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Abstract

This cumulative thesis contains several contributions to the numerical analysis of stochastic

partial differential equations. The main focus lies on investigating and improving numerical

methods with respect to the qualitative properties stability and efficiency. Here the term

stability of a numerical method denotes a measure for the approximation quality of the con-

sidered numerical method based on fixed refinement parameters in space and time or on

a finite number of independent realisations for Monte Carlo estimators. In contrast, the ef-

ficiency of a numerical method for approximating the solution process of SPDEs measures

the computational work needed to obtain a certain accuracy. Besides the separate discus-

sion of these two qualitative properties, the emphasis is laid on investigating their interplay

and their practical relevance for numerical experiments.

This thesis consists of an introductory essay followed by 4 chapters based on 4 scien-

tific articles. The purpose of the introduction is to provide an overview of relevant results

on SPDEs and their approximations as well as discussing the existing literature on stability

theory and efficiency investigations of numerical methods for stochastic differential equa-

tions.

In Chapter 2 we investigate the performance of Monte Carlo methods for linear stochas-

tic differential equations with an asymptotically almost surely stable, but mean-square un-

stable equilibrium solution. It is illustrated that under this specific stability setting standard

Monte Carlo estimators fail to reproduce the qualitative behaviour of the second (or higher)

moment(s) of the solution process. As a remedy an importance sampling technique focus-

ing on the simulation of rarely occurring realisations of the solution process is proposed and

numerically tested.

In Chapter 3 we develop importance sampling techniques for SPDEs based on an

infinite-dimensional version of the well-known Girsanov transformation. An optimality re-

sult that provides the existence of a measure transformation, for which the Monte Carlo

error vanishes completely, is used as guidance for constructing measure transformations

that can be easily implemented.

In Chapter 4 a structural mean-square stability theory for approximations of SPDEs is

developed. For this we extend well-known mean-square stability results for approxima-

tions of finite-dimensional SDEs to an abstract tensor product-space setting and we derive

necessary and sufficient conditions for the asymptotic mean-square stability of the zero so-

lution of approximations of linear SPDEs. For a comparative study of numerical methods

we investigate various combinations of rational approximations (of the semigroup) with ei-
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ther Maruyama or Milstein time integration schemes. Furthermore, results connecting the

stability properties of the zero solution of the SPDE and of its numerical approximations are

derived.

In Chapter 5 we combine space-time multigrid techniques for deterministic partial dif-

ferential equations with multilevel Monte Carlo methods for stochastic differential equations

with additive noise. This coupling provides a new class of algorithms that are fully paral-

lelisable, i.e., they can be computed in parallel with respect to space, time and probability.

Extensive numerical experiments in Chapters 2-5 illustrate the theoretical results.



Zusammenfassung

Diese kumulative Dissertation beinhaltet mehrere Beiträge zur numerischen Analysis von

stochastischen partiellen Differentialgleichungen (im Folgenden als SPDEs abgekürzt). Der

Hauptfokus richtet sich auf das Untersuchen und das Verbessern von numerischen Metho-

den für SPDEs bezüglich deren Stabilität und Effizienz. Wir bezeichnen hier unter Stabilität

ein Maß für die Approximationsgüte eines numerischen Verfahrens unter Berücksichtigung

endlicher Diskretisierungsparameter oder – im Falle von Monte Carlo Methoden – von Si-

mulationen, die auf einer endlichen Anzahl an unabhängigen Realisierungen von den be-

trachteten Zufallsvariablen basieren. Unter Effizienz hingegen verstehen wir ein Maß für

den zu leistenden Rechenaufwand, um eine bestimmte Genauigkeit zu erzielen. Neben der

gesonderten Betrachtung dieser beiden qualitativen Eigenschaften liegt der Schwerpunkt

der Arbeit auf dem Zusammenspiel und der praktischen Relevanz der untersuchten Eigen-

schaften für numerische Experimente.

Diese Dissertation besteht aus einem einleitenden Kapitel gefolgt von 4 weiteren Ka-

piteln, die auf 4 wissenschaftlichen Arbeiten basieren. Das Ziel der Einleitung ist es eine

Übersicht über relevante Resultate sowohl für SPDEs und deren Approximationen als auch

für die Stabilitätstheorie und für Effizienzuntersuchungen von numerischen Verfahren zu

geben.

Wir untersuchen im Kapitel 2 die Performance von Monte Carlo Methoden für linea-

re, stochastische Differentialgleichungen, deren Nulllösung asymptotisch fast sicher stabil

ist, aber instabil im Quadratmittel. Es wird gezeigt, dass in dieser speziellen Stabilitäts-

konfiguration Monte Carlo Schätzer das zweite (oder höhere) Moment(e) nur unzureichend

approximieren können. Als Lösung entwickeln wir eine Importance Sampling Methode, mit

der selten vorkommende Realisierungen des Lösungsprozesses simuliert werden können.

Im Kapitel 3 entwickeln wir Importance Sampling Methoden für SPDEs, die auf einer

unendlich-dimensionalen Version des bekannten Girsanov Theorems beruhen. Ein Opti-

malitätsresultat, welches die Existenz einer Maßtransformation beweist, für die der Monte

Carlo Fehler vollständig verschwindet, dient dabei als Konstruktionsanleitung für Maßtrans-

formationen, die einfach implementiert werden können.

Im Kapitel 4 wird eine strukturelle Methode zur Untersuchung von Quadratmittel-Stabilität

für Approximationen von SPDEs entwickelt. Um dies zu erreichen werden bekannte endlich-

dimensionale Resultate in einer abstrakten Tensor-Produktformulierung erweitert. Im Zuge

einer vergleichenden Studie von numerischen Verfahren untersuchen wir Methoden, die

auf verschiedenen Kombinationen von rationalen Approximationen mit Maruyama- oder
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Milstein-Verfahren beruhen. Weiters werden Resultate, die die Stabilitätseigenschaften der

Nulllösung der SPDE selbst und von deren Approximationen beschreiben, daraus abgelei-

tet.

Im Kapitel 5 kombinieren wir Mehrgitter-Verfahren in Raum und Zeit für deterministische

partielle Differentialgleichungen mit Multilevel Monte Carlo-Verfahren für stochastische Dif-

ferentialgleichungen mit additivem Rauschen. Diese Kopplung liefert einen neuen, bezüg-

lich Raum, Zeit und Wahrscheinlichkeit vollständig parallelisierbaren Algorithmus.

Ausführliche numerische Experimente veranschaulichen in den Kapiteln 2-5 die theore-

tischen Resultate.
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1 Introduction

Over the last decades the importance of models describing time-dependent systems under

random influences has gained a lot of attention across numerous fields of science. Typically

such dynamical systems can be represented by stochastic differential equations (SDEs),

where the driving noise process is modelled as a stochastic process with non-smooth paths

with respect to time. Since explicit representations of solutions to SDEs can only be found

in rather few cases, the development of efficient and stable numerical methods for SDEs

has become an important and rapidly growing field of research.

In this thesis we mainly consider approximations of stochastic partial differential equa-

tions (SPDEs) attaining values in an infinite-dimensional Hilbert space H . Hence – besides

the approximation of the solution process in time – one has to consider a discretisation with

respect to the underlying infinite-dimensional state space H . In addition if one is interested

in the expectation of a functional applied to the solution process, then a standard (but in

general computationally expensive) method is to use Monte Carlo estimators based on a

finite number of independent numerical trajectories of the solution process.

The majority of contributions to the numerical analysis of SPDEs is devoted to the strong

and weak convergence properties of the considered numerical method, e.g. the investiga-

tion of the asymptotic behaviour of the numerical method as the spatial or temporal refine-

ment parameters tend to 0, see e.g. [43, 49] for an overview. However, one has to be aware

of the fact that for the actual implementation of numerical experiments one is essentially

limited to non-zero spatial and temporal refinement parameters and to a finite number of in-

dependent realisations of the solution process for Monte Carlo simulations. For this reason,

we investigate in this thesis qualitative properties of numerical methods using fixed refine-

ment parameters for infinite-dimensional SDEs. The main focus of this thesis is on two

specific qualitative aspects of numerical methods for SDEs, namely stability and efficiency.

For examining the stability properties of numerical methods the underlying question is

how well does the numerical method approximate the qualitative properties of the analytical

solution. This thesis covers various issues on stochastic stability ranging from investigating

the asymptotic behaviour (with respect to time) of analytical solution trajectories and their

approximations to the analysis of the effects of rare events on Monte Carlo estimators. For

this reason, the term stability of a numerical method can be understood in the context of this

thesis as a measure for the approximation quality based on fixed refinement parameters or

on a finite number of independent realisations for Monte Carlo estimators.

The efficiency of a numerical method for approximating the solution of SDEs has to be
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2 Introduction

understood as a measure for the computational work needed to obtain a certain accuracy.

Apparently in cases, where the expectation of a functional applied to the solution process

is approximated by using Monte Carlo simulations, it is important to constantly improve the

performance of the used algorithms in order to enhance the accuracy of numerical experi-

ments within reasonable computational cost. For this, multilevel algorithms or purely prob-

abilistic approaches such as e.g. importance sampling are proposed in the literature to limit

the computational effort of numerical experiments. However, at this point the intrinsic inter-

play of stability and efficiency becomes evident, since such improved algorithms typically

require (extended) stability properties of the considered numerical methods. For instance,

if we consider the multilevel Monte Carlo estimator, it is clear that an appropriate numerical

method approximating the level-wise Monte Carlo estimators has to be stable enough on

each of the considered refinement levels - especially on the coarsest ones. Hence, besides

the separated discussion of the two qualitative properties stability and efficiency, we are

also investigating essential issues concerning the relationship and the interplay of stability,

efficiency and convergence of numerical methods in this thesis.

The outline of this thesis is as follows: In the remaining part of Chapter 1 we set up

the framework, which serves as the foundation for the results presented in Chapters 2-5.

The main focus is on providing an overview of the scientific landscape of investigating sta-

bility and efficiency of numerical methods for S(P)DEs and on illustrating, where the main

contributions of this thesis are. For this, we recall basic definitions and methods of stochas-

tic stability theory and discuss various aspects of enhancing Monte Carlo simulations by

multilevel algorithms, importance sampling techniques and by parallelisation.

In Chapter 2 we discuss the effects of different notions of stochastic stability on Monte

Carlo simulations. More specifically, we examine the performance of Monte Carlo methods

estimating the second moment of SDEs, for which the zero solution is asymptotically almost

surely stable, but mean-square unstable. In this specific stability setting, standard Monte

Carlo estimators do not reproduce the correct qualitative behaviour of the second moment of

the solution process. In order to improve the performance of standard Monte Carlo estima-

tors we propose an importance sampling technique that allows to sample rarely occurring

realisations of the considered random variables, with which the qualitative behaviour of the

second moment can be simulated more reliably.

In Chapter 3 we construct a class of importance sampling techniques for SDEs in in-

finite dimensions by using a version of the well-known Girsanov transformation for Hilbert

space-valued stochastic processes. By this we gain that the resulting importance sampling

technique is independent of the spatial discretisation technique. As a guidance to construct

useful and implementable measure transformations we derive a (theoretically) optimal mea-

sure transformation, for which the Monte Carlo error vanishes completely. Besides the

theoretical considerations the emphasis of this chapter is laid on discussing several imple-

mentation and approximation issues, under which convergence properties of the numerical

method used for approximating the trajectories of the mild solution process are preserved.

In Chapter 4 we investigate mean-square stability properties of numerical methods for
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approximating mild solutions of SPDEs. For this, we introduce an abstract tensor prod-

uct space-valued framework, in which we find necessary and sufficient conditions for the

asymptotic mean-square stability of the zero solution of the considered numerical method.

Based on this, we perform a comparative mean-square stability analysis of various numer-

ical methods ranging from Maruyama- and Milstein-type approximation schemes in com-

bination with various rational approximations of the underlying semigroup. For backward

Euler schemes we provide sufficient conditions for the simultaneous mean-square stabil-

ity of the zero solution of the SPDE and of the corresponding approximation without any

restriction of the involved refinement parameters.

In Chapter 5 we combine parallelisable space-time multigrid methods for deterministic

time-dependent partial differential equations with multilevel Monte Carlo methods for SDEs

with additive noise. Instead of applying the backward Euler scheme sequentially for every

time step, the basic idea for the considered space-time method is to solve a large linear

system at once, for which a parallelisable multigrid algorithm is constructed that inherits the

space-time hierarchy of the multilevel Monte Carlo method. Overall this results in a fully

parallelisable algorithm with respect to space, time and probability. As model problems we

study in finite dimensions the Ornstein–Uhlenbeck process and in infinite dimensions the

stochastic heat equation.

1 Stochastic differential equations in infinite dimensions

Let [0, T ], T > 0, be the time horizon of interest and let (Ω,F , {Ft}t∈[0,T ],P) be a filtered

probability space with a filtration {Ft}t∈[0,T ] satisfying the "usual conditions" in the sense

of [48, Definition 2.1.11] or [26, Section 2.1.2], i.e., complete and right continuous. In this

thesis we consider semilinear stochastic differential equations (SDEs) attaining values in a

separable Hilbert space (H, 〈·, ·〉H , ‖ · ‖H) given by

dX(t) = AX(t) + F (X(t))dt+G(X(t))dW (t) for t ∈ [0, T ] (1.1)

with initial value X(0) = X0 ∈ L2(Ω;H), where

L2(Ω;H) = {v : Ω→ H | v is strongly measureable, ‖v‖2L2(Ω;H) := E[‖v‖2H ] <∞}.

The linear operator A : D(A) ⊂ H → H is assumed to be the generator of a strongly

continuous semigroup (S(t), t ∈ [0, T ]). Typically in this thesis, the operator A is an un-

bounded differential operator which gives rise to calling Equation (1.1) a stochastic partial

differential equation (SPDE).

The driving noise process W = (W (t), t ∈ [0, T ]) is a stochastic process attaining

values in a separable Hilbert space (U, 〈·, ·〉U , ‖ · ‖U ). Furthermore, we assume that F :

H → H is a (possibly) non-linear, but sufficiently smooth operator and that for all x ∈ H the

diffusion operator G(x) is a linear operator mapping elements from U to the solution space

H . Concerning the diffusion operator we distinguish between the following two cases:
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• If G is a non-constant mapping from H to L(U ;H) (the space of bounded linear

operators mapping from U to H), then SPDE (1.1) is called multiplicative.

• In contrast if G(x) ≡ B ∈ L(U ;H) for all x ∈ H , then SPDE (1.1) is called additive.

Note that the above setting generalises the notion of finite-dimensional stochastic ordi-

nary differential equations (SODEs) as the following example shows:

Example 1.1. Choose H = Rd and U = Rm. Then we consider the SODE

dX(t) = f(X(t)) dt+ g(X(t)) dβ(t), t ∈ [0, T ],

X(0) = x0 ∈ Rd,
(1.2)

where β(t) = (β1(t), . . . , βm(t))T is an m-dimensional Brownian motion, f : Rd → Rd,
and for all x ∈ Rd, g(x) is a linear mapping from Rm to Rd. Furthermore, the operator A

corresponds to the zero matrix in this example.

In order to guarantee the existence of (mild) solutions to SPDE (1.1), we have to specify

additional properties of the involved coefficients in Equation (1.1). For this, we start by

discussing the driving noise process W in Section 1.1. Afterwards, we show in Section 1.2

that under specific assumptions on the regularity of the coefficients F,G,X0 and A, there

exists a unique mild solution to SPDE (1.1). Finally, we discuss in Section 1.3 numerical

approximations of the mild solution process.

1.1 Hilbert space-valued stochastic processes

Since we discuss various types of stochastic processes in this thesis, we provide in this

section a short overview of stochastic processes attaining values in a separable Hilbert

space (U, 〈·, ·〉U , ‖·‖U ). We start by recapitulating standard results onQ-Wiener processes

that are treated in Chapters 2-5. Afterwards we note how these results can be extended

to processes that are rough in space by discussing properties of the cylindrical Wiener

process. Finally, we briefly discuss generalisations of U -valued Wiener processes such as

square-integrable martingales and Lévy processes (that are both treated in Chapter 4).

Q-Wiener processes

As a first motivation we introduce the Q-Wiener process in finite dimensions. For this con-

sider an m-dimensional Brownian motion β(t) as in Example 1.1, for which we denote

by ∆βt,s = β(t) − β(s), 0 ≤ s < t, its independent increments. For an arbitrary matrix

Σ ∈ Rd×m we define the finite-dimensional Q-Wiener process by W (t) = Σβ(t), t ∈ [0, T ].

Note that the covariance of the increments ∆W t,s = Σ∆βt,s, 0 ≤ s < t, of the finite-
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dimensional Q-Wiener process satisfies

Cov[∆W t,s,∆W t,s] = E[∆W t,s(∆W t,s)T ]

= E[(Σ ∆βt,s)(Σ ∆βt,s)T ]

= E[Σ ∆βt,s (∆βt,s)T ΣT ]

= ΣE[ ∆βt,s (∆βt,s)T ]ΣT = (t− s) (ΣΣT ),

i.e., the covariance (t−s)Q := (t−s)ΣΣT is a symmetric and non-negative definite matrix.

Analogously to the finite-dimensional process, one defines the infinite-dimensional Q-

Wiener process in the following way:

Definition 1.2. Let Q ∈ L(U) be a self-adjoint, non-negative definite operator of trace

class, i.e., tr(Q) < ∞. Then, W = (W (t), t ∈ [0, T ]) is called a Q-Wiener process if and

only if

1 W (0) = 0 P-a.s.,

2 for any 0 ≤ r ≤ s ≤ t it holds that the increments W (t) −W (s) are independent of

W (r),

3 W has P-a.s. continuous paths,

4 the increments satisfy P ◦ (W (t)−W (s))−1 ∼ N (0, (t− s)Q), where N (0, (t− s)Q)

denotes a U -valued Gaussian measure.

For further details on Hilbert space-valued Gaussian measures we refer to [22, 59, 26, 43].

Remark 1.3. In this introduction we use the term Wiener process for Hilbert space-valued

stochastic processes, whereas Brownian motion refers explicitly to a real-valued, finite-

dimensional stochastic process. For being able to subsequently distinguish between these

two notions of stochastic processes, we use (W (t), t ∈ [0, T ]) for U -valued Wiener pro-

cesses and (β(t), t ∈ [0, T )]) for a finite-dimensional, real-valued Brownian motion.

Under the above assumptions it is shown e.g. in [59, Proposition 2.1.10] or [49, Theorem

10.7] that the Q-Wiener process attains the representation

W (t) =
∞∑

k=1

√
µkfkβk(t), (1.3)

where (fk, k ∈ N) is an orthonormal basis of U consisting of eigenfunctions of the covari-

ance operator Q and (βk(t), k ∈ N) is a sequence of independent, real-valued Brownian

motions. Note that the series (1.3) converges in L2(Ω;U) due to the trace class property of

Q. Subsequently we call the representation of W from Equation (1.3) the Karhunen–Loève

expansion of the Q-Wiener process W .

For the construction of the stochastic integral with respect to a Q-Wiener process, the

space of Hilbert–Schmidt operators plays an important role. For any linear operator B



6 Introduction

mapping from U to H , the Hilbert–Schmidt norm is given by

‖B‖2LHS(U,H) =

∞∑

k=1

‖Bϕk‖2H ,

which is independent of the choice of an orthonormal basis (ϕk, k ∈ N) of U . Then, we

obtain for the Q-Wiener increments ∆W t,s, 0 ≤ s < t, and for any operator B ∈ L(U ;H)

‖B∆W t,s‖2L2(Ω;H) = E

[〈 ∞∑

k=1

√
µkBfk∆β

t,s
k ,

∞∑

`=1

√
µ`Bf`∆β

t,s
`

〉]

=

∞∑

k,`=1

√
µkµ` E[∆βt,sk ∆βt,s` ]〈Bfk, Bf`〉U

= (t− s)
∞∑

k=1

‖B√µkfk‖2H = (t− s)‖BQ1/2‖2LHS(U ;H),

where the existence of Q1/2 is guaranteed by the non-negative definiteness of Q. By in-

troducing the notation U0 = Q1/2(U) for the reproducing kernel Hilbert space Q1/2(U), we

can conclude

‖B∆W t,s‖2L2(Ω;H) = (t− s)‖B‖2LHS(U0;H).

This norm is very important for the construction of the stochastic integral

∫ T

0
G(X(s))dW (s)

appearing in the SPDE (1.1), since a key ingredient for defining such a U -valued stochastic

integral is the so-called Itô isometry: For this, let (φ(t), t ∈ [0, T ]) be a predictable and

Ft-adapted stochastic process. Then, we get that (see e.g. [26, Theorem 2.3])

E

[∥∥∥∥
∫ T

0
φ(t)dW (t)

∥∥∥∥
2

H

]
= E

[∫ T

0
‖φ(t)‖2LHS(U0;H)dt

]
, (1.4)

under the assumption that the right hand side is well-defined. For further details on the

construction of the stochastic integral with respect to a Q-Wiener process we refer to the

classical monographs [22, 26, 59].

Cylindrical Wiener processes

The results on Q-Wiener processes can be extended to stochastic processes with covari-

ance operators Q̃ that are not of trace class. These infinite-dimensional Wiener processes

are typically called cylindrical Wiener processes.

One can show the L2(Ω;U)-convergence of the expansion (1.3) of the Q-Wiener pro-

cess by using the fact that trQ <∞ guarantees the existence of a Hilbert-Schmidt embed-

ding from (U0, 〈·, ·〉0) to (U, 〈·, ·〉U ). This cannot be shown in the presence of a non-trace



Numerical methods for SPDEs: Analysis of stability and efficiency 7

class covariance operator Q̃. However, as it is discussed in [59, Section 2.5.1], we can

circumvent this problem by considering another (larger) Hilbert space (U1, 〈·, ·〉U1) and a

Hilbert-Schmidt embedding J : U0 → U1. Then, by [59, Proposition 2.5.2], we get that

Q1 = JJ∗ ∈ L(U1) is a non-negative definite and symmetric operator with finite trace and

that the series

W (t) =
∞∑

k=1

βk(t)Jfk

defines a Q1-Wiener process on U1. Note that by [59, Remark 2.5.1] the space U1 and the

embedding J can always be constructed by choosing U1 = U and for u ∈ U0 define

J(u) =

∞∑

k=1

ak〈u, fk〉0fk,

where (ak)k∈N is chosen such that
∑∞

k=1 a
2
k <∞. Results on the construction of a stochas-

tic integral with respect to a cylindrical Wiener process can be found e.g. in [26, Section

2.2.4].

Square-integrable martingales and Lévy processes

In Chapter 4 we investigate qualitative properties of numerical methods for stochastic partial

differential equations driven by square-integrable martingales (M(t), t ≥ 0) that are càdlàg

and adapted to the filtration (Ft, t ≥ 0). For the construction of the corresponding stochastic

integral we assume that there exists a symmetric, non-negative definite trace class operator

Q ∈ L(U) such that for all 0 ≤ s ≤ t it holds that

〈〈M,M〉〉t − 〈〈M,M〉〉s ≤ (t− s)Q,

where the double angle bracket process (〈〈M,M〉〉t, t ≥ 0) is defined as

〈〈M,M〉〉t =

∫ t

0
Qs d 〈M,M〉s .

Here the single angle bracket process (〈M,M〉t , t ≥ 0) is the unique, increasing, pre-

dictable process from the Doob–Meyer decomposition and (Qt, t ≥ 0) denotes the martin-

gale covariance. Details on the construction of stochastic integrals with respect to U -valued

square-integrable càdlàg martingales can be found in [58, Section 8.2] and [50, Section

3.6]. Note that these results generalise the case of Q-Wiener processes as the following

example shows:

Example 1.4. A U -valued Q-Wiener process is a P-a.s. continuous, square-integrable mar-

tingale with 〈W 〉t = t(trQ) and 〈〈W 〉〉t = tQ.

In this thesis we also consider in Chapter 4 square-integrable martingales called Lévy

processes that are not necessarily P-a.s. continuous:
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Definition 1.5. A U -valued stochastic process (L(t), t ≥ 0) is called a Lévy process if

1 L(0) = 0 P-a.s.

2 L has independent and stationary increments,

3 L is a stochastically continuous process, i.e. for all t ≥ 0 and for all ε > 0 it holds that

lim
s→t

P(‖L(s)− L(t)‖U > ε) = 0.

Note that the martingale covariance Q ≡ Qs is stationary for Lévy processes and that

L admits a Karhunen–Loève expansion

L(t) =
∞∑

i=1

√
µiLi(t)fi,

where (µi, i ∈ N) are the eigenvalues of the covariance operator Q with respect to eigen-

functions (fi, i ∈ N) and (Li(t), t ≥ 0) is a sequence of square-integrable, uncorrelated,

real-valued Lévy processes.

Example 1.6. Since P-a.s. continuity implies stochastic continuity and the increments of

a Q-Wiener process are by definition independent and stationary it holds that a Q-Wiener

process is also a square-integrable Lévy process.

1.2 Existence of solutions

The investigation of existence and uniqueness of strong solutions to stochastic ordinary

differential equations has gained a lot of attention in the literature, see e.g. [4, 56, 60]. In

contrast to the finite dimensional setting, the concept of strong solutions is too restrictive in

the context of SPDEs, since this would in general require that the solution process satisfies

X(t) ∈ D(−A) for all t ∈ [0, T ]. However, the operator −A typically fulfils the following

assumption (see also [43, Assumption 2.13]):

Assumption 1.7. The linear operator −A : D(−A) ⊂ H → H is a densely defined, self-

adjoint and positive definite operator with compact inverse.

Under this assumption we get by results from [43, Appendix B] that the semigroup

(S(t), t ∈ [0, T ]) generated by A is analytic and that there exists an increasing, unbounded

sequence (λk, k ∈ N) of eigenvalues with corresponding eigenfunctions (ek, k ∈ N), i.e.,

−Aek = λkek. Thus, the restriction X(t) ∈ D(−A) for all t ∈ [0, T ] is in general not fulfilled

since

‖AX(t)‖2H =
∞∑

k=1

λ2
k〈X(t), ek〉2H <∞

holds only under some restrictive regularity assumptions on X. We illustrate this by consid-

ering the one-dimensional stochastic heat equation in the following example:
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Example 1.8. Let D = (0, 1), H = L2(D) and A = ∆x = ∂2/∂x2 with homogeneous

Dirichlet boundary conditions. It is well-known that the eigenvalues of the Laplace operator

−A are given by λj = π2j2 for j ∈ N. Hence ‖Ax‖2H <∞ if and only if 〈x, ej〉H ' j−5/2−ε

for any ε > 0.

Instead of strong solutions we investigate the existence and uniqueness of mild solutions

of SPDE (1.1). For this, the stochastic process W is assumed to be a Q-Wiener process.

A square-integrable mild solution is a predictable stochastic process X = (X(t), t ∈ [0, T ])

satisfying

sup
t∈[0,T ]

E[‖X(t)‖2H ] <∞

and for all t ∈ [0, T ] the mild solution is given by

X(t) = S(t)X0 +

∫ t

0
S(t− s)F (X(s))ds+

∫ t

0
S(t− s)G(X(s))dW (s) P-a.s. (1.5)

For results on the existence of such mild solutions we have to ensure sufficient regularity

of the coefficients of SPDE (1.1). For this reason, we introduce the following assumption on

the operators F and G:

Assumption 1.9. (Linear growth conditions and Lipschitz continuity of F and G)

Assume that F and G from SPDE (1.1) satisfy

1 that there exist constants cF , CF > 0 such that

‖F (φ)‖H ≤ cF (1 + ‖φ‖H),

‖F (φ1)− F (φ2)‖H ≤ CF ‖φ1 − φ2‖H

for all φ, φ1, φ2 ∈ H and

2 that there exist constants cG, CG > 0 such that

‖G(φ)‖LHS(U0;H) ≤ cG(1 + ‖φ‖H),

‖G(φ1)−G(φ2)‖LHS(U0;H) ≤ CG‖φ1 − φ2‖H

for all φ, φ1, φ2 ∈ H .

Furthermore, we have to impose additional regularity for the initial value:

Assumption 1.10. The initial value satisfies X0 ∈ L2(Ω;D((−A)1/2)).

Under Assumptions 1.7, 1.9 and 1.10 the existence and (up to modifications) unique-

ness of a square-integrable mild solution to SPDE (1.1) is guaranteed by Theorem 2.25 in

[43]. Existence and (up to modifications) uniqueness of mild solutions of SPDEs driven by

square-integrable Lévy processes can be found in [58, Section 9]. Further extensions of the

above results to SPDEs with locally Lipschitz continuous operators F and G that satisfy the

linear growth conditions from Assumption 1.9 can be found in [67].
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Itô’s formula for SPDEs

For SODEs (as considered in Example 1.1), the Itô formula (or also called Itô’s lemma) is

one of the central results in the finite-dimensional stochastic analysis: For ϕ ∈ C2(Rd;R),

i.e., a twice continuously differentiable function mapping from Rd to R, the Itô formula is

given by

dϕ (X(t)) =
[
∇xϕ(X(t)) · f(X(t)) +

1

2

d∑

i,j=1

∂2ϕ

∂xi∂xj
(X(t))(g(X(t))g(X(t))T )

]
dt

+
m∑

r=1

∇x(X(t)) · gr(X(t))dβr(t) P-a.s.

However, extending this result to infinite dimensions faces some limitations. In the case

that (X(t), t ∈ [0, T ]) denotes the strong solution of SPDE (1.1) and ϕ ∈ C2
b (H;R), i.e.,

the mapping ϕ : H → R has bounded first and second Fréchet derivatives (denoted by Dϕ

and D2ϕ), the infinite-dimensional Itô formula can be written as, see e.g. in [22, 14],

ϕ(X(t)) =
[
Dϕ(X(t)) (AX(t) + F (X(t))) +

1

2

∞∑

j=1

D2ϕ(X(t))(G(X(t))fj , G(X(t))fj)
]
dt

+Dϕ(X(t))G(X(t))dW (t) P-a.s.

However, in many applications there does not exist a strong solution to SPDE (1.1) and

thus, the expression on the right hand side is in general not well-defined. Hence, the

straightforward extension of the finite-dimensional Itô formula to infinite-dimensional Hilbert

space-valued equations is in general not possible.

There are a few important exceptions, where the infinite-dimensional Itô formula can be

applied to SPDEs as the following example shows:

Example 1.11. Consider the stochastic heat equation from Example 1.8 with a diffusion

operator that satisfies for all h ∈ H that G(h) ∈ LHS(U ;H). Furthermore, we specify

ϕ(h) = ‖h‖2H . Then it is shown e.g. in [21] and the references therein that

‖X(t)‖2H =

[
2
〈
X(t), AX(t) + F (X(t))

〉
H

+ ‖G(X(t))‖LHS(U ;H)

]
dt

+
〈
X(t), G(X(t))dW (t)

〉
H

P-a.s.

Note that results that are comparable to the finite-dimensional Itô formula are of high

interest in the numerical analysis of SPDEs, since these results would offer to easily adapt

a large number of proofs from the finite-dimensional stochastic analysis to the analysis of

infinite-dimensional SPDEs.

There are already some promising attempts towards a useful infinite-dimensional ver-

sion of Itô’s formula available in the literature. Recently, a generalisation of the finite-

dimensional Itô formula to mild solutions (1.5) has been considered in [21], where it has
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been shown that

ϕ(X(t)) = ϕ
(
S(t)X0

)

+

∫ t

0
Dϕ
(
S(t− s)X(s)

)
S(t− s)F (X(s))

+
1

2

∞∑

j=1

D2ϕ
(
S(t− s)X(s)

)(
S(t− s)G(X(s))fj , S(t− s)G(X(s))fj

)
ds

+

∫ t

0
Dϕ
(
S(t− s)X(s)

)
S(t− s)G(X(s))dW (s) P-a.s.

1.3 Approximation of mild solutions

In this section we recapitulate some basic results on approximation techniques for Hilbert

space-valued stochastic partial differential equations. An approximation of the mild solution

(1.5) of SPDE (1.1) is a family of random variables denoted by (Xk
h , k = 0, . . . ,K) attaining

values in a finite-dimensional subspace Vh ⊂ H with dim(Vh) = Nh. Here, K ∈ N denotes

the number of elements of an equidistant partition ΘK of the time interval [0, T ] defined by

ΘK = {0 = t0 < t1 < · · · < tK = T},

where tk = k∆t for a given time step size ∆t = T/K. By using this notation, we denote by

Xk
h ∈ Vh an approximation of the mild solution X(tk) at a given time point tk ∈ ΘK .

Note that for the numerical approximation of mild solutions of SPDEs, one has to con-

sider at least three different types of approximation errors due to the approximation in space

(with refinement parameter h), in time (with time step size ∆t), and the approximation error

in probability. The latter error results either from approximating the driving noise process

by e.g. truncating the corresponding Karhunen–Loève expansion (1.3) or – in cases, where

one is interested in the statistical properties of the mild solution process – from approximat-

ing the expectation of E[ϕ(X(T ))] by using a Monte Carlo method.

There exists a rapidly growing literature on the convergence of approximations of semi-

linear SPDEs, where the asymptotic behaviour of an approximation scheme with respect

to h,∆t → 0 is discussed. In this thesis we focus on two different characterisations of

stochastic convergence, i.e. mean-square and weak convergence. A numerical method

approximating the mild solution (1.5) is called mean-square convergent if

max
tk∈ΘK

‖X(tk)−Xk
h‖L2(Ω;H) → 0

for h,∆t → 0. Furthermore, a numerical method converges weakly to the mild solution

(1.5) if for all ϕ ∈ C2
b (H;R) it holds that

max
tk∈ΘK

|E[ϕ(X(tk))− ϕ(Xk
h)]| → 0

for h,∆t → 0. A very active field of research is the investigation of the mean-square and
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weak convergence orders (or rates) of a numerical method. A numerical method is called

mean-square convergent of order γ > 0 if there exists a constant C > 0 such that

max
tk∈ΘK

‖X(tk)−Xk
h‖L2(Ω;H) ≤ Chγ ,

where we assume that there exists an appropriate coupling of all refinement parameters

with respect to the spatial refinement parameter h, e.g., for Galerkin finite element methods

combined with a time integration based on the backward Euler scheme, we obtain that there

exist constants C > 0 and γ > 0 such that

max
tk∈ΘK

‖X(tk)−Xk
h‖L2(Ω;H) ≤ C(hγ + ∆tγ/2)

and hence, an appropriate coupling is given by ∆t ' h2.

Furthermore, a numerical method is called weakly convergent of order η > 0 if there

exists for all ϕ ∈ C2
b (H;R) a constant C > 0 such that

max
tk∈ΘK

|E[ϕ(X(tk))− ϕ(Xk
h)]| ≤ Chη,

where we again assumed that all refinement are appropriately coupled with respect to h.

In the remaining parts of this section we discuss various methods and aspects for ap-

proximating the mild solution process (1.5). We start with the discussion of spatial discreti-

sation techniques such as finite differences or Galerkin methods. Then we consider nu-

merous time integration methods based on rational approximations, for which convergence

results are provided. As third topic we discuss the error by truncating the Karhunen–Loève

expansion (1.3) and fast simulation techniques for the increments of a Q-Wiener process.

Finally, we conclude this section by investigating Monte Carlo estimators, for which we pro-

vide results on the approximation error.

Approximation in space

In this part we review basic results on spatial discretisation (or also called semidiscretisa-

tion) techniques for approximating the mild solution (1.5) in space. Here we discuss two

different types of spatial approximation schemes, namely, finite differences and Galerkin

methods.

For the discussion of the finite difference method we restrict ourselves for simplicity to

the setting introduced in Example 1.8 (one-dimensional stochastic heat equation with ho-

mogeneous Dirichlet boundary conditions on D = (0, 1)). Following [49], we first introduce

an equidistant grid Th = {0 = x0 < x1 < · · · < xNh = 1}, where xk = kh with spatial grid

width h = 1/Nh. By Taylor’s theorem we get for the interior grid points

∂2

∂x2
X(t, xj) =

X(t, xj+1)− 2X(t, xj) +X(t, xj−1)

h2
+ rj(t), j = 1, . . . , Nh − 1,

for t ∈ [0, T ], where each of the remainder terms satisfy rj(t) = O(h2). By neglecting
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these remainder terms we obtain the centered finite difference approximation of SPDE (1.1),

which leads by defining

x(t) = [X(t, x1), . . . , X(t, xNh−1)]T ,

to the following finite-dimensional SODE system

dx(t) = [Ahx(t) + F(x(t))] dt+ G(x(t)) dW(t) for t ∈ [0, T ],

x(0) = [X0(x1), . . . , X0(xNh−1)]T ,
(1.6)

where

F(x(t)) = [F (X(t, x1)), . . . , F (X(t, xNh−1))]T ,

G(x(t)) = [G(X(t, x1)), . . . , G(X(t, xNh−1))]T ,

W(t) = [W (t, x1), . . . ,W (t, xNh−1)]T .

The finite difference method has already been analysed and applied to semilinear SPDEs

as given in (1.1), for which e.g. in [63] strong convergence of the finite difference method

applied to SPDE (1.1) with additive noise is considered. Besides results on strong conver-

gence there are also other topics treated in the literature such as e.g. the investigation of

mean-square stability properties of a finite difference approximation in combination with a

specific Milstein scheme in [61] or combining finite difference methods with multilevel Monte

Carlo estimators in [30]. Furthermore, a detailled discussion on the finite difference method

for the approximation of a cylindrical Wiener process can be found in [49].

In this thesis, the finite difference method is applied within a method-of-lines approach,

i.e., we interpret the finite difference approximation in space as a finite-dimensional SODE

system given in Equation (1.6). The major contribution of this thesis in the context of finite

difference approximations is twofold: First, we perform in Chapter 2 a detailed mean-square

and almost sure stability analysis of the finite difference approximation (1.6) of a linear

version of the stochastic heat equation from Example 1.8, where we choose F = 0 and G

being the Nemytskii operator induced by the linear function γ(x) = σx, σ ∈ R, see e.g. [43]

for details. In particular, the impact of the parameter σ on the stability properties of the

zero solution is examined. Second, we develop in Chapters 2 and 3 various importance

sampling techniques for estimating E[ϕ(X(T ))] based on finite difference approximations

of the mild solution in order to reduce the Monte Carlo error.

For Galerkin methods we choose a sequence (Vh, h ∈ (0, 1]) of finite-dimensional

subspaces of Ḣ1 = D((−A)1/2) indexed by a refinement parameter h, where for each

h ∈ (0, 1] the corresponding subspace Vh has dimension Nh. Furthermore, we denote by

Ph the orthogonal projection onto Vh. Then, the semidiscrete problem is given by: Find
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Xh : [0, T ]→ Vh such that

dXh(t) = [AhXh(t) + PhF (Xh(t))] dt+ PhG(Xh(t)) dW (t), (1.7)

Xh(0) = PhX0. (1.8)

Here, the linear operator −Ah : Vh → Vh is defined for each vh ∈ Vh by letting −Ahvh be

the unique element of Vh such that

〈−Ahvh, wh〉H =
〈

(−A)1/2vh, (−A)1/2wh

〉
H

for all wh ∈ Vh. This implies that −Ah is a self-adjoint and positive definite operator on

Vh and therefore −Ah has a set of orthonormal eigenfunctions (eh,i, i = 1, . . . , Nh) with

corresponding positive, non-decreasing eigenvalues (λh,i, i = 1, . . . , Nh). In particular, this

implies that −Ah is the generator of a strongly continuous semigroup (Sh(t), t ∈ [0, T ]).

By the same arguments as for the infinite-dimensional problem, there exists a unique mild

solution Xh for the semidiscrete problem (1.7), which P-a.s. satisfies for t ∈ [0, T ]

Xh(t) = Sh(t)PhX0 +

∫ t

0
Sh(t− s)PhF (Xh(s)) ds+

∫ t

0
Sh(t− s)PhG(Xh(s)) dW (s).

In this thesis Galerkin methods are used for the analysis and implementation of numer-

ical experiments in Chapters 3-5, where the following two types of Galerkin approximation

schemes are used:

Example 1.12. Consider the operator Au = ∇ · (a(x)∇u) − c(x)u for all x ∈ D, where

D ⊂ Rd, d = 1, 2, 3, is a bounded, convex domain. For d = 2 the domain D is assumed

to be polygonal and for d = 3 the domain D is polyhedral. Furthermore, if we consider

Dirichlet boundary conditions, then let a, c : D → R be sufficiently smooth and satisfy

a(x) ≥ a0 > 0 c(x) ≥ 0. If periodic boundary conditions are considered, then we have to

additionally ensure that c(x) ≥ c0 > 0 in order to fulfil Assumption 1.7.

(a) (Standard finite element method) Let Th be a regular family of triangulations (see

e.g. [13, 49]), where the refinement parameter h denotes the maximal mesh size

of Th. Then Vh is defined as the space of globally continuous functions that are

piecewise linear on the triangulation Th.

(b) (Spectral Galerkin method) Let Vh = span(e1, . . . , eNh), where (ek, k = 1, . . . , Nh)

are the first Nh orthonormal eigenfunctions of the operator A.

Note that in numerical experiments the spectral Galerkin method is very effective if the

operators A and Q share the same eigenfunctions.

Approximation in time

In this part we recall basic results for fully discrete approximations of the mild solution (1.5),

i.e., an approximation in space by Galerkin methods and in time by using one-step time

integration schemes with a fixed time step size ∆t > 0.
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Remark 1.13. Since the method-of-lines approach for the finite difference method leads to

a system of SODEs and the resulting system of SODEs is mainly considered in the finite-

dimensional context within this thesis (see Chapter 2) we omit here further discussions on a

combination of finite differences and time integration methods. For more details on standard

time integration methods for finite-dimensional SODE systems we refer the reader to [39,

55, 49] and we refer to [63, 61, 30] for details on time integration methods in combination

with a finite difference approximation in space.

In this thesis we consider time integration techniques based on rational approximations

of the underlying semigroup (S(t), t ≥ 0). For this we recall that a rational function R :

C→ C is called a rational approximation of the exponential function of order q if there exist

constants C, δ > 0 such that for all z ∈ C with |z| < δ it holds that

|R(z)− ez| ≤ C|z|q+1 as z → 0. (1.9)

By the definition of a rational function, there exist two polynomials rd (denominator) and rn
(nominator) such that for all z ∈ C

R(z) =
rn(z)

rd(z)
.

For the approximation of the semigroup (Sh(t), t ∈ [0, T ]) generated by the operator −Ah,

we consider the linear operator R(∆tAh) : Vh → Vh, which is defined for all vh ∈ Vh by

R(∆tAh)vh =

Nh∑

k=1

R(−∆tλh,k)〈vh, eh,k〉Heh,k =

Nh∑

k=1

rn(−∆tλh,k)

rd(−∆tλh,k)
〈vh, eh,k〉Heh,k.

An important class of rational approximations are the so-called Padé approximants, see

e.g. [68]: For µ, ν ∈ N let

rn(z) =
ν∑

j=0

(µ+ ν − j)!ν!

(µ+ ν)!j!(ν − j)!z
j and rd(z) =

µ∑

j=0

(µ+ ν − j)!µ!

(µ+ ν)!j!(µ− j)! (−z)
j .

Note that the order q (see Equation (1.9)) of a Padé approximant satisfies q = µ + ν. The

following example provides an overview of the most important rational approximations:

Example 1.14. In this thesis we focus on the following three Padé approximants:

• The backward Euler scheme (Padé approximant with µ = 1 and ν = 0):

R(z) =
1

1− z ,

• the Crank-Nicolson scheme (Padé approximant with µ = 1 and ν = 1):

R(z) =
1 + z/2

1− z/2 ,
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• and the forward Euler scheme (Padé approximant with µ = 0 and ν = 1):

R(z) = 1 + z.

In this thesis we consider two different classes of approximation schemes for the stochas-

tic integral (in combination with rational approximations of the semigroup): Maruyama-type

and Milstein-type methods. Here, we start by considering the Galerkin Euler–Maruyama

method, which is given by the recursion

Xj+1
h = R(∆tAh)Xj

h + r−1
d (∆tAh)

(
∆tPhF (Xj

h) + PhG(Xj
h)∆W j+1

)
,

X0
h = PhX0,

(1.10)

for j ∈ N0, where ∆W j+1 = W (tj+1) −W (tj). A commonly used member of this class

of numerical approximation methods of the mild solution (1.5) is called the backward (also

called linearly implicit or semi-implicit) Euler–Maruyama method given by the recursion

Xj+1
h = Xj

h + ∆t
(
AhX

j+1
h + PhF (Xj

h)
)

+ PhG(Xj
h)∆W j+1, j ∈ N0

X0
h = PhX0.

(1.11)

By using the representation of R(z) for the backward Euler scheme from Example 1.14, the

recursion (1.11) can be equivalently rewritten as

Xj+1
h = R(∆tAh)

(
Xj
h + ∆tPhF (Xj

h) + PhG(Xj
h)∆W j+1

)
, j ∈ N0

X0
h = PhX0.

(1.12)

In the literature, there are several results on the strong convergence of numerical ap-

proximations based on the backward Euler-Maruyama scheme in combination with Galerkin

methods for the space discretisation, see e.g. [43, 6, 49]. If we consider the setting of Ex-

ample 1.12 (stochastic heat equation with a semidiscretisation based on standard finite

elements with respect to regular triangulations or spectral Galerkin methods) we obtain by

[43, Theorem 3.14] that there exists a constant C > 0 independent of ∆t and h such that

max
tj∈ΘK

‖Xj
h −X(tj)‖L2(Ω;H) ≤ C(h+ ∆t1/2). (1.13)

In order to obtain an appropriate coupling of the spatial refinement parameter h and the

time step size ∆t, we choose ∆t ' h2, which implies that we balance the error from the

semidiscretisation and from the approximation in time such that Equation (1.13) reduces to

max
tj∈ΘK

‖Xj
h −X(tj)‖L2(Ω;H) = O(h).

It is well-known in the literature on the numerical analysis of finite-dimensional SODE

systems that the weak convergence rate of the (backward) Euler–Maruyama method is in

general twice the strong convergence rate (with respect to the time step size), see e.g. [39,
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66]. Such results have only been proven in the literature on the numerical analysis of SPDEs

for a few types of equations until now, since the lack of strong solutions does not allow to

use similar analytical tools as in finite dimensions (e.g. Itô formula). In [2], Malliavin calculus

has been used to prove a corresponding result for SPDEs with additive noise: Under the

assumption that there exists a ρ ∈ (0, 1] such that ‖A(ρ−1)/2‖LHS(U0;H) < ∞, then for all

γ ∈ [0, ρ) we get that

max
tj∈ΘK

‖Xj
h −X(tj)‖L2(Ω;H) ≤ C(hγ + ∆tγ/2),

max
tj∈ΘK

|E[ϕ(Xj
h)− ϕ(X(tj))]| ≤ C(h2γ + ∆tγ).

Note that in the general multiplicative noise case, the mean-square convergence order

1/2 (with respect to the time step size) is already the best possible strong convergence

rate that one can obtain by using numerical approximation schemes based on Maruyama-

type approximation of the stochastic integral, see e.g. [19, 11]. In order to overcome this

order barrier, extensions of the well-known finite-dimensional Milstein scheme to SPDEs

are proposed in the literature, see e.g. [35, 5, 42, 27]. In Chapter 4 we qualitatively analyse

the Milstein scheme from [5] for general Galerkin methods, which is given for j ∈ N0 by

Xj+1
h = R(∆tAh)Xj

h + r−1
d (∆tAh)

(
∆tPhF (Xj

h) + PhG(Xj
h)∆W j+1

)

+

∫ tj+1

tj

r−1
d (∆tAh)PhG

(∫ s

tj

G(Xj
h)dW (r)

)
dW (s),

(1.14)

where X0
h = PhX0. Then, by using the Karhunen–Loève expansion of the Q-Wiener pro-

cess W we can rewrite the iterated stochastic integral in Equation (1.14) in terms of iterated

stochastic integrals of the real-valued Brownian motions (βk, k ∈ N) from (1.3), i.e.,

∫ tj+1

tj

r−1
d (∆tAh)PhG

(∫ s

tj

G(Xj
h) dW (r)

)
dW (s)

=
∞∑

k,`=1

√
µkµ`r

−1
d (∆tAh)PhG(G(Xj

h)fk)f`

∫ tj+1

tj

∫ s

tj

dβk(r) dβ`(s).

The scheme (1.14) turns out to have a higher mean-square convergence order than the

Galerkin backward Euler–Maruyama method, since e.g. in the framework of the standard

finite element method from Example 1.12 and additional regularity assumptions on the mild

solution (X(t), t ∈ [0, T ]), the Milstein scheme (1.14) satisfies that there exists a constant

C > 0 such that (see [5])

max
tk∈ΘK

‖Xj
h −X(tj)‖L2(Ω;H) ≤ C(h2 + ∆t).

If G is a linear mapping from H to LHS(U0;H) then the iterated stochastic integrals can be

efficiently simulated if the following commutativity assumption is fulfilled:

Assumption 1.15. ([5, 35]) We assume that for all H-valued, Ft-adapted stochastic pro-
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cesses χ = (χ(t), t ≥ 0) and for all i, j ∈ N the diffusion operator satisfies

G(G(χ)fj)fi = G(G(χ)fi)fj .

Under Assumption 1.15 the iterated stochastic integral can be represented by only using

the increments of the real-valued Brownian motions, since it holds that

∫ tj+1

tj

r−1
d (∆tAh)PhG

(∫ s

tj

G(Xj
h)dW (r)

)
dW (s)

=
1

2

∞∑

k,`=1

√
µkµ`r

−1
d (∆tAh)PhG(G(Xj

h)fk)f`(∆β
j+1
k ∆βj+1

` − δk,`t),

where ∆βj+1
k = βk(tj+1) − βk(tj). However, Assumption 1.15 is not generally fulfilled as

we can see by considering the following example:

Example 1.16. We choose H = Rd and U = R2. We consider the linear SODE system

dX(t) = G1X(t)dβ1(t) +G2X(t)dβ2(t),

X(0) = X0,

where G1, G2 ∈ Rd×d and β1(t), β2(t) are two independent real-valued Brownian motions.

Then Assumption 1.15 is fulfilled if and only if G1G2 = G2G1. However, this assumption is

clearly not fulfilled in general since the matrix multiplication is not commutative.

If the diffusion operator does not satisfy the commutativity assumption, the computa-

tion of the iterated stochastic integrals becomes severely more difficult, since the simulation

of the corresponding stochastic Lévy areas is required. In the literature there are efficient

ways proposed to simulate these iterated stochastic integrals, see e.g. [23, 40, 69], how-

ever, in the case of semidiscretised SPDEs, the number of iterated stochastic integrals is

typically coupled to the dimension of Vh (see below for discussions on approximating the

stochastic process W ) and for this reason a refinement in space leads to a larger number

of iterated integrals that have to be simulated. Hence, the gain of a higher order of conver-

gence by using the Milstein scheme faces a loss in the efficiency due to an increase in the

computational complexity for operators G that do not satisfy Assumption 1.15.

Noise approximation

For SPDEs, for which the driving noise process attains values in an infinite-dimensional

Hilbert space U , we also have to consider an appropriate noise approximation. As it has

been pointed out in Section 1.1, the Q-Wiener process can be represented in terms of

the series (1.3), which is not directly suitable for implementations, since the simulation of

infinitely many standard Brownian motions would be required for numerical experiments. A

standard way to solve this problem is to truncate the Karhunen–Loève expansion (1.3), see
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[7, 49]: By choosing an appropriate truncation index κ ∈ N we define

W κ(t) =

κ∑

k=1

√
µkfkβk(t).

For notational convenience we define W cκ(t) = W (t) −W κ(t). Then we get for the trun-

cation error in the mean-square sense that

‖W cκ(t)‖2L2(Ω;U) =

∥∥∥∥
∞∑

k=κ+1

√
µkfkβk(t)

∥∥∥∥
2

L2(Ω;U)

= t

∞∑

k=κ+1

µk,

where we used Parseval’s identity and E[β2
k(t)] = t to obtain the last identity. For the

stochastic integral we obtain the following truncation error

∥∥∥∥
∫ T

0
ψ(s)dW (s)−

∫ T

0
ψ(s)dW κ(s)

∥∥∥∥
2

L2(Ω;H)

=

∥∥∥∥
∫ T

0
ψ(s)dW cκ(s)

∥∥∥∥
2

L2(Ω;H)

= E
[∫ T

0
‖ψ(s)‖2

LHS((Qcκ)1/2(U);H)
ds

]
,

where Qcκ denotes the covariance operator of the process W cκ(t). For the Hilbert-Schmidt

norm we get

‖ψ(s)‖2
LHS((Qcκ)1/2(U);H)

=
∞∑

j=κ+1

µj‖ψ(s)fj‖2H ≤
∞∑

j=κ+1

µj‖ψ(s)‖2L(U ;H).

Hence the truncation error can be estimated

∥∥∥∥
∫ T

0
ψ(s)dW cκ(s)

∥∥∥∥
2

L2(Ω;H)

≤ T E
[

sup
t∈[0,T ]

‖ψ(s)‖2L(U ;H)

]



∞∑

j=κ+1

µj


 .

In combination with a spatial and temporal discretisation the task is now to couple the

truncation parameter κ to the refinement parameter h such that the convergence error is

not dominated by the error induced by the truncation of the Karhunen–Loève expansion

(1.3). The following example from [45] illustrates how the decay rate of the eigenvalues of

Q influences the choice of κ:

Example 1.17. Consider the stochastic heat equation from Example 1.8. Assume that W

is a Q-Wiener process with eigenvalues µk = Cµk
−α, where Cµ > 0 and α > 1, and

let F = 0. For the spatial discretisation we choose the standard finite element method

presented in Example 1.12. For the time integration we choose the backward Euler scheme

Xj+1
κ,h = R(∆tAh)

(
Xj
κ,h + ∆tPhF (Xj

κ,h) + PhG(Xj
κ,h)∆W κ,j+1

)
, j ∈ N,

with X0
κ,h = PhX0, where R(z) = (1 + z)−1 and ∆W κ,j+1 = W κ(tj+1) −W κ(tj). Then,

we consider a noise approximation by truncating the Karhunen–Loève expansion (1.3) at

κ ' h−ρ for ρ > 0 and ∆t ' h2. By [45, Theorem 3.2], we get that if ρ(α − 1) = 2 then
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there exists a constant C > 0 such that maxtk∈ΘK ‖X(tk)−Xk
κ,h‖L2(Ω;H) ≤ Ch.

Another very important issue concerning the noise approximation is the efficiency of

algorithms approximating trajectories of the Q-Wiener process. As it is pointed out in [49]

specific properties of eigenfunctions (fk, k ∈ N) of the covariance operator Q might be

exploited to obtain fast algorithms to simulate ∆W κ,j , see also [46]:

Example 1.18. In this example we discuss efficient methods to simulate numerical trajec-

tories of Q-Wiener processes in various dimensions. Visualisations of the output of the

presented algorithms are provided in Figure 1.

• (Q-Wiener process in 1D) Let D = (0, 1). For j ∈ N we consider the eigenfunctions

of Q defined by

fj(x) =
√

2 sin(πjx), x ∈ D,

with eigenvalues µj = j−(2r+1+ε) for any ε > 0. Then following [49, Example 10.10]

an efficient algorithm for approximating the increments of the Q-Wiener process W is

based on a discrete sine transform (DST-1).

• (Q-Wiener process in 2D) Let D = (0, 1)2. For j1, j2 ∈ Z let

fj1,j2(x) = exp
(
2πi(j1x1 + j2x2)

)
, x ∈ D

be eigenfunctions of Q with corresponding eigenvalues µj1,j2 = exp(−α(j2
1 + j2

2)),

where α > 0. Then by [49, Example 10.12] we can simulate two independent trajec-

tories of W by using only a single fast Fourier transform. Similar results are shown in

[46].

• (Q-Wiener process in 3D) Let D = (0, 1)3. For j1, j2, j3 ∈ Z let

fj1,j2,j3(x) = exp(2πi(j1x1 + j2x2 + j3x3)), x ∈ D

be eigenfunctions of Q with eigenvalues µj1,j2,j3 = exp(−α(j2
1 + j2

2 + j2
3)) for any

α > 0. By extending the results of [49, Example 10.12] to 3 dimensions we can

again simulate two independent trajectories of W by using only a single fast Fourier

transform.

Monte Carlo methods

In many applications the statistical properties of the solution process are of high interest.

For this, we want to compute the quantity of interest E[ϕ(X(T ))], where X(T ) denotes the

mild solution (1.5) evaluated at time T and ϕ is a sufficiently smooth mapping from H to

another Hilbert space (B, 〈·, ·〉B, ‖ · ‖B). By definition, the expectation is represented by

E[ϕ(X(T ))] =

∫

Ω
ϕ(X(T, ω))dP(ω).
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(a) Q-Wiener process in 1D with r = 1.

(b) Q-Wiener process in 2D at time T = 1 with α = 0.2

(c) Q-Wiener process in 3D at time T = 1 with α = 0.2

Figure 1: Visualisation of Q-Wiener process in 1D, 2D and 3D.
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Solving this integral analytically is in general not possible. Hence one has to rely on suit-

able approximation techniques called Monte Carlo methods: The Monte Carlo estimator for

approximating E[ϕ(X(T ))] is defined by

EM [ϕ(X(T ))] =
1

M

M∑

i=1

ϕ(X(i)(T )),

where (X(i)(T ), i = 1, . . . ,M) are M independent realisations of the mild solution X(T ).

For this estimator the error (typically called the Monte Carlo error) can be computed in the

L2(Ω;B)-norm by (see [7, Lemma 4.1]):

‖E[ϕ(X(T ))]− EM [ϕ(X(T ))]‖L2(Ω;B) =
VarB[ϕ(X(T ))]1/2√

M
≤
‖ϕ(X(T ))‖L2(Ω;B)√

M
,

where VarB[Y ] = E[‖Y −E[Y ]‖2B] = ‖Y ‖2L2(Ω;B)−‖E[Y ]‖2B for Y ∈ L2(Ω;B). In general,

one has to additionally approximate the mild solution by a numerical method. Hence the

overall error is given by

‖E[ϕ(X(T ))]− EM [ϕ(XK
κ,h)]‖L2(Ω;B) (1.15)

≤ ‖E[ϕ(X(T ))− ϕ(XK
κ,h)]‖L2(Ω;B) + ‖E[ϕ(XK

κ,h)]− EM [ϕ(XK
κ,h)]‖L2(Ω;B),

i.e., the overall error can be estimated in terms of the weak approximation error and the

Monte Carlo error. Since the Monte Carlo error converges only with O(M−1/2), one needs

in order to obtain a certain accuracy ε > 0 in total M = O(ε−2) samples, where the

simulation of a single realisation as such is already a computationally expensive task in

the context of SPDE approximations. Thus, it is evident that the efficiency of standard

estimators has to be enhanced in order to reduce the high computational complexity of

the standard Monte Carlo method. For this reason, we discuss in Section 3 different ways

how to improve the performance of Monte Carlo estimators such as importance sampling,

multilevel Monte Carlo methods and efficient parallelisation of Monte Carlo algorithms.

2 Stability theory

In this section, we consider basic results on mean-square and almost sure stability theory

for stochastic differential equations and their approximations. In general, stability theory

investigates the effects of small changes in the initial value on the (asymptotic) qualitative

behaviour of equilibrium solutions. An equilibrium solution of SDE (1.1) is a special constant

solution Xe(t) ≡ xe ∈ H such that for all t ≥ 0

AXe(t) + F (Xe(t)) = 0 and G(Xe(t)) = 0.

Note that by this definition additive noise SDEs are excluded from our considerations here,

since the second condition G(Xe(t)) = 0 cannot be fulfilled for this type of SDEs. Hence
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alternative concepts for investigating stability in the additive noise setting have to be con-

sidered, see e.g. [17].

Subsequently, we only consider the stability properties of the underlying zero solution,

since for any SDE with equilibrium solution Xe(t) the zero solution is an equilibrium of the

transformed SDE with solution process Y (t) = X(t)−Xe(t).

Compared to the deterministic case there exists a large variety of notions of stochastic

stability. In this thesis we divide the probabilistic considerations of stability into the following

three types of stochastic stability in the non-asymptotic setting:

Definition 2.1. The zero solution of SPDE (1.1) is called

a) stable in probability if for any given 0 < ε < 1 and ε′ > 0, there exists a δ > 0 such

that if ‖X0‖H < δ holds P-a.s., then P[|X(t)| > ε′] < ε for all t ≥ 0,

b) almost surely stable if for any given ε > 0, there exists a δ > 0 such that ‖X0‖H < δ

P-a.s. guarantees P[‖X(t)‖H < ε for all t ≥ 0] = 1,

c) mean-square stable if for any given ε > 0, there exists a δ > 0 such that E[‖X0‖2H ] <

δ guarantees E[‖X(t)‖2H ] < ε for all t ≥ 0.

If we consider the asymptotic qualitative behaviour of the zero solution of (1.1), then we

distinguish between the following concepts of asymptotic stability:

Definition 2.2. The zero solution of SPDE (1.1) is called

a) asymptotically stable in probability if it is stable in probability and for each ε > 0 there

exists a δ > 0 such that ‖X0‖H < δ P-a.s. guarantees limt→∞ P[‖X(t)‖H > ε] = 0,

b) asymptotically almost surely stable if it is stable in probability and there exists a δ > 0

such that ‖X0‖H < δ P-a.s. guarantees P[limt→∞ ‖X(t)‖H = 0] = 1,

c) asymptotically mean-square stable if it is mean-square stable and there exists a δ > 0

such that E[‖X0‖2H ] < δ guarantees that limt→∞ E[‖X(t)‖2H ] = 0.

If the zero solution of SPDE (1.1) is not stable in any of the above mentioned concepts

of stochastic stability, then it is unstable in the corresponding sense. The above list of

different notions of stochastic stability is by far not complete, since there exist additional

concepts describing the qualitative behaviour of the zero solution of (1.1) such as stability

in the pth moment or stability in the large, see e.g. [38, 47, 51] for an overview. However,

the collection from above of different types of stochastic stability is complete in the sense

that these characterisations cover all concepts that are treated in this thesis.

The following example of the scalar geometric Brownian motion illustrates the connec-

tions of the different concepts of stochastic stability:

Example 2.3. Consider the geometric Brownian motion, i.e., for λ, σ ∈ R and a standard,

scalar Brownian motion (β(t), t ≥ 0) let

dX(t) = λX(t)dt+ σX(t)dβ(t), t ≥ 0,
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with initial value X(0) = x0 ∈ R. It is well-known, see e.g. [4], that the strong solution of

this SODE is given by

X(t) = x0 exp

((
λ− σ2

2

)
t+ σβ(t)

)

with second moment E[X(t)2] = x2
0 exp((2λ + σ2)t). This representation of the second

moment immediately implies that the zero solution of the geometric Brownian motion is

(asymptotically) mean-square stable if and only if 2λ+ σ2 < 0. By computing the Lyapunov

exponent (see Section 2.2 for details) of the geometric Brownian motion, we obtain asymp-

totically almost sure stability of the zero solution if λ − σ2

2 < 0. As a consequence we get

that for all λ ∈ R there exists a value σ̄ ∈ R such that for all σ ≥ σ̄ the zero solution of the

geometric Brownian motion is asymptotically a.s. stable, but asymptotically unstable in the

mean-square sense. The effects of this specific stability setting on Monte Carlo estimators

for estimating the second moment are studied in detail in Chapter 2.

Note that we required for the definition of asymptotic almost sure stability in the non-

asymptotic setting only stability in probability. This is due to the fact that in many standard

examples the solution process often satisfies P-a.s. that limt→∞ ‖X(t)‖H = 0, however,

the zero solution is never almost surely stable in the non-asymptotic sense. An example

for this is given by the geometric Brownian motion from Example 2.3, for which we get

that the probability for X(t) being larger than any positive threshold at any time t > 0 is –

independent of the choice of a non-zero intial value x0 – strictly positive, i.e., for all C > 0

it holds that P[X(t) > C] > 0.

As for analytical solutions of SPDE (1.1) we are also interested in the qualitative be-

haviour of equilibria of their numerical approximations, where we restrict ourselves to the

numerical schemes (1.10) (Euler-Maruyama schemes) and (1.14) (Milstein schemes). Sub-

sequently we assume that the equilibrium (Xj
h,e, j ∈ N0) of these stochastic recurrences

is given by the zero solution (Xj
h,e = 0, j ∈ N0). In this thesis we investigate stability

properties of numerical methods in the mean-square sense:

Definition 2.4. Let (Xj
h, j ∈ N0) be the considered numerical approximation of the mild

solution (1.5) for fixed time step size ∆t and spatial refinement parameter h.

a) Then, the zero solution of the numerical approximation scheme given in (1.10) or

(1.14), respectively, is called mean-square stable if for every ε > 0 there exists δ1 > 0

such that for all j ∈ N0, E[‖Xj
h‖2H ] < ε, whenever E[‖X0

h‖2H ] < δ1.

b) It is called asymptotically mean-square stable if it is mean-square stable and there

exists δ2 > 0 such that E[‖X0
h‖2H ] < δ2 implies limj→∞ E[‖Xj

h‖2H ] = 0.

Furthermore, the zero solution is called asymptotically mean-square unstable if it is not

asymptotically mean-square stable.

For finite-dimensional SODEs there has also been some progress towards an almost

sure stability analysis of numerical approximation schemes, see e.g. [10] by using a dis-

crete version of the Itô formula and see e.g. in [3] for results on discrete random dynamical
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system theory. In this thesis we do not investigate a.s. stability properties of numerical ap-

proximations, but we want to emphasize that the extension of the finite-dimensional results

to approximations of infinite-dimensional SDEs would be an interesting task for future work.

The main focus of this thesis in the context of stability is on the interplay of stochastic

stability properties of the analytical solutions to SDE (1.1) and those of their numerical

approximations. Within these investigations we mainly consider two different aspects of

this interplay that can be expressed in terms of the following two questions that are taken in

the spirit of [33]:

• Under which conditions on the refinement parameters does the numerical approxima-

tion reproduce the qualitative behaviour of the analytical solution?

• How likely is it to detect the qualitative behaviour of the analytical solution by using

numerical experiments with fixed refinement parameters?

The first question is treated in Chapter 4, where we consider the mean-square stability

properties of approximations of infinite-dimensional linear SDEs and – in particular – provide

conditions that ensure the simultaneous mean-square stability of the zero solutions of the

SPDE and of its approximation.

The second question is treated in Chapter 2, where we show that even in the simple

case of Example 2.3 (geometric Brownian motion) numerical experiments based on Monte

Carlo simulations estimating the second moment cannot reliably detect the right qualitative

behaviour of the analytical solution in the mean-square sense.

In the following two subsections we describe two approaches how to identify the stability

properties of the zero solution of an SDE and of its approximations. In Section 2.1 we

investigate the stability properties of (approximations of) semilinear SPDEs by using results

of Lyapunov’s second method for SPDEs (Lyapunov functional approach) and afterwards,

in Section 2.2 we consider structural approaches to identify the stability properties for linear

SODE systems and their approximations.

2.1 Lyapunov functional approach

An important method for the mean-square stability analysis for semilinear (or even nonlin-

ear) stochastic differential equations originates from Lyapunov’s second method: The key

idea is to find or construct a special functional satisfying certain conditions that ensure the

stability of the zero solution, see [51, 38] for SODEs and [47] for SPDEs. For semilinear

SPDEs the following result is due to [47, Proposition 3.1.1]:

Proposition 2.5. Let Assumption 1.9 be fulfilled and assume that F (0) = 0 and G(0) = 0.

Furthermore, let X(0) = X0 ∈ Ḣ1 be deterministic. Suppose that there exists a non-

negative functional Λ ∈ C2
b (H;R) and constants p ≥ 2, c > 0 such that

(LΛ)(x) = 〈DΛ(x), Ax+ F (x)〉H +
1

2
tr[G(x)QG∗(x)D2Λ(x)] ≤ −c‖x‖pH
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for arbitrary x ∈ D(A). Then there exist constants µ > 0 and M ≥ 1 such that

E[‖X(t)‖pH ≤M‖X0‖2He−µt for t ≥ 0.

Note that the construction of functionals that satisfy the conditions of Proposition 2.5 is

not a trivial task. However, for the stochastic heat equation from Example 1.8 we can find a

suitable candidate for such a Lyapunov functional that ensures the asymptotic mean-square

stability of the trivial solution under certain conditions:

Example 2.6. Consider the stochastic heat equation on the domain D = (0, 1) with ho-

mogeneous Dirichlet boundary conditions, where F ∈ L(H) and G ∈ L(H;L(U ;H)).

We choose Λ(x) = ‖x‖2H , for which we can apply by results presented in Section 1.2 the

infinite-dimensional Itô formula. Hence, we obtain

(LΛ)(u) = 2〈u,Au+ F (u)〉H + tr(G(u)QG∗(u)) for all v ∈ D(−A).

As it is shown in Chapter 4, if the condition

2(‖F‖L(H) − λ1) + tr(Q)‖G‖2L(H;L(U ;H)) < 0 (2.1)

is fulfilled, then Λ(x) = ‖x‖2H is a Lyapunov functional and consequently, the zero solution

of the stochastic heat equation is asymptotically mean-square stable.

So far we have only considered the mean-square stability properties of the analytical so-

lution (1.5). However, the Lyapunov functional approach can be also extended to stochastic

recurrences as e.g. the backward Euler scheme given in Equation (1.12). This has already

been shown for approximations of finite-dimensional stochastic differential equations, see

[41, 57, 62] and the references therein. These discrete approaches can be extended to

approximations of SDEs in infinite dimensions as the following theorem shows:

Theorem 2.7. Assume that there exists a non-negative, real-valued sequence (Vj , j ∈ N0)

and constants c1, c2 > 0 such that

E[V0] ≤ c1E[‖X0
h‖2H ], (2.2)

E[∆V j ] ≤ −c2E[‖Xj
h‖2H ], j ∈ N0, (2.3)

where ∆V j = Vj+1 − Vj . Then it follows that the zero solution of the numerical approxima-

tion scheme (1.10) (Euler-Maruyama) or (1.14) (Milstein scheme), respectively, is asymp-

totically mean-square stable.

Proof. This proof is based on the methods presented in [62].

First by using condition (2.3), we get that for all j, k ∈ N0 that

E[∆V j+k] ≤ −c2E[‖Xj+k
h ‖2H ],
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and thus

n∑

k=0

E[∆V j+k] = E[Vj+n+1]− E[Vj ] ≤ −c2

n∑

k=0

E[‖Xj+k
h ‖2H ]. (2.4)

Consequently we can deduce from (2.4) that

c2

n∑

k=0

E[‖Xj+k
h ‖2H ] ≤ E[Vj ]− E[Vj+n+1] ≤ E[Vj ],

where we used in the second inequality that Vj+n+1 ≥ 0. By taking the limit n→∞ we get

that for all j ∈ N0

c2

∞∑

k=0

E[‖Xj+k
h ‖2H ] ≤ E[Vj ].

Since (2.3) also implies that the sequence (Vj , j ∈ N0) is decreasing, we get that

c2

∞∑

k=0

E[‖Xj+k
h ‖2H ] ≤ E[Vj ] ≤ E[V0] ≤ c1E[‖X0

h‖2H ] <∞,

where we used (2.2) in the third inequality and finally the fact that by Assumption 1.10 we

get that X0
h ∈ L2(Ω;H). Since the series on the left hand side is finite and all summands

E[‖Xj+k
h ‖2H ] are positive, we get that

lim
j→∞

E[‖Xj
h‖2H ] = 0,

which completes the proof.

We now want to apply Theorem 2.7 to numerical approximations of the mild solution

based on the Galerkin backward Euler scheme from Equation (1.12). For simplicity, we

consider here the case F = 0 and G(0) = 0 in SPDE (1.1). As a candidate for the discrete

Lyapunov function (Vj , j ∈ N0) from Theorem 2.7 we consider Vj = ‖Xj
h‖2H for j ∈ N0.

This specific choice is motivated by Example 2.6, where the analytical case is investigated

also by using the squared Hilbert space-norm as candidate for the Lyapunov functional.

First, we note that (Vj , j ∈ N0) is non-negative and that condition (2.4) from Theorem

2.7 is fulfilled for any constant c1 ≥ 1, since E[V0] = E[‖X0
h‖2H ] ≤ c1E[‖X0

h‖2H ]. Thus, it

remains to show that the condition from Equation (2.3) is fulfilled. For this, we consider

E[∆V j ] = E[Vj+1 − Vj ] = E[‖Xj+1
h ‖2H ]− E[‖Xj

h‖2H ],
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and by using the definition of the backward Euler-Maruyama scheme we obtain

E[‖Xj+1
h ‖2H ]− E[‖Xj

h‖2H ]

= E[‖R(∆tAh)(Xj
h + PhG(Xj

h)∆W j+1)‖2H ]− E[‖Xj
h‖2H ]

≤ 2‖R(∆tAh)‖2L(H)

(
E[‖Xj

h‖2H + ‖PhG(Xj
h)∆W j+1‖2H ]

)
− E[‖Xj

h‖2H ]

≤ 2 max
k=1,...,Nh

|R(−∆tλh,k)|2
(
E[‖Xj

h‖2H + E[‖PhG(Xj
h)∆W j+1‖2H ]

)
− E[‖Xj

h‖2H ].

By Itô’s isometry we obtain

E[‖PhG(Xj
h)∆W j+1‖2H ] ≤ E[‖G(Xj

h)∆W j+1‖2H ] = E
[∥∥∥∥G(Xj

h)

∫ tj+1

tj

dW (s)

∥∥∥∥
2

H

]

= E
[ ∫ tj+1

tj

‖G(Xj
h)‖2LHS(U0;H)ds

]
= ∆t E[‖G(Xj

h)‖2LHS(U0;H)]

≤ ∆tC2
GE[‖Xj

h‖2H ],

where CG denotes the Lipschitz continuity constant from Assumption 1.9. Finally we get

that

E[∆V j ] ≤
(

2 max
k=1,...,Nh

|R(−∆tλh,k)|2(1 + ∆tC2
G)− 1

)
E[‖Xj

h‖2H ].

Hence the zero solution of the numerical approximation scheme (1.12) is asymptotically

mean-square stable if

2 max
k=1,...,Nh

|R(−∆tλh,k)|2(1 + ∆tC2
G) < 1,

which by using the explicit representation of the rational approximation R(z) yields

C2
G < −

1

2∆t
+

2λh,1 + ∆tλ2
h,1

2
. (2.5)

Note that the condition from Equation 2.5 is always fulfilled for a sufficiently large time

step size ∆t. This observation is strongly related to the well-known result that for finite-

dimensional SODEs the zero solution of the backward Euler approximation scheme can be

asymptotically mean-square stable although the zero solution of the SODE system is mean-

square unstable. Similar results are available in the literature on the numerical analysis of

deterministic differential equations, where this behaviour is often referred as overdamping.

In many applications the construction of the Lyapunov sequence (Vj , j ∈ N0) is abso-

lutely not trivial and it tends to be very sensitive with respect to the properties of the SPDE

and the considered numerical approximation scheme. For this reason, we propose in Chap-

ter 4 a structural technique to investigate the mean-square stability properties of numerical

approximations of linear SPDEs. These techniques extend the results that are presented in

Section 2.2.
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2.2 Linear stability analysis

An important tool for the numerical analysis of deterministic ordinary differential equations

(ODEs) is called linear stability analysis. For this we consider the ODE ẋ(t) = f(x(t))

with equilibrium xe and let x(t) = xe + p(t), where p(t) denotes a small perturbation with

|p(t)| � 1. Then for a sufficiently smooth function f we obtain

dxe
dt

+
dp(t)

dt
= f(xe) +Df(xe)p(t) +O(|p(t)|2),

which is equivalent to

dp(t)

dt
= Df(xe)p(t) +O(|p(t)|2).

If p(t) is small enough, then the first order term Df(xe)p(t) dominates and the system

essentially reduces to

dp(t)

dt
= Df(xe)p(t). (2.6)

It is a well-known result (see e.g. in [64, Theorem 2.3.2]) that if all eigenvalues of Df(xe)

have strictly negative real parts, then the perturbation p(t) vanishes as time t→∞. In con-

trast, the magnitude of the perturbation grows in time if at least one eigenvalue of Df(xe)

has a positive real part.

By using [64, Theorem 2.3.5] one can connect the stability properties of the nonlinear

ODE and the stability properties of the linearisation in the following way: If the equilibrium

solution xe is non-degenerate in the sense that all eigenvalues of Df(xe) have non-zero

real parts, then the equilibrium xe of the non-linear ODE is asymptotically stable. In reverse,

if at least one eigenvalue has a positive real part, then the equilibrium is unstable. Hence the

stability properties of the nonlinear ODE can be determined in the non-degenerate setting

by investigating the stability properties of the linearised system (2.6).

In the next step one diagonalises (if this is possible) the system matrix Df(xe), which

leads to a decoupling into d scalar ODEs of the form x′(t) = λx(t), λ ∈ C, which is typically

referred as the (Dahlquist) test equation. It is clear that the zero solution of the test equation

is asymptotically stable if and only if <(λ) < 0.

One obtains useful insights into the approximation quality of a numerical method by

comparing the stability properties of the original test equation with the stability properties of

the numerical scheme applied to this test equation. As an example, we consider the forward

Euler (FE) scheme and the backward Euler (BE) scheme, respectively: For n ∈ N0 let

xn+1 = xn + ∆tλxn, (FE)

xn+1 = xn + ∆tλxn+1. (BE)

Then, the zero solution of the forward Euler scheme is asymptotically stable if and only if

|1 + ∆tλ| < 1 and the zero solution of the backward Euler scheme is asymptotically stable
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if and only if |1 − ∆tλ| < 1, which is a considerably less restrictive condition than for the

forward Euler scheme.

Linear stochastic stability theory

For the linear stability theory of stochastic differential equations there are two substantial

differences compared to the deterministic setting: First, results connecting the stability prop-

erties of nonlinear SDE systems with the corresponding mean-square stability properties of

the linearised system are different, e.g., in [38] the mean-square stability analysis of the

linearised system allows to deduce the stability properties of the nonlinear SODE only in

probability - and not in the mean-square sense. Second, if we consider the linearisation of

nonlinear stochastic ordinary differential equations we obtain a linear system of equations

given by

dX(t) = AX(t)dt+

m∑

r=1

GrX(t)dβr(t), (2.7)

where A,Gr ∈ Rd×d. In contrast to the linearisation of an deterministc differential equation

around an equilibrium solution, we now have m+1 matrices that have to be simultaneously

diagonalisable in order to get a decoupled system of one-dimensional SODEs. However,

this is in general not fulfilled as we have already seen in Example 1.16. Thus, in order to per-

form linear stability analysis of SODEs it is not sufficient to consider only one-dimensional

SDEs such as the geometric Brownian motion. In [15, 18, 16], the authors investigate

the effects of the geometry of the noise on the stability properties of the trivial solution. It

turns out that there is substantial difference in the qualitative behaviour of the zero solu-

tion in cases, where the matrices Gr commute or where they do not. Hence, for the linear

stochastic stability analysis, we also have to take higher dimensional SODE systems into

account.

Linear mean-square stability theory

A useful mathematical tool for the mean-square stability analysis of linear SDEs is pre-

sented in [18], where the asymptotic mean-square stability can be identified by the spectral

properties of the (d2 × d2)-dimensional matrix

S = A⊗K Idd + Idd ⊗K A+

m∑

r=1

Gr ⊗K Gr, (2.8)

where ⊗K denotes the Kronecker matrix product: The zero solution of the linear SODE

system (2.7) is asymptotically mean-square stable if and only if the spectral abscissa

α(S) = max
k=1,...,d2

{<(λk)|λk is an eigenvalue of S} < 0.
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As for the SODE system itself one can also derive a matrix-eigenvalue problem that iden-

tifies the asymptotic mean-square stability properties of its numerical approximations. By

applying a numerical one-step time integration method (such as θ-Maruyama methods of

θ-Milstein methods) to the linear SODE system (2.7) we obtain a stochastic recurrence

equation of the following type:

Xi+1 = AiXi, i ∈ N0, (2.9)

where (Ai, i ∈ N0) is a sequence of independent and identically distributed (iid for short)

random matrices. By employing the vectorisation operator to XiX
T
i we obtain the relation

E[Yi+1] = E[Ai ⊗K Ai]E[Yi] = S E[Yi],

where Yi = vec(XiX
T
i ) ∈ Rd2 and S = E[A1 ⊗K A1] ∈ Rd2×d2 . Then by [18, Lemma

3.4] the zero solution of the system of linear recurrence equations (2.9) is asymptotically

mean-square stable if and only if the spectral radius satisfies

ρ(S) = max
k=1,...,d2

{|λk| | λk is an eigenvalue of S} < 1.

Explicit representation formulae of the matrix S are computed for θ-Maruyama methods in

[18, Theorem 3.7], and for θ-Milstein methods applied to SODEs with either commutative

noise in [18, Theorem 3.9] or with non-commutative noise in [18, Theorem 3.10], where

in the latter case the iterated stochastic integrals are computed by considering a trunca-

tion of the corresponding Lévy areas that preserves the strong convergence order 1 of

the θ-Milstein scheme, see e.g. [23, 40, 69]. The spectral radius approach has also been

extended to other numerical schemes such as e.g. stochastic Runge-Kutta schemes, see

[31].

This eigenvalue approach turns out to be very effective, since this leads to a compar-

ative analysis of numerical methods applied to the SODE (2.7). However, the complexity

of computing the eigenvalues of S analytically or also numerically increases heavily if we

increase the dimension d of the linear problem. This is the case for e.g. semidiscretised

SPDEs, for which d ≈ Nh might become arbitrarily large. For this reason, we develop in

Chapter 4 a systematic approach to detect the mean-square stability properties of numeri-

cal approximations applied to linear SPDEs based on properties of the involved operators

of SPDE (1.1) as well as of the considered numerical approximation scheme.

Linear almost sure stability analysis

Investigating stochastic stability in the almost sure sense turns out to be significantly more

complicated than the stability analysis in the mean-square sense. A large class of the tech-

niques to perform almost sure stability analysis has its origins in the random dynamical

system theory, see the classical monograph [3] for a detailed overview. For further discus-

sions on the random dynamical system approach, we have to restrict ourselves to analysing
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linear SODE systems (2.7), for which the following non-degeneracy (or also called hypoel-

lipticity) condition is fulfilled:

Assumption 2.8. Assume that for all x, y ∈ Rd there exists a constant C > 0 such that

m∑

r=1

〈Grx, y〉2 ≥ C|x||y|.

Note that there are several possibilities how this assumption can be verified, see [38,

Appendix B]. For instance, the condition that dimL(G1x, . . . , Gmx) = d for all x ∈ Rd, x 6=
0, where L denotes the linear hull spanned by the vectors Gix, is equivalent to Assumption

2.8.

The asymptotic almost sure stability properties of the zero solution of (2.7) are strongly

related to the Lyapunov exponents Λd ≤ · · · ≤ Λ1 of the system (2.7): By the multiplicative

ergodic theorem (see e.g. [3, Theorem 3.4.11]), there exists a splitting of the initial value

set Rd into random subspaces Ei(ω), i.e.,

Rd =
d⊕

i=1

Ei(ω),

such that for almost all ω ∈ Ω and i = 1, . . . , d, it holds that

0 6= x0 ∈ Ei(ω) ⇔ lim
t→∞

1

t
log |X(t;x0)| = Λi, P-a.s.

It has been shown in [3, Theorem 6.2.16] that if the initial value x0 is deterministic and

if Assumption 2.8 is fulfilled that

Λ1 = lim
t→∞

1

t
log |X(t;x0)| P-a.s.,

i.e., the asymptotic behaviour of the solution process X(t) in the almost sure sense can

then be determined by examining the upper Lyapunov exponent Λ1. By [38, Theorem 6.11]

we get under Assumption 2.8 that the zero solution of (2.8) is asymptotically almost surely

stable if Λ1 < 0. In reverse the same theorem proves that the zero solution is asymptotically

unstable in the almost sure sense if Λ1 > 0.

For computing Λ1 we can proceed as it is presented in [38, Section 6.7]: First we

consider the projection of the solution process X(t) onto the (d − 1)-dimensional sphere

Sd−1 = {v ∈ Rd : ‖v‖Rd = 1}, i.e., we consider the process

S(t) =
X(t)

|X(t)| ,

together with

ρ(t) = log |X(t)|.
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This can be seen as the separation of the process into the radial and the angular parts. The

radial part ρ(t) is then given as the solution of the scalar SODE

dρ(t) = K(S(t))dt+
m∑

r=1

〈GrS(t), S(t)〉 dβr(t),

where

K(λ) = 〈Fλ, λ〉+
1

2
trD(λ)− 〈D(λ)λ, λ〉

for D(λ) =
∑m

r=1Grλλ
TGr ∈ Rd×d. Then it holds that

Λ1 =

∫

Sd−1

K(λ)ν(dλ), (2.10)

where ν(dλ) denotes the unique normalized invariant measure of the process S(t), which

exists since Assumption 2.8 is fulfilled.

Unfortunately finding an explicit representation of Λ1 has only been possible for rather

low dimensional linear systems of SODEs (2.7), where the dimension is either d = 1 (ge-

ometric Brownian motion) or d = 2, see e.g. [37, 34, 3]. The direct computation of the top

Lyapunov exponent by using the representation (2.10) faces severe difficulties for higher di-

mensions (d ≥ 3). Another attempt that has been proposed in [65] is based on numerically

estimating the upper Lyapunov exponent on a large time horizon, which is in general also

computationally expensive.

Instead of computing the explicit representation of Λ1, we provide in this theses esti-

mates of Λ1 for a spatially discretised stochastic heat equation that can be used to deter-

mine the almost sure stability properties of the underlying zero solution. For this the main

idea in Chapter 2 is to examine the spectral properties of the kernel K(λ), λ ∈ Sd−1, of the

integral representation in Equation (2.10).

3 Efficiency of numerical methods

In this section we investigate the efficiency of numerical algorithms for approximating the

quantity of interest E[ϕ(X(T ))], where X(T ) denotes the mild solution of SPDE (1.1) eval-

uated at time T . In this thesis, efficiency is understood as a measure for the computational

cost to obtain a certain accuracy.

As we have already seen in Section 1.3 standard Monte Carlo techniques are computa-

tionally expensive, since a large number of samples has to be simulated in order to reduce

the approximation error to a certain accuracy. For this reason we discuss here three differ-

ent techniques how to improve the performance of standard Monte Carlo estimators. We

first consider variance reduction techniques based on importance sampling in Section 3.1.

Then, in Section 3.2 we consider multilevel Monte Carlo methods and finally, we discuss

in Section 3.3 how fully parallel algorithms can be used for enhancing the performance of

Monte Carlo methods.
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3.1 Importance Sampling

Importance sampling is a frequently used approach to reduce the variance of a considered

random variable Y for various applications of Monte Carlo simulations. The basic idea is

to transform the underlying probability measure P to another P̃, from which we sample the

realisations of a transformed version of Y in order to weight important outcomes stronger.

In the literature, importance sampling has already been applied to SDEs in finite dimen-

sions, see e.g. [39, 55]: Consider the following finite-dimensional SODE system

dX(t) = f(X(t))dt+
m∑

r=1

gr(X(t))dβr(t), for t ∈ [0, T ], (3.1)

and the related SODE system with modified drift

dX̃(t) = f(X̃(t))−
m∑

r=1

gr(X̃(t))dr(t, X̃(t))dt+

m∑

r=1

gr(X̃(t))dβr(t), for t ∈ [0, T ],

with initial values X(0) = X̃(0) = x0 ∈ Rd. Here the functions dj : [0, T ] × Rd → R are

chosen such that the density process (Θ(t), t ∈ [0, T ]) given as the strong solution of the

linear SODE

dΘ(t) =
m∑

r=1

dr(t, X̃(t))Θ(t)dβr(t), for t ∈ [0, T ], (3.2)

with initial value Θ(0) = 1, is a martingale. By the well-known Girsanov theorem, see

e.g. [56, 60], there exists a probability measure P̃ such that the stochastic processes

β̃r(t) = −
∫ t

0
dr(s, X̃(s))ds+ βr(t), for r = 1, . . . ,m, and t ∈ [0, T ],

are Brownian motions under the probability measure P̃. Thus, we get the identity

EP[ϕ(X(T ))] = EP̃[ϕ(X̃(T ))] = EP[ϕ(X̃(T ))Θ(T )],

where EQ[Y ] denotes the expectation of a random variable with respect to the probability

measure Q. This identity leads now to the definition of the importance sampling Monte

Carlo estimator (see e.g. [39, 55])

EM [ϕ(X̃(T ))Θ(T )] =
1

M

M∑

k=1

ϕ(X̃(i)(T ))Θ(i)(T ),

where ϕ(X̃(i)(T ))Θ(i)(T ) are M independent realisations of ϕ(X̃(T ))Θ(T ). By the same

arguments as for the standard Monte Carlo estimator in Section 1.3, the error of the impor-
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tance sampling Monte Carlo estimator in the L2(Ω;R)-norm is given by

‖EM [ϕ(X̃(T ))Θ(T )]− E[ϕ(X(T ))]‖L2(Ω;R) =
Var[ϕ(X̃(T ))Θ(T )]1/2√

M
.

This motivates the use of importance sampling as a variance reduction technique: The goal

is to choose admissible functions dj , j = 1, . . . ,m, such that the considered transformation

leads to a variance reduction for the sampled random variables, i.e.,

Var[ϕ(X̃(T ))Θ(T )]� Var[ϕ(X(T ))]. (3.3)

Remark 3.1. In general one has to additionally consider approximations of the random

variables X̃(i)(T ) and Θ(i)(T ) since they are only known explicitly in very few cases. As

a consequence, the overall error decomposes – as already seen for the standard Monte

Carlo estimator in Section 1.3 – into the weak approximation error and the variance of the

numerical approximation of the considered random variables. However, under the assump-

tion (see also [55]) that the variance of the original random variable is close to the variance

of its numerical approximation, variance reduction can be also obtained for the numerical

approximation if (3.3) is fulfilled.

Remark 3.2. Note that numerical methods for approximating the density process Θ(t), t ∈
[0, T ], given in Equation (3.2) have to be chosen carefully, since instabilities for coarse time

steps might appear for SODEs without drift components as it has been investigated in [52].

Optimal measure transformations in the sense that the variance of the random variable

ϕ(X̃(T ))Θ(T ) is zero (and for this reason also the Monte Carlo error vanishes) have al-

ready been stated in the literature. In [55], it is shown for finite-dimensional SODE systems

that choosing

dr(t, X̃(t)) = − 1

u(t, X̃(t))

〈
gr(t, X̃(t)),

∂u

∂x
(t, X̃(t))

〉
, for r = 1, . . . ,m,

implies that ϕ(X̃(T ))Θ(T ) is deterministic. However, the function u denotes the solution of

the corresponding Kolmogorov backward equation, which essentially requires the full knowl-

edge of an analytical representation of a function u(x) = E[ϕ(X(T ;x)], where X(t;x) de-

notes the solution of SODE (3.1) at time t with initial value X(0) = x. Consequently the op-

timal measure transformation cannot be implemented directly in numerical approximations

and also finding a suitable approximation û of the solution u of the Kolmogorov backward

equation is well-known to be a computationally demanding task as it is shown in [53]. For

this reason we emphasize that a computationally relevant measure transformation should

balance the following two properties: First, the variance should be reduced as it is stated

in Equation (3.3) and second, the measure transformation should be easily computable.

There are also extensions of the above optimality results to SDEs in infinite dimensions,

see [54], where a combined approach of importance sampling together with a control vari-

ate approach is proposed for strong solutions of (1.1) and the specific, finite-dimensional
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choice U = Rm.

In this thesis we focus in Chapters 2 and 3 on importance sampling techniques for

SPDEs. We discuss two different approaches how importance sampling can be used to

reduce the variance of the simulated random variables in numerical experiments. First,

we consider in Chapter 2 a method-of-lines approach, where we discuss an importance

sampling technique applied to a semidiscretised version of the stochastic heat equation (by

using finite differences). We are able to improve the performance of Monte Carlo estimators

approximating the second moment of the solution process in cases, where the zero solution

of the considered finite-dimensional SODE system is asymptotically almost surely stable,

but mean-square unstable.

As second contribution to importance sampling techniques for SPDE (1.1), we extend

the results of finite-dimensional importance sampling techniques to the infinite-dimensional

framework. We propose a large class of infinite-dimensional measure transformations and

discuss their numerical approximations in detail. As a benchmark for the design of a suitable

measure transformation we develop an optimal measure transformation for SPDE (1.1)

driven by a Q-Wiener process that attains values in an infinite-dimensional Hilbert space U .

3.2 Multilevel Monte Carlo methods

The aim of this section is to review different results on multilevel Monte Carlo (MLMC)

techniques for approximating the expectation E[Y ] of a random variable Y ∈ L2(Ω;B).

The MLMC method is well-known to be a computationally efficient method that is applicable

for a large range of problems, see e.g. [28] for an extensive overview. For this reason the

MLMC estimator is discussed in each of the remaining chapters from various view points,

where in particular stability issues are discussed in Chapters 2 and 4 and we propose

efficient numerical methods that can be coupled with MLMC techniques in Chapters 3 and

5. In this thesis we distinguish between two types of MLMC methods, i.e., MLMC methods

only in time (for finite-dimensional SODE systems) and MLMC methods in space and time

for approximating statistics of the mild solution process (1.5) of SPDE (1.1).

Before we discuss these two types of MLMC methods separately, we introduce the

concept of multilevel Monte Carlo techniques in an abstract framework: For this we consider

a sequence (Y`, ` ∈ N0) of numerical approximations of a random variable Y ∈ L2(Ω;B)

on different refinement levels ` ∈ N0 with increasing accuracy and also with increasing

computational cost. These refinement levels can be understood either with respect to the

time discretisation for SODEs, or – in the case of SPDEs – with respect to a combination

of a discretisation in space and time. In both cases we associate each refinement level `

with a finite-dimensional space V` such that Y` ∈ V`. In many applications of the MLMC

method the sequence (V`, ` ∈ N0) is chosen to be nested in the sense that V`−1 ⊂ V` for

` ∈ N0. Although it is shown in [32] that a nested, geometric choice of these approximation

spaces is under specific conditions not optimal, the benefits of choosing an optimal non-

geometric hierarchy are negligible in our setting as it is indicated in [28]. For this reason,

we subsequently assume that the sequence (V`, ` ∈ N0) is nested.
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The basic idea of the MLMC estimator is based on the following observation: For L ∈
N0, we get that

E[YL] = E

[
L∑

`=0

Y` − Y`−1

]
=

L∑

`=0

E [Y` − Y`−1] ,

where we define Y−1 = 0 for notational convenience. By approximating each of the ex-

pectations by a standard Monte Carlo estimator (as defined in Section 1.3), we define for

L ∈ N0 the multilevel Monte Carlo estimator by

EL[Y ] =
L∑

`=0

EM`
[Y` − Y`−1],

where M` ∈ N denotes the number of independent realisations of the random variables

Y` − Y`−1 for the Monte Carlo estimator on level `.

For providing a bound on the computational complexity of the Monte Carlo estimator the

following assumption is needed:

Assumption 3.3. Assume that there exist constants α, β, θ, c > 0 such that α ≥ 1
2 min(β, θ)

and for all ` ≥ 0

a) ‖E[Y` − Y ]‖B ≤ c2−α`, b) VarB[Y` − Y`−1] ≤ c2−β`, c) C[Y` − Y`−1] ≤ c2θ`,

where C[X̂] denotes the computational cost to simulate the random variable X̂.

Under Assumption 3.3 we get by [28] that there exists a constant c̄ > 0 such that for

any sufficiently small ε > 0 there exist values L ∈ N0 and M` ∈ N, ` = 0, . . . , L, such that

E[‖EL[Y ]− E[Y ]‖2B] < ε2

with a computational complexity – here denoted by C[EL[Y ]] – with expected bound

E[C[EL[Y ]]] ≤





c̄ε−2, β > θ,

c̄ε−2(log ε)2, β = θ,

c̄ε−2−(θ−β)/α), β < θ.

(3.4)

In Assumption 3.3 the parameter β denotes the decay rate of the variance of the con-

sidered random variables for the Monte Carlo estimator on level ` and the parameter

θ measures the increase of computational work needed for simulating the realisations

(Y` − Y`−1). For instance, it holds that β = θ for numerically approximating trajectories

of finite-dimensional SODE systems by using standard numerical integrators such as the

Euler-Maruyama scheme, see e.g. [29].
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Multilevel Monte Carlo methods in time

In this part we briefly review basic results on the multilevel Monte Carlo methods applied to

the d-dimensional SODE

dX(t) = f(X(t))dt+ g(X(t))dβ(t), t ∈ [0, T ] (3.5)

X(0) = x0 ∈ Rd,

where (β(t), t ∈ [0, T ]) denotes an m-dimensional Brownian motion and f and g fulfil

Assumption 1.9. Furthermore we consider the case that the strong solution is approximated

by a numerical method with weak convergence order η = 1. For the standard Monte

Carlo estimator EM [ϕ(X(T ))], where ϕ : Rd → R is a sufficiently smooth function, we

discussed in Section 1.3 that the overall mean-square error can be estimated by Equation

(1.15) in terms of the Monte Carlo error and of the systematic error (induced by the weak

approximation error of the numerical method). Hence, by choosing the (explicit or implicit)

Euler-Maruyama approximation for the time integration, the overall (root mean-square) error

satisfies

‖E[ϕ(X(T ))]− EM [ϕ(XK)]‖L2(Ω;R) = O(M−1/2 + ∆t),

where we used results from [66, 39] that provide the weak convergence order 1 of the

Euler-Maruyama scheme for a sufficiently smooth function ϕ. Thus, in order to obtain an

overall error of order ε, the number of samples has to be chosen to be M = O(ε−2) and

the time step size has to be chosen such that ∆t = O(ε). Hence the overall computational

complexity to obtain an accuracy of order ε is given by O(ε−3).

Historically the development of multilevel Monte Carlo algorithms for finite-dimensional

SODEs started in [36] with the analysis of a two-level Monte Carlo estimator

E1[ϕ(X(T ))] = EM0 [ϕ(XK0
0 )] + EM1 [ϕ(XK1

1 )− ϕ(XK0
0 )],

where for the two refinement levels ` = 0, 1, we denote by XK`
` a numerical approximation

of X(T ) by using the Euler-Maruyama scheme based on partitions ΘK` of the time interval

[0, T ] with K` time steps. A complexity analysis for this method – originally called statistical

Romberg extrapolation – showed a reduction of the computational cost to O(ε−5/2).

The idea of the two-level Monte Carlo methods is extended in [29] to multiple levels,

which leads to the definition of the MLMC estimator in time

EL[ϕ(X(T ))] = EM0 [ϕ(XK0
0 )] +

L∑

`=1

EM`
[ϕ(XK`

` )− ϕ(X
K`−1

`−1 )].

Note that by the same argumentation as in [28, Chapter 5] there exists a constant C > 0

such that

Var[ϕ(XK`
` )− ϕ(X

K`−1

`−1 )] ≤ C
(
E[|ϕ(X(T ))− ϕ(XK`

` )|2] + E[|ϕ(X(T ))− ϕ(X
K`−1

`−1 )|2]
)
.
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Thus, for a geometrical sequence (ΘK` , ` = 1, . . . , L) of partitions of the time interval,

where for each ΘK` the corresponding time step size is denoted by ∆t`, we get that

Var[ϕ(XK`
` )− ϕ(X

K`−1

`−1 )] = O(∆t`).

Now, by choosing ∆t` = 2−`∆t0, Assumption 3.3 is fulfilled with α = 1, β = 1 and θ = 1.

Hence, by (3.4) we get that the expected cost of the MLMC estimator to obtain an L2(Ω;R)-

error of O(ε) is of order ε−2(log ε)2. This improvement of the complexity is nearly optimal

for estimating E[ϕ(X(T ))], since it is shown in [20] that the lower bound on the complexity

is given by O(ε−2).

Although MLMC methods are widely applicable, there are also cases, where they do not

improve the approximation quality significantly compared to standard Monte Carlo methods.

In this thesis we illustrate in Chapter 2 the failure of the MLMC method in time if the outcome

on any refinement ` ∈ N0 heavily depends on rare events. This specific setting is obtained

e.g. by approximating the second moment of the solution process of linear SDEs, for which

the zero solution is asymptotically almost surely stable, but mean-square unstable. As a

remedy we propose an importance sampling MLMC technique, which forces these rare

events to happen more frequently.

Multilevel Monte Carlo methods in space and time

In this section we approximate E[ϕ(X(T ))] by using MLMC methods, where X(T ) denotes

the mild solution of SPDE (1.1). For the spatial discretisation of the mild solution (1.5), we

consider Galerkin methods based on a nested sequence (Vh` , ` ∈ N0) of finite-dimensional

spaces satisfying Vh` ⊂ Ḣ1 ⊂ H with dimension dim(Vh`) = Nh` . Furthermore for t`k ∈
ΘK` , we denote by Xk

h`
∈ Vh` the refinement level `-approximation of X(t`k) based on a

time integration method scheme such as given in Equation (1.10) or (1.14), where ΘK` is

the equidistant partition of the time interval [0, T ] with time step size ∆t` = T/K`. Then,

the MLMC estimator in space and time is defined by

EL[ϕ(X(T ))] = EM0 [ϕ(XK0
h0

)] +
L∑

`=1

EM`

[
ϕ(XK`

h`
)− ϕ(X

K`−1

h`−1
)
]
.

Following [7, 8] we distinguish for the analysis of the mean-square error between nu-

merical methods, for which results on the weak convergence order are available (e.g., for

SPDEs with additive noise) and for approximation schemes for which only strong conver-

gence order results have been shown.

We start with numerical approximation schemes, for which only strong convergence

order results are available. Then for any ε > 0, the choice

∆t` ' h2
` , M0 ' h−2γ

L , M` ' h−2γ
L h2γ

` `
1+ε
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guarantees the existence of a constant C > 0 such that (see [44, Corollary 2])

‖E[ϕ(X(T ))]− EL[ϕ(X(T ))]‖L2(Ω;B) ≤ ChγL.

If weak convergence rates η are available and η = 2γ, then by choosing

∆t` ' h2
` , M0 ' h−4γ

L , M` ' h−4γ
L h2γ

` `
1+ε

the convergence order of the MLMC estimator can be improved, since there exists a con-

stant C > 0 such that (see [44, Corollary 3])

‖E[ϕ(X(T ))]− EL[ϕ(X(T ))]‖L2(Ω;B) ≤ Ch2γ
L .

Now we consider again the computational work needed for the L2(Ω;B)-error of the mul-

tilevel Monte Carlo estimator to be smaller than a given accuracy ε. For a geometric se-

quence of finite-dimensional approximation spaces based on spatial refinement parameters

h` ' 2−` the computational work can be essentially reduced by using the MLMC technique

as it can be seen in Table 1 taken from [44] for the ideal convergence parameter γ = 1.

MC MLMC with strong conv. MLMC with weak conv.

ε−(d/2+3) ε(−d+2)| log2 ε| ε−(d/2+2)| log2 ε|

Table 1: Order of computational work to achieve an L2(Ω;B)-error of O(ε) of different
Monte Carlo-type approximations.

This result shows the importance of investigating weak convergence rates for multi-

plicative noise SPDEs, since such results would improve estimates on the computational

complexity of MLMC methods in space and time significantly.

An important question that arises for the implementation of MLMC methods for SPDEs

is how to choose the different levels in order to guarantee that any numerical method ap-

proximating the mild solution the SPDE (1.1) is stable enough on each refinement level.

Especially the choice of the coarsest levels is of great importance, since many explicit time

integrators applied to parabolic SPDEs face a severe time step size restriction and might

be very inefficient as it is shown in e.g. [1]. Even worse, choosing the coarsest refinement

levels such that the numerical method is not stable enough (in an appropriate stochastic

sense), standard MLMC techniques do not provide reasonable approximations of the quan-

tity of interest.

For this reason, we perform in Chapter 4 a detailed mean-square stability analysis of

SPDE approximations. We prove that if Equation (2.1) from Example 2.6 is fulfilled then

the zero solutions of the SPDE and of its approximation by the backward Euler–Maruyama

scheme (1.12) are both asymptotically mean-square stable without any restrictions on the

refinement parameters h and ∆t. Similar results are also shown for the backward Milstein

scheme from Equation (1.14). This shows that these methods are sufficiently stable in the
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mean-square sense for applying MLMC methods in space and time to this type of SPDEs.

3.3 Parallel Scientific Computing

Recall that a Monte Carlo estimator consists of a linear combination of independent samples

of the considered random variable Y . Due to this specific structure, Monte Carlo methods

are well-known to be easily parallelisable. The idea of distributing the simulation of these

independent realisations to different processors generally leads to optimal parallelisation

properties of Monte Carlo-based algorithms.

Nevertheless, there might also occur some problems of this natural parallelisation ap-

proach that limit the efficiency of parallel Monte Carlo estimation, since the parallel gen-

eration of pseudo-random numbers is not trivial task. By an inappropriate call of standard

pseudo-random number generators in parallel, an additional bias can deteriorate the perfor-

mance of the Monte Carlo estimator and specific treatments of parallel random generation

have to be used, see e.g. [12]. However, there are some standard libraries and implemented

functions in C++ and Matlab that can handle these parallel computations and, subsequently,

we always assume that the numerical experiments are based on such appropriate routines.

As long as the number of realisations of Y is larger than the number of available cores,

the parallelisation of Monte Carlo simulations performs very well due to the fact that the

algorithms require only a small amount of communication between the used cores. Since

nowadays the tendency in computer science is to constantly increase the number of cores

in supercomputers, the parallelised Monte Carlo method can be inefficient if the number of

cores becomes smaller than the required sample size. In the context of numerical approx-

imations of SDEs one has then to consider algorithms that are capable to compute also

pathwise approximations in parallel.

Such an approach can be found e.g. in [9], where the authors proposed to use a (paral-

lelisable) algebraic multigrid method for solving the linear system corresponding to a finite

element discretisation of an elliptic PDE with random coefficients. This can be also exploited

for time-dependent problems, for which one can use a parallelisable method to solve the

linear system connected to the problem in space for each time step. In terms of optimal

parallelisation this again might not be sufficient if the number of available cores is larger

than the number of those that are needed.

In the deterministic framework there are approaches how to compute also time approxi-

mations of differential equations completely in parallel. For instance in [25, 24], the authors

do not apply the backward Euler scheme to linear deterministc differential equations se-

quentially, but use an equivalent formulation of the approximation schemes as a large linear

system. This enables the use of multigrid methods that can be applied to solve the whole

space-time formulation at once. In [25], such an approach has been used to solve a linear

ODE in parallel and in [24] a space-time multigrid method is proposed that has impres-

sive strong and weak scaling properties when it is applied to parabolic PDEs. Here strong

scaling means that the computational time reduction is proportional to the number of cores

used. In contrast optimal weak scaling is achieved whenever increasing the dimension of



42 Introduction

the problem in the same way as increasing the number of cores leaves the computation

time constant.

In Chapter 5 of this thesis we combine the space-time multigrid techniques from [24]

with multilevel Monte Carlo methods for parabolic SPDEs driven by additive Wiener noise.

The resulting algorithm can be fully parallelised, i.e., it can be performed in parallel in

space, time and probability. Extensive numerical experiments show the convergence and

parallelisation properties of the proposed approach.

4 Information on the included articles

This thesis consists of an introductory essay in Chapter 1, which is followed by the following

4 included articles:

• Chapter 2 was published as "An importance sampling technique in Monte Carlo meth-

ods for SDEs with a.s. stable and mean-square unstable equilibrium" by M. Ablei-

dinger, E. Buckwar and A. Thalhammer in Journal of Computational and Applied

Mathematics, Vol. 316 (2017), pp. 3-14.

• Chapter 3 is a preprint version of "Importance sampling techniques for stochastic par-

tial differential equations" by E. Buckwar and A. Thalhammer, which will be submitted

to Mathematics of Computation in summer 2017. A previous version of this article has

been published as DK-Report No. 2017-01.

• Chapter 4 is a preprint version of "Mean-square stability analysis of approximations

of stochastic differential equations in infinite dimensions" by A. Lang, A. Petersson

and A. Thalhammer, which was submitted to BIT Numerical Mathematics in February

2017. The preprint is available on arXiv with index arXiv:1702.07700[math.NA]

• Chapter 5 is a preprint version of "Combining space-time multigrid techniques with

multilevel Monte Carlo methods for SDEs" by M. Neumüller and A. Thalhammer,

which will be submitted to SIAM Journal on Scientific Computing in summer 2017.

A previous version was submitted for the proceedings of the International Conference

on Domain Decomposition 2017 (DD24) in May 2017 and has been published as

DK-Report No. 2017-04.

Except for some necessary changes in formatting of the text and equations, positioning of

the figures, minor corrections of typing errors and removing of affiliation information, the

following chapters are identical to the corresponding published and submitted versions of

these articles. All authors contributed equally.

5 Conclusion and outlook

In this thesis we discuss various qualitative aspects of numerical methods for stochastic

partial differential equations, where we focus on stability and efficiency.
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In Chapter 2 we investigate the interplay of different concepts of stochastic stability and

the performance of Monte Carlo estimators. For this we consider linear stochastic differen-

tial that are typically arising for spatially discretised SPDEs, of which the corresponding zero

solution are asymptotically almost surely stable, but unstable in the mean-square sense.

Due to this specific stability setting the Monte Carlo error for estimating the second moment

of the solution process can be become arbitrarily large, since the pathwise behaviour of the

(numerical) trajectories acts contrarily to the qualitative behaviour of the quantity of interest.

Consequently, the Monte Carlo error heavily depends on rarely occurring trajectories that

are sufficiently far away from the almost surely attracting equilibrium solution. In order to

force these rare events we employ an efficient importance sampling technique that is based

on appropriately tuning the upper Lyapunov exponent of the modified linear system of the

transformed SDE system.

For future work, an important extension is to investigate the influence of this specific

stochastic stability setting for nonlinear stochastic differential equations (with possibly more

than a single equilibrium solution). For this we want to emphasize that a structural inves-

tigation of the Lyapunov spectrum of linear and nonlinear SODE systems would lead to a

better understanding of such effects. As a second extension of Chapter 2 the proposed

importance sampling technique could be extended to a more general framework that would

allow to use a larger class of measure transformations that also could handle the nonlin-

ear setting e.g. by using transformations that are based on the pathwise behaviour of the

solution process.

In Chapter 3, we construct importance sampling techniques for Hilbert space-valued

SPDEs by using an infinite-dimensional version of the well-known Girsanov theorem for Q-

Wiener processes. In contrast to Chapter 2, where we considered measure transformations

of finite-dimensional SODEs (based on semidiscretisated SPDEs) this approach now de-

couples the importance sampling techniques from spatial discretisation schemes and does

not require any specific structure of the semidiscretised system of SDEs. As a guidance

for the construction of a large class of measure transformations we show the existence of

an optimal measure transformation for semilinear SPDEs. Besides the theoretical justifica-

tion of the proposed importance sampling techniques we discuss various implementation

issues and present numerical experiments showing a remarkable reduction of the Monte

Carlo error compared to standard numerical experiments.

A first possible continuation of this work is to extend these results to SPDEs that are

driven by more general stochastic processes such as cylindrical Wiener processes or Lévy

processes. Due to the fact that the techniques for constructing the infinite-dimensional

measure transformations heavily depend on the trace-class property of the covariance op-

erator and on the Gaussian distribution of the increments, this extension requires different

or at least more sophisticated methods to reduce the variance of the quantity of interest in

numerical experiments.

In Chapter 4, we develop a structural mean-square stability analysis of SPDE approxi-

mations. For this we first set up an abstract framework, for which we can show that – as in
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the linear SODE setting – the asymptotic mean-square stability properties of the underly-

ing zero solution can be directly related to an eigenvalue problem of a deterministic tensor

product space-valued operator. Based on this result we investigate the mean-square sta-

bility properties of standard numerical methods for SPDEs such as various Maruyama- and

Milstein-type schemes. By deriving sufficient conditions for the asymptotic mean-square

stability of the discrete zero solution we illustrate the importance of the used rational ap-

proximation for approximating the underlying semigroup. In particular, we are able to prove

that under certain conditions the zero solution of the SPDE as well as of numerical schemes

based on the backward Euler-Maruyama and the backward Milstein scheme are asymptot-

ically mean-square stable without any restriction on the chosen refinement parameters.

Finally, numerical experiments for standard finite element and spectral Galerkin methods

illustrate the theoretical results.

A natural extension of this work is to consider the nonlinear setting. We have already

presented a promising attempt by adapting Lyapunov function techniques for stochastic

recurrences (see Section 2.1 of this introduction), where we considered approximations

of semilinear SPDEs with globally Lipschitz continuous operator F and G. However, this

would need further investigations to provide a better insight into the nonlinear mean-square

stability analysis. Another very interesting extension of the work in Chapter 4 would be to

investigate the asymptotic a.s. stability properties of the zero solution of SPDE approxima-

tions.

Finally in Chapter 5, we present a combination of space-time multigrid techniques with

multilevel Monte Carlo methods. Space-time methods for parabolic PDEs are already well

established in the deterministic literature and multilevel Monte Carlo methods are commonly

used for SPDEs. However, the combination of both methods is a completely new approach

that enables the parallelisation of the problem in space, time and probability. We develop

and apply the proposed method in the context of SDEs with additive noise, such as in finite

dimensions for the Ornstein-Uhlenbeck process and in infinite dimensions for the stochastic

heat equation with additive noise. We conclude by showing the good convergence and

parallelisation properties of the proposed algorithm. In particular, we illustrate in numerical

experiments for the stochastic heat equation that the best computation times are achieved

by using a balanced distribution of cores with respect to the parallelisation in time and the

parallelisation of the Monte Carlo estimators.

An open question in this work is how one could extend the analysis of the space-time

solver to parabolic SPDEs with linear multiplicative noise. The treatment of multiplica-

tive noise implies that the space-time system matrix (e.g. based on the backward Euler-

Maruyama scheme) becomes a matrix with random coefficients in the sub-diagonal. To be

more precise the problem for this setting is that we cannot guarantee the convergence and

the robustness of the space-time solver by using the same Fourier analysis techniques as

presented in [24].
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2 An importance sampling technique in Monte Carlo

methods for SDEs with a.s. stable and mean-square

unstable equilibrium

M. Ableidinger, E. Buckwar and A. Thalhammer

In this work we investigate the interplay of almost sure and mean-square stability for lin-

ear SDEs and the Monte Carlo method for estimating the second moment of the solution

process. In the situation where the zero solution of the SDE is asymptotically stable in

the almost sure sense but asymptotically mean-square unstable, the latter property is de-

termined by rarely occurring trajectories that are sufficiently far away from the origin. The

standard Monte Carlo approach for estimating higher moments essentially computes a fi-

nite number of trajectories and is bound to miss those rare events. It thus fails to reproduce

the correct mean-square dynamics (under reasonable cost). A straightforward application

of variance reduction techniques will typically not resolve the situation unless these meth-

ods force the rare, exploding trajectories to happen more frequently. Here we propose an

appropriately tuned importance sampling technique based on Girsanov’s theorem to deal

with the rare event simulation. In addition further variance reduction techniques, such as

multilevel Monte Carlo, can be applied to control the variance of the modified Monte Carlo

estimators. As an illustrative example we discuss the numerical treatment of the stochastic

heat equation with multiplicative noise and present simulation results.

Key words. Monte Carlo estimators, Systems of linear SDEs, Asymptotic almost sure sta-

bility, Asymptotic mean-square stability, Variance reduction, Rare event simulation

AMS subject classifications. 60H10, 65C05, 65M12, 60H15

1 Introduction

Let (Ω,F , (Ft)t∈[0,T ],P) be a complete probability space, where the filtration (Ft)t∈[0,T ]

satisfies the usual conditions. We consider d-dimensional systems of linear Itô stochastic

differential equations

dX(t) = AX(t) dt+

m∑

r=1

GrX(t) dβr(t), X(0) = X0, t ∈ [0, T ], (1)
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where A,Gr ∈ Rd×d, βr are m independent, real-valued Wiener processes, and the initial

value X0 is in L2(Ω,F ,P). Under these assumptions Eq. (1) has a unique strong solution,

which, however, allows an explicit representation only for special cases such as for systems

with commuting matrices A,Gr, see [2, Section 8.5, Remark 8.5.9]. For the case of a zero

initial value X0 = 0, Eq. (1) admits the zero solution Xe(t) ≡ 0 for all t.

In this article we are interested in the numerical approximation of quantities of the type

Ef(X(t)) for some functional f : Rd → R, which has at least quadratic growth in |x|.
We first describe the setting of Monte Carlo techniques and error analysis in terms of

interpreting

EM [f(X̂(t)] :=
1

M

M∑

i=1

f(X̂(i)(t)) (2)

as an estimator for Ef(X(t)). Here, X̂(i)(t) denotes an independent realisation of the ap-

proximated solution X̂(t), which we obtain by using a numerical integrator of weak order p.

The approximation of the trajectories produces a systematic error, which can be expressed

as ([19, 22])

E[f(X(t))] = E[f(X̂(t))] +O(hp).

Subsequently we will assume that the time step size is sufficiently small such that the

systematic error is dominated by the Monte Carlo error, which can be expressed as ([19])

EM [f(X̂(t))] =
1

M

M∑

i=1

Ef(X̂(i)(t))± cVar[f(X̂(t)))]1/2

M1/2
.

Under the assumption that the variance of the approximated random variable f(X̂(t)) is

close to the variance of f(X(t)), the quality of the Monte Carlo estimator depends on the

variance of the underlying SDE. Thus for problems with large variances one needs either a

large number of realisations M , i.e. a very fine discretisation of the underlying probability

space, or estimators with a smaller variance than standard Monte Carlo estimators. This

second consideration directly leads to the field of variance reduction techniques, for an

overview see for example [8, 3].

In this work we analyse the impact of long time properties of linear systems of SDEs

on Monte Carlo estimators, in particular how different concepts of stochastic stability, i.e.

asymptotic stability in the almost sure and mean-square sense (see Definition 2.1), affect

the numerical results using the standard Monte Carlo estimator defined in Eq. (2).

Ignoring any systematic error for the moment, we choose the following trivial observation

as a starting point for our considerations: The estimator defined in Eq. (2) consists only of

finitely many realisations of the solution process, and therefore the long time evolution is

heavily influenced by the path-wise stability properties of the SDE. However, due to the (at

least) quadratic growth of f(x), Ef(X(t)) is governed by the corresponding mean-square

stability of the zero solution of (1). Hence, the characterisation of our problem can be
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summarised by using the following observations:

I The zero solution of system (1) can be asymptotically stable in the almost sure sense

but at the same time asymptotically mean-square unstable. This situation is well

known in the literature, e.g. for the geometric Brownian motion (see [16] and Section

2).

II An immediate consequence of the above situation is that the exponential growth in

time of E|X(t)|2 is due to very rare exploding trajectories. This leads to a prohibitively

high number of realisations needed for the standard Monte Carlo estimation to obtain

a decent approximation of the second or higher moments of the solution process

X(t).

III The problem is not purely academic: Space discretising diffusion-type SPDEs with

e.g. finite differences leads to high dimensional SODE systems of type (1). The so-

lution trajectories decrease rapidly due to the dissipative properties of the Laplacian

and the stabilising structure of the diffusion matrices Gr. At the same time, the equi-

librium solution will become asymptotically mean-square unstable for some, often

moderate, value of noise intensity and increasing the noise intensity will amplify this

effect. Note that the computational cost for simulating such high-dimensional SDE

systems automatically prohibits a substantial increase of the number of trajectories.

IV A straightforward application of multilevel Monte Carlo techniques for reducing the

variance will typically not resolve the situation, unless these methods force the rare

exploding trajectories to happen more frequently.

We propose the following modification of Monte Carlo estimation by importance sam-

pling techniques: We change the drift of the system in such a way that the trajectories

explode more often. This can be achieved by transforming the underlying probability mea-

sure due to Girsanov’s theorem. Weighting the trajectories with the corresponding density

process results in an unbiased Monte Carlo estimator for the desired quantity. An impor-

tant property of the developed measure transformation is that it can be precomputed and

does not change the linearity of the system. Consequently, the computational cost of our

proposed method is the same as for the standard Monte Carlo estimation. Further, the

variance of the modified estimators can also be reduced by applying additional variance

reduction techniques such as multilevel Monte Carlo methods.

In Section 2 we will give a short review of necessary notions of stability theory of

stochastic differential equations and we discuss the points I and II by providing analyti-

cal and numerical results for the geometric Brownian motion. In Section 2.1 we introduce a

spatially discretised stochastic heat equation as an illustrative and non-trivial example and

discuss the stability properties of the zero solution of the resulting system of SODEs. In

Section 3 we discuss different variance reduction techniques (multilevel Monte Carlo meth-

ods and importance sampling) for the spatially discretised stochastic heat equation and
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formulate our proposed method. We will present numerical results in Section 4 and close

this work with conclusions in Section 5.

2 Stability theory

In this section we summarise the main definitions and notation from stochastic stability the-

ory and illustrate the differences between these stability concepts by considering geometric

Brownian motion.

We treat the following two types of (asymptotic) stochastic stability of the equilibrium

solution of Eq. (1), which is given by the zero solution Xe(t) ≡ 0 for all t, see [16, 13].

Definition 2.1. (i) The zero solution is called asymptotically almost sure stable

(a) if for any given 0 < ε < 1, ε′ > 0, there exists δ > 0 such that if |X0| < δ, then

P(|X(t)| > ε′) < ε for all t ≥ 0 and

(b) if there exists a δ′ > 0 such that for any X0, satisfying |X0| < δ′ a.s., it holds

that limt→∞ |X(t)| = 0 a.s.

(ii) The zero solution is called asymptotically mean-square stable

(a) if for E|X0|2 ≤ δ, then supt≥s E|X(t)|2 → 0 as δ → 0 and

(b) if there exists a δ′ > 0 such that for any X0, satisfying E|X0|2 < δ′, it holds that

limt→∞ E|X(t)|2 = 0.

In order to illustrate the difference between asymptotically almost sure stable and asymp-

totically mean-square stable equilibria, we recapitulate the well-known results for the geo-

metric Brownian motion (see [2, 15]). Let

dX(t) = λX(t) dt+ σX(t) dβ(t), X(0) = X0, (3)

where λ, σ,X0 ∈ R. The explicit solution and the second moment of Eq. (3) are given by

X(t) = X0 exp

((
λ− σ2

2

)
t+ σβ(t)

)
, (4)

EX2(t) = X2
0 exp

((
2λ+ σ2

)
t
)
. (5)

Obviously the zero solution is asymptotically mean-square stable if and only if 2λ+σ2 < 0.

Using the law of iterated logarithms, it can be seen that the zero solution is asymptotically

stable in the almost sure sense if and only if λ − σ2/2 < 0. As a consequence, the

zero solution of Eq. (3) becomes unavoidably asymptotically stable in the almost sure and

asymptotically unstable in the mean-square sense for sufficiently large σ (see also the

discussion in [16, Example 1.4.1]).

Suppose we want to approximate EX2(t) by standard Monte Carlo estimation, where

we use the exact solution (4) for simulating the paths, i.e. no systematic error arises. For a
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given set of parameters we calculate the probability that X2(t) stays in an ε-neighbourhood

of 0 with a certain probability 1− α. We get

P
[
X2(t) < ε

]
= 1− α⇐⇒ P

[
ξ <

ln(ε/X2
0 )− 2(λ− σ2/2)t

2σ
√
t

]
= 1− α

for ξ ∼ N (0, 1). Note that for a fixed probability 1− α the bound ε decreases exponentially

for growing σ and t, whereas the mean-square process (5) grows exponentially in σ and

t. This compromises the results of Monte Carlo estimation and we illustrate this with the

following parameter setting: Let λ = −2, σ = 3, and X0 = 1, so the zero solution is

asymptotically mean-square unstable. We further fix the time at T = 10 and obtain that the

analytic solution of the mean-square process (5) has order of magnitude

EX2(T ) ≈ 1021.

However, it is highly improbable to sample values substantially larger than zero. The prob-

ability that all paths of a standard Monte Carlo estimation with 104 trajectories are almost

zero within machine accuracy is 1− 10−3, since

P
[(
X(i)(T )

)2
< 10−14

]
≈ 1− 10−7

and
104∏

i=1

P
[(
X(i)(T )

)2
< 10−14

]
≈ 1− 10−3.

As a consequence, the standard Monte Carlo estimator EM [X2(T )] fails to approximate

EX2(T ) (see Figure 1).

This effect is also present in the case of higher dimensional SODE systems (see Figure

2). In the next section, we consider this situation by using a space-discretised version of a

stochastic heat equation with multiplicative noise.

2.1 Linear systems of SODEs

In this section we present the semi-discretised stochastic heat equation as a benchmark

problem for spatially discretised diffusion type SPDEs and analyse the qualitative behaviour

of the zero solution.

Stochastic heat equation

Let (Ω,F ,P) be a complete probability space with filtration (Ft)t∈[0,T ]. We consider the one-

dimensional stochastic heat equation on the spatial domain D = [0, 1] with homogenous
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Dirichlet conditions:

du(x, t) = ∆u(x, t) dt+ σu(x, t) dW (x, t),

u(0, ·) = u(1, ·) = 0,

u(x, 0) = u0(x) = sin(πx) for x ∈ D,
(6)

with a sufficiently smooth initial function, since u0 ∈ L2(D). The multiplicative noise is

interpreted in the sense of Nemytskii operators (see [17]). For the driving noise we assume

that W (x, t) is an Ft-adapted Q-Wiener process with a linear, non-negative and symmetric

covariance operator Q. Furthermore Q is of trace class and has an orthonormal basis of

eigenfunctions {χj , j ∈ N} with eigenvalues qj ≥ 0. Under these assumptions W (x, t) can

be represented in the following series expansion

W (x, t) =
∞∑

j=1

√
qjχj(x)βj(t), (7)

which converges in L2(Ω,F ,P) (see [5]). Here, βj(t) are independent one-dimensional

Wiener processes. The existence of a unique mild solution of (6) is guaranteed by the

classical framework of [5].

Space discretisation and model problem

For spatial discretisation we apply the standard finite difference scheme on an equidistant

spatial mesh {x0, . . . , xN+1} with mesh width h = 1/(N+1). Then the spatially discretised

version of Eq. (6) takes the form

du(xi, t) = (∆hu(t)) (xi) dt+ σu(xi, t) dW (xi, t),

where ∆h denotes the three-point discrete Laplacian. Using the eigenfunctions of the Lapla-

cian as a basis representation for W (x, t) we define the following truncation of the series

(7) (see [17]),

WN (x, t) :=
N∑

i=1

√
qiχi(x)βi(t)

with qi = 2i−(2r+1+ε) and χi(x) =
√

2 sin(πix) for all x ∈ D. Here ε > 0 and r controls

the regularity of the Wiener process in the sense that W (t) ∈ Hr
0(0, 1). Denoting the

solution-vector at the interior points of the spatial mesh as

X(t) = (X1(t), . . . XN (t))T = (u(x1, t), . . . , u(xN , t))
T ,
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we obtain the following N -dimensional SODE-system

dX(t) = AhX(t) dt+
N∑

i=1

GhiX(t) dβi(t), (8)

X(0) = (sin(x1π), . . . , sin(xNπ))T ,

where

Ah =
1

h2
tridiag

(
1,−2, 1

)N
j=1

and

Ghi = diag

{√
2qi sin

(
jπi

N + 1

)}N

j=1

.

2.2 Linear stability analysis of Eq. (8)

The mean-square stability of the zero solution for linear SODE systems can be charac-

terised via the mean-square stability matrix of the system. Following [4], the process

Y (t) = vec(X(t)X(t)T ) satisfies the deterministic ODE

dE(Y (t)) = SE(Y (t)) dt, (9)

where

S = Ah ⊗ IN + IN ⊗ Ah + σ2
N∑

r=1

Ghr ⊗ Ghr

= Ah ⊕ Ah + σ2
N∑

r=1

Ghr ⊗ Ghr .

Here, ⊗ denotes the matrix Kronecker product, ⊕ denotes the Kronecker sum and IN de-

notes the N -dimensional identity matrix.

Based on the following lemma, see e.g. [4], we can determine the mean-square stability

properties of the zero solution of Eq. (8) by considering the spectrum of the underlying

mean-square stability matrix S.

Lemma 2.2. Let α(S) be the spectral abscissa of S. The zero solution of Eq. (8) is asymp-

totically mean-square stable if and only if α(S) < 0.

Both Ah ⊕ Ah and
∑
Ghi ⊗ Ghi are symmetric, so we can apply Weyl’s theorem, see

e.g. [9, Theorem 4.3.1], to obtain a lower bound for α(S):

max
1≤j≤N2

[
λN2−j+1

(
Ah ⊕Ah

)
+ σ2λj

(
N∑

i=1

Ghi ⊗Ghi

)]
≤ α(S).

Here, λj(M) denotes the j-th largest eigenvalue of a matrix M . Due to basic properties

of the Kronecker product (see e.g. [21]) and the form of Ghi , the matrix
∑
Ghi ⊗ Ghi has
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positive eigenvalues. Consequently, the zero solution of Eq. (6) is asymptotically mean-

square unstable for large enough σ.

In analogy to the one dimensional case we expect that there exist values of σ for which

the zero solution is asymptotic a.s. stable but asymptotic mean-square unstable. In fact, the

authors in [15] showed that for linear SODE systems the asymptotic almost sure stability

can be interpreted as the limiting case of p-th moment stability for p → 0. However the

computation of this limit is not straightforward and the p-th moments for p < 1 are hard to

interpret. An alternative way for showing asymptotic almost sure stability of the zero solution

is the analysis of the corresponding Lyapunov exponents. The top Lyapunov exponent is

defined as

Λ = lim
t→∞

1

t
log |X(t)| .

As in the deterministic case, the path-wise stability of an SODE system is completely de-

scribed by Λ: the zero solution of Eq. (6) is asymptotically almost sure stable iff Λ < 0

(see [2]). The actual computation of Λ requires a thorough understanding of the exact so-

lution X(t), which is typically not available, consequently analytic results are only known

for low dimensional systems (see [10, 12]). For higher dimensions the analysis of the top

Lyapunov exponent is still tractable if one assumes non-degeneracy of the driving noise

(see [13, 1, 18] and for numerical approximations of Λ based on path simulation [22]). Let

D(λ) =
∑N

i=1G
h
i λλ

TGhi ∈ RN×N for λ ∈ RN . We say the noise is non-degenerate if there

is a C > 0 such that

〈D(λ)ζ, ζ〉 ≥ C|λ|2|ζ|2 ∀λ, ζ ∈ RN (10)

or equivalently, that the dimension of the linear hull of {Gh1x, . . . , GhNx} is equal to N (see

[13, Appendix A]). Under Condition (10) the top Lyapunov exponent can be represented as

(see [13, Theorem 6.11])

Λ =

∫

SN−1

K(λ)ν(dλ) (11)

with

K(λ) =
〈
Ahλ, λ

〉
+

1

2
trace [D(λ)]− 〈D(λ)λ, λ〉 .

Here SN−1 denotes the (N − 1)-dimensional unit sphere and ν denotes the invariant mea-

sure of the process X(t)/|X(t)|. The advantage of representation (11) is that even if the

integral can not be calculated explicitly, one can analyse the kernel K(λ) to obtain sufficient

conditions for asymptotic a.s. (in-)stability of the zero solution.

To use this representation we have to ensure that condition (10) is fulfilled. The diffusion

matrices Ghk are defined via the basis representation of the Laplacian. Consequently the

noise is non-degenerate if the number of independent Wiener processes is at least equal



M. Ableidinger, E. Buckwar and A. Thalhammer 59

to the dimension of the system, which is the case for Eq. (8).

As the diffusion matrices Ghi are diagonal and since

trace [D(λ)] = σ2

〈
N∑

k=1

(
Ghk

)2
λ, λ

〉
,

we can write the kernel K(λ) as K(λ) = 〈K(λ)λ, λ〉 with

K(λ) = Ah +
σ2

2

N∑

k=1

(Ghk)2 −D(λ). (12)

By careful inspection of the eigenvalues of K(λ), we expect K(λ) to be negative on SN−1

independently of σ. Therefore the zero solution of Eq. (8) is asymptotically a.s. stable,

whereas it becomes asymptotically mean-square unstable for σ large enough. Then again

the explosion of E|X(t)|2 depends on very rare trajectories and standard Monte Carlo es-

timation has the same difficulties to approximate E|X(t)|2 as in the one dimensional case,

see Figure 2. In the next section we will treat the question if the mean-square stability

behaviour can be recovered in Monte Carlo simulations by using variance reduction tech-

niques.

3 Variance reduction techniques and rare event simulations

As we have already mentioned in Section 1, the Monte Carlo error can be controlled by

either increasing the number of samples or by using variance reduction techniques to obtain

estimators with smaller variances compared to standard Monte Carlo methods. The first

approach, i.e. increasing the number of trajectories, faces the following severe limitations:

1 A typical indicator that the number of simulated random variables might be insufficient

is a substantial empirical variance of the standard Monte Carlo estimator. However, in

our setting the rapid decay of the paths leads to a nearly vanishing empirical variance.

Hence any estimation for the necessary number of simulated trajectories has to rely

on the a priori knowledge of the rareness of the exploding trajectories. In general, the

probability of these rare events is not known. Moreover, in situations where one can

calculate the probability of these rare events, see e.g. geometric Brownian motion

in Section 2, the probability of the occurrence of these trajectories is so low that the

number of required trajectories is unreasonably high.

2 A natural bound on the number of trajectories is imposed by the computational cost

of the time integration method. This limits the possibility of increasing the number of

numerical trajectories for high dimensional SODE systems.

Concerning variance reduction techniques we distinguish two types of methods. First,

there are methods, such as Control Variates and multilevel Monte Carlo approaches, that

reduce the variance by adding suitable control quantities to the standard estimators. The
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probability space and the distribution of the simulated random variables are unchanged.

Thus problem II of the standard Monte Carlo estimator, i.e. the absence of rare events, is

still present for this type of techniques. To see this, we examine the multilevel Monte Carlo

estimator in Section 3.1 and analyse its disadvantages for our setting.

Second, there are methods, such as importance sampling, that change the underlying

probability measure and therefore the distribution of the simulated trajectories. By being

appropriately tuned, these methods are able to enforce the rare event of exploding trajec-

tories. In Section 3.2, we present an importance sampling technique based on Girsanov’s

theorem where we modify the drift such that we simulate realisations of SODE systems with

slower decaying trajectories. With the choice of constant weight functions in the Girsanov

transformation, the resulting system is still linear and the computational cost to obtain a sin-

gle realisation is of the same order as for the original system. Note that we can also apply

additional variance reduction techniques of the first type to the modified estimator. In the

numerical illustrations at the end of Section 4, we choose a combination of the proposed

importance sampling technique (for rare event simulation purposes) and a multilevel Monte

Carlo approach (for additional variance reduction).

3.1 Multilevel Monte Carlo methods and their failure to solve Problem II

In this section, we consider the multilevel Monte Carlo (MLMC) estimator introduced by

[11, 7] as a variance reduction technique. For this, we denote by f(X̂`(t)), ` = 0, . . . , L,

an approximation of f(X(t)) using a numerical time integration method on a geometrical

hierarchy of time grids with time step sizes ∆` = 2−l−κ. Here, we use the parameter

κ to ensure that the numerical method is stable on the coarsest level. Furthermore, let

f(X̂−1(t)) = 0.

Then, the multilevel Monte Carlo estimator is defined (see e.g. [7, 6])

EL[f(X̂L(t))] :=

L∑

`=0

EN` [f(X̂`(t))− f(X̂`−1(t))],

where N` independent realisations of f(X̂`(t)) − f(X̂`−1(t)) are used for the standard

Monte Carlo estimator on each level.

There is a large literature on problems to which the MLMC approach has successfully

been applied, see e.g. [6] for a survey. In many of these applications, a remarkable re-

duction of computational complexity compared to the standard Monte Carlo estimation is

observed and a variance reduction of the underlying estimator is achieved.

In [7], a result on the optimal choice of levels L and of numbers of realisations N`, ` =

0, . . . , L, used on each of these levels is given for the multilevel Monte Carlo estimator.

However, the number of realisations depends on the variance of the standard Monte Carlo

estimators on each level, i.e. N` depends on the constant C` > 0 in the estimate

Var

[
EN` [f(X̂`(t))− f(X̂`−1(t))]

]
≤ C`2−` (13)
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for all ` = 0, . . . , L. By considering the variance of the Monte Carlo estimator on level 0, we

obtain

Var(EN0 [f(X̂0(t))]) =
1

N2
0

N0∑

i=1

Var(f(X̂
(i)
0 (t))) =

1

N0
Var(f(X̂

(1)
0 (t))).

Given an appropriately chosen initial time step size ∆t0, Var(f(X̂0(t))) can be assumed

to be close to Var(f(X0(t))). Consequently, for SODEs where the zero solution is stable

in the almost sure sense but mean-square unstable, we can deduce that the constant C0

becomes unreasonably large by the same considerations as for the standard Monte Carlo

estimator. Thus, we also have for the multilevel Monte Carlo estimator the performance

problem that we need prohibitively many realisations (at least on the coarsest level) to

obtain a certain accuracy. Although a reduction of computational cost is achieved by using

the coarser time grids compared to the standard Monte Carlo approach, it is still not possible

to simulate so many realisations that the rare trajectories for reproducing the mean-square

instability occur with sufficient frequency.

In the standard MLMC algorithm proposed in [7, 6], the number of realisations on each

level is computed by using the optimal choice of N` based on empirical estimators for the

variance of f(X̂`(t)) − f(X̂`−1(t)). However, the empirical estimators for the variance are

essentially zero due to the gap between almost sure and mean-square dynamics. Thus

a straightforward application of multilevel Monte Carlo techniques without focusing on rare

event simulation is not an appropriate approach in our setting. For this reason, we propose

below a rare event simulation procedure based on importance sampling where we force the

exploding trajectories to happen more frequently. Afterwards we can improve the modified

estimator by further variance reduction techniques, e.g. by multilevel Monte Carlo methods

as above.

3.2 Importance sampling

The main idea of importance sampling (see e.g. [8, 3, 14]) is to change the underlying prob-

ability measure (and therefore the distribution ofX(t)) in order to either reduce the variance

of the random variable f(X(t)) or in rare event simulations, to increase the frequency of

rare events in the Monte Carlo simulation.

Here we concentrate on the second aspect and transform the underlying probability

measure in a delicate way such that the exploding trajectories happen more often, but the

zero solution is still asymptotically a.s. stable.

A convenient way to transform the underlying probability measure is given by Girsanov’s

theorem (see [20]) which allows us to change the drift of the system. Let

dX̃(t) = ÃhX̃(t) dt+ σ
N∑

i=1

Ghi X̃(t) dβi(t) (14)
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be a (possibly non-linear) system of SODEs with modified drift

Ãh = Ah − σ
N∑

i=1

di(t, X̃(t))Ghi

for a set of real-valued functions dj : [0, T ]×Rd → R. We define a new probability measure

P̃ via the density process

dΘ(t) =
N∑

j=1

dj(t, X̃(t)) Θ(t) dβj(t). (15)

Under certain conditions on the functions dj , e.g. they fulfill Novikov’s condition (see [20])

we can apply Girsanov’s theorem, see e.g. [20, Theorem 46], which states that P and P̃ are

equivalent and the processes

γi(t) = −
t∫

0

di(s, X̃(s)) ds+ βi(t)

are Wiener processes under P̃. Consequently we have

E [f(X(t))] = E
[
f(X̃(t))Θ(t)

]

and we can use trajectories of Eq. (14) to estimate the quantity E [f(X(t))].

Concerning the choice of the weight functions dj we stipulate the following conditions:

• The rare events of exploding trajectories should happen more frequently.

• The computational effort for simulating Eq. (14) should not be larger than that for

simulating Eq. (8).

It is well-known in the literature (see [19]) that there exists an optimal choice d∗j (t, X̃(t))

for the weight functions for which the quantity f(X̃(t))Θ(t) becomes deterministic and con-

sequently the Monte Carlo estimator has variance 0.

Of course the optimal value is typically not known, and approximated solutions of the

corresponding Kolmogorov backward equation (as proposed in [19]) are non-trivial to ob-

tain. Additionally any choice of dj(t, X̃(t)) which is not constant results in a possibly high-

dimensional system of non-linear SODEs leading to additional numerical challenges as e.g.

to ensure the non-negativity of the density process Θ(t). To circumvent this problem we pro-

pose using only constant weight functions dj , which implies that the system (14) is linear

and the density process Θ(t) can be calculated explicitly.

Remark 3.1. In special cases, the optimal choice of weight functions d∗j (t, X̃(t)) for the

second moment are constants, e.g. for the geometric Brownian motion (3), where

X̃2(t)Θ(t) = X2
0 exp

[
2

(
λ− dσ − σ2

2

)
t− d2

2
t+ (2σ + d)β(t)

]
(16)
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is deterministic for d∗ = −2σ.

For multi-dimensional linear systems of SODEs with non-commuting drift and diffusion

matrices, a suitable choice of the weight functions is generally more challenging.

Our idea is the following: the asymptotic stability of the zero solution of the transformed

system (14) can be determined by its Lyapunov exponent Λ represented by (11) where the

kernel K̃(·) now takes the form

K̃(λ) =

〈(
Ah − σ

N∑

i=1

diG
h
i

)
λ, λ

〉
+

1

2
trace [D(λ)]− 〈D(λ)λ, λ〉 .

As before, see Eq. (12) in Section 2.2, the definiteness of K̃(·) is determined by the defi-

niteness of the matrix

K̃(λ) := Ah − σ
N∑

i=1

diG
h
i −D(λ) +

σ2

2

N∑

k=1

(
Ghk

)2

on SN−1. In fact for K̃(λ) (strictly) positive or negative definite, the function K̃(λ) is (strictly)

positive or negative definite and in consequence the top Lyapunov exponent is positive or

negative. As such, obtaining a positive top Lyapunov exponent is not desirable, as then

almost all the trajectories of the transformed system (14) would explode, which would result

in a wildly varying Monte Carlo estimator. However, the matrix K̃(λ) can also be indefinite,

which essentially means K̃(λ) ≥ 0 on some subset of SN−1, possibly yielding a larger

Lyapunov exponent than in the case of strictly negative definite K̃(λ).

As the (negative) Lyapunov exponent Λ measures the rate of exponential decay of the

trajectories of system (14), such an increase of Λ implies a slower decay of the solution

trajectories. The main idea now is to establish exactly this situation with judicious choices

of the di.

As the term
∑N

i=1 diG
h
i is a diagonal matrix, we cannot modify off-diagonal entries.

Therefore we use the weights di to compensate the influence of the diagonal entries of

−D(λ) + σ2

2

∑N
k=1

(
Ghk
)2

which are given by

(
−D(λ) +

σ2

2

N∑

k=1

(
Ghk

)2
)

ii

= σ2(
1

2
− λ2

i )

(
N∑

k=1

(Ghk,ii)
2

)
.

Measuring the distance between the diagonals with a least-squares approach we define the

optimisation problem

argmin
d1,...,dN∈R


trace



(
p̃

N∑

i=1

σ2(Ghi )2 + σ
N∑

i=1

diG
h
i

)2



 . (17)

The parameter p̃ > 0 allows us to control the definiteness of K̃, in principle one could

choose p̃ sufficiently large such that the Lyapunov exponent Λ gets positive.

The optimisation problem (17) requires us to solve a linear system of dimension N .
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Alternatively we can decompose (17) into N optimisation problems of the form

argmin
di∈R

[
trace

[(
p̃σ2(Ghi )2 + σdiG

h
i

)2
]]

= −p̃σ
∑N

k=1(Ghi,kk)
3

∑N
k=1(Ghi,kk)

2
(18)

for 1 ≤ i ≤ N , which can be solved analytically. For both cases the weights di with even

indices i are essentially zero, whereas for odd indices the values of |di| decrease with

growing i, see Table 1 in Section 4 for the values di, where N = 10. The corresponding

density process can be calculated explicitly and is given by

Θ(t) = exp

[(
−

N∑

i=1

d2
i

)
t

2
+

N∑

i=1

diβi(t)

]
. (19)

Note that for the stability analysis of the discretised stochastic heat equation (8), we

required that the noise is non-degenerate in the sense of Condition (10) to obtain the repre-

sentation (11) for the top Lyapunov exponent. Therefore, the number of Wiener processes

was required to be greater or equal N . However, the importance sampling technique pro-

posed above (and thus the optimisation problems (17) and (18)) can also be modified for

Eq. (8), when the number J of Wiener processes is smaller than the dimension N by ap-

propriately truncating the corresponding sums after the first J elements.

4 Numerical results

4.1 Monte Carlo estimators

Using the measure transformations from Section 3.2, we define the Monte Carlo estimator

ẼN [f(X̂(T )] =
1

N

N∑

i=1

f(X̂(i)(T ))Θ(i)(T ), (20)

where X̂(i)(T ) are numerical trajectories of the transformed system (14) and Θ(i)(T ) are

the corresponding trajectories of the density process given by (19). For calculating the

numerical trajectories we use the Euler-Maruyama method with a suitable time step size for

the geometric Brownian motion (3), whereas for the stochastic heat equation (6) we employ

the stochastic trapezoidal rule

X̂(tn+1) = X̂(tn) +
∆t

2
ÃhX̂(tn+1) +

∆t

2
ÃhX̂(tn) + σ

N∑

r=1

GrX̂n∆βnr ,

with βnr
iid∼ N (0,

√
tn+1 − tn), since the numerical treatment of the discretised stochastic

heat equation (8) requires us to use a numerical method with suitable stability properties. It

is straightforward to extend (20) to a multilevel Monte Carlo estimator which we denote by

ẼL[f(X̂(T )]. We want to estimate the quantity E|X(T )|2 and compare our estimators with

single and multilevel Monte Carlo estimators without modification.
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A reference solution can be obtained by using results from Section 2.2. For this, let

EY (T ) = (EY1(T ), . . . ,EYN2(T )) be the solution of the deterministic system (9) used for

the mean-square stability analysis of the semi-discretised stochastic heat equation. Since

Y (t) = vec(X(t)X(t)T ), we obtain a reference solution by

E|X(T )|2 =

N∑

i=1

EX2
i (T ) =

N−1∑

i=0

EY(i·N)+1(T ). (21)

4.2 Geometric Brownian motion

In Figure 1, we compare the performance of the standard Monte Carlo estimator and the

estimator defined in Eq. (20) applied to the geometric Brownian motion (3) with respect to

different diffusion parameter σ. For these numerical experiments, we fix the drift parameter

λ = −1 and the end time points T = 5 and T = 10. The time step size for the Euler-

Maruyama scheme, ∆t = 2−8, is chosen such that the stability of the numerical method

is guaranteed for all considered test cases. Furthermore, all Monte Carlo simulations are

based on M = 107 independent realisations.
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Figure 1: Monte Carlo simulations for the geometric Brownian motion (3) for λ = −1, and
varying σ. All Monte Carlo simulations use M = 107 trajectories.

As we can see in Figure 1, the standard Monte Carlo estimator fails to reproduce the

correct dynamics of the mean-square process. Note that there is hardly any difference in

the qualitative behaviour of the standard Monte Carlo estimator using the exact solution or

the numerical approximation based on the Euler-Maruyama scheme.

For the Girsanov transformation, we compare different choices of the parameter p̃. Here

the solution of the optimisation problem (17) takes the form d = −σp̃. First, the choice

p̃ = − λ
σ2 + 1

2 (note that −λ > 0 and d = λ/σ− σ/2) eliminates the deterministic part in the
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exact solution of the transformed system, i.e.

X̃(t) = x0 exp (σβ(t))

and for this reason, the zero solution is neither asymptotically a.s. stable nor unstable.

The resulting estimation is already a substantial improvement compared to standard Monte

Carlo estimators, however the mean-square process is still underestimated. Second, corre-

sponding to our considerations in Section 3.2 increasing the parameter p̃ leads to a larger

Lyapunov exponent. Since for large values of σ, it holds that − λ
σ2 + 1

2 < 1, we choose

d = −σ, i.e. p̃ = 1. For this choice the modified Monte Carlo estimator provides a better

approximation of E
[
X2(T )

]
. Finally, the case p̃ = 2 results in the optimal choice d∗ = −2σ

(see Remark 3.1).

4.3 Stochastic heat equation

In Figure 2 and 3, we compare the qualitative behaviour of the standard and multilevel

Monte Carlo estimators with and without measure transformation. We want to estimate the

quantity E|X(T )|2 for different σ and time points T . For the Q-Wiener process, we choose

the regularity parameter r = 1. To obtain reference solutions we carefully integrate the

deterministic Equation (9) and use the representation (21). For the standard Monte Carlo

simulations we use M = 211 realisations and a constant time step size ∆t = 2−11. For the

multilevel Monte Carlo simulations we use 5 levels, where we calculateM` = 211−` trajecto-

ries with time step sizes ∆t` = 2−(7+`) on the corresponding refinement level ` = 1, . . . , 5.

The Monte Carlo estimations after measure transformation (denoted by MC + ImpS and

MLMC + ImpS in the plots) are computed with the same set of parameters. Depending on

the optimisation criteria of Section 3.2 we distinguish between OPT1, where we minimised

Eq. (17), and OPT2, where we used Eq. (18). In Table 1 below, the computed weights

di, i = 1, . . . , N, are given for N = 10 for both optimisation problems. In Figures 2 and 3

we see that the standard as well as the multilevel Monte Carlo estimator fail to approximate

E|X(T )|2 correctly for σ > 2. Note that for 2 ≤ σ ≤ 3.4 the zero solution of system (6) is

still asymptotically mean-square stable, however the estimator substantially underestimates

E|X(T )|2 due to the rapid decrease of the solution paths. For the estimators after measure

transformation we see that the quality of the approximation strongly depends on the choice

of the parameter p̃ as we have discussed in Section 3.2. For p̃ = 1/2 the matrix K̃(λ) is still

negative definite. The results are obviously better than for the untransformed estimators,

nevertheless the approximations are not satisfying, especially for the larger time horizon

T = 5. Increasing the parameter (p̃ = 1, 3
2) leads to an indefinite matrix K̃(λ). For both

choices, we obtain good approximations of the qualitative behaviour of E|X(T )|2.

5 Conclusions

In this paper we analysed the Monte Carlo error for estimating the second moment of the so-

lution process of a linear system of SODEs with asymptotically a.s. stable but mean-square
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Table 1: List of computed non-zero weights di, i = 1, 3, 5, 7, 9, based on optimisation prob-
lems OPT1 (17) and OPT2 (18). All weights with even indices are essentially zero.

non-zero
weights OPT1 OPT2
d1 −1.201e− 02 −1.385e− 02
d3 −3.877e− 04 3.325e− 03
d5 −1.255e− 04 2.316e− 03
d7 9.046e− 05 1.469e− 03
d9 4.452e− 07 5.832e− 04

unstable zero solution. The mean-square instability of the equilibrium of such systems is

due to very rare, exploding trajectories. Since the standard Monte Carlo estimator essen-

tially computes the average over a finite number of realisations, the path-wise behaviour of

the numerical trajectories compromises the estimation and the Monte Carlo error for esti-

mating Ef(X(t)), where f(x) is a function with (at least) quadratic growth in |x|, is huge.

We further remark that this situation also causes difficulties in numerical experiments

testing the weak convergence properties of numerical methods for SDEs. Such numeri-

cal illustrations can be performed by simulations of the quantity |EM [X̂2(T )] − EX2(T )|.
However, for problems where the path-wise behaviour of the numerical realisation is totally

different to the dynamics of the mean-square process, the Monte Carlo error dominates the

systematic error by several orders of magnitude. Reducing the time step size will not lead

to the expected error reduction in numerical simulations.

As we showed in Section 3.1, with the straightforward application of standard variance

reduction techniques it is not possible to overcome these difficulties in our setting unless

they focus on rare event simulation. For this reason, we proposed an appropriately tuned

importance sampling technique which allows the trajectories to explode more frequently.

We want to emphasise that the developed measure transformation does not change the

linearity of the SDE system and can be precomputed. Thus, the proposed method does

not increase the computational complexity of simulating a realisation of the quantity of inter-

est. Furthermore, it is also possible to apply additional variance reduction methods to the

modified estimator for further reducing its variance.

In this work we also compared standard and multilevel Monte Carlo methods with and

without the proposed importance sampling technique and illustrated the improvement by

the proposed method in numerical experiments for a spatially discretised stochastic heat

equation.
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Figure 2: Monte Carlo methods for the spatially discretised stochastic heat equation (8) for
N = 10 and varying σ. The reference solution is computed by Eq. (21).
Left column: Importance sampling with differently penalised weights at T = 1.
Right column: Importance sampling with differently penalised weights at T = 5.
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Figure 3: Multilevel Monte Carlo methods for the spatially discretised stochastic heat equa-
tion (8) for N = 10 and varying σ. The reference solution is computed by Eq. (21).
Left column: Importance sampling with differently penalised weights at T = 1.
Right column: Importance sampling with differently penalised weights at T = 5.

References

[1] L. Arnold. “A formula connecting sample and moment stability of linear stochastic

systems”. In: SIAM J. Appl. Math. 44.4 (1984), pp. 793–802.

[2] L. Arnold. Stochastic differential equations: theory and applications. Translated from

the German. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974.



70 An importance sampling technique in Monte Carlo methods for SDEs

[3] S. Asmussen and P.W. Glynn. Stochastic Simulation. Algorithms and Analysis. Stochas-

tic Modelling and Applied Probability, 57. Springer, New York, 2007.

[4] E. Buckwar and T. Sickenberger. “A structural analysis of asymptotic mean-square

stability for multi-dimensional linear stochastic differential systems”. In: Applied Nu-

merical Mathematics 62.7 (2012), pp. 842–859.

[5] G. Da Prato and J. Zabczyk. Stochastic Equations in Infinite Dimensions. Encyclope-

dia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge,

1992.

[6] M. B. Giles. “Multilevel Monte Carlo methods”. In: Acta Numer. 24 (2015), pp. 259–

328.

[7] M. B. Giles. “Multilevel Monte Carlo path simulation”. In: Oper. Res. 56.3 (2008),

pp. 607–617.

[8] P. Glasserman. Monte Carlo Methods in Financial Engineering. Vol. 53. Springer Sci-

ence & Business Media, 2003.

[9] R. A. Horn and C. R. Johnson. Matrix analysis. Second Edition. Cambridge University

Press, Cambridge, 2013.

[10] P. Imkeller and C. Lederer. “Some formulas for Lyapunov exponents and rotation num-

bers in two dimensions and the stability of the harmonic oscillator and the inverted

pendulum”. In: Dyn. Syst. 16.1 (2001), pp. 29–61.

[11] A. Kebaier. “Statistical Romberg extrapolation: a new variance reduction method and

applications to option pricing”. In: Ann. Appl. Probab. 15.4 (2005), pp. 2681–2705.

[12] C. Kelly. “Stochastic stability analysis of a reduced galactic dynamo model with per-

turbed α-effect”. In: Phys. A 457 (2016), pp. 480–491.

[13] R. Khasminskii. Stochastic Stability of Differential Equations. Stochastic Modelling

and Applied Probability, 66. Springer, Heidelberg, 2012.

[14] P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations.

Applications of Mathematics, 23. Springer-Verlag, Berlin, 1992.

[15] F. Kozin and S. Sugimoto. “Relations between sample and moment stability for linear

stochastic differential equations”. In: Proceedings of the Conference on Stochastic

Differential Equations and Applications (Park City, Utah, 1976). Academic Press, New

York, 1977, pp. 145–162.

[16] K. Liu. Stability of Infinite Dimensional Stochastic Differential Equations with Applica-

tions. Chapman & Hall/CRC Monographs, Surveys in Pure, and Applied Mathematics

135, 2006.

[17] G. J. Lord, C. E. Powell, and T. Shardlow. An Introduction to Computational Stochastic

PDEs. Cambridge Texts in Applied Mathematics. Cambridge University Press, New

York, 2014.



REFERENCES 71

[18] X. Mao. Stochastic Differential Equations and their Applications. Horwood Publishing

Series in Mathematics & Applications. Horwood Publishing Limited, Chichester, 1997.

[19] G. N. Milstein and M. V. Tretyakov. Stochastic Numerics for Mathematical Physics.

Scientific Computation. Springer-Verlag, Berlin, 2004.

[20] P. E. Protter. Stochastic integration and differential equations. Second Edition. Vol. 21.

Stochastic Modelling and Applied Probability. Springer-Verlag, Berlin, 2005.

[21] W.-H. Steeb and Y. Hardy. Matrix calculus and Kronecker product. A practical ap-

proach to linear and multilinear algebra. Second. World Scientific Publishing Co. Pte.

Ltd., Hackensack, NJ, 2011.

[22] D. Talay and L. Tubaro. “Expansion of the global error for numerical schemes solving

stochastic differential equations”. In: Stochastic Anal. Appl. 8.4 (1990), pp. 483–509.



72 An importance sampling technique in Monte Carlo methods for SDEs



3 Importance sampling techniques for stochastic par-

tial differential equations

E. Buckwar and A. Thalhammer

In this work we consider importance sampling techniques for stochastic partial differential

equations (SPDE) based on an infinite dimensional version of the well-known Girsanov the-

orem. For this we develop construction techniques for measure transformations that can

be used in numerical experiments for variance reduction purposes of the infinite dimen-

sional equations. The key advantage of the proposed methods is that these techniques

are independent of the (spatial) discretisation of the SPDE and that the difference in the

computational effort between simulating the numerical trajectories for the standard Monte

Carlo estimator and for the importance sampling methods is only the approximation of a

linear, one-dimensional SODE. Besides the analysis of the infinite dimensional framework,

various approximation and implementation issues are discussed. We conclude by present-

ing numerical experiments showing the effectiveness of the proposed techniques due to a

remarkable reduction of the Monte Carlo error.

Key words. Variance reduction techniques, Importance sampling, Stochastic partial differ-

ential equations, Monte Carlo methods

AMS subject classifications. 60H15, 60H35, 35R60, 65C05, 62J10

1 Introduction

In many fields of science, stochastic partial differential equations (SPDEs) are used to

model problems with uncertainties. Since the importance of such SPDE-based models

increases constantly, it is necessary to develop efficient numerical methods in order to be

able to cope with the computational complexity of the numerical experiments. In many

of these applications, the quantities of interest are the statistics of the underlying solution

process at a given time T , i.e. we want to estimate the quantity E[ϕ(X(T ))] for a sufficiently

smooth mapping ϕ : H → B, where H and B are separable Hilbert spaces and X(T )

denotes theH-valued mild solution of a semilinear SPDE. Due to the fact that it is in general

not possible to compute the expectation of ϕ(X(T )) explicitly, we have to rely on suitable

estimators. Thus, besides issues concerning the spatial and temporal discretisation of the

SPDE and the approximation of the noise, we have to additionally discretise the probability

space, when we want to estimate the expectation.

73
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The goal of this work is to derive and implement numerical methods that enhance the

efficiency of the standard Monte Carlo estimator given by

E[ϕ(X(T ))] ≈ EM [ϕ(X(T ))] :=
1

M

M∑

i=1

ϕ(X(i)(T )),

where X(i)(T ) are M independent realisations of the mild solution X(T ) defined in (2.4)

below. For the resulting approximation error, also called the Monte Carlo error, the following

result can be found in [4]: For a random variable Y ∈ L2(Ω;B), i.e. E[‖Y ‖2B] < ∞, the

Monte Carlo error can be expressed by

‖E[Y ]− EM [Y ]‖L2(Ω;B) =
1√
M

VarB[Y ]1/2, (1.1)

where the variance in the Hilbert space B is defined as VarB[Y ] := E[‖Y −E[Y ]‖2B]. Thus,

increasing the number of samples M obviously leads to a decrease in the Monte Carlo

error. However, this is not always suitable due to the high computational cost of the involved

numerical realisations and the rather slow convergence rate of the Monte Carlo estimator

(with respect to the number of samples M ) attaining only O(M−1/2).

Especially, if we are dealing with approximations of mild solutions of SPDEs, an increase

of the sample size is severely limited because of the complexity of the simulations. Thus, in

order to make Monte Carlo estimators more efficient, we apply appropriate variance reduc-

tion techniques. These are Monte Carlo-type methods using instead of the original quantity

of interest Y independent realisations of a random variable Ỹ satisfying E[Y ] = E[Ỹ ] and

VarB[Ỹ ] � VarB[Y ], see e.g. [17, 9] for an overview of variance reduction techniques in

the finite dimensional setting. In this article, we develop measure transformations of the

underlying probability measure P based on an infinite dimensional version of the Girsanov

theorem in order to reduce the variance of the transformed random variables Ỹ . This vari-

ance reduction technique is called importance sampling and has already been successfully

applied to SODEs, see [17, 15, 1].

Note that importance sampling in the context of variance reduction techniques for SPDEs

has already been treated in the literature, see e.g. [1, 16]. There are also optimal measure

transformations, where optimality has to be understood in the sense that the corresponding

measure transformation leads to a vanishing Monte Carlo error, see e.g. Section 4.1 of this

article and [16] for SPDEs driven by a finite number of standard Wiener processes. How-

ever, in both cases it is highly non-trivial to compute these optimal measure transformations

or at least to find a sufficiently good approximation of them. Thus, such techniques are not

optimal from a computational point of view.

In this work, we construct families of infinite dimensional measure transformations that

can be used for variance reduction purposes in numerical simulations of E[ϕ(X(T ))].

These measure transformations are constructed in such a way that they can easily be im-

plemented and that the computational effort to simulate the numerical trajectories of the

transformed process is just slightly higher than the cost for simulating the original solution
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trajectories. Theoretical optimality results such as the one presented in Section 4.1 are

used as guidance for the design of such families of measure transformations and in par-

ticular motivate the use of path-dependent transformations. As numerical experiments in

Section 6 show, the variance can be significantly reduced by using the considered trans-

formations and thus, the Monte Carlo error based on the proposed importance sampling

techniques is considerably reduced.

The authors in [1] presented an importance sampling technique based on finite dimen-

sional considerations: First, the underlying SPDE (the one-dimensional stochastic heat

equation) is spatially discretised by using finite differences on a fixed spatial mesh and af-

terwards importance sampling is applied to the resulting system of SODEs. In contrast,

we apply the proposed importance sampling techniques directly to the infinite dimensional

SPDE to reduce the variance of the original quantity of interest. Afterwards any spatial dis-

cretisation scheme can be applied to the transformed equation. This has the big advantage

that the importance sampling method is independent of the chosen spatial discretisation

scheme and consequently we do not have to exploit special structures of the finite dimen-

sional SODE systems.

The flow chart in Figure 1 summarises the importance sampling techniques for SPDEs

driven by infinitely many standard Wiener processes. In this work, we develop the approach

following the bold arrows. The dashed arrows indicate alternative methods that have already

been treated in the literature.

Besides importance sampling there are also other variance reduction techniques for

SPDEs, e.g. control variates or multilevel Monte Carlo methods. Especially the latter meth-

ods, see e.g. [2, 4], reduce the complexity of estimating E[ϕ(X(T ))] remarkably and we

want to emphasize that these methods could be further enhanced by a coupling with the

proposed importance sampling techniques from this article.

The outline of this paper is as follows: In Section 2 we briefly discuss the general frame-

work and in Section 3, we recall basic results for measure transformations for semilinear

SPDEs based on the infinite dimensional Girsanov theorem for Q-Wiener processes. In

Section 3.1, we present a method how such measure transformations can be constructed.

We are discussing in Section 4 how these measure transformations can be used in order

to reduce the Monte Carlo error and we are able to prove the existence of an optimal mea-

sure transformation in Section 4.1, for which the Monte Carlo error vanishes completely. In

Section 5, we provide a framework that enables us to couple the importance sampling tech-

niques with spatial and temporal discretisation schemes. Finally, we conclude this article

by presenting numerical experiments in Section 6, where we could achieve a remarkable

improvement in the efficiency of the standard Monte Carlo estimator.

2 Framework

Let (Ω,F , {Ft}t∈[0,T ],P) denote a complete probability space with a filtration {Ft}t∈[0,T ]

satisfying the usual conditions. In this article we consider semilinear stochastic partial dif-
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X(T ) Xψ(T )

ϕ(Xh(T )) ϕ(Xψ
h (T ))Θ(T )

EM [ϕ(Xh(T ))] EM [ϕ(Xψ
h (T ))Θ(T )]

discretising

in infinite dimensions

Importance sampling

dependent on spatial discretisation

Importance sampling

discretising

MC estimator MC estimator

Figure 1: Overview of importance sampling techniques for stochastic partial differential
equations driven by Q-Wiener processes.

ferential equations (SPDEs) on a separable Hilbert space (H, 〈·, ·〉H) given by

dX(t) = [AX(t) + F (X(t))] dt+G(X(t)) dW (t), X(0) = X0. (2.1)

Here,−A is assumed to be a densely defined, linear, symmetric and positive definite opera-

tor −A : D(−A) ⊂ H → H and it is assumed to be the generator of an analytic semigroup

S(t), t ∈ [0, T ]. The domain of the fractional powers of the operator −A, which we denote

by Ḣr := D((−A)r/2), r ∈ R, endowed with the inner product

〈·, ·〉r := 〈(−A)r/2·, (−A)r/2·〉H

also form separable Hilbert spaces, for details see [11] and the references therein. Using

this notation, we assume that the initial value satisfies X0 ∈ L2(Ω, Ḣ1), where for any

Hilbert space H

L2(Ω, H) := {v : Ω→ H | v is strongly measurable, ‖v‖2L2(Ω;H) := E[‖v‖2H ] <∞}.

Furthermore, let W be an H-valued Q-Wiener process with covariance operator Q ∈
L(H) being a symmetric, non-negative definite, trace class operator. We denote by {ek}k∈N
the eigenfunctions of Q, which form an orthonormal basis of H . Due to the trace class

property of the covariance operator, the corresponding eigenvalues {µk}k∈N are summable,

i.e. tr(Q) =
∑∞

k=1 µk < ∞. Based on these properties the Q-Wiener process can be

represented by (see e.g. [7, 19, 14] and the references therein)

W (t) =

∞∑

k=1

√
µkekβk(t), (2.2)

where {βk(t), t ∈ [0, T ]}k∈N is a sequence of independent, real-valued Brownian motions.

Additionally, since Q is non-negative definite, the square-root of the operator Q is well-
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defined, i.e. for all φ ∈ H

Q1/2φ =

∞∑

k=1

√
µk〈φ, ek〉Hek (2.3)

exists. In the following part, we denote by Q−1/2 the pseudo-inverse of Q1/2, see [19,

Appendix C]. Using the representation of the square-root operator Q1/2 given in Equation

(2.3), we define the space H0 := Q1/2(H), which together with the norm | · |0 induced by

the inner product

〈φ1, φ2〉0 = 〈Q−1/2φ1, Q
−1/2φ2〉H =

∞∑

k=1

1

µk
〈φ1, ek〉H〈φ2, ek〉H , φ1, φ2 ∈ H0,

forms a separable Hilbert space, see [8], with orthonormal basis {√µkek}k∈N.

Moreover, we denote by LHS(H0, H) the space of all Hilbert-Schmidt operators map-

ping from H0 to H . Finally, we assume that the drift operator F : H → H and the diffusion

operator G : H → LHS(H0, H) satisfy the following Lipschitz continuity and linear growth

condition, see [4, Assumption 2.2]:

Assumption 2.1. Assume that there exist constants C1, C2 > 0 such that for all φ, φ1, φ2 ∈
H it holds that

‖F (φ)‖H + ‖G(φ)‖LHS(H0,H) ≤ C1(1+‖φ‖H),

‖F (φ1)− F (φ2)‖H + ‖G(φ1)−G(φ2)‖LHS(H0,H) ≤ C2‖φ1 − φ2‖H .

If Assumption 2.1 is fulfilled, then Equation (2.1) has a unique H-valued mild solu-

tion X(t) (see [11, Theorem 2.25]), i.e., there exists an up to modifications unique, Ft-
predictable, H-valued stochastic process X : [0, T ]→ H such that for all t ∈ [0, T ] it holds

P-a.s that

sup
t∈[0,T ]

‖X(t)‖L2(Ω;H) <∞

and

X(t) = S(t)X0 +

∫ t

0
S(t− s)F (X(s)) ds+

∫ t

0
S(t− s)G(X(s)) dW (s). (2.4)

3 Measure transformations for SPDEs

In this section we first recall basic results on measure transformations for SPDEs. After-

wards we present in Section 3.1 a technique how these measure transformations can be

constructed such that approximations of the involved transformation operators can be effi-

ciently implemented for numerical simulations. Motivated by examples of finite dimensional

measure transformations for SODE systems, we derive explicit representations of transfor-
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mations in infinite dimensions, for which numerous numerical experiments are presented in

Section 6.

The considered measure transformations are based on the following infinite dimensional

version of the Girsanov theorem, see [7, Theorem 10.14]:

Theorem 3.1. Assume that ψ(t), t ∈ [0, T ], is an H0-valued Ft-predictable process such

that the density process

Θ(t) = exp

(∫ t

0
〈ψ(s), dW (s)〉0 −

1

2

∫ t

0
|ψ(s)|20 ds

)

is a martingale. Then, the process

Ŵ (t) = W (t)−
∫ t

0
ψ(s) ds, t ∈ [0, T ] (3.1)

is a Q-Wiener process with respect to {Ft}t∈[0,T ] on the probability space (Ω,F , P̂), where

dP̂ = Θ(T ) dP.

If the weight operator ψ(t), t ∈ [0, T ], is chosen appropriately according to Theorem

3.1, then one can apply the corresponding measure transformation to SPDE (2.1). Thus,

we obtain with respect to the (transformed) probability space (Ω,F , P̂) the following SPDE

Xψ(t)−X0 =

∫ t

0
[AXψ(s) + F (Xψ(s))] ds+

∫ t

0
G(Xψ(s)) dŴ (s)

=

∫ t

0
[AXψ(s) + F (Xψ(s))−G(Xψ(s))ψ(s)] ds+

∫ t

0
G(Xψ(s))dW(s).

(3.2)

Since the coefficients F and G satisfy Assumption 2.1, there exists a unique mild solution

Xψ(t) of the transformed SPDE (3.2) (with respect to the new probability measure P̂) given

by

Xψ(t) = S(t)X0 +

∫ t

0
S(t− s)[F (Xψ(s))−G(Xψ(s))ψ(s)] ds

+

∫ t

0
S(t− s)G(Xψ(s)) dW (s).

(3.3)

Note that Θ(t) can be represented in terms of the sequence of independent, scalar

Brownian motions from the Karhunen-Loève expansion (2.2), i.e.

Θ(t) = exp

( ∞∑

k=1

∫ t

0

1√
µk
〈ψ(s), ek〉H dβk(s)−

1

2

∞∑

k=1

∫ t

0

1

µk
〈ψ(s), ek〉2H ds

)
.

Thus, the density process Θ(t) can be seen as the solution of the one-dimensional SDE



E. Buckwar and A. Thalhammer 79

driven by infinitely many independent one-dimensional Brownian motions, i.e.

dΘ(t) = Θ(t)〈ψ(t), dW (t)〉0 = Θ(t)

( ∞∑

k=1

1√
µk
〈ψ(s), ek〉H dβk(t)

)
,

Θ(0) = 1.

(3.4)

Unfortunately, the martingale property of the density process Θ(t) in Theorem 3.1 is not

fulfilled for arbitrary choices of ψ(t) since in general Θ(t) is only a supermartingale and for

this reason E[Θ(T )] ≤ 1, see [13, Appendix I]. However, under the condition

P
(∫ T

0
|ψ(s)|20 ds <∞

)
= 1 (3.5)

the density process can be represented by a one-dimensional stochastic exponential, see

[7, Lemma 10.15], given by

Θ(t) = exp

(∫ t

0
|ψ(s)|0 dβ(s)− 1

2

∫ t

0
|ψ(s)|20 ds

)
for t ∈ [0, T ], (3.6)

where β(t), t ∈ [0, T ], denotes a scalar Brownian motion. If condition (3.5) is fulfilled, then

it is sufficient to show that the stochastic exponential (3.6) is a martingale. Due to the fact

that the considered stochastic process from Equation (3.6) is now one-dimensional and

real-valued, standard results from finite dimensional stochastic calculus can be applied.

Hence, the martingale property of (3.6) can be verified e.g. by Novikov’s condition, see

e.g. [18, 20],

E
[
exp

(
1

2

∫ t

0
|ψ(s)|20 ds

)]
<∞. (3.7)

3.1 Constructing measure transformations

In this section, we present a method to construct weight operators ψ(t), t ∈ [0, T ], that fulfil

the rather strong assumptions of the Girsanov theorem for infinite dimensional Q-Wiener

processes as stated in Theorem 3.1. Recall that a suitable weight operator ψ has to fulfil

that it is an H0-valued and Ft-predictable process and that the induced density process

Θ(t) has to be a martingale. The proposed construction method looks as follows:

At first, we start by choosing an H-valued, Ft-predictable process Ψ(t) as an initial

guess for the weight operator, where the particular choice of Ψ might be motivated by

already existing finite dimensional examples. In the next step Ψ is projected onto H0 by

using the mapping PH0 given by

ψ(s) = PH0Ψ(s) =

∞∑

k=1

µk〈Ψ(s), ek〉Hek for all s ∈ [0, T ], (3.8)

which guarantees that ψ(s) ∈ H0 for all s ∈ [0, T ].

Since the density process can be represented by the stochastic exponential (3.6) under
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Condition (3.5), we want to construct ψ in a way such that this condition is fulfilled. A

sufficient condition for (3.5) to hold is that the weight operator is uniformly bounded in the

H0-norm, i.e. there exists a constant C0 > 0 such that sups∈[0,T ] |ψ(s)|0 ≤ C0 < ∞. If the

weight operator is uniformly bounded, then the martingale property of Θ(t) follows directly

from Novikov’s condition (3.7).

If we cannot show the uniform boundedness of the weight operator ψ (with respect to

the H0-norm) we have to find a suitable truncation of the initial process Ψ denoted by Ψ

such that there exists a constant C1 > 0 with

sup
k∈N

sup
s∈[0,T ]

|〈Ψ(s), ek〉H | ≤ C1 <∞.

Then, we obtain

|ψ(s)|20 =
∞∑

k=1

µk〈Ψ(s), ek〉2H ≤ C2
1 tr(Q) <∞

and thus, Novikov’s condition (3.7) is fulfilled.

In the remainder of this section, we present two examples of such measure transforma-

tions that are not only of theoretical interest, but can also been implemented for numerical

experiments. For these two examples, we specify the Hilbert space H to be L2(D), where

D denotes a bounded domain. Furthermore, we assume that the eigenfunctions {ek}k∈N
of the covariance operator Q are uniformly bounded by a constant Ce > 0, i.e., there exists

a constant Ce > 0 such that for all j ∈ N it holds that ‖ej‖L∞(D) ≤ Ce <∞. An example of

an SPDE that fulfils all these assumptions is given e.g. by the stochastic heat equation with

multiplicative noise defined in Section 6.

Time-constant weight operator

The main idea of the time-constant weight operator is motivated by the importance sampling

technique presented in [1]. For this let {ψk}k∈N be a bounded, real-valued sequence, i.e.,

there exists a constant M > 0 such that |ψk| ≤M for all k ∈ N. Then, we define

ψ(s) =
∞∑

k=1

µkψk〈1, ek〉Hek (3.9)

for all s ∈ [0, T ]. Note that the weight operator (3.9) is uniformly bounded in the H0-norm,

since it holds for all k ∈ N that |〈ψk, ek〉L2(D)| ≤ CeM |D|, where |D| denotes the volume

of domain D. For this reason, Condition (3.5) is automatically fulfilled and therefore, the

corresponding density process

Θ(t) = exp

( ∞∑

k=1

√
µkψk〈1, ek〉Hβk(t)−

t

2

∞∑

k=1

µkψ
2
k〈1, ek〉2H

)
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is a martingale by Novikov’s condition (3.7). Thus, all conditions of Theorem 3.1 are fulfilled

and the measure transformation based on the weight operator from Equation (3.9) can be

applied.

Truncated path-dependent weight operator

We want to construct a weight operator ψ : [0, T ] × H → H0 that also depends on the

pathwise behaviour of the mild solution of SPDE (2.1). Note that such path-dependent

weight operators and the corresponding measure transformations are commonly used for

finite dimensional problems as it is described e.g. in [10, 16].

For constructing such path-dependent weight operators, we specify in this example that

the diffusion operator is chosen to be a Nemytskii operator induced by a Lipschitz continu-

ous function γ : R→ R, i.e., (G(u)v)[x] := γ(u(x))v(x) for all v ∈ H0 and x ∈ D.

For the choice of the initial process Ψ, we consider a bounded approximation G of

the diffusion operator G. Subsequently, G is based on a bounded Lipschitz continuous

function γ that approximates (e.g. by truncation) the corresponding Lipschitz continuous

function γ. More specifically, we assume that there exists a constant CG > 0 such that

γ : R → [−CG, CG]. Note that for Nemytskii operators that are already induced by a

bounded, Lipschitz continuous function γ, such as e.g. γ(x) = sin(x), G can be chosen as

G. Examples of such truncated operators G are presented in Section 6.

Note that the operator G(φ) is for all φ ∈ H a Hilbert-Schmidt operator mapping from

H0 to H , since

‖G(φ)‖2LHS(H0,H) =
∞∑

j=1

‖G(φ)
√
µjej‖2H =

∞∑

j=1

µj

∫

D
|γ(φ(x))ej(x)|2 dx

≤ C2
G

∞∑

j=1

µj‖ej‖2H = C2
G tr(Q) <∞.

In the next step, we choose an element η ∈ H0 such that there exists a constant

Cη > 0 with ‖η‖H ≤ Cη and define Ψ(s) := cG(Xψ(s))η, where the scaling parameter

c ∈ R controls the intensity of the measure transformation.

Since Ψ̄(s) is H-valued, we have to project G(Xψ(s))η onto H0. Thus, we define the

truncated path-dependent weight operator as

ψ(s) = ψ(s,Xψ(s)) := PH0Ψ(s) = c
∞∑

k=1

µk〈G(Xψ(s))η, ek〉Hek. (3.10)

Note that instead of using a single scaling parameter c, one could also introduce a se-

quence {ck}k∈N, where each of the elements ck denotes a separate scaling for each of

the summands in (3.10). However, for notational convenience we restrict ourselves to the
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single parameter setting in this article. With this choice, we obtain

|ψ(s,Xψ(s))|20 =

∞∑

k=1

1

µk

〈
c

∞∑

l=1

µl〈G(Xψ(s))η, el〉Hel, ek
〉2

H

= c2
∞∑

k=1

µk〈G(Xψ(s))η, ek〉2H

≤ (cCGCη)
2 tr(Q) <∞.

Hence, Conditions (3.5) and (3.7) are both fulfilled and for this reason the density process

is a martingale. For the Ft-predictability of the weight operator ψ(t) it is sufficient to show

that the transformed SPDE (3.2) has a unique mild solution Xψ(t) with respect to the trans-

formed probability measure P̂. However, this is automatically fulfilled since F and G satisfy

Assumption 2.1 and for this reason, there exists a uniqueFt-predictable mild solutionXψ(t)

to the transformed SPDE (3.2). Thus, all conditions from Theorem 3.1 are fulfilled and the

measure transformation based on the path-dependent weight operator (3.10) can be ap-

plied.

4 Variance reduction by importance sampling

In this section, we examine how we can exploit the measure transformations introduced in

Section 3 for variance reduction purposes. Based on the notation above, let X(T ) denote

the (mild) solution of SPDE (2.1) and let Xψ(T ) be the corresponding (mild) solution of

the transformed SPDE (3.2) based on an appropriate weight operator ψ. Then, due to the

Girsanov theorem, we get

EP[ϕ(X(T ))] = EP̂[ϕ(Xψ(T ))] = EP[ϕ(Xψ(T ))Θ(T )],

where ϕ : H → B and (B, 〈·, ·〉B) denotes a separable Hilbert space. Thus, by using a

Monte Carlo estimator based on independent realisations of ϕ(Xψ(T ))Θ(T ) instead of sim-

ulating independent samples of ϕ(X(T )) we obtain an unbiased estimator for E[ϕ(X(T ))].

The goal is now to find a weight operator ψ(t), t ∈ [0, T ], such that

VarB[ϕ(Xψ(T ))Θ(T )]� VarB[ϕ(X(T ))],

which by Equation (1.1) implies that the Monte Carlo error is reduced.

As it is also indicated in [9] for the finite dimensional setting, importance sampling is a

strong tool for variance reduction and the choice of the weight operator ψ(s), s ∈ [0, T ],

is crucial for a successful application of importance sampling. In particular, one has to be

aware of the fact that it is also possible to enlarge the variance of the underlying random

variable dramatically by choosing an inappropriate weight operator ψ.

From a computational point of view, it is also very important to find a balance between

the computational cost of computing the importance sampling technique and its reduction
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of the variance of the quantity of interest. Thus, optimal importance sampling techniques

or at least approximations of such measure transformations might not be suitable for imple-

mentations if the computational cost for computing these measure transformations exceeds

the computational complexity of solving the original problem.

For this reason, we proceed as follows: We first present in Section 4.1 an optimal

measure transformation such that the variance of ϕ(Xψ(T ))Θ(T ) vanishes. Afterwards,

we discuss how we can use this optimal measure transformation as guidance for defining

measure transformations that lead to variance reduction techniques that can be efficiently

implemented. Numerical experiments in Section 6 show the effectiveness of the resulting

importance sampling methods.

4.1 Optimal variance reduction

In this section, we want to optimise the above importance sampling technique with respect

to the weight operator ψ(t), t ∈ [0, T ]. The term optimal has to be understood in the sense

that the variance of ϕ(Xψ(T ))Θ(T ) vanishes for a fixed time point T with respect to the

mapping ϕ. This is summarised in the following definition:

Definition 4.1. The importance sampling weight operator ψ̃ : [0, T ] → U0 is called ϕ-

optimal with respect to time T if

VarB[ϕ(X ψ̃(T ))Θ(T )] = 0.

Such optimal variance reduction techniques have already been developed for different

types of SDEs. In [16, Chapter 4], the authors proposed an importance sampling technique

combined with a control variate approach for strong solutions of parabolic SPDEs that would

eliminate the Monte Carlo error completely. However, this is only possible if the SPDE (2.1)

is driven by finitely many standard Wiener processes. Moreover, the resulting methods

require the simulation of an additional SDE system and of additional Wiener processes.

In this section, we want to find such an optimal importance sampling method for mild

solution of SPDEs driven by general Q-Wiener processes. The proof for this can be seen

as the infinite dimensional counterpart of the proof presented in [17, Theorem 4.1], where

the optimality result in finite dimensions is shown by using the solution of the correspond-

ing Kolmogorov backward equation and the Itô formula. However, the techniques used in

the proof of the finite dimensional result cannot be applied directly. As a remedy we con-

struct the ϕ-optimal measure transformation as the limit of a sequence of optimal measure

transformations, where the unbounded operatorA is replaced by its Yosida approximations.

Remark 4.2. Results extending the Itô formula to mild solutions as presented in [6] cannot

be applied in the same manner since the proof of the optimality result relies on a specific

interplay of the solution of the underlying Kolmogorov backward equation and the Itô formula

that is not present if one applies the mild Itô formula from [6].

For the optimal weight operator ψ(t), t ∈ [0, T ], we have to ensure additionally that there
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exists a unique solution u to the Kolmogorov backward equation of SPDE (2.1) given by

Lu(t, x) =
∂u(t, x)

∂t
+

〈
Ax+ F (x),

∂u(t, x)

∂x

〉

H

+
1

2
tr

(
∂2u(t, x)

∂x2
(G(x)Q1/2)(G(x)Q1/2)∗

)
= 0, for t ∈ [0, T ), (4.1)

u(T, x) = φ(x).

For this reason, we have to introduce the following assumption within this section:

Assumption 4.3. The first and second Fréchet derivatives of F and G are continuous and

bounded and satisfy the two conditions:

1 there exists a constant M1 > 0 such that for all x, y ∈ H

‖DF (x)y‖H + ‖DG(x)y‖LHS(H0,H) ≤M1‖y‖H ,

2 there exists a constant M2 > 0 such that for all x, y, z ∈ H

‖D2F (x)(y, z)‖H + ‖D2G(x)(y, z)‖LHS(H0,H) ≤M2‖y‖H‖z‖H .

Under this assumption there exists by [8, Theorem 3.11] a unique solution to (4.1) that

is used to construct a ϕ-optimal weight operator ψ(t), t ∈ [0, T ] in the following theorem:

Theorem 4.4. Let the initial value X0 ∈ Ḣ1 be deterministic and let ϕ : H → R+
0 be a

bounded functional with bounded first and second Fréchet derivatives and ϕ(h) > 0 for all

h ∈ H \ {0}. Additionally assume that the coefficients of SPDE (2.1) satisfy Assumptions

2.1 and 4.3. Finally let u : [0, T ]×H → R denote the solution of the Kolmogorov backward

equation (4.1) of SPDE (2.1).

Then, the choice

ψ̃(s) =
∞∑

k=1

ψ̃k(s,X
ψ̃(s))ek

= −
∞∑

k=1

µk

u(s,X ψ̃(s))

〈
∂u

∂x
(s,X ψ̃(s)), G(X ψ̃(s))ek

〉

H

ek

(4.2)

is ϕ-optimal if the resulting density process Θ(t), t ∈ [0, T ], is a martingale.

Proof. Let ρ(A) be the resolvent set of A and let 0 < `0 ∈ ρ(A). Then for ` ≥ `0 we

consider the SPDEs defined by

dXψ
` (t) =

[
A`X

ψ
` (t) + F (Xψ

` (t))−G(Xψ
` (t))ψ`(t)

]
dt

+G(Xψ
` (t)) dW (t),

(4.3)

with initial value X`(0) = X0, where A` = `R(`;A) and R(`;A) denotes the resolvent

operator ofA. By [12, Proposition 1.3.6], there exists a unique strong solution to SPDE (4.3)
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and due to Assumptions 2.1 and 4.3, there exists a unique solution u` to the Kolmogorov

Backward Equation given by (see [8, Theorem 3.11])

Lu`(t, x) =
∂u`(t, x)

∂t
+

〈
A`x+ F (x),

∂u`(t, x)

∂x

〉

H

+
1

2
tr

(
∂2u`(t, x)

∂x2
(G(x)Q1/2)(G(x)Q1/2)∗

)
= 0, for t ∈ [0, T ),

(4.4)

u`(T, x) = φ(x).

Since there exists a unique strong solution to (4.3) we can apply the integration by parts

formula from [5, Corollary 2.6.]

u`(t,X
ψ
` (t))Θ`(t) = u`(0, X0)

+

∫ t

0

(
Lu`(s,Xψ

` (s))−
〈
∂u`
∂x

(s,Xψ
` (s)), G(Xψ

` )(s)ψ`(s)

〉

H

)
Θ`(s) ds

+

∫ t

0

∞∑

n=1

〈
∂u`
∂x

(s,Xψ
` (s)), G(Xψ

` (s))Q1/2en

〉

H

Θ`(s)〈ψ`(s), Q1/2en〉0 ds

+

∫ t

0
u`(s,X

ψ
` (s))Θ`(s)〈ψ`(s), dW (s)〉0

+

∫ t

0
Θ`(s)

〈
∂u`
∂x

(s,Xψ
` (s)), G(Xψ

` (s)) dW (s)

〉

H

.

(4.5)

Note that Lu` = 0, since u` solves the Kolmogorov backward equation (4.4). In the next

step, we show that the remaining deterministic integrals in Equation (4.5) are equal. For

this, note that for all s ∈ [0, T ] and n ∈ N

〈ψ`(s), Q1/2en〉0 =
1√
µn
〈ψ`(s), en〉H .

Hence, we get that

∫ t

0

∞∑

n=1

〈
∂u`
∂x

(s,Xψ
` (s)), G(Xψ

` (s))Q1/2en

〉

H

Θ`(s)〈ψ`(s), Q1/2en〉0 ds

=

∫ t

0

∞∑

n=1

〈
∂u`
∂x

(s,Xψ
` (s)), G(Xψ

` (s))en

〉

H

Θ`(s)〈ψ`(s), en〉H ds

=

∫ t

0

〈
∂u`
∂x

(s,Xψ
` (s)), G(Xψ

` (s))
∞∑

n=1

〈ψ`(s), en〉Hen
〉

H

Θ`(s) ds

=

∫ t

0

〈
∂u`
∂x

(s,Xψ
` (s)), G(Xψ

` (s))ψ`(s)

〉

H

Θ`(s) ds.

Thus, the two deterministic integrals in Equation (4.5) are equal and therefore, the difference
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between these two integrals vanishes. Consequently, Equation (4.5) reduces to

u`(t,X
ψ
` (t))Θ`(t) = u`(0, X0) +

∫ t

0
u`(s,X

ψ
` (s))Θ`(s)〈ψ`(s), dW (s)〉0

+

∫ t

0
Θ`(s)

〈
∂u`
∂x

(s,Xψ
` (s)), G(Xψ

` (s)) dW (s)

〉

H

=: I + II + III.

Note that I is deterministic,

II =
∞∑

k=1

1√
µk

∫ t

0
u`(s,X

ψ
` (s))Θ`(s) 〈ψ`(s), ek〉H dβk(s),

III =

∞∑

k=1

∫ t

0
Θ`(s)

√
µk

〈
∂u`
∂x

(s,Xψ
` (s)), G(Xψ

` (s))ek

〉

H

dβk(s).

Thus, by defining for all k ∈ N and s ∈ [0, T ]

ψ̃`k(s,X
ψ̃`
` (s)) := − µk

u`(s,X
ψ̃`
` (s))

〈
∂u`
∂x

(s,X ψ̃`
` (s)), G(X ψ̃`

` (s))ek

〉

H

,

the importance sampling weight function

ψ̃`(s,X
ψ̃`
` (s)) =

∞∑

k=1

ψ̃`k(s,X
ψ̃`
` (s))ek

is ϕ-optimal at time t = T since for all t ∈ [0, T ] it holds that

u`(t,X
ψ̃`
` (t))Θ`(t) = u`(0, X0)

is deterministic. This is in particular valid for time point t = T , at which by Equation (4.4)

u`(T,X
ψ̃`
` (T ))Θ`(T ) coincides with ϕ(X ψ̃`

` (T ))Θ`(T ). Hence, by considering the limit with

respect to `→∞ we get

lim
`→∞

ϕ(X ψ̃`
` (T ))Θ`(T ) = lim

`→∞
u`(0, X0) = u(0, X0),

where u denotes the unique solution of (4.1). Thus, Var[ϕ(X ψ̃(T ))Θ(T )] = 0, where ψ̃ is

defined as in Equation (4.2).

This optimal measure transformation can now be used as guidance to adjust the pro-

posed measure transformations from Section 3.1 such that the used importance sampling

technique results in a significant variance reduction. The path-dependent structure of the

optimal weight operator ψ̃ particularly motivates the use of the path-dependent weight op-

erator defined in Equation (3.10) since this can be interpreted as a crude approximation of

the optimal choice given by (4.2). In numerical experiments in Section 6, we examine how

to choose the parameter c of the weight operator (3.10) in order to achieve the best possible
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variance reduction.

5 Approximation of measure transformations

In this section, we recall approximation properties of spatial and temporal discretisation

techniques and discuss how the importance sampling methods based on the measure

transformations form Section 3.1 can be implemented for numerical experiments. The ad-

vantage of the proposed methods is that the computational complexity of simulating the

transformed random variables and the simulation of the original mild solution process is

of the same order. This is due to the fact that for the final implementation the computa-

tion of the density process Θ(t) reduces for the considered measure transformations to

the approximation of the solution of a one-dimensional SODE driven by finitely many stan-

dard Wiener processes. Hence, the difference in the computational cost of the standard

approach compared to the proposed importance sampling methods is limited to the (nu-

merical) approximation of a one-dimensional linear SODE.

Since an explicit representation of the mild solution of an SPDE is not known in general,

we have to additionally approximate its mild solution X(T ) by a (spatially and temporally)

discretised approximation Xh,K , see e.g. [14, 11] for details on strong and weak numerical

approximations of stochastic equations in infinite dimensions. By using this additional ap-

proximation, the overall error of the Monte-Carlo method can be estimated by, see e.g. [17],

‖E[ϕ(X(T ))]− EM [ϕ(Xh,K)]‖L2(Ω;B)

≤ ‖E[ϕ(X(T ))]− E[ϕ(Xh,K)]‖B︸ ︷︷ ︸
systematic error

+ ‖E[ϕ(Xh,K)]− EM [ϕ(Xh(T ))]‖L2(Ω;B)︸ ︷︷ ︸
Monte Carlo error

= ‖E[ϕ(X(T ))]− E[ϕ(Xh,K)]‖B +
VarB[ϕ(Xh,K)]1/2√

M
.

The following lemma shows that the variance of the approximated mild solution (2.4) can

be estimated by the strong error and the variance of the original quantity of interest. For the

analysis of Var[ϕ(Xh,K)], we assume that the mapping ϕ : H → B satisfies a Lipschitz

continuity condition, i.e. there exists a constant CL > 0 such that for all φ1, φ2 ∈ H it holds

that ‖ϕ(φ1)− ϕ(φ2)‖B ≤ CL‖φ1 − φ2‖.

Lemma 5.1. Let ϕ : H → B be Lipschitz continuous. Then, there exists a constant C > 0

independent of h such that

VarB[ϕ(Xh,K)] ≤ C‖X(T )−Xh,K‖2L2(Ω;H) + 3 VarB[ϕ(X(T ))].
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Proof. By using the triangle inequality and the Lipschitz continuity of ϕ, we get

VarB[ϕ(Xh,K)] = E[‖ϕ(Xh,K)− E[ϕ(Xh,K)]‖2B]

= E[‖ϕ(Xh,K)± ϕ(Xh,K)± E[ϕ(X(T ))]− E[ϕ(Xh,K)]‖2B]

≤ 3

(
E[‖ϕ(X(T ))− ϕ(Xh,K)‖2B] + ‖E[ϕ(X(T ))]− E[ϕ(Xh,K)]‖2B

+ E[‖ϕ(X(T ))− E[ϕ(X(T ))]‖2B]

)

≤ C‖X(T )−Xh,K‖2L2(Ω;H) + 3 VarB[ϕ(X(T ))].

Thus, the statement is shown.

In the following two sections, we derive importance sampling techniques based on the

infinite dimensional measure transformations from Section 3.1 combined with different spa-

tial and temporal discretisation techniques, i.e. for the space discretisation we consider a

finite difference method (in Section 5.1) and a Galerkin finite element method (in Section

5.2). For both spatial discretisation methods, we consider the backward Euler scheme for

the time integration.

5.1 Approximation of the mild solution by finite differences

In this section, we consider a finite difference method for approximating the mild solution

of the transformed SPDE (3.2). For simplicity, we consider a one-dimensional setting on a

bounded domain, where we fix a spatial mesh Th with N = 1/h, h > 0, spatial grid points,

i.e.

Th := {x0 < x1 < · · · < xN}.

The operator A is assumed to be a differential operator and its approximation Ah ∈
R(N+1)×(N+1) is computed by using discrete difference quotients on Th. Then, we obtain

for the finite difference approximation x(t) = [X(t, x0), . . . X(t, xN )]T the following finite

dimensional SODE system

dx(t) = [Ahx(t) + F(x(t))−G(x(t))ψ(t)] dt+ G(x(t))dW(t) for t ∈ [0, T ],

x(0) = [X0(x0), . . . , X0(xN )]T ,

where W(t) = [W (t, x0), . . . ,W (t, xN )]T , F(x(t)) = [F (X(t, x0)), . . . , F (X(t, xN ))]T ,

and G(x(t))ψ(t) = [G(X(t, x0))ψ(t, x0), . . . , G(X(t, xN ))ψ(t, xN )]T . The resulting SODE

system can be approximated by using any appropriate time integration method. For this,

we fix a partition θK of the time interval [0, T ] consisting of (K + 1) time points with not
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necessarily equidistant time step sizes ∆tj = tj − tj−1, i.e.

θK := {0 = t0 < t1 < · · · < tK = T}. (5.1)

As an example of a time integration method we consider the backward Euler scheme which

is given by x0 = x(0) and

xj = xj−1 + ∆tj(Ahxj + F(xj−1) + G(xj−1)ψ(tj−1)) + G(xj−1)∆Wj

for j = 1, . . . ,K, where xj is an approximation of [X(tj , x0), . . . , X(tj , xN )]T and ∆Wj =

W(tj)−W(tj−1).

As already mentioned in the introduction, the authors in [1] already considered the cou-

pling of finite difference approximations of SPDEs and importance sampling. At first, they

fixed the spatial discretisation of the linear, one-dimensional stochastic heat equation (see

Equation (6.1) below) based on finite differences with N spatial grid points and afterwards

an importance sampling technique was applied to the resulting finite dimensional SODE

system. However, the approach in [1] is equivalent to the truncated infinite dimensional im-

portance sampling technique from above by using the time-constant weight operator from

Equation (3.9). For this let the weight operator ψJ(s), s ∈ [0, T ], be defined for all s ∈ [0, T ]

by

ψJ(s) := PJ(ψ(s)) =
J∑

k=1

µkψk〈1, ek〉ek,

where J ∈ N is sufficiently large and PJ denotes the orthogonal projector onto the first J

eigenfunction of Q. Thus, for numerical experiments concerning finite difference approxi-

mations of SPDE (2.1) and importance sampling based on the weight operator from Section

3.1 we refer to [1].

5.2 Approximation of the mild solution by Galerkin methods

For simulations of the mild solution (2.4), we now use an approximation based on a Galerkin

finite element method in space. For this, we choose a nested sequence V = (Vh)h∈(0,1] of

finite dimensional subspaces of H satisfying Vh ⊂ Ḣ1 ⊂ H .

Following the approach from [11], we consider the Ritz projection Rh : Ḣ1 → Vh and

the orthogonal projection Ph : H → Vh defined by

〈Rhv, vh〉1 = 〈v, vh〉1 for all v ∈ Ḣ1, vh ∈ Vh,
〈Phv, vh〉H = 〈v, vh〉H for all v ∈ H, vh ∈ Vh

For the convergence analysis of the Galerkin finite element method we need the following

assumption on the orthogonal projectors Rh and Ph:

Assumption 5.2. For the family of finite dimensional subspaces V = (Vh)h∈(0,1], there
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exists a constant C > 0 such that for all refinement parameters h ∈ (0, 1] it holds that

I. ‖Phv‖1 ≤ C‖v‖1 for all v ∈ Ḣ1,

II. ‖Rhv − v‖H ≤ Chs‖v‖s for all v ∈ Ḣs with s ∈ {1, 2}.

According to the considered finite dimensional subspace Vh, we define the discrete

operator Ah as the unique operator satisfying

〈−Avh, wh〉H = 〈vh, wh〉1 = 〈−Ahvh, wh〉H

for all vh, wh ∈ Vh. Note that −Ah is a symmetric and positive definite operator on Vh and

thus it is also the generator of an analytic semigroup. For this reason, there exists a unique

mild solution Xh(t) of the spatially discretised SPDE (2.1) given by

Xh(t) = Sh(t)PhX0 +

∫ t

0
Sh(t− s)PhF (Xh(s)) ds

+

∫ t

0
Sh(t− s)PhG(Xh(s)) dW (s).

(5.2)

For a given weight operator ψ(s), s ∈ [0, T ], satisfying the conditions of Theorem 3.1, we

can rewrite the transformed mild solution of the semi-discrete problem (5.2) as

Xψ
h (t) = Sh(t)PhX0 +

∫ t

0
Sh(t− s)PhF (Xψ

h (s)) ds

+

∫ t

0
Sh(t− s)PhG(Xψ

h (s)) dŴ (s)

= Sh(t)PhX0 +

∫ t

0
Sh(t− s)Ph[F (Xψ

h (s))−G(Xψ
h (s))ψ(s)] ds

+

∫ t

0
Sh(t− s)PhG(Xψ

h (s)) dW (s).

Thus, by using the density process Θ(t), t ∈ [0, T ], we can also deduce for the semi-

discrete approximation that

E[ϕ(Xh(T ))] = EP̂[ϕ(Xψ
h (T ))] = E[ϕ(Xψ

h (T ))Θ(T )]. (5.3)

For a fully discrete approximation of the mild solution we have to additionally consider

a discretisation in time. For this, we choose again the backward Euler scheme on the time

grid θK given in Equation (5.1)

Xh,j = Xh,j−1 + ∆tj AhXh,j + ∆tjPhF (Xh,j−1)− PhG(Xh,j−1)∆W j j = 1, . . . ,K,

X0
h = PhX0,

where ∆tj = tj − tj−1 and ∆W j = W (tj) −W (tj−1) are the Wiener increments. Now,

let ∆t = maxi ∆ti. Then, by Assumption 2.1 and 5.2, it follows that there exists a constant
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independent of h and ∆t such that, see [11, Theorem 3.14],

‖X(T )−Xh,K‖L2(Ω;H) ≤ C(h+ ∆t1/2). (5.4)

The following lemma provides an estimate of the overall error of the standard Monte

Carlo estimator in terms of spatial and temporal refinement parameters and the variance of

the original quantity of interest.

Lemma 5.3. Let ϕ : H → B be Lipschitz continuous. Then, there exists a constant C > 0

independent of h and ∆t such that

‖E[ϕ(X(T ))]− EM [ϕ(Xh,K)]‖L2(Ω;B) ≤ C(h+ ∆t1/2) +

√
3 VarB[ϕ(X(T ))]1/2√

M
.

Proof. Note that

‖E[ϕ(X(T ))]− EM [ϕ(Xh,K)]‖L2(Ω;B) ≤

‖E[ϕ(X(T ))]− E[ϕ(Xh,K)]‖B +
1√
M

VarB[ϕ(Xh,K)]1/2.

Since ϕ is Lipschitz, the first summand can be estimated by the strong approximation er-

ror from (5.4). Finally, by applying Lemma 5.1 and using again the strong convergence

properties from (5.4), the statement is shown.

Note that in cases where the systematic error is dominated by the Monte Carlo error a

further reduction of the spatial and temporal grid width does not lead to an improvement in

the error bound of Lemma 5.3. Thus, we propose to enhance the performance of the Monte

Carlo simulation by using importance sampling, for which we show numerous numerical

experiments in Section 6 using the path-dependent weight operator from Section 3.1.

Until now, we have only discussed the discretisation of SPDE (2.1) with respect to space

and time. For numerical experiments, we have to consider in addition an appropriate noise

approximation, where we truncate the Karhunen-Loève expansion by using

GJ0(u) = G(u)PJ0 , (5.5)

where PJ denotes the orthogonal projector onto span(e1, . . . , eJ0). Note that in order to

preserve the convergence rates of the backward Euler scheme, we have to choose the

truncation parameter J0 ∈ N carefully, see e.g. [14, Lemma 10.33] and [3, Lemma 3.1].

5.3 Approximation of the density process

In this section, we discuss how to approximate the density process Θ(t), t ∈ [0, T ], derived

in Section 3.1. By the construction of the corresponding weight operators ψ(t), t ∈ [0, T ],
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the resulting density processes are the strong solutions of SODEs of the following type:

dΘ(t) = Θ(t)

( ∞∑

k=1

√
µk κk(t) dβk(t)

)
, Θ(0) = 1, (5.6)

where the kernel functions κk(s), s ∈ [0, T ], are bounded, i.e. for all s ∈ [0, T ] and k ∈ N
there exists a constant C > 0 such that κk(s) ≤ C < ∞. Since in general we cannot

compute the infinite series appearing in the density process explicitly, we introduce a trun-

cation of the corresponding series that preserves the convergence properties of the used

numerical method. Thus, we look for an appropriate truncation index J1 ∈ N such that the

truncated version of the SDE (5.6), i.e. for t ∈ [0, T ] let

dΘJ1(t) = ΘJ1(t)

(
J1∑

k=1

√
µk κk(t) dβk(t)

)
, ΘJ1(0) = 1, (5.7)

reduces to a one-dimensional linear SDE with autonomous coefficients (for the transfor-

mation based on the time-independent weight operator from Equation (3.9)) or with non-

autonomous coefficients (for the path-dependent choice of ψ(t), t ∈ [0, T ] from Equation

(3.10)).

The goal is to choose the truncation parameter J1 in such a way that the corresponding

weak convergence rates of the involved numerical method are preserved. In the follow-

ing lemma we discuss conditions on how to choose J1 for an arbitrary numerical method

approximating the mild solution of SPDE (2.1) with given weak convergence order.

Lemma 5.4. Assume that for all t ∈ [0, T ] there exists a constant C > 0 such that

‖ϕ(Xψ
h (t))‖L2(Ω;R) ≤ C <∞

and that ϕ : H → R is sufficiently smooth (according to the considered weak convergence

order result). Furthermore, the numerical scheme approximating SPDE (2.1) has given

weak convergence order O(hα) (under the assumption that the time step size ∆t and the

spatial refinement parameter h are appropriately coupled). Then it holds that the weak

convergence order is preserved if J1 ∈ N is chosen such that

∞∑

k=J1+1

µk = O(h2α).

Proof. First note that

|E[ϕ(X(T ))]− E[ϕ(Xψ
h (T ))ΘJ1(T )]|

= |E[ϕ(X(T ))]− E[ϕ(Xψ
h (T ))ΘJ1(T )]± E[ϕ(Xh(T ))]|

≤ |E[ϕ(X(T ))]− E[ϕ(Xh(T ))]|+ |E[ϕ(Xh(T ))− E[ϕ(Xψ
h (T ))ΘJ1(T )]|.

The first part of the sum corresponds to the weak approximation error and for the second
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summand, we obtain by Equation (5.3) that

|E[ϕ(Xh(T ))]− E[ϕ(Xψ
h (T ))ΘJ1(T )]| = |E[ϕ(Xψ

h (T ))(Θ(T )−ΘJ1(T ))]|.

By applying Cauchy-Schwarz inequality and using the assumption that the second moment

of ϕ(Xψ
h (T )) is bounded, we get

|E[ϕ(Xψ
h (T ))(Θ(T )−ΘJ1(T ))]| ≤ ‖ϕ(Xψ

h (T ))‖L2(Ω;R)‖Θ(T )−ΘJ1(T )‖L2(Ω;R)

≤ C‖Θ(T )−ΘJ1(T )‖L2(Ω;R)

Due to the independence of the Brownian motions βk(t), Itô’s isometry and the bound-

edness of κ(s) we obtain

‖Θ(T )−ΘJ1(T )‖2L2(Ω;R) = E






∞∑

k=J1+1

∫ T

0

√
µkκk(s) dβk(s)




2


=
∞∑

k=J1+1

µk E

[(∫ T

0
κk(s) dβk(s)

)2
]

=
∞∑

k=J1+1

µk E
[∫ T

0
κk(s)

2 ds

]

≤ C
∞∑

k=J1+1

µk.

Thus, we get

|E[ϕ(X(T ))]− E[ϕ(Xψ
h (T ))ΘJ1(T )]|2 ≤ |E[ϕ(X(T ))]− E[ϕ(Xh(T ))]|2 + C

∞∑

k=J1+1

µk.

Finally, the weak convergence order O(hα) is preserved if
∑∞

k=J1+1 µk = O(h2α).

Until now we have discussed how to choose two different truncation parameters: First,

the truncation parameter J0 for the Karhunen-Loève expansion in Equation (5.5) that is

chosen in a way such that certain convergence properties of the numerical methods are

preserved, and second, the truncation parameter J1 for the approximation of the density

process, for which we found a specific selection criteria in terms of the weak convergence

properties. Note that both parameters might be in general different depending on the nu-

merical method, of which the properties have to be preserved. However, we subsequently

choose J = max{J0, J1} for both truncations, which essentially means that our simulation

results are based on J independent Brownian motions βk(t), k = 1, . . . , J .

Concerning the implementation of the density process of the two measure transfor-

mation examples from Section 3.1, there is a slight difference. The time-constant weight
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operator defined in Equation (3.9) leads to an explicitly solvable SODE (5.7) with solution

ΘJ(t) = exp

(
J∑

k=1

√
µkψk〈1, ek〉Hβk(t)−

t

2

J∑

k=1

µkψ
2
k〈1, ek〉2H

)
.

In contrast, the density process Θ(t) induced by the path-dependent weight operator given

in Equation (3.10) is now represented as the solution of a linear one-dimensional SODE

driven by J independent Brownian motion, i.e.

dΘJ(t) = ΘJ(t)

(
c

J∑

k=1

√
µk〈G(Xψ(t))η, ek〉H dβk(t)

)
, ΘJ(0) = 1, (5.8)

which can be approximated by using a standard numerical scheme for SDEs such as

e.g. the Euler-Maruyama scheme or the Milstein scheme.

6 Numerical experiments

In this section we present numerical experiments for the one-dimensional stochastic heat

equation with homogeneous Dirichlet boundary conditions on the spatial domainD = (0, 1)

given by

dX(t, x) = ∆xX(t, x) dt+G(X(t, x)) dW (t, x),

X(0, x) = sin(πx), for x ∈ D,
X(t, 0) = X(t, 1) = 0, for t ∈ [0, T ].

(6.1)

In the numerical experiments below, the Nemytskii operator G : H → LHS(H0, H) is

induced by either γ(x) = sin(x) (a globally bounded and Lipschitz continuous function) or

by γ(x) = σx, σ ∈ R (a globally unbounded, but Lipschitz continuous function). Note that

the underlying Hilbert space is H = L2(D). Furthermore, we assume that the eigenvalues

of the covariance operator Q of the Q-Wiener process W (t), t ∈ [0, T ], are defined by

µk = k−(2r+1+ε) for given regularity parameter r > 0 and ε > 0. Finally, we assume that Q

and the operator A commute.

In this section we consider importance sampling techniques for SPDEs based on the

path-dependent measure transformation from Equation (3.10) with η = e1 ∈ H0. For

the discretisation in space and time, we follow the methods proposed in Section 5.2, i.e. a

standard finite element method using piecewise linear test functions as basis functions of Vh
and for the time integration we use the backward Euler scheme on an equidistant partition

θK of the time interval [0, T ] with time step size ∆t > 0.

In Figure 2, we compare the performance of the importance sampling method with

respect to different values of the scaling parameter c ∈ R, where the diffusion operator is

defined as the bounded Nemytskii operator G induced by γ(x) = sin(x). The functional

ϕ : H → R is chosen to be ϕ(h) = ‖h‖2H for all h ∈ H . In all experiments the specific

choice c = 0 corresponds to the standard Monte Carlo estimator without using importance
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sampling. The approximation of the solution is computed on a coarse spatial grid consisting

of N = 23 grid points and on a partition θK of the time interval [0, 1] consisting of K =

26 time steps. The regularity parameter controlling the decay of the eigenvalues of the

covariance operator of the Q-Wiener process is chosen to be r = 2 and ε = 10−5.
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Figure 2: Simulation of E[‖X(1)‖2H ] of the stochastic heat equation (6.1) with diffusion
operator G defined as a Nemytskii operator based on γ(x) = sin(x).
Left : Evolution of Monte Carlo estimators over number of realisations (M ) using impor-
tance sampling based on path-dependent weight operator from (3.10) with different scaling
parameter c.
Right : Standard deviation of the simulated realisations (M = 105) over different values of
scaling parameter c.

As we can see on the left hand side of Figure 2, there are jumps in the evolution of

the standard Monte Carlo estimator (dashed line) due to realisations that are remarkably

larger than the average. This causes severe difficulties for estimating E[‖X(1)‖2H ] since

we are likely to overestimate the mean-square process right after such jumps. For scaling

parameters c < 0 we damp these jumps and for this reason we are able to reduce the

variance of the simulated realisations. However if we choose c too small, then negative

jumps in the evolution of the Monte Carlo estimator appear. These jumps are caused by

numerical instabilities in the simulation of Θ(t), which result in negative realisations of the

simulated density process. As a consequence, one has to choose a scaling parameter

c that leads to variance reduction, but still guarantees numerical stability of the involved

approximation schemes.

In Figure 3, we consider a realisation of the density process Θ(T ) based on the path-

dependent weight operator given in Equation (3.10) for fixed scaling parameter c = −2.

As proposed in Section 5 we truncate the infinite series appropriately (due to the regularity

parameter r = 2 it is sufficient to choose the truncation parameter J = N according to

Lemma 5.4), which leads to the one-dimensional SDE (5.8) that is approximated by using

the standard Euler-Maruyama scheme.
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Figure 3: Left : A realisation of the approximated density process ΘJ(t), t ∈ [0, 1], given in
Equation (5.8) approximated by the standard Euler-Maruyama scheme. Right : The under-
lying realisation of the approximation of the transformed solution Xψ(t), t ∈ [0, 1].

All the simulations in Figure 3 are performed by using K = 28 time steps in order to

observe the path-dependence of Θ(t), t ∈ [0, 1]. After a short time horizon (here t ≈ 0.5)

the density process stays almost constant due to the fact that the values of the underlying

trajectory of Xψ(t) are very small. This implies that the realisation of the transformed

process at the end time point is weighted by a constant that is mainly dependent on time

intervals, where the norm of the transformed process is large or at least significantly larger

than 0. As a consequence of the chosen scaling by the parameter c, we are again forcing

(c > 0) or damping (c < 0) the importance of such events for the Monte Carlo estimator.

In the following part, we consider simulations of SPDE (2.1), where the diffusion oper-

ator G is defined as a Nemytskii operator based on γ(x) = σx, σ ∈ R. Thus, as proposed

in Section 3.1 for the path-dependent measure transformation, we have to derive a repre-

sentation of the truncated operator G in order to guarantee the martingale property of the

density process Θ(t). According to the results from Section 3.1 this can be achieved for

Nemytskii operators by approximating the underlying function γ(x) by a bounded function

γ : R → [−CG, CG]. Note that there are different possibilities how to approximate γ. First,

one can truncate γ if its absolute value exceeds a certain threshold CG > 0, i.e. choose γ

as

γ(x) = γc(CG;x) = sign(γ(x)) min{CG, |γ(x)|} for all x ∈ R. (6.2)

The choice of CG depends on typical solution properties, e.g., one could choose CG such

that the majority of the discretised solution is smaller in absolute value than the chosen

constant CG. In Figure 4, we consider the case γ(x) = x and the bounded function γc is

truncated at CG = 1. Further details concerning the numerical outcome of the Monte Carlo

simulations using the truncated function γc can be found in Table 1.

According to Figure 4, we are also able to reduce the variance in the case of a glob-

ally unbounded diffusion operator. However, for a large and negative scaling parameter c,

i.e. for c being approximately smaller than −2.4, the performance of the importance sam-
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Figure 4: Simulation of E[‖X(1)‖2H ] of the stochastic heat equation (6.1) with diffusion
operator G defined as a Nemytskii operator based on γ(x) = x.
Left : Evolution of Monte Carlo estimators over M using importance sampling based on
path-dependent weight operator from (3.10) with different scaling parameter c.
Right : Standard deviation of the simulated realisations (M = 105) over different values of
scaling parameter c.

pling method is worse compared to the case of the bounded diffusion (γ(x) = sin(x)). This

happens due to the fact that the same numerical instabilities in the simulation of the density

process as in Figure 2 already appear for choices c ≈ −2.4.

By the same arguments as they were used to derive γc in Equation (6.2), one could

choose γ as a bounded function such that the function γ is approximated well by γ at

typical values of the (discretised) quantity of interest. For instance for γ(x) = x one could

consider an approximation by a sigmoid function, e.g. γ(x) = erf(x).

In Table 1, we compare numerical tests based on different importance sampling tech-

niques using the path-dependent density operator from Section 3.1. Each of the 4 tests

is based on M = 105 independent realisations. As a measure of the effectiveness of the

importance sampling methods we consider the ratio between the standard deviation of the

transformed processes (SDc) over the standard deviation (SD0) of the original realisations

of ‖X(1)‖2H . This ratio measures the relative change of the Monte Carlo error using impor-

tance sampling based on scaling parameter c, i.e. for values SDc/SD0 < 1 the importance

sampling method performs better than the original Monte Carlo simulation and for values c,

for which SDc/SD0 > 1, the performance is worse.

Hence, the proposed importance sampling techniques can reduce the Monte Carlo error

significantly for different scaling parameters c. For the specific value c = −2 we achieve

a remarkable reduction of the variance in all numerical experiments. Thus, these results

show the efficiency of the proposed methods, since in order to obtain the same accuracy

as for the standard Monte Carlo estimator, one needs Mc = (SDcSD0
)2M samples.
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Table 1: Performance of the importance sampling techniques applied to SPDE (2.1) with
path-dependent measure transformation from Section 3.1 using different scaling parameter
c for test function ϕ(h) = ‖h‖2H , h ∈ H .

Test 1: Test 2:
γ(x) = sin(x) γ(x) = x with γ(x) = γc(1;x)

c SDc SDc/SD0 SDc SDc/SD0

1 1.928E-07 1.1607 1.433E-07 1.1143
0 1.661E-07 1 1.286E-07 1
−1 1.303E-07 0.7845 1.067E-07 0.8297
−2 8.897E-08 0.5356 8.362E-08 0.6502
−3 8.210E-08 0.4943 9.111E-08 0.7085
−4 1.662E-07 1.0006 2.069E-07 1.6089

Test 3: Test 4:
γ(x) = x with γ(x) = γc(0.5;x) γ(x) = x with γ(x) = erf(x)

c SDc SDc/SD0 SDc SDc/SD0

1 2.467E-07 1.1989 2.516E-07 1.1770
0 2.060E-07 1 2.138E-07 1
−1 1.510E-07 0.7332 1.581E-07 0.7395
−2 1.209E-07 0.5870 1.242E-07 0.5810
−3 2.261E-07 1.0977 2.555E-07 1.1948
−4 4.630E-07 2.2481 5.690E-07 2.6611
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4 Mean-square stability analysis of stochastic differ-

ential equations in infinite dimensions

Annika Lang, Andreas Petersson, and Andreas Thalhammer

The (asymptotic) behaviour of the second moment of solutions to stochastic differential

equations is treated in mean-square stability analysis. The purpose of this article is to

discuss this property for approximations of infinite-dimensional stochastic differential equa-

tions and give necessary and sufficient conditions that ensure mean-square stability of the

considered finite-dimensional approximations. Stability properties of typical discretization

schemes such as combinations of spectral Galerkin, finite element, Euler–Maruyama, Mil-

stein, Crank–Nicolson, and forward and backward Euler methods are characterized. Fur-

thermore, results on their relationship to stability properties of the analytical solutions are

provided. Simulations of the stochastic heat equation illustrate the theory.

Key words. Asymptotic mean-square stability, numerical approximations of stochastic dif-

ferential equations, linear stochastic partial differential equations, Lévy processes, ratio-

nal approximations, Galerkin methods, spectral methods, finite element methods, Euler–

Maruyama scheme, Milstein scheme.

AMS subject classifications. 60H15, 65M12, 60H35, 65C30, 65M60

1 Introduction

In many fields of science, stochastic differential equations (SDEs) in infinite dimensions

often in form of stochastic partial differential equations (SPDEs) are used to model problems

with uncertainties. Since many of the considered equations can only be solved numerically,

the numerical analysis of such SDEs has gained a lot of attention in the literature over

the last two decades. Most of the numerical methods used for approximating the infinite-

dimensional solution process X(t) are based on a discretization in space by means of a

family (Vh, h ∈ (0, 1]) of finite-dimensional subspaces of the original solution space (with

refinement parameter h) and on a time discretization with step size ∆t. For many of these

numerical methods, strong and partly also weak convergence results are available in the

literature, (see, e.g., [19] for an overview), where the authors investigate the asymptotic

behaviour with respect to h,∆t → 0. However, for numerical simulations we are restricted

to a fixed refinement parameter h in space and a time step size ∆t > 0. For this reason,

we investigate in this article the asymptotic qualitative behaviour of approximations of X(t)

101
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as time t→∞ for fixed refinement parameters h > 0 and ∆t > 0.

We focus on the asymptotic mean-square stability analysis of approximations of linear

SDEs attaining values in a real separable Hilbert space H , i.e., we consider the asymp-

totic behaviour of E[‖Xj
h‖2H ] as j → ∞, where Xj

h denotes an approximation of X(tj) =

X(j∆t). A lot of effort has been dedicated to the asymptotic mean-square stability analysis

of solutions of SDEs in finite dimensions, see e.g., [16, 25, 2], as well as in infinite dimen-

sions, see e.g., [23]. The mean-square stability analysis of numerical approximations of

SDEs started by considering the approximations of the one-dimensional geometric Brown-

ian motion, see e.g., [28, 13, 14]. As it has been pointed out in [9, 10], the mean-square

stability analysis of linear SDE systems in higher dimensions and their approximations is

also necessary, since the asymptotic behaviour of the corresponding mean-square pro-

cesses of systems with commuting and non-commuting matrices are in general not equal.

The tools to perform mean-square stability analysis of SDE approximations presented

in [10] can also be used for approximations of infinite-dimensional SDEs by a method of

lines approach: After a spatial discretization (by, e.g., a Galerkin finite element method)

the mean-square stability properties of the resulting finite-dimensional system of stochastic

differential equations and the corresponding approximations can be determined by consid-

ering the eigenvalues of (N2
h×N2

h)-dimensional matrices, whereNh denotes the dimension

of Vh. However, due to the computational complexity, neither the symbolic nor the numerical

computation of these eigenvalues can be done for arbitrarily large systems.

For this reason, we extend the results from [10] to linear operators based on approxima-

tion schemes applied to H-valued SDEs driven by square-integrable, càdlàg martingales

by using representations of the tensor-product-space-valued process E[Xj
h ⊗X

j
h]. By ap-

plying these results to space approximations with Galerkin methods in Section 4, we show

sufficient conditions for the asymptotic mean-square stability of different time discretization

schemes combined with Euler–Maruyama and Milstein methods.

From an application point of view, mean-square stability analysis of approximations of

H-valued SDEs is very important, since there exist frequently used numerical techniques

for approximating paths or moments of infinite-dimensional solution trajectories that require

specific mean-square stability properties of the numerical solution. Here, we mention the

multilevel Monte Carlo (MLMC) estimator which is known to be a computationally efficient

method to estimate quantities of interest E[ϕ(X(T ))], see, e.g., [5, 3] for details. This

estimator uses realizations of the solution process on a hierarchical collection of spatial

and temporal refinement levels. Consequently, it is necessary to use a sufficiently (mean-

square) stable numerical approximation scheme on all levels (especially on the coarsest

levels) to get a reasonable approximation of E[ϕ(X(T ))], see, e.g., [1]. We provide con-

ditions under which the infinite-dimensional solution X(t) and its approximations based

on backward Euler schemes share the same mean-square stability properties without any

restriction on the refinement parameters h and ∆t.

The outline of this article is as follows: In Section 2 we set up the framework in which

mean-square stability is considered. For this, we recall basic results on linear H-valued
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SDEs driven by square-integrable, càdlàg martingales and their approximations. Sec-

tion 3 contains the theory of mean-square stability analysis for approximations of infinite-

dimensional SDEs in an abstract way. In the main result, necessary and sufficient condi-

tions for asymptotic mean-square stability are derived. These results are then applied in

Section 4 to numerical approximations based on spatial Galerkin discretization schemes

and time discretizations based on backward/forward Euler and Crank–Nicolson schemes

combined with Euler–Maruyama and Milstein methods. We conclude this work by showing

numerical experiments in Section 5 that illustrate the theory.

2 Hilbert space-valued SDE and approximations

In this section we set up the framework for mean-square stability. The theoretical setting is

based on [26] to which the reader is referred for further details. Throughout, let U and H be

real separable Hilbert spaces with inner products denoted by 〈·, ·〉U and 〈·, ·〉H , respectively,

and let (Ω,A, (Ft, t ≥ 0), P ) be a complete filtered probability space satisfying the “usual

conditions”. We consider in what follows the linear stochastic differential equation on R+

dX(t) = (AX(t) + F (X(t))) dt+G(X(t)) dM(t) (2.1)

with F0-measurable initial condition X(0) = X0 ∈ L2(Ω;H), i.e., X0 is an H-valued,

square-integrable random variable. Here, A : D(A) → H is the generator of a C0-

semigroup S = (S(t), t ≥ 0) on H and F is a linear and bounded operator on H , i.e.,

F ∈ L(H). Let us further assume that M = (M(t), t ≥ 0) is a U -valued, càdlàg, square-

integrable martingale which is adapted to the filtration and has independent increments,

i.e., the filtration is admissible with respect to M . An example of such a filtration is the

natural filtration FM generated by M . Let us assume further that there exists a self-adjoint,

positive semidefinite trace class operator Q ∈ L(U) such that for all t ≥ s ≥ 0

〈〈M,M〉〉t − 〈〈M,M〉〉s ≤ (t− s)Q,

where the operator angle bracket process (〈〈M,M〉〉t, t ≥ 0) is defined as

〈〈M,M〉〉t =

∫ t

0
Qs d 〈M,M〉s .

By (〈M,M〉t , t ≥ 0) we denote the angle bracket process from the Doob–Meyer decompo-

sition and (Qt, t ≥ 0) is the martingale covariance. Finally, let G be a linear mapping from

H to LHS(Q1/2(U);H), the space of Hilbert–Schmidt mappings from Q1/2(U) to H . Then

(2.1) admits by results in [26, Chapter 9] an up to modification unique mild solution which is

càdlàg and for t ≥ 0 given by

X(t) = S(t)X0 +

∫ t

0
S(t− s)F (X(s)) ds+

∫ t

0
S(t− s)G(X(s)) dM(s). (2.2)
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As a standard example in this context that is used throughout the manuscript, we intro-

duce the stochastic heat equation.

Example 2.1. Let the separable Hilbert space H = L2([0, 1]) be the space of square-

integrable functions on [0, 1]. On this space we consider the operator A = ν∆, where

ν > 0 and ∆ denotes the Laplace operator with homogeneous zero Dirichlet boundary

conditions which is the generator of a C0-semigroup, cf. [19, Example 2.21]. Furthermore,

let the square-integrable martingale M = L be a U -valued Lévy process. The equation

dX(t) = ν∆X(t) dt+G(X(t)) dL(t)

is referred to as the (homogeneous) stochastic heat equation.

The goal of this manuscript is to characterize mean-square stability properties of fully

discrete approximations of solutions of (2.1) such as the mild solution (2.2), which we in-

troduce next. Therefore, let (Vh, h ∈ (0, 1]) be a family of finite-dimensional subspaces

Vh ⊂ H with dim(Vh) = Nh ∈ N indexed by a refinement parameter h for the space ap-

proximation. With an inner product induced by 〈·, ·〉H , Vh becomes a Hilbert space with

norm ‖ · ‖H . For a linear operator D : Vh → Vh, the operator norm ‖D‖L(Vh) is therefore

given by

‖D‖L(Vh) = sup
v∈Vh

‖Dv‖H
‖v‖H

and can be seen to coincide with ‖DPh‖L(H), where Ph is the orthogonal projection onto Vh.

We choose time steps tj = j∆t, j ∈ N0, for a fixed step size ∆t > 0. Hence, t→∞ is

equivalent to j →∞. For a given time point tj , we denote an approximation of X(tj) in Vh
by Xj

h, which is obtained by a numerical approximation scheme given by

Xj+1
h = Ddet

∆t,hX
j
h +Dstoch,j

∆t,h Xj
h

(2.3)

with initial condition X0
h approximating X0. By Ddet

∆t,h ∈ L(Vh) we denote a linear operator

approximating the solution operator of the deterministic part of (2.1)

dX(t) = (AX(t) + F (X(t))) dt, t ∈ [tj , tj+1)

and by Dstoch,j
∆t,h we denote an L(Vh)-valued random variable approximating the solution

operator of the stochastic part

dX(t) = G(X(t)) dM(t), t ∈ [tj , tj+1).

We assume that the family of stochastic approximation operators (Dstoch,j
∆t,h , j ∈ N0) is F -

compatible in the sense of [11, 20], i.e., for given h,∆t > 0, Dstoch,j
∆t,h is Ftj+1-measurable

and E[Dstoch,j
∆t,h |Ftj ] = 0 for all j ∈ N0, where we denote by E[·|G] the conditional expectation

with respect to a σ-algebra G. Throughout the article, it is also assumed that for any given
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h,∆t > 0, ‖Dstoch,j
∆t,h ‖L2(Ω;L(Vh)) = E[‖Dstoch,j

∆t,h ‖2L(Vh)]
1/2 <∞ for all j ∈ N0.

Additionally, we assume that for all j ∈ N0, the operator Dstoch,j
∆t,h approximating the

stochastic integral on the time interval [tj , tj+1) is independent of Ftj . This assumption is

motivated by the fact that the increments of the process M denoted by ∆M j = M(tj+1)−
M(tj), are assumed to be independent of Ftj for all j ∈ N0. Nevertheless, we remark that

it would be sufficient to assume the rather technical condition

E
[
(Dstoch,j

∆t,h ⊗Dstoch,j
∆t,h )(Xj

h ⊗X
j
h)
]

= E
[
Dstoch,j

∆t,h ⊗Dstoch,j
∆t,h

]
E[Xj

h ⊗X
j
h].

3 Asymptotic mean-square stability analysis

Let us recall the main definitions of (asymptotic) mean-square stability theory for SDE (2.1)

before we derive tools for the mean-square stability analysis of the corresponding numerical

approximations (2.3).

For this, we examine the qualitative behaviour of an equilibrium (solution), which is

defined as a constant solutionXe(t) = xe ∈ H for all t ≥ 0 of (2.1) satisfying (A+F )xe = 0

and G(xe) = 0. Note that for linear SPDEs such as the one given in (2.1), the zero initial

value X0 = 0 admits the zero or trivial solution Xe(t) = 0 for all t > 0, and therefore, the

zero solution is an equilibrium solution of (2.1). As it is shown, e.g., in [23], it is sufficient to

consider only the stability properties of the zero solution, since – also in the non-linear case

– the zero solution is an equilibrium of the SDE corresponding to (Y (t) = X(t)−Xe(t), t ≥
0) for any equilibrium Xe(t) of X(t).

Due to these considerations, we are interested in the qualitative behaviour of the zero

solution of the underlying linear SDE. In the following definition, the main stability concept

used in this work, i.e., the (asymptotic) mean-square stability of the zero solution, is intro-

duced:

Definition 3.1. Let X(t) be a solution of (2.1). Then the zero solution (Xe(t) = 0, t ≥ 0)

of (2.1) is called mean-square stable if, for every ε > 0, there exists δ > 0 such that for all

t ≥ 0,

E[‖X(t)‖2H ] < ε

whenever E[‖X0‖2H ] < δ.

It is called asymptotically mean-square stable if it is mean-square stable and there exists

δ > 0 such that E[‖X0‖2H ] < δ implies

lim
t→∞

E[‖X(t)‖2H ] = 0.

Furthermore, it is called asymptotically mean-square unstable if it is not asymptotically

mean-square stable.

Similarly, an equilibrium (solution) of the approximation scheme (2.3) is a constant so-

lution Xj
h,e = xh,e ∈ Vh for all j ∈ N0 for which Ddet

∆t,hxh,e = 0 and Dstoch,j
∆t,h xh,e = 0 for
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all j ∈ N0 holds. By the same arguments as for (2.1), we are interested in the qualitative

behaviour of the zero solution of (2.3), where the zero solution is the solution Xj
h,e = 0

of (2.3) that is induced by the zero initial value X0
h = 0. We define mean-square stability

of the zero solution of (2.3) in what follows, which can be seen as the discrete version of

Definition 3.1.

Definition 3.2. Let Xh = (Xj
h, j ∈ N0) be the numerical approximation given by (2.3) for

fixed time step size ∆t and refinement parameter h. Then the zero solution (Xj
h,e = 0, j ∈

N0) of (2.3) is called mean-square stable if, for every ε > 0, there exists δ > 0 such that,

for all j ∈ N0,

E[‖Xj
h‖2H ] < ε

whenever E[‖X0
h‖2H ] < δ.

It is called asymptotically mean-square stable if it is mean-square stable and there exists

δ > 0 such that E[‖X0
h‖2H ] < δ implies

lim
j→∞

E[‖Xj
h‖2H ] = 0.

Furthermore, it is called asymptotically mean-square unstable if it is not asymptotically

mean-square stable.

When applied to Yj = Xj
h, the following lemma provides an equivalent condition for the

mean-square stability of the zero solution of the fully discrete scheme (2.3) in terms of the

tensor-product-space-valued process Xj
h ⊗X

j
h ∈ V

(2)
h , where ⊗ denotes the Hilbert tensor

product and for a general Hilbert space H , the abbreviation H(2) = H ⊗H is used. More

precisely, H ⊗H is defined as the completion of the algebraic tensor product with respect

to the norm induced by the inner product

〈v, w〉H⊗H =
N∑

i=1

M∑

j=1

〈v1,i, w1,j〉H 〈v2,i, w2,j〉H

where v =
∑N

i=1 v1,i⊗ v2,i and w =
∑M

j=1w1,j ⊗w2,j are representations of elements v, w

in the algebraic tensor product.

Lemma 3.3. Let Vh be any finite-dimensional subspace of H . Then, for any sequence

(Yj , j ∈ N0) of Vh-valued, square-integrable random variables, limj→∞ E[Yj ⊗ Yj ] = 0 if

and only if limj→∞ E[‖Yj‖2H ] = 0.

Proof. It is clear that limj→∞ E[Yj ⊗Yj ] = 0 is equivalent to limj→∞ ‖E[Yj ⊗Yj ]‖H(2) = 0,

since H and H(2) are Hilbert spaces with norm induced by the inner product.

By Parseval’s identity, for an orthonormal basis (ψ1, . . . , ψNh) of Vh we have

∥∥E
[
Yj ⊗ Yj

]∥∥2

H(2) =

Nh∑

k,`=1

∣∣E
[
〈Yj ⊗ Yj , ψk ⊗ ψ`〉H(2)

]∣∣2 =

Nh∑

k,`=1

∣∣E
[
〈Yj , ψk〉H〈Yj , ψ`〉H

]∣∣2
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and similarly

E
[
‖Yj‖2H

]
=

Nh∑

k=1

E
[
〈Yj , ψk〉2H

]
.

Therefore, we immediately obtain one implication, while the other follows directly from the

fact that

‖E [Yj ⊗ Yj ]‖H(2) ≤ E
[
‖Yj ⊗ Yj‖H(2)

]
= E

[
‖Yj‖2H

]
.

This lemma enables us to show the following sufficient condition for the asymptotic

mean-square stability of the zero solution of the discrete approximation scheme (2.3).

Theorem 3.4. Let Xh = (Xj
h, j ∈ N0) be given by (2.3). Furthermore, let

Sj = Ddet
∆t,h ⊗Ddet

∆t,h + E[Dstoch,j
∆t,h ⊗Dstoch,j

∆t,h ].

Then the zero solution of (2.3) is asymptotically mean-square stable, if

lim
j→∞

‖Sj · · · S0‖L(V
(2)
h )

= 0.

Proof. Let us first remark that it is clear that Sj ∈ L(V
(2)
h ) for all j ∈ N0 by the properties

of Ddet
∆t,h and Dstoch,j

∆t,h and the properties of the Hilbert tensor product. In order to show

asymptotic mean-square stability of the zero solution of (2.3), it suffices to show

E[Xj
h ⊗X

j
h]→ 0

as j →∞ by Lemma 3.3. For this, consider

E[Xj+1
h ⊗Xj+1

h ] = E
[
(Ddet

∆t,h +Dstoch,j
∆t,h )Xj

h ⊗ (Ddet
∆t,h +Dstoch,j

∆t,h )Xj
h

]

= E
[
(Ddet

∆t,h ⊗Ddet
∆t,h)(Xj

h ⊗X
j
h)
]

+ E
[
(Dstoch,j

∆t,h ⊗Dstoch,j
∆t,h )(Xj

h ⊗X
j
h)
]

+ E
[
(Ddet

∆t,h ⊗Dstoch,j
∆t,h )(Xj

h ⊗X
j
h)
]

+ E
[
(Dstoch,j

∆t,h ⊗Ddet
∆t,h)(Xj

h ⊗X
j
h)
]
.

Since Dstoch,j
∆t,h is independent of Ftj , the mixed terms vanish by the observation that

E
[
(Ddet

∆t,h ⊗Dstoch,j
∆t,h )(Xj

h ⊗X
j
h)
]

= E
[
Ddet

∆t,h ⊗Dstoch,j
∆t,h

]
E[Xj

h ⊗X
j
h]

=
(
Ddet

∆t,h ⊗ E[Dstoch,j
∆t,h ]

)
E[Xj

h ⊗X
j
h] = 0,

where we used that Dstoch,j
∆t,h is F -compatible which implies that

E[Dstoch,j
∆t,h ] = E

[
E[Dstoch,j

∆t,h |Ftj ]
]

= 0.
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Hence,

E[Xj+1
h ⊗Xj+1

h ] = E
[(
Ddet

∆t,h ⊗Ddet
∆t,h +Dstoch,j

∆t,h ⊗Dstoch,j
∆t,h

)
(Xj

h ⊗X
j
h)
]
.

By once again noting that Dstoch,j
∆t,h is independent of Ftj and that the linear operator Ddet

∆t,h

is deterministic, we get

E[Xj+1
h ⊗Xj+1

h ] = Sj E[Xj
h ⊗X

j
h] = (Sj · · · S0)E[X0

h ⊗X0
h].

Since limj→∞ ‖Sj · · · S0‖L(V
(2)
h )

= 0 implies that there exists a constant C such that

sup
j∈N
‖Sj · · · S0‖L(V

(2)
h )
≤ C,

it holds that

E[‖Xj+1
h ‖2H ]2 =

(
Nh∑

k=1

E[〈Xj+1
h , ψk〉2H ]

)2

≤ Nh

(
Nh∑

k=1

E[〈Xj+1
h , ψk〉2H ]2

)

≤ Nh

∥∥E[Xj+1
h ⊗Xj+1

h ]
∥∥2

H(2) ≤ Nh

(
‖Sj · · · S0‖L(V

(2)
h )

E[‖X0
h‖2H ]

)2

≤ C2Nh E[‖X0
h‖2H ]2.

This implies the mean-square stability of the zero solution of (2.3).

For the asymptotic mean-square stability of the zero solution of (2.3), note that for any

initial value X0
h ∈ L2(Ω;Vh) it holds that limj→∞ E[Xj

h ⊗X
j
h] = 0 if and only if

lim
j→∞

‖(Sj · · · S0)E[X0
h ⊗X0

h]‖
V

(2)
h

= 0,

for which a sufficient condition is given by

lim
j→∞

‖Sj · · · S0‖L(V
(2)
h )

= 0.

This finishes the proof of the theorem.

In many applications the operators (Dstoch,j
∆t,h , j ∈ N0) are also independent and identi-

cally distributed (iid for short):

Example 3.5. Consider the one-dimensional geometric Brownian motion driven by a real-

valued Brownian motion (β(t), t ≥ 0)

dX(t) = λX(t)dt+ σX(t)dβ(t), t ≥ 0,

with initial condition X(0) = x0 ∈ R and λ, σ ∈ R. One way to approximate the solution of

the geometric Brownian motion is given by the explicit Euler–Maruyama scheme defined by
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the recursion

Xj+1 = Xj + λ∆tXj + σ∆βjXj ,

for j ∈ N0, where ∆βj = β(tj+1)− β(tj), or by using a Milstein scheme given by

Xj+1 = Xj + λ∆tXj + σ∆βjXj +
σ2

2

(
(∆βj)2 −∆t

)
Xj .

Then the deterministic operators in (2.3)

Ddet
∆t,EM = Ddet

∆t,Mil = 1 + λ∆t

are equal for both schemes, and the corresponding approximations of the stochastic inte-

grals are given by

Dstoch,j
∆t,EM = σ∆βj , Dstoch,j

∆t,Mil = σ∆βj +
σ2

2

(
(∆βj)2 −∆t

)

for j ∈ N0. Thus, both families of stochastic approximation operators are F -compatible and

consist of identically distributed linear operators satisfying our assumption that Dstoch,j
∆t,h is

independent of the filtration Ftj since it is admissible.

For numerical approximations (2.3) based on families of iid linear operators (Dstoch,j
∆t,h , j ∈

N0) the following corollary provides a necessary and sufficient condition for the asymptotic

mean-square stability of the zero solution of (2.3) in terms of a condition on the spectrum of

a single linear operator S ∈ L(V
(2)
h ).

Corollary 3.6. Let Xh = (Xj
h, j ∈ N0) be given by the approximation scheme (2.3)

such that (Dstoch,j
∆t,h , j ∈ N0) is iid. Then the zero solution of the discrete approximation

scheme (2.3) is asymptotically mean-square stable if and only if

S = Ddet
∆t,h ⊗Ddet

∆t,h + E[Dstoch,0
∆t,h ⊗Dstoch,0

∆t,h ] ∈ L(V
(2)
h )

satisfies ρ(S) < 1, where ρ(S) is the spectral radius of S defined as ρ(S) = maxi=1,...,N2
h
|λi|

for λ1, . . . , λN2
h

being the eigenvalues of the operator S.

Furthermore, a sufficient condition for the zero solution of the discrete approximation

scheme (2.3) being asymptotically mean-square stable is given by ‖S‖
L(V

(2)
h )

< 1.

Proof. First note that due to the identical distribution of the operators (Dstoch,j
∆t,h , j ∈ N0), it

is clear that

E
[
Dstoch,j

∆t,h ⊗Dstoch,j
∆t,h

]
= E

[
Dstoch,0

∆t,h ⊗Dstoch,0
∆t,h

]
.

Hence, we get for all j ∈ N, Sj = S and thus, it holds that

E[Xj+1
h ⊗Xj+1

h ] = (Sj · · · S0)E[X0
h ⊗X0

h] = Sj+1 E[X0
h ⊗X0

h]
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by the same arguments as in Theorem 3.4. As a consequence, limj→∞ E[Xj
h ⊗X

j
h] = 0 if

and only if limj→∞ Sj+1 = 0, which is equivalent to ρ(S) < 1 by the same arguments as,

e.g., in [7, 16, 10]. This completes the proof of the first statement.

Since ρ(S) ≤ ‖S‖
L(V

(2)
h )

, a sufficient condition for the asymptotic mean-square stability

of the zero solution of (2.3) is given by ‖S‖
L(V

(2)
h )

< 1.

Note that this corollary extends the results on mean-square stability of finite-dimensional

linear systems of SDEs in [10] to the case of SPDE approximations on an operator-valued

level of consideration. In [10] the proposed method to analyse the mean-square stability

properties of finite-dimensional systems relies on a matrix eigenvalue problem. For SPDE

approximations, this approach is not suitable, since the dimension of the considered eigen-

value problem increases heavily if we refine in space, i.e., for every considered refinement

parameter h > 0, we have to compute the spectral radius of an (N2
h ×N2

h)-matrix. For this

reason, we perform, in what follows, mean-square stability analysis of SPDE approxima-

tions by just using properties of the involved operators.

4 Application to Galerkin methods

We continue by applying the previous results to the analysis of some classical numerical

approximations of (2.1). The considered methods are based on a spatial discretization

using Galerkin methods combined with different one-step time integration schemes such

as one-step Euler–Maruyama or Milstein methods. In order to use the analytic framework

of [19], we assume the operator −A : D(−A) ⊂ H → H of (2.1) to be densely defined,

self-adjoint, and positive definite with compact inverse.

This assumption implies that −A has a non-decreasing sequence of positive eigenval-

ues (λi, i ∈ N) for an orthonormal basis of eigenfunctions (ei, i ∈ N) in H . One defines

fractional powers of −A by the relation

(−A)r/2ei = λ
r/2
i ei

for all i ∈ N and r > 0. Then, for each r > 0, Ḣr = D((−A)r/2) with inner product

〈·, ·〉r =
〈

(−A)r/2·, (−A)r/2·
〉
H

defines a separable Hilbert space. For details on the spaces Ḣr, see, e.g., [19, Appendix

B]. Let us further from here on assume that G ∈ L(H;L(U ;H)).

For the spatial approximation of the solution of (2.1) we employ a Galerkin method. For

this, let the sequence (Vh, h ∈ (0, 1]) of finite-dimensional subspaces fulfil Vh ⊂ Ḣ1 ⊂ H .

The discrete operator −Ah : Vh → Vh is defined on each vh ∈ Vh by letting −Ahvh be the

unique element of Vh such that

〈−Ahvh, wh〉H = 〈vh, wh〉1 =
〈

(−A)1/2vh, (−A)1/2wh

〉
H
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for all wh ∈ Vh. This definition implies that −Ah is self-adjoint and positive definite on

Vh and therefore has a sequence of orthonormal eigenfunctions (eh,i, i = 1, . . . , Nh) and

positive non-decreasing eigenvalues (λh,i, i = 1, . . . , Nh). By using basic properties of the

Rayleigh quotient, we can bound the smallest eigenvalue λh,1 of −Ah from below by the

smallest eigenvalue λ1 of −A through

λh,1 = min
vh∈Vh\{0}

〈vh, vh〉1
‖vh‖2H

≥ min
v∈H\{0}

〈v, v〉1
‖v‖2H

= λ1, (4.1)

since Vh ⊂ H , cf. [8]. This estimate turns out to be a useful inequality when investigating

the connection between the asymptotic mean-square stability of the zero solution of an

SPDE and its approximation.

Let us further assume in this section that the square-integrable martingale M = L is a

Lévy process and therefore has a stationary covariance Q ∈ L(U) which is a self-adjoint

and positive semidefinite operator of trace class. For the definition and properties of U -

valued Lévy processes, the reader is referred to [26]. The assumed properties on Q imply

by results in [26, Chapter 4] that there exists an orthonormal basis (fi, i ∈ N) of U and a

non-increasing sequence of non-negative real numbers (µi, i ∈ N) such that for all i ∈ N,

Qfi = µifi with tr(Q) =
∑∞

i=1 µi <∞ and that L admits a Karhunen–Loève expansion

L(t) =

∞∑

i=1

√
µiLi(t)fi, (4.2)

where (Li, i ∈ N) is a family of real-valued, square-integrable, uncorrelated Lévy processes

fulfilling E[(Li(t))
2] = t for all t ≥ 0. Note that due to the martingale property of L, the real-

valued Lévy processes satisfy E[Li(t)] = 0 for all t ≥ 0 and i ∈ N. This implies, together

with the stationarity of the Lévy increments, that for all i ∈ N and j ∈ N0,

E[∆Lji ] = E[∆L0
1] = E[L1(∆t)] = 0,

where ∆Lji = Li(tj+1)− Li(tj).
Since the series representation of the Lévy process L can consist of infinitely many

one-dimensional stochastic processes Li, i ∈ N, an additional approximation of L might

be necessary for implementations of the fully discrete scheme (2.3). A common practice

to approximate the U -valued process L is to truncate the corresponding Karhunen–Loève

expansion, i.e., for κ ∈ N, define the finite-dimensional approximation

Lκ(t) =
κ∑

i=1

√
µiLi(t)fi

of L(t). Note that the truncation parameter κ has to be chosen appropriately such that

the resulting truncation error does not dominate the approximation error of the numerical

method. As it is noted in, e.g., [4, 6, 24], κ should be coupled with the convergence rate of

the considered numerical scheme and the decay of the eigenvalues of Q.
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Within this work, we consider the more general framework of numerical methods based

on the original Karhunen–Loève expansion (4.2) of L. However, we emphasize that this

does not restrict the applicability of the results since all of them can be easily adapted to

the case when the approximated stochastic process Lκ(t) is considered instead of L(t) by

choosing µk = 0 for all k > κ.

We end this section by extending Example 2.1 with two explicit choices of the operator

G ∈ L(H;L(U ;H)).

Example 4.1. Consider the setting of Example 2.1. It is known (see, e.g., [19, Chapter 6])

that the eigenvalues and eigenfunctions of the operator −A are given by

λi = νi2π2, ei(y) =
√

2 sin(iπy), i ∈ N, y ∈ [0, 1].

We first assume, for simplicity, that U = H = L2([0, 1]) and that the operator Q diago-

nalizes with respect to the eigenbasis of −A, i.e., fi = ei for all i ∈ N. For this choice,

we consider the operator G = G1 that gives rise to a geometric Brownian motion in infinite

dimensions, cf. [19, Section 6.4]. It is for all u, v ∈ H defined by the equation

G1(v)u =

∞∑

i=1

〈v, ei〉H〈u, ei〉Hei.

As a second example, we let U = Ḣ1 with the same diagonalization assumption as before,

i.e., fi = λ
1/2
i ei for all i ∈ N. Here, we let the operator G = G2 be a Nemytskii operator

which is defined pointwise for x ∈ [0, 1], u ∈ Ḣ1 and v ∈ H by

(G2(v)u)[x] = v(x)u(x).

It is known that both choices of G are linear mappings from H to LHS(Q1/2(U);H) (see,

e.g., [19] and [21]) but we need to check that G ∈ L(H;L(U ;H)).

To this end, note that for u, v ∈ H , by the triangle inequality and Cauchy–Schwarz we

have for G1

‖G1(v)u‖H ≤
∞∑

i=1

|〈v, ei〉H ||〈u, ei〉H | ≤
( ∞∑

i=1

〈v, ei〉2H

)1/2( ∞∑

i=1

〈u, ei〉2H

)1/2

= ‖v‖H‖u‖H .

Next, for G2 with v ∈ H and u ∈ Ḣ1, it holds that

‖G2(v)u‖2H =

∫ 1

0
u(x)2v(x)2 dx =

∫ 1

0

( ∞∑

i=1

λ
1/2
i 〈u, ei〉H λ

−1/2
i ei(x)

)2

v(x)2 dx

≤
( ∞∑

i=1

λi| 〈u, ei〉H |2
)∫ 1

0

( ∞∑

i=1

λ−1
i ei(x)2

)
v(x)2 dx

≤ ‖u‖2
Ḣ1

(
2
∞∑

i=1

λ−1
i

)∫ 1

0
v(x)2 dx =

(
2
∞∑

i=1

λ−1
i

)
‖u‖2

Ḣ1‖v‖2H .
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Here, the first inequality is an application of the Cauchy–Schwarz inequality while the

second follows from the fact that the sequence (|ei(x)|, i ∈ N) is bounded by
√

2 for all

x ∈ [0, 1]. Therefore, we have

‖G1‖L(H;L(H)) ≤ 1

and

‖G2‖L(H;L(Ḣ1,H)) ≤
(

2
∞∑

i=1

λ−1
i

)1/2

.

In the following sections, we investigate mean-square stability properties of fully discrete

(Galerkin) approximations based on time discretizations with rational approximations.

4.1 Time discretization with rational approximations

Let us first recall that a rational approximation of order p of the exponential function is a

rational function R : C → C satisfying that there exist constants C, δ > 0 such that for all

z ∈ C with |z| < δ

|R(z)− exp(z)| ≤ C|z|p+1.

Since R is rational there exist polynomials rn and rd such that for all z ∈ C

R(z) =
rn(z)

rd(z)
.

We want to consider rational approximations of the semigroup S generated by the opera-

tor −A and of its approximations −Ah as they were considered in [29]. With the introduced

notation, the linear operator R(∆tAh) is given for all vh ∈ Vh by

R(∆tAh)vh = r−1
d (∆tAh)rn(∆tAh)vh =

Nh∑

k=1

rn(−∆tλh,k)

rd(−∆tλh,k)
〈vh, eh,k〉H eh,k. (4.3)

We consider two cases of discretizations of the stochastic integral in combination with

the rational approximation: the operator Dstoch,j
∆t,h is first based on an Euler–Maruyama

scheme and then on a Milstein scheme.

Let us start with the mean-square stability properties of a Galerkin Euler–Maruyama

method, which is given by the recursion

Xj+1
h =

(
R(∆tAh) + r−1

d (∆tAh)(∆tPhF + PhG(·)∆Lj)
)
Xj
h,

X0
h = PhX0

(4.4)

for j ∈ N0, where ∆Lj = L(tj+1) − L(tj). The corresponding operators from the fully
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discrete scheme (2.3) are then given by

Ddet
∆t,h = R(∆tAh) + r−1

d (∆tAh)∆tPhF

Dstoch,j
∆t,h = r−1

d (∆tAh)PhG(·)∆Lj .
(4.5)

Note that the linear operators (Dstoch,j
∆t,h , j ∈ N0) satisfy all assumptions of Corollary 3.6

since they only depend on the Lévy increments (∆Lj , j ∈ N0). For this type of numerical

approximation, the result from Corollary 3.6 can be specified:

Proposition 4.2. The zero solution of the numerical method (4.4) is asymptotically mean-

square stable if and only if

S = Ddet
∆t,h ⊗Ddet

∆t,h + ∆t (C ⊗ C)q ∈ L(V
(2)
h )

satisfies that ρ(S) < 1, where Ddet
∆t,h is given in (4.5), C ∈ L(U ;L(Vh)) with

Cu = r−1
d (∆tAh)PhG(·)u,

and q =
∑∞

k=1 µkfk ⊗ fk ∈ U (2).

Proof. First, note that since Vh is finite-dimensional, L(Vh) = LHS(Vh) so (C ⊗ C) is well-

defined as an element of L(U (2), L
(2)
HS(Vh)) ⊂ L(U (2), L(V

(2)
h )) by [17, Lemma 3.1(ii)].

Hence, for every j ∈ N, we have

E[Dstoch,j
∆t,h ⊗Dstoch,j

∆t,h ] = E[C∆Lj ⊗ C∆Lj ] = (C ⊗ C)E[∆Lj ⊗∆Lj ].

Since E[∆Lj ⊗∆Lj ] = ∆t q by Lemma A.1, the proof is completed with Corollary 3.6.

The still rather abstract condition on mean-square stability is used to derive explicit

sufficient conditions in the following corollary.

Corollary 4.3. A sufficient condition for the asymptotic mean-square stability of the zero

solution of (4.4) is then given by

(
max

k=1,...,Nh
|R(−∆tλh,k)|+ max

k=1,...,Nh
|r−1

d (−∆tλh,k)|∆t‖F‖L(H)

)2

+ max
k=1,...,Nh

|r−1
d (−∆tλh,k)|2∆t tr(Q)‖G‖2L(H;L(U ;H)) < 1.

Proof. We first note that by the triangle inequality and the properties of the linear operator

induced by the rational approximation R defined in Equation (4.3) we obtain that

‖Ddet
∆t,h‖L(Vh) = ‖R(∆tAh) + r−1

d (∆tAh)∆tPhF‖L(Vh)

≤ max
k=1,...,Nh

|R(−∆tλh,k)|+ max
k=1,...,Nh

|r−1
d (−∆tλh,k)|∆t‖F‖L(H)
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and, similarly

‖C‖L(U ;L(Vh)) ≤ ‖r−1
d (∆tAh)‖L(Vh)‖G‖L(H;L(U ;H))

≤ max
k=1,...,Nh

|r−1
d (−∆tλh,k)|‖G‖L(H;L(U ;H)).

Since

‖S‖
L(V

(2)
h )
≤ ‖Ddet

∆t,h ⊗Ddet
∆t,h‖L(V

(2)
h )

+ ∆t‖(C ⊗ C)q‖
L(V

(2)
h )

≤ ‖Ddet
∆t,h ⊗Ddet

∆t,h‖L(V
(2)
h )

+ ∆t

∞∑

k=1

µk‖(Cfk ⊗ Cfk)‖L(V
(2)
h )

≤ ‖Ddet
∆t,h ⊗Ddet

∆t,h‖L(V
(2)
h )

+ ∆t

∞∑

k=1

µk‖Cfk‖2L(Vh)

≤ ‖Ddet
∆t,h‖2L(Vh) + ∆t tr(Q)‖C‖2L(U ;L(Vh)),

we obtain the claimed condition, which is sufficient by Corollary 3.6.

Having introduced sufficient conditions for Euler–Maruyama approximations, we con-

tinue with the Milstein scheme, which is of higher order than the Euler–Maruyama scheme.

This is considered in [4] given by the recursion

Xj+1
h =

(
R(∆tAh) + r−1

d (∆tAh)(∆tPhF + PhG(·)∆Lj)
)
Xj
h

+

∫ tj+1

tj

r−1
d (∆tAh)PhG

(∫ s

tj

G(Xj
h) dL(r)

)
dL(s).

(4.6)

The iterated stochastic integrals can be represented with the Karhunen–Loève expansion (4.2)

of the Lévy process by

∫ tj+1

tj

r−1
d (∆tAh)PhG

(∫ s

tj

G(Xj
h) dL(r)

)
dL(s)

=
∞∑

k,`=1

√
µkµ`r

−1
d (∆tAh)PhG(G(Xj

h)fk)f`

∫ tj+1

tj

∫ s

tj

dLk(r) dL`(s).

Thus, the stochastic operator Dstoch,j
∆t,h can be written as the sum of the stochastic opera-

tor of the Euler–Maruyama scheme (4.5) and an operator including the iterated stochastic

integrals, i.e.,

Dstoch,j
∆t,h = DEM,j

∆t,h +DM,j
∆t,h, (4.7)

where

DEM,j
∆t,h = r−1

d (∆tAh)PhG(·)∆Lj ,

DM,j
∆t,h =

∞∑

k,`=1

r−1
d (∆tAh)

√
µkµ`PhG(G(·)fk)f`

∫ tj+1

tj

∫ s

tj

dLk(r) dL`(s).
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Remark 4.4. In order to compute the iterated integrals of DM,j
∆t,h, one may assume (cf.

[4, 15]) that for all H-valued, Ft-adapted stochastic processes χ = (χ(t), t ≥ 0) and all

i, j ∈ N, the diffusion operator G satisfies the commutativity condition

G(G(χ)fj)fi = G(G(χ)fi)fj .

Under this assumption, which is satisfied for the operators of Example 4.1, the iterated

integrals can be written in terms of the Lévy increments, i.e.,

∫ tj+1

tj

r−1
d (∆tAh)PhG

(∫ s

tj

G(Xj
h)dL(r)

)
dL(s)

=
1

2

∞∑

k,`=1

√
µkµ`r

−1
d (∆tAh)PhG(G(Xj

h)fk)f`(∆L
j
k∆L

j
` −∆[Lk, L`]

j),

where ∆[Lk, L`]
j = [Lk, L`]tj+1 − [Lk, L`]tj . Here, [Lk, L`]t is the quadratic covariation

of Lk and L` evaluated at t ≥ 0, which is straightforward to compute when Lk, L` are

jump-diffusion processes (cf. [4]). For the simulation of more general Lévy processes in the

context of SPDE approximation, we refer to [12].

If the diffusion operator does not satisfy this commutativity condition, the simulation

of the iterated integral cannot be done using only the increments of the Lévy processes

(Li, i ∈ N). In case that L is a Q-Wiener process, there are ways for the simulation of

the involved iterated integrals which can be found, e.g., in [30]. A mean-square stability

analysis of Milstein schemes for finite-dimensional SDEs driven by standard Wiener pro-

cesses has been done for non-commuting diffusion matrices in [10], where the authors

used appropriately truncated stochastic Lévy areas.

As for the Euler–Maruyama scheme of Proposition 4.2, this Milstein scheme allows the

result from Corollary 3.6 to be specified in the following proposition.

Proposition 4.5. Assume that the bilinear mapping

C ′(u1, u2) = (r−1
d (∆tAh)PhG(G(·)u1)u2)

for u1, u2 ∈ U can be uniquely extended to a mapping C ′ ∈ L(U (2), L(Vh)). Then the zero

solution of the numerical method (4.6) is asymptotically mean-square stable if and only if

S = Ddet
∆t,h ⊗Ddet

∆t,h + ∆t (C ⊗ C)q +
∆t2

2
(C ′ ⊗ C ′)q′

satisfies that ρ(S) < 1. Here, q′ =
∑∞

k,`=1 µkµ`(fk ⊗ f`)⊗ (fk ⊗ f`) ∈ U (4) while C and q

are defined as in Proposition 4.2.

Proof. Note that C ′ ⊗ C ′ : U (4) → L(V
(2)
h ) and C ′ ⊗ C : U (2) ⊗ U → L(V

(2)
h ) are well-

defined by the same arguments as in Proposition 4.2. By Equation (4.7), we obtain for
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j ∈ N0

E[Dstoch,j
∆t,h ⊗Dstoch,j

∆t,h ] = E[DEM,j
∆t,h ⊗D

EM,j
∆t,h ] + E[DM,j

∆t,h ⊗D
EM,j
∆t,h ]

+ E[DEM,j
∆t,h ⊗D

M,j
∆t,h] + E[DM,j

∆t,h ⊗D
M,j
∆t,h].

For the first term, observe that the underlying operator DEM,j
∆t,h coincides with the operator

Dstoch,j
∆t,h from Equation (4.5) and therefore, the first two components of S follow from the

proof of Proposition 4.2. Writing ∆(2)L =
∑∞

k,`=1

√
µkµ`

(∫ tj+1

tj

∫ s
tj

dLk(r) dL`(s)
)
fk ⊗ f`,

we get for the second term

E[DM,j
∆t,h ⊗D

EM,j
∆t,h ] = E

[
C ′∆(2)Lj ⊗ C∆Lj

]
= (C ′ ⊗ C)E

[
∆(2)Lj ⊗∆Lj

]

and by Lemma A.2 E
[
∆(2)Lj ⊗∆Lj

]
= 0. Analogous calculations show that the third term

is equal to zero as well. Finally, we have

E[DM,j
∆t,h ⊗D

M,j
∆t,h] = E

[
C ′∆(2)Lj ⊗ C ′∆(2)Lj

]
= (C ′ ⊗ C ′)E

[
∆(2)Lj ⊗∆(2)Lj

]

and by Lemma A.2

E
[
∆(2)Lj ⊗∆(2)Lj

]
=

∆t2

2
q′.

The statement now follows directly from Corollary 3.6.

Before we apply the derived conditions to examples of rational approximations, we finish

this part with a remark on the regularity assumption on the Milstein term.

Remark 4.6. The assumption in Proposition 4.5, that the bilinear mapping C ′ can be

uniquely extended to a mapping in the space L(U (2);L(Vh)), holds for the operators G1

and G2 in the setting of Example 4.1. One can get rid of this assumption by using that

the bound on G ∈ L(H;L(U ;H)) allows for an extension of the bilinear mapping to the

projective tensor product space U ⊗π U , cf. [17]. One would then have to assume addi-

tional regularity on L to ensure that ∆(2)Lj in the proof of Proposition 4.5 is in the space

L2(Ω;U ⊗π U).

4.2 Examples of rational approximations

Let us next consider specific choices of rational approximations R and investigate their

influence on the mean-square stability properties of approximations of SPDEs driven by

Lévy noise. First, we derive sufficient conditions based on Corollary 4.3 for the asymptotic

mean-square stability of the zero solution of Euler–Maruyama schemes with standard ra-

tional approximations for fixed time step size ∆t and spatial refinement parameter h. More

specifically, we consider the backward Euler, the Crank–Nicolson, and the forward Euler

scheme.

Theorem 4.7. Consider the approximation scheme (4.4).
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1 (Backward Euler scheme) Let R be given by

R(z) =
1

1− z .

Then a sufficient condition for the asymptotic mean-square stability of the zero solu-

tion is

(1 + ∆t‖F‖L(H))
2 + ∆t tr(Q)‖G‖2L(H;L(U ;H))

(1 + ∆tλh,1)2
< 1.

2 (Crank–Nicolson scheme) Let R be given by

R(z) =
1 + z/2

1− z/2 .

Then a sufficient condition for the asymptotic mean-square stability of the zero solu-

tion is

(
max

k∈{1,Nh}

∣∣∣∣
1−∆tλh,k/2

1 + ∆tλh,k/2

∣∣∣∣+ ∆t
‖F‖L(H)

(1 + ∆tλh,1/2)

)2

+ ∆t
tr(Q)‖G‖2L(H;L(U ;H))

(1 + ∆tλh,1/2)2
< 1.

3 (Forward Euler scheme) Let R be given by

R(z) = 1 + z.

Then a sufficient condition for the asymptotic mean-square stability of the zero solu-

tion is

(
max

`∈{1,Nh}
|1−∆tλh,`|+ ∆t‖F‖L(H)

)2

+ ∆t tr(Q)‖G‖2L(H;L(U ;H)) < 1.

Proof. Let us start with the backward Euler scheme. Since the functions r−1
d (z) and R(z)

are equal and it holds for all k = 1, . . . , Nh that |R(−∆tλh,k)| ≤ |R(−∆tλh,1)|, we obtain

by Corollary 4.3 asymptotic mean-square stability if

(1 + ∆tλh,1)−2
(

(1 + ∆t‖F‖L(H))
2 + ∆t tr(Q)‖G‖2L(H;L(U ;H))

)
< 1.

For the Crank–Nicolson scheme, note that R is decreasing on R− and that R(z) ∈
[−1, 1] for all z ∈ R−. Thus, the maximizing eigenvalue is either the largest, λh,Nh , or the

smallest, λh,1, and therefore,

|R(−∆tλh,k)| ≤ max
`∈{1,Nh}

|R(−∆tλh,`)|.

Since |r−1
d (−∆tλh,k)| ≤ |r−1

d (−∆tλh,1)| for all k = 1, . . . , Nh, the claim follows with Corol-

lary 4.3.

By the same arguments, we obtain for the forward Euler scheme that |R(−∆tλh,i)| is
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maximized either at z = −∆tλh,1 or z = −∆tλh,Nh . Therefore, since r−1
d (z) = 1, the claim

follows again with Corollary 4.3, which finishes the proof.

Remark 4.8. In the homogeneous case, i.e., F = 0, the stability condition in Theorem 4.7(1)

reduces to

tr(Q)‖G‖2L(H;L(U ;H)) < λh,1(2 + ∆tλh,1)

so that even if the zero solution of (2.1) is asymptotically mean-square unstable, the zero

solution of its approximation (4.4) can always be rendered stable by letting ∆t be large

enough.

Finally, for the Milstein scheme, Proposition 4.5 allows us to show the following sufficient

condition for asymptotic mean-square stability.

Proposition 4.9. Let Ddet
∆t,h be given by Equation (4.5) and let Dstoch,j

∆t,h be defined by Equa-

tion (4.7). Consider the backward Euler approximation with R(z) = (1 − z)−1. Then,

under the same assumptions as in Proposition 4.5, a sufficient condition for the asymptotic

mean-square stability of the zero solution of (4.6) is

(1 + ∆t‖F‖L(H))
2 + ∆t tr(Q)‖G‖2L(H;L(U ;H)) +

∆t2

2
tr(Q)2‖G‖4L(H;L(U ;H))

< (1 + ∆tλh,1)2.

Proof. In the same way as in the proof of Corollary 4.3, we bound

‖(C ′ ⊗ C ′)q′‖
L(V

(2)
h )
≤ ‖C ′‖2

L(U(2);L(Vh))
tr(Q)2 ≤ (1 + ∆tλh,1)−2‖G‖4L(H;L(U ;H)) tr(Q)2.

Hence, our assumption ensures that ‖S‖
L(V

(2)
h )

< 1, which by Corollary 3.6 is a sufficient

condition for the asymptotic mean-square stability of the zero solution of (4.6).

Note that the sufficient condition for the asymptotic mean-square stability of the zero

solution derived here for the Milstein scheme is more restrictive than the sufficient con-

dition presented in Theorem 4.7(1) for the backward Euler–Maruyama method due to the

additional positive term in the estimate in Proposition 4.9.

4.3 Relation to the mild solution

To be able to connect existing results on the asymptotic mean-square stability of the zero

solution of (2.1) to our results for the discrete scheme (2.3) outlined in Section 4.2, we now

restrict ourselves to the case that L is a Q-Wiener process denoted by W = (W (t), t ≥ 0),

i.e., for t ∈ R+ we consider the SDE

dX(t) = (AX(t) + F (X(t)))dt+G(X(t))dW (t). (4.8)
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This restriction is caused by the available literature for the analytical solution. Note that for

Q-Wiener processes, the Karhunen–Loève expansion (4.2) becomes

W (t) =
∞∑

i=1

√
µiβi(t)fi,

where (βi, i ∈ N) is a sequence of independent, real-valued Brownian motions.

The following result, which is a special case of [23, Proposition 3.1.1], provides a suf-

ficient condition for the asymptotic mean-square stability of the zero solution of (2.1) by a

Lyapunov functional approach.

Theorem 4.10. Assume that the initial value X0 = x0 ∈ Ḣ1 is deterministic and that there

exists a constant c > 0 such that for all v ∈ Ḣ2 it holds that

2〈v,Av + F (v)〉H + tr[G(v)Q(G(v))∗] ≤ −c‖v‖2H .

Then the zero solution of (4.8) is asymptotically mean-square stable.

We use this theorem to derive a sufficient condition for the simultaneous mean-square

stability of the zero solutions of (4.8) and of the backward Euler approximation scheme (4.4).

Corollary 4.11. Consider the backward Euler scheme in the framework of Theorem 4.7

and assume that X0 = x0 ∈ Ḣ1 is deterministic. Then

2
(
‖F‖L(H) − λ1

)
+ tr(Q)‖G‖2L(H;L(U ;H)) < 0 (4.9)

is a sufficient condition for the asymptotic mean-square stability of the zero solutions of

both, (4.8) and its approximation (4.4), independent of the values of h and ∆t.

Proof. Let us assume that

2
(
‖F‖L(H) − λ1

)
+ tr(Q)‖G‖2L(H;L(U ;H)) < 0.

We first show that under this assumption the zero solution of (4.8) is asymptotically mean-

square stable, which by Theorem 4.10 follows from

2〈v,Av + F (v)〉H + tr[G(v)Q(G(v))∗] < −c‖v‖2H

for some c > 0. For the second term of this expression, note that for any v ∈ Ḣ2,

tr[G(v)Q(G(v))∗] = tr[(G(v))∗G(v)Q] =

∞∑

k=1

〈G(v)Qfk, G(v)fk〉

≤
∞∑

k=1

µk‖G‖2L(H;L(U ;H))‖v‖2H‖fk‖2U = tr(Q)‖G‖2L(H;L(U ;H))‖v‖2H ,

where the first equality follows from the fact that the trace operator is invariant under cyclic
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permutations. Next, for the first term, we have that

〈v,Av + F (v)〉 = 〈v, F (v)〉+ 〈v,Av〉 ≤ ‖F‖L(H)‖v‖2H − ‖v‖21 ≤ (‖F‖L(H) − λ1)‖v‖2H ,

where the last inequality follows from the definition of ‖ · ‖1. Altogether, we therefore find

2〈v,Av + F (v)〉H + tr[G(v)Q(G(v))∗]

≤
(

2
(
‖F‖L(H) − λ1

)
+ tr(Q)‖G‖2L(H;L(U ;H))

)
‖v‖2H ,

which finishes the proof of the asymptotic mean-square stability of the zero solution of (4.8)

with

c = −
(

2
(
‖F‖L(H) − λ1

)
+ tr(Q)‖G‖2L(H;L(U ;H))

)
.

In a second step, we show that under the same assumption the zero solution of (4.4) is

asymptotically mean-square stable. We note that by (4.1) λh,1 ≥ λ1. By Theorem 4.7, the

asymptotic mean-square stability then follows if we can show that

(1 + ∆t‖F‖L(H))
2 + ∆t tr(Q)‖G‖2L(H;L(U ;H)) < (1 + ∆t λ1)2.

This inequality can be rewritten as

∆t
(

2
(
‖F‖L(H) − λ1

)
+ tr(Q)‖G‖2L(H;L(U ;H))

)
+ ∆t2

(
‖F‖2L(H) − λ2

1

)
< 0,

which is seen to hold by observing that the first term is negative by assumption and so is

the second term, since

‖F‖2L(H) − λ2
1

=
(
‖F‖L(H) + λ1

) (
‖F‖L(H) − λ1

)

≤
(
‖F‖L(H) + λ1

)((
‖F‖L(H) − λ1

)
+

1

2
tr(Q)‖G‖2L(H;L(U ;H))

)
< 0.

This finishes the proof.

Note that by Corollary 4.11 we get that whenever (4.9) is fulfilled, then, the backward

Euler–Maruyama scheme preserves the qualitative behaviour of the analytical solution with-

out any restriction on the refinement parameters h and ∆t. Hence, under the condition that

(4.9) is fulfilled, the backward Euler–Maruyama scheme can be applied to numerical meth-

ods that use different refinement parameters in parallel, since the zero solution of the nu-

merical scheme (4.4) cannot become asymptotically mean-square unstable for any choice

of h and ∆t. An important example of such a method using a hierarchy of different refine-

ment levels is the multilevel Monte Carlo estimator. It approximates efficiently a quantity of

interest E[ϕ(X(T ))] of the solution of (2.1) (see, e.g., [3, 5] for details). Here, a method pre-

serving the qualitative behaviour of the analytical solution is required on every refinement
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level, see, e.g., [1].

Remark 4.12. Based on Theorem 4.7, it is also possible to examine the relation between the

asymptotic mean-square stability of the zero solution of (4.8) and its approximation by nu-

merical schemes based on other rational approximations such as, e.g., the Crank–Nicolson

or the forward Euler scheme. However, due to the nature of the sufficient conditions of The-

orem 4.7 for these rational approximations, similar results for simultaneous mean-square

stability of the zero solution as the one presented for the backward Euler scheme in Corol-

lary 4.3 would include restrictions on the refinement parameters h and ∆t.

For the Milstein scheme considered in Proposition 4.9 we can also derive a sufficient

condition (independent of h and ∆t) for the simultaneous mean-square stability of the zero

solutions of (4.8) and of the approximation scheme (4.6). However, due to the additional

term in the sufficient condition, the sufficient condition for the simultaneous mean-square

stability is slightly more restrictive than in Corollary 4.11. More precisely we obtain the

following:

Corollary 4.13. Consider the backward Euler–Milstein scheme in the framework of Propo-

sition 4.9 and assume further that X0 = x0 ∈ Ḣ1 is deterministic and F = 0. Then the

inequality

−
√

2λ1 + tr(Q)‖G‖2L(H;L(U ;H)) < 0

is a sufficient condition for the asymptotic mean-square stability of the zero solutions of

both, (4.8) and its approximation (4.6), independent of h and ∆t.

Proof. Let us assume that −
√

2λ1 + tr(Q)‖G‖2L(H;L(U ;H)) < 0. Since

−2λ1 + tr(Q)‖G‖2L(H;L(U ;H)) < −
√

2λ1 + tr(Q)‖G‖2L(H;L(U ;H)) < 0,

we get the asymptotic mean-square stability of the zero solution of (4.8) by Corollary 4.11.

The sufficient condition of Proposition 4.9 for the asymptotic mean-square stability of the

zero solution of (4.6) can be rewritten as

∆t(−2λh,1 + tr(Q)‖G‖2L(H;L(U ;H))) + ∆t2(−2λ2
h,1 + tr(Q)2‖G‖4L(H;L(U ;H))) < 0.

The first part of this condition on the left hand side is negative since

−2λh,1 + tr(Q)‖G‖2L(H;L(U ;H)) < −
√

2λ1 + tr(Q)‖G‖2L(H;L(U ;H)) < 0.

For the second part note that
√

2λ1 > tr(Q)‖G‖2L(H;L(U ;H)) by assumption and as a con-

sequence it holds that

−2λ2
h,1 + tr(Q)2‖G‖4L(H;L(U ;H)) < 0.

Thus, we obtain the asymptotic mean-square stability of the zero solution of (4.6) by Propo-
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sition 4.9, which completes the proof.

5 Simulations

In this section we adopt the setting of Examples 2.1 and 4.1 and use numerical simulations

to illustrate our theoretical results. We recall that we consider the stochastic heat equation

on the spatial domain [0, 1] with homogeneous zero Dirichlet boundary conditions, i.e., for

fixed ν > 0 consider for t ≥ 0

dX(t) = ν∆X(t) dt+G(X(t)) dW (t). (5.1)

We set the initial condition X0(x) = cx(1−x), where the constant c =
√

30 is chosen such

that E[‖X0‖2H ] = 1.

The eigenvalues (µi, i ∈ N) of the operator Q obtained by the relation Qei = µiei are

assumed to be µi = Cµi
−α, where Cµ > 0 and α > 1. Here, Cµ can be used for scaling

the noise intensity and α controls the regularity of the Q-Wiener process, see, e.g., [24, 22].

5.1 Spectral Galerkin methods

We examine spectral Galerkin methods for the stochastic heat equation with diffusion op-

erator G1 of Example 4.1 first. Following the approach presented in [19, Section 6.4], we

obtain the infinite-dimensional counterpart of the geometric Brownian motion, because the

mild solution of SPDE (5.1) can be represented by

X(t) =

∞∑

i=1

〈X(t), ei〉Hei =

∞∑

i=1

xi(t)ei,

where each of the coefficients xi(t) in the series representation of the mild solution corre-

sponds to the solution of the one-dimensional geometric Brownian motion

dxi(t) = −λixi(t) dt+
√
µixi(t) dβi(t).

Furthermore, the second moment is given by

E[‖X(T )‖2H ] =
∞∑

i=1

E[|xi(T )|2] =
∞∑

i=1

〈X0, ei〉2H exp((−2λi + µi)T ).

Consequently, the zero solution of (5.1) is asymptotically mean-square stable if and only

if for all i ∈ N it holds that −2λi + µi < 0. By using the explicit representation of the

eigenvalues λi and µi, this corresponds to the condition that for all i ∈ N, it holds that

−2νi2π2 + Cµi
−α < 0, which is equivalent to −2λ1 + µ1 = −2νπ2 + Cµ < 0. In reverse,

the zero solution of (5.1) is asymptotically mean-square unstable if and only if Cµ > 2νπ2.

For the spectral Galerkin approximation, we choose Vh = span(e1, . . . , eNh), Nh <∞.

Thus, we want to findXh(t) =
∑Nh

k=1〈X(t), ek〉Hek =
∑Nh

k=1 xk(t)ek of the semi-discretized
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stochastic heat equation

dXh(t) = AhXh(t) dt+ PhG1(Xh(t)) dW (t). (5.2)

To obtain a fully discrete scheme, we approximate the one-dimensional geometric Brownian

motions in time by the three considered types of rational approximations: backward Euler,

Crank–Nicolson, and forward Euler. Propositions 4.2 and 4.5 yield that the zero solution of

the fully discrete approximation of (5.2) is asymptotically mean-square stable if and only if

the corresponding linear operator S satisfies ρ(S) < 1.

For computing the spectrum of the linear operator S from Proposition 4.2 (Euler–Maruya-

ma scheme), we consider for k, ` = 1, . . . , Nh

S(ek ⊗ e`) = (Ddet
∆t,h ⊗Ddet

∆t,h)(ek ⊗ e`) + ∆t ((C ⊗ C)q) (ek ⊗ e`)

= (Ddet
∆t,hek ⊗Ddet

∆t,he`) + ∆t

∞∑

m=1

µm

((
(Cem)ek

)
⊗
(
(Cem)e`

))
.

Since

Ddet
∆t,hek = R(∆tAh)ek =

Nh∑

r=1

R(−∆tλr)〈ek, er〉Her = R(−∆tλk)ek

and

(Cem)ek = r−1
d (∆tAh)PhG1(ek)em = r−1

d (∆tAh)Ph

( ∞∑

n=1

〈ek, en〉H〈em, en〉Hen
)

= δk,mr
−1
d (∆tAh)ek = δk,mr

−1
d (−∆tλk)ek,

the eigenvalues Λk,` corresponding to the eigenfunctions ek ⊗ e` are given by

Λk,` = R(−∆tλk)R(−∆tλ`) + δk,` ∆tµk r
−1
d (−∆tλk)r

−1
d (−∆tλ`).

As another approximation we approximate the one-dimensional geometric Brownian

motions by a Milstein scheme. For the linear operator S from Proposition 4.5 (Milstein

scheme), the commutativity assumption on G of Remark 4.4 is fulfilled, and by using

that ∆[βk, β`]
j = δk,`∆t along with similar computations to those of the Euler–Maruyama

scheme, one can show that the corresponding eigenvalues Λk,` are given by

Λk,` = R(−∆tλk)R(−∆tλ`) + δk,` r
−1
d (−∆tλk)r

−1
d (−∆tλ`)

(
∆tµk +

∆t2µ2
k

2

)
. (5.3)

The additional quadratic term comes from applying the linear operator (C ′⊗C ′)q′ to ek⊗e`.
Note that for both operators S, the eigenvalues Λk,` with k 6= ` satisfy

|Λk,`| = |R(−∆tλk)R(−∆tλ`)| ≤ R(−∆tλs)
2 ≤ Λs,s,
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where |R(−∆tλs)| = maxj=1,...,Nh |R(−∆tλj)|. Hence, ρ(S) < 1 is equivalent to |Λk,k| <
1 for all k = 1, . . . , Nh. In Table 1 the eigenvalues Λk,k and sufficient and necessary

conditions for the asymptotic mean-square stability of the zero solution of (4.4) and (4.6)

are presented for the considered rational approximations (backward Euler, Crank–Nicolson,

and forward Euler).

rational approximation/

stochastic approximation
Λk,k ρ(S) < 1⇔ for all k = 1, . . . , Nh :

backward Euler/EM 1+∆tµk
(1+∆tλk)2

−2λk + µk −∆tλ2
k < 0

backward Euler/Milstein
1+∆tµk+∆t2µ2k/2

(1+∆tλk)2
−2λk + µk + ∆t(−λ2

k + µ2
k/2) < 0

Crank–Nicolson/EM (1−∆tλk/2)2+µk∆t
(1+∆tλk/2)2

−2λk + µk < 0

forward Euler/EM (1−∆tλk)
2 + µk∆t −2λk + µk + ∆tλ2

k < 0

Table 1: Overview of considered methods (rational approximation combined with stochastic
integral approximation) applied to the infinite-dimensional geometric Brownian motion. In
the second column, the eigenvalues Λk,k defined in (5.3) are given. The last column pro-
vides a necessary and sufficient condition in terms of the eigenvalues of −A and Q such
that ρ(S) < 1 is fulfilled. Note that Euler–Maruyama is abbreviated by EM.

As it is noted above, the zero solution of (5.1) is asymptotically mean-square stable

if and only if the condition −2λ1 + µ1 < 0 holds. Note that if this condition is fulfilled,

then, the numerical approximations based on combinations of an Euler–Maruyama with a

backward Euler and a Crank–Nicolson scheme share the mean-square stability properties

of the analytical solution without any restriction on Vh or the time step size ∆t.

In Figure 4.1(a) we compare the qualitative behaviour of the backward Euler, the Crank–

Nicolson, and the forward Euler scheme together with a spectral Galerkin approximation in

space and an Euler–Maruyama approximation of the stochastic integral. We choose the

dimension of the subspace Vh to be Nh = 15. For i ∈ N, we set the eigenvalues of Q

to µi = i−3, i.e., Cµ = 1 and α = 3. Furthermore, we set A = ∆, i.e., ν = 1. Since

−2λ1 + Cµ = −2π2 + 1 < 0, the zero solution of (5.1) is asymptotically mean-square

stable.

For the approximation of E[‖Xj
h‖2H ] we use a Monte Carlo simulation with M = 106

independent realizations of ‖Xj
h‖2H , which we compute by using the representation

‖Xh(t)‖2H =

Nh∑

k=1

|xk(t)|2. (5.4)
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(b) Comparison of backward Euler–Maruyama (BE)
and backward Euler–Milstein (BM) scheme.

Figure 1: Infinite-dimensional geometric Brownian motion using spectral Galerkin approxi-
mations with Nh = 15 and different time step sizes ∆t.

More specifically, let MSX(tj) ≈ E[‖Xj
h‖2H ] be given by

MSX(tj) =
1

M

M∑

i=1

Nh∑

k=1

|x̂j,(i)k |2,

where (x̂
j,(i)
k , i = 1, . . . ,M) consists of independent samples of numerical approximations

of xk(tj) with different schemes. Based on Equation (5.4), the reference solution is com-

puted by

E[‖Xh(t)‖2H ] =

Nh∑

k=1

E[|xk(t)|2] =

Nh∑

k=1

〈X0, ek〉2H exp ((−2λk + µk)t) .

As it can be seen in Figure 4.1(a), the backward Euler and the Crank–Nicolson scheme

reproduce the mean-square stability of the zero solution of of (5.1) already for large time

step sizes (∆t = 1/25), but the forward Euler scheme requires a 44 times smaller ∆t in

order to reproduce the asymptotic mean-square stability of the zero solution. Here, the

finest time step size is given by ∆t = 1/1100 which satisfies the restrictive bound from

Table 1 such that ρ(S) < 1. Due to a rapid amplification of oscillations caused by negative

values of Xj
h for coarser time step sizes (here, ∆t = 1/1000 and 1/1050 for which the zero

solution is asymptotic mean-square unstable) the mean-square process deviates rapidly

from the reference solution at a certain time point.

In Figure 4.1(b) we compare the qualitative behaviour of the backward Euler scheme

in combination with an Euler–Maruyama and a Milstein approximation of the stochastic in-

tegral on the time interval t ∈ [0, 5]. The parameters ν = 8/(5π4) (small diffusion) and
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µi = 3/10 i−3 are chosen such that the zero solution of the Milstein approximation is

asymptotically mean-square unstable for ∆t = 1.25 and asymptotically mean-square stable

for ∆t = 0.25. The zero solution of the Euler–Maruyama approximation is for both time step

sizes asymptotically mean-square stable. These theoretical results are reproduced in the

simulation.

5.2 Galerkin finite element methods

In this section we consider a Galerkin finite element method for the stochastic heat equation

with diffusion operator G2 of Example 4.1. In our context this means that we let Vh be the

span of functions that are piecewise linear on an equidistant grid of [0, 1] with Nh interior

nodes so that Vh is an Nh-dimensional subspace of Ḣ1. The refinement parameter is given

by h = (Nh + 1)−1. With the exception that we now have U = Ḣ1, all other parameters of

the equation are as in Figure 4.1(a) of Section 5.1.

In contrast to the setting in Section 5.1, we can no longer express the solution or its

approximation as a sum of one-dimensional geometric Brownian motions and therefore, we

no longer have a way to analytically derive necessary and sufficient conditions for ρ(S) < 1.

We therefore consider the results of Theorem 4.7 instead. The identity λh,i = λi for i ∈ N
does not hold, but an analysis in [19, Section 6.1] shows that λh,i is explicitly given by

λh,i =
4ν

h2

(
2

3
+

1

3
cos(iπh)

)−1

(sin(iπh/2))2

for i ∈ N. For the convenience of the reader, the sufficient conditions of Theorem 4.7 for the

considered approximation schemes are collected in simplified form in Table 2, expressed in

terms of stability parameters ρBE, ρCN and ρFE. By introducing the estimate

ĝ =

(
2
∞∑

i=1

λ−1
i

)1/2

,

we replace ‖G2‖L(H;L(U ;H)) in these conditions by the upper bound derived in Example 4.1.

Note that with these parameters, Corollary 4.11 implies the asymptotic mean-square stabil-

ity of the zero solution of both Equation (5.1) and the backward Euler scheme for the finite

element discretization (4.4).

As in Section 5.1 we compare the mean-square behaviour of the backward Euler and

the forward Euler schemes in Figure 4.2(a) but now for the finite element discretization up

to T = 2.5. We observe that the increase of the time step size by a very small amount,

i.e., from ∆t = 0.00066 to ∆t = 0.00067, causes the forward Euler system to switch from

a stable behaviour to an unstable one. This agrees with our theoretical findings, as ρFE

changes sign in the interval (0.0066, 0.0067), which can be seen in Table 3, so we have

theoretically guaranteed stability for the smaller time step but not for the larger one. This

indicates that the sufficient condition is sharp in this case.

For the approximation of E[‖Xj
h‖2H ], we use the same method as before but take M =
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rational approximation ρ(S) < 1⇐:

backward Euler ρBE = ∆t tr(Q)ĝ2 − 2∆tλh,1 −∆t2λ2
h,1 < 0

Crank–Nicolson ρCN = max
k∈{1,Nh}

∣∣∣1−∆tλh,k/2
1+∆tλh,k/2

∣∣∣
2

+ ∆t tr(Q)ĝ2

(1+∆tλh,1/2)2
− 1 < 0

forward Euler ρFE = max
k∈{1,Nh}

(1−∆tλh,k)
2 + ∆t tr(Q)ĝ2 − 1 < 0

Table 2: Overview of temporal approximation schemes applied to the finite element space
approximation of the stochastic heat equation with G = G2. The right column shows suffi-
cient conditions for ρ(S) < 1 derived from Theorem 4.7.

104 samples in the Monte Carlo approximation. For the computation of the norm in H , we

use the fact that with

Xj
h =

Nh∑

m=1

xmφm,

where xm ∈ R for m = 1, . . . , Nh and {φm,m = 1 . . . , Nh} is the set of hat functions that

span Vh, we have

‖Xj
h‖2H =

Nh∑

m=1

Nh∑

n=1

xmxn 〈φm, φn〉H .

In Figure 4.2(b) we compare the mean-square behaviour of the the backward Euler

scheme and the Crank–Nicolson scheme for ∆t = 0.015 to ∆t = 0.15. Also in this case,

we see from Table 3 that ρCN changes sign when the time step size is increased, which

occurs for significantly larger time steps compared to the forward Euler scheme. As one

can see from the figure, there is a substantial change in the decay behaviour of E[‖Xj
h‖2H ]

for the Crank–Nicolson scheme with time step size ∆t = 0.15 compared to ∆t = 0.015,

which is no longer convincing to be mean-square stable. Since the sufficient condition

ρCN < 0 from Table 2 is not fulfilled for ∆t = 0.15, it is also not clear from the theory that

the zero solution of the Crank–Nicolson scheme is asymptotically mean-square stable for

such coarse time step sizes.

Properties of Lévy increments

In this appendix we derive properties of the U -valued, square-integrable Lévy process that

are used in the proofs of Propositions 4.2 and 4.5. We apply the same setting and notation

as in Section 4. For this, we recall that the Karhunen–Loève expansion of L for t ≥ 0 is
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(a) Comparison of backward Euler (BE) and forward
Euler (FE) scheme.
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(b) Comparison of backward Euler (BE) and Crank–
Nicolson (CN) scheme.

Figure 2: Finite Element approximation of the stochastic heat equation with G = G2, Nh =
15, and different time step sizes ∆t.

∆t ρBE ρCN ρFE

0.15 -5.11613e+00 2.08460e-03 1.99602e+05

0.015 -3.13089e-01 -1.58504e-01 1.91542e+03

0.00068 -1.32387e-02 -1.31050e-02 6.09395e-02

0.00067 -1.30434e-02 -1.29135e-02 3.39709e-04

0.00066 -1.28480e-02 -1.27221e-02 -1.27626e-02

Table 3: Specific values of the stability parameters of Table 2 for varying time step sizes
∆t.

given by

L(t) =
∞∑

k=1

√
µkLk(t)fk,

where (Lk, k ∈ N) is a sequence of real-valued, uncorrelated, zero-mean Lévy processes

that fulfil for all k ∈ N, E[L2
k(t)] = t. Here, (µk, k ∈ N) is the sequence of eigenvalues of

the covariance operator Q of L and (fk, k ∈ N) is an orthonormal eigenbasis of Q.

Lemma A.1. Let L be a U -valued Lévy process and let, for 0 ≤ a < b, ∆L = L(b)− L(a)
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and ∆t = b− a. Then

E[∆L⊗∆L] = ∆t

∞∑

k=1

µkfk ⊗ fk.

Proof. We first note that ∆L⊗∆L is well-defined as a member of L1(Ω;U (2)) since

E[‖∆L⊗∆L‖U(2) ] = E[‖∆L‖2U ] = tr(Q)∆t <∞.

The increments ∆Lk = Lk(b)− Lk(a) of the Karhunen–Loève expansion

∆L =

∞∑

k=1

√
µk∆Lkfk

fulfil E[∆Lk∆L`] = δk,`∆t for k, ` ∈ N. Thus, we obtain

E[∆L⊗∆L] =
∞∑

k,`=1

√
µkµl E[∆Lk∆Ll] fk ⊗ f` = ∆t

∞∑

k=1

µkfk ⊗ fk.

The following lemma is used in Section 4.1 to find a suitable representation of the linear

operator S for the backward Euler–Milstein scheme.

Lemma A.2. Let L be a U -valued, square-integrable Lévy process and set for 0 ≤ a < b

with ∆t = b− a,

∆(2)L =

∞∑

k,`=1

√
µkµ`

(∫ b

a

∫ s

a
dLk(r) dL`(s)

)
fk ⊗ f` ∈ L2(Ω;U (2)).

Then

1 E
[
∆(2)L⊗∆L

]
= 0,

2 E
[
∆(2)L⊗∆(2)L

]
= ∆t2

2

∑∞
k,`=1 µkµ`

(
(fk ⊗ f`)⊗ (fk ⊗ f`)

)
.

Proof. Since L is stationary, we may assume without loss of generality that a = 0 and

b = t > 0. We first note that

E
[(∫ t

0

∫ s

0
dLi(r) dLj(s)

)(∫ t

0

∫ s

0
dLk(r) dL`(s)

)]

= E
[(∫ t

0
Li(s−) dLj(s)

)(∫ t

0
Lk(s−) dL`(s)

)]
.

To simplify this expression, we use the angle bracket process (〈X,Y 〉t , t ≥ 0), which for

two real-valued semimartingales X and Y with (locally) integrable quadratic covariation

[X,Y ] is defined as the unique compensator which makes ([X,Y ]t − 〈X,Y 〉t , t ≥ 0) a

local martingale. For this, we have the polarization identity,

〈X,Y 〉t =
1

4
(〈X + Y,X + Y 〉t − 〈X − Y,X − Y 〉t) ,
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which can be found, along with an introduction to this process, e.g., in [27, Section III.5].

For square-integrable martingales M , it holds (see, e.g., [18, Section 8.9]) that

E[〈M,M〉t] = E[M2(t)]

and therefore, by the polarization identity, if N is another square-integrable martingale,

then,

E[〈M,N〉t] =
1

4

(
E[(M(t) +N(t))2]− E[(M(t)−N(t))2]

)
= E[M(t)N(t)].

Applying this to the Lévy integral, which is a martingale, we obtain

E
[(∫ t

0
Li(s−) dLj(s)

)(∫ t

0
Lk(s−) dL`(s)

)]

= E
[〈∫

Li(s−) dLj(s),

∫
Lk(s−) dL`(s)

〉

t

]

= E
[∫ t

0
Li(s−)Lk(s−) d 〈Lj , L`〉s

]
,

where the last equality is a property of the angle bracket process and the stochastic integral,

see [18, Section 8.9]. Now, if j = `, we have, since Lj is a Lévy process and E[L2
j (s)] = s,

that 〈Lj , L`〉s = 〈Lj , Lj〉s = s by [26, Chapter 8]. When j 6= ` on the other hand, LjL` is a

square-integrable martingale by [26, Theorem 4.49(ii)]. Integration by parts yields

[Lj , L`]s = Lj(s)L`(s)−
∫ s

0
Lj(r−) dL`(r)−

∫ s

0
L`(r−) dLj(r).

Therefore, [Lj , L`] is also a square-integrable martingale (with zero mean), because the

right hand side is a square-integrable martingale. Since (〈Lj , L`〉s , s ≥ 0) is the unique

compensator of [Lj , L`] it must follow that 〈Lj , L`〉s = 0 for all s ≥ 0. Thus,

E
[∫ t

0
Li(s−)Lk(s−) d 〈Lj , L`〉s

]

is non-zero only if j = `, and in that case

E
[∫ t

0
Li(s−)Lk(s−) d 〈Lj , Lj〉s

]
=

∫ t

0
E [Li(s−)Lk(s−)] ds.

In conclusion we have obtained

E
[(∫ t

0

∫ s

0
dLi(r) dLj(s)

)(∫ t

0

∫ s

0
dLk(r) dL`(s)

)]

=

{
t2/2 for j = `, i = k,

0 otherwise,

(A.5)
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which yields by the monotone convergence theorem that ∆(2)L ∈ L2(Ω;U (2)) with

E
[
‖∆(2)L‖2

U(2)

]
=

∞∑

k,`=1

µkµ` E

[(∫ t

0

∫ s

0
dLk(r) dL`(s)

)2
]

=
t2

2

∞∑

k,`=1

µkµ` =
t2

2
tr(Q)2 <∞.

This entails that ∆(2)L⊗∆L ∈ L1(Ω;U (2) ⊗ U), since

(
E
[
‖∆(2)L⊗∆L‖U(2)⊗U

])2
=
(
E
[
‖∆(2)L‖U(2)‖∆L‖U

])2

≤ E
[
‖∆(2)L‖2

U(2)

]
E
[
‖∆L‖2U

]
=
t3

2
tr(Q)3 <∞.

by the Cauchy–Schwarz inequality. Similarly, it holds that

∆(2)L⊗∆(2)L ∈ L1(Ω;U (2) ⊗ U (2)).

Therefore, we obtain

E
[
∆(2)L⊗∆L

]
=

∞∑

k,`,m=1

√
µkµ`µm E

[
∆Lm

(∫ t

0

∫ s

0
dLk(r) dL`(s)

)]
(fk ⊗ f`)⊗ fm,

and, in the same way as the first observation of this proof,

E
[
∆Lm

(∫ t

0

∫ s

0
dLk(r) dL`(s)

)]
= E

[〈∫
dLm(s),

∫
Lk(s−) dL`(s)

〉

t

]

= E
[∫ t

0
Lk(s−) d 〈Lm, L`〉s

]
= 0

This is justified by the observation that 〈Lm, L`〉s 6= 0 only if m = ` and that in this case the

expectation of the integral is still zero since Lk has zero expectation.

For the second claim, we note that by (A.5),

E
[
∆(2)L⊗∆(2)L

]
=

∞∑

i,j,k,`=1

√
µiµjµkµ`

(
(fi ⊗ fj)⊗ (fk ⊗ f`)

)

· E
[(∫ t

0

∫ s

0
dLi(r) dLj(s)

)(∫ t

0

∫ s

0
dLk(r) dL`(s)

)]

=
t2

2

∞∑

k,`=1

µkµ`
(
(fk ⊗ f`)⊗ (fk ⊗ f`)

)
,

which finishes the proof of the lemma.
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5 Combining space-time multigrid techniques with

multilevel Monte Carlo methods for SDEs

M. Neumüller and A. Thalhammer

In this work we combine multilevel Monte Carlo methods for time-dependent stochastic

differential equations with a space-time multigrid method. The idea is to use the space-

time hierarchy from the multilevel Monte Carlo method also for the approximation of the

solution process by solving the arising linear systems. This symbiosis leads to a robust and

parallel method with respect to space, time and probability. We show the performance of

this approach by several numerical experiments which demonstrate the advantages of this

approach.

Key words. Monte Carlo estimators, Space-time methods, Parallelisation, Multilevel Monte

Carlo methods, Multigrid methods, Stochastic differential equations, Finite element methods

AMS subject classifications. 65C05, 60H35, 65Y05, 60H10, 60H15, 65M55

1 Introduction

Stochastic differential equations (SDEs) have become an invaluable tool for modelling time-

dependent problems that are perturbed by random influences. Since the importance of such

models increases constantly, there is a high demand on improving the efficiency of numeri-

cal algorithms for SDEs, especially, if one is interested in the approximation of E[ϕ(X(T ))],

where X(T ) denotes the (mild) solution of an SDE evaluated at time T .

In this work we focus on approximating E[ϕ(X(T ))] for the solution process of linear

SDEs driven by additive noise. For this we combine space-time multigrid methods for ap-

proximating solutions of time-dependent deterministic differential equations, see [7] and

the references therein, and multilevel Monte Carlo (MLMC) methods, see e.g. [9, 10, 2, 8].

Both methods as such are well-known to be parallelizable, however, the combination of both

methods is a completely new approach that enables the full parallelization of the problem

in space, time and probability.

The outline of this article is as follows: In Section 2, we introduce two model problems

(the Ornstein-Uhlenbeck process and the stochastic heat equation) together with discretiza-

tion techniques for these model problems with respect to space and time. Afterwards, we

consider the multilevel Monte Carlo (MLMC) method for approximating the expectation in

Section 3 and we discuss parallelizable space-time multigrid methods based on the inher-

135
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ited space-time hierarchy of the MLMC estimator in Section 4. We conclude by presenting

numerical experiments in Section 5.

2 Model problems

Let T > 0 and let (Ω, {Ft}t∈[0,T ],F ,P) be a complete probability space. At first, we consider

a one-dimensional model problem given by the stochastic ordinary differential equation

(SODE)

du(t) + λu(t)dt = σdβ(t) for t ∈ (0, T ], (1)

u(0) = u0,

where λ ∈ R+
0 , σ, u0 ∈ R and β = (β(t), t ∈ [0, T ]) is a standard Brownian motion. The

solution of this SODE is a special Ornstein-Uhlenbeck process defined by

u(t) = u0e
−λt + σ

∫ t

0
e−λ(t−s)dβ(s), t ∈ [0, T ]. (2)

As second model problem we consider the stochastic heat equation on a bounded and

convex domain D ⊂ Rd, d = 1, 2, 3, with homogeneous Dirichlet boundary conditions. If

d = 2, then D is assumed to be polygonal and if d = 3, then the domain D is polyhedral.

We rewrite the stochastic partial differential equation (SPDE) as a stochastic evolution

equation on the Hilbert space H = L2(D)

dU(t) = AU(t)dt+GdW (t) for t ∈ (0, T ], (3)

U(0) = U0 ∈ D(A),

where G ∈ L(U ;H) and Av = ∆xv for v ∈ D(A). It is a well-known result that the

operator A is the generator of an analytic semigroup (S(t), t ∈ [0, T ]). Subsequently, we

denote by (ej , j ∈ N) the set of eigenfunctions of the differential operator A, which forms

an orthonormal basis of H .

Let U be a separable Hilbert space. Then we assume that W = (W (t), t ∈ [0, T ]) is

a U -valued Q-Wiener process with a linear, positive definite, symmetric, trace class covari-

ance operator Q. By results from e.g. [5, 12], W can be represented as

W (t) =

∞∑

j=1

√
µjfjβj(t), (4)

where (µj , j ∈ N) denotes the set of eigenvalues of Q with corresponding eigenfunctions

(fj , j ∈ N) satisfying Qfj = µjfj and (βj , j ∈ N) is a sequence of independent standard

Brownian motions.
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Then, by [5], there exists a unique, square-integrable mild solution to SPDE (3)

U(t) = S(t)U0 +

∫ t

0
S(t− s)GdW (s) for t ∈ [0, T ]. (5)

2.1 Discretization of model problems

In this section, we present fully discrete schemes for approximating the solution processes

from Eq. (2) and Eq. (5). For this we fix an equidistant partition ΘK of the time interval [0, T ]

given by ΘK = {0 = t0 < t1 < · · · < tK = T}, where for 0 ≤ j ≤ K we choose tj = j∆t

with time step size ∆t = T/K.

Discretization of the Ornstein–Uhlenbeck process

For approximating the solution of the Ornstein-Uhlenbeck process (2), we consider the

backward Euler–Maruyama scheme given by the recursion

(1 + λ∆t)uj = uj−1 + σ∆βj , for 1 ≤ j ≤ K, (6)

where u0 = u0 and ∆βj = β(tj) − β(tj−1). Rewriting the recursion (6) in a matrix-vector

representation yields




(1 + λ∆t)

−1 (1 + λ∆t)
. . .

. . .

−1 (1 + λ∆t)







u1

u2

...

uK




=




σ∆β1 + u0

σ∆β2

...

σ∆βK



. (7)

In this article, we abbreviate this linear system by

Lτu = f(ω),

where we use the ω-dependency in f(ω) to indicate that the right hand side is a random

vector.

Discretization of the stochastic heat equation

For the stochastic heat equation we want to obtain a fully discrete approximation U jh of the

mild solutionU(tj), tj ∈ ΘK , whereU jh attains values in a finite-dimensional subspace Vh ⊂
D((−A)1/2). Besides an appropriate time integration method, we apply a discretization

scheme in space. For this we consider a standard Galerkin finite element (FE) discretization

based on a regular family (Th, h ∈ (0, 1]) of triangulations of D with maximal mesh size h.

Then Vh denotes the space of globally continuous and on Th piecewise linear functions.

Furthermore, we denote by Nh the dimension of Vh. By using the nodal basis functions

(φi, 1 ≤ i ≤ Nh), the fully discrete approximation scheme based on Galerkin finite elements
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in space and on the backward Euler–Maruyama scheme in time is given by (see e.g. [3])

(Mh + ∆tKh)Uj = MhUj−1 + ∆Wj for 1 ≤ j ≤ K, (8)

where ∆Wj denotes the vector representation of the FE approximation of the Q-Wiener

increments G∆W j(x) = GW (tj ,x)−GW (tj−1,x),x ∈ D, and for j = 0, . . . ,K,

U jh =

Nh∑

i=1

Uj [i]φi,

where Uj [i] denotes the ith component of the vector Uj ∈ RNh . Here, we denote by Mh

the standard mass matrix and Kh the standard stiffness matrix defined by

Mh[i, j] :=

∫

D
φj(x)φi(x)dx,

Kh[i, j] :=

∫

D
∇φj(x) · ∇φi(x)dx,

for i, j = 1, . . . , Nh. Finally, by rewriting the numerical scheme (8) in terms of a matrix-

vector formulation we obtain the large linear system




Bh

−Mh Bh
. . .

. . .

−Mh Bh







U1

U2

...

UK




=




∆W1 +MhU0

∆W2

...

∆WK



, (9)

where Bh = Mh + ∆tKh. Subsequently we abbreviate the linear system (9) by

Lh,τU = F(ω).

Simulation of Q-Wiener increments

By truncating the Karhunen–Loéve expansion (4) of theQ-Wiener process one can simulate

the Q-Wiener increments (∆W i, i = 1, . . . ,K) by defining for J ∈ N

∆JW i(x) = PJ∆W i(x) =
J∑

j=1

√
µjfj(x)∆βij , for x ∈ D (10)

where ∆βij = βj(ti)−βj(ti−1) and PJ denotes the orthogonal projector onto span(f1, . . . , fJ).

In order to preserve the convergence properties of the backward Euler scheme (8), the trun-

cation parameter J has to be in general coupled to the dimension of the FE space Vh and

to the decay rate of the eigenvalues of Q, see e.g. [3, 12].

In general the evaluation of the sum in Eq. (10) is computationally expensive - especially

for high-dimensional spaces Vh. However, specific structural properties of the eigenvalues

(fj , j ∈ N) can be exploited to speed up the simulation of the right hand side F(ω). For the
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choice of fj being the eigenvalues of the Laplace operator endowed with periodic boundary

conditions on D = (0, 1)d, d = 2, 3, only a single fast Fourier transform (FFT) is needed

to get two independent realisations of the right hand side F(ω) on an equidistant grid, see

[11, 12]. This has also been implemented in Section 5 for the numerical studies of the

stochastic heat equation in higher dimensions (i.e., D ⊂ Rd, d = 2, 3), where for the FFT

computations the C++-library FFTW3, [6], has been used in the numerical experiments.

Furthermore, we want to emphasize that the evaluation of the FFT can also be performed

in parallel.

3 Multilevel Monte Carlo methods

The goal is to approximate E[ϕ(u(T ))] or E[ϕ(U(T ))] for a sufficiently smooth mapping

ϕ : H → B, where B is a separable Hilbert space, by using suitable estimators. For

Y ∈ L2(Ω;B) a common way to approximate E[Y ] is to use a standard Monte Carlo (MC)

estimator defined by

EM [Y ] :=
1

M

M∑

i=1

Y (i),

where (Y (i), i = 1, . . . ,M) are independent realizations of Y . Here, L2(Ω;B) denotes the

space of strongly measurable random variables Y that satisfy

‖Y ‖2L2(Ω;B) := E[‖Y ‖2B] <∞.

Due to the rather slow convergence of the MC estimator of orderM−1/2 in the L2(Ω;B)-

sense, see e.g. [4], the efficient multilevel Monte Carlo (MLMC) estimator has been pro-

posed in [9]. For its definition we consider a sequence (Y`, ` ∈ N0) of approximations of the

random variable Y ∈ L2(Ω;B) based on different refinement levels ` ∈ N0 with increasing

accuracy and also with increasing computational cost. The MLMC estimator is then given

by

EL[YL] :=
L∑

`=0

EM`
[Y` − Y`−1],

where Y−1 = 0. The L2(Ω;B)-error of the MLMC estimator satisfies (see [10])

‖E[Y ]− EL[YL]‖L2(Ω;B) ≤ ‖E[Y − YL]‖B +

( L∑

`=0

M−1
` Var[Y` − Y`−1]

)1/2

(11)

where Var[Y ] = E[‖Y − E[Y ]‖2B] for Y ∈ L2(Ω;B).
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3.1 Parameter selection for model problems

We now discuss how to choose the number of samples (M`, ` ∈ N0) and the refinement

parameters h and ∆t in order to guarantee the convergence of the MLMC estimator.

Ornstein-Uhlenbeck process

Let u be given in Eq. (2) and for ` ∈ N0 let uK` be the numerical approximation of u(T )

based on the backward Euler–Maruyama scheme (6) with respect to the partition ΘK` with

time step size ∆t`. Furthermore, let ϕ ∈ C2
b (R,R), i.e., ϕ : R → R is twice continuously

differentiable with bounded first and second derivatives. Due to the additive noise structure

of SDE (1) we obtain by results from [13] that

|E[ϕ(u(T ))− ϕ(uKL)]| ≤ C∆tL,

Var[ϕ(uK`)− ϕ(uK`−1
)]1/2 ≤ C∆t`.

Thus, by similar arguments as in [10], if we choose for any ε, CM > 0,

M0 = dCM∆t−2
L e,

M` = dCM∆t2`∆t
−2
L `1+εe for ` = 1, . . . , L,

(12)

then

E[ϕ(u(T ))]− EL[ϕ(uKL)]‖L2(Ω;R) = O(∆tL).

Stochastic heat equation

Let U be given in Eq. (5) and for ` ∈ N0 let UK`h`
be an approximation of U(T ) based on

the FE backward Euler–Maruyama scheme (8) with respect to the partition ΘK` and the FE

space Vh` . Furthermore, let ϕ ∈ C2
b (H,B), i.e., ϕ : H → B is twice Fréchet differentiable

with bounded first and second Fréchet derivatives. Then by using the results from [1], we

get by choosing ∆t` = h2
` for any γ ∈ [0, 1)

‖E[ϕ(U(T ))− ϕ(UKLhL
)]‖B ≤ Ch2γ

L ,

Var[ϕ(UK`h`
)− ϕ(U

K`−1

h`−1
)] ≤ Ch2γ

` .

Thus, by [10], if we choose ∆t` = h2
` and for any ε, CM > 0,

M0 = dCMh−2γ
L e,

M` = dCMh2γ
` h
−2γ
L `1+εe for ` = 1, . . . , L,

(13)

then

‖E[ϕ(U(T ))]− EL[ϕ(UKLhL
)]‖L2(Ω;B) = O(hγL).
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4 Space-time multigrid methods

The idea is to use the space-time hierarchy from the MLMC methods discussed in Section

3.1 also for a space-time multigrid approach. In detail we use the space-time multigrid

method presented in [7] to solve the linear system (7) and (9) at once. The advantage is

that we can also add parallelization in time direction and for solving the linear system (9)

also with respect to the space dimension. So using the space-time hierarchy coming from

the MLMC method for the linear solver we obtain an algorithm which can be applied in

parallel with respect to space, time and probability. For the space-time multigrid method we

use an (inexact) damped block Jacobi smoother, see also [7], i.e. for the problem (7) we

use

u(n+1) = u(n) + αD−1
τ

[
f(ω)− Lτu(n)

]
for n = 0, 1, . . . ,

with the diagonal matrix Dτ := diag(1 + λ∆t). Whereas, for the problem (9) we use the

smoothing iteration

U(n+1) = U(n) + αD−1
h,τ

[
F(ω)− Lh,τU(n)

]
for n = 0, 1, . . . ,

with the block diagonal matrixDh,τ := diag(Bh). To speed up the application of the smooth-

ing procedure we replace the exact inverse of Dh,τ by applying one iteration of a multigrid

V-cycle with respect to the matrix Bh. Moreover we always set the damping parameter to

α = 1
2 , see [7] for more details. Choosing ∆t ≈ h2 leads – in combination with the space-

time hierarchy coming from the MLMC method – to a robust solver which is independent of

the number of time steps K and the time step size ∆t.

5 Numerical experiments

In this section we present numerical experiments for the Ornstein–Uhlenbeck process (Sec-

tion 5.1) and for the stochastic heat equation on D = (0, 1)d, d = 1, 2, 3, (Section 5.2). All

results were computed on the RADON1 cluster (a distributed memory cluster located in

Linz with 1088 CPU Cores, 8.7TB Memory; consisting of 64 compute nodes each with two

8-core Intel Haswell processors "Xeon E5-2630v3", 2.4Ghz and 128 GB of memory).

5.1 Ornstein-Uhlenbeck process

We consider the SODE (1) with λ = 1, σ = 1, T = 1 and u0 = 1. We want to approximate

E[ϕj(u(T ))], j = 1, 2, where ϕ1(x) = x and ϕ2(x) = x2. For both test cases the solution

can be computed analytically, where

E[ϕ1(u(T ))] = E[u(T )] = e−T
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and

E[ϕ2(u(T ))] = E[u2(T )] =
1 + e−2T

2
.

For the numerical approximation we consider the backward Euler–Maruyama scheme

from Eq. (6) in the matrix-vector representation Lτu = f(ω), which is solved by the time

multigrid method described in Section 4. For the approximation of the expectation we con-

sider a multilevel Monte Carlo estimator based on the sample size selection from Eq. (12)

with ε = 1
2 and CM = 10.

In Table 1, we consider the root mean-square errors of the MLMC method with respect

to ϕj , j = 1, 2, where ‖E[ϕ1(u(T ))]−EL[ϕ1(uKL)]‖L2(Ω;R) is approximated by a standard

Monte Carlo estimator given by

RMS-err1 =

(
1

M

M∑

i=1

∣∣∣E[u(T )]− EL[uKL ](i)
∣∣∣
2
)1/2

,

and ‖E[ϕ2(u(T ))]− EL[ϕ2(uKL)]‖L2(Ω;R) is approximated by

RMS-err2 =

(
1

M

M∑

i=1

∣∣∣E[u2(T )]− EL[u2
KL

](i)
∣∣∣
2
)1/2

.

Here (EL[ϕj(uKL)](i), 1 ≤ i ≤ M) are independent realizations of the MLMC estimator

EL[ϕj(uKL)]. For the Monte Carlo simulations we choose M = 100 in the numerical

experiments from Table 1 and we observe the right convergence behaviour as predicted by

the theory.

Table 1: Numerical test for SODE (1) (Ornstein-Uhlenbeck process) - convergence.

L time steps M0 ML RMS-err1 EOC RMS-err2 EOC
0 1 10 10 2.03312E-1 - 1.93142E-1 -
1 2 40 20 1.16614E-1 0.80 1.10059E-1 0.81
2 4 160 50 6.15999E-2 0.92 5.87172E-2 0.91
3 8 640 80 2.99257E-2 1.04 3.06077E-2 0.94
4 16 2560 110 1.52328E-2 0.97 1.70489E-2 0.84
5 32 10240 140 7.75317E-3 0.97 8.50822E-3 1.00
6 64 40960 180 3.71647E-3 1.06 4.33203E-3 0.97
7 128 163840 220 1.81249E-3 1.04 2.27805E-3 0.93
8 256 655360 270 9.65028E-4 0.91 1.26140E-3 0.85
9 512 2621440 310 4.48929E-4 1.10 6.26638E-4 1.01
10 1024 10485760 360 1.96168E-4 1.19 3.42444E-4 0.87
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5.2 Stochastic heat equation

For the stochastic heat equation (3) we consider the domain D = (0, 1)d, d = 1, 2, 3, and

the initial value

U0(x) =

d∏

i=1

sin(πxi) for x ∈ D.

By choosing T = 0.1 and ϕ(v) = v for all v ∈ L2(D), we are interested in approximating

E[U(T,x)] = exp(−dπ2T )
d∏

i=1

sin(πxi), for x ∈ D.

For the numerical approximation in space and time, we consider the FE Euler–Maruyama

scheme from Eq. (8) on an equidistant spatial triangulation in the matrix-vector formulation

Lh,τU = F(ω), which is again solved by the space-time multigrid method described in

Section 4. For the approximation of the expectation we consider the MLMC method based

on the sample size selection (13) with ε = 1
2 and CM = 10.

In numerical experiments the root mean-square error ‖E[U(T )] − EL[UKLhL
]‖L2(Ω;B) is

approximated by a standard Monte Carlo estimator, i.e., we consider

RMS-err =

(
1

M

M∑

i=1

∥∥∥E[U(T )]− EL[UKLhL
](i)
∥∥∥

2

L2(D)

)1/2

,

where (EL[UKLhL
](i), 1 ≤ i ≤ M) are independent realizations of the estimator EL[UKLhL

]

and

‖E[U(T )]− EL[UKLhL
](i)‖2L2(D) =

∫

D

∣∣∣E[U(T,x)]− EL[UKLhL
(x)](i)

∣∣∣
2

dx.

Stochastic heat equation in 1D

In the one-dimensional case we choose H = U and the eigenvalues of the Q-Wiener

process are given by µj = j−(2r+1+ε) for r = 2 and any ε > 0, see e.g. [12] for details.

For approximating paths of the Q-Wiener process we use the truncated Karhunen-Loéve

expansion from Eq. (4) after the first J = Nh summands, see e.g. [3].

In Table 2 we use M = 100 independent realizations of the MLMC estimator and we

observe the optimal convergence rates as predicted by the theory. Moreover we give in

Table 3 the solving times for one MLMC run for different levels and different distributions

of 512 cores, where we share the used cores for the parallelization of the multilevel Monte

Carlo simulation and for the parallelization in time for simulating numerical trajectories of

(5) by solving the linear system (9). In Table 3 the shortest computation time among each

refinement levelLwith respect to the distribution of the 512 cores is marked in bold. Here we

observe that the best possible setting is given by a balanced distribution of cores between

parallelization in time and parallelization of the Monte Carlo estimators. For example for
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level L = 7 the best possible setting is given by 8 cores for time parallelization and 64 cores

for the Monte Carlo parallelization.

Table 2: Numerical test for SPDE (3) (stochastic heat equation in 1D) – convergence.

L time steps DOF (space) DOF (ST) M0 ML RMS-err EOC
0 1 2 2 10 10 7.83487E-02 -
1 4 4 16 40 20 3.39860E-02 1.20
2 16 8 128 160 30 1.29145E-02 1.40
3 64 16 1024 640 60 5.99035E-03 1.11
4 256 32 8192 2560 90 2.71909E-03 1.14
5 1024 64 65536 10240 120 1.39772E-03 0.96
6 4096 128 524288 40960 150 6.89668E-04 1.02
7 16384 256 4194304 163840 190 3.41996E-04 1.01

Table 3: Numerical test for SPDE (3) (stochastic heat equation in 1D) – computation time
with respect to different distributions of 512 cores (in sec).

cores time / cores Monte Carlo
L 1 / 512 2 / 256 4 / 128 8 / 64 16 / 32 32 / 16 64 / 8 128 / 4
3 0.04 0.02 0.02 0.02 0.03 0.06 0.10 0.14
4 0.27 0.17 0.12 0.13 0.16 0.26 0.47 0.93
5 2.64 1.51 0.95 1.01 1.17 1.64 2.47 4.41
6 24.12 13.92 13.64 11.47 10.76 12.53 15.88 23.50
7 282.46 157.97 153.41 125.56 127.84 133.60 146.81 178.76

Stochastic heat equation in 2D and 3D

In this section we consider the stochastic heat equation (3) in higher dimensions, i.e., let

D = (0, 1)d, d = 2, 3. In order to apply the FFT-based simulation techniques of the Q-

Wiener increments described in Section 2.1 we consider here the specific choice of eigen-

values

µk = exp(−ia|k|2),

where k = (k1, . . . , kd)
T ∈ Zd, a = 2 and i denotes the imaginary unit, see [12] for details.

The corresponding eigenvalues fk are given by

fk(x) = exp(2πi〈k,x〉) for x ∈ D.
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For approximating realizations of the Q-Wiener increments we consider a modified version

of Eq. (10): For J = (J1, . . . , Jd)
T ∈ Nd define

∆JW i(x) =
∑

k∈Zd,
−J1/2<|k1|≤J1/2,

...,

−Jd/2<|kd|≤Jd/2

√
µkfk(x)∆β̃ik, for x ∈ D.

Here the increments ∆β̃ik = ∆βi,real
k + i∆βi,imag

k are complex, where the real and imaginary

parts consist of independent, real-valued Brownian increments ∆βi,real
k ,∆βi,imag

k , see [12].

In the numerical experiments below we choose Ji = Nh for i = 1, . . . , d.

In Tables 4 and 6 we use M = 100 realisations to approximate the L2(Ω;H)-error

by a Monte Carlo simulation for the 2D and 3D stochastic heat equation. The experimen-

tal outcome illustrates for both test cases that the predicted convergence order γ ≈ 1 is

attained.

As for the one-dimensional stochastic heat equation we measure in Tables 5 and 7

the computation times for one run of the MLMC estimator, where we consider different

distributions of 512 cores with respect to solving the linear system Lh,τU = F(ω) in parallel

or for parallelizing the involved Monte Carlo estimators. Similar to the one-dimensional

case we obtain that a balanced distribution of cores for the parallelization in time and for

the parallelization of the Monte Carlo estimators yields the best computation time. For

instance for the numerical experiments in the two-dimensional case at level L = 6 the best

setting is given by 128 cores for the time parallelization and only 4 cores for the Monte Carlo

simulations (844.61 sec). Overall, this results in an approximately 19-times faster solving

time than for a straightforward parallelization of the MLMC estimator (16278.1 sec). Another

disadvantage of only parallelizing the Monte Carlo estimators is the high amount of memory

needed to solve the high dimensional linear systems Lh,τU = F(ω) by using the proposed

space-time multigrid method. This can be seen in the presented numerical experiments for

the case D = (0, 1)3, where we run out of memory (oom) on level L = 5.

Table 4: Numerical test for SPDE (3) (stochastic heat equation in 2D) – convergence.

L time steps DOF (space) DOF (ST) M0 ML RMS-err EOC
1 4 1 4 40 20 3.72225E-02 -
2 16 9 144 160 30 1.85333E-02 1.01
3 64 49 3136 640 60 9.49312E-03 0.97
4 256 225 57600 2560 90 4.65968E-03 1.03
5 1024 961 984064 10240 120 2.10172E-03 1.15
6 4096 3969 16257024 40960 150 1.03803E-03 1.02
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Table 5: Numerical test for SPDE (3) (stochastic heat equation in 2D) – computation time
with respect to different distributions of 512 cores (in sec).

cores time / cores Monte Carlo
L 1 / 512 2 / 256 4 / 128 8 / 64 16 / 32
1 0.07 0.08 0.05 0.07 0.07
2 0.17 0.05 0.08 0.13 0.06
3 0.40 0.22 0.14 0.12 0.13
4 6.92 3.59 1.94 1.84 1.56
5 115.53 69.83 35.30 34.94 35.31
6 16278.10 7993.41 6310.75 3081.63 1575.11

cores time / cores Monte Carlo
L 32 / 16 64 / 8 128 / 4 256 / 2 512 / 1
1 <0.00 0.03 0.03 0.01 0.06
2 0.05 0.03 0.09 0.13 0.17
3 0.14 0.22 0.42 0.70 1.50
4 1.69 2.07 2.81 5.01 10.11
5 34.44 34.68 39.93 50.37 103.75
6 1154.21 953.59 844.61 978.95 1168.93

Table 6: Numerical test for SPDE (3) (stochastic heat equation in 3D) – convergence.

L time steps DOF (space) DOF (ST) M0 ML RMS-err EOC
1 4 1 4 40 20 1.47372E-02 -
2 16 27 432 160 30 1.23371E-02 0.26
3 64 343 21952 640 60 7.48574E-03 0.72
4 256 3375 864000 2560 90 3.62278E-03 1.05
5 1024 29791 30505984 10240 120 1.76545E-03 1.04

Table 7: Numerical test for SPDE (3) (stochastic heat equation in 3D) – computation time
with respect to different distributions of 512 cores (in sec).

cores time / cores Monte Carlo
L 1 / 512 2 / 256 4 / 128 8 / 64 16 / 32
1 0.25 0.17 0.02 0.05 0.03
2 0.22 0.21 0.14 0.21 0.06
3 2.66 1.36 0.75 0.36 0.42
4 133.55 63.82 33.58 32.89 25.12
5 oom 2886.78 1571.55 1597.29 1501.86

cores time / cores Monte Carlo
L 32 / 16 64 / 8 128 / 4 256 / 2 512 / 1
1 0.03 0.03 0.03 0.05 0.05
2 0.04 0.07 0.11 0.42 0.37
3 0.56 0.91 1.36 3.57 5.84
4 25.28 27.92 33.79 51.16 99.39
5 1525.51 1491.09 1582.12 1671.24 1935.34
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6 Conclusions

In this work we combined a space-time multigrid technique for simulating trajectories of the

solution process of the Ornstein–Uhlenbeck process and the stochastic heat equation on

D = (0, 1)d, d = 1, 2, 3, with a multilevel Monte Carlo estimator to approximate E[ϕ(u(T ))]

and E[ϕ(U(T ))], respectively. This combination leads to a fully parallelizable method with

respect to space, time and probability.

Special emphasis was laid on constructing the MLMC estimator in such a way that the

root mean-square errors converge with order 1 (with respect to the time step size ∆tL for the

Ornstein–Uhlenbeck process and with respect to the spatial refinement parameter hL for the

stochastic heat equation). For this the number of numerical realisations (M`, ` = 0, . . . , L)

for the MLMC estimator could be precomputed. In all considered numerical experiments

the convergence results could be numerically observed.

For the stochastic heat equation, the robustness of the proposed space-time multigrid

solver is guaranteed by [7], since we were using the space-time hierarchy of the MLMC es-

timator also for the backward Euler–Maruyama approximation of the numerical trajectories,

where the space-time coupling satisfies ∆t`/h
2
` ≈ 1 on all levels ` = 0, . . . , L.

Furthermore, we investigated the optimal distribution of 512 cores with respect to solv-

ing the linear system of the space-time formulation and the parallelization of the involved

Monte Carlo estimators. In the presented numerical experiments on the stochastic heat

equation it turned out that a balanced distribution of cores between parallelization in time

and parallelization of the MLMC estimator provides the best computation times.
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