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Abstract

Dual space of a primary ideal associated to an isolated point is a major topic of study in
computational algebraic geometry with applications in many fields, for example in tensor
decomposition and arrangements of planar curves. We study the basis computation for
these dual spaces. Such a basis indicates the multiplicity structure of the point under
study.
Macaulay’s algorithm is the classic algorithm for computing such a basis which is still in
use. However it is not the most efficient algorithm due to large matrix constructions and
repetition of computation. There are several improvements on Macaulay’s algorithm.
Mourrain’s integration method serves as the most advanced algorithm which constructs
much smaller matrices. These algorithms are incremental. They compute a basis for
the dual space degree by degree, via computing the kernel of a certain matrix at each
step. An improvement on the integration method has been provided by Mourrain and
Mantzaflaris which avoids repeated computations.
In this thesis, we give another improvement for the integration method by reducing the
size of the matrices. Similar to the Mourrain-Mantzaflaris’ improvement, our improve-
ment avoids repeating many computations.
Mourrain-Mantzaflaris’ method, while avoiding repetition of computations, goes by adding
new rows to the matrix at each step of the algorithm. Our method on the other hand
makes advancements, by removing some columns, hence reducing the size of the ma-
trix and consequently the size of the computations. We show that a similar improve-
ment can be applied to Macaulay’s algorithm as well, reducing the size of the matrices
as much as possible. We also introduce the notion of directional multiplicity, which has
applications in studying degeneracy in elimination in many problems, in particular in
arrangements of planar curves.
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Chapter 1

Introduction

1.1 Problem, Previous Work and Contribution

The Problem
Consider an isolated point in the variety of a given ideal and its associated primary

component. The quotient of the polynomial ring modulo this associated primary ideal is
a vector space, whose dimension is the multiplicity of the point. A basis for the quotient
and therefore the multiplicity can be computed via Gröbner basis.
It is classically known that the dual space of the polynomial ring is isomorphic to the
space of differential operators. This space is in general infinite dimensional. However,
the dual space of a primary ideal is a finite dimensional subspace and can be computed.
In fact, the dimension of this subspace is the multiplicity of the point. Having the dual
space of this subspace, a Gröbner basis of the primary component can be obtained
from it. Computing a basis for this dual space is the main problem of this thesis.
Considering the differential operators as polynomials, there is a bound on the degree
of the monomials of such polynomials, the so called Nil-index. The existence of this
bound allows us to search for a basis incrementally, i.e., degree by degree, among the
monomials with degree at most Nil-index. In fact a basis can be found among the linear
combination of such monomials. Assigning symbolic coefficients for those monomials
and applying some necessary and sufficient conditions that the differential operators
must satisfy, we obtain a matrix whose kernel gives us the values of the coefficients.
This argument reduces the problem into the kernel computation problem in some spe-
cific matrices. Because of the structure of the matrices that are constructed at each
step of the procedure, they can be very large and also there are repeated and re-
dundant computations. The problem of making improvements via constructing smaller
matrices and efficient computations is at the heart of this thesis.
It turns out that a basis for the dual space captures more information than a Gröbner ba-
sis for the primary component. The dual space shows us the local multiplicity structure,
which provides us with information on the geometry of isolated points. The multiplicity
structure plays an essential role in several problems related to multiplicity and elimi-
nation, which can be treated via directional multiplicities that will be introduced in this

6



work. The motivation for this work stems from our earlier investigation on using resul-
tants in Gröbner basis computation. The idea was to project a given ideal by resultants
and then use it as an element in the elimination ideal in order to facilitate computing a
Gröbner basis. This problem lead us to the multiplicity problem in the elimination ideal
of two affine algebraic planar curves. Directional multiplicity can be used to study the
geometric properties of a point and our motivational problem.

Previous Work
Multiplicity structure of isolated points has been well studied in literature [27, 46, 63,

58, 47] and it is an active research field and there are recent articles on the topic, e.g.
[41]. There are efficient linear algebra algorithms to compute the multiplicity structure
via dual space. A historical work conducted by Macaulay [46] shows how to construct
the simplest matrices in order to compute a basis for the dual space. This algorithm
is still used widely and several improvements have been made that make Macaulay’s
algorithm faster. Wu and Zhi worked on a symbolic-numeric method for computing the
primary components and the differential operators [62], which is based on an algorithm
for determining the dual space that is mentioned in the book [58] by Stetter. In [63]
Zeng used the ideas in Stetter’s algorithm and introduced his closedness property in
order to make Macaulay’s matrices smaller. Mourrain gave a new algorithm based on
integration in [53], which is more efficient than the algorithm of Macaulay in terms of the
size of the matrices. This algorithm was improved by Mantzaflaris and Mourrain in [47]
adding a new criterion. A detailed review of the integration method and how it works in
relation with deflation methods is given in [48]
Marinari, Mora and Möller’s work on dual spaces in [49, 50], includes studying the
behaviour of the dual space under the projection, which is the base of our result on
using dual elements to study the elimination ideal. A survey on dual spaces, including
Marinari, Mora and Möller’s main results, is given in the book by Elkadi and Mourrain
[27]. Also Bates, Peterson and Sommese have worked on the multiplicity of the primary
components [5]. Li and Zhi’s have investigated computing the Nil-index [45]. Examining
the multiplicity structure via deflation is exhibited in the work of Dayton and Zeng [24]
and Leykin and Verschelde [44].
Out motivational ideas for using resultants in Gröbner basis computation is described in
[24], which considers Elimination problem, independent of the dual computation. Poly-
nomials elimination theory is an old and central topic. Gröbner has an article on this
topic [35]. Two main tools in elimination theory are Gröbner Bases and resultants.
Buchberger introduced and expanded the Gröbner basis concept and gave an algo-
rithm for Gröbner bases computation in his PhD thesis [10, 11]. Gröbner bases initiated
a field of study in computational commutative algebra and algebraic geometry. The
applications of Gröbner bases are countless both in theoretical as well as practical
problems, when dealing with algebraic systems. Apart from the application of Gröbner
bases in computing the multiplicity, we will extensively use its elimination property [11]
that allows computing the elimination ideals.
Buchberger’s algorithm is a critical pair comparison algorithm. There are other tech-
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niques to improve Gröbner basis computation. Among them are those that use linear
algebra techniques to speed up the procedure, e.g. Faugère’s F4 [29], MXL3 [52] and
their comparison with each other [4]. Following Buchberger’s idea in [12] on using
Guassian elimination on a generalized Sylvester matrix, Gaussian triangularization and
taking the so called "contour" in the diagonal elements in order to compute a Gröbner
basis, Wiesinger-Widi in [61] found an upper bound for such a matirx. This has been
presented in [14] and is a recent work connecting Gröbner basis to resultants. Signa-
ture Based techniques avoid major (or all in some cases) of the zero reductions, e.g.
[30], [33], [34] and [25]. Computing Gröbner Bases can be very expensive. It has been
shown by Mayr and Meyer that the complexity of computing Gröbner basis is doubly
exponential [51]. However, there are faster methods for special cases that are of high
interest. One such case is zero dimensional ideals, for which the complexity is single
exponential [42]. Also as the complexity changes by change of the order, Faugere, Gi-
anni, Lazard and Mora gave an algorithm to change a Gröbner basis computed with
respect to an arbitrary order into a Gröbner basis with respect to a different order in the
zero dimensional case [31]. This algorithm has been inspired by a work of Buchberger
and Möller [16] which computes a Gröbner basis for a zero dimensional ideal with given
zeros.
Resultants is a classic tool in elimination theory. It has been extensively studied by
Sylvester, Bezout, Dixon, Macaulay and van der Waerden [59, 60]. A smooth introduc-
tion to resultants, including Sylvester and Macaulay resultants is given in [20] and [21].
A survey on computational methods is given in [28], and a modern view towards the
topic is [38].

Our Contribution
The main contributions of this work are improvements to the integration method and

Macaulay’s algorithm. As the size of the matrices constructed in each step of the al-
gorithms is the main obstacle in computations, we propose criteria that allow deleting
some columns from the matrices in order to reduce the size of the matrices.
For the integration method, the state of art algorithm, in Proposition 9 we give an ex-
plicit generalization of Mourrain-Mantzaflaris’ improvement in [47], as we detect and
use a polynomial basis for the quotient rather than the monomial basis in the Mourrain-
Mantzaflaris’ improvement. It give s a generalization of Proposition 3.7 in [53] too.
Corollary 76 shows our criterion for deleting some columns such that the kernel of the
new matrix only detects new members of a basis of the dual space, which avoids re-
computing the lower degree basis elements that are obtained in the previous steps.
Although Mourrain and Mantzaflaris’ improvement in [47] gives the same output, how-
ever it adds new rows to the matrix and in this sense our improvement is stronger.
For Macaulay’s algorithm, we propose two criteria, each reducing the size of the ma-
trices at each step drastically. First we show Criterion 79 similar to the one for the
integration method that deletes some columns at each step so that we do not recom-
pute the previously computed basis elements. Also using the properties of the dual
space, we show Criterion 12 that predicts that some columns will not appear in the
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basis. These criteria will reduce the size of the Macaulay matrices so that it becomes
the closest possible to the matrices of the integration method, meaning that for a matrix
constructed in a fixed step of Macaulay’s algorithm, each column of the matrix is used
to be added to other columns in order to form the matrix in the integration method.
Apart from those criteria that can be used for computing the whole dual basis, we
introduce directional multiplicity in Definition 60, which can give us more information
than the Nil-index, a classic invariant which has been the topic of various studies in
the multiplicity structure field. Our modified algorithms can be used to compute the
directional multiplicity often faster than the whole dual space.
An interesting interplay between the directional multiplicity and the degree of the elimi-
nation ideal is presented. As an application, in studying arrangements and topology of
curves one can use directional multiplicities in order to project the extreme point of a
curve.

Structure of the Thesis
In the first chapter, after introducing the problem and literature work, we will present

the preliminaries from Gröbner Bases, resultants, algebraic geometry and elimination
theory.
In Chapter 2 we explain our motivation to study the multiplicity structure. It contains
our initial problem on studying and comparing the elimination ideal and the resultant for
two n´dimensional curves. After a short discussion on the dimension of the varieties,
we focus on the case of two algebraic curves in dimension two. We investigate the
difference between the resultant and the generator of the elimination ideal and see that
the problem is reduced to the multiplicity problem . We show several examples and
discuss the multiplicity problem and degeneracy in elimination.
Chapter 3 includes our main results. In this chapter , we first give a short introduc-
tion to dual spaces of polynomial rings. Then we focus on the multiplicity structure of
an isolated point. In this way, we introduce directional multiplicity and the extended
Buchberger diagram. We show bounds on the directional multiplicities with respect to
Nil-index and the intersection multiplicity. In Section 3.3, after demonstrating the ex-
isting algorithms for computing the dual space, we show our improvements on those
algorithms and discuss the advantages.
Chapter 4 contains two sections. In Section 4.1 we briefly show some applications
of directional multiplicities in computational problems. Section 4.2 includes the main
problems that we are considering as the future directions of research.
For the rest of the current chapter, we provide the necessary definitions, fix notation
and present some theorems from the literature that we will use in what follows. The
notation introduced in this chapter will be consistently used for the whole of the thesis,
unless otherwise is clearly stated.
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1.2 Preliminaries

1.2.1 Gröbner Bases

We introduce the basis definitions in Gröbner basis theory here. The fundamental no-
tions and results are invented and given by Buchberger in his PhD thesis and later
article as the primary, original literature in [10, 11]. We use the terminology and formu-
lations of some later papers, e.g. text books by Becker, Kredel and Weispfenning [7]
and Cox, Little and O’Shea [20].
We work on the ring of polynomials with n variables over an algebraically closed field
K, which will be denoted by R “ Krx1, . . . , xns. This ring is known to be Noetherian
and therefore its ideals are finitely generated. Each polynomial in this ring is a some of
terms, which are the multiplication of coefficients with monomials. One can put orders
on the monomials in R.

Definition 1 (Term Order, [7]). A total order † on the monomials of R is called an admissible

order or a term order if † satisfies the following conditions.

• 1 † m for every nonzero monomial m

• If m1 † m2, then for every nonzero monomials m, mm1 † mm2.

An example of such a term order is the lexicographic order, in which x

n

† x

n´1 †
. . . † x1 and x

↵1
1 . . . x

↵n
n

† x

�1
1 . . . x

�n
n

if and only if the first nonzero coordinate of p�1 ´
↵1, ¨ ¨ ¨ ,�

n

´ ↵

n

q is positive.
Bayer and Stillman in [6] considered a special sort of term orders which is very useful
in studying elimination. We will show this below.

Definition 2 (Elimination Order, [20]). A term order is called an elimination order if one can

partition the variables into two sets A1 and A2 such that if a monomial m1 contains variables

only in A1 and a monomial m2 contains variables only in A2, then m1 † m2.

Lexicographic ordering is an elimination ordering. Another interesting term order is
the degree lexicographic ordering, in which x

↵1
1 . . . x

↵n
n

† x

�1
1 . . . x

�n
n

if and only if either
n

∞

i“1
↵

i

†
n

∞

j“1
�

j

or
n

∞

i“1
↵

i

“
n

∞

j“1
�

j

and the first nonzero coordinate of p�1´↵1, ¨ ¨ ¨ ,�
n

´↵

n

q
is positive. There are infinitely many term orders. having a term order on monomials,
one can impose the same order on terms, ignoring their coefficients. Having a term
order for the monomials in R, one can write a polynomial in such a way that the first
term is bigger than the second one, the second term is bigger than the third one and
so on. For a polynomial f P R, ltpfq, the leading term of f is defined to be the biggest
term in f . leading monomial of f , lmpfq is defined similarly for monomials.

Definition 3 (Gröbner Bases, [20]). A Gröbner basis G for an ideal I with respect to a term

order † is a basis for I ,such that lm† pGq “ lm† pIq, where lm† pGq and lm† pIq are the

ideals generated by the leading monomials of g and I , respectively.
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Definition 4 (S-polynomial, [20]). Given f1, f2 P Krx1, . . . , xns, we define S12, the S-polynomial

of f1 and f2, as:

S12 “ lcm plt pf1q , lt pf2qq
lt pf1q f1 ´ lcm plt pf1q , lt pf2qq

lt pf2q f2,

where lcm stand for the least common multiple.

Definition 5 (Reduction, [7]). Let † be a term order. For two polynomials f1, f2 P R, f1 is

called reducible with respect to f2 if ltpf2q|ltpf2q. If f1 is reducible with respect to f2, then

reducing f1 with respect to f2 is the subtraction f1 ´ lcpf2q
lcpf1q ltpf2q, where lcpf

i

q is the leading

coefficient, i.e., the coefficient of ltpf
i

q, 1 § i § 2.

The above definition of Gröbner basis is not constructive. However there’s a well-known
algorithm by Buchberger which computes a Gröbner basis of an ideal. The Buchberger
algorithm works as follows. Let I “ xGy, where G “ tf1, . . . , fmu, i.e., G is a basis for
I. For every pair 1 § i † j § m, compute S

ij

, the S-polynomial of f
i

and f

j

. If S
ij

is
neither zero nor reducible with respect to any member of G, then add it to G. Otherwise,
reduce it with respect to the other members of G until it is not reducible anymore. If it is
not zero then add it to G. Buchberger proved in his PhD thesis that the above algorithm
terminates and produces a Gröbner basis for I [10] .
Gröbner basis of an ideal with respect to a fixed term order is not unique, however
reduced Gröbner basis is unique.

Definition 6 (Reduced Gröbner basis, [7]). For a given ideal I , a Gröbner basis G with respect

to an order † is called reduced, if every element of G is monic and for every f1, f2 P G, f1 is

not reducible with respect to f2.

Theorem 7 ([7]). For every given ideal I in a polynomial ring and for every given term order

†, there exits a uniqe reduced Gröbner basis for I with respect to †.

Buchberger introduced the diagram shown in Figure 1.1, called the staircase or the
Buchberger diagram, which gives a good intuition about a Gröbner basis and also the
Buchberger algorithm. Having a Gröbner basis G computed for an ideal I with respect
to a term order, consider the exponents of the leading monomials of G and attach a
point in Rn for each exponent. In Figure 1.1, the blue points correspond to the leading
terms and the green diagram is the staircase of the Buchberger diagram.
Gröbner basis has a lot of properties and applications. We mention a few of them that
are used in this thesis. The first application that is at the heart of this thesis is the
following.

Theorem 8 (Basis for R {
I

, [20]). Let G be a Gröbner basis for the ideal I . Then the monomials

under the staircase obtained via G form a basis for

R {
I

as a K´vector space.

Another property of Gröbner bases that will be used very often in this thesis is the
Elimination Property. In order to explain the elimination property, we need to introduce
elimination ideal and some notation.
The following definition is taken from [20], however we have changed the notation for
simplifying future statements.
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Figure 1.1: Buchberger Diagram or Staircase

Definition 9 (Elimination ideal, [20]). For every ideal I ú Krx1, . . . , xns, for J Ñ t1, . . . , nu,

the elimination ideal of I with respect to J is defined as I

J

:“ I X Krx1, . . . , xx

J

, . . . , x

n

s, i.e.

I

J

consists of those polynomials in I that contain only the variables indexed by J . Also the i-th

elimination ideal of I is defined to be I

i`1,...,n :“ I X Krx
i`1, . . . , xns.

Theorem 10 (Elimination property, [7]). let G be a Gröbner basis for an ideal I with respect to

an elimination term order in which x

n

, . . . , x

i`1 † x

i

, . . . , x1. Then G X Krx
i`1, . . . , xns is a

Gröbner basis for I

i`1...n with respect to that elimination order.

1.2.2 Resultants

We introduce Resultants introductory material mostly from two books by Cox, Little and
O’Shea [20, 21].

Definition 11 (Sylvester Matrix, [20]). Let R be a commutative ring and f1, f2 P Rrxs be of

degree d1, d2 respectively. The Sylvester matrix Sylpf1, f2q is defined to be the matrix of size

pd1 `d2q ˆ pd1 `d2q with the following entries: if 1 § i § d2 and 1 § j § d1 `d2, the entry in

the i-th row and j-th column is the pd1`d2´jq-th coefficient of x

d2´i

f1. If d2`1 § i § d1`d2

and 1 § j § d1 `d2, the entry in the i-th row and j-th column is the pd1 `d2 ´ jq-th coefficient

of x

d1´pi´d2q
f2.
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f1,d1 ¨ ¨ ¨ ¨ ¨ ¨ f1,0

.

.

.

.

.

.

f1,d1 ¨ ¨ ¨ ¨ ¨ ¨ f1,0

f2,d2 ¨ ¨ ¨ f2,0

.

.

.

.

.

.

.

.

.

.

.

.

f2,d2 ¨ ¨ ¨ f2,0

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

d2

d1

Definition 12 (Resultant, [20]). For f1, f2 P Krxs, we define the resultant of f1, f2 to be

res
x

pf1, f2q “ det pSylpf1, f2qq .
The following are among the properties of resultants that are of interest in this thesis.

Theorem 13 ([20]). Let f1, f2 P Krxs have positive degrees. Then res
x

pf1, f2q is an integer

polynomial in the coefficients of f1 and f2. Also f1 and f2 have a common factor in Krxs if and

only if res
x

pf1, f2q “ 0.

Theorem 14 ([20]). Let f1, f2 P Krx2, . . . , xnsrx1s have positive degree in x1. Then

• res
x1 pf1, f2q P I1.

• res
x1 pf1, f2q “ 0 if and only if f1 and f2 have a common factor, which has positive

degree in x1, in Krx1, . . . , xns.
When the resultant is not zero we will use the following lemma in order to identify roots
of the resultant. This will show us how and when resultants project roots of the system
and how this can give us information about the roots of the elimination ideal, roots of
the system and multiplicities of the roots of the system.

Lemma 15 ([20]). Let f1, f2 P Krx1, . . . , xns have (total) degree N1 and N2 respectively, and

let c “ pc2, . . . , cnq P Kn´1
satisfy the following conditions:

• f1px1, cq P Krx1s has degree N1,

• f2px1, cq P Krx1s has degree p § N2.

Then the polynomial res
x1 pf1, f2q P Krx2, x3, . . . , xns satisfies

res
x1 pf1, f2q pcq “ h1pcqN2´p res

x1 pf1px1, cq, f2px1, cqq
For n homogeneous polynomials f1, . . . , fn P Krx1, . . . , xns resultant is defined and
gives a condition on the coefficients of f1, . . . , fn such that f1, . . . , fn have a common
root if and only if the resultant is zero. Discussing resultants in general case is beyond
the scope of this thesis and we refer the reader to several existing books and surveys
in the literature, e.g. [21, 38, 28].
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1.2.3 Algebraic Geometry

Here we introduce the algebraic geometry basics from Shafarevich [57] and Hartshorne
[36].
In this thesis we work on affine spaces. n´dimensional affine space over a field K will
be denoted by An

K. If K is clear from the context, then we write An instead of An

K.

Definition 16 (Zariski Topology, [36]). Zariski topology on An

is defined by taking the closed

sets to be the set of zeros of a set of polynomials in Krx1, . . . , xns.
H and An are closed and open.

Definition 17 (Variety, [36]). An affine algebraic variety (or simply a variety) is a closed subset

of An

. V pf1, . . . , fmq denotes the variety defined by the set of zero of f1, . . . , fm. An open

subset of an affine variety is called a quasi affine variety.

Curves and surfaces are examples of varieties.
By Hilbert’s Nullstellansatz there is a one to one correspondence between the (radical)
ideals of Krx1, . . . , xns and the varieties in An. For a variety V Ñ A we denote its corre-
sponding ideal by IpVq and for an ideal I ú Krx1, . . . , xns we denotes its corresponding
variety by V pIq.
Primary ideals play an essential role in studying varieties.

Definition 18 (Primary Ideal, [20]). An ideal I P Krx1, . . . , xns is primary if fg P I implies

either f P I or some power g

m P I (for some m ° 0).

Prime ideals are primary.

Lemma 19 ([20]). If I is a primary ideal, then

?
I is prime and is the smallest prime ideal

containing I .

Definition 20 (Primary Decomposition of an Ideal, [20]). A primary decomposition of an ideal

I is an expression of I as an intersection of primary ideals: I “
r

ì

i“1
Q

i

. Such a decomposition

is called irreducible if

?
Q

i

are all distinct and

ì

j‰i

Q

j

Ç Q

i

. Each Q

i

is called a primary

component of I .

Theorem 21 ([20]). Every ideal I ú Krx1, . . . , xns has a(n) (irreducible) primary decomposi-

tion.

In this thesis by a primary decomposition we refer to an irreducible primary decompo-
sition.
Equivalently every variety has a decomposition into irreducible varieties: V “ î

i

V
i

and

each V
i

is called an irreducible component of V. Every irreducible variety is the variety
of a prime ideal and vice versa. A closed point ⇣ “ p⇣1, . . . , ⇣nq P An is an irreducible
variety corresponding to the maximal ideal m

⇣

“ xx1 ´ ⇣1, . . . , xn ´ ⇣

n

y.
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Definition 22. Let Q

⇣

be a primary ideal such that

a

Q

⇣

“ m
⇣

. Then we say that ⇣ is an

isolated point of V pIq.

Let Krx1, . . . , xnspx1´⇣1,...,xn´⇣nq denote the set of all rational function f

g

with gp⇣q ‰ 0.
This is a local ring, i.e., it has only one maximal ideal m

⇣

:“ xx1 ´ ⇣1, . . . , xn ´ ⇣

n

y and
the above is called localization of Krx1, . . . , xns with respect to ⇣ or at the maximal ideal
m

⇣

. Having the concept of localization, we are ready to define the multiplicity of ⇣.

Definition 23 ([21]). Let I be an ideal and ⇣ P V pIq be an isolated point in V pIq. The multi-

plicity of ⇣, µp⇣q is defined as follows

µp⇣q :“ dimKKrx1, . . . , xnsm⇣

M

IKrx1, . . . , xnsm⇣
.

Theorem 24 ([21]). Let I be and ideal such that its variety contains m isolated points, i.e.,

V pIq “ t⇣1, . . . , ⇣mu and therefore I “
k

ì

i“1
Q

⇣

i

, where Q

⇣

i

“ Ip⇣
i

q. Then dimKKrx1, . . . , xns {
I

“
m

∞

i“1
µp⇣

i

q and dimKKrx1, . . . , xns
M

Q

⇣

i

“ µp⇣
i

q.

If it is clear from the context, we will use µ instead of µp⇣q. From Theorem 8, we can
see that having a Gröbner basis for I, we can find the multiplicity of its isolated points.

Definition 25 (Dimension of a Variety, [36]). If X is a variety, then dimension of X , denoted

dimX , is defined to be the supremum of all integers m such that there exists a chain Z0 Ä Z1 Ä
. . . Ä Z

m

of distinct irreducible closed subsets of X . The dimension of a quasi affine variety is

defined to be the dimension of its closure.

We take the dimension of an ideal I to be equal to the dimension of its variety. Therefore
a zero dimensional ideal is an ideal whose variety consists of finitely many points.
We mention two theorems about the dimension of varieties.

Theorem 26 ([57]). If Y Ñ X , then dimY § dimX . If X is irreducible, Y is closed in X and

dimX “ dimY , then X “ Y .

Theorem 27 ([57]). If f : X Ñ Y is a regular mapping of irreducible varieties and fpXq “ Y

then dimX • dimY and

1. for every point y P Y , dimf

´1pyq • dimX ´ dimY .

2. in Y there exists a non-empty open set U such that dimf

´1pyq “ dimX ´ ximY for

y P U .

1.2.4 Elimination Theory

We saw that Gröbner bases and resultants give us information about the elimination
ideals. Variety of the elimination ideal and its relation to the projection of the variety
of the ideal are considered in the literature. In this section we mention the required
theorems for us in this thesis on elimination theory in polynomials. First we mention the
following theorem that says which zeros of the elimination ideal can be extended to a
root of the ideal.
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Theorem 28 (Extension Theorem [20, 59]). Let I “ xf1, . . . , fmy ú Krx1, . . . , xns. For every

1 § i § m, write f

i

in the form

f

i

“ h

i

px2, . . . , xnqxNi
1 ` terms of x1-degree less than N

i

.

Assume that pc2, . . . , cnq P V pI2...nq. Then

pc2, . . . , cnq R V ph1, . . . , hmq ñ there exists c1 such that pc1, . . . , cnq P V pIq .
Consider the projection operator ⇡ : Kn Ñ Kn´1 that acts as follows.

⇡ ppc1, c2, . . . , cnqq “ pc2, c3, . . . , cnq .
For S Ñ Kn we denote the set t⇡ pcq : c P Su by ⇡ pSq . The following theorem shows
the relation between the variety of the elimination ideal and the projection of the variety.

Theorem 29 (Elimination Theorem, [20, 59]). Let I2...n be the first elimination ideal of an ideal

I P polringn. Then

V pI2...nq “ ⇡ pV pIqq Y pV ph1, . . . , hmq X V pI2...nqq .
although the projection of the variety of an ideal and variety of the elimination ideal are
not the same, but the latter is the Zariski closure of the projection.

Theorem 30 (The Closure Property, [20]). Let I , I2...n and ⇡ be as above. Then

• V pI2...nq is the smallest affine variety containing ⇡ pV pIqq, i.e., it is the Zariski closure of

⇡ pV pIqq.

• If V pIq ‰ H, then there is an affine variety W à V pI2...nq such that V pI2...nq zW Ä
⇡ pV pIqq.
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Chapter 2

Motivational Problem: Multiplicity in
Elimination Ideal

This chapter is about our initial problem on studying elimination ideals via resultants.
This chapter can be considered as a detailed description of our initial and motivational
problems, which lead us to study the multiplicity structure of isolated points, the core
of this thesis. Studying the difference between the projection via resultant and Gröbner
basis and comparing their variety with the projection of the initial variety is out of the
scope of this thesis.
More precisely, the initial problem was to study the difference between the projection of
a variety and the variety of the elimination, whether the elimination is done via Gröbner
bases or resultants. In this chapter, we review and clarify some results, which are
mostly known for the case of two curves. In this case, degeneracy that often happen
in elimination is related to the multiplicity problem. This case is non-trivial, is of interest
and has applications in some other areas, e.g. studying arrangements, topology and
isotopic graphs of curves.
In this chapter-the same as the rest of the thesis-we work on affine spaces and do not
have any root at infinity, unless otherwise is clearly stated. Therefore, some statements
are not correct in the projective space, e.g. Corollary 37. Section 2.1 includes examples
and propositions that show that the degeneracy problem is non-trivial, even for simple
cases. In Section 2.2, we indicate how the factors of the resultant and the generator of
the elimination ideal can differ for the case of two curves in R (or C). This is important
specially when considering the degeneracy issue in the topology of a curve. This sec-
tion continues with comparing the differences of the multiplicities. Finally we quote on
using pairwise resultants for several polynomials in several variables.
The major part of this chapter is a joint work with Zafeirakis Zafeirakopoulos and ap-
peared in a preliminary form in [55]. The figures are drawn using Sage.
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2.1 Variety of Elimination Ideals v.s. Variety of Resultants

In this section we first review the difference between the projection of a variety and
the the variety itself, in terms o their dimension. Then considering Gröbner basis and
resultants as two standard tools for projection, we will look at the difference between
the projection via Gröbner basis and resultants for two n´dimensional curves. Know-
ing this difference will help us to search for the difference between the factors of the
corresponding polynomials, when the projection is a hyperplane, which is what we will
review in the next section.
Let us recall the following from the two main results on the connection between the
elimination ideal and the projection of the variety of that ideal, i.e., Theorems 29 and
30.

V pI2...nq “ ⇡ pV pIqq Y pV ph1, . . . , hmq X V pI2...nqq . (2.1)

V pI2...nq is the Zariski closure of ⇡ pV pIqq . (2.2)

We want to know how big V ph1, . . . , hmqXV pI2...nq can be. In another words, how close
⇡ pV pIqq and V pI2...nq are. One way to phrase these into mathematical terms is to look
at the ideals and their generators, and study their differences and intersections. This is
what we will investigate in the next section. Here we take a look at the dimension of the
varieties in the Elimination Theorem which was suggested to the author by D’Andrea
[22] and Ahmadinezhad [1]. We will see that these varieties can be far from each other.
This makes computations in the next section/chapter non-trivial.
Note that ⇡ pV pIqq is not necessarily closed and hence Theorem 30 implies that

dimp⇡ pV pIqqq “ dimpV pI2...nqq.
In fact, this projection is a quasi-affine variety. In general, dimpV ph1, . . . , hmqq can be
as big as dimpV pIqq and as small as 0. Below we give examples for such cases.

Example 31 (Top Dimensional Case). For the case in which the dimension of V ph1, . . . , hmq is
the biggest possible, take I “ xf1 “ x1h, f2 “ hy P Krx1, . . . , xns, where h P Krx2, . . . , xns
with V phq “ A2. Then I2...n “ xf2y and V pI2...nq “ ⇡ pV pIqq “ V phq “ A2, which means
that dimpV ph1, h2qq “ 2.

Example 32 (Zero Dimensional Case). If we take I “ xf1 “ x1x3, f2 “ x2y ú Krx1, x2, x3s,
then V pIq consists of two lines, x1´axis and x3´axis. projection of these axis along the x1-axis
gives us the x3-axis which is a line, which is of dimension 1. However V ph1 “ x3, h2 “ yq “
tp0, 0qu is a point, which means that it is of dimension 0.

Also in the following example we see that we can have V pI2...nq “ ⇡ pV pIqq, indepen-
dent of how big or how small V ph1, . . . , hmq is.

Example 33. Consider I “ xf1 “ x1h1, f2 “ x1h2y ú Krx1, . . . , xns, where h
i

P Krx2, . . . , xns.
Then independent of what h1 and h2 are, we will have that I2...n “ t0u, which means that
V pI2...nq “ ⇡ pV pIqq “ A2. We will give a description of an instance this case in Lemma 36.
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Also not necessarily V ph1, . . . , hmq Ñ V pI1q is true. In the next section, we will give
more examples for complicated and degenerate situations that may occur. Also we will
have Remark 45 in this direction .
Note that V ph1, . . . , hmq is not the complement of the quasi-affine variety ⇡ pV pIqq, but
contains the complement. Also the dimensions of V ph1, . . . , hmq and the complement
are independent of each other. This point makes V ph1, . . . , hmq more complex and yet
more interesting.
In the Elimination and Closure Theorems, I2...n can be computed using Gröbner basis.
If we have I “ xf1, f2y ú Krx1, . . . , xns, one can think of f1 and f2 as two n´dimensional
curves. Then eliminating the variable x1 can be done using the Sylvester resultant of
f1 and f2 with respect to x1, i.e. res

x1 pf1, f2q. In the following, we show the connection
between the variety of the resultant and the projection of the variety of the ideal I. In this
sense this is similar to the elimination theorem. We provide the reader with the proof in
the affine case. In fact this theorem is an affine description of the roots of the resultant.
The theorem and its proof in the affine sense have been derived from the proof that is
shown for Lemma 15 in [20], Section 6 of Chapter 3, which itself is used in a proof of
the Extension Theorem (Theorem 28). In the projective space, we know that the variety
of the resultant describes roots at infinity and affine roots of the polynomial system we
started with (see [20] and [26]), which is the homogeneous case of the theorem. We
did not find the proof for the affine case in the literature.

Theorem 34. Let I “ xf1, f2y P Krx1, . . . , xns and R “ res
x1 pf1, f2q. Then

V pRq “ V ph1, h2q Y ⇡ pV pIqq
Proof. We prove the following three statements. The theorem follows immediately from these
statements.

1. V ph1, h2q Ñ V pRq.
It is easy to see from the Laplace expansion of the Sylvester matrix, that the greatest
common divisor of h1 and h2 divides R. Thus V ph1, h2q Ñ V pRq.

2. ⇡ pV pIqq Ñ V pRq.
If f1, f2 P Krx2, . . . , xnsrx1s have positive degree in x1, then by Theorem 14, res

x1 pf1, f2q P
I2...n. Thus V pI2...nq Ñ V pRq. From Theorem 29 we have that

V pI2...nq “ ⇡ pV pIqq Y pV ph1, h2q X V pI2...nqq ,
which proves that ⇡ pV pIqq Ñ V pI2...nq.

3. V pRq zV ph1, h2q Ñ ⇡ pV pIqq.
Let c R V ph1, h2q. Then we have two cases:

Case 1: h1pcq ‰ 0 and h2pcq ‰ 0.
By Lemma 15, w have that Rpcq “ res

x1 pf1px1, cq, f2px1, cqq. Thus,

@c P Kn Rpcq “ 0 ñ res
x1 pf1px1, cq, f2px1, cqq “ 0.
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Case 2: Either h1pcq ‰ 0, h2pcq “ 0 or h1pcq “ 0, h2pcq ‰ 0.
Without loss of generality, assume that h1pcq ‰ 0, h2pcq “ 0. Also assume that d2
is the degree of f2 and m † d2 is the degree of f2px1, cq. From Lemma 15, we have
that

@c P Kn res
x1 pf1, f2q pcq “ h1pcqd2´m res

x1 pf1px1, cq, f2px1, cqq .
Thus,

@c P Kn Rpcq “ h1pcqd2´m res
x

pf1px, cq, f2px, cqq ,
and, since h1pcq ‰ 0, we have that

@c P Kn Rpcq “ 0 ñ res
x

pf1px, cq, f2px, cqq “ 0.

So in both cases we have that Rpcq “ 0 ñ res
x

pf1px, cq, f2px, cqq “ 0. On the other
hand, we have that

c P ⇡ pV pf1, f2qq ô Dc1 P K such that pc1, cq P V pf1, f2q .
Therefore

Dc1 P K such that pc1, cq P V pf1, f2q ô Dc1 P V pf1px, cq, f2px, cqq .
Therefore,

Dc1 P V pf1px, cq, f2px, cqq ô res
x

pf1px, cq, f2px, cqq “ 0.

The last equivalence implies that c P ⇡ pV pIqq and V pRq zV ph1, h2q Ñ ⇡ pV pIqq.

The theorem follows immediately from the three statements.

Combining Theorem 34 with the elimination theorem, one can see that V pI2...nq Ñ
V pRq, which is also clear from the fact that R P I2...n.
Similar to I2...n, one can think of the dimension of V pRq and compare it with ⇡ pV pI2...nqq.
The examples that we mentioned for V pI2...nq can be considered for this purpose and
will show non-triviality for these varieties as well.
Having the varieties of R and I2...n, we want to use the polynomial R in order to extract
information about I2...n. In the following, we will see that in the special case that the
resultant is zero the elimination ideal is also zero. In order to prove thism we need
the following lemma. The following lemma about S-polynomials can be viewed as a
criterion in Buchberger’s algorithm for computing Gröbner basis. In order to use the
lemma, one could compute the gcd of each pair of the generator at each step. If each
gcd does not contain x1, then one can factor the gcd out from the two polynomials and
compute their S-polynomial and reduce it with respect to the other polynomials in the
basis and then multiply the result of the reduction by the gcd. The advantage of this
criterion is doing the computation with smaller polynomials.
The lemma also helps us proving the next proposition, which states that in case that
the resultant of the generators is zero then the elimination ideal is zero and vice versa.
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Lemma 35. Let f1, f2 P Krx1, . . . , xns and suppose that h P Krx1, . . . , xns with deg
x1

phq ° 0
is a common factor of them. Write f1 “ hf1

1
and f2 “ hf2

1
for some f

1
1, f

1
2 in Krx1, . . . , xns.

Let `1 “ lmpf1q, `2 “ lmpf2q, `

1
1 “ lmpf 1

1q, `

1
2 “ lmpf 1

2q and `

h

“ lmphq, denote by S12 the

S-polynomial of f1 and f2 and by S

1
12 the S-polynomial of f

1
1 and f

1
2. Then

S12 “ hS

1
12.

Proof. Let ` “ lcmp`1, `2q and `

1 “ lcmp`1
1, `

1
2q. Then

S12 “ `

`1
f1 ´ `

`2
f2

“ `

`1
hf

1
1 ´ `

`2
hf

1
2

“ hp `

`1
f

1
1 ´ `

`2
f

1
2q

Since lcmp`1, `2q “ `

h

lcmp`1
1, `

1
2q, we have that ` “ `

1
`

h

. Therefore `

`1
“ `

1
`1

1 and

hp `

`1
f

1
1 ´ `

`2
f

1
2q “ h

ˆ

`

1

`1
1 f

1
1 ´ `

1

`2
1 f

1
2

˙

“ hS

1
12.

Theorem 36. Let I “ xf1, f2y P Krx1, . . . , xns and R “ res
x1 pf1, f2q. Then

R ” 0 ô I2...n “ x0y .
Proof. () Assume that I2...n “ x0y. Since R P I2...n we have R ” 0.
(ñ) Assume that R ” 0. Then either one of f

i

is zero (for which the theorem is trivial) or f1
and f2 have a common factor h with deg

x1
phq ° 0. Let S be the normal form of S12, i.e., S is

the result of reducing S12 with respect to f1 and f2 as many times as possible. If S “ 0, then
tf1, f2u is a Gröbner basis for the ideal I . Since f1, f2 P Krx1, . . . , xnszKrx2, . . . , xns which
means that none of them is in I2...n, then by the Elimination Property of Gröbner bases we have
I2...n “ x0y. Now assume S ‰ 0. Let S1

12,f 1
1,f 1

2 and h be as in Lemma 35, and S

1 be the reduced
form of S1

12 with respect to f

1
1 and f

1
2. From Lemma 35 and the fact that reducing S12 by f1 and

f2 is equivalent to reducing S

1
12 by f

1
1 and f

1
2, we have that S “ hS

1. Therefore in the process of
the Gröbner basis computation by Buchberger’s algorithm, all of the new polynomials will have
h as a factor, and since h P Krx1, . . . , xnszKrx2, . . . , xns, all the polynomials in the Gröbner
basis will belong to Krx1, . . . , xnszKrx2, . . . , xns. By the Elimination Property of Gröbner
bases we have I2...n “ x0y.

2.2 Multiplicity of Intersection points of Two Curves

Since we know the elimination ideal when the resultant is zero, we are interested in
understanding the situation when the resultant is nonzero. From now on, we restrict
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ourselves to the bivariate case, i.e., two algebraic planar curves in A2. Studying this
case is of interest in some areas, e.g. in computing arrangements and topology of real
algebraic curves in R2, which we will treat in Section 4.1 as an application. In this case
we have the following corollary for Theorem 34, which is true only for the affine case,
i.e., when there is no root at infinity.

Corollary 37. If f1, f2 P Krx, ys and R is not identically zero and the system has no root at

infinity, then

V pI2q “ ⇡ pV pIqq
Proof. Assume that R is not identically 0. Then R is a non-zero univariate polynomial. There-
fore it has finitely many roots, that are the projection of the roots of the system that are not roots
at infinity. So since R vanishes at ⇡ pV pIqq, we have that ⇡ pV pIqq is finite. By the Closure
Property (Theorem 30), we have that V pI2q is the Zariski closure of ⇡ pV pIqq. However, finite
sets are Zariski closed, therefore V pI2q “ ⇡ pV pIqq.

Even if we have more than two curves in the bivariate case, i.e. f1, f2, . . . , fm P Krx, ys,
we can consider R

ij

“ res
x1 pf

i

, f

j

q and let R “ gcdpR
ij

q. If g is the unique monic
generator of I1, then

g|R. (2.3)

Let us fix the following notation for the rest of this section. I “ xf1, f2y ú Krx, ys and it
elimination ideal is I2 “ xgy ú Krys. From the above discussion we have that although
R does not necessarily generate the elimination ideal, the product of some of its factors
does. In [43] Lazard gave a structure theorem for the minimal lexicographic Gröbner
basis of a bivariate ideal which reveals some of the factors of g, but not all of them,
neither does it say anything about their powers. Also he has shown that the product of
some of those factors divides the resultant, however without Gröbner basis computation
it does not tell us about the extra factors that we are looking for.
We make a couple of observations about the factors of the resultant which come from
the construction of the Sylverster matrix. Write f1 and f2 in the following form

f

i

“ t

i

` h

i

x

di `
di´1
ÿ

j“1

h

ijx
j

,

where d

i

is the degree of f
i

with respect to x, t
i

P Krys is the trailing coefficient, h
i

P Krys
is the leading coefficient of f

i

and h

ij P Krys are the other coefficients , for i “ 1, 2. If
we expand the Sylvester matrix along its columns/rows we have

gcd pentries in each column/rowq |R.

But for columns it suffices to consider only first and last columns, because entries of at
least one of these two columns appear in all other columns. Also for the rows it suffices
to consider only first and last rows, as all other rows are shifts of these two rows. Thus
we have the following divisibility relations:

gcd ph1, h2q |R, gcd pt1, t2q |R, gcd
´

h

i

, t

i

, h

i1 , . . . , hipdk´1q

¯

|R, (2.4)
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for i “ 1, 2.
Note that Theorem 34 does not imply the above divisibility relations, because it doesn’t
say anything about the multiplicities of the factors of the gcd of the leading coefficients.
Also the above is true for two curves in any number of variables.
The above comments reduce the problem into the multiplicity problem for two curves
f1, f2 P Krx, ys. We know that the factors of g are factors of R. The converse is true
if the projection of the variety is Zariski-closed, e.g. if we are in the zero-dimensional
case which is what we study for the rest of this thesis. We again emphasize that there
is no root at infinity during our investigations in this thesis. However the multiplicities
of the factors of R and g can be different. The next natural question is to identify their
multiplicities.
Since g|R, if c P C is a root of g with multiplicity µ then c is a root of R with multiplicity ⌫

and µ § ⌫. In the following we investigate the problems that were faced while trying to
establish a lower bound. We will use the notation µ and ⌫ for multiplicities of factors of
g and R respectively.
case ⌫ “ 1
Let f P Krys be an irreducible factor of R with multiplicity ⌫ “ 1. Then the roots of the
resultant are either roots of h1 and h2 or roots of I1. Moreover, from Theorem 34 and,
since roots of gcd ph1, h2q correspond to roots at infinity if we homogenize, we know that
if f corresponds to both a root of I1 and of gcd ph1, h2q then the degree of f in R would
be greater than 1. Thus

f - gcd ph1, h2q ñ f |g
and therefore if R is square free, then g “ R

gcdph1,h2q . The following is an example that
one of the factors of R appears in g, while the other one does not.

Example 38. Let f1 “ xy ´ 1, f2 “ x

2
y ` y

2 ´ 4 P Crx, ys. Then R “ ypy3 ´ 4y ` 1q and
I1 “ @

y

3 ´ 4y ` 1
D

. c “ 0 is a root of R with multiplicity 1, but it is not a root of g. y is the
common factor of h1 and h2 and that g “ R

gcdph1,h2q .

f1 xy ´ 1
f2 x

2
y ` y

2 ´ 4
h1 y

h2 y

g y

3 ´ 4y ` 1
R ypy3 ´ 4y ` 1q

The above ideal is radical, however g “ R
gcdph1,h2q does not hold for all radical ideals.

Neither is the case under the stronger assumption that g is square-free, nor this is the
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case if I is radical and R and g are square-free. An example of this case will be show
below.
The following is a more general question that arises naturally.

Question 39. Given R, g (and maybe h) in Krys , find f1, f2 P Krx, ys such that R “
res

x1 pf1, f2q and g is the unique generator of the elimination ideal of the ideal generated by
f1 and f2.

One way to attack this problem is explained in the following special case. Let R “
py ´ 1qpy ´ 2qpy ´ 3q, h “ gcdph1, h2q “ py ´ 2qpy ´ 3q.
Ansatz. Let f1 “ py ´ 2qpy ´ 3qx2 ` cx ` d and f2 “ py ´ 2qpy ´ 3qx ` a, where
c P Krys, a, d P K. Then

R “ det

¨

˝

py ´ 2qpy ´ 3q c d

py ´ 2qpy ´ 3q a 0
0 py ´ 2qpy ´ 3q a

˛

‚

“ py ´ 2qpy ´ 3qa2 ´ py ´ 2qpy ´ 3qpac ´ dpy ´ 2qpy ´ 3qq
“ py ´ 2qpy ´ 3qpa2 ´ ac ´ dpy ´ 2qpy ´ 3qq

However we know that R “ py ´ 1qpy ´ 2qpy ´ 3q. By coefficient comparison we have
that

y ´ 1 “ a

2 ´ ac ´ dpy ´ 2qpy ´ 3q
“ ´dy

2 ` 5dy ´ ac ` a

2 ´ 6d

Setting d “ 0, the following answer can be achieved:

f1 “ py ´ 2qpy ´ 3qx2 ´ ixy

f2 “ py ´ 2qpy ´ 3qx ` i.

Plugging other values into d we can achieve other answers. The ideal generated by f1

and f2 is radical. R and g are square free and g “ R
h

.
The following is a slightly different ideal which is radical, R and g are square free and it
does satisfy g “ R

h

.

Example 40. Let f1 “ py ´ 2qpy ´ 3qx2 ´ 2xy, f2 “ py ´ 2qpy ´ 3qx ` 2. Then R “
4py ´ 2qpy ´ 3qpy ` 1q, G “ tx ´ 1, y ` 1u, where G is the reduced Gröbner basis.

case ⌫ ° 1
Let us now assume that R contains factors with multiplicity greater than 1. We propose
some examples for this case. Via these examples, on one side, we consider the inter-
section multiplicity at a point P of the two curves in the affine plane defined by f1 and
f2, namely the multiplicity ⌫ of the factor corresponding to P in R and on the other side,
we consider the multiplicity µ of the factor corresponding to the projection of P along
the x-axis in g. There are situations in which µ can be strictly smaller than ⌫. We will
propose a sufficient condition for this phenomenon to happen.
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µ “ ⌫

f1 x

3 ` 3x2y ` 3xy2 ` 4xy ` y

3

f2 x ´ y

h1 1
h2 1
g

1
2 ¨ p2y ` 1q ¨ y2

R p´4q ¨ p2y ` 1q ¨ y2

µ † ⌫

f1 px ´ yqpx ´ 3q
f2 py ´ 1qpx ´ 2q
h1 1
h2 y ´ 1
g py ´ 2qpy ´ 1q
R py ´ 2qpy ´ 1q2

One might be tempted to think that the multiplicity drop is related to the fact that h2 “
y ´ 1. The following example shows that the situation is more complicated.

f1 ´px2 ` y ´ 2q
f2 px ´ yqpy ´ x

2q
h1 1
h2 1
g py ` 2qpy ´ 1q2
R ´4py ` 2qpy ´ 1q3

Looking back

at the first example above, the curve x

3`3x2y`3xy2`4xy`y

3 and a line, all the factors
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of R and g were of multiplicity one. Fixing the curve and rotating the line by 90 degrees
give an interesting intuition which leads us to the Remark 45.

Example 41.

f1 x

3 ` 3x2y ` 3xy2 ` 4xy ` y

3

f2 y

h1 1
h2 y

g y

R y

3

Example 42.

f1 x

3 ` 3x2y ` 3xy2 ` 4xy ` y

3

f2 x ` y

h1 1
h2 1
g y

2

R 4y2

Example 43.

f1 x

3 ` 3x2y ` 3xy2 ` 4xy ` y

3

f2 x

h1 1
h2 1
g y

3

R ´y

3
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Example 44.

f1 x

3 ` 3x2y ` 3xy2 ` 4xy ` y

3

f2 x ´ y

h1 1
h2 1
g

1
2p2y ` 1qy2

R ´4p2y ` 1qy2

In Examples 42 and 44, the intersection point has multiplicity 2, while in Examples 41
and 43, the intersection point has multiplicity 3. Observe that, in the case f2 “ x, the
multiplicity is preserved in the corresponding factor of g, while in the case f2 “ y it is
reduced to 1. These examples support evidence for the following remark.

Remark 45. Assume that no two affine roots of the system given by f1 and f2 have the same
y-coordinate. If the two curves defined by f1 and f2 admit a common tangent at an intersection
point P which is parallel to the x-axis, then the multiplicity of the factor corresponding to (the
projection of) P in g is strictly smaller than the multiplicity of the factor corresponding to P in
R.

The following is another example satisfying the above remark in which the factor y in
g is preserved with the same multiplicity as in R, but the factor py ` 1q drops by one.
One can notice that we are in the situation covered by the remark, since py ` 1q and the
circle have a common tangent parallel to the x-axis at their intersection.

Example 46.

f1 ´1py ` 1qpx ´ y ´ 1q
f2 x

2 ` y

2 ´ 1
h1 ´py ` 1q
h2 1
g ypy ` 1q2
R 2ypy ` 1q3
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Remark 47. If I is radical or zero-dimensional it does not imply that V pRq “ V pgq. To see
this consider the following. Let f1 “ py2 ´ yqx2 `x and f2 “ py2 ´ yqx` y. Then G “ tx, yu
and therefore the ideal is both radical and zero dimensional. However

g “ y ‰ y

2py ´ 1q2 “ R.

and thus V pRq ‰ V pgq.

Remark 48. Not necessarily R “ g

k1 gcd ph1, h2qk2 gcd pt1, t2qk3 for some k1, k2, k3 P N.
Let h denote gcd ph1, h2q and t denote gcd pt1, t2q. From Theorem 34 and its corollary we can
conclude that every factor of R is either a factor of g or a factor of h. Or equivalently V pRq “
V phgq. From Equation 2.4 we have even the stronger result that h|R and t|R. However we
cannot conclude that there exist natural numbers k1, k2 and k3 such that Rk1 “ g

k1
h

k2
t

k3 . The
following example shows this.

Example 49. Let f1 “ yp ´1
666x

2 ` 29
4 x ` y

2q and f2 “ xpy ` 1q. Then

R “ y

3py ` 1q2 ‰ g “ y

3py ` 1q,
h1 “ ´ 1

666y, h2 “ py ` 1q, h “ 1 and t “ 1. Here the extra factor is e “ py ` 1q. It is obvious
that there do not exist k1, k2 P N such that e “ gcd ph1, h2qk1 gcd pt1, t2qk2 .

The fact that the resultant of f1 and f2 with respect to x does not vanish identically (and the
system has no roots at infinity) means that there are finitely many projections of roots of the
system tf1, f2u in the y axis. This is enough for our argument in the proof of Corollary 37.
Assuming that also the projection of the roots on the x-axis are finitely many does not give us
more freedom. Being zero dimensional implies that for each variable, the resultant with respect
to that variable does not vanish identically. But since we eliminate variables in a particular order
(given by a fixed term order) it is not necessarily a natural condition.
In the next chapter we will introduce a method to recognize the extra factors, i.e. the factors of
R that are not factors of g.

Notes on using pairwise Sylvester resultants To finalize the discussion about the difference
between R and g, we try to see if a set of Sylvester resultants can be used in order to obtain I1

or some generators of it. Let I “ xf1, . . . , fmy ú Krx1, . . . , xns, where m • 2. Consider the
ideal generated by the pairwise Sylvester resultants of the m polynomials with respect to x1 and
let

R :“ xtr
ij

:“ res
x1 pf

i

, f

j

q |1 § i † j § muy,
The variety of R can be described in terms of the varieties of r

ij

, i.e., V pRq “ ìV pr
ij

q. By
Theorem 34 we have that V pr

ij

q “ ⇡ pV pf
i

, f

j

qqYV ph
i

, h

j

q. Then V pRq “ ì p⇡ pV pf
i

, f

j

qq Y V ph
i

, h

j

qq “
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î

cPC
ìpm2 q

i“1 c

i

. Now Let V
ij

“ t⇡ pV pf
i

, f

j

qq ,V ph
i

, h

j

qu, for 1 § i † j § m and C be the
Cartesian product C “ ˆ1§i†j§m

V
ij

. Then

V pRq “
§

cPC

pm2 q
£

i“1

c

i

.

Also we have that V ph1, . . . , hmq Ñ V pRq and ⇡ pV pIqq Ñ V pRq, however, not necessarily
ì

⇡ pV pf
i

, f

j

qq Ñ ⇡ pV pIqq.
Note that R Ñ Krx2, . . . , xns, and therefore R is not necessarily principal. Now let R :“
gcd pr

ij

q. Then not necessarily the ideal generated by R is equal to R, however, setting R :“
gcd pr

ij

q makes sense, as gcd has a meaning, although Euclidean algorithm for computing gcd
will not work in the case of n • 3, i.e. when Krx2, . . . , xns is not a Euclidean domain.
For details on the gcd in the multivariate case, refer to Definition 11 in Chapter 4 of in [20]
and the discussion afterwards. From the above discussion one can see that all the factors of
gcd ph1, . . . , hmq are factors of R as well, however, we cannot deduce anything about their
multiplicity although we have the following divisibility condition.

gcd ph1, . . . , hmq |R.

This is because , for 1 § i † j § m we have that gcd ph
i

, h

j

q | res
x

pf
i

, f

j

q, and thus
gcd pgcd ph

i

, h

j

qq | gcd pr
ij

q, which means that gcd ph1, . . . , hmq |R.
If we set f

i

“ f1 in R and consider the ideal R1 :“ xtres
x

pf1, fjq|2 § j § muy then all the
theorems and corollaries of this section about R will be correct for R1. The question however
is the possible computational advantages and disadvantages of working with R or R1. Since
R

1 Ñ R then V pRq Ñ V pR1q, which means that V pRq can be closer to V pI1q than V pR1q. On
the other hand for R1 we have a basis with much less generators than for R (m vs.

`

m

2

˘

) and
therefore working with R

1 may lead us to less computations.
We end this section with some words about the multiplicity issue in the general case. If we have
a principal elimination ideal, then the problem reduces to the difference between the multiplicity
of the factors of R vs those of g. In the special case that the number of variables is the same as the
number of polynomials, one can consider the u-Resultant of the generators of the ideal, instead
of R. This is more efficient as it gives us exactly the roots and their multiplicities. The factors
of the u-Resultant are the same as the factors of g, but not necessarily the multiplicities are the
same. There are techniques to obtain the projection of the roots and their exact multiplicity
via u-resultants [18, 17]. In spite of all those modifications, there are restrictions on using u-
Resultants, as they only work under certain conditions and the author is not aware of any work
that is related to the multiplicities obtained via u-Resultants and the multiplicity of the factors of
g.
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Chapter 3

Main Results: Dual Spaces and
Directional Multiplicities,
Improved Algorithms

The major part of this Chapter is a joint ongoing work with A. Mantzaflaris and Z. Zafeirakopou-
los and a preprint will appear soon. M. Gallet [32] had contributed to the early version of the
work.
This chapter contains the main contributions of our work to the multiplicity structure problem.
It is a self-contained chapter. We start with the preliminaries of dual spaces of polynomial
rings. Then, looking at the monomials in a basis of the dual space rather than a base of R {

Q

,
we introduce directional multiplicity, which gives us a lot of information about the multiplicity
structure at an isolated point. We show that directional multiplicities can be bounded and can
bound some other invariants of an ideal, namely Nil-index and the intersection multiplicity.
Then, we shortly demonstrate the two existing algorithms for computing a basis for the dual
space which gives us the multiplicity. The major part of this chapter is our improvements on
those algorithms. These include criteria that allow us to reduce the size of the matrices that are
constructed at each step of both of the algorithms. We will show that our improvements give the
smallest known matrices for computing the multiplicity structure. A prototype implementation
of Macaulay’s algorithms and the integration method has been done in Sage. Also a prototype
implementation of our improvements to the integration method has been done in Maple, as an
extension to the package of Mantzaflaris in [47].

3.1 Preliminaries on Dual Spaces

We start with a brief review of the dual space of a vector space which can be found in any linear
algebra book, e.g. [37]. Then we present definitions and results on the dual space of polynomial
rings from [53].
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Let V be a vector space over a field K. The dual of V - which will be denoted by V̂ - is the set of
linear functionals from V to K, i.e.

V̂ “ t� : V Ñ K|� is linearu.
For the vector space of the continuous real-valued functions over an interval, integration over
that interval is in the dual space. Another well-known example is the evaluation. Consider
R “ Krx1, . . . , xns as a K-vector space. Then evaluation at a point ⇣ is in the dual of R:

ev

⇣

: R Ñ K
p fiÑ pp⇣q.

For a K-vector space V , V̂ is also a K-vector space. Also if V is finite dimensional with a
basis tv1, . . . , v

b

u, then tf1, . . . , fBu defined by f

i

pv
j

q “ �

ij

is a basis for V̂ , which is called
the dual basis. The construction above does not work for vector spaces of infinite dimension.
Hilbert spaces do not generally have nice bases. Neither does the ring of formal power series
over a field, nor can we construct a nice basis for R̂.
However, some particular members of R̂ describe the whole R̂. Below we make this more
precise.

Definition 50. Let ⇣ “ p⇣1, . . . , ⇣nq P Kn

and a “ pa1, . . . , anq P Nn

. Then define

Ba

⇣

: R ›Ñ K
p fiÑ pd

x1qa1 . . . pd
xnqanppqp⇣q,

Namely Ba

⇣

acts on p first by differentiation and then by evaluation at the point ⇣.

Notation. For the rest of this chapter, by a translation, we can assume that ⇣ “ 0, unless

otherwise stated. When it is clear from the context, we will use Ba

instead of Ba

⇣

. Also KrrB
⇣

ss
denotes the K-vector space of power series in the variables d

x1 , . . . , dxn , which are linear forms

that act on R as described in Definition 50. If it is clear from the context, we will use KrrBss
instead of KrrB

⇣

ss.
One can prove ([53], Proposition 2.2) that every element of the dual of R can be written as a
formal power series of linear functions defined above:

Theorem 51. With the above notation, there is an isomorphism of K-vector spaces between R̂

and KrrB
⇣

ss given by the following correspondence:

R̂ Q � –Ñ ⇤ “
ÿ

aPNn

�p
π

px
i

´ ⇣

i

qaiq 1
±

a

i

!
Ba

⇣

P KrrB
⇣

ss.

The above isomorphism can be seen as a topological isomorphism if we consider R̂ equipped
with the simple convergence and KrrBss equipped with B-adic topology.
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Remark 52. To verify the above isomorphism note that

1
±

a

i

!
Ba
⇣

´

π

px
i

´ ⇣

i

qai
¯

“ �

ij

,

where �

ij

is the Kronecker function. Actually this shows that the action of KrrB
⇣

ss on R given
by the action of its projection on R is the same as the differentiation and evaluation action.

From now on, we identify R̂ with KrrB
⇣

ss. Also we may use Ba
⇣

instead of 1
±

ai!
Ba
⇣

in order to
make computations easier.
One can consider R̂ as an R-module via

p.� : R Ñ K
q fiÑ �ppqq

for any p P R and � P R̂. The following is a useful property that will pave the way to study the
orthogonal of an ideal, which can be easily obtained from Lemma 2.3 and Remark 2.4 in [53].

Lemma 53. The multiplication by x

i

´ ⇣

i

in R̂ corresponds to the derivation with respect to B
⇣

at i-th coordinate in KrrB
⇣

ss. Similarly, the multiplication by B
⇣

at i-th coordinate in KrrB
⇣

ss
acts as a derivation on polynomials.

Definition 54. (Definition 2.5, [53]) The orthogonal of an ideal I of R is defined as

I

K “
!

� P R̂ : �pfq “ 0 @f P I

)

.

Macaulay has called the above, the inverse system.
From the Lemma 53, since I is closed under multiplication, IK is closed under derivation. From
its definition, the orthogonal of I is a linear subspace of R̂. Under the isomorphism given
previously, for every ⇣ P Kn we can think of IK as a linear subspace of KrrB

⇣

ss. More precisely,

Proposition 1. (Proposition 2.6, [53]) The ideals of R are in one-to-one correspondence with

the vector spaces of KrrB
⇣

ss.
Primary ideals, i.e., correspond to isolated points, can be identified by looking at those elements
in the orthogonal of I which, in the description as formal power series, admit only finitely many
non zero coefficients, namely the polynomials in B

⇣

. In fact, not many ideals are primary ideals
corresponding to isolated points. However, if the given ideal has a primary ideal in its primary
decomposition, corresponding to an isolated point, then we can forget about the other compo-
nents and work on this ideal and we will deal with the local properties at that point only. There-
fore, in this work we let ⇣ be an isolated point of the variety of I . Then the primary decomposi-
tion of I contains a primary ideal Q

⇣

whose radical is of the form m
⇣

“ xx1 ´ ⇣1, . . . , xn ´ ⇣

n

y.
If

?
I “ m

⇣

, then we call I an m
⇣

-primary ideal and usually we denote it by Q

⇣

.
Marinari, Mora and Möller in [49] have shown that the m

⇣

-primary ideals are in one-to-one
correspondence with the non-null vector spaces of finite dimension of KrBs, which are stable
by derivation. This is apparently work attributed to Gröbner.
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Theorem 55. ([49]) The m
⇣

-primary ideals are in one-to-one correspondence with the non-null

vector spaces of finite dimension of KrBs, which are stable by derivation.

The following theorem and its corollary are essential for the algorithms that will be presented
later.

Theorem 56. (Theorem 3.2, [53]) Let I be an ideal of R with an m
⇣

-primary component Q

⇣

.

Then

`

I

K X KrB
⇣

s˘K “ Q

⇣

and Q

K “ I

K X KrB
⇣

s,
where

`

I

K X KrB
⇣

s˘K “
!

f P R : �pfq “ 0 @� P xDy
)

.

From now on, given an m
⇣

-primary ideal Q
⇣

, D will stand for a basis for QK
⇣

. Therefore xDy “
Q

K
⇣

“ I

K X KrB
⇣

s.
Corollary 57. ([53]) If I “ Q

⇣

is an m
⇣

-primary ideal, then we can identify I

K
with a linear

subspace of the polynomial ring KrB
⇣

s.
Therefore, we are after computing a basis for a finite-dimensional linear subspace of KrB

⇣

s.

3.2 Directional Multiplicity

In this section, we take a look at the dual space structure of an ideal. This leads us to introduce
the notion of Directional Multiplicity. Directional multiplicities give us a lot of information
about the multiplicity structure at an isolated point. We show that directional multiplicities
can be bounded and can bound some other invariants of an ideal, namely the Nil-index and the
intersection multiplicity. Lemma 58 provides us with the information that leads to the soundness
of the definition of directional multiplicity.
Studying dual spaces, we define the directional multiplicity and show some properties of it. We
also show how it gives information about elimination. We first prove that the set of monomials
that appear in elements of Q

K is exactly the set of monomials Ba such that xa R Q, where
x

a “ x

a1
1 ¨ ¨ ¨xan

n

. Let us observe that

Bapxbq “
π

�

ai,bj (3.1)

where �

i,j

is the Kronecker delta.

Proposition 2 (Characterization of Monomials in Q

K, in [47] without proof ). Let Q “ Q

⇣

be

an m
⇣

-primary ideal. Consider Q

K
as a sub-vector space of KrB

⇣

s as above. Then

§

⇤PQK
suppp⇤q “

!

Ba | xa R Q

)

,

where suppp⇤q is the set of monomials with nonzero coefficient in ⇤.
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Proof. By Theorem 56, for all f

f P Q ô `

�pfq “ 0 for all � P Q

K˘

.

Now choose a basis D Ä KrBs of QK, the above implies that for all f

f P Q ô p�pfq “ 0 for all � P Dq .
We are ready to prove the thesis:

”Ñ“ If Ba is in suppp⇤q then the monomial xa is not annihilated by ⇤ (see Equation 3.1), which
implies xa R Q.

”Ö“ If xa R Q, then there exists � P D such that �pxaq ‰ 0. Let ⇤ P KrBs be the differential
operator corresponding to �, so ⇤pxaq ‰ 0. By Equation 3.1, we know that mpxaq “ 0 for
all monomials m in suppp⇤q which are different from Ba. Hence Ba has to be in suppp⇤q.

Now that we have a picture of the monomials in Q

K, we want to know how they look like under
projection. The following result shows that the objects introduced so far, behave well in the
framework of elimination theory.

Proposition 3 ([27], Proposition 7.19 ). Let ⇡ be the linear map

⇡ : Krrdx1, . . . , dxnss ›Ñ Krrdx2, . . . , dxnss
⇤ fiÑ ⇤p0, dx2, . . . , dxnq.

Also suppose that I is an ideal in R and I2,...,n “ I XKrx2, . . . , xns is its first elimination ideal.

Then we have

pI2,...,nqK “ ⇡

`

I

K˘

.

We use the above proposition in order to prove the Dual Projection Lemma which shows how to
get a basis of the dual space of the elimination ideal, having a basis for the dual space. Note that
I in Proposition 3 can be any ideal, however the following lemma is only for the local case, i.e.,
when we are working on an m

⇣

-primary ideal Q “ Q

⇣

.

Lemma 58 (Dual Projection Lemma). With the hypotheses of Proposition 2, suppose that D “
t⇤0,⇤1, . . . ,⇤

l´1u Ä KrBs is a basis of Q

K
. Let Q2,...,n “ Q X Krx2, . . . , xns. Then

Q

K
2,...,n “ x⇤0|

dx1“0,⇤1|
dx1“0, . . . ,⇤l´1|

dx1“0y .
Proof. We prove the lemma by proving two inclusions.

(Ö) For all i, p1 § i § l ´ 1q, since ⇤
i

P Q

K, therefore we have that ⇤
i

|
dx1“0 P Q

K|
dx1“0.

But since by proposition 3, QK|
dx1“0 P Q

K
2,...,n, then ⇤

i

|
dx1“0 P Q

K
2,...,n. This means that

x⇤0|
dx1“0,⇤1|

dx1“0y Ñ Q

K
2,...,n.
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(Ñ) Suppose that ⇤1 P Q

K
2,...,n. Since by Proposition 3, Q

K|
dx1“0 P Q

K
2,...,n, then ⇤1 P

Q

K|
dx1“0. Therefore, there exists a ⇤ P Q

K, such that ⇤1 “ ⇤|
dx1“0. We know that

Q

K “ x⇤0,⇤1, . . . ,⇤
l´1y. So, there exist c

i

P K, p1 § i § l´1q, such that ⇤ “
l´1
∞

i“0
c

i

⇤
i

,

and therefore ⇤|
dx1“0 “

l´1
∞

i“0
c

i

⇤
i

|
dx1“0, which means that ⇤1 “

l´1
∞

i“0
c

i

⇤
i

|
dx1“0. There-

fore
⇤1 P x⇤0|

dx1“0,⇤1|
dx1“0, . . . ,⇤l´1|

dx1“0y .
Thus, Q

K
2,...,n Ñ x⇤0|

dx1“0,⇤1|
dx1“0, . . . ,⇤l´1|

dx1“0y.

Corollary 59. Let D “ t⇤0,⇤1, . . . ,⇤
l´1u Ä KrBs be a basis of Q

K
, and Q

i

“ Q X Krx
i

s,
for 1 § i § n. Denote by ⇤|

dxi‰0 the polynomial obtained by substituting dx

j

“ 0 for

1 § i ‰ j § n in ⇤. Then

Q

K
i

“ x⇤0|
dxi‰0,⇤1|

dxi‰0, . . . ,⇤l´1|
dxi‰0y .

Moreover, there exists µ

i

P N such that

Q

K
i

“
A

1, dx
i

, . . . , dx

µi´1
i

E

.

Now we have the necessary tools to define the notion of directional multiplicity.

Definition 60 (Directional Multiplicity). Let ⇣ be an isolated point in the variety of an ideal I

and Q

⇣

be the corresponding m
⇣

-primary component. Using the notation of Corollary 59, for

1 § i § n, we define the i´th directional multiplicity of ⇣ to be µ

i

.

In order to give an intuition of directional multiplicity, let’s have a look at the quotient R
L

Q

⇣

,
which we will denote by B

⇣

. If we consider this quotient as a vector space, finding a basis
for such a quotient was the task given to Buchberger for his PhD thesis by Gröbner, which
led to the invention of Gröbner bases [10]. Let us recall that the multiplicity of ⇣ is defined
as dimK R

L

Q

⇣

. We will denote the multiplicity by µp⇣q or simply by µ if ⇣ is clear from
the context. Another notion that is highly studied in the literature that describes an intrinsic
parameter of an m

⇣

-primary ideal is the Nil-index, e.g. see work in [45].

Definition 61. The Nil-index of an m
⇣

-primary ideal Q

⇣

is the maximum integer N P N such

that mN
⇣

Ü Q

⇣

.

There is a tight connection between the dual space of m
⇣

-primary ideals and their Nil-index.

Lemma 62. (Lemma 3.3, [53]) The maximum degree of the elements of I

K X KrB
⇣

s is equal to

the Nil-index of Q

⇣

.

Theorem 56 and Lemma 62 show that we can find the monomials of D by searching among
those monomials of IK that have degree at most the Nil-index, i.e., there exists a degree bound
over the monomials of D. These monomials are actually the monomials under the Extended

Buchberger Diagram which is defined below.
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µ2 “ 2

µ1 “ 4

dimR

L

Q

⇣

“ µ “ dimD

N “ 4

Figure 3.1: Extended Buchberger Diagram for Example 67

Definition 63 (Extended Buchberger Diagram). The Extended Buchberger Diagram of an m
⇣

-primary

ideal Q

⇣

is obtained by considering all the monomials that appear in a basis of dual space of

Q

⇣

.

We can think of the Nil-index of Q
⇣

as the largest degree of the monomials under the extended
Buchberger diagram. Figure 3.1 shows the extended Buchberger diagram and all of its monomi-
als for Example 67.
Note that the monomials under the Buchberger diagram with respect to an ordering form a vector
space basis for R {

Q

. They include some monomials in a basis of QK, but they do not necessarily
include all the monomials in D. In particular, they may not include the highest powers of dx

i

,
i.e., the monomials corresponding to the directional multiplicities. However in the extended
Buchberger diagram, one can see all the possible monomials in D, which are all the monomials
that do now appear in Q, which include all the monomials in the Buchberger diagram of Q.
The above comments have been illustrated in Figure 3.2. The black dots show a basis for R {

Q

,
while the white dots are the rest of the monomials in the basis of QK. In [48], Mourrain and
Mantzaflaris show the new monomials in a basis of QK that are discovered at each step of their
algorithm, comparing two different primal dual bases that they obtain for R {

Q

during their
computations. Also Figures 3.3 and 3.4 show the quotient of the elimination ideal with respect
to x and the quotient of the elimination ideal with respect to y, respectively. In Figure 3.3 , black
dots are the basis for QK

2 and the white dots are the rest of the monomials in the dual basis. In
Figure 3.4 , black dots are the basis for QK

1 and the white dots are the rest of the monomials in
the dual basis.
Considering the above figures, one can see that the extended Buchberger diagram includes the
Buchberger diagram with respect to every order. N is a bound for the degree of the members of
a Gröbner basis with respect to every order. Directional multiplicity with respect to an axis is the
largest intersection point of the extended Buchberger diagram with that axis. The Buchberger
diagram does not necessarily have an intersection with the hyperplane x1 ` ¨ ¨ ¨ ` x

n

“ N , but
the extended Buchberger diagram does have at least a point in common with that hyperplane.

Example 64. Let I “ @

f1 “ x

8 ` y

5
, f2 “ x

7
y

4
D

. Origin is the root of the system with multi-
plicity µ “ 67. We have that N “ 18, while µ1 “ 15, µ2 “ 9. The reduced Gröbner basis for
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µ2 “ 2

µ1 “ 4

µ “ dimR

L

Q

⇣

“ dimD “ 4

N “ 4

Figure 3.2: Extended Buchberger Diagram vs a Basis for B
⇣

wrt a Degree Ordering for Exam-
ple 67

µ2 “ 2

µ1 “ 4

dimR

L

Q

⇣

“ µ “ dimD

Figure 3.3: Extended Buchberger Diagram vs Directional Multiplicity wrt x for Example 67

µ2 “ 2

µ1 “ 4

dimR

L

Q

⇣

“ µ “ dimD

Figure 3.4: Extended Buchberger Diagram vs Directional Multiplicity wrt y for Example 67
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I with respect to the lexicographic order (x ° y) is tf1 “ x

8 ` y

5
, f2 “ x

7
y

4
, g

y

“ y

9u, and
with respect to lexicographic order (y ° x) is tf1 “ y

5 ` x

8
, f2 “ y

4
x

7
, g

x

“ x

15u, where g

y

and g

x

are the generators of the elimination ideal with respect to the lexicographic orders x ° y

and y ° x respectively.

These observations give us the intuition that the directional multiplicities are at most as large as
the Nil-index. Also their product gives us the volume of a cuboid which contains the Buchberger
diagram. The following statements make the comments above more precise.

Remark 65. One can easily see that the Nil-index is as large as the multiplicity and also the
multiplicity is bounded by the number of lattice points in the n-simplex. The simple conclusion
of the definition of N and µ is that

N § µ § Number of Lattice point in the n-simplex “
ˆN ` n

n

˙

.

Proposition 4. Let µ be the multiplicity of an isolated point ⇣. Then

• µ

i

§ µ for every 1 § i § n.

• µ § ±

1§i§n

µ

i

.

•

n

∞

i“1
µ

i

´ n ` 1 § µ.

Proof. For the first part, recall that dimKQ
K
⇣

“ µ and that µ
i

is the dimension of a vector
subspace of QK

⇣

. Thus µ
i

§ µ.
For the second part, first remember that for every 1 § i § n, µ

i

is the largest degree of the
elements in Q

K
⇣

X Krd
i

s. This means that µ
i

` 1 is the largest possible degree of x
i

in R {
Q

.
Since µ “ dimKR {

Q

, we conclude that µ § ±

1§i§n

µ

i

.

For the third statement, note that as argued above, dxai
i

P Q

K
⇣

if and only if a
i

† µ

i

. This means
that xai

i

R Q

⇣

if and only if a
i

† µ

i

. Now, for all 1 § i § n, let A
i

:“ t1, x
i

, ¨ ¨ ¨ , xµi´1
i

u. Then,
xî

A

i

y Ñ R

L

Q

⇣

as vector spaces. Note that the elements of
î

A

i

are linearly independent.
Then dimxî

A

i

y “ ∞

µ

i

´ n ` 1 § dim

R

L

Q

⇣

“ µ and the result follows.

Proposition 5. Let N be the Nil-index of Q

⇣

. Then

• N • µ

i

for all 1 § i § n,

• N § ∞

1§i§n

µ

i

´ n

Proof. According to the definition of the Nil-index we have mN
⇣

Ü Q

⇣

and mN`1
⇣

Ñ Q

⇣

. Since
mN

⇣

“ xx1 ´ ⇣1, . . . , xn ´ ⇣

n

yN , therefore px
i

´ ⇣

i

qN R Q

⇣

and px
i

´ ⇣

i

qN`1 P Q

⇣

. By the
definition of µ

i

and the Proposition 2, dxµi
i

px
i

´⇣

i

qN “ 0 and dx

µi
i

px
i

´⇣

i

qN´1 ‰ 0. Therefore
µ

i

§ N .
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For the second part, note that for all x
i

, dµi´1
xi P supppQK

⇣

q and d

µi
xi R supppQK

⇣

q. Therefore by
Proposition 2, xµi´1

i

R Q

⇣

and x

µi
i

P Q

⇣

. Consider A “ ta P Nn| |a| “ ∞pµ
i

´ 1q ` 1u. By
the Pigeonhole principle, there exists an i, 1 § i § n, such that xµi

i

|xa. Therefore x

a P Q

⇣

for
all a P A, which implies that m|a|

⇣

Ñ Q

⇣

and N † |a| “ 1 ` ∞pµ
i

´ 1q. The result follows by
minimality of N .

Remark 66. The inequalities in the Propositions 4 and 5 are sharp. An example that shows this,
is the univariate case, where I “ Q

⇣

P Krxs. In this case the Nil-index of I1 “ µ1 is equal to
its i-th directional multiplicity, which is equal to the degree of px ´ ⇣q in g, the monic generator
of the elimination ideal. The latter doesn’t happen by accident. We will discuss more about this
in Section 4.2.

A geometric interpretation of the i-th directional multiplicity at an intersection point could be
the number of copies of the intersection point that can be seen when we look at the intersection
point in the direction parallel to the x

i

axis.
We note that despite the simplicity of the inequalities presented, they show the importance of
the directional multiplicity. Namely, knowing the directional multiplicities we can deduce in-
formation about the multiplicity or the Nil-index. The other way though is not possible. Thus,
the notion of directional multiplicity is, in this sense, a refinement of multiplicity and Nil-index.
Moreover, in some applications, this refined information is crucial as we will see in Section 4.1.
As it has been mentioned in Chapter 1, there are several recent papers on computing Nil-index,
which mostly use the dual spaces, e.g., work of Wu and Zhi [62] and Li and Zhi in [45]. Com-
plexity of computing Nil-index using dual space has also been discussed in those articles.

3.3 Algorithms for Dual Basis and Directional Multiplicity

In this section we present modifications of Macaulay’s algorithm and the integration method for
computing a basis for the dual space efficiently. Also the algorithms give us the directional mul-
tiplicities as well. Before presenting our modifications, we review two approaches for computing
the dual space of an m

⇣

-primary component of a given ideal I “ xf1, . . . , fey Ñ Krx1, . . . , xns.
We refer the reader to [48] for a recent overview.
These algorithms compute a basis D for QK degree by degree. Let D

t

be the subset of KrB
⇣

s
that contains degree t elements of D. Then D0 “ x1y. The algorithms extends D

t

into D

t`1, a
basis for the degree t` 1 part of QK, until D

t

“ D

t`1. Then we can conclude that D “ D

t

and
we have the basis D. We set d

i

:“ dx

i

for presentation reasons in what follows.

3.3.1 Macaulay’s Algorithm

Macaulay’s algorithm [46] is the first algorithm for computing a basis for the dual space Q

K.
It is based on a simple condition that the coefficients of the elements of the dual space must
fulfill. Let ⇤ “ ∞

|↵|§N
�

↵

d

↵, where we use the multi-index notation with d “ d1d2 ¨ ¨ ¨ d
n

. Then

⇤pfq “ 0, @f P I if and only if ⇤px�f
i

q “ 0, @� P Nn and 1 § i § e. This observation,
for 1 § |�| § N , reduces checking that ⇤pfq “ 0 for an infinite number of polynomials f into
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checking the finitely many conditions that are given in the right hand side. Namely, it suffices to
impose conditions on �

↵

’s, the coefficients of ⇤. For 1 § |�| § N , we obtain a system of linear
homogeneous equations and construct the corresponding matrix. The rows of this matrix are
labeled by x

�

f

i

and the columns are labeled by d

↵. Every element in the kernel of this matrix is
a coefficient vector, corresponding to an element of D.
Macaulay’s algorithm starts with D0 “ td0 “ 1u. At step t, the algorithm computes the
polynomials ⇤px↵f

i

q for degp⇤q § t and constructs the coefficient matrix. The kernel of this
matrix contains coefficient vectors of elements of a basis D

t

. If D
t

“ D

t´1, then the algorithm
terminates, otherwise continues with computing D

t`1.

Algorithm 1: Macaulay’s Algorithm
Input : A basis for an m

⇣

-primary ideal Q
⇣

Output
:

A basis for D, the dual of Q
⇣

def ComputeBasis:
Dold “ H
Dnew “ t⇤ “ d

0 “ 1u
while Dold ‰ Dnew:

Dold “ Dnew
Construct matrix Mnew, the coefficient matrix of Dnew
Dnew “ kernelpMnewq

return Dnew

We illustarte the algorithm by two examples.

Example 67. Let

f1 “ x

2 ` py ´ 1q2 ´ 1

f2 “ y

2
.

Then for the root p0, 0q, we have that

M1 “
ˆ

1 d1 d2

f1 0 0 ´2
f2 0 0 0

˙

. (3.2)

The kernel of this matrix is D1 “ t1, d1u. In the second step, we have

M2 “

¨

˚

˚

˚

˚

˚

˚

˝

1 d1 d2 d

2
1 d1d2 d

2
2

f1 0 0 ´2 1 0 1
f2 0 0 0 0 0 1
x1f1 0 0 0 0 ´2 0
x1f2 0 0 0 0 0 0
x2f1 0 0 0 0 0 ´2
x2f1 0 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

, (3.3)
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from which we have D2 “ t1, d1, 2d21 ` d2u. The algorithm runs until step 4, during which we
have a matrix of size 20 ˆ 15, and

D3 “ D4 “ t1, d1, 2d21 ` d2, 2d
3
1 ` d1d2u.

Thus, µ “ 4, µ1 “ 4 and µ2 “ 2.

Example 68. Let

f1 “ y

3

f2 “ x

2
y

2

f3 “ x

4 ´ x

3
y.

The matrices in the first, second and third steps of the algorithm are zero matrices. So we have
D1 “ t1, d1, d2u, D2 “ t1, d1, d2, d21, d1d2, d22u and

D3 “ t1, d1, d2, d21, d1d2, d22, d31, d1d22, d21d2u.
The computation goes on till step 5, during which we have a matrix of size 45ˆ21 whose kernel
gives the dual basis

D4 “ D5 “ t1, d1, d2, d21, d1d2, d22, d31, d1d22, d21d2, d41 ` d

3
1d2u.

Thus, µ “ 10, µ1 “ 5 and µ2 “ 3.

3.3.2 Integration method

Macaulay’s algorithm is not efficient. In every step it builds new matrices which include previ-
ously constructed matrices, thus some computations are repeated.
In [53], Mourrain suggested another algorithm, which builds smaller matrices. Later, Mourrain
and Mantzaflaris improved Mourrain’s algorithm in [47]. We will demonstrate the improved
version in this section. We first present the necessary background.
Given a basis for the vector space B

⇣

“ Krx1, . . . , xns L

Q

⇣

, one can construct a basis D for
Q

K and vice versa. This can be deduced from the constructions in the work of Macaulay in
[46]. The work of Mourrain in [53], shows the construction explicitly. Moreover, Mourrain has
shown how to construct a Gröbner basis for Q

⇣

having a basis for QK. Below we will explain
the construction of D from a basis of B

⇣

as in [47] in brief.
For every ⇤ P Q

K, let Suppp⇤q be the set of monomials that have a non-zero coefficient in ⇤.
Proposition 2 says that Ba P Suppp⇤q if and only if xa R Q

⇣

for a P Nn. Let us denote by
SupppQKq the union of supports of all elements of QK and by s its cardinality. Then

SupppQKq “
§

⇤PQK
tSuppp⇤qu “ tBa|xa R Q

⇣

u.
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Since the degree of the monomials in SupppQKq is bounded by the Nil-index of Q
⇣

, the above
sets are finite. One can find a basis B “ tx�1

, . . . , x

�µu for B
⇣

among the monomials in the
above set. Then for every monomial x�j P SupppQKq such that x�j R B we can write

x

�j “
µ

ÿ

i“1

�

ij

x

�i mod Q

⇣

.

Now let

⇤
i

“ d

�i `
s´µ

ÿ

j“1

�

ij

d

�j
. (3.4)

Then we have the following theorems that explain the relationship between a monomial basis
for the quotient and a basis for the dual as well as a Gröbner basis for the ideal.

Theorem 69 (Lemma 2.4 in [47]). With the above notation, t⇤1, . . . ,⇤µ

u is a basis for Q

K
and

the normal form of any g P Krx1, . . . , xns with respect to B is

NF pgq “
µ

ÿ

i“1

⇤
i

pgqx�i
.

Theorem 70 (Proposition 3.7 in [53]). Let † be a term order and 1 † x

�1 † ¨ ¨ ¨ † x

�µ
. Using

the above notation, let G :“ tg
�j :“ x

�j `
µ

∞

i`1
x

�i |1 § j § su and C :“ txc| |c| “ N ` 1u.

Then G Y C is a Gröbner basis for Q with respect to †.

Given a basis D for QK, consider the matrix M P Kµˆs of the coefficients of the elements of
this basis. Every set of µ independent columns of M give a basis for B

⇣

. Let G be the matrix
whose columns are the columns of M indexed by d

�i . Then

G

´1
M “

¨

˚

˝

�1 . . . �

µ

�1 . . . �

s´µ

⇤1
1 1 0 �1,1 . . . �1,s´µ

...
. . .

...
...

⇤1
µ

0 1 �

µ,1 . . . �

µ,s´µ

˛

‹

‚

, (3.5)

which gives a basis of the form 3.4.
Having the above matrix construction, we are ready to explain Mourrain’s algorithm. The al-
gorithm is based on integrating elements of QK

t´1 in order to generate the elements of QK
t

with
symbolic coefficients, and then applying necessary and sufficient conditions on the generated el-
ements, gives a system of equations for the coefficients. Similar to Macaulay’s algorithm, each
vector in the kernel of the matrix determines the coefficients of an element in Q

K
t

. The following
definition is useful in what follows.

Definition 71. For every ⇤ P KrBs and 1 § i § n, denote by

≥

i

⇤ the i-th integral of ⇤, which

is defined as follows.

ª

i

⇤ “ � P KrBs such that d

i

p�q “ ⇤ and �pd1, . . . , di´1, di “ 0, d
i`1, . . . , dnq “ 0.
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The next theorem is the combination of Mourrain’s algorithm in [53] and the improvement
presented by Mantzaflaris and Mourrain in [47].

Theorem 72 ([53, 47]). Let t⇤1, . . . ,⇤m

u be the basis D

t´1 with the coefficient matrix of the

form 3.5, yielding the standard basis B

t

“ tx�i |1 § i § mu, i.e., the elements of the basis B

that are of degree up to t. An element ⇤ P KrBs with no constant term is in D

t

if and only if it is

of the form

⇤ “
m

ÿ

i“1

n

ÿ

k“1

�

ik

ª

k

⇤
i

pd1, . . . , d
k

, 0, . . . , 0q, (3.6)

where �

ij

P K, and the following conditions hold

1. for all 1 § k † l § n,

1
ÿ

i“1

�

ik

d

l

p⇤
i

q ´
1

ÿ

i“1

�

il

d

k

p⇤
i

q “ 0. (3.7)

2. for all 1 § k § e,

⇤pf
k

q “ 0 (3.8)

3. for all 1 § i § m,

⇤px�iq “ 0. (3.9)

The first condition implies that the new elements ⇤ that have been introduced are stable by
derivation. The second condition comes from the fact that ⇤ must be inside Q

K
⇣

. Based on The-
orem 72, having D

t´1 “ t⇤1, . . . ,⇤m

u, we have an algorithmic way to compute D

t

. Consider
⇤ from the theorem with symbolic coefficients �

ik

. Plug ⇤ into the conditions of the theorem
and obtain a system of equations. In step t the corresponding matrix will look like below.

M

t

“

¨

˚

˚

˚

˚

˚

˝

�11p11 . . . �1np1n . . . �

e1pe1 . . . �

en

p

en

⇤pf1q
...
⇤pf

e

q
Condition 3.7
Condition 3.9

˛

‹

‹

‹

‹

‹

‚

. (3.10)

By abuse of notation and for simplifying the presentation, we use the symbolic coefficients �
ij

instead of the product of �
ij

by the polynomials p

ij

“ ≥

j

⇤
i

pd1, . . . , dj , 0, . . . , 0q in order to
label the columns of M

t

. The kernel of M
t

will give us the possible values for �
ij

.
The first two conditions already guarantee that ⇤ P D

t

[53]. However, we might have that
⇤ P D

t´1 as well. This means that we reproduce the elements of the previous step. The
third condition which has been introduced in [47], gives us a sufficient condition for having
⇤ P D

t

zD
t´1. This helps with avoiding repetition of the computations that have been done in

the previous steps by adding new rows to the matrix, which in some cases may lead to removing
some column. It also provides a method to compute a basis D at the same time as a dual basis
for B

⇣

.
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Algorithm 2: Integration method
Input : A basis for an m

⇣

-primary ideal Q
⇣

Output
:

A basis for R
L

Q

⇣

and a basis D for QK
⇣

def ComputeBasis:
Dold “ H
Dnew “ t⇤ “ d

0 “ 1u
while Dold ‰ Dnew:

Dold “ Dnew

⇤ :“
m

∞

i“1

n

∞

k“1
�

ik

≥

k

⇤
i

pd1, . . . , d
k

, 0, . . . , 0q

for all 1 § k § l § n,
m

∞

i“1
�

ik

d

l

p⇤
i

q ´
m

∞

i“1
�

il

d

k

p⇤
i

q “ 0

for all 1 § k § e, ⇤pf
k

q “ 0

for all 1 § k § m, ⇤px�iq “ 0
Construct matrix Mnew, the coefficient matrix of ⇤
Compute a basis Knew for kernelpMnewq
Dnew “ Dold

î

Knew

return new

Below, we do the computations for Examples 67 and 68, first without and then with considering
Condition 3.9.

Example 73 (Computations without Condition 3.9 for Example 67).

M1 “
ˆ

d1 d2

⇤pf1q 0 ´2
⇤pf2q 0 0

˙

. (3.11)

which is the same as the matrix in Macaulay’s algorithm, and D1 “ t1, d1u. Continuing into the
second step (⇤ P D2), we apply the first two conditions on ⇤ “ �1d1`�2d2`�3d

2
1`�4pd1d2q,

which gives us the matrix

M2 “
¨

˝

d1 d2 d

2
1 d1d2

Condition3.7 0 0 0 0
⇤pf1q 0 ´2 1 0
⇤pf2q 0 0 0 0

˛

‚

, (3.12)

which has two columns less that the second matrix of Macaulay’s algorithm. We have D2 “
t1, 2d21`d2, d1u. The third and fourth step matrices are also smaller than the ones in Macaulay’s
algorithm.

Example 74 (Computations for Example 67 with Condition 3.9). I this case the matrix of D1 is
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the same, while the matrices for D2 and D3 are different.

M1 “
ˆ

d1 d2

⇤pf1q 0 ´2
⇤pf2q 0 0

˙

, (3.13)

which is the same as the matrix in Macaulay’s algorithm, and D1 “ t1, d1u.
In step 2 we have

M2 “

¨

˚

˚

˝

d1 d2 d

2
1 d1d2

Condition3.9 1 0 0 0
Condition3.7 0 0 0 0
⇤pf1q 0 ´2 1 0
⇤pf2q 0 0 0 0

˛

‹

‹

‚

. (3.14)

Condition 3.9 implies that �1 “ 0. Therefore we can remove column one from M2.

Example 75 (Computations with and without Condition 3.9 for Example 68). D0 “ t1u. If we
do the computations without considering Condition 3.9, then in step 2 of the integration method,
we will reach to a 3 ˆ 2 zero matrix, which has one column less than the matrix in Macaulay’s
algorithm. The matrix in step 3 is a 3 ˆ 5 zero matrix, which is much smaller than the matrix in
Macaulay’s method.
Re-doing the computations considering Condition 3.9, we get M0 and M1 same as above. In
step 2, M2 is a matrix of size 5 ˆ 5. The two extra rows in this case comes from Condition 3.9.
However each of the two last rows simply will have one nonzero coordinate, which implies that
two of the coefficients �

ij

are zero. Having the value of a coefficient equal to zero means that
we can remove the corresponding column from the matrix and therefore the size of the matrix
will finally be 3 ˆ 3, smaller than the previous one. In step 3, applying Condition 3.9, we will
get a matrix with 4 columns instead of 9 columns in the previous case.

In the next subsection we will show modifications on the above algorithms in order to make
them more efficient for computing the directional multiplicities.

3.3.3 Modified Algorithms for Dual Basis

In this subsection we present modifications to the integration method and Macaulay’s algorithms,
which make computations more efficient. In particular, we give a more efficient criterion than
Condition 3.9 in the integration method.
We will use the following notation throughout subsection 3.3.3. We denote the Nil-index by N .
Let t be a fixed number between 1 and N . We refer to the current step of the algorithm as step
t. Same as previous sections, D is a basis for QK and therefore xDy “ Q

K. D
t

stands for the
degree t part of a basis of QK. Obviously xD

t

y is a sub-vector space of xDy. If we assume
that D

t

is equipped with a total degree term order, e.g. degree lexicographic ordering, then the
leading term of an element ⇤ of D

t

is denoted by ltp⇤q. If v is a column of a matrix M , then
M ´ v denotes the matrix obtained by deleting the column v from M .
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Modifications on Integration Method

Let M
t

denote the matrix in step t of the integration method and Ä

M

t

denote the matrix that is
constructed in step t without considering Condition 3.9. We assume that D

t´1 “ t⇤1, . . . ,⇤m

u
is already computed in step t ´ 1.
In the integration method, columns of M

t

(similarly for Ä

M

t

) are labeled by the �

ij

’s appearing
in ⇤ (see Equation 3.10). Fix one of the �

ij

’s and call it �. We denote by v

�

the column of M
t

(similarly for Ä

M

t

) that is indexed by �. Then p

�

denotes the corresponding polynomial.
A basis D of QK is in one to one correspondence with a basis K for Kerp Å

MN q (similarly for
Kerp Ä

M

t

q). In step t, this correspondence is reduced to a correspondence between D

t

and K

t

,
a basis of Kerp Ä

M

t

q). If there exists a vector q P K

t

, for which the coordinate corresponding
to � in this vector is nonzero, then we say that v

�

is active in D

t

. In case we explicitly know
such a vector q, i.e., a particular element of the kernel corresponding to an element E of D

t

,
then we say that v

�

is active in E. Since, M
t´1 is a submatrix of M

t

and Ç

M

t´1 is a submatrix of
Ä

M

t

, if it is clear from the context, by a column of M

t´1(respectively Ç

M

t´1) we will refer to the
corresponding column in M

t

(respectively Ä

M

t

) as well. We work on Ä

M

t

rather than M

t

in this
section, although many of our arguments are correct for M

t

as well.
We start with a proposition that provides us with an improvement on the integration method,
related to Condition 3.9.

Proposition 6. Let

Ä

M

t

,

Ç

M

t´1, Dt

,⇤
i

p1 § i § mq,�, p
�

and v

�

be as above.

Then the following hold.

1. If v

�

is a column of

Ä

M

t

, then v

�

is active in D

t

if and only if v

�

can be reduced to zero by

some other columns of

Ä

M

t

.

2. For all 1 § i § m, if v

�i is active in ⇤
i

, K

1
ti

is a basis for Kerp Ä

M

t

´ v

�iq and D

1
ti

is the

set of its correspondent dual elements, then t⇤
i

u Y D

1
ti

is a basis for the degree t part of

Q

K
. Moreover, if v

�i is active in ⇤
i

, but is not active in ⇤
j

, 1 § j ‰ i § m, then there

exists a basis D

1
ti

such that ⇤
j

P D

1
ti
, j ‰ i.

3. Let K

t1...m be a basis for Kerp Ä

M

t

´ v

�1 ´ ¨ ¨ ¨ ´ v

�mq and D

t1...m be the set of its cor-

respondent dual elements. For all 1 § i § m, if v

�i is active in ⇤
i

, but is not active in

1, . . . ,⇤
i´1, then D

t´1 Y D

t1...m is a basis for the degree t part of Q

K
.

Proof. 1. Let v
�

, v1, . . . , v
k

denote the columns of Ä

M

t

and p

�

, p1, . . . , p
k

be the polynomials
labeling the columns of Ä

M

t

. Then v

�

can be reduced to zero by v1, . . . , v
k

if and only if
there exist c1, . . . , c

k

P K, such that v
�

“ c1v1 ` ¨ ¨ ¨ ` c

k

v

k

, or equivalently v

�

´ c1v1 ´
¨ ¨ ¨ ´ c

k

v

k

“ 0. This holds if and only if q :“ p1, c1, ¨ ¨ ¨ , c
k

q P K

t

, which holds if and
only if ⇤1 :“ p

�

´ c1p1 ´ ¨ ¨ ¨ ´ c

k

p

k

P D

t

(Note that this is exactly the fact that ⇤1

in D

t

corresponds to q P K

t

). The latter is the case if and only if v
�

is active in ⇤1, or
equivalently v

�

is active in D

t

.

2. Fix 1 § i ‰ j § m and let q
i

and q

j

be the elements of K
t

corresponding to ⇤
i

and ⇤
j

in
D

t

, respectively.
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First we prove that for all ⇤1 P D

t

if ⇤1 ‰ ⇤
i

, then ⇤1 P @

D

1
ti

Y t⇤
i

uD

. Let q1 be the
corresponding elements of ⇤1 in K

t

. If v
�i is not active in ⇤1, then by part 1 it cannot

be reduced to zero by the active columns in ⇤1. So the column v

�i is not involved in
computing ⇤1 via column reducing in Ä

M

t

. So ⇤1 can be computed via column reducing in
Ä

M

t

´v

�

. Let q1 be the corresponding element to ⇤1 in Kerp Ä

M

t

q. Then q

1 P Kerp Ä

M

t

´v

�

q.
This means that ⇤1 P @

D

1
ti

D

.

If v
�i is active in ⇤1, then we prove that there exists a ⇤2 in D

1
ti

such that ⇤1 “ ⇤
i

` ⇤2.
This is because of the following. Let q1 P K

t

be the element corresponding to ⇤1 P D

t

,
such that that the first coordinate of q1 corresponds to v

�i . Take q1 “ p1, b1, . . . , b
k

q. Then
we have that v

�i ` b1v1` b2v2 ` ¨ ¨ ¨ b
k

v

k

“ 0, where the columns v1, . . . , v
k

are as in the
proof of part 1. Also again as in the proof of the part 1, v

�i “ c1v1`¨ ¨ ¨`c

k

v

k

. Therefore
pb1´c1qv1`¨ ¨ ¨`pb

k

´c

k

qv
k

“ 0, which means that p0, b1´c1, . . . , b
k

´c

k

q P Kerp Ä

M

t

q,
and therefore q2 :“ pb1 ´ c1, . . . , b

k

´ c

k

q P Kerp Ä

M

t

´ v

�

q. So one can construct a basis
K

1
ti

in such a way that q2 P K

1
ti

. Let ⇤2 be the member of D1
ti

corresponding to q

2. Then
⇤1 “ ⇤

i

` ⇤2.

Secondly we note that if v

�i is not active in ⇤
j

, for 1 § j ‰ i § m, then by the
above argument, one can compute a basis K 1

ti
(and respectively, D1

ti
q in such a way that

⇤
j

P D

1
ti

.

So every element of D

t

can be obtained from ⇤
i

and an element of K 1
ti

and therefore
xD

t

y Ñ @t⇤
i

u Y D

1
ti

D

. Linear independence of the elements of t⇤
i

u Y D

1
ti

is clear, and
therefore xD

t

y “ @t⇤
i

u Y D

1
ti

D “ Q

K.

3. K

t1...l be a basis for Kerp Ä

M

t

´v

�1 ´¨ ¨ ¨´v

�l
q and D

t1...l the correspondent dual elements.
Also as in the proof of the previous parts, let K

t

be a basis for Kerp Ä

M

t

q and also let
q1, . . . , qm P K

t

correspond to ⇤1, . . . ,⇤m

respectively. Then from the proof of part
2 we have that tq1u Y K

t1 is a basis for Kerp Ä

M

t

q. Also by part 2 of the proposition,
q2, . . . , qm P xK

t

y and correspondingly ⇤2, . . . ,⇤m

P xD
t1y. Now consider the matrix

Ä

M

t

´v

�1 and the basis D
t1 obtained from it. Since v

�2 is active in ⇤2 (which corresponds
to q2 in K

t

), and it is not active in ⇤1, then we can apply part 2 of the proposition to the
matrix Ä

M

t

´ v

�1 and the basis D

t1 obtained by it. Then we will have that tq2u Y K

t12

is a basis for Kerp Ä

M

t

´ v

�1q and q3, . . . , qm P xK
t12y. Correspondingly, ⇤3, . . . ,⇤m

P
xD12y. This implies that tq1, q2uYK

t12 is a basis for Kerp Ä

M

t

q. Continuing with v

�i , i •
3, and considering the assumption that v

�i is not active in ⇤1, . . . ,⇤i´1, j ‰ i, we finally
get tq1, . . . , qmu Y K

t1...m as a basis for Kerp Ä

M

t

q and correspondingly t⇤1, . . . ,⇤m

u Y
D1...m as a basis for the degree t part of QK

The above proposition shows us that deleting some columns from Ä

M

t

helps us to avoid re-
computing the basis elements of degree at most t ´ 1, which were already computed in the
previous steps. Not every set of m active columns will give us degree t elements of a basis. In
fact if we delete two columns that both are active in two different basis members of D

t´1, then
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we may not obtain some members of D
t

, For instance Let D2 “ t⇤1 “ d1 `d2 `d

2
1 `d

2
2,⇤2 “

d1 ` d2 ` 2d21 ` d1d2u and ⇤1 “ d1 ` d

3
2 P Kerp Ä

M3q. Then ⇤1 R Kerp Ä

M3 ´ v

d1 ´ v

d2q.
Choosing the appropriate columns can be seen as a combinatorial problem. For each element
of D

t´1, if we consider sets corresponding to the active columns in that element, then a set of
columns that satisfy the assumptions of part 3 of Proposition 6 form a System of Distinct Repre-

sentatives. However, not every set of distinct representatives gives us the appropriate columns.
The above example shows this. There are combinatorial and graph theoretical equivalences for
the above conditions.
In the following we show how to detect columns v

�1 , . . . , v�m that satisfy the assumption of
part 3 of Proposition 6. This is basically done via changing the basis t⇤1, . . . ,⇤m

u into a new
reduced basis t⇤1

1, . . . ,⇤
1
m

u, in which their leading terms satisfy the assumptions of part 3 of
Proposition 6.
Let D

t´1 “ t⇤1, . . . ,⇤m

u as above. Remember that having D

t´1, one can construct Matrix
3.5 in order to obtain a basis for the degree t part of R {

Q

, so that Condition 3.9 can be applied.
Below we show constructing a similar, but smaller matrix which gives us the desired set of active
columns. Same as Ä

M

t

, the columns of this matrix are labeled by the coefficients/polynomials that
appear in ⇤ in Equation 3.6. Same as Matrix 3.5, the rows of this matrix come from ⇤1, . . . ,⇤m

.
Let v

�1 , . . . , v�u be the columns of Ä

M

t

such that they are active in D

t´1. Construct the following
matrix containing the columns v

�1 , . . . , v�u .

M

1 “
¨

˚

˝

Columns’ labeled same as Ä

M

t

⇤1
... v

�1 . . . v

�s

⇤
m

˛

‹

‚

, (3.15)

Changing M

1 into a row echelon form matrix, after moving the pivot columns to the left hand,
we will reach to a matrix of the following form.

G

1´1
M

1 “

¨

˚

˚

˚

˚

˝

⇤1
1 ˚ ˚

⇤1
2 0

. . . ˚
...

...
. . . ˚

⇤1
m

0 ¨ ¨ ¨ 0 ˚ ˚ ¨ ¨ ¨ ˚

˛

‹

‹

‹

‹

‚

, (3.16)

where diagonal entries are nonzero and G

1 is the matrix that takes care of the operations done
for the column swapping and the row echelon form. Note that we will not have any zero row.
This is because otherwise, if we obtain a zero row in G

1´1
M

1, then it means that that row is
linearly dependent to the other rows. But this is in contradiction with ⇤1, . . . ,⇤m

(and therefore
⇤1
1, . . . ,⇤

1
m

as their linear combination) being linearly independent. Then our basis will satisfy
the conditions of part 3 of Proposition 6.
Another quite similar method for choosing appropriate active columns to delete is the follow-
ing. Instead of M 1, consider the submatrix of M

t´1 that contains only the active columns and
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triangulate it. Then as above. first columns are the appropriate active columns that we can delete
from M

t

. This matrix has the same number of columns as M 1, while it might have more rows.
Now we are ready to prove the following, which provides us with an algorithmic improvement
of the integration method, more efficient than Condition 3.9.

Corollary 76. (Criterion for Deleting Active Columns) Let D

t´1 “ t⇤1, ¨ ¨ ¨ ,⇤
m

u, Ä

M

t

, D

t

, v

�1 , . . . , v�u

and G

1´1
M

1
be as in Equation 3.16, and (by abuse of notation) let v

�1 , . . . , v�m be the columns

of

Ä

M

t

corresponding to the first m columns in G

1´1
M

1
. Also let K

t1...m be a basis for Kerp Ä

M

t

´
v

�1 ´ ¨ ¨ ¨ ´ v

�mq and D

t1...m be the set of its corresponding dual elements. Then D

t´1 YD

t1...m

is a basis for the degree t part of Q

K
.

Proof. We only need to prove that the columns v
�1 , . . . , v�m in G

1´1
M

1 satisfy the conditions
of part 3 of Proposition 6. This is the case because for all 1 § i § m, v

�i has zero in coordinates
i ` 1, . . . ,m and has non-zero coordinate i, which is the row corresponding to ⇤

i

. This means
that for all 1 § i § m, v

�i is not active in ⇤1, . . . ,⇤i´1. Having the above argument, the result
comes directly from Proposition 6.

Comparison Between Condition 3.9 and Corollary 76 Corollary 76 provides us with an
optimization in the integration method. In general this optimization is not the same as the im-
provement done via Condition 3.9. The difference is that our optimization allows us to delete
m columns from Ä

M

t

at step t, which brings computational efficiency reducing the size of the
matrix, which is the main computational obstacle in dual basis computations, while Condition
3.9 of Theorem 72 adds one more equation to the system, i.e., one more row to the matrix at
large.
The two improvements are the same only in a special case that we explain below. In all other
cases, our improvement is more efficient. In Example 77 we will show these aspects of the two
improvements.
Assume that the monomials xa1

, . . . , x

am form a basis for the degree t ´ 1 part of R {
Q

. If the
monomial dxai only appear once in ⇤ in Equation 3.6, then applying Condition 3.9, we have
that

⇤pxaiq “ �dx

aipxaiq “ �

i

“ 0.

This gives us an equation which adds a row to Ä

M

t

. However, instead of adding the corresponding
row to Ä

M

t

, one can just plug in �

i

“ 0 in the other equations obtained from Conditions 3.7, 3.8.
This will remove �

i

from the other equations, or equivalently will remove the column v

�i from
Ä

M

t

. At the other hand, if we let v
�i be the only column of M

t

such that its label contains dxai ,
then v

�i is active in ⇤
i

and therefore according to Corollary 76, one can delete it from Ä

M

t

in
order to avoid re-computing D

t´1. This is the only case where the two improvements on the
integration method, i.e., Condition 3.9 and Corollary 76 intersect, and it is quite rare.
Having the above comments, we prove the following proposition which explicitly shows that
our method is a generalization of of Mourrain-Mantzaflaris improvement, i.e., Condition 3.9.

Proposition 7. Let v

�1 , . . . , v�m be the columns in the criterion for deleting active columns, i.e.,

Corollary 76. Also assume that p1, . . . , pm are the corresponding polynomials to the coefficients

�1, . . . ,�m

in ⇤ in Equation 3.6 and let p

1
i

P Krx1, . . . , xns be the polynomial with the same
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monomials as p

i

P KrBs for 1 § i § m. Then tp1, . . . , pmu is a basis for the degree t ´ 1 part

of

R {
Q

.

Proof. Let l1, . . . , lm be the leading terms of p1, . . . , pm. Then from the discussion in the inte-
gration method, we know that tl1, . . . , lmu is a basis for the degree t ´ 1 part of R {

Q

. Since
p1, . . . , pm P R {

Q

and also the cardinality of tl1, . . . , lmu and tp1, . . . , pmu are the same, then
in order to prove that tp1, . . . , pmu is a basis for R {

Q

, we just need to prove that p1, . . . , pm
are linearly independent. Without loss of generality, we can assume that l

i

appears only in p

i

,
1 § i § m. Because otherwise, we can reduce p1, . . . , pm with respect to each other so that
we obtain polynomials p1

1, . . . , p
1
m

such that l1, . . . , lm are the leading terms of p1
1, . . . , p

1
m

and
l

i

appears only in p

i

, for 1 § i § m and also xp1
1, . . . , p

1
m

y “ xp1, . . . , pmy. Now this shows
that p1, . . . , pm are linearly independent, because each leading term only appears in one single
polynomial and therefore no p

i

can be in the span of the other p
j

, 1 § j ‰ i § m.

Let p1
i

P Krx1, . . . , xns be the polynomial with the same monomials as p
i

P KrBs for 1 § i § m.
Then Proposition 7 implies that the criterion for deleting active basis can be viewed as adding
the equation ⇤pp1

i

q “ 0, for 1 § i § m. Exactly the same as Condition 3.9, this equation
leads to adding rows to Ä

M

t

, however those rows are in the form p0, . . . , 0, c, 0, . . . , 0q, where
c is a nonzero element in coordinate i, 1 § i § m and therefore they result in deleting the
corresponding columns.
We can say even more.

Proposition 8. Let tp1
1, . . . , p

1
m

u Ñ Krx1, . . . , xns be a (not necessarily monomial) basis for

the degree t part of

R {
Q

such that no monomial of p

1
i

is in Q and let p1, . . . , pm P KrBs
be the polynomials with the same monomials as p

1
i

. For monomials m1, . . . ,m
k

R Q such

that m1, . . . ,m
k

R Supppp1q Y . . . Y Supppp
m

q, write m

j

“
m

∞

i“1
�

ij

p

1
i

. Then ⇤
i

“ p

i

`
k

∞

j“1
�

ij

m

j

, 1 § j § m, is a basis for the degree t part of Q

K
and the normal form of any

g P Krx1, . . . , xns with respect to the basis tp1
1, . . . , p

1
m

u is

NF pgq “
m

ÿ

i“1

⇤
i

pgqp1
i

.

Proof. First of all we note that ⇤1, . . . ,⇤m

are linearly independent because p1, . . . , pm are
linearly independent in R {

Q

, which comes from the linear independence of p1
1, . . . , p

1
m

. The
latter is the case by Proposition 7. The rest of the proof is exactly the same as the proof of
Theorem 69 as it has been give in [47].

If tp1
1, . . . , p

1
m

u Ñ Krx1, . . . , xns is an arbitrary basis of R {
Q

and tp1, . . . , pmu Ñ KrBs are the
corresponding differential polynomials, then removing the monomials in each p

1
i

that are in Q,
we will obtain a new basis for R {

Q

. So this assumption in the proposition holds without loss
of generality. So we have the following generalization of Lemma 3.4 in [47].
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Proposition 9. Let tp1
1, . . . , p

1
m

u Ñ Krx1, . . . , xns be a basis for the degree t part of

R {
Q

such

that no monomial of p

1
i

is in Q. An element ⇤ P KrBs is not zero in Q

K
t

zQK
t´1 if and only if in

addition to Equations 3.8 and 3.7 it satisfies

⇤pp
i

q “ 0, 1 § i § m.

constructing matrices M 1 and G

1´1
M

1 in order to choose particular active columns and deleting
them is special case of the above proposition. We have the following generalization of Proposi-
tion 3.7 in [53] too.

Proposition 10. Let † be a term order and m

j

, p

i

, p

1
i

,⇤
i

, 1 § i § m, 1 § j § k be as

in Proposition 9. Also let l

i

“ ltpp1
i

q and w1, . . . , ws

be the monomials different from l

i

in

p

1
1, . . . , p

1
m

. Write w

i

“
m

∞

j“1
�

ij

p

1
j

. Consider W “ tg
wi :“ w

i

`
m

∞

j“1
�

ij

p

1
j

|1 § i § su,

G :“ tm
j

`
m

∞

i“1
�

ij

p

1
i

|1 § j § mu and C :“ tx

c|c P Nn

, |c| “ N ` 1u. Then G Y W Y C is

a Gröbner basis for Q with respect to †.

Proof. Proof of Theorem 70 (given in Proposition 3.7 in [53]) works here as well. We just need
to note that for every f P Q, ltpfq P xltpGq Y ltpW q Y Cy.

Note that unlike Proposition 3.7 in [53] G Y C is not a Gröbner basis in this case as we don’t
necessarily have xltpQqy “ xltpGq Y ltpW q Y Cy..
We explain the computations in step 3 of Example 3.3 in [47] using the above result. We also
compare our proposition with Condition 3.9. This is done below in Example 77.

Example 77. Let I “ xf1, f2y ú Krx, ys, where

f1 “ x ´ y ` x

2

f2 “ x ´ y ` y

2
.

In step 2 we have that

Ä

M2 “
¨

˝

d1 d2 d

2
1 d1d2 ` d

2
2

Condition 3.7 0 0 1 ´1
⇤pf1q “ 0 1 ´1 1 0
⇤pf2q “ 0 1 ´1 0 1

˛

‚

,

from which we have D2 “ t⇤1 “ 1,⇤2 “ d1 ` d2,⇤3 “ d2 ` d

2
1 ` d1d2 ` d

2
2u. The active

columns in D2 are v1, v2, v3, v4, where v
i

refers to column i and therefore Matrix M

1 defined in
3.15 (ignoring ⇤1 “ 1) is

M

1 “
ˆ

d1 d2 d

2
1 d1d2 ` d

2
2

⇤2 1 ´1 0 0
⇤3 0 1 1 1

˙

.
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Substituting some columns of M 1 and then changing it into a (reduced) echelon form, for exam-
ple we have the following matrices.

G

1´1
1 M

1 “
ˆ

d2 d

2
1 d1 d1d2 ` d

2
2

⇤1
2 1 0 ´1 0

⇤1
3 0 1 1 1

˙

,

which gives columns v2 and v3.

G

1´1
2 M

1 “
ˆ

d2 d1d2 ` d

2
2 d1 d

2
1

⇤1
2 1 0 ´1 0

⇤1
3 0 1 1 1

˙

.

which gives columns v2 and v4.
For instance if we consider G1´1

2 M

1, then ⇤1
2 “ d2 ` d1 ` d

2
1 and ⇤1

3 “ d1d2 ` d

2
2 ` d1 ` d

2
1.

d2 only appears in �

1
2 and d1d2 ` d

2
2 only appears in ⇤1

3, and therefore deleting columns v2 and
v4 from Ä

M3 we will have the following in step 3.

Ä

M3 ´ v2 ´ v4 “

¨

˚

˚

˝

d1 d

2
1 d

3
1 ´ d

2
1 d

3
2 ` d1d

2
2 ` d

3
1d2 ´ d1d2

Condition 3.7 0 0 1 1
Condition 3.7 0 1 0 0
⇤pf1q “ 0 1 1 ´1 0
⇤pf2q “ 0 1 0 0 0

˛

‹

‹

‚

.

Kerp Ä

M3 ´ v2 ´ v4q “ 0 and we are done. Using any of the pairs of columns obtained via other
possible matrices we would have gotten the same result.

Other observations We present observations concerning the algorithm. On one hand we show
how pivoting could help and on the other hand we compare the sizes of the matrices produced
by the theory presented above.
Let us put an order on the monomials of D

t´1, e.g., degree lexicographic. Then ltp⇤1q, the
leading term of ⇤1, would be well-defined for every ⇤1 P D

t

. Now one can consider reducing
the members of a basis of D

t

with respect to each other so that ltp⇤1q R Suppp⇤2q for all
⇤1 ‰ ⇤2 P D

t

. We call such a basis a reduced basis. Then the leading term will be a monomial
that uniquely appears in the reduced basis. If ⇤1, . . . ,⇤m

is a basis for D
t´1, then removing the

columns corresponding to ltp⇤1q, . . . , ltp�
m

q from Ä

M

t

is equivalent to part 3 of Proposition 6.
Using part 1 of Proposition 6, one may check whether v

�

is active in D efficiently. This must
be done with precise pivoting. For that, one must start with reducing v

�

with the appropriate

columns, without doing the column reductions for the other columns, unless it is required. In
the worst case, we will need to compute the whole kernel, i.e., the whole D

t

, but this is not
necessarily the case all the time and therefore this can be viewed as a first potential optimization
step. As a side remark, using row echelon form is also taking advantage of pivoting.
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Change of the Integration Order at Each Step We conclude by another possible optimiza-
tion strategy. One can change the order of the variables at each step of the integration method
in order to gain some computational advantage. Suppose that we have computed D

t´1 “
t⇤1, . . . ,⇤m

u. Consider n

i

:“ #tdx↵i
i

P î

i

Suppp⇤
i

q|↵
i

P Nu. re-order the variables in

the following way: if n
i

§ n

j

, then put x
i

† x

j

(note that if the equality happens, we don’t
care whether x

i

appears before x

j

or vice versa). We call such an order a good integrable order.
Assume that x

b1 † x

b2 † . . . † x

bn is a good integrable ordering, where b

i

P t1, . . . , nu. Now
we consider ⇤1, . . . ,⇤m

as polynomials in Krdx
b1 , . . . , dxbns and continue with the integration

in the following order:

⇤ “
ÿ

i

�

i1

ª

b1

⇤
i

|
dxb2

“¨¨¨“dxbn“0 ` ¨ ¨ ¨ `
ÿ

i

�

in´1

ª

bn´1

⇤
i

|
dxb2

“¨¨¨“dxbn“0 `
ÿ

i

�

in

ª

bn

⇤
i

.

This way, we will do the least possible number of integrations. Note that the number of inte-
grands and the number of basis elements of D

t´1 are fixed and therefore we won’t gain any
advantage in terms of the size of M

t

. The following example illustrates the optimization.

Example 78. Consider Example 73. In step two we have that

D2 “ @

⇤1 “ 1,⇤2 “ d1 ` d2,⇤3 “ ´d1 ` d

2
1 ` d1d2 ` d

2
2

D

.

Then n1 “ 3, n2 “ 2. Therefore we change the order into y † x and work on Krdy, dxs. Then

⇤ “ �1dy ` �2dx ` �3dy
2 ` �4pdydx ` dx

2q ` �5pdy3q ` �6pdx3 ´ dx

2 ` dx

2
dy ` dxdy

2q.
We have have only one monomial in the 5-th column of M3, while in the original ordering, we
had two:

⇤ “ �1dx`�2dy`�3dx
2`�4pdxdy`dy

2q`�5pdx3´dx

2q`�6pdy3`dxdy

2`dx

2
dy`dxdyq.
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Algorithm 3: Modified Integration Method
Input : A basis for an m

⇣

-primary ideal Q
⇣

Output
:

A basis for QK
⇣

and directional multiplicities

def ComputeBasis:
Dold “ H
Dnew “ t⇤ “ d

0 “ 1u
µ

i

“ 0, i “ 1, . . . , n
while Dold ‰ Dnew:

Dold “ Dnew
Change the order of the variables into a good integrable order

⇤ :“
s

∞

i“1

n

∞

k“1
�

ik

≥

k

⇤
i

pd1, . . . , d
k

, 0, . . . , 0q

@1 § k † l § n,
s

∞

i“1
�

ik

d

l

p⇤
i

q ´
1

∞

i“1
�

il

d

k

p⇤
i

q “ 0

@1 § i § s, ⇤pf
i

q “ 0
Construct matrix Mnew, the coefficient matrix of ⇤
Apply Criterion 76 and choose good columns v

�1 , . . . , v�m

Mnew : Mnew ´ v

�1 ´ ¨ ¨ ¨ ´ v

�m

Dnew “ Dold
î

KerpMnewq
If dxµi`1

i

P SupppDnewq, then µ

i

“ highest power of dx
i

in Dnew|
xi‰0

return Dnew and µ

i

Modifications of Macaulay’s Algorithm

For Macaulay’s algorithm we use the following notation. M

t

stands for the matrix in step t.
Columns of M

t

in Macaulay’s algorithm are labeled by monomials dx

a P Krdx1, . . . , dxns.
Then v

dx

a denotes the column corresponding to dx

a in M

t

. Note that v
dx

a is well-defined be-
cause in M

t

obtained via Macaulay’s algorithm, for every monomial of degree at most t, there
exists a column labeled by it and vice versa. Also note that since the columns are labeled by the
monomials, a column v

dx

a is active in a basis D of QK if and only if v
dx

a P SupppDq.
Below we show a modification of Proposition 6 and its corollary for Macaulay’s algorithm. This
enables us to make Macaulay’s algorithm more efficient.

Proposition 11. Let M

t

,M

t´1, Dt

,⇤
i

p1 § i § mq,�, dxa

and v

dx

a

be as above.

Then the following hold.

1. If v

dx

a

is a column of M

t

, then v

dx

a P SupppD
t

q if and only if v

dx

a

can be reduced to zero

by some other columns of M

t

.

2. For all 1 § i § m, if v

dx

a

i
P Suppp⇤

i

q, K

1
ti

is a basis for Kerp Ä

M

t

´ v

�iq and D

1
ti

is the

set of its correspondent dual elements, then t⇤
i

u Y D

1
ti

is a basis for the degree t part of

Q

K
. Moreover, if v

dx

ai P Suppp⇤
i

q, but v

dx

ai R Suppp⇤
j

q, 1 § j ‰ i § m, then there

exists a basis D

1
ti

such that ⇤
j

P D

1
ti
, j ‰ i.
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3. For all 1 § i § m, if v

dx

ai P Suppp⇤
i

q, but v

dx

ai R Suppp⇤
j

q, 1 § j § i ´ 1, then

D

t´1 Y D

t1...m is a basis for the degree t part of Q

K
.

Proof. Similar to the proof of Proposition 6.

In order to detect columns v
dx

ai that satisfy the assumptions of Proposition 11, one can simply
adapt the methods mentioned for the modified integration method and equivalently form the ma-
trices M2

, G

2´1
M

2. Then we have the following corollary, which is the equivalent of Corollary
76 for Macaulay’s algorithm.

Corollary 79. (Criterion for Deleting Suitable Columns in Macaulay’s Matrices) Let D

t´1 “
t⇤1, ¨ ¨ ¨ ,⇤

m

u,M
t

and D

t

, v

�1 , . . . , v�u be as in 3.16 and G

2´1
M

2
be as above and (by abuse

of notation) let v

�1 , . . . , v�m be the columns of M

t

corresponding to the first m columns in

G

2´1
M

2
. Also let K

t1...m be a basis for KerpM
t

´ v

�1 ´ ¨ ¨ ¨ ´ v

�mq and D

t1...m be the set of

its corresponding dual elements. Then D

t´1 Y D

t1...m is a basis for Q

K
.

Proof. Similar to the proof of Corollary 76.

The following provides us with more modifications on Macaulay’s algorithm.

Lemma 80. For all 1 § i § n, 1 § m, t § N and a, b P Nn

the following holds.

1. Let dx

a P SupppD
t

q and dx

b|dxa

then dx

b P SupppDq. In particular, if dx

a P SupppD
t

q
and dx

m

i

|dxa

then dx

m

i

, ¨ ¨ ¨ , dx
i

, 1 P SupppDq.

2. Let dx

b R SupppDq, dx

b|dxa

and |a| § t. Then dx

a R SupppD
t

q. In particular, if

dx

m

i

R SupppDq then dx

m`1
i

, . . . dx

t

i

R SupppD
t

q. Also if dx

m

i

R SupppD
t´1q then

dx

m`1
i

, dx

m`2
i

, . . . R SupppD
t

q.

Proof. 1. For all 1 § i § n:

dx

a P SupppD
t

q ô x

a R Q

⇣

x

a R Q

⇣

ñ x

b R Q

⇣

x

b R Q

⇣

ô dx

b P SupppDq.
The rest can be proved by putting x

b “ x

m

i

.

2. Although this part can be proved directly, however, we use a simple logic argument to
prove it. Consider the following notations for the three logic statements that appear in the
proposition:

p “ dx

a P SupppD
t

q, q “ dx

b|dxa
, r “ dx

b P SupppDq.
Then the previous part says that

p ^ q ñ r.
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Therefore, we have the following (Note that the condition |a| § t is a consequence of p):

pp ^ q ñ rq ô p r ñ  pp ^ qqq
ô p r ñ  p _ qq
ô p r ^ q ñ  pq,

which means that if dxb R SupppDq and dx

b|dxa then dx

a R SupppD
t

q.

By Lemma 80, one may find some monomials in SupppDq that are of degree at most t, but not
necessarily belong to SupppD

t

q and therefore not necessarily they appear as monomials in the
generators of D

t

. Also if dxm
i

is the largest power of dx
i

that appears in SupppD
t´1q then by

Lemma 80 dx

m`1
i

is the largest possible power of dx
i

that can appear in SupppD
t

q. Another
point that we can deduce from the above proposition is that if dxm

i

is the largest power of dx
i

that appears in SupppD
t´1q and dx

m`1
i

R D

t

, then not necessarily µ

i

“ m, because dx

m`1
i

may appear in some other step of the algorithm and therefore, for computing µ

i

, this doesn’t
give us a termination criterion. However, in that case there won’t be anymore a leading term of
the form dx

k

i

, k P N when we work with respect to a degree term order. Also obviously, we
have that dxµi

i

, . . . , dx

i

P SupppDq. All these monomials appear in SupppD
t

q at some step
of the integration method, as they only will be obtained via integrating the lower power and
therefore they will appear at some step of the integration algorithm. But this doesn’t imply that
they necessarily appear during Macaulay’s algorithm. The same applies not only for the powers
of a variable x

i

, but also to every monomial dxa P SupppD
t´1q, i.e.,

≥

i

dx

a
, 1 § i § n is the

only multiple of dxa that can appear in SupppD
t

q.
Based on the above remarks, we can make the following improvement to Macaulay’s algorithm.

Proposition 12 (Improvement on Macaulay’s Algorithm). Let M

t

be the matrix obtained via

Macaulay’s algorithm. Consider the set

A “ t
ª

i

dx

a

, 1 § i § n : dx

a P SupppD
t´1q ^ pEdxb P SupppD

t´1q, dxa|dxbqu. (3.17)

Then KerpM
t

´v

A

q “ KerpM
t

q, where M ´v

A

is the matrix obtained by deleting the columns

corresponding to the members of A.

Proof. The proof is immediate from part 2 of Lemma 80.

We explain the improvement by redoing the calculations for Example 67, step 3 using the above
result and comparing the computations.

Example 81. Let

f1 “ x

2 ` py ´ 1q2 ´ 1

f2 “ y

2
.
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After doing the computations in step 2, we have D2 “ t1, d1, 2d21 ` d2u. d2 P SupppD2q, but
d

2
2 R SupppD2q. So, in step 3, by the above improvement, we can remove v

d1d
2
2

and v

d

3
2

from
M3. Also we can remove the columns v1, v

d1 , vd21
using proposition 11. So the new matrix has

5 columns, while the original matrix in Macaulay’s method has 10 columns.

Algorithm 4: Modified Macaulay’s Algorithm
Input : A basis for an m

⇣

-primary ideal Q
⇣

Output
:

A basis for QK
⇣

and the directional multiplicities

def ComputeBasis:
Dold “ H
Dnew “ t⇤ “ d

0 “ 1u
t “ 0
µ

i

“ 0, i “ 1, . . . ,m
while Dold ‰ Dnew:

D

t

“ Dold
Dold “ Dnew
Construct matrix Mnew, the coefficient matrix of Dnew
@⇤ P D

t

, delete a good active column in ⇤ from Mnew
Compute A as in Equation 3.17
Mnew “ Mnew ´ v

A

If v
dx

µi`1
i

P KerpMnewq, then µ

i

“ µ

i

` 1

Dnew “ kernelpMnewq
Dnew “ Dold

î

KerpMnewq
t “ t ` 1

return Dnew and µ

i

Example 82. Let I “ xf1, f2, f3y Ñ Krx, y, zs, where

f1 “ 2x ` 2x2 ` 2y ` 2y2 ` z

2 ´ 1,

f2 “ px ` y ´ z ´ 1q3 ´ x

3
,

f3 “ p2x3 ` 2y2 ` 10z ` 5z2 ` 5q3 ´ 1000x5.

p0, 0,´1q is a root of multiplicity 18, µ
x

“ 5, µ
y

“ 8, µ
z

“ 8 and N “ 9. From step 3 to 5,
the highest power of dx is 2. In steps 6, the monomial dx3 appears and in steps 7 and 8, we see
the monomial dx4. For dy and dz all the powers appear in all steps. This is a very dense system
for computing µ

x

and µ

y

, in the sense that all the powers of dy and dz appear in all the steps.
However for dx we see that we have done many redundant computations.

At the end of this section, we comment on the comparison between the size of the matrices
obtained at step t of the above algorithms and their modifications, as size is a big obstacle in
computations. The matrix obtained via Macaulay’s algorithm has

`

t`n

n

˘

columns and at least
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same number of rows. In the integration method, Ä

M

t

has nm columns and
`

n

2

˘ ` e rows. Apply-
ing Condition 3.9 in the integration method, one gets m extra rows, which in special cases can
result in deleting at most those m rows and also at most m columns. So the size of the matrix
is at least

`

n

2

˘ ` e ` m ˆ pn ´ 1qm. However, this is exactly the size of the matrix obtained
using our modification to the integration method. Also if we let x

M

t

be the matrix obtained from
Macaulay’s algorithm applying our modifications, for every column v

dx

a of x

M

t

, there exists a
p

�

such that dxa P Supppp
�

q. In other words, all the monomials appearing as the columns of
x

M

t

, will appear in the columns of Ä

M

t

, but the difference is that they might be a monomial in a
polynomial. This means that the number of columns of Ä

M

t

and y

M

T

will be the same if every p

�

is a monomial. This means that Ä

M

t

is basically x

M

t

in which some columns are added to each
other. Note that many of the rows in both methods can (and in practice are) zero and can be
simply deleted.
Concluding this section we provide a list of computational observations:

• Computing the directional multiplicity is basically equivalent to computing the projection
of the kernel of MN . There are several classic kernel computation algorithm, e.g, Sin-

gular Value Decomposition. However, we are not aware of any algorithm for projection,
without computing the whole kernel. Proposition 6 can be considered as a proposal for an
incremental algorithm for computing kernel projection.

• Having a bound for the directional multiplicities, one can construct a single matrix and
compute the dual basis using that matrix rather than running several steps. This is guaran-
teed by Proposition 4, part 4. The idea for constructing such a matrix is to use the resultant
in order to get a bound U for directional multiplicities. Having M

U

, Macaulay matrix of
size U , the kernel of M

U

will give us the whole dual. Note that the main obstacles for this
method are the size of M

U

and also computing the resultant. The bound U could be the
Bezout bound in worst case.
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Chapter 4

Applications and Future Work

4.1 Applications

We explore some applications of dual space and directional multiplicity. The exploration does
not go into details, as the main purpose is to show the usefulness of the concept rather than
presenting the applications themselves.

Arrangement and Topology of Planar Algebraic Curves There are several methods in the
literature for computing the arrangement and topology of a planar algebraic curve, e.g [3, 2,
19, 23, 8]. In principle, all methods use some elimination tool, e.g Gröbner basis or resultants,
in order to project algebraic curves on one axis and identify the critical points (points where
derivatives vanish). This is done by finding the real roots of the elimination ideal and using this
information to reconstruct/identify the arrangement and topology of the curve. These approaches
typically assume that no two critical points have the same projection on the axis. Our work
explains what happens in that situation. In Section 4.1, we show how directional multiplicity can
handle degenerate situations. Particularly, our algorithms for computing directional multiplicity
with respect to an axis could be useful for computing the multiplicity of a point in its fiber.
Devising a full algorithm for determining the topology of the algebraic curve is beyond the
scope of this paper.

Geometry of the Elimination Ideal Let I Ñ Crx, ys be a zero dimensional ideal with no
roots at infinity generated by two polynomials corresponding to two planar curves and I1 “
I XCrys “ xgy be its elimination ideal. We illustrate the case of geometric degeneracy and how
directional multiplicity can be used, in a concrete example. Let f1 “ py ` 1qpy ´ x ` 1q and
f2 “ x

2`y

2´1 as shown in the figure. The two curves intersect at two points, namely p1, 0q and
p0,´1q. Their Sylvester resultant is 2ypy`1q3, which implies that the projection on the y-axis of
the roots p1, 0q and p0,´1q have multiplicity 1 and 3 respectively. On the other hand, computing
the Gröbner basis of the elimination ideal in Crys, we obtain the unique monic generator g “
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ypy ` 1q2.

f1 py ` 1qpy ´ x ` 1q
f2 x

2 ` y

2 ´ 1
g ypy ` 1q2

resultant 2ypy ` 1q3

Observing the difference in the multiplicities of the resultant and g, the questions “when does
the multiplicity drop?” and “what does the multiplicity of a factor in g mean?” arise. Using the
concept of directional multiplicity, we are able to address these question in the degenerate case,
as the one in the example.
The exponent of the factor of g corresponding to an intersection point is the directional mul-
tiplicity at that point. The exponent of the corresponding factor of the resultant give us the
multiplicity of the intersection points. However Gröbner basis did not say much about the
geometry of the intersection. Now having the concept of directional multiplicity, we can ex-
plain the generator of the elimination ideal geometrically. In general given dense polynomials
f1, . . . , fn P Krx1, . . . , xns, let I1 “ xgy and R1 . . . R

k

be the square-free factorization of the
Macaulay resultant. Then g “ R

µ1
1 . . . R

µk
k

.

Comparison Between Border bases and Dual Bases In the case of m
⇣

-primary ideals, Bor-

der Basis is closely related to the dual bases. We briefly explain this relation below. For the
definitions and properties of border basis we mainly follow [40].
Assume that we have fixed a term order on the monomials Ba and write all the polynomials in
KrBs with respect to that order. Following the discussion in Section 3.3.2, one can consider
B “ tx�1

, . . . , x

�µu as an order ideal. We know that the derivation of every element in the dual
basis obtained via the integration method is in the dual. Therefore B is a a term order of the
form O†pQq and the set G in Theorem 70 is a subset of the border basis for B. The rest of the
elements of the the borer basis have some elements of the set C in Theorem 70 as their leading
terms.
The above discussion gives the idea of computing the border basis of an m

⇣

-primary ideal de-
gree by degree by constructing the matrices either in Macaulay’s algorithm or in the integration
method. In order to do so, one can compute D

t

, a basis for the dual space of degree t, and read
off G from it. Also other elements of the border basis can be checked considering the ansatz
that they have the leading term x

c

, |c| “ t ` 1. note that this does not necessarily work for an
arbitrary zero dimensional ideal, as the dual space might not be a polynomial ring. However,
obviously the other way round works i.e., having a dual basis for an m

⇣

-primary ideal Q, one
can read off the elements of the dual.
The concept of border bases clarifies the distinction between the Buchberger diagram and the
extended Buchberger diagram. The monomials under the Buchberger diagram form an order
ideal of the form O†pQq for which a unique border basis exists. However, this is not necessarily
the case for the monomials under the extended Buchberger diagram of Q. The latter as an order
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ideal can have a border basis, which gives us a dual basis. This shows that the border basis is
somehow stronger that the dual basis. Border bases algorithms proposed in [39] and [9] can be
used in accordance to the above discussion.

Computing Hilbert Series of Zero Dimensional Ideals For an isolated point ⇣ and its corre-
sponding m

⇣

-primary ideal Q
⇣

, Mourrain has shown in [53] that having a base for QK
⇣

, one can
obtain a basis for R

L

Q

⇣

. Also the improvement of the integration method using Equation 3.9
is based on computing a dual basis along with a basis for R

L

Q

⇣

. The function mapping t to
the dimension of the space generated by the degree t part of this quotient is actually the Hilbert
Function. Hilbert function and Hilbert series can be computed via Gröbner bases. Having
the dual basis, one can compute the Hilbert function and Hilbert series. For instance, for a 0-
dimensional ideal, given the set of points in the variety of the ideal, Chapter 7 of [56] shows such
a method to compute the Hilbert function and series as well as the regularity. These are based
on using Gröbner basis for the computations. Alternatively, one can use dual bases in order to
compute these objects. In particular, directional multiplicities can be used to compute the degree
of the elements of the ideal, which can be useful in computing the regularity. Finally, directional
multiplicities can be used in computing the Hilbert series of the last elimination ideal.

4.2 Future Work

Dimension of the Elimination Ideal Below we explain a problem that was proposed by Carlos
D’Andrea [22].
We know that dimpV pIqq § n, so dimp⇡ pV pIqqq “ dimpI1q § n´1 . Also as V ph1, . . . , hmq Ñ
An´1, from Theorem 26 we have dimpV ph1, . . . , hmqq § n ´ 1. Also from Theorem 27, as
projection is an onto map, we have dimp⇡ pV qq § dimpV q. An interesting question is when
dimpV q “ dimp⇡ pV qq. This is the case if and only if for almost all x P ⇡ pV q ,⇡´1pxq is of di-
mension 0, i.e. every fiber is of dimension 0. There are many simple examples that this can hap-
pen, e.g. if V pIq is a plane parallel to x1´axis. However, up to now we are not able to classify all
the cases that this happens by a condition on the generating polynomials. Neither we know when
such x cannot be in V ph1, . . . , hmq as this will tell us when V ph1, . . . , hmq X ⇡ pV pIqq “ H.

Directional Multiplicity with respect to arbitrary v P Rn In the definition of directional
multiplicity, we have considered the n axes as the directions. One could think of defining the
multiplicities in the direction of an arbitrary vector v P Rn. The directional multiplicities along
these vectors might be useful in studying singularities of curves.

Benchmarks It is essential that the algorithms presented and their implementations are tested
for their practical efficiency. In particular we plan to benchmark the following:

• Experiments with directional multiplicity algorithms:

– Comparison of Macaulay’s algorithm and the integration method for directional mul-
tiplicity in their original form, using the improvement in [47] and using the improve-
ments of Corollary 76, Corollary 79 and Proposition 12.
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– Matrix size comparison for Macaulay algorithm’s and the integration method’s im-
provements.

– Behavior on the sparse case.

• Explore the behavior with respect to sparsity, degree, complexity of multiplicity structure

• Compare with standard tests in the literature, e.g., Cyclic 9.

Directional Multiplicity for Sparse Systems Let us consider the following example.

Example 83. Let I “ @

f1 “ x

9 ´ x

6
y

2
, f2 “ y

D Ñ Krx, ys. Then the origin is a root of degree
9, µ1 “ 9, µ2 “ 1. Both the integration method and Macaulay’s algorithm need to run until step
10 in order to find the dual space.

In the above example many columns (corresponding to monomials) are considered, which are
equal to the zero vector. This is because the system is sparse. If we knew a priori that dx9 P D,
then we could have avoided the previous steps. One idea to deal with such cases is to start with
the matrix M

k

, where k is an upper bound for N and do the binary search top-down. However
the only such bound that we are aware of is the Bezout bound for µ, which can be too big and
hence this method is impractical. For computing µ

i

, when we have a sparse system with respect
to x

i

, one could follow a down-top algorithm which works by a-priori adding extra columns
v

dxi , . . . , v
dx

2t
i

to the modified matrix M

t

, where modified M

t

refers to the matrix that has been
obtained at step t of either modified integration method or Macauley’s algorithm.

Expansion Problem Our motivation to study the elimination problem was originally to give
an incremental algorithm for lexicographic Gröbner basis computation, based on induction on
the number of variables. The algorithm that was first suggested in [54] is as follows.
Let I be the ideal in Krx1, . . . , xns generated by F0 “ tf1, . . . , fmu, I

i

the i-th elimination ideal
of I and G

i

its reduced Gröbner basis. Given F0, assume that we can compute F

i

iteratively
using resultants. Then, having F

n´1 compute G

n

by a GCD algorithm for the case we arrive
to univariate non zero resultants. Now, having F

n´1 and G

n

we are interested in finding an
algorithm that computes G

n´1. We can iterate such an algorithm until we have G0.
So we are concerned with the following problem, which was formulated by Buchberger [13]:
The Expansion Problem. Given F

i´1, a generating set for I
i´1 and G

i

, the reduced Gröbner
basis of I

i

, find G

i´1, the reduced Gröbner basis of I
i´1.

First, based on the Elimination Property of Gröbner basis and also the uniqueness of the reduced
Gröbner basis, we have the following observation:

If G0 and G1 are the reduced Gröbner bases of I and I1 with respect to the lexicographic
order (x1 ° . . . ° x

n

), then G1 Ñ G0.

We suggest the following modification of Buchberger’s algorithm for the expansion problem:

• Reduce F

i´1 by G

i

:

1. consider F
i´1 Ä Krx

i`1, ¨ ¨ ¨ , x
n

srx
i

s.
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2. reduce coefficients of polynomials in F

i´1 by G

i

.

• Compute G

i´1 in the following way:

1. Compute tNF pSpolpf, gqq|f, g P F

i´1zpF
i´1 X Krx

i

, . . . , x

n

squ
2. Compute tNF pSpolpf, gqq|f P F

i´1zpF
i´1 X Krx

i

, . . . , x

n

sq, g P G

i

u
3. Run Buchberger’s algorithm on the union of the sets above and autoreduce

Removing the condition for the Gröbner basis to be reduced, the following more general question
arises naturally:

Given G1, a Gröbner basis which is not necessarily reduced, how to construct G0, a
Gröbner basis of I such that G1 Ñ G0? Note that the existence of such G0 is obvious.

In the following there are some problems related to the elimination and expansion problems.

1. Investigate possibilities of generating I1 by random combinations of the resultants with
coefficients from the polynomial ring.

2. Investigate the degenerate cases: Suppose that all the resultants are zero but there’s no
common factor for all of the polynomials. Can we describe this by conditions on the
(degree of) polynomials?

3. Let f1, . . . , fm P Krx1, . . . , xns be generic polynomials and r

ij

as above. Does there exist
e

ij

P Krx2, . . . , xns such that I1 “
A

rij

eij
|1 § i † j § m

E

?

Resultants of Gröbner basis members Can we find a (necessary) condition for a set G to be
a (reduced) Gröbner basis by looking at the properties/forms of the resultants of the members of
G?
We try to approach this problem by computing the resultant of S12 and f2. In the following we
set the notation and do the computations in several steps. Let f1 “ ∞

d1
i“0 aix

i

, f2 “ ∞

d2
i“0 bix

i,
in which a

i

, b

j

P Krys. Then S12 “ m1f1 ´ m2f2, where m1 “ c1y
k1
,m2 “ c2y

k2
x

d1´d2

such that c
i

P K. During the following computations we use several properties of the resultants
which can be found in [15].
Step 1. res pf2, S12q.
Let , d12 :“ degpS12q and res pf1, f2q :“ res

x

pf1, f2q. Then

res pf2, S12q “ res pf2,m1f1 ´ m2f2q
“ b

pd1´d2q´d1

d2
res pf2,m1f1q

“ b

´d2
d2

res pf2,m1q res pf2, f1q
“ b

´d2
d2

m

d2
1 res pf2, f1q

“ b

´d2
d2

c

d2
1 y

kd2 res pf2, f1q .
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Step 2. res pf2, S12 ´ hf2q.
Let S12 ´ hf2 be a step in reducing the S-polynomial and l :“ degphq, then

res pf2, S12 ´ hf2q “ res pf2,´hf2 ` S12q
“ b

l´d12
d2

res pf2, S12q
“ b

l´d2
d2

b

´d2
d2

c

d2
1 y

kd2 res pf2, f1q
“ b

l´2d2
d2

c

d2
1 y

kd2 res pf2, f1q .
Step 3. res pf2, S12 ´ kf1q Let S12 ´ kf1 be a step in reducing the S-polynomial. Then

res pf2, S12 ´ kf1q “ res pf2,m1f1 ´ m2f2 ´ kf1q
“ res pf2,´m2f2 ` pm1 ´ kqf1q
“ b

pd1´d2q´d2

d2
res pf2, pm1 ´ kqf1q

“ b

d1´2d2
d2

res pf2,m1 ´ kq res pf2, f1q .
Let k :“ c

k

y

u

x

v. Performing Gaussian elimination on the rows of Sylpf2,m1 ´ kq that con-
tain coefficients of m1 ´ k using the rows corresponding to the coefficients of f2, we obtain a
triangularized matrix and the resultant will be equal to:

res pf2,m1 ´ kq “ b

˚
d2

π

pc1yk1 ´ ppb
i

qq,
where p is a univariate polynomial and b

˚
d2

is a power of b
d2 . Therefore we have:

res pf2, S12 ´ kf1q “ b

l´d2
d2

b

˚
d2

π

pc1yk1 ´ p

psqpb
i

qq res pf2, f1q .
Step 4. res pf2, S12 ´ hf2 ´ kf1q

res pf2, S12 ´ hf2 ´ kf1q “ res pf2,m1f1 ´ m2f2 ´ hf2 ´ kf1q
“ res pf2, p´m2 ´ hqf2 ` pm1 ´ kqf1q
“ b

t´s´d1
d2

res pf2, pm1 ´ kqf1q
“ b

t´s´d1
d2

res
b

pf2,m1 ´ kqt´s´d1
d2

,

“ b

˚
d2

π

pc1yk1 ´ ppb
i

qqbt´s´d1
d2

,

where t “ degp´m2 ´ hq “ degpm2 ` hq § maxtdegpm2q, degphqu and s “ degpm1 ´ kq
and therefore deg ppm1 ´ kqf1q “ s ` d1 and b

˚ and p are as above.
Finally, we know that the normal form of S12 can be written as S12´∞

i“1 hifi, where h
i

are the
cofactors. Then the above computations can be adapted for computing res pf2, S12 ´ ∞

i“1 hifiq
in terms of degrees of h

i

and f

i

and also coefficients of f
i

.
Note that if tf1, f2u is a Gröbner basis, then S12 can be reduced to zero with respect to tf1, f2u.
From the above steps in the special case that all of the reduction steps were done only by f2,
res pS12, f2q can be written in terms of res pf2, f1q and some coefficients in K and some mono-
mials in y. But since reductions are only done using f2 we can conclude that there exists a
polynomial h such that S12 “ hf2. Therefore f2|S12 and then res pS12, f2q “ 0. So tf1, f2u
being a Gröbner basis means that res pf2, f1q “ 0, which means that f1 and f2 have a common
factor that contains x with positive degree.
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