0, then as η → 0

the maximum a-posteriori solution xMAP
α̂ converges to the solution with minimal norm

|| · ||Bsp,p(Rd) provided that the parameter α = α(η, %, β, ς, p) is chosen such that

min

(√2

Al
E(σ,m, α)

) ς
β+ς
(
%+

(
%p +

2m− Lm(η)

α

) 1
p

) β
β+ς

, 1


=

Γ(m2 ,m− ln−(η′(m)))

Γ(m2 )
+

Γ(np ,
α%p

2 )

Γ(np )
(4.37)

is fulfilled. Additionally, it is

ρK(xMAP
α̂ , x†) = O

(η√1 + | ln(η)|+ α%p

2

) ς
β+ς

%
β
β+ς

 .

Proof. To further improve readability we define θ := ς
β+ς , θ

′ := β
β+ς and

δ :=
√

2η
√
m− Lm(η). Then according to Proposition 1.4.5, ρK(y, yη) ≤ δ holds. From

(4.33) and Proposition 4.3.3 we know

sup{||xMAP
α̂ − x|| : x ∈ X , y ∈ Y,||Ax− y|| ≤ δ, ||T ∗nx||Bsp,p(Rd) ≤ %}

= Mα̂(δ, %) < CA−θl
(
δ + δ′

)θ
(%+ %′)θ

′
.

Mα̂ is a deterministic quantity. In particular ||xMAP
α̂ − x†|| ≤ CA−θl (δ + δ′)θ(% + %′)θ

′

whenever ||Ax†−yη|| ≤ δ and ||T ∗nx†||Bsp,p(Rd) ≤ %. On the other hand, ||xMAP
α̂ −x†|| may

be larger than CA−θl (δ+ δ′)θ(%+ %′)θ
′

if at least one of the conditions above is violated.
Hence

P({ω ∈ Ω : ||xMAP
α̂ (ω)− x†(ω)|| > CA−θl (δ + δ′)θ(%+ %′)θ

′})
≤ P({ω : ||Ax†(ω)− yη(ω)|| > δ ∨ ||T ∗nx†(ω)||Bsp,p(Rd) ≥ %})

≤ P({ω : ||Ax†(ω)− yη(ω)|| > δ}) + P({ω : ||T ∗nx†(ω)||Bsp,p(Rd) ≥ %}) (4.38)

because for A,B ⊂ Ω : P(A ∪ B) ≤ P(A) + P(B). Please note that the set {ω :
||Ax†(ω)−yη(ω)|| > δ} corresponds to P(Ω\Ωε) with Ωε from the proof of Theorem 4.3.6,
i.e., the subset of Ω for which we do not have a worst-case error bound ||y(ω)−yη̂(ω)|| ≤ η̂
(in the notation of Theorem 4.3.6). For the probability P({ω : ||T ∗nx†(ω)||Bsp,p(Rd) ≥ %}),
% > 0 we derived in Lemma 4.2.4

P(||T ∗nx†(ω)||Bsp,p(Rd) ≥ %) =
Γ(np ,

α%p

2 )

Γ(np )
. (4.39)
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The probability P(||Ax† − y|| ≥ δ) is given in Lemma 1.3.2 with c = δ and e = Ax† − y,

P(||Ax† − y|| ≥ δ) =
Γ(m2 ,

δ2

2η2 )

Γ(m2 )
=

Γ(m2 ,m− Lm(η))

Γ(m2 )
. (4.40)

Inserting (4.39) and (4.40) into (4.38) we arrive at

P({ω ∈ Ω :||xMAP
α̂ (ω)− x†(ω)|| > CA−θl (δ + δ′)θ(%+ %′)θ

′})

≤
Γ(m2 ,

δ2

2η2 )

Γ(m2 )
+

Γ(np ,
α%p

2 )

Γ(np )
. (4.41)

Comparing this with the definition of the Ky Fan metric (1.24), we get an upper bound
for ρK(xMAP

α̂ , x†) if we choose α such that

CA−ηl (δ + δ′)η(%+ %′)η
′

=
Γ(m2 ,

δ2

2η2 )

Γ(m2 )
+

Γ(np ,
α%p

2 )

Γ(np )
. (4.42)

Before we can solve (4.42) we have to calculate δ + δ′ and % + %′. Resubstituting the
error δ and α̂ = η2α into (4.34) we get

δ′ =
√

2η

√
m− Lm(η) +

α%p

2

and

δ + δ′ =
√

2η
√
m− Lm(η) +

√
2η

√
m− Lm(η) +

α%p

2
=: E(η,m, α).

Analogously we find

%+ %′ = %+

(
%p +

2m− Lm(η)

α

)1/p

and (4.42) reads

C

(√
2

Al
E(η,m, α)

)θ(
%+

(
%p +

2m− Lm(η)

α

)1/p
)θ′

=
Γ(m2 ,m− Lm(η))

Γ(m2 )
+

Γ(np ,
α%p

2 )

Γ(np )
. (4.43)

The only unknown quantity in (4.43) is the constant C. Since we have no information
about it, we neglect it and set it to one. Solving (4.43) for α immediately gives an upper
bound for ρK(xMAP

α̂ , x†) by definition of the Ky Fan metric. Although (4.43) does not
have an analytical solution, the nonlinear equation can still be solved numerically. By
construction the convergence rate is given by both the left hand side and the right hand
side of (4.43).
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We obtain a similar result for the infinite dimensional model. To this end, we only
have to replace the probability P(||T ∗nx†||·,p ≥ %) from Lemma 4.2.4 by the one from
Corollary 4.2.3. We obtain the following Corollary where, as before, we use the notation

E(η,m, α) :=
√

2η
√
m− Lm(η) +

√
2η
√
m− Lm(η) + α%p

2 .

Corollary 4.3.9. Let xMAP
α̂ be the maximum a-posteriori estimate (4.12) for the solution

of (4.8) in the Bayesian framework with a Bs
p,p-Besov space prior (4.11) with s ∈ R

fulfilling ς = s+d(1
2−

1
p) ≥ 0. Let X be defined in Br

p,p(Rd) according to model (MI) with

s < r− d
p . Assume we are given noisy data yη ∈ Rm such that the error in each component

of yη is normally distributed with zero mean and variance η2. Assume additionally that
the operator A fulfils (4.35) with β > 0, Al > 0. If the minimum norm solution x† is
unique and smooth enough, i.e., there is an a-priori estimate ||x†||Bsp,p(Rd) ≤ % for some

% > 0, then as η → 0 the maximum a-posteriori solution xMAP
α̂ converges to the solution

with minimal norm || · ||Bsp,p(Rd) provided that the parameter α = α(η, %, β, ς, p) is chosen
such that

min

(√2

Au
E(η,m, α)

) ς
β+ς
(
%+

(
%p +

2m− Lm(η)

α

) 1
p

) β
β+ς

, 1


=

Γ(m2 ,m− Lm(η))

Γ(m2 )
+

1

%

 2

αp

`φ + `ψ

∞∑
j=0

2−j((s−r)p−d)

 1
p

(4.44)

is fulfilled. Additionally, it is

ρK(xMAP
α̂ , x†) = O

(η√1 + | ln(η)|+ α%p

2

) ς
β+ς

%
β
β+ς

 . (4.45)

So far we only used the Ky Fan metric to measure the noise in the data. If instead
one only knows the expectation of the noise, a construction analogously to (3.50) can be
used.

4.4 Numerical examples for p = 1

In this section we want to illustrate our theoretical results with a specific example for the
case p = 1, as it is well known that this choice produces sparse solutions. We will consider
a deconvolution problem with a given kernel function. Convolution operators appear in
many fields, e.g., in signal processing, where the output of a linear time-invariant system
is given by the convolution of the input signal with the impulse response, a fixed function
depending on the system. In image processing, blurring effects can often be modelled as
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Figure 4.1: Plot of the left-hand side and right-hand side of (4.37) (MI, left) and (4.44)
(MII, right) for η = 0.01, m = 2500, ς = 0.5, β = 1, % = 2.16. The optimal
α is the one for which the intersection occurs.

convolution of an image with a smoothing kernel. Mathematically, we have an operator
equation Ax = y where A : L2(Rd)→ L2(Rd) is defined by

[Ax](s) = [k ∗ x](s) =

∫
Rd

k(s− t)x(t)dt, s ∈ Rd (4.46)

for some kernel function k ∈ L2(Rd). In order to use our theory, we have to require that
A fulfils (4.35) for some β > 0. Since the properties of A are determined by its kernel
k, we just have to choose k appropriately. Inequality (4.35) describes the equivalence
of ||Ah||L2 with a norm of h in a Sobolev space of negative order H−β. Using Fourier
analysis we have

||h||H−β =

∫
Rd

(1 + |ξ|2)−β|ĥ(ξ)|2dξ, (4.47)

where ĥ denotes the Fourier transform of h. Because of the Fourier-convolution theorem

||Ah||L2 = ||k̂ · ĥ||L2 =

∫
Rd
|k̂(ξ) · ĥ(ξ)|2dξ. (4.48)

Comparing (4.47) and (4.48) we may define k̂(ξ) := (1 + |ξ|2)−β/2 and obtain equality
in (4.35) with Au = Al = 1. To control the width of the convolution filter and its norm
we introduce additional constants κ > 0, cκ,β > 0 and define

k̂(ξ) =
cκ,β

(1 + κ|ξ|2)β/2
, ξ ∈ Rd. (4.49)

Now (4.35) holds with Al = c2
κ,β and Au =

c2κ,β
κ for κ ≤ 1 and vice versa for κ > 1. The

maximum a-posteriori solution, i.e., the minimizer of the Tikhonov functional (4.12) was
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calculated with the iterative soft-shrinking algorithm proposed in [89]. Here we use the
formulation of [91] that admits slightly weaker restrictions. Starting from an initial guess
x0, the iterates are given by

xk+1 = St,p (xk + γA∗(y −Axk)) , k = 1, 2, . . . (4.50)

with an appropriately chosen stepsize γ < 2/||A||2, where the thresholding operator
St,p(h) :=

∑
λ∈Λ Sτλ,p(〈h, ψλ〉)ψλ is defined componentwise. For p = 1 we have

Sτλ,1(x) :=


x− τλ

2 x ≥ τλ
2

0 |x| < τλ
2

x+ τλ
2 x ≤ − τλ

2

.

We chose cκ,β in (4.49) such that ||k||L1(Rd) < 1 and hence (4.50) converges with γ = 1
to the minimizer of (4.12). The thresholding parameters τλ depend on the regularization
parameter α̂ and the weights 2ςp|λ| from the definition of the Besov-space norm ||·||Bsp,p(Rd)

in (4.18). Written in full dependence of all parameters, τλ = αη22
s+d( 1

2
− 1
p

)p|λ|
where

|λ| is the scale of the wavelet. Because the kernel is symmetric we have A∗ = A. The
application of A and A∗ in (4.50) can easily be implemented using Fourier transformation
and the convolution theorem. In order to calculate the regularization parameter α̂ = αη2,
we have to solve (4.37) or (4.44), respectively, for α. This can be done with Newton’s
method after obtaining a good initial guess, for example with the bisection method. A
typical situation is shown in Figure 4.1.

Each of the two definitions of the Besov space random variable allows for a slightly
different implementation of the parameter choice rule. To illustrate the behavior of both
variants, we consider an academic example of a one dimensional signal x that is sparse
with respect to the Haar basis in L2(R) and its convolution with a kernel of type (4.49).
A sample of signal, measurements and corresponding regularized solution is shown in
Figure 4.2, where m = n = 2500 and β = 1. Next we want to compare the predicted
convergence properties to the numerical results. The behaviour of our parameter choice
rules (4.37) and (4.44) with respect to η is demonstrated in Figure 4.3. Both models
(MI) and (MII) lead to parameters α and α̂ fulfilling the theoretical conditions. The
numerically obtained errors follow the theoretically predicted convergence rates.
So far we did not address the question of convergence of the solutions if m and n are
not fixed anymore but increasing. Although theoretical results are missing at this point,
Figure 4.4 shows a comparison of the parameter choice rules for the models (MI) and
(MII). In contrary to the convergence with respect to decreasing variance η, the two
models show a distinct convergence behaviour with respect to m. It is future work to
give detailed analysis on this.

Until now we only considered the one dimensional case. However, Figure 4.5 shows
that also for two dimensional problems our parameter choice rule works and leads to
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Figure 4.2: Signal, noisy measurements and regularized solution for η = 0.01, obtained
with our parameter choice rule for the finite dimensional model (MII). We
used the exact % and chose s = 1 such that ς = 0.5. Resulting from
α = 45.85 as solution of (4.43) we obtained the effective regularization
parameter α̂ = α · η2 = 0.0045.

reasonable reconstructions. Figure 4.6 shows that in the 2-dimensional case the regular-
ization parameter α̂ = αη2 with α chosen according to (4.44) for the infinite dimensional
model (MI) keeps the number of recovered non-zero coefficients nearly constant as η → 0.

4.5 Application to Atmospheric Tomography

The theory of this chapter is also applicable to the problem of Atmospheric Tomography
and, in particular, to the setting of MCAO as presented in Section 2.6. We will also
adopt the notation from that section. Therefore the unknown turbulence profiles are
denoted by Φ instead of x, which will be used as a spatial coordinate, and the measured
wavefront data is ϕ instead of y. The van Karman model for the atmospheric turbulence
(2.11) implies a certain smoothness of the turbulence in terms of the Sobolev scale. Let

CΦ be the covariance operator induced by the van Karman model. Then ||C−1/2
Φ Φ||2L2

is a natural candidate for a prior in the Bayesian setting. In practice, one usually
approximates the covariance via [131]

||C−1/2
Φ Φ||2L2

≈ 1

C2
n(h)

(
L̃
− 11

3
0 ||Φ||L2 + ||(−∆)1112Φ||L2

)
(4.51)

where ∆ is the Laplace operator. Since

〈Φ,Ψ〉Hs(R2) =

∫
R2

((I∆)
s
2 Φ)(x)((I∆)

s
2 Ψ)(x) dx
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(a) model (MI), s = 1, r = 2
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Figure 4.3: Numerical comparison of the two parameter choice rules (4.44) and (4.37),
respectively, for the one dimensional deconvolution problem. The values for
α·η2, plotted against η, are shown in the first row. For sufficiently small η, α
starts to grow, following the theory developed in Corollary 4.3.7. However,
α · η2 still goes to zero. The number of recovered non-zero coefficients
in the solution is shown in the second row. Since n = 2500 we end up
with a sparse solution for all η used in the simulations. In the last row
we plotted the obtained reconstruction error ||xMAP − x∗|| and compare it

with the convergence rates O
(

(η
√
m)

ς
ς+β

)
predicted in Theorem 4.3.8 and

Corollary 4.3.9, respectively.
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(a) model (MI), s = 1, r = 2
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(b) model (MII), s = 1
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Figure 4.4: Comparison of the two implementations of the parameter choice rule with
respect to varying level of discretization n. The variance η = 0.01 was held
constant. As estimate for % we used the exact value calculated from the
true solution scaled according to the respective models. While the finite
model leads to growing α for increasing n, the infinite model keeps the
regularization parameter constant. The number of non-zero coefficients in
the recovered solution behaves conversely. To plot the reconstruction errors
we used the same scaling for both models. While in the finite model the
error stays the same, it decreases for growing n in the infinite model.
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Figure 4.5: 2D example, left: signal x with 68 non-zero coefficients, middle: measure-
ments Ax + ε, η = 0.1, β = 1, right: solution with α = 130.5, exactly the
68 true coefficients were recovered.
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Figure 4.6: 2D example. Upper plot: regularization parameter α against η. α grows for
decreasing η according to Corollary 4.3.7; lower plot: number of recovered
non-zero elements against η. Out of n = 65536 coefficients of the original
image 68 had non-zero values.
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defines a scalar product in Hs(R2) [112], an H
11
6 (R2) prior is equivalent to the char-

acterization 4.51. Since H
11
6 (R2) = B

11
6

2,2(R2), one can use a Besov prior as introduced
in Section 4.2.2. In the choice of the wavelet we follow [131] and use the db3 wavelet.
Since Φ is a vector valued function, we have to adjust the definition of the Besov space
slightly. We define a norm tailored to the layer-model of the atmosphere via

||Φ||2⊗
B

11
6

2,2

:=
L∑
l=1

1

cl
||Φ(l)||

B
11
6

2,2 (Ωl)
. (4.52)

With this we find Φ by minimizing

J(Φ) = ||AΦ− ϕ||(L2(ΩD))G + α̂||Φ||2⊗
B

11
6

2,2

(4.53)

with an appropriate regularization parameter α̂. The minimizer is calculated with a soft
shrinkage algorithm analogously to (4.50). Starting from an initial guess Φ0, we iterate

Φk+1 = St,2 (Φk + γA∗(ϕ−AΦk)) , k = 1, 2, . . . (4.54)

where the shrinkage operator St,2(h) :=
∑

λ∈Λ Sτλ,2(〈h, ψλ〉)ψλ is now for p = 2 defined
via Sτλ,2 := F−1

τλ,2
with

F−1
τλ,p

(t) = t+
τλp

2
sign(t)|t|p−1,

see [89]. In [132] Saxenhuber and Ramlau introduced a gradient based algorithm with
the iterative procedure

Φk+1 = Φk + γA∗(ϕ−AΦk), k = 1, 2, . . .

where γ is a step size parameter. They provided the code for their algorithm and we
just had to include the shrinkage operator to obtain 4.54. All that remains is to find
an appropriate regularization parameter α̂. Since the problem fits into the framework
of this chapter, we calculate α via Equation (4.44), i.e., we use the infinite dimensional
model due to the given discretization. Namely, we have m = 43350 measured data
point ans seek to reconstruct Φ on n = 12243 points. The smoothness parameter r in
the infinite model was chosen to barely fulfill condition iii) of Lemma 4.2.2. We set

r = s+ d
p + 0.0001. Since we use B

11
6

2,2(R2) priors, we have ς = 11
6 from (4.17). Because

Atmospheric Tomography is a special case of limited angle tomography, we have β = 1
2

in (4.35). The upper bound % for the norm of the solution in (4.32) was estimated from
solutions obtained with the gradient method. We typically obtained values of % around
1.7 and chose % = 2 for the calculation of α. Since the MOST simulation tool only
allows to simulate the high flux case, we have a very small noise variance η = 8.8 ·10−19.
Plugging all the constants into (4.44), we obtained α̂ = 2.27 · 10−27 as the regularization
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parameter. Although the value is small, we observed a clear improvement of about 3%
to 4% between the Strehl ratio obtained with the soft-thresholding algorithm and the
basic gradient algorithm, see Figure 4.7 for an example. We would expect to obtain even
higher relative gain in Strehl ratio when the noise level increases.
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Figure 4.7: Gradient algorithm with and without thresholding. Top: B
11/6
2,2 -prior for

6 natural guide stars. Bottom: B1
1,1 prior for 6 laser guide stars. In both

experiments, the sparsity regularization improves the Strehl over the whole
field of view.
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The lifting arguments from Chapter 3 and Chapter 4 are based on properties of the
error and the fact that there is a deterministic regularization theory for the situation
under investigation. However, neither the setting itself nor the actual regularization
method influence the lifting analysis. In this chapter, we summarize and generalize the
main results of the previous chapters.

5.1 Theoretical results

In particular, the lifting arguments are independent of the spaces involved and the
structure of the Inverse Problem. We will therefore allow certain nonlinear ill-posed
problems

F (x) = y (5.1)

with an operator F : X → Y mapping between Banach or Hilbert spaces X and Y.
Instead of the exact data, again only noisy data yδ is available. We assume that in
the deterministic setting a regularization method to solve (5.1) is available. That is, in
generalization of Definition 1.2.2 an operator Rα : Y → X, Rα(yδ) 7→ xδα is available
that maps the given data to a regularized solution and fulfills, possibly under some
assumptions A,

lim
δ→0

Rα(yδ) = x† (5.2)

given that the parameter α is chosen appropriately. As before, x† is a minimum norm
solution to (5.1). Note that, in particular for nonlinear problems, x† does not need to
be unique. Hofinger [30] pointed out that this is problematic for the lifting arguments.
One often proofs convergence of subsequences to the desired solution, and then deduces
convergence of the whole series of regularized solutions if possible. In the stochastic
setting, this is not possible in general since subsequences for different ω do not have to
be related. A constructed example for this behavior can be found in [30]. In order to lift
general deterministic regularization methods into the stochastic setting we must therefore
require that x† is unique. We obtain the following Theorem which is a straightforward
generalization of Theorem 4.3.6. The main ingredient of the proof is that the Ky Fan
metric allows a natural decomposition of Ω into two subsets. On the first, a deterministic
error bound is available. On the second subset, which has low probability, this is not
the case. If one uses the expectation to describe the properties of the noise, the same
technique as in Section 3.3.1 can be applied. In order to achieve convergence, we have
to “inflate” the expectation which we realize again by adding a factor τ = τ(η) to the
expectation.

Theorem 5.1.1. Let Rα be a regularization method for the solution of (5.1) in the
deterministic setting under a suitable choice of the regularization parameter. Let now
yη = y + ε(η) where ε(η) is a stochastic error such that
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a) ρK(y, yη)→ 0 or

b) E(||ε||) = f(η)→ 0

as η → 0. Then, assuming (5.1) has a unique solution x† and all necessary assumptions
for the deterministic theory (except the bound on the noise) hold with probability one,
the regularization method Rα fulfills

lim
η→0

ρK(x†, Rα(yη)) = 0

under the same parameter choice rule as in the deterministic setting with δ replaced by
ρK(y, yη) (case a)) or τ(η)E(||ε||) where τ(η) fulfills (3.50) (case b)). If the regularized
solutions are defined by (1.26) if they fail to fulfill Assumption 1.4.2, then in both cases

lim
η→0

E(||x† −Rα(yη)||) = 0.

Proof. In case a) where the Ky Fan distance between noisy and true data is given, the
proof coincides with the one from Theorem 4.3.6. Only the parameter choice has to be
adjusted such that ρk(y, y

η) is used instead of the deterministic δ. In case b), where we
assume to know the expectation of the error, a small adjustment has to be made.

Set ε := 1
τ(η) . Then ε→ 0 as η → 0 and

P(||y − yη|| ≤ 2τ(η)E(||ε||)) ≤ 1

2τ(η)
=
ε

2
.

Then we again have found Ωε with P(Ωε) ≥ 1− ε
2 . The remainder of the proof remains

the same. The parameter choice rule now has to be carried out with τ(η)E(||ε||) instead
of δ.

Hence it is possible to use rather general deterministic regularization methods in a
stochastic setting. However, the expectation of the noise alone decreases too fast; it has
to be slowed down to find an appropriate regularization parameter or replaced by the Ky
Fan distance which is slower than the expectation. A numerical example will be given
at the end of this chapter.

As usual, convergence rates are obtained under additional assumptions. Sometimes
they are already such that (local) uniqueness of the true solution is ensured. If not, we
have to require such a property for the same reason as previously.

Theorem 5.1.2. Let Rα be a regularization method for the solution of (5.1) in the
deterministic setting such that, under a set of assumptions on the operator F and the
solutions x† and a suitable choice of the regularization parameter,

dX (x†, Rα(yδ)) ≤ Φ(dY(y, yδ))

with a monotonically increasing right-continuous function Φ.
Let now yη = y + ε(η) where ε(η) is a stochastic error such that
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a) ρK(y, yη)→ 0 or

b) E(||ε||) = f(η)→ 0

as η → 0. Then, assuming (5.1) has a (locally) unique solution x† and all necessary
assumptions for the deterministic theory (except the bound on the noise) hold with prob-
ability one, the regularization method Rα fulfills

ρK(x†, Rα(yη)) = O(max{Φ(ρK(y, yη)), ρK(y, yη)})

in case a) or, respectively, in case b),

ρK(x†, Rα(yη)) = O(max{Φ(τ(η)E(||ε||)),P(||ε|| ≥ τ(η)E(||ε||))})

under the same parameter choice rule as in the deterministic setting with δ replaced by
ρK(y, yη) (case a)) or τ(η)E(||ε||) where τ(η) fulfills (3.50) (case b)).

Proof. Convergence rates in the Ky Fan metric follow directly from Theorem 1.4.3. If
the expectation is used as measure for the data error, we have

P(‖ε‖ ≥ τ(η)E(‖ε‖)) ≤ 1

τ(η)

as in (3.48). Hence, with probability 1 − 1
τ(η) we are in the deterministic setting with

δ = τ(η)E(‖ε‖). The convergence rate follows by the defintion of the Ky Fan metric.

For many nonlinear Inverse Problems the requirement of a unique solution is too
strong. Often one has several solutions of the same quality, in particular there exists
more than one minimum norm solution. In this case, Theorem 5.1.1 is not applicable. In
Hofingers example [30, Example 4.3 and 4.5] with two minimum norm solutions the noise
was constructed such that, while the error in the data converges to zero, for each fixed
ω ∈ Ω the regularized solutions jump between both solutions such that no converging
subsequence can be found. The main problem there is that the Ky Fan distance cannot
incorporate the concept that all minimum norm solutions are equally acceptable. We
will now define a pseudo metric that resolves this issue.

Definition 5.1.1. Let (X , dX ) be a metric space. Denote with L the set of minimum-
norm solutions to (5.1). Then

ρLK(x) := inf
ε>0

{
P
(

inf
x†∈L

dX (x, x†) > ε

)
≤ ε
}

(5.3)

measures the distance between an element x ∈ X and the set L, in particular it is

ρLK(x) = 0 ⇔ x ∈ L a.s.
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With this, one can define a pseudometric on (Ω,F ,P) via

ρLK(x1, x2) =: max{ρLK(x1), ρLK(x2)}. (5.4)

Obviously (5.4) is positive, symmetric and fulfills the triangle inequality. However,
ρLK(x1, x2) = 0 does not imply x1 = x2 a.e. but instead x1 ∧ x2 ∈ L which fixes the
aforementioned issue of the Ky Fan metric and allows the following theorems.

Theorem 5.1.3. Let Rα be a regularization method for the solution of (5.1) in the
deterministic setting under a suitable choice of the regularization parameter. Let now
yη = y + ε(η) where ε(η) is a stochastic error such that

a) ρK(y, yη)→ 0 or

b) E(||ε||) = f(η)→ 0

as η → 0. Then, assuming all necessary assumptions for the deterministic theory (except
the bound on the noise) hold with probability one, the regularization method Rα fulfills

lim
η→0

ρLK(Rα(yη)) = 0

under the same parameter choice rule as in the deterministic setting with δ replaced by
ρK(y, yη) (case a)) or τ(η)E(||ε||) where τ(η) fulfills (3.50) (case b)). In particular, the
series of regularized solutions fulfills

lim
η1,η2→0

ρLK(Rα(yη1), Rα(yη2)) = 0

Proof. The proof follows the lines of the one of Theorem 4.3.6 with ρK(·, x†) replaced
by ρLK(·). Also Lemma 4.3.4 is easily adjusted to incorporate multiple solutions.

5.2 An example in theory and numerical results

We return to sparsity promoting inversion similar to the strategy in the previous chapter.
Instead of a linear Inverse Problem and a Besov-space penalty term we now consider
a nonlinear problem (5.1) with an `1-penalty. The regularization parameter will be
determined with the discrepancy principle. The deterministic results are taken from
[11]. In particular, we will adopt the numerical example and present the theory already
tailored to this problem.

We consider an autoconvolution equation

[F (x)](s) =

∫ s

0
x(s− t)x(t) dt, 0 ≤ s ≤ 1 (5.5)
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between Hilbert spaces X = L2[0, 1] and Y = L2[0, 1] where x ∈ D(F ). Such an equation
is of great interest in, for example, stochastics or spectroscopy and has been analyzed
in detail in [133]. Recently, a more complicated autoconvolution problem has emerged
from a novel method to characterize ultra-short laser pulses [134, 135].

Using the Haar-wavelet basis (see, e.g., [120] and Section 4.4), the authors of [11]
reformulate (5.5) as an equation from `2 to `2 by switching to the space of coefficients
in the Haar basis. In order to stabilize the inversion, an `1 penalty term is used such
that the task is to minimize the functional

Jα(x) = ||F (x)− yδ||2 + α||x||1. (5.6)

For simplicity we use the same notation as before although the objects are slightly differ-
ent now. The regularization parameter α in (5.6) is chosen according to the discrepancy
principle. In [11], the following formulation is used: For 1 < τ1 ≤ τ2 choose α = α(δ, yδ)
such that

τ1δ ≤ ||F (xδα)− yδ|| ≤ τ2δ (5.7)

holds. The authors show that this leads to a convergence of the regularized solutions
against a solution of (5.5) with minimal `1-norm of its coefficients. It was also shown
that the regularization parameter fulfills

α(δ, yδ)→ 0,
δ2

α(δ, yδ)
→ 0 as δ → 0. (5.8)

By courtesy of S. Anzengruber we were allowed to use the original code for the nu-
merical simulation in [11]. We only changed the parts directly connected to the data
noise. Namely, we replaced the deterministic error ||y − yδ|| ≤ δ with the i.i.d Gaussian
noise from the previous chapters,

yη = y + ε

with ε ∼ N (0, η2I). The discretization is due to the truncation of the expansion of the
functions in the Haar-basis after m elements. Therefore

E(||ε||) =
η√
2

Γ(m+1
2 )

Γ(m2 )
,

see Lemma 1.3.2. In practice, we used the upper bound

E(||ε||) ≤ η
√
m

since, as shown in this chapter, the expectation has to be “blown up” anyway. The pa-
rameter choice (5.7) was realized with δ replaced by τ(η)E(||ε||) in accord with Theorem
5.1.1. In a first experiment we let τ(ε) = 1.3 = const. In this case, the numerical re-

sults suggest that the regularization parameter decreases too fast, i.e., (τ(η)E(||ε||))2

α does
not converge to zero as in (5.8), see Figure 5.1. For comparison, in a second run we
chose τ(η) =

√
1− log(η22πm2( e2)m) where m is the amount of data points. This way,

τ(η)E(||ε||) ∝ ρK(y, yη). Now (τ(η)E(||ε||))2

α converges to zero as it should be the case.
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Figure 5.1: Convergence behavior for sparsity regularization with a nonlinear opera-

tor. Top: α and (τ(η)E(||ε||))2

α for constant τ(η) = 1.3. The regularization
parameter becomes too small too fast. Bottom: Same experiment with
τ =

√
1− log(η22πm2( e2)m). Adjusting τ resolves the problem of α being

too small.
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In this chapter we move from rather theoretical aspects of regularization theory to
the design of a novel reconstruction algorithm for atmospheric tomography. Namely,
we employ the method of the approximate inverse which was proposed by Louis and
Maaß [136] for integral equations of the first kind. First we introduce this strategy
for scalar functions and summarize important results. Then we apply the approach to
the problem of atmospheric tomography. While at first we stick to the notation of the
previous chapters, we will later use the notation of the Adaptive Optics community
which we introduced in Chapter 2. A large part of this chapter is taken from the paper
[137].

6.1 Method of the Approximate Inverse

6.1.1 Reconstruction of scalar functions

We present the theory of the approximate inverse for the standard setting employed in
several of the previous chapters. The approximate inverse is a regularization scheme to
solve linear inverse problems (1.1),

Ax = y (6.1)

and an operator A between Hilbert spaces [138, 136]. An extension to Banach spaces is
possible, see for example [139, 140].

Let us start in the classical setting, more precisely let A : L2(ΩX) → L2(ΩY ) be a
linear operator where the subsets ΩX ⊂ Rn and ΩY ⊂ Rm are bounded and assume that
x ∈ L2(ΩX) and y ∈ L2(ΩY ) are scalar valued functions. In order to obtain a stable
approximation of the function x from the data y = Ax, we consider a smoothed version

xγ(t) := 〈x, eγt 〉L2(ΩX) (6.2)

with a chosen mollifier eγt ∈ L2(ΩX) with some γ > 0. The mollifier eγt can be seen as
an approximation to the delta distribution δt. A precise definition of a mollifier is given
in the following, see [141].

Definition 6.1.1. For all t ∈ ΩX , γ > 0 let eγt ∈ L2(ΩX) with∫
ΩX

eγt (z) dz = 1.

Let further

xγ(t) =

∫
ΩX

x(z) eγt (z) dz

converge to x in L2(ΩX) as γ → 0. Then eγt is called a mollifier.
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Now, instead of the original equation (6.1), one solves the auxiliary problem

A∗ψγt = eγt (6.3)

where A∗ denotes as usual the adjoint of A. With this, the mollified version xγ can be
computed from the measured data via

xγ(t) = 〈x, eγt 〉L2(ΩX) = 〈x,A∗ψγt 〉L2(ΩX) = 〈Ax,ψγt 〉L2(ΩY ) = 〈y, ψγt 〉L2(ΩY ).

The auxiliary problem (6.3) is only solvable if eγt ∈ R(A∗). Otherwise, if at least
eγt ∈ R(A∗)

⊕
R(A∗)⊥, the function ψγt can be computed by minimizing the defect

‖A∗ψγt − e
γ
t ‖2, which is equivalent to the solution of the normal equation

AA∗ψγt = Aeγt . (6.4)

In both cases (6.3) and (6.4), the functional 〈y, ψγt 〉L2(ΩY ) reconstructs (PN (A)⊥x)γ(t)

with the orthogonal projection P on N (A)⊥. We will show in Section 6.2 that in our
application eγx /∈ R(A∗), i.e., we will determine the reconstruction kernels by solving the
normal equation (6.4). Hence, from now on we will focus on the theory for this case.

Definition 6.1.2. Let eγt be a mollifier according to Definition 6.1.1. The operator
Sγ : L2(ΩY )→ L2(ΩX) with

Sγy(t) := 〈y, ψγt 〉L2(ΩY ), (6.5)

where ψγt solves (6.4), is called the approximate inverse of A to compute an approxi-
mation of x. The function ψγt is called reconstruction kernel.

Since the auxiliary problem (6.4) is independent of the data, the reconstruction kernels
ψγt can be precomputed. However, the dependence on the reconstruction point t ∈
ΩX requires the solution of a possibly different auxiliary problem for each of these
points. Using suitable invariances of the operator A, this computational effort and can
be dramatically reduced, see e.g. [138, 141].

Theorem 6.1.1. Let the operators T t1 : L2(ΩX) → L2(ΩX), T t2 : L2(ΩY ) → L2(ΩY )
and T t3 : L2(ΩY )→ L2(ΩY ) be linear and bounded for t ∈ ΩX , satisfying

AT t1 = T t2A, T t2AA
∗ = AA∗T t3. (6.6)

Further assume that the mollifier eγt is generated by T t1, i.e. eγt := T t1e
γ with eγ ∈

D((A∗)†). If ψγ solves AA∗ψγ = Aeγ, then the special reconstruction kernels ψγt are
given by

ψγx = T t3ψ
γ .
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Proof Using the intertwining properties (6.6), it holds

Aeγt = AT t1e
γ = T t2Ae

γ = T t2AA
∗ψγ = AA∗T t3ψ

γ = AA∗ψγt .

�
Theorem 6.1.1 supposes a global invariance property on A, namely AT t1x = T t2Ax for all
x ∈ L2(ΩX). However, according to the proof, the statement of the theorem is also true
if this invariance holds at least for the prescribed mollifier eγ . This fact will be used in
Section 6.2, since there is no global invariance in case of the atmospheric tomography
operator.

Using such invariances, only one single auxiliary problem has to be solved, and the
special reconstruction kernels ψγt are generated by this solution ψγ and the operator T t3,
leading to the reconstruction

xγ(t) = 〈y, T t3ψγ〉L2(ΩY ). (6.7)

Note that no artificial discretization of the unknown x is introduced. The reconstruction
point only influences the translation operator T t1 and can be chosen freely.

To close this section we would like to mention that Louis [138] showed, that in special
cases, e.g. for quadratic operators, the application of the method of the approximate
inverse to nonlinear problems is possible.

6.1.2 The approximate inverse and filter-based methods

The approximate inverse as defined in the previous section can be interpreted as evalu-
ation of a linear functional of the data y. It is known, that this leads to regularization
methods, see the theoretical result of Likht [142].

For the convergence analysis we make use of the connection between the method of
the approximate inverse and filter based regularization methods as discussed in Chapter
3. Let therefore again {σn, un, vn} be the singular system of the linear compact operator
A. The following theorems are due to Louis [138].

Theorem 6.1.2. Let the regularization method Rα in (3.4) be given with a filter Fα.
Then this method can be written as an approximate inverse with mollifier

eαt (s) =
∑
n

Fα(σn)vn(s)vn(t).

Theorem 6.1.3. Let eα be decomposed into

eαt (s) =
∑
m,n

eαm,nvn(s)vm(t).
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Then the approximate inverse can be represented as regularization method based on a
filter Fα if and only if the filter satisfies

eαm,n = Fα(σn)δmn

with the Kronecker symbol δmn.

The first Theorem states that every filter method can, at least in theory, be expressed
as an approximate inverse. Hence, from this point of view, the approximate inverse is
more general than the filter based methods. On the other hand, under the condition of
the second Theorem, one may find a filter such that the approximate inverse coincides
with a filter-based method. If this is the case, regularization properties and convergence
rates follow directly from Theorem 3.1.2 and Theorem 3.1.3, respectively, assuming that
the conditions on the filter Fα are satisfied. Therefore, in this case also the theory of
Section 3.3.1 can be carried over directly.

In another paper, Louis shows that both approximate inverse and filter-based regular-
ization methods can be treated as subclasses of a larger class of regularization methods
for which, under certain conditions similarly to the ones in Theorem 3.1.2 and Theorem
3.1.3, one can show regularization properties and optimal convergence rates under an a
priori parameter choice.

6.1.3 Reconstruction of vector-valued functions

Previously, the regularization scheme was presented in the case of scalar-valued func-
tions. However, the mathematical model of atmospheric tomography, see Section 2.6.2,
is described by an operator A relating vector-valued functions. We will therefore and
throughout the remaining part of the chapter switch to the notation common in astron-
omy and previously introduced in Chapter 2. The task is to solve the equation

AΦ = ϕ

where Φ ∈
⊗L

l=1 L2(Ωl) comprises the layers of the atmosphere and the available data is
ϕ ∈ (L2(ΩD))G. In particular, x from now on denotes a spatial coordinate rather than
a function. The method of the approximate inverse has been extended to the recon-
struction of vector fields already in the case of the three-dimensional Doppler transform
[144]. In the following, we apply the method to the setting of atmospheric tomography
by choosing appropriate mollifiers for the different layers. This is justified since the in-
dividual layers can be reconstructed independently of each other. Contrariwise, we will
later show that it is not possible to formulate a mollifier for the whole product space
given the available data.
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Let δx denote the delta distribution with x ∈ R2. The first layer of the atmosphere,
i.e. the first component of the vector Φ = (Φ(1), . . . ,Φ(L))T , is given by

Φ(1)(x) = 〈Φ(1), δx〉L2(Ω1)

=

(
1

c1
〈Φ(1), c1 δx〉L2(Ω1) +

L∑
l=2

1

cl
〈Φ(l), 0〉L2(Ωl)

)
=
〈
Φ, δx,1

〉⊗L
l=1 L2(Ωl)

.

Here δx,1 := (c1 δx, 0, . . . , 0)T denotes an L-dimensional vector, where the first component
is c1 δx and the remaining components correspond to the zero functions in L2(Ωl), l =
2, . . . , L. Replacing the delta-distribution δx by a scalar-valued mollifier eγx ∈ L2(Ω1)
fulfilling Definition 6.1.1 leads to the mollified version

Φ(1)
γ (x) := 〈Φ, eγx,1〉⊗L

l=1 L2(Ωl)

with eγx,1 := (c1 e
γ
x, 0, . . . , 0)T ∈

⊗L
l=1 L2(Ωl). Analogously, we obtain a mollified version

Φ
(l)
γ of the l-th layer by

Φ(l)
γ (x) =

〈
Φ, eγx,l

〉⊗L
i=1 L2(Ωi)

for x ∈ Ωl (6.8)

where
eγx,l := (cle

γ
xδi,l)i=1,...,L (6.9)

with the Kronecker symbol δi,l. This notation abbreviates the fact that only the l-th
component of eγx,l is nonzero with a scalar-valued mollifier eγx ∈ L2(Ωl). It can be verified

in a straight forward calculation that eγx,l is in fact a mollifier to approximate Φ(l) in
accordance to Definition 6.1.1.

Now, let Ψγ
l ∈ L2(ΩD)G solve the normal equation

AA∗Ψγ
l = Aeγl , (6.10)

where eγl := eγ0,l ∈ R(A∗)
⊕
R(A∗)⊥ is, without loss of generality, the mollifier centred

at zero and let T x1 :
⊗L

l=1 L2(Ωl) →
⊗L

l=1 L2(Ωl), T
x
2 : (L2(ΩD))G → (L2(ΩD))G and

T x3 : (L2(ΩD))G → (L2(ΩD))G denote suitable invariance operators for A in accordance
to Theorem 6.1.1. Then, the mollified version of the layer Φ(l) can be computed from
the measured data via

Φ(l)
γ (x) =

〈
ϕ, T x3 Ψγ

l

〉
(L2(ΩD))G

=
G∑
g=1

〈
ϕβg , (T

x
3 Ψγ

l )g
〉
L2(ΩD)

.
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Remark. The mollifier proposed here is applied to each layer separately. It would also be
possible to define a mollifier on the whole product space

⊗L
l=1 L2(Ωl). However, in order

to use the method of the approximate inverse with this mollifier of the product space, a
different kind of data would be required which is not available in practice. Namely, let
ẽ γx := (e γx,1, e

γ
x,2, . . . , e

γ
x,L) ∈

⊗L
l=1 L2(Ωl) be a mollifier according to Definition 6.1.1 and

assume we found Ψ = (Ψg)g=1,...,G ∈ LG2 (R2) such that A∗Ψ = ẽ γx . Then it is (with the
calculus of the adjoint of Theorem 6.2.1)

Φγ(x) =

(
1

cl
〈Φ(l), (ẽ γx )(l)〉

)
l=1,...,L

=

(
1

cl
〈Φ(l), (A∗Ψ)(l)〉

)
l=1,...,L

=

 G∑
g=1

〈PΦ(l),g,Ψg〉


l=1,...,L

,

where PΦ(l) = A
(
(δi,lΦ

(i))i=1,...,L

)
∈ (L2(ΩD))G is the projection of the single layer Φ(l)

onto the telescope aperture in direction βg. This data is not available as the wavefronts
ϕβg = AΦ can only be reconstructed from projections of all layers.

6.2 Application to Atmospheric Tomography

Using the mollifiers defined in the previous section we now proceed in applying the
method of the approximate inverse to the problem of atmospheric tomography. That
is, we need to solve an adjoint system analogously to (6.4) and define proper invariance
operators in accordance with Theorem 6.1.1.

For each layer Φ(l), the operator A only takes the respective set Ωl into account, i.e., the
part of the sky covered by the telescope. Thus, an intertwining property (6.6) holds only
for reconstruction points x ∈

⋂G
g=1 Ω

µl,βg
D (hlβg), i.e. only on the part of the layer which

is seen from all directions βg, g = 1, . . . G. To overcome this restriction, a continuation
of A to the whole spatial domain R2 is presented in the following. For this new operator,
an intertwining property can be found which holds for all reconstruction points x ∈ Ωl

if either only natural guide stars or only laser guide stars are considered. Despite the
slightly changed setting, the searched-for layers will still be adequately reconstructed, i.e.
the induced error is small, as discussed in Section 6.2.3. At the end of that section, we will
briefly discuss an alternative approach to deal with the problem of finding invariances.
Instead of extending the operator, one could simply introduce a cut-off function ensuring
only the domains visible by the telescope are used. However, this leads to further
restrictions on the invariances and does not provide numerical benefits.
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6.2.1 Continuation of the operator A

Each layer Φ(l) ∈ L2(Ωl) can be extended to R2 via

Φ̃(l)(%) :=

{
Φ(l), % ∈ Ωl

0, % /∈ Ωl

. (6.11)

We now consider the mapping

A :

L⊗
l=1

L2(R2) −→ (L2(R2))G

AΦ̃(r) :=

(
L∑
l=1

Φ̃(l)(µl,βgr + hlβg)

)
g=1,...,G

. (6.12)

This new operator considers the whole spatial domain R2 instead of only the subsets
Ωl, l = 1, ..., L. With the correlation of Φ̃ and Φ and r ∈ ΩD, it is for g ∈ {1, . . . , G}

(
AΦ̃
)
g

(r) =

L∑
l=1

Φ̃(l)(µl,βgr + βghl)

=
L∑
l=1

Φ(l)(µl,βgr + βghl) = (AΦ)g (r) = ϕβg(r).

Hence, on the telescope pupil, AΦ̃ corresponds to the measured data. However, the
extended operator A leads to artificial, unknown data for r /∈ ΩD. Denote

Ω̃ :=

G⋃
g=1

{r ∈ R2 \ ΩD : ∃ l with µl,βgr + βghl ∈ Ωl}. (6.13)

This set Ω̃ comprises all points r outside the telescope aperture which are still so close
that µl,βgr+βghl ∈ Ωl for at least one height hl and one unit vector βg, see Section 6.2.3

for numerical examples. For r ∈ R2 \ (Ω̃ ∪ ΩD), it holds

AΦ̃(l)(r) = 0,

and for r ∈ Ω̃, it is
AΦ̃(l)(r) = ϕ̃(r)

with an unknown function ϕ̃ 6= 0. However, the effect of this deviation on the recon-
struction of Φ(l) is very weak, as discussed in Section 6.2.3.
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Analogously to (2.19), the inner product on
⊗L

l=1 L2(R2) is given by

〈Φ,Ψ〉⊗L
l=1 L2(R2) :=

L∑
l=1

1

cl
〈Φ(l),Ψ(l)〉L2(R2).

In order to apply the method of the approximate inverse, we first have to compute
the adjoint A∗ of A. A physical interpretation is given afterwards.

Theorem 6.2.1. The adjoint of A is given by

A∗ : (L2(R2))G −→
L⊗
l=1

L2(R2) (6.14)

(A∗ϕ)(l)(%) = cl

G∑
g=1

µ−2
l,βg

ϕβg

(
µ−1
l,βg

(%− βghl)
)
, l = 1, . . . , L.

Proof Using the definition of A, we obtain

〈AΦ, ϕ〉(L2(R2))G =
G∑
g=1

〈
(AΦ)g, ϕβg

〉
L2(R2)

=

G∑
g=1

∫
R2

L∑
l=1

Φ(l)(µl,βgr + hlβg)ϕβg(r) dr.

With the substitution % := µl,βgr + hlβg it holds

〈AΦ, ϕ〉(L2(R2))G =

G∑
g=1

L∑
l=1

∫
R2

µ−2
l,βg

Φ(l)(%)ϕβg(µ
−1
l,βg

(%− hlβg)) d%

=
L∑
l=1

∫
R2

Φ(l)(%)
G∑
g=1

µ−2
l,βg

ϕβg(µ
−1
l,βg

(%− hlβg)) d%

=
L∑
l=1

1

cl

〈
Φ(l), cl

G∑
g=1

µ−2
l,βg

ϕβg(µ
−1
l,βg

(· − hlβg))

〉
L2(R2)

= 〈Φ,A∗ϕ〉⊗L
1=l L2(R2).

�
Recall that the operator A sums up the wavefronts of all layers for each direction of a
guide star. The adjoint takes the wavefronts ϕ and projects them onto the layers in the
atmosphere, in each layer summing up the contribution of each guide star. Additionally,
each layer is weighted such that the “energy” is preserved.

In order to solve the normal equation (6.10) and define proper intertwining operators,
we will use the following result on the composition of A and A∗.
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Theorem 6.2.2. It holds
AA∗ = B + λI

with the identity I, λ := (λg)g=1,...,G where λg :=
∑L

l=1 cl µ
−2
l,βg

and BΨ := (BgΨ)g=1,...,G,

BgΨ(r) :=
L∑
l=1

cl

G∑
i=1,i 6=g

µ−2
l,βi

Ψi

(
µl,βg
µl,βi

r + µ−1
l,βi
hl(βg − βi)

)
. (6.15)

Proof. With the definition of the operators A (6.12) and A∗ (6.14), we obtain for g =
1, . . . , G

(AA∗Ψ)g(r) =

L∑
l=1

(A∗Ψ)(l)(µl,βgr + hlβg)

=
L∑
l=1

cl

G∑
i=1

µ−2
l,βi

Ψi

(
µ−1
l,βi

((µl,βgr + hlβg)− hlβi)
)

=
L∑
l=1

cl

 G∑
i=1,i 6=g

µ−2
l,βi

Ψi

(
µl,βg
µl,βi

r + µ−1
l,βi
hl(βg − βi)

)
+ µ−2

l,βg
Ψg(r)


=

L∑
l=1

cl

G∑
i=1,i 6=g

µ−2
l,βi

Ψi

(
µl,βg
µl,βi

r + µ−1
l,βi
hl(βg − βi)

)
+

L∑
l=1

cl µ
−2
l,βg

Ψg(r)

= BgΨ(r) + λg Ψg

with B and λ defined above.

When a single reconstructed wavefront ϕg, g ∈ 1, . . . , G is projected onto the layers
and then back down onto the wavefront sensors, one obtains the (rescaled) ϕg again.
However, additionally ϕg is influenced by a difficult structure of cross-projections of the
other reconstructed wavefronts ϕi, i 6= g, collected in the operator B.

Using the representation of Theorem 6.2.2, we obtain the following invariances.

Theorem 6.2.3. Let eγl (%) = (cle
γ(%)δi,l)i=1,...,L be the mollifier from (6.9) centred at

zero, with l ∈ {1, . . . , L} arbitrary but fixed. Define for j = 1, . . . , L the linear operators

T x1,l :
L⊗
j=1

L2(R2) −→
L⊗
j=1

L2(R2), (T x1,le
γ
l )(j)(%) := (eγl )(j)(%− x)δj,l and

T x2,l : (L2(R2))G −→ (L2(R2))G,
(
T x2,lΨ

)
g

(r) := Ψg

(
r − x

µl,βg

)
for g = 1, . . . , G. If for all l = 1, . . . , L, µl,βg = µl independent of g ∈ {1, . . . , G}, then
it holds

AT x1,le
γ
l = T x2,lAe

γ
l , T x2,lAA∗ = AA∗T x2,l. (6.16)
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Proof Using the definition of the operators T x1,l and T x2,l, we obtain for g = 1, . . . , G

(
AT x1 e

γ
l

)
g

(r) =
L∑
j=1

(
T x1 e

γ
l

)(j)
(µj,βgr + hjβg)

= cle
γ
(
µl,βgr + hlβg − x

)
= cle

γ

(
µl,βg

(
r − x

µl,βg

)
+ hlβg

)

=
L∑
j=1

(
eγl
)(j)(

µj,βg

(
r − x

µl,βg

)
+ hjβg

)

=
(
Aeγl

)
g

(
r − x

µl,βg

)
=
(
T x2,lAe

γ
l

)
g

(r).

For the second invariance, we have the following situation.

(
T x2,lAA∗Ψ

)
g

(r) = (AA∗Ψ)g

(
r − x

µl,βg

)

=
L∑
j=1

cl

G∑
i=1,i 6=g

µj,βi
−2Ψi

(
µj,βg
µj,βi

(
r − x

µl,βg

)
+ µj,βi

−1hj(βg − βi)
)

+ λgΨg

(
r − x

µl,βg

)
. (6.17)

On the other hand, we obtain(
AA∗T x2,lΨ

)
g

(r)

=
L∑
j=1

cl

G∑
i=1,i 6=g

µj,βi
−2Ψi

(
µj,βg
µj,βi

(
r −

µj,βix

µj,βgµl,βi

)
+ µj,βi

−1hj(βg − βi)
)

+ λgΨg

(
r − x

µl,βg

)
. (6.18)

Hence, with µj,βi = µj,βg and µl,βi = µl,βg , it is T x2,lAA∗ = AA∗T x2,l. �

The theorem, in principle, states that it does not matter if one first translates the
mollifier on the layer by x and then projects it onto the wavefront sensors or first projects
it onto the wavefronts sensors and then translates the measurements by x

µl,βg
. However, it

reveals an issue when laser guide stars and natural guide stars are combined. Comparing
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the action of T x2,l in (6.17) and (6.18), respectively, one can spot a difference in the “cross-
projections”, i.e., when projecting a component Ψi on a layer and then projecting it back
down in direction βg, i 6= g. The difference lies in the scaling factor of the shift, r− x

µl,βg

compared to r − µj,βix

µj,βgµl,βi
. In case we only consider either natural guide stars or laser

guide stars, it is µj,βi = µj,βg for all i, g and hence the invariance holds true. If both types
of guide stars are mixed, however, this factor adds a systematic error in the invariances.
Therefore we cannot expect the approximate inverse to perform as well for mixed guide
stars as for a single type of guide stars. Numerically, however, the proposed invariances
still lead to good results, see Section 6.3.2. The problem may be resolved when tip/tilt
indetermination of laser guide stars is part of the model. In this case, the natural guide
stars can be used only to correct the reconstructions of the layers performed with laser
guide stars. This so called separate tip/tilt reconstruction technique or split tomography
is described in [68, 52]. Using this, one may use a setup with only laser guide stars and
reconstruct a turbulence profile from this. The tip/tilt information is provided from
additional natural guide star measurements via a separate approach. Since we did not
include tip/tilt indetermination in this paper, we do not know if additional problems
might appear. However, from the current situation this should avoid the problem of
mixing the guide star types for the method of the approximate inverse. If we only
consider laser guide stars, the following set of invariance operators leads to a faster
reconstruction algorithm.

Let eγl be again the mollifier from (6.9) centered at zero, with l ∈ {1, . . . , L} arbitrary
but fixed. If for all l = 1, . . . , L, µl,βg = µl independent of g ∈ {1, . . . , G} the linear
operators T x1,µl , T

x
2 are defined via

T x1,µl :
⊗L

j=1 L2(R2) −→
⊗L

j=1 L2(R2), (T x1,µle
γ
l )(j)(%) = (eγl )(j)(%− µlx)δj,l,

T x2 : L2(R2)G −→ L2(R2)G, (T x2 Ψ)g (r) := Ψg (r − x) ,

then it holds
AT x1,µle

γ
l = T x2Ae

γ
l , T x2AA∗ = AA∗T x2 .

Thus, it is
eγx,l(%) = T x1,µle

γ
l (%) = (cl e

γ(%l − µlx) δi,l)i=1...L,

leading to
〈Φ, eγx,l〉⊗L

i=1 L2(R2) = 〈Φ(l), eγl (· − µlx)〉L2(R2) = Φ(l)
γ (µlx).

Hence, the mollified version 〈Φ, eγx,l〉⊗L
l=1 L2(R2) approximates a scaled version of the layer

Φ(l), instead of the layer itself. The corresponding reconstruction kernels represent then
unscaled translated versions of Ψγ

l ,

Ψγ
x,l(r) = T x2 Ψγ

l (r) = Ψγ
l (r − x) .
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Thus, the functional 〈ϕ,Ψγ
x,l〉L2(R2)G can be computed without interpolation of the data

vector. Instead, this interpolation step is transferred to an interpolation on the layer.
For a discussion on the numerical effort we refer to Section 6.3.3. The image quality
obtained with these invariances in numerical simulations was of the same quality as
with the previously introduced invariances as long as the guide star types were not
mixed. However, for the mixed guide star setting this set of invariance operators gave
significantly worse results.

6.2.2 Calculation of the reconstruction kernel

To compute the reconstruction kernels, we have to solve the auxiliary problem

A∗Ψγ
x,l = eγx,l (6.19)

for each point x we wish to reconstruct. The following Lemma shows that it is not
possible to find an exact solution for a mollifier as defined in (6.9), i.e., an individual
mollifier for each layer.

Lemma 6.2.4. Let eγx,l as in (6.9). Then eγx,l /∈ R(A∗).

Proof Assume eγx,l ∈ R(A∗). Then eγx,l ∈ R(A∗) = N (A)⊥, i.e., 〈eγx,l,Φ〉⊗L
l=1 L2(R2) =

0 for all Φ ∈ N (A). Let Φ̃ := (ClχΩl)l=1,...,L be constant on each layer with Cl ∈ R,∑L
l=1Cl = 0. Then AΦ̃ = 0, i.e., Φ̃ ∈ N (A) but

〈eγx,l, Φ̃〉⊗L
l=1 L2(R2) = 〈eγx, Φ̃(l)〉L2(Ωl) = Cl〈eγx, 1〉L2(Ωl) 6= 0

because of Definition 6.1.1. Hence eγx,l /∈ N (A)⊥ = R(A∗), contradicting the original
assumption. �

Since eγx,l /∈ R(A∗), we solve the normal equation

AA∗Ψγ
x,l = Aeγx,l (6.20)

instead of (6.19). In order to circumvent the dependency of this equation on the point
x, we use the invariance properties (6.16) of A and AA∗. Hence the mollifiers eγx,l are
generated by

eγx,l = T x1,le
γ
l (6.21)

with eγl := (cle
γ δi,l)i=1...L analogously to (6.9). Again, eγ ∈ L2(R2) is a prescribed

mollifier and δi,l represents the Kronecker symbol. According to Theorem 6.1.1 and
Theorem 6.2.3, the corresponding special reconstruction kernels Ψγ

x,l are given by(
Ψγ
x,l

)
g

(r) =
(
T x2,lΨ

γ
l

)
g

(r) =
(
Ψγ
l

)
g

(
r − x

µl,βg

)
,
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where Ψγ
l solves

AA∗Ψγ
l = Aeγl (6.22)

i.e., Ψγ
l minimizes ||A∗Ψ − eγl ||

2. It remains to solve this problem once for each layer
l = 1, . . . , L.

A common method for solving equations of type (6.22) are iterative methods, in par-
ticular gradient methods. Starting from an initial guess, one iterates

Ψγ
l ← Ψγ

l − τ(AA∗Ψγ
l −Ae

γ
l ) (6.23)

until a stopping criterion is met, e.g., a maximum number of iterations. The steplength
τ is used to ensure convergence and has to be chosen appropriately, see below. With
AA∗ = B + λI from Theorem 6.2.2, (6.23) can be written

Ψγ
l ← (1− τλ)Ψγ

l − τ(BΨγ
l −Ae

γ
l ).

This procedure updates all G components of Ψγ
l at once. However, the numerical results

we obtained with this approach were of low quality, i.e., the obtained Strehl ratios were
close to zero. Alternatively, one may update each component separately and immedi-
ately use the updated information in the next step. This approach was introduced by
Kazcmarz for the solution of linear systems of equations. It can be extended to more
general settings, in particular to Adaptive Optics, see, e.g., [41, 60]. In each step, we
now minimize ||A∗Ψγ

l − e
γ
l ||

2 in direction of component (Ψγ
l )g in a cyclical way. The

gradient w.r.t. to the g-th component, i.e., the Fréchet derivative in the direction of the
g-th component, is given by

∇g||A∗Ψγ
l − e

γ
l ||

2 = (AA∗Ψγ
l −Ae

γ
l )g = λg(Ψ

γ
l )g +BgΨ

γ
l − (Aeγl )g.

With this as descent direction we construct an iterative Kaczmarz-type algorithm. Let
k̄ := mod(k,G) + 1. Then, again starting from an initial guess which in practice we
simply chose zero, we update

(Ψγ
l )k̄ ← (1− τkλk̄)(Ψ

γ
l )k̄ − τk(Bk̄Ψ

γ
l − (Aeγl )k̄) (6.24)

for k = 1, 2, . . . until a stopping criterion is met. In our numerical experiments we let

τk =
‖λk̄(Ψ

γ
l )k̄ +Bk̄Ψ

γ
l − (Aeγl ))k̄‖(L2(R2))

‖A∗(λk̄(Ψ
γ
l )k̄ +Bk̄Ψ

γ
l − (Aeγl ))k̄)‖⊗L

l=1 L2(R2)

. (6.25)

This choice of τk minimizes the residual in the search direction, c.f. [145],

τk = min
τ
||A∗(Ψγ

l + τ(λg(Ψ
γ
l )g +BgΨ

γ
l − (Aeγl )g))− eγl ||

2⊗L
l=1 L2(R2)

.

With the calculated Ψγ
l we can then reconstruct the layer l in any point x ∈ Ωl via

Φ(l)
γ (x) = 〈AΦ, T x2,lΨ

γ
l 〉(L2(R2))G . (6.26)
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6.2.3 The extension error

Our main goal is the reconstruction of the layers Φ(l), l = 1 . . . L, from the measured
data AΦ = ϕ. Using the extension Φ̃ of Φ to the whole spatial domain R2, (6.11), the
relation between AΦ̃ and AΦ is given by

AΦ̃(r) =


AΦ(r) r ∈ ΩD

0 r ∈ R2 \ (ΩD ∪ Ω̃)

ϕ̃(r) r ∈ Ω̃

with an unknown function ϕ̃ 6= 0 and Ω̃ defined in (6.13). Now, for x ∈ Ωl, it is

Φ(l)
γ (x) = Φ̃(l)

γ (x) = 〈AΦ̃, T x2,lΨ
γ
l 〉(L2(R2))G

= 〈AΦ, T x2,lΨ
γ
l 〉(L2(ΩD))G + 〈ϕ̃, T x2,lΨ

γ
l 〉L2(Ω̃)

= 〈AΦ, T x2,lΨ
γ
l 〉(L2(ΩD))G + ε. (6.27)

The angles βg cover just a small range, so the domain Ω̃ will be relatively small
compared to ΩD. Besides, with the distance of r to ΩD getting larger, less layers give a
contribution to

∑L
l=1 Φ(l)(µlr+hlβg), i.e. the value of ϕ̃(r) is getting smaller. In order to

verify this numerically, we conduct the following experiment using the guide star setup
corresponding to the one from Section 6.3.2 with 6 natural guide stars.

For the 42m diameter telescope used in the simulations, Ω̃ corresponds to a ring of
width 4m around the telescope mirror, see the left image in Figure 6.1. There, the inner
circle corresponds the the mirror of the telescope ΩD. We define Φ̄(%) := (χΩl(%))l=1,...,L

where χΩl is the characteristic function of Ωl, i.e., has the value one for % ∈ Ωl and zero
otherwise. From this we calculate ϕ := (AΦ̄) · χΩD and ϕ̃ := (AΦ̄) · (1 − χΩD). Hence,
ϕ corresponds to the available data and ϕ̃ to the artificial data. In the right picture
of Figure 6.1 we show that the value of ϕ̃ indeed becomes smaller the further away the
position from the mirror is. From both data sets, we can numerically evaluate the ratio
R of the integrals over ϕ and ϕ̃,

R =

∫
Ω̃
ϕ̃(r)dr∫

ΩD
ϕ(r)dr

= 0.01,

i.e., the “magnitude” of ϕ̃ is about one percent of that of ϕ. Additionally, the recon-
struction kernels Ψγ

l decay away from a few spikes situated around the center of the
telescope pupil (compare Figure 6.2). Hence both the contribution of the reconstruction
kernels and of ϕ̃ to ε = 〈ϕ̃, T x2,lΨ

γ
l 〉L2(Ω̃)

is expected to be small. So we approximate

Φ(l)
γ (x) = 〈AΦ, T x2,lΨ

γ
l 〉(L2(ΩD))G . (6.28)
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Figure 6.1: Ω̃ for a telescope mirror of 42m diameter, 6 natural guide stars in a regular
hexagon, each NGS 5 arcmin from zenith. On the left side, the domain
qualitative shape of Ω̃ is shown. On the right side, we give a more quanti-
tative image showing the “magnitude” of the artificially created data. This
figure suggests that the contribution of Ω̃ can be neglected making only a
small approximation error.

As mentioned in the introduction of this section, one could also, instead of extending
the layer as in (6.12), introduce a rigorous cut-off of the operator, i.e., define

Ã :

L⊗
l=1

L2(R2) −→ (L2(R2))G

ÃΦ(r) :=

(
χΩD(r)

L∑
l=1

Φ(l)(µl,βgr + hlαg)

)
g=1,...,G

. (6.29)

The characteristic function χΩD then appears in the adjoint operator as well as in the
operator B when translating Theorem 6.2.1 and Theorem 6.15, respectively. With this
operator, however the invariances of Theorem 6.2.3 only hold for r ∈ ΩD(·)∩Ωx,µ

D where
Ωx,µ
D = {r ∈ R2 : r− x

µl,βg
∈ ΩD}. Otherwise, an additional error is introduced. One can

show that, with T x1,l and T x2,l from Theorem 6.2.3, it holds

ÃT x1,le
γ
l = T x2,lÃe

γ
l + ε1, T x2,lÃÃ∗ = ÃÃ∗T x2,l + ε2

with ε1, ε2 ∈ L2(ΩD). Consequently it is, analogously to (6.27)

Φ(l)
γ (x) ≈ 〈ÃΦ, T x2,lΨ

γ
l 〉(L2(ΩD))G + 〈ÃΦ, ε1 + ε2〉L2(Ω̃)

= 〈ϕ, T x2,lΨ
γ
l 〉(L2(ΩD))G + ε̃
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with ε̃ ∈ R. Numerically, both methods are almost identical. In several simulations, the
maximal improvement in Strehl ratio when using the cut-off instead of the extension
of the layer was 0.086%. We preferred the continued layer model as it leads to simpler
notation as well as less computational effort.

6.3 Numerical Results

In this section we discuss and present the numerical implementation of the method of
the approximate inverse for MCAO. The setting was presented in Section 2.7.

6.3.1 Reconstruction Method

Previously, all functions were considered in infinite dimensional spaces. For the numerical
treatment of the problem, however, a discretization is necessary. The discretization grid
for this problem is given by the wavefront sensors and deformable mirrors used in the
setup of the telescope. The shape of each deformable mirror is controlled by a fixed
number of actuators, see Section 2.5.2. The grid of these actuator positions is, in our
case, quadratic with the spacing between two neighbouring actuators being ∆l, that is,
each mirror might have a different but still uniform grid. These grids are used directly
as the discretization of the layers of the atmosphere. This is possible since each DM
is conjugated to a certain height in the atmosphere as discussed in Section 2.6. Thus
we reconstruct for l = 1, . . . , L the discretized layer Φ(l)(xal) where xal ∈ Xal and Xal

denotes the set of the positions of all actuators of the l-th deformable mirror. Similarly,
the discretization of the measured wavefronts is given by the grid of the subapertures
of the wavefront sensors (Section 2.5.1). Hence, the available data is, for g = 1, . . . , G,
given by ϕβg(xsag) where xsag ∈ Xsag and Xsag denotes the set of coordinates of the
subapertures of the g-th wavefront sensor.

The reconstruction of each layer Φ(l) requires three basic steps. First, the vectors eγl
and hence the mollifier eγ ∈ L2(R2) has to be set up. Since we are free to choose the
parameter γ, we might make a different choice for each layer l. Hence, γl denotes the
mollification parameter used to reconstruct layer l. In our first simulations we chose the
Gaussian

eγl(%) :=
1

2πγ2
l

exp

(
−‖%‖

2

2γ2
l

)
with γl > 0. For this mollifier, it holds ||eγl ||L2(R2) = 1. However, the given discretization
seemed to be too coarse and a high quality solution could not be found since either γ
was so large that the mollifier was blurring too much or it was so small that its discrete
norm was far away from 1. Instead, we followed the idea that the mollifier is supposed
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to approximate the delta distribution. We let

eγl(%) =

{
γl∆

−2
l , % = 0

0, % 6= 0
, (6.30)

with γl being a free parameter and ∆l again the actuator spacing. This definition
ensures ‖eγl‖ ≈ 1 on the actuator grid of each mirror. For the results presented sub-
sequently we let γ1 = µ−1

1 , γ2 = µ−1
2 and γ3 = µ−1

3 . Using this mollifier eγl , the l-th
mollifying vector is given by eγl = (cle

γlδi,l)i=1,...,L.
The second step for the reconstruction of the l-th layer is to solve equation (6.22)

via the iteration procedure (6.24) to obtain the reconstruction kernels. The procedure
is described in Algorithm 1. An example of such a reconstruction kernel is given in
Figure 6.2. In order to get an idea about the reconstruction quality, we can check
the mollifier vector obtained from the reconstruction kernels. In the optimal case we
would get A∗ψγl = eγl for l = 1, 2, 3 . However, since we can only solve the normal
equation, i.e., look for an approximate solution, layers on which the mollifier should be
zero (as would be the case if we were able to solve (6.19)) show some artefacts, when
the mollifier is reconstructed from the computed reconstruction kernels. An example
is given in Figure 6.3. In Lemma 6.2.4 we showed that a function that is nonzero on
only one layer (as we would desire for the mollifier) is not in the range of A∗. Hence,
if the reconstruction kernels ψγl are obtained by solving the normal equation (6.22),
the reconstructed mollifier ẽγl := A∗ψγl will not fulfil this condition. In a last step
we reconstruct the layers via the method of the approximate inverse, see Algorithm
2. Having available the precomputed reconstruction kernels, the function value of each

point xal ∈ Xal on a layer is given by Φ
(l)
γ (xal) = 〈ϕ, T xal2,l Ψγ

l 〉(L2(R2))G , i.e., the sum

of G single L2-scalar products 〈ϕβg , (Ψ
γ
l )g(· −

xal
µl,βg

)〉L2(Xsal )
. In order to evaluate this

in the discrete setting, each shifted reconstruction kernel (according to the invariance
operator T xal2,l from Theorem 6.2.3) has to be interpolated on the grid of the data first.
This procedure is repeated for each point xal ∈ Xal and for all layers l = 1, . . . , L. If
we would reconstruct more layers than the number of deformable mirrors, an additional
fitting step would have to be introduced as mentioned in Section 2.5.2. Algorithm 2
is repeated for every time step. The reconstruction kernels are not changed between
different time steps.

6.3.2 Simulation results

We compare the performance of the method of the approximate inverse (AI) with a
gradient-based algorithm [132] and a Kaczmarz-type method [60, 41]. Both are known
to produce solutions of the same quality as the methods currently used in practice for
smaller telescopes. As evaluation criterion we use the long exposure (LE) Strehl ratio
in K-band (for a wavelength of 2200 nm) after 100 time steps of 2 ms, according to the
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Algorithm 1 Algorithm for the calculation of the reconstruction kernels. We stop the
iteration after a fixed number of steps K has been performed. In the experiments here,
we used K = 1800

Input: telescope geometry, guide star setting
for l = 1, . . . , L do

Initialise discretized mollifiers eγl (xal), l = 1, . . . , L from (6.30)
Initialise discretized reconstruction kernels (Ψγ

l )g(xsag) = 0, g = 1, . . . , G, set
k = 0
while k < K do
k̄ = mod(k,G) + 1
calculate τk according to (6.25)
update (Ψγ

l )k̄ according to (6.24)
k = k + 1

end while
Output: reconstruction kernels (Ψγ

l )g(xsag) for g = 1, . . . , G
end for

Algorithm 2 The method of the approximate inverse for MCAO. Reconstruction of the
layers in one time step.

Input: telescope, geometry, guide star setting, reconstructed wavefronts ϕβg , g =
1, . . . , G
for l = 1, . . . , L do

Input: precomputed reconstruction kernels (Ψγ
l )g(xsag) for g = 1, . . . , G

for each xal ∈ Xal do
evaluate (6.26): Initialise Φ(l)(xal) = 0
for g = 1, . . . , G do

interpolate (Ψγ
l )g(· −

xal
µl,βg

) on the grid Xsag

Φ(l)(xal) = Φ(l)(xal) + 〈ϕβg , (Ψ
γ
l )g(· −

xal
µl,βg

)〉L2(Xsal )

end for
end for
Output: reconstructed layer Φ(l)(xal), xal ∈ Xal

end for
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Figure 6.2: Reconstruction kernel Ψγ
3 for layer 3 and a laser guide star
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Figure 6.3: Mollification vector eγl obtained from reconstruction kernels for A∗Ψγ
3 for

the reconstruction of layer 3. From left to right: (A∗Ψγ
3)(l) for l = 1, 2, 3.

Although the third layer is reconstructed adequately, the other layers show
some artefacts instead of being plain zero as would be the optimal case.

frequency of the AO system. For each setup we provide LE Strehl plots of the field of
view of the telescope from reconstructions obtained with the method of the approximate
inverse and of ththe two reference methods. Below these figures, we show a comparison
of LE Strehl versus separation. Here, separation is the deviation of the viewing angle
from zenith. The radial Strehl has been azimuthally averaged. Running the simulation
against the gradient method and Kaczmarz method, we observe that the approximate
inverse performs comparatively to the other ones. In Figure 6.4 we show the result for
natural guide stars, where the approximate inverse produces a slightly worse result than
the reference methods. For laser guide stars, however, the approximate inverse gave
the best result, although by a small margin only; see Figure 6.5. “Better” results here
correspond to higher Strehl value which would lead to the observed images showing more
details than for lower Strahl ratios. Since the invariances of Theorem 6.2.3 only hold for
a single type of guide stars used, we expect a slight drop in reconstruction quality when
both guide star types are mixed. Numerical results confirm this, see Figure 6.6. There,
we used 6 laser guide stars and 3 natural guide stars. However, the Strehl obtained with
the approximate inverse is still very close to the reference methods. In this experiment,
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Figure 6.4: Strehl for 6 natural guide stars. The Strehl ratio obtained with the method
of the approximate inverse is comparable with the reference methods. In
the center of the field of view, it is even larger, corresponding to better
image quality for astronomical objects positioned there.

our methods drops in Strehl in particular for large separations since the difference in the
invariance operators matters most for larger angles. In order to stabilize the updates of
the mirror shape, which have to be performed every 2 ms, we use a pseudo-open loop
control (POLC) for all three methods. In Adaptive Optics, POLC has been introduced
in, e.g., [64].

6.3.3 Computational complexity

In Adaptive Optics, speed is one of the most critical criteria for acceptance of a method.
For the approximate inverse, the situation is as follows. In a first step, the wavefronts
have to be reconstructed for each guide star from the Shack-Hartmann wavefront sensors
with CuReD. The computational complexity is 20nsa where nsa is the total number of
subapertures in the Shack-Hartmann wavefront sensor [48]. This has to be done for each
of the G guide stars. CuReD is parallelizable. The reconstructed wavefronts are then
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Figure 6.5: Strehl for 6 laser guide stars. The Strehl ratio obtained with the method
of the approximate inverse is higher than the one of the reference methods,
i.e, the observed image would be of higher quality.

used to calculate the shape of the deformable mirrors using the reconstruction kernels.
The kernels are precomputed, see Algorithm 1. Hence this rather time consuming step
gives no contribution during the actual computations. In particular, no runtime eval-
uation of the forward or adjoint operator is needed. The remaining effort lies in the
evaluation of the scalar products, where the reconstruction kernels are merely an input,
see Algorithm 2. For the reconstruction of a single point of one layer, G inner products
are required, each consisting of 2 · nsa operations for the evaluation. If the invariance
operators from Theorem 6.2.3 are used, further 6nsa operations are required for the eval-
uation of each inner product to interpolate the shifted reconstruction kernels on the grid
given by the wavefront sensors. Since we can reconstruct the artificial layers directly on
this grid, we have to do this for nact points, where nact denotes the combined number of
actuators for all mirrors. Assuming that for each mirror we have approximately nsa ac-
tuators, the overall complexity for the reconstruction of a whole atmosphere in one time
step is G ·20 ·nsa+nact ·G ·2nsa ·6 ·nsa ≈ G ·20 ·nsa+12L ·G ·n3

sa. Using the alternative
invariance operators from the end of Section 6.2.1, we can avoid the interpolation of the
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Figure 6.6: Strehl for 6 laser guide stars and 3 (full) natural guide stars. Although
the invariances do not hold exactly for mixed guide stars, the Strehl ratio
obtained with the method of the approximate inverse is still close to the
reference methods. We explained at the end of Section 4.1 that this is not
a setting relevant in practice.
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reconstruction kernels, but require an interpolation of the reconstructed mirror shape to
its actual domain. However, since there are only very few layers compared to the amount
of actuators, the computational cost is significantly reduced. The overall complexity can
then be estimated as G ·20 ·nsa+nact ·G ·2nsa+6 ·nact ≈ G ·26 ·nsa+12L ·G ·n2

sa. Since
each inner product is independent of the other ones, the procedure is parallelizable. Note
that, due to the nature of the method, an extension of the model, e.g., an inclusion of
additional effects of laser guide stars, does not increase the relevant computational effort
as all operations involving the model are solely performed in the calculation of the recon-
struction kernels. Finally, we would like to briefly discuss the option of estimating more
layers, i.e., more turbulence profiles of the atmosphere, than deformable mirrors which
usually leads to improved Strehl ratio. Each additional layer to be reconstructed adds
about 12G ·n3

sa (or 12G ·n2
sa, respectively) operations. Then, one needs an optimization

routine which finds the configuration of the available deformable mirrors that corrects
best for the computed atmospheric turbulence profile. This can be done in linear com-
plexity, see for example [146]. Hence, adding more layers is very costly. Although we do
not have experimental results, we expect the possible gain in estimating more layers to
be comparable to the moderate gain achieved with other methods, for example [75]. In
summary, we would expect that estimating more layers than deformable mirrors is not
advisable as the costs are too high.
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In Chapter 1 we introduced the deterministic and stochastic setting of Inverse Prob-
lems. We discussed advantages and disadvantages of both approaches and showed con-
nections between the two approaches of noise modeling. We moved on to the introduction
Adaptive Optics in Atmospheric Tomography as a particular application of an Inverse
Problem. In Chapter 3 we reviewed filter-based regularization methods with focus on
two regularization methods called fractional Tikhonov regularization. We showed both in
theory and numerical experiments that, although both are of optimal convergence order
with a-priori parameter choice as well as with the discrepancy principle, their superiority
to Tikhonov regularization in standard form is restricted to the case when the under-
lying problem is severely ill-posed or the noise is concentrated in low frequencies. We
continued to show that a-priori convergence results for filter-based regularization meth-
ods carry over directly to the stochastic setting. The transition is less straight forward
for the discrepancy principle for which we presented two stochastic formulations. The
first one, based on the modification of the residual as a stochastic quantity, inherits the
deterministic convergence rates in expectation while for the second one, assuming only
one realization of the noisy data is available, we showed convergence rates in the slightly
weaker Ky Fan metric. Again, the theoretical results were exemplified numerically. We
moved on to sparsity-promoting regularization. Starting from the Bayesian approach in
the stochastic setting we derived a Tikhonov-type functional for the maximum a-priori
solution and showed convergence and convergence rates in the Ky Fan metric by lifting
deterministic results to the stochastic setting. This lifting approach allowed the con-
struction of a novel parameter choice rule based on the stochastic modeling of noise and
unknown required by the Bayesian approach. We applied the theory to the problem of
Atmospheric tomography, confirming the viability of the new parameter choice rule. We
then summarized the results of lifting deterministic convergence rates to the stochastic
setting. Given a deterministic convergence theory, convergence in the Ky Fan metric is
directly implied when instead of the worst case estimate δ the Ky Fan distance between
true and noisy data or the slightly slowed down expectation of the error is used. Finally,
we apply the method of the approximate inverse to Atmospheric Tomography. We show
how the traditional formulation for scalar functions has to be adapted for vector valued
functions. Finding special invariance operators allows to reduce the computational ef-
fort by having to solve only one adjoint problem to obtain the so called reconstruction
kernels. This is done with a Kaczmarz-type algorithm. In numerical simulations, the
method of the approximate inverse leads to results which can compete with state of the
art methods in several astronomical configurations.



Bibliography

[1] A. Tikhonov. On the stability of inverse problems. Dokl. Akad. Nauk SSSR,
39:195–198, 1943.

[2] A. Tikhonov. On solution of ill-posed problems and the regularization method.
Dokl. Akad. Nauk SSSR, 151:501–504, 1963.

[3] F. Natterer. The Mathematics of Computerized Tomography. Wiley, 1986.
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É. Closed-loop ground layer adaptive optics simulations with elongated spots :
impact of modeling noise correlations. 1st AO4ELT conference - Adaptive Optics
for Extremely Large Telescopes, page 03004, 2010.

[54] Richard M. Clare, Miska Le Louarn, and Clementine Béchet. Optimal noise-
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[118] S. Vää M. Lassas M. Kalke, S. Siltanen and M. Rantala. Method and arrangement
for multiresolutive reconstruction for medical x-ray imaging. United States patent
7215730, 2007.

[119] D. Leporini and J.-C. Pesquet. Bayesian wavelet denoising: Besov priors and
non-gaussian noises. Signal Processing, 81:55–67, 2001.

[120] I. Daubechies. Ten lectures on wavelets, volume 61 of CBMS-NSF Regional Con-
ference Series in Applied Mathematics. Society for Industrial and Applied Math-
ematics (SIAM), Philadelphia, PA, 1992.



144 Bibliography

[121] Y. Meyer. Wavelets and operators, volume 37 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, 1992.

[122] A. K. Louis, P. Maaß, and A Rieder. Wavelets. B. G. Teubner, Stuttgart, 1998.

[123] R. A. Adams and J. F. J. Fournier. Sobolev spaces, volume 140 of Pure and Applied
Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,
2003.

[124] M. Lindemann. Approximation Properties of Non-separable Wavelet Bases with
Isotropic Scaling Matrices. PhD thesis, University Bremen, 2005.

[125] S. Dahlke. Wavelets: Construction Principles and Applications to the Numerical
Treatment of Operator Equations. PhD thesis, RWTH Aachen, 1996. Habilitation
thesis.

[126] M. Lassas and S. Siltanen. Can one use total variation prior for edge-preserving
Bayesian inversion? Inverse Problems, 20(5):1537–1563, 2004.

[127] S. Osher L. Rudin and E. Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D, 60:259–268, 1992.

[128] Markus Grasmair, Markus Haltmeier, and Otmar Scherzer. Sparse regularization
with lq penalty term. Inverse Problems, 24(5):055020, 13, 2008.

[129] D. A. Lorenz. Convergence rates and source conditions for Tikhonov regularization
with sparsity constraints. J. Inverse Ill-Posed Probl., 16(5):463–478, 2008.

[130] D. Th. Egoroff. Sur les suites de fonctions mesurables. C. R., 152:244–246, 1911.

[131] M. Yudytskiy, T. Helin, and R. Ramlau. Finite element-wavelet hybrid algorithm
for atmospheric tomography. J. Opt. Soc. Am. A, 31(3):550–560, Mar 2014.

[132] D. Saxenhuber and R. Ramlau. A gradient–based method for atmospheric tomog-
raphy. Technical Report E-TRE-AAO-528-0043, Austrian In-Kind Contribution -
AO, 2013.

[133] R. Gorenflo and B. Hofmann. On autoconvolution and regularization. Inverse
Problems, 10(2):353–373, 1994.

[134] Daniel Gerth, Bernd Hofmann, Simon Birkholz, Sebastian Koke, and Günter Stein-
meyer. Regularization of an autoconvolution problem in ultrashort laser pulse
characterization. Inverse Probl. Sci. Eng., 22(2):245–266, 2014.

[135] Simon Birkholz, Günter Steinmeyer, Sebastian Koke, Daniel Gerth, Steven Bürger,
and Bernd Hofmann. Phase retrieval via regularization in self-diffraction-based
spectral interferometry. JOSA B, 32(5):983–992, 2015.



Bibliography 145

[136] A. K. Louis and P. Maass. A mollifier method for linear operator equations of the
first kind. Inverse Problems, 6(3):427–440, 1990.

[137] Daniel Gerth, Bernadette Hahn, and Ronny Ramlau. The method of the approx-
imate inverse for atmospheric tomography. Inverse Problems, 30(5):245–266, to
appear.

[138] A. K. Louis. Approximate inverse for linear and some nonlinear problems’. Inverse
Problems, 12(2):175–190, 1996.

[139] A. K. Louis. Feature reconstruction in inverse problems. Inverse Problems,
27:065010(21pp), 2011.
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bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht
habe. Die vorliegende Dissertation ist mit dem elektronisch übermittelten Textdokument
identisch.

Linz, am 17. September 2015

Daniel Gerth


