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II

Kurzfassung

Der Hauptgegenstand dieser Arbeit sind die Jacobi-Theta-Funktionen θ jpz|τq mit j “ 1, . . . ,4;
und die Klasse der Probleme, die wir betrachten, sind die algebraischen Relationen zwischen
diesen. In vergangenen Jahrhunderten haben Forscher (einschließlich Mathematikern, Physi-
kern und anderen) aufwändige, arithmetische Berechnungen verwendet, um selbst einfache
Identitäten von Theta-Funktionen per Hand zu beweisen. Dies ist eine mühsame (vielleicht
gar unmögliche) Aufgabe für komliziertere Identitäten.

In dieser Arbeit stellen wir Computeralgebraalgorithmen vor, die verschiedene, allgemeine
Klassen von Identitäten von Theta-Funktionen mit Hilfe eines Computers behandeln. Die es-
senziellen, mathematischen Werkzeuge, die verwendet wurden, um diese Algorithmen zu ent-
wickeln, sind die komplexe Analysis und insbesondere vor allem modulare Formen und die
Theorie elliptischer Funktionen.

Unser algorithmischer Zugang kann verwendet werden, um Identitäten in sehr allgemeinen
Funktionenklassen innerhalb weniger Minuten zu beweisen. Weiterhin können wir auch neue
Identitäten in diesen Klassen mit Unterstützung des Computers entdecken. Wir haben diese
Algorithmen im Mathematica-Paket “ThetaFunctions” implementiert.

Als Nebenprodukt finden wir (alte und neue) Relationen, die die Weierstraß’sche elliptische
Funktion involvieren. Außerdem kann unser algorithmischer Ansatz auf andere Klassen von
Identitäten ausgeweitet werden wie zum Beispiel auf einen wesentlichen Teil der Identitäten
in Ramanujans verlorenen Notizbüchern sowie in anderen wissenschaftlichen Büchern und
Artikeln.



Abstract III

Abstract

The main objects of this thesis are the Jacobi theta functions θ jpz|τq, j “ 1, . . . ,4, and the classes
of problems we consider are algebraic relations between them. In the past centuries researchers,
including mathematicians, physicists, etc., have been using some difficult arithmetic manipula-
tions to prove even basic theta function identities by hand, a tedious (perhaps unfeasible) task
for more complicated identities.

In this thesis we present computer algebra algorithms to deal with several general classes of
theta function identities in computer-assisted manner. One essential mathematical tool used
for developing these algorithms is complex analysis, in particular, mainly modular form tech-
niques and the theory of elliptic functions.

Our algorithmic approaches can be used to prove identities from very general function classes
within a few minutes; moreover, we can also discover identities from such classes in a
computer-assisted way. We have implemented the algorithms into a Mathematica package
“ThetaFunctions.”

As a by-product, relations (old and new) involving the Weierstrass elliptic function are found.
Moreover, our algorithmic approaches can be extended further to other classes of identities, for
example a substantial amount of identities in Ramanujan’s lost notebooks and in other research
monographs and papers.
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Chapter 1

Introduction

The theory of theta functions is far from a finished polished topic. –D. Mumford

The overall objective of this thesis is to provide tools for the computer-assisted treatment of
identities among Jacobi theta functions. In most of the books and papers about Jacobi theta
functions or containing Jacobi theta functions there are many identities, for instance [9], [18],
[23], [35], etc. Especially, in the book series “Ramanujan’s Notebooks I-V” [3], [4], [5],[6], and
[7] there is a substantial amount of identities involving theta functions, which are mostly in
Ramanujan’s notation but can be written in terms of Jacobi theta functions. For example the
well-known identity

θ2p0,qq4`θ4p0,qq4 ” 1θ3p0,qq4 (1.1)

has the form
ϕ

4pqq ” ϕ
4p´qq`16qψ

4pq2q

in Ramanujan’s notation. Many researchers, e.g., B. C. Berndt, J. M. Borwein, P. B. Borwein,
F. G. Garvan, etc., have been studying them and their applications for decades. In particular,
in partition analysis Ramanujan’s modular equations are widely applied, which are alterna-
tive expressions of Jacobi theta function identities. For instance, a form of the cubic modular
equation [17, p. 218] is

θ3pqqθ3pq3q´θ4pqqθ4pq3q´θ2pqqθ2pq3q ” 0.

1We use the notation f1pz1,z2, . . .q ” f2pz1,z2, . . .q if we want to emphasize that the equality between the functions
holds for all possible choices of the arguments z j.



2 Introduction

Since there was no global way of dealing with theta function identities, they usually use differ-
ent manipulations to prove different identities. Then the motivation of this thesis came to us,
namely, developing an algorithmic approach to systematically deal with theta function identi-
ties. More specifically, we expect to develop a package that whenever people want to prove an
identity or acquire new relations among theta functions, they press on a button then wait a few
seconds and the result will be shown on the screen.

In the first step of development, this amounts to zero-recognition of Taylor coefficients of the re-
spective series expansions of theta functions, which are some combinations of θ

pkq
j p0|τq. Hence

in Chapter 3 we deal with identities among θ
pkq
j p0|τq. The main content of Chapter 3 is also in

our paper [34]. In Chapter 4 we involve another variable z P C, and deal with identities among
θ
pkq
j p0|τq and θ jpz|τq. In Chapter 5 we extend the function space further and study identities

among θ
pkq
j p0|τq and θ jpaz|τq with a P Nzt0u. Based on our decomposition theory in Chapters 3

and 4, we are also able to generate relations of any given degree, which is described in Chap-
ter 6. In Chapter 7 we present some work that is ongoing or will be solved in the near future. In
Chapter 8 we introduce the Mathematica package “ThetaFunctions.” Since the programming
of the package is not completely done, we mainly present some key features that are already
available in the package.
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Chapter 2

Preliminaries

Throughout the thesis N :“ t0,1,2, . . .u, H :“ tz PC : Impzq ą 0u and KĎC is a field. We assume
that K contains all the complex constants we need (i.e., i, eπi{4, etc.). In algorithmic contexts,
K is an effectively computable field. Throughout the thesis for z “ ceiϕ (c ą 0, 0 ď ϕ ă 2π) we
define zr :“ creirϕ for r P 1

2Z.

2.1 Elliptic Functions

Definition 2.1. [15, Def. V.1.1] A subset L Ď C is a lattice, if and only if there exist two “vectors” ω1

and ω2 in C, which are linearly independent over R, and generate L as an abelian group; i.e.,

L :“ Zω1`Zω2 “ tmω1`nω2; m,n P Zu.

Definition 2.2. [15, Def. V.1.2] An elliptic function for the lattice L is a meromorphic function

f : CÑ CYt8u

with the property
f pz`ωq ” f pzq for ω P L and z P C.

In this thesis we usually write an elliptic function without mentioning the corresponding lat-
tice, when it is clear from the context.
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Theorem 2.1. [15, p. 253, Th. V.1.3 (The First Liouville Theorem, J. Liouville, 1847)] Any elliptic
function without poles is constant.

Definition 2.3. Let ω1,ω2 PC be linearly independent over R. A period-parallelogram with periods ω1

and ω2 is denoted by
Ppω1,ω2q :“ tt1ω1` t2ω2 : t1, t2 P r0,1ru.

Note. In this thesis we mainly use the case ω1 “ π and ω2 “ πτ where τH.

Definition 2.4. Given a meromorphic function f on C, we define

poles p f q :“ tz P C : f has a pole at zu

and
zeros p f q :“ tz P C : f has a zero at zu.

Definition 2.5. Given a lattice LĎC, two points z1,z2 PC are equivalent with regard to L if z1´z2 P L,
denoted by z1 „L z2.

Lemma 2.1. Let L be the lattice generated by ω1,ω2 P C. For every z P C there exists one and only one
point z1 P Ppω1,ω2q such that z1 „L z.

Proof. For any fixed z“ aω1`bω2 P C with a,b P R, we can always find m,n P Z and t1, t2 P r0,1r

such that a“ m` t1 and b“ n` t2. Let z1 :“ t1ω1` t2ω2, then z1 P Ppω1,ω2q and z1 „L z. Assume
there exists another point z2 P Ppω1,ω2q with z2 „L z, then z2 „L z1. Suppose z2 :“ t3ω1` t4ω2

with t3, t4 P r0,1r. Then t3´ t1 P Z and t4´ t2 P Z. This implies t3 “ t1 and t4 “ t2, i.e., z2 “ z1.

The following theorem is crucial for zero-recognition later in Chapters 4 and 5.

Theorem 2.2. For any nonzero elliptic function f with periods ω1 and ω2, one has

# ppoles p f qXPpω1,ω2qq “ # pzeros p f qXPpω1,ω2qq .

Note. poles p f qXPpω1,ω2q and zeros p f qXPpω1,ω2q are finite sets.
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Proof of Theorem 2.2. Let H :“tz PPpω1,ω2q : f has a pole or zero at zu, h1 :“maxtt1 : t1ω1`t2ω2 P

H with t1, t2 P r0,1ru and h2 :“ maxtt2 : t1ω1 ` t2ω2 P H with t1, t2 P r0,1ru. We define a closed
period parallelogram by

P̄pa;ω1,ω2q :“ ta`bω1` cω2 : b,c P r0,1su

with
a :“´

1´h1

2
ω1´

1´h2

2
ω2.

The following image interprets the positions of P̄pa;ω1,ω2q and Ppω1,ω2q.

π

πτ

0

Ppω1,ω2q

P̄pa;ω1,ω2q

a

By the definition of P̄pa;ω1,ω2q, one can easily check that for any y P Ppω1,ω2q if y is a zero (or a
pole) of f pzq, then y is also in the interior of P̄pa;ω1,ω2q; and f pzq has poles or zeros neither in
the gray area

tz : z P Ppω1,ω2q and z R P̄pa;ω1,ω2qu

nor on the line segments where Ppω1,ω2q intersects the boundary of P̄pa;ω1,ω2q. Hence by
Lemma 2.1, f pzq does not have any zeros or poles on the whole boundary of P̄pa;ω1,ω2q, and
no zeros or poles in the region

tz : z P P̄pa;ω1,ω2qu and z R Ppω1,ω2qu.

Therefore the set of zeros and poles in Ppω1,ω2q is equal to the set of zeros and poles in the
interior of P̄pa;ω1,ω2q.

By a classical argument, e.g. [11, p. 23, Th. 3] we complete the proof.

Note. Usually in the literature Theorem 2.2 is stated in different ways, e.g. in [11, p. 23, Th. 3],
[20, p. 75, Th. 3.6.4] and [31, p. 432].
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Lemma 2.2. [31, p. 434] The series

ÿ

pm,nqPZ2ztp0,0qu

ˆ

1
pz´mω1´nω2q2

´
1

pmω1`nω2q2

˙

converges absolutely and uniformly (with regard to z) in compact sets in C which contain no points in
the lattice L :“ tmω1`nω2; m,n P Zu.

Definition 2.6. (Weierstrass ℘Function) For z P Czt0u we define

℘pz;ω1,ω2q :“
1
z2 `

ÿ

pm,nqPZ2ztp0,0qu

ˆ

1
pz´mω1´nω2q2

´
1

pmω1`nω2q2

˙

.

One sees that ℘ is analytic in CzL and has poles of order 2 at each point of L, and we can
compute the Laurent expansion of ℘at z“ 0.

Proposition 2.1. [15, p. 266, Prop. V.2.11]

℘pz;ω1,ω2q :“
1
z2 `

8
ÿ

k“1

p2k`1qE2k`2pω1,ω2qz2k,

where E2k`2pω1,ω2q :“
ř

pm,nqPZ2ztp0,0qu
pmω1`nω2q

´2k´2 is an Eisenstein series.

Note. The series E2k`2 converges absolutely when k ě 1.

By Lemma 2.2, we can differentiate the series for ℘pz;ω1,ω2q term-by-term and obtain

℘
1pz;ω1,ω2q ” ´

2
z3 `

8
ÿ

k“1

2kp2k`1qE2k`2z2k´1. (2.1)

It is important to note that the functions ℘ and ℘ 1 depend on the lattice generated by ω1 and
ω2. However, in this thesis ω1“ π and ω2“ πτ, thus instead of writing℘pz;π,πτq and℘ 1pz;π,πτq

everywhere, we use the abbreviations ℘pzq and ℘ 1pzq.
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2.2 Jacobi Theta Functions

The functions that are the building blocks of this thesis are the Jacobi theta functions defined
as follows.

Definition 2.7. [14, 20.2(i)] Let τ PH :“ tz P C : Impzq ą 0u and q“ eπiτ, then

θ1pz,qq :“ θ1pz|τq :“ 2
8
ÿ

n“0

p´1qnqpn`
1
2 q

2
sinpp2n`1qzq,

θ2pz,qq :“ θ2pz|τq :“ 2
8
ÿ

n“0

qpn`
1
2 q

2
cospp2n`1qzq,

θ3pz,qq :“ θ3pz|τq :“ 1`2
8
ÿ

n“1

qn2
cosp2nzq,

θ4pz,qq :“ θ4pz|τq :“ 1`2
8
ÿ

n“1

p´1qnqn2
cosp2nzq.

For fixed τ PH, Definition 2.7 implies that the θ jpz|τq ( j “ 1, . . . ,4) are analytic functions on the
whole complex plane with respect to z. For fixed z P C, the θ jpz|τq ( j “ 1, . . . ,4) are analytic
functions of τ for all τ PH, and correspondingly, analytic functions of q for |q| ă 1.

Proposition 2.2. [31, 21.12] For each j P t1,2,3,4u, θ jpzq has one and only one zero in Ppπ,πτq. The
zeros of θ1pzq, θ2pzq, θ3pzq, θ4pzq are at the points congruent respectively to 0, π

2 , π

2 `
πτ

2 , πτ

2 modulo
tmπ`nπτ : m,n P Zu.

One can check by using Definition 2.7 that the following lemma holds.

Lemma 2.3. [31, p. 465] Let N :“ e´πiτ´2iz. For j P t1,2,3,4u we have θ jpz`πτ|τq “ ε1p jqθ jpz|τq and
θ jpz`π|τq “ ε2p jqθ jpz|τq, where ε1p jq and ε2p jq are defined in Table 2.1.

j 1 2 3 4
ε1p jq ´N N N ´N
ε2p jq ´1 ´1 1 1

Table 2.1
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For the other variable τ, the theta functions have the following transformations.

Lemma 2.4. [31, p. 475] For the substitution τ ÞÑ ´1{τ on θ jpz|τq ( j “ 1, . . . ,4) we have

θ1

ˆ

z
ˇ

ˇ´
1
τ

˙

”´ip´iτq
1
2 e

iτz2
π θ1pzτ|τq; θ2

ˆ

z
ˇ

ˇ´
1
τ

˙

” p´iτq
1
2 e

iτz2
π θ4pzτ|τq;

θ3

ˆ

z
ˇ

ˇ´
1
τ

˙

” p´iτq
1
2 e

iτz2
π θ3pzτ|τq; θ4

ˆ

z
ˇ

ˇ´
1
τ

˙

” p´iτq
1
2 e

iτz2
π θ2pzτ|τq.

Directly from Definition 2.7 one can deduce the following:

Lemma 2.5. For the substitution τ ÞÑ τ`1 on θ jpτq ( j “ 1, . . . ,4) we have

θ1pz|τ`1q ” e
πi
4 θ1pz|τq; θ2pz|τ`1q ” e

πi
4 θ2pz|τq;

θ3pz|τ`1q ” θ4pz|τq; θ4pz|τ`1q ” θ3pz|τq.

In Chapter 3 we will generalize Lemmas 2.4 and 2.5 to the derivatives θ
pkq
j pz|τq, where

θ
pkq
j pz|τq :“

Bkθ j

Bzk pz|τq, k P N.

2.3 Modular Forms

In the literature one finds several variants of definitions for modular forms. In this thesis we
use the [15, p. 326, Def. VI.2.4] for analytic functions on H.

Definition 2.8. Let

SL2pZq :“

#˜

a b
c d

¸

: ad´bc“ 1anda,b,c,d P Z

+

,

q“ eπiτ and τ PH. Given k P Z, a modular form of weight k is an analytic function f on H such that

f
ˆ

aτ`b
cτ`d

˙

” pcτ`dqk f pτq for all

˜

a b

c d

¸

P SL2pZq, (2.2)
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and where f pτq can be written as a Taylor series in powers of q with complex coefficients; i.e.,

f pτq ”
8
ÿ

n“0

aneπiτn ”

8
ÿ

n“0

anqn. (2.3)

We denote the corresponding analytic function by

rf pqq :”
8
ÿ

n“0

anqn.

Note. Substituting

˜

a b

c d

¸

ÞÑ

˜

1 1

0 1

¸

in (2.2) we obtain rf p´qq ” f pτ`1q ” f pτq ” rf pqq. There-

fore rf p´qq ”
8
ř

n“0
anp´qqn ”

8
ř

n“0
anqn ” rf pqq, which implies by comparison of coefficients that

an “´an for all odd n P N. Consequently,

rf pqq ”
8
ÿ

n“0

a2nq2n. (2.4)

In the literature, as in [15], one often replaces (2.3) in Definition 2.8 by (2.4). We prefer to stay
with (2.3) in order to keep

q“ eπiτ, τ PH

throughout the thesis.

Example 2.1. When k ě 1, the Eisenstein series E2k`2pπ,πτq is a modular form of weight 2k`2.

Example 2.2. Let e1 :“ 1
3pθ3p0,qq4`θ4p0,qq4q, e2 :“´ 1

3pθ2p0,qq4`θ3p0,qq4q and e3 :“ 1
3pθ2p0,qq4´

θ4p0,qq4q. Using Lemmas 2.4, 2.5 and 2.6 one can verify that the product e1e2e3 is a modular form of
weight 6. 1

Definition 2.9. The K-vector space of modular forms of weight k P N is denoted by MkpHq.

Lemma 2.6. [29, p. 78, Thm. 2] The group SL2pZq is generated by

S :“

˜

0 ´1
1 0

¸

and T :“

˜

1 1
0 1

¸

.

1According to [11, p. 33], e1e2e3 “ 35E6pπ,πτq.
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Definition 2.10. [29, p. 84] Let f be a nonzero meromorphic function on H, and a be a point of H. The
integer n such that f {pτ´aqn is holomorphic and nonzero at a is called the order of f at a, and is denoted
by vap f q.

One observes that

vap f q

$

’

’

’

&

’

’

’

%

ą 0, if a is a zero of f ,

ă 0, if a is a pole of f ,

“ 0, otherwise.

Definition 2.11. Let f be meromorphic on H satisfying

f pτq ”
8
ÿ

n“0

aneπiτn ”

8
ÿ

n“0

anqn.

If a0 “ ¨¨ ¨ “ am´1 “ 0 and am ‰ 0, we define the order of f at8 by ν8p f q :“ m.

Note. In classical textbooks q“ e2πiτ is used, thus their order of f at8 is equal to our 1
2 ν8p f q.

Suppose f is a non-zero modular form of weight k, and let

˜

a b
c d

¸

“

˜

´1 0
0 ´1

¸

then by

(2.2) we have
f pτq “ p´1qk f pτq

which means k must be an even number. Therefore in textbooks people often say a modular
form of weight 2k̃. But in this thesis for simplicity we prefer to say a modular form of weight k.
Using this together with the Note above, we rewrite valence formula from [29, p. 85, Th. 3] as
the following theorem.

Theorem 2.3. Let f be a modular form of weight k, then

1
2

v8p f q`
ÿ

rPH{SL2pZq
ervrp f q “

k
12

, (2.5)

where

H{SL2pZq :“
"

z PH : ´
1
2
ď Repzq ă

1
2

and |z| ą 1, or z“ eiθ where
π

2
ď θď

2π

3

*

,

ei “
1
2 , ew “

1
3 with w :“´ 1

2 `
?

3i
2 and er “ 1 when r ‰ i, w.



2.3 Modular Forms 11

Note. H{SL2pZq gives a complete set of representatives of the group action of SL2pZq on H. But
we omit the proof here.

By Definition 2.8, f is holomorphic on H, and every term on the left hand side of (2.5) is non-
negative. Hence

v8p f q ď
k
6

and we deduce the following corollary.

Corollary 2.1. Let q :“ eπiτ and f PMkpHq with the q-expansion of f be
8
ř

t“0
atqt .

If a j “ 0 for j ď t k
6 u, then f “ 0.
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Chapter 3

Proving Identities among Powers of
θ

pkq

j p0|τq (Class I)

To introduce the general idea and application domain of the method presented in this chapter,
consider the following lemma that has been used in numerous papers like [8], [19] and [16] to
prove relations between Jacobi theta series.

Lemma 3.1. [2](Atkin and Swinnerton-Dyer Lemma) Given a non-zero meromorphic function f on
Czt0u with f pwxq ” cxn f pxq for some integer n and non-zero complex constants c and w with 0ă |w| ă

1, then
# polesp f q “ # zerosp f q`n

in |w| ă |x| ď 1. 1

To do zero recognition of such f pxq “ f px,qq, where q is a parameter, the lemma classically
is applied as follows: one cleverly chooses sufficiently many zeros x1, . . . ,xm in the domain
|w| ă |x| ď 1. According to the lemma the number m of such zeros needs to be greater than the
number of poles of f minus n, in order to show that f is identically zero. By their clever choice
of x1, . . . ,xm, f pxi,qq is a modular form when viewed as a function of q. And, zero-recognition
of modular forms is algorithmic owing to methods using Sturm bounds or valence formula.

Our approach is different and streamlines the idea above by choosing only one evaluation point,
namely xi “ 1 for all i, and by verifying that f p jqp1,qq “ 0 for j P t0, . . . ,m´ 1u. In this way we
prove that there is a zero of multiplicity at least m, which again implies that f pxq ” 0.

1By # polesp f q, resp. # zerosp f q, we count poles, resp. zeros, with multiplicity.
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A crucial point is that, despite for j ě 1 the Taylor coefficients, in general, are not modular
forms anymore, the task of proving such relations like f p jqp1,qq “ 0 again can be carried out
algorithmically for a large class of problems specified below. The functions that are the build-
ing blocks of this class are the Jacobi theta functions θ jpz|τq ( j “ 1, . . . ,4) and their derivatives
evaluated at z“ 0.

To illustrate our method of using Lemma 3.1, we consider the following classical example
which generates identity (1.1).

Example 3.1. [14] For q P C with 0ă |q| ă 1, prove

θ3p0,qq2θ3pz,qq2´θ4p0,qq2θ4pz,qq2´θ2p0,qq2θ2pz,qq2 ” 0. (3.1)

Proof. Let f jpxq :“ θ jpz,qqwith xpzq “ e2iz. Then using the series expansions in Definition 2.7 one
can verify directly that f 2

j pq
2xq “ q´2x´2 f 2

j pxq. Define

gpxq :“ θ2p0,qq2 f2pxq2´θ3p0,qq2 f3pxq2´θ4p0,qq2 f4pxq2.

Observing that gpq2xq “ q´2x´2gpxq, to prove the identity, by Lemma 3.1 it is sufficient to show
that gpxq has at least three more zeros than poles in |q2| ă |x| ď 1. By Definition 2.7, gpxq has no
pole in C. The Taylor expansion of gpxq around x“ 1 is

gpxq “ gp1q`g1p1qpx´1q`
g2p1q

2
px´1q2`

gp3qp1q
6

px´1q3`Oppx´1q4q.

We need to show
gp1q “ 0, g1p1q “ 0 and g2p1q “ 0. (3.2)

Let hpzq :“ LHS of p3.1q. Because hpzq “ gpe2izq “ gpxq, h1pzq “ 2ixg1pxq and h2pzq “ ´4xg1pxq ´

4x2g2pxq, to show (3.2), it is sufficient to show

hp0q “θ3p0,qq4´θ2p0,qq4´θ4p0,qq4 ” 0, (3.3)

h1p0q “2θ3p0,qq3θ
1
3p0,qq´2θ2p0,qq3θ

1
2p0,qq´2θ4p0,qq3θ

1
4p0,qq ” 0, (3.4)

and h2p0q “θ3p0,qq2θ
1
3p0,qq

2´θ2p0,qq2θ
1
2p0,qq

2´θ4p0,qq2θ
1
4p0,qq

2

`θ3p0,qq3θ
2
3p0,qq´θ2p0,qq3θ

2
2p0,qq´θ4p0,qq3θ

2
4p0,qq ” 0. (3.5)
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Note that identity (3.4) is trivial because θ12p0,qq ” θ13p0,qq ” θ14p0,qq ” 0. The other two equali-
ties will be treated below. In general, proving such identities can be done in a purely algorith-
mic fashion which will be explained in this chapter.

3.1 Problem Specification

For fixed τ PH, Definition 2.7 implies that the θ jpz|τq ( j “ 1, . . . ,4) are analytic functions on the
whole complex plane with respect to z. For fixed z P C, the θ jpz|τq ( j “ 1, . . . ,4) are analytic
functions of τ for all τ PH, and correspondingly, analytic functions of q for |q| ă 1. When z“ 0,
we often denote

θ
pkq
j pτq :“

Bkθ j

Bzk pz|τq
ˇ

ˇ

ˇ

ˇ

z“0

ˆ

“
Bkθ j

Bzk pz,qq
ˇ

ˇ

ˇ

ˇ

z“0

˙

, k P N.

Definition 2.7 also implies that θ
pk1q

1 pτq ” 0 when k1 P 2N, and θ
pk2q
m pτq ” 0 (m “ 2,3,4) when

k2 P 2N`1. Hence in the following setting we omit these cases.

Let tx j,kukPN, j“1,...,4 be a set of indeterminates. For convenience, we use xpkqj :“ x j,k. Sometimes

we write x j for xp0qj and x1j for xp1qj . Define RΘ :“KrΘs, where

Θ :“
!

θ
p2k`1q
1 : k P N

)

Y

!

θ
p2kq
j : k P N and j “ 2,3,4

)

,

and RX :“KrXswhere

X :“
!

xp2k`1q
1 : k P N

)

Y

!

xp2kq
j : k P N and j “ 2,3,4

)

.

By a homomorphic extension we define the K-algebra homomorphism2

φ : RX Ñ RΘ,

xpkqj ÞÑ θ
pkq
j .

In this chapter, we solve the following membership problem algorithmically:

2Here a K-algebra homomorphism is a ring homomorphism and a K-vector space homomorphism.
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Problem 3.1. Given p P RX , decide whether p P kerφ.

To solve this problem, we need to extend the K-algebras and the map φ as follows:

φ
˚ : RX rs

1
2 s Ñ RΘrδ

1
2 s,

xpkqj ÞÑ θ
pkq
j ,

s
1
2 ÞÑ δ

1
2 ,

where for all τ P H and r P 1
2N, δrpτq :“ τr. Since φ and φ˚ are surjective, we have RX{kerφ – RΘ

and RX rs
1
2 s{kerφ˚ – RΘrδ

1
2 s. Here we consider s

1
2 as a symbol for an indeterminate. We prefer to

use s
1
2 instead of choosing a standard indeterminate like x or y as usual for polynomial rings.

Later from Section 4.1 on, we will also need to go to the quotient field of KrΘs, denoted by
KpΘq, which consists of all quotients PrΘs{QrΘswith PrΘs,QrΘs PKrΘs.

The chapter is structured as follows. In Section 3.2 we introduce a notion of degree in the
K-algebra RX , and based on this we state a way to decompose any p P RX into homogeneous
polynomials in RX . We prove that showing p P kerφ is equivalent to showing that the corre-
sponding homogeneous polynomials are in kerφ. In Section 3.3 we develop a recursive algo-
rithm to determine for a given homogeneous g P RX whether g P kerφ or g R kerφ. In Section 3.4
we obtain a refined non-recursive algorithm which is more convenient to implement and with
linear computational complexity in the length of g.

3.2 Homogeneous Decomposition of p P RX

We first extend Lemma 2.4 to derivatives.

Proposition 3.1. Define A :“ p´iτq
1
2 and E :“ e

iτz2
π . For pu,vq P tp1,1q,p2,4q,p3,3q,p4,2qu and k P N

define

gupkq :“ pE Aq´1 B
kθv

Bzk

ˆ

z
ˇ

ˇ´
1
τ

˙

.

Then gupkq can be written as

gupkq “ pk,0pzqθupzτ|τq` pk,1pzqθ1upzτ|τq` ¨ ¨ ¨` pk,kpzqθ
pkq
u pzτ|τq (˚)
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with pk, jpzq “ k!
j!

` i
π

˘

k´ j
2 τ

k` j
2 Bk, jpzq and

Bk, jpzq “

$

&

%

a0pk, jq`a2pk, jqz2`a4pk, jqz4`¨¨ ¨`ak´ jpk, jqzk´ j, k´ j even;

a1pk, jqz`a3pk, jqz3`a5pk, jqz5`¨¨ ¨`ak´ jpk, jqzk´ j, k´ j odd,

where for ` P t0, . . . ,k´ ju when pu,vq “ p1,1q,

a`pk, jq “ ´i
ˆ

iτ
π

˙
`
2 2`

`!p k´ j´`
2 q!

; (˚˚)

and when pu,vq P tp2,4q,p3,3q,p4,2qu,

a`pk, jq “
ˆ

iτ
π

˙
`
2 2`

`!p k´ j´`
2 q!

.

Proof. We prove the statement for pu,vq “ p1,1q. The other three cases are analogous. We first
prove by complete induction on k that for k PN the relation (˚) holds where the pk, jpzq (0ď jď k)
are polynomials in z. Then we prove that Bk, jpzq has the desired form.

For k “ 0 we have p0,0pzq “ ´i by Lemma 2.4. Assume that (˚) holds for k “ n where the pn, jpzq

(0ď j ď n) are polynomials in z.

Let k “ n`1. We have

g1pn`1q “ pE Aq´1 B
n`1θ1

Bzn`1

ˆ

z
ˇ

ˇ´
1
τ

˙

“
2iτz

π
g1pnq`

Bg1pnq
Bz

.

Since Bg1pnq
Bz “ p1n,0pzqθ1pzτ|τq`pτpn,0pzq` p1n,1pzqqθ

1
1pzτ|τq`¨ ¨ ¨`τpn,nθ

pn`1q
1 pzτ|τq, we obtain g1pn`

1q “ pn`1,0pzqθ1pzτ|τq ` pn`1,1pzqθ11pzτ|τq ` ¨ ¨ ¨ ` pn`1,npzqθ
pn`1q
1 pzτ|τq, where the pn`1, jpzq ( j “

0, . . . ,n`1) are polynomials in z.

Using the fact just proven we can exploit a recursive relation for g1pkq in the following way. On
one hand, by

E Ag1pk`1q “
Bk`1θ1

Bzk`1

ˆ

z
ˇ

ˇ´
1
τ

˙

“
BpE Ag1pkqq

Bz
,
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we obtain

g1pk`1q “
2izτ

π
g1pkq`

Bg1pkq
Bz

“
2izτ

π

k
ÿ

j“0

pk, jpzqθ
p jq
1 pzτ|τq`

k
ÿ

j“1

ˆ

Bpk, jpzq
Bz

` τpk, j´1pzq
˙

θ
p jq
1 pzτ|τq

` τpk,kpzqθ
pk`1q
1 pzτ|τq`

Bpk,0pzq
Bz

θ1pzτ|τq.

On the other hand,

g1pk`1q “
k`1
ÿ

j“0

pk`1, jpzqθ
p jq
1 pzτ|τq,

and by coefficient comparison, and defining pk,´1pzq :“ 0 and pk,k`1pzq :“ 0 we obtain,

pk`1, jpzq “
2izτ

π
pk, jpzq`

Bpk, jpzq
Bz

` τpk, j´1pzq, 0ď j ď k. (3.6)

Now we can prove that Bk, jpzq has the desired form by induction on k P N. By definition we
know B0,0pzq “ ´i. Assume for k “ n, Bk, jpzq has the desired form. Let k “ n`1. Applying (3.6)
we have for j “ 0, . . . ,n`1,

pn`1qBn`1, jpzq “ 2z
ˆ

iτ
π

˙
1
2

Bn, jpzq`
ˆ

iτ
π

˙´ 1
2 BBn, jpzq

Bz
` jBn, j´1pzq.

Case 1: n´ j is even. Then

pn`1qBn`1, jpzq “2
ˆ

iτ
π

˙
1
2

pa0pn, jqz`a2pn, jqz3`¨¨ ¨`an´ jpn, jqzn´ j`1q

`

ˆ

iτ
π

˙´ 1
2

p2a2pn, jqz`4a4pn, jqz3`¨¨ ¨`pn´ jqan´ jzn´ j´1q

` jpa1pn, j´1qz`a3pn, j´1qz3`¨¨ ¨`an´ j`1pn, j´1qzn´ j`1q.

We compare this to

Bn`1, jpzq “ a1pn`1, jqz`a3pn`1, jqz3`a5pn`1, jqz5`¨¨ ¨`an´ j`1pn`1, jqzn´ j`1,

and obtain for 1ď 2m`1ď n´ j´1,

a2m`1pn`1, jq “
1

n`1

˜

2
ˆ

iτ
π

˙
1
2

a2mpn, jq`
ˆ

iτ
π

˙´ 1
2

p2m`2qa2m`2pn, jq` ja2m`1pn, j´1q

¸
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“
´i

n`1

˜

ˆ

iτ
π

˙m` 1
2 22m`1

p2mq!p n´ j
2 ´mq!

`

ˆ

iτ
π

˙m` 1
2 22m`2

p2m`1q!p n´ j
2 ´m´1q!

` j
ˆ

iτ
π

˙m` 1
2 22m`1

p2m`1q!p n´ j
2 ´mq!

¸

“p´iq
ˆ

iτ
π

˙m` 1
2 22m`1

p2m`1q!p n´ j
2 ´mq!

;

and for 2m`1“ n´ j`1,

a2mpn`1, jq “
1

n`1

˜

2
ˆ

iτ
π

˙
1
2

a2mpn, jq` ja2m`1pn, j´1q

¸

“
´i

n`1

ˆ

iτ
π

˙m` 1
2 22m`1

p2mq!p n´ j
2 ´mq!

ˆ

1`
j

2m`1

˙

“p´iq
ˆ

iτ
π

˙m` 1
2 22m`1

p2m`1q!p n´ j
2 ´mq!

.

Thus for 1ď 2m`1ď n´ j`1, a2m`1pn`1, jq satisfies (˚˚).

Case 2: n´ t is odd. This case can be treated in the same way as Case 1, and the compu-
tation shows that for 0 ď 2m ď n´ j` 1, a2mpn` 1, jq satisfies (˚˚). Thus we have proven that
Bn`1, jpzq has the desired form.

Applying Proposition 3.1 with z“ 0, we have:

Corollary 3.1. For k P 2N`1,

θ
pkq
1

ˆ

´
1
τ

˙

“ p´iq
3
2

k
ÿ

j“1
jP2N`1

ˆ

i
π

˙

k´ j
2 k!

j!p k´ j
2 q!

τ
k` j`1

2 θ
p jq
1 pτq;

for k P 2N and pu,vq P tp2,4q,p3,3q,p4,2qu,

θ
pkq
u

ˆ

´
1
τ

˙

“ p´iq
1
2

k
ÿ

j“0
jP2N

ˆ

i
π

˙

k´ j
2 k!

j!p k´ j
2 q!

τ
k` j`1

2 θ
p jq
v pτq.

We are going to carry these analytic relations over to the symbolic algebra.
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Definition 3.1. For γ“

˜

a b
c d

¸

P SL2pZq, k P Z and f : H Ñ C, we define f |kγ : HÑ C by

p f |kγqpτq :“ pcτ`dq´k f
ˆ

aτ`b
cτ`d

˙

.

For instance, for the generators S and T , we have

p f |kSqpτq ” τ
´k f p´1{τq and p f |kT qpτq ” f pτ`1q.

Note. This action f |kγ of γ on f (for fixed k) is a group action. Hence knowing the action of
generators (here S and T acting on the function space) gives the full action.

Definition 3.2. We define σ to be the permutation on t1,2,3,4u that transposes 2 and 4.

Definition 3.3. We define two K-algebra homomorphisms:

S0 : RΘ Ñ RΘrδ
1
2 s

by

pS0 f qpτq :” p f |0Sqpτq
ˆ

” f p´
1
τ
q

˙

; 3

and
SX : RX ÝÑ RX rs

1
2 s

by the homomorphic extension of

SXpx
pkq
1 q :“ p´iq

3
2

k
ÿ

j“1
jP2N`1

ˆ

i
π

˙

k´ j
2 k!

j!p k´ j
2 q!

s
k` j`1

2 xp jq
1 ,

if k P 2N`1; and of

SXpx
pkq
u q :“ p´iq

1
2

k
ÿ

j“0
jP2N

ˆ

i
π

˙

k´ j
2 k!

j!p k´ j
2 q!

s
k` j`1

2 xp jq
σpuq,

if k P 2N and u P t2,3,4u.

3S0 f P RΘrδ
1
2 s owing to Corollary 3.1.
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Lemma 3.2. The following diagram commutes:

RX
SX
ÝÑ RX rs

1
2 s

φ
§

đ

§

đφ˚

RΘ ÝÑ
S0

RΘrδ
1
2 s

Proof. The way SX was introduced in Definition 3.3 as a homomorphic extension satisfies ex-
actly the required property.

By Definition 3.3 we know the explicit form of SXppq for any p PRX , and can set up the following
convention.

Convention. Whenever for a non-zero p P RX we write

SXppq “
n
ÿ

j“1

sc j p j,

we assume that
p j P RXzt0u and c1 ă ¨¨ ¨ ă cn with c j P

1
2
N.

For c P 1
2N the notation xscyq refers to the coefficient of sc in q P RX rs

1
2 s.

Example 3.2. Let p“ xp4q2 x24. Then

SXppq “ p4s7` p3s6` p2s5` p1s4,

where p4 :“´ix22xp4q, p3 :“ 2
π

x2xp4q` 12
π

x22x24, p2 :“ 12i
π2 x4x22`

24i
π2 x2x24 and p1 :“ 24

π3 x2x4.

Now we consider the action when τ ÞÑ τ` 1. Also the relations in Lemma 2.5 are carried over
to the algebraic side.

Definition 3.4. For k P N we define two K-algebra homomorphisms

T0 : RΘ Ñ RΘ

by
pT0 f qpτq :” p f |0T qpτq p” f pτ`1qq;
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and
TX : RX ÝÑ RX ,

by the homomorphic extension of

TXpx
p2k`1q
1 q :“ e

πi
4 xp2k`1q

1 , TXpx
p2kq
2 q :“ e

πi
4 xp2kq

2 ,

TXpx
p2kq
3 q :“ xp2kq

4 and TXpx
p2kq
4 q :“ xp2kq

3 .

Analogous to Lemma 3.2 we have:

Lemma 3.3. The following diagram commutes:

RX
TX
ÝÑ RX

φ
§

đ

§

đφ

RΘ ÝÑ
T0

RΘ

Proof. By Lemma 2.5 and Definition 3.4 we have

φpTXpx
pkq
1 qqpτq ” φpe

πi
4 xpkq1 qpτq ” e

πi
4 θ
pkq
1 pτq ” θ

pkq
1 pτ`1q ” φpxpkq1 qpτ`1q ” pT0φpxpkq1 qqpτq.

Analogously we have φpTXpx
pkq
j qqpτq ” φpxpkqj qpτ`1q for j “ 2,3,4. The rest follows from the fact

that TX is defined by a homomorphic extension.

Example 3.3. Let p“ xp4q2 x24. Then
TXppq “ e

πi
4 xp4q2 x23.

Note. Obviously, T 8
X “ id.

A non-trivial monomial in RX is a finite product of elements in txpkqj : k P N, j “ 1, . . . ,4u. The
empty product gives 1 P RX ; it is considered to be the trivial monomial. Hence a polynomial in
RX is a K-linear combination of monomials in RX .

Definition 3.5. We define the degree of a non-trivial monomial xpk1q
j1 xpk2q

j2 ¨ ¨ ¨xpknq
jn P RX where ki P N and

ji P t1, . . . ,4u by

Degpxpk1q
j1 xpk2q

j2 ¨ ¨ ¨xpknq
jn q :“

n
2
`

n
ÿ

i“1

ki,
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and define the degree of the trivial monomial by Degp1q :“ 0. For every polynomial p P RX , define
Degppq :“ highest degree of the monomials in its K-linear representation. If all these monomials have
the same degree, we say this polynomial is a homogeneous polynomial.

Example 3.4. Degp´xp3q1 q “
7
2 , Degp2xp3q1 x4q “ 4, and 2xp3q1 x4´3xp2q4 x11 is a homogeneous polynomial.

Note. This definition is related to the weight of modular forms. See Definition 2.8 and
Lemma 3.11.

According to Definition 3.5, we can write a polynomial p P RX as a sum of homogeneous poly-
nomials with pairwise different degrees. We are going to show that p P RX is in kerφ if and only
if these homogeneous parts are all in kerφ. The key tool we use here is the SX operation. We
shall start by studying the patterns of the SX action on monomials of RX .

Lemma 3.4. Let p P RX be a non-trivial monomial and SXppq “
n
ř

t“1
sct pt . Then the pt are homogeneous

and
Degpxsct ySXppqq “ Degpptq “ 2ct ´Degppq, 1ď t ď n.

Moreover, we have
cn “ Degppq

and, if p“ xpk1q
i1 xpk2q

i2 ¨ ¨ ¨xpkmq
im ,

xscnySXppq “ xsDegppqySXppq “ p´iq
m
2`cxpk1q

σpi1q
xpk2q

σpi2q
¨ ¨ ¨xpkmq

σpimq
,

where c“ number of 1s in pi1, i2, . . . , imq.

Proof. Suppose p “ xpk1q
i1 xpk2q

i2 ¨ ¨ ¨xpkmq
im with xi1 “ xi2 “ ¨¨ ¨ “ xic “ x1 and xi j ‰ x1 for c` 1 ď j ď m.

Then

SXppq “SXpx
pk1q
i1 qSXpx

pk2q
i2 q ¨ ¨ ¨SXpx

pkmq
im q

“

´

p´iq
3
2 xpk1q

1 sk1`
1
2 `˝xpk1´2q

1 sk1´
1
2 `¨¨ ¨`˝x11s

k1
2 `1

¯

¨ ¨ ¨
ˆ

p´iq
1
2 xpkc`1q

σpic`1q
skc`1`

1
2 `˝xpkc`1´2q

σpic`1q
skc`1´

1
2 `¨¨ ¨`˝xσpic`1qs

kc`1
2 ` 1

2

˙

¨ ¨ ¨

3The boxes ˝ stand for coefficients in K whose exact values are irrelevant for the proof.
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´

p´iq
1
2 xpkmq

σpimq
skm`

1
2 `˝xpkm´2q

σpimq
skm´

1
2 `¨¨ ¨`˝xσpimqs

km
2 `

1
2

¯

.4

Hence xsDegppqySXppq “ xscnySXppq “ p´iq
m
2`cxpk1q

σpi1q
xpk2q

σpi2q
¨ ¨ ¨xpkmq

σpimq
and

cn “

m
ÿ

j“1

pk j`
1
2
q “

m
2
`

m
ÿ

j“1

k j “ Degppq.

In the expansion of SXppq each monomial has the form

m
ź

j“1

xpk j´2a jq

σpi jq
sk j`

1
2´a j “s

m
ř

j“1
k j`

m
2´

m
ř

j“1
a j

m
ź

j“1

xpk j´2a jq

σpi jq

“sDegppq´a
m
ź

j“1

xpk j´2a jq

σpi jq
,

where the a j are integers with 0 ď a j ď
k j´1

2 for 1 ď j ď c and 0 ď a j ď
k j
2 for c` 1 ď j ď m and

a :“
m
ř

j“1
a j. Thus

Deg
´

xsDegppq´aySXppq
¯

“ Deg

˜

m
ź

j“1

xpk j´2a jq

i j

¸

“
m
2
`

m
ÿ

j“1

pk j´2a jq “ Degppq´2a.

Substituting Degppq´a by ct we obtain

Degpxsct ySXppqq “ 2ct ´Degppq, 1ď t ď n.

For convenience we have:

Definition 3.6. For monomials p“ xpk1q
i1 . . .xpkmq

im P RX we define

µppq :“ m;

ν1ppq :“ number of 1s in pi1, . . . , imq,

ν2ppq :“ number of 2s in pi1, . . . , imq, and

σppq :“ xpk1q

σpi1q
. . .xpkmq

σpimq
.
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Now we study the SX operator on homogeneous polynomials.

Corollary 3.2. Let p P RX be homogeneous. Then SXppq “ 0 if and only if p“ 0.

Proof. “ðù ” is obvious. So we prove “ùñ ”. Assume 0‰ p“ a1 p1`¨¨ ¨`an pn with the p j P RX

linearly independent monomials over Kzt0u with the same degree and the a j P Kzt0u. Then
the σpp jq are also linearly independent monomials over Kzt0u because the involution σ is an
automorphism on RX , and

xsDegppqySXppq “ xsDegppqypa1SXpp1q` ¨ ¨ ¨`anSXppnqq

“ a1xsDegppqySXpp1q` ¨ ¨ ¨`anxsDegppqySXppnq

“ a1p´iqν1pp1q`
µpp1q

2 σpp1q` ¨ ¨ ¨`anp´iqν1ppnq`
µppnq

2 σppnq.

Since the p´iqν1pp jq`
µpp jq

2 are non-zero, we obtain xsDegppqySXppq ‰ 0. Therefore SXppq ‰ 0.

Lemma 3.5. Given p P RX homogeneous, and SXppq “
n
ř

t“1
sct pt with pt P RX and ct P

1
2N such that

c1 ă ¨¨ ¨ ă cn, then
(i) Degppnq “ Degppq “ cn;
(ii) for t P t1, . . . ,nu the pt are homogeneous ;
(iii) for i, j P t1, . . . ,nu with iă j we have Degppiq ă Degpp jq.

Proof. Suppose
p“ r1h1`¨¨ ¨` rqhq

with r` P Kzt0u and pairwise different monomials h` P RX . By assumption on p we have
Degph`q “ Degppq “: d for all ` P t1, . . . ,qu. Suppose, for 1ď `ď q,

SXph`q “
n
ÿ̀

t“1

sc`,t p`,t ,

where the c`,t and p`,t are as in Lemma 3.4. Then

SXppq “
q
ÿ

`“1

r`SXph`q “
n
ÿ

j“1

sc j
ÿ

p`,tqPC j

r`p`,t ,
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where tc1, . . . ,cnu “ tc`,t : 1ď `ď q, 1ď t ď n`uwith the ordering c1 ă c2 ă ¨¨ ¨ ă cn, and

C j :“ tp`, tq P t1, . . . ,quˆt1, . . . ,n`u : c`,t “ c ju.

Now the statements follow from observing that for p`, tq PC j by Lemma 3.4

Degpp`,tq “ 2c`,t ´d “ 2c j´d,

and for p`, tq PCn (i.e., t “ n`) again by Lemma 3.4

Degpp`,tq “ Degpp`,n`q “ c`,n` “ Degph`q “ d “ cn.

Remark. Note that Lemma 3.5 actually justifies the definition of Deg and also the Convention
we introduced after Definition 3.3. Namely, the highest power of s in SXppq is Degppq.

Definition 3.7. For each q P RX rs
1
2 s with q “

n
ř

t“1
sct pt , using the Convention, we call pn the leading

coefficient of q, denoted by lcpqq. We define lcp0q :“ 0.

Definition 3.8. Let Rd
X :“ tp P RX : p homogeneous with Degppq “ duYt0u. We define the map

rS : Rd
X ÝÑ Rd

X ,

by rSp0q :“ 0 and if p‰ 0:
rSppq :“ lcpSXppqq.

Example 3.5. rSpxp3q1 x4´ xp2q4 x12q “ ´xp3q1 x2` i xp2q2 x14 by Lemmas 3.4 and 3.5.

Proposition 3.2. The map rS is a K-algebra homomorphism and rS8 “ id.

Proof. The linearity of rS is obvious by Lemma 3.5. From Definition 3.3 we see that rS also
preserves the multiplication. Thus rS is a K-algebra homomorphism. Let p P Rd

X be such that

p“
q
ř

`“1
r`h` with r` PKzt0u and with monomials h` P Rd

X . Then, by Lemma 3.4, for σ“ p2,4q

rS8ppq “r1rS8ph1q` ¨ ¨ ¨` rqrS8phqq

“r1p´iq8p
µph1q

2 `ν1ph1qqσ
8ph1q` ¨ ¨ ¨` rqp´iq8p

µphqq
2 `ν1phqqqσ

8phqq
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“p.

According to Lemma 3.5, for any homogeneous p P RX , SXppq has a presentation of the form

SXppq “
n
ÿ

i“1

sci pi P RX rs
1
2 s (3.7)

with homogeneous pi P RXzt0u and where

c1 ă ¨¨ ¨ ă cn and Degpp1q ă ¨ ¨ ¨ ă Degppnq;

moreover,
cn “ Degppnq “ Degppq.

Definition 3.9. A sum presentation of SXppq as in (3.7) is called S-form presentation. We also say that
SXppq written as in (3.7) is in S-form.

Lemma 3.6. Suppose p P RX with p“
n
ř

t“1
pt , where the pt are homogeneous and Degppiq ă Degpp jq if

iă j. If SXppq “
m
ř

t“1
sct qt is in S-form, then rSppnq “ qm.

Proof. First, by Lemma 3.5, we observe that

Degppiq “ highest power of s in SXppiq. (3.8)

One has,
qm “ lcpSXppqq “ lcpSXpp1q` ¨ ¨ ¨`SXppnqq “ lcpSXppnqq “ rSppnq,

where we used (3.8) together with Degppiq ă Degppnq for i P t1, . . . ,n´1u.

For our context, a special case of the slash operator, introduced in Definition 3.1, is of special
importance.

Recall S0 from Definition 3.3.

Lemma 3.7. Given Fpτq P RΘ, let pS0Fqpτq ”
n
ř

t“1
τct ftpτq (ct P

1
2N) with ftpτq P RΘ and c1 ă c2 ă ¨¨ ¨ ă

cn. Then Fpτq ” 0 if and only if ftpτq ” 0 for all t P t1, . . . ,nu.
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Proof. “ðù ” is immediate.
“ ùñ ”. If Fpτq ” 0 then pS0Fqpτq ” 0. Since ftpτq ” ftpτ` 8q, the rest can be done by using the
same method as used to prove Lemma 1.1 in [26].

Applying Lemma 3.2, we carry Lemma 3.7 over to the symbolic world RX .

Lemma 3.8. Let p P RX and SXppq “
n
ř

t“1
sct pt in S-form. Then p P kerφ if and only if pt P kerφ for all

t P t1, . . . ,nu.

Proof. The definitions of φ and φ˚ imply that φ˚
ˇ

ˇ

RX
“ φ. Hence for τ PH,

φ
˚pSXppqqpτq ”

n
ÿ

t“1

φ
˚psct ptqpτq ”

n
ÿ

t“1

τ
ct φpptqpτq ” S0pφppqqpτq,

where the last equality follows from Lemma 3.2. Using also Lemma 3.7, we have the following
chain of equivalences:

p P kerφ ðñ φppq “ 0 ðñ S0pφppqq “ 0 ðñ @t : φpptq “ 0,

which completes the proof.

Theorem 3.1. Let p P RX with p“
n
ř

t“1
pt , where the pt P RX are homogeneous and Degppiq ă Degpp jq

if iă j. Then p P kerφ if and only if pt P kerφ for all t P t1, . . . ,nu.

Proof. “ðù ” is immediate.

“ ùñ ”. Suppose p P kerφ with SXppq “
n1
ř

t“1
sc1,t p1,t in S-form. By Lemma 3.6, rSppnq “ p1,n1 , and

by Lemma 3.8, p1,n1 P kerφ. Next, if SXpp1,n1q “
n2
ř

t“1
sc2,t p2,t in S-form, then rSpp1,n1q “ p2,n2 and

p2,n2 P kerφ. Iterating this process after k steps gives rSkppnq “ pk,nk with pk,nk P kerφ. For k “ 8,

Proposition 3.2 gives pn “ rS8ppnq “ p8,n8 P kerφ. Because p P kerφ we conclude that
n´1
ř

t“1
pt P kerφ.

Applying the same procedure to this element we obtain pn´1 P kerφ. Iterating we eventually
obtain pt P kerφ for all t P t1,2, . . . ,nu.

Note. Theorem 3.1 is fundamental for our kernel membership test.
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3.3 Membership Recognition for Homogeneous p P RX

Definition 3.10. Given p P RX homogeneous, define:

LTppq :“ trSk1T k2
X
rSk3T k4

X ¨ ¨ ¨ ppq : ki P Nu.

We call LTppq the leading term orbit of p.

Proposition 3.3. For homogeneous p P RX , one has |LTppq| ď 27 ¨3 and the bound is sharp.

Proof. Since p P RX , p is a polynomial in infinitely many variables, that is p “

f px1, . . . ,x4,x
p1q
1 , . . . ,xp1q4 , . . .q. Assume q P LTppq, then q “ σ̂ f px1, . . . ,x4,x

p1q
1 , . . . ,xp1q4 , . . .q for

some σ̂“ rSk1T k2
X
rSk3T k4

X ¨ ¨ ¨
rSkn´1T kn

X . One can verify that

σ̂ f px1, . . . ,x4,x
p1q
1 , . . . ,xp1q4 , . . .q “ f pσ̂x1, . . . , σ̂x4, σ̂xp1q1 , . . . , σ̂xp1q4 , . . .q.

Therefore the number of possible σ̂ f is bounded by the number of possible infinite vectors of
the form pσ̂x1, . . . , σ̂x4, σ̂xp1q1 , . . . , σ̂xp1q4 , . . .q. Such a vector is uniquely determined by the first four
entries. We checked by computer that there are 384 possible values for the first four entries.
Therefore there are at most 384“ 27 ¨3 different σ̂ f .

Note. In fact, in view of T 8
X “ id “ rS8, LTppq is the p-orbit of a corresponding group action. For

instance,
if p1 P LTppq then LTpp1q “ LTppq.

Lemma 3.9. Suppose p P RX . If p P kerφ, then TXppq P kerφ.

Proof. If p P kerφ, then φppq “ 0. Hence φpTXppqqpτq ” φppqpτ` 1q ” 0 by Lemma 3.3. Therefore
TXppq P kerφ.

Lemma 3.10. Suppose p P RX and g P LTppq. Then p P kerφ if and only if g P kerφ.

Proof. “ ùñ ”. Suppose SXppq “
n
ř

t“1
sct pt in S-form. From Lemma 3.8 we know that if p P kerφ,

then rSppq “ pn P kerφ. By Lemma 3.9, TXppq P kerφ. According to Definition 3.10, for each g P

LTppq, there exists k j P N such that g“ rSk1T k2
X
rSk3T k4

X ¨ ¨ ¨
rSkn´1T kn

X ppq. Thus if p P kerφ, then g P kerφ.
“ðù ”. Noting that p P LTppq “ LTpgqwe can apply “ùñ ”.
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Lemma 3.11. Given p P RX homogeneous, if φppq PMkpHqzt0u then Degppq “ k.

Proof. By Lemma 3.5, the highest power of s in the S-form of SXppq is Degppq. Thus by Lemma
3.2 we know that the highest power of τ in pS0φppqqpτq is Degppq. If φppq P MkpHqzt0u, then
pS0φppqqpτq “ φppqp´1{τq “ τkφppqpτq. Therefore Degppq “ k.

Example 3.6. 5 Let p“´ 1
27px

4
2`x4

3qpx
4
3`x4

4qpx
4
2´x4

4q. One can easily verify that p is homogeneous and
Degppq“ 6. On the other hand, φppq“ e1e2e3 where e1 :“ 1

3pθ3p0,qq4`θ4p0,qq4q, e2 :“´ 1
3pθ2p0,qq4`

θ3p0,qq4q and e3 :“ 1
3pθ2p0,qq4´θ4p0,qq4q. One also verifies that the product e1e2e3 is a modular form

of weight 6.

According to Lemma 2.1, to prove that f P RΘ is identically zero we follow two steps: first check
if f is a modular form, then check if the first few coefficients of the q-expansion of f are zero.

But usually the given f P RΘ in our context is not a modular form in the sense of Definition 2.8.
To be able to apply Lemma 2.1, instead of directly dealing with f “ φppq (with homogeneous
p P RX ), we deal with

ś

uPLTppq
φpuq. We first check if this product is a modular form, and then

we check whether the first few coefficients of the q-expansion of this product are zero. We will
also show that if this product is zero then each single φpuq is zero. This will imply f “ φppq “ 0

because p P LTppq.

Lemma 3.12. Let p PRX be homogeneous and LTppq“ tp1, . . . , pmuwith SXpp jq“
n j
ř

t“1
sc j,t p j,t in S-form.

If p j,1, p j,2, . . . , p j,n j´1 P kerφ for all j P t1, . . . ,mu then

m
ź

j“1

φpp jqpτq PMmDegppqpHq.

Proof. By Lemma 3.2 we have for j P t1, . . . ,mu,

pφpp jq|0Sqpτq ” φ
˚pSXpp jqqpτq ” φ

˚

˜ n j
ÿ

t“1

sc j,t p j,t

¸

”

n j
ÿ

t“1

τ
c j,t φpp j,tqpτq.

5Cf. Example 2.2.
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Let d “ Degppq. Applying Lemma 3.5 we have c1,n1 “ c2,n2 ¨ ¨ ¨ “ cm,nm “ d. Suppose j P t1, . . . ,mu

is fixed. If p j,1, p j,2, . . . , p j,n j´1 P kerφ then

pφpp jq|0Sqpτq ” τ
d
φpp j,n jq.

Note that p j,n j P LTppq by Definitions 3.8 and 3.10. Thus

pφpp jq|0Sqpτq ” τ
d
φppiq

for some pi :“ rSpp jq P LTppq. Moreover, by Definition 3.10 we have TXpp jq “ pt for some pt P

LTppq and thus, by Lemma 3.3,

pφpp jq|0T qpτq ” φ
˚pTXpp jqqpτq ” φpptqpτq.

Therefore
pφpp jq|dSqpτq ” φppiqpτq and pφpp jq|dT qpτq ” φpptqpτq.

Thus for all γ P SL2pZq:
˜

m
ź

j“1

φpp jq

ˇ

ˇ

ˇ

ˇ

dm
γ

¸

pτq ”

m
ź

j“1

ˆ

φpp jq

ˇ

ˇ

ˇ

ˇ

d
γ

˙

pτq ”

m
ź

j“1

φpp jqpτq. (3.9)

In fact the functions θ
pkq
i are analytic on H, which can be seen from their q-expansion. Therefore

the above product is analytic on H. Again by Definition 2.7, each of the functions θ
pkq
i is a Taylor

series in powers of q1{4, therefore also the above product is a Taylor series in powers of q1{4.

Setting γ “

˜

1 2
0 1

¸

in (3.9) implies that the above product is invariant under the mapping

τ ÞÑ τ` 2. It is known that analytic functions with this property may be written as Laurent
series in q; by the uniqueness of Laurent series the product is a Taylor series in q as required
from the definition of modular form.

Theorem 3.2. Let p P RX be homogeneous, LTppq “ tp1, . . . , pmu with SXpp jq “
n j
ř

t“1
sc j,t p j,t in S-form.

If for all j P t1, . . . ,mu,

p j,1, p j,2, . . . , p j,n j´1 P kerφ and ord

˜

m
ź

j“1

φpp jqpτq

¸

ą
mDegppq

6
,

where ord is the order of a power series in q in the usual sense, then p P kerφ.
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Proof. If for all j P t1, . . . ,mu, p j,1, p j,2, . . . , p j,n j´1 P kerφ, then by Lemma 3.12 we have
m
ś

j“1
φpp jqpτq P MmDegppqpHq. This together with ord

˜

m
ś

j“1
φpp jqpτq

¸

ą
mDegppq

6 , by Lemma 2.1, we

obtain φ

˜

m
ś

j“1
p j

¸

“
m
ś

j“1
φpp jq “ 0. Thus for some j, p j P kerφ, which by Lemma 3.10 implies that

for any h P LTpp jq “ LTppq, h P kerφ. Therefore p P kerφ.

Algorithm 3.1. Let p, LTppq and SXpp jq be the same as in Theorem 3.2, and d :“Degppq. We have the
following algorithm to prove or disprove p P kerφ.

Input: homogeneous p P RX . Output: True if p P kerφ; False if p R kerφ.

Define Proveppq :“

$

&

%

True, if p P kerφ;

False, if p R kerφ.

If d “ 0 then Proveppq :“True if p“ 0; else Proveppq:= False.

If d ą 0 then

Proveppq :“True if ord

˜

m
ź

j“1

φpp jqpτq

¸

ą
d m
6

and Provepp j,1q and . . . and Provepp j,n j´1q;

else Proveppq :“ False.

Theorem 3.3. Algorithm 1 is correct.

Proof. Suppose p P kerφ. Using p j P LTppq and Lemma 3.10 we have the equivalences

p P kerφ ðñ p j P kerφ for all j P t1, . . . ,mu (a)

ðñ p j P kerφ for some j P t1, . . . ,mu

ðñ

m
ź

j“1

φpp jqpτq ” 0. (b)

According to Theorem 3.2, (b) together with
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(1) True“Provepp j,1q “ ¨ ¨ ¨ “Provepp j,n j´1q, j “ 1, . . . ,m, gives Proveppq “True; i.e., p P kerφ. By
(a) and Lemma 3.8 we have p j,1, . . . , p j,n j P kerφ for j P t1, . . . ,mu. We iterate the above procedure
and note that owing to Lemma 3.5 the procedure terminates; namely

Degpp j,1q ă ¨ ¨ ¨ ă Degpp j,n j´1q ă Degpp j,n jq “ d.

Suppose p R kerφ. This is equivalent to

(2) p R kerφ for all j P t1, . . . ,mu. In case (1) holds, then by Lemma 3.12,

f pτq :”
m
ź

j“1

φpp jqpτq PMdmpHq.

Because of (2) we know that f pτq ı 0; thus ordp f pτqq ď dm
6 and Algorithm 3.1 returns

Proveppq “False. If at least one of the p j,1, . . . , p j,n j´1 p j “ 1, . . . ,mq is not in kerφ, the algorithm
detects this in a base case (i.e., p PKzt0u) when applying its steps recursively.

Example 3.7. Let us return to the task to do zero-recognition for (3.5) from Example 3.1. Since
θ12p0,qq ” θ13p0,qq ” θ14p0,qq ” 0, we need to prove the following identity.

θ2pτq
3
θ
2
2pτq´θ3pτq

3
θ
2
3pτq`θ4pτq

3
θ
2
4pτq ” 0.

Note that in Chapter 8 we will demonstrate how our Mathematica package can assist to prove
this identity.

Proof. For p :“ x3
2xp2q2 ´ x3

3xp2q3 ` x3
4xp2q4 P R4

X we want to prove p P kerφ. We compute

LTppq “ tp1, p2u “ tx3
2xp2q2 ´ x3

3xp2q3 ` x3
4xp2q4 ,´px3

2xp2q2 ´ x3
3xp2q3 ` x3

4xp2q4 qu.

Since Degppq “ 4 and |LTppq| “ 2, we need to show that φpp1 p2qpτq has the form
ř

tą 8
6

atqt , which

holds because

φpp1 p2qpτq ”pθ2pτq
3
θ
2
2pτq´θ3pτq

3
θ
2
3pτq`θ4pτq

3
θ
2
4pτqq

p´θ2pτq
3
θ
2
2pτq`θ3pτq

3
θ
2
3pτq´θ4pτq

3
θ
2
4pτqq

”˝q2`˝q3` . . . .
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Moreover we have

SXpp1q “ p´x3
2xp2q2 ` x3

3xp2q3 ´ x3
4xp2q4 qs

4`
2i
π
p´x4

2` x4
3´ x4

4qs
3 “ p2s4`

2i
π

p1,2s3

and
SXpp2q “ px3

2xp2q2 ´ x3
3xp2q3 ` x3

4xp2q4 qs
4`

2i
π
px4

2´ x4
3` x4

4qs
3 “ p1s4`

2i
π

p2,2s3.

According to Theorem 3.2, it is now left to show that p1,2, p2,2 P kerφ. We compute

LTpp1,2q “ LTpp2,2q “ t´x4
2` x4

3´ x4
4,x

4
2´ x4

3` x4
4u “ tp1,2, p2,2u.

Since Degpp1,2q “ 2 and |LTpp1,2q| “ 2, we need to show φpp1,2 p2,2qpτq has the form
ř

tą 4
6

atqt , which

holds because

φpp1,2 p2,2qpτq ” pθ2pτq
4´θ3pτq

4`θ4pτq
4qp´θ2pτq

4`θ3pτq
4´θ4pτq

4q ” ˝q`˝q2` . . . .

We also have

SXpp1,2q “ px4
2´ x4

3` x4
4qs

2 “ p1s2 and SXpp2,2q “ p´x4
2` x4

3´ x4
4qs

2 “ p2s2.

Thus p1,2, p2,2 P kerφ. Consequently we obtain p P kerφ.

Example 3.8. As another example, we present an identity from the famous book by Rademacher, (93.22)
in [24], which was used to derive the formula for the number of presentations of a natural number as a
sum of 10 squares:

θ
p4q
3 pτqθ3pτq´3pθ23pτqq

2´2θ3pτq
2
θ2pτq

4
θ4pτq

4 ” 0.

The algorithmic effort to prove this identity is as simple as in Example 3.7. In Chapter 8 we will show
the procedures of proving this identity in our Mathematica package.

3.4 A Refined Algorithm

Definition 3.11. For any k̄ “ pk1, . . . ,kmq P Nm and t P N, we define

Dpk̄, tq :“

#

pb1, . . . ,bmq P Nm :
m
ÿ

i“1

bi “

m
ÿ

i“1

ki´2t, bi ď ki and bi ” ki pmod 2q

+

.
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Lemma 3.13. Let p“ xpk1q
i1 ¨ ¨ ¨xpkmq

im P RX and r :“ Degppq
2 ´ m

4 ´
ν1ppq

2 . Then r P N and

SXppq “ sDegppqp0` sDegppq´1 p1`¨¨ ¨` sDegppq´r pr

is in S-form, and for 0ď t ď r,

pt “ p´iqν1ppq`m
2

ˆ

i
π

˙t
ÿ

b̄PDpk̄,tq

m
ź

v“1

kv!
bv!p kv´bv

2 q!
xpb1q

σpi1q
¨ ¨ ¨xpbmq

σpimq
.

Proof. Assume SXppq“ scngn`¨¨ ¨`sc1g1 in S-form. Suppose xi1 “ xi2 “ ¨¨ ¨ “ xiν1ppq “ x1 and xi j ‰ x1

for ν1ppq` 1 ď j ď m. Then by Lemma 3.4, cn “ Degppq, and from the proof of Lemma 3.4, we
have

cn´ c1 “

¨

˝

ν1ppq
ÿ

j“1

ˆ

k j`
1
2

˙

`

m
ÿ

j“ν1ppq`1

ˆ

k j`
1
2

˙

˛

‚´

¨

˝

ν1ppq
ÿ

j“1

ˆ

k j

2
`1

˙

`

m
ÿ

j“ν1ppq`1

ˆ

k j

2
`

1
2

˙

˛

‚

“

ν1ppq
ÿ

j“1

ˆ

k j

2
´

1
2

˙

`

m
ÿ

j“ν1ppq`1

k j

2
(3.10)

“

m
ÿ

j“1

k j

2
´

ν1ppq
2

“
Degppq

2
´

m
4
´

ν1ppq
2

“ r.

Thus c1 “ cn´ r “ Degppq´ r. Moreover, for (3.10), since k j is odd when 1 ď j ď ν1ppq and is
even when ν1ppq`1ď j ď m, we deduce that r P N.

By Definition 3.3, for every xpkq` , regardless that ` is even or odd, if we sort the power of s in
SXpx

pkq
` q from big to small, then the power of s decreases by 1 every time when the j in Definition

3.3 increases by 2 every time. This together with c1 “ Degppq´ r implies that

SXppq “ sDegppqp0` sDegppq´1 p1`¨¨ ¨` sDegppq´r pr

for some r P N, p j P RX and pr ‰ 0. Now we show that p j ‰ 0 for all j P t0, . . . ,ru. By fully
invoking Definition 3.3, for 0ď t ď r we derive

xsDegppq´tySXppq “xsDegppq´tySXpx
pk1q
i1 qSXpx

pk2q
i2 q ¨ ¨ ¨SXpx

pkmq
im q
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“p´iqν1ppq`m
2

ÿ

b̄PDpk̄,tq

ˆ

i
π

˙

m
ř

i“1

ki´bi
2 m

ź

v“1

kv!
bv!p kv´bv

2 q!
xpb1q

σpi1q
¨ ¨ ¨xpbmq

σpimq

“p´iqν1ppq`m
2

ˆ

i
π

˙t
ÿ

b̄PDpk̄,tq

m
ź

v“1

kv!
bv!p kv´bv

2 q!
xpb1q

σpi1q
¨ ¨ ¨xpbmq

σpimq
,

where b̄ “ pb1, . . . ,bmq and k̄ “ pk1, . . . ,kmq. Since kv ě bv ě 0, we have
m
ś

v“1

kv!
bv!p kv´bv

2 q!
ą 0, which

implies xsDegppq´tySXppq ‰ 0. Therefore the expression of SXppq in the statement is in S-form.

We shall see that the following refined sets of compositions of numbers play a crucial role.
Throughout b̄ P Nm has to be interpreted as b̄“ pb1, . . . ,bmq.

Definition 3.12. Given d̄ P Nm, k̄ P Nm, and j, t P N,

Bpd̄, k̄, t, jq :“
"

b̄ P Dpk, tq :
m
ÿ

i“1

bi “

m
ÿ

i“1

di`2 j,di ď bi and di ” bi pmod 2q
*

.

Lemma 3.14. Given j, t P N and d̄ P Nm and k̄ P Nm, then

j
ÿ

b̄PBpd̄,k̄,t, jq

m
ź

v“1

αpkv,bvqβpbv,dvq “ pt`1q
ÿ

ēPBpd̄,k̄,t`1, j´1q

m
ź

v“1

αpkv,evqβpev,dvq, (3.11)

where
αpkv,evq :“

kv!
p

kv´ev
2 q!

and βpbv,cvq :“
1

cv!pbv´cv
2 q!

.

Proof. Let
M1 :“ tpb̄, b̄´2ziq : b̄ P Bpd̄, k̄, t, jq, 1ď iď m and bi ě di`2u

and
M2 :“ tpē`2zi, ēq : ē P Bpd̄, k̄, t`1, j´1q, 1ď iď m and ei ď ki´2u,

where zi “ pa1, . . . ,amqwith ai “ 1 and a j “ 0 ( j ‰ i). Then

LHS of (3.11)“
ÿ

b̄PBpd̄,k̄,t, jq

˜

m
ÿ

i“1

bi´di

2

m
ź

v“1

αpkv,bvqβpbv,dvq

¸
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“
ÿ

b̄PBpd̄,k̄,t, jq

m
ź

v“1

αpkv,bvq

m
ÿ

i“1

βpbi´2,diq

m
ź

v“1
v‰i

βpbv,dvq

“
ÿ

pb̄,ēqPM1

m
ź

v“1

αpkv,bvqβpev,dvq

and

RHS of (3.11)“
ÿ

ēPBpd̄,k̄,t`1, j´1q

˜

m
ÿ

i“1

ki´ ei

2

m
ź

v“1

αpkv,evqβpev,dvq

¸

“
ÿ

ēPBpd̄,k̄,t`1, j´1q

m
ź

v“1

βpev,dvq

m
ÿ

i“1

αpkv,ei`2q
m
ź

v“1
v‰i

αpkv,evq

“
ÿ

pb̄,ēqPM2

m
ź

v“1

αpkv,bvqβpev,dvq,

where we define βpbi´2,diq :“ 0 if bi “ di, and define αpki,ei`2q :“ 0 if ei “ ki.

To prove the lemma we need to prove that M1 “M2.

Take pb̄, ēq :“ pb̄, b̄´2ziq PM1 for some i P t1, . . . ,mu. Then b̄ “ ē`2zi, and we can write pb̄, ēq “
pē` 2zi, ēq. Additionally, from the definition of M1 we have b̄ P Bpd̄, k̄, t, jq and di` 2 ď bi ď ki,
which implies ē`2zi P Bpd̄, k̄, t, jq and di`2ď ei`2ď ki. Then di ď ei ď ki´2 and by Definition
3.12 we have

m
ÿ

v“1

ev`2“
m
ÿ

v“1

kv´2t “
m
ÿ

v“1

dv`2 j.

Hence
m
ÿ

v“1

ev “

m
ÿ

v“1

kv´2pt`1q “
m
ÿ

v“1

dv`2p j´1q

and di ď ei ď ki´ 2, which implies ē P Bpd̄, k̄, t` 1, j´ 1q and di ď ei ď ki´ 2. Therefore pb̄, ēq “
pē`2zi, ēq PM2. The other direction goes analogously.

Theorem 3.4. Let p “ xpk1q
i1 ¨ ¨ ¨xpkmq

im P RX . According to Lemma 3.13 let SXppq “ sDegppqp0 ` ¨¨ ¨ `

sDegppq´r pr in S-form and r :“ Degppq
2 ´ m

4 ´
ν1ppq

2 . We have

(1) SXpprq “ sDegpprqq with q P RXzt0u; and
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(2) for any adjacent pair ppt , pt`1q, t P t0, . . . ,r´1u,

SXppt`1q “
1

t`1

r´t
ÿ

j“1

sDegpptq´ j´1 jqt, j

and

SXpptq “

r´t
ÿ

j“0

sDegpptq´ jqt, j

with qt, j P RX .

Proof. (1) According to Lemma 3.13, pr ‰ 0. Therefore the statement is implied by Definition 3.3.

(2) We first prove that the low degree of SXpptqwith respect to s is Degpptq´ r` t, then we prove
that the coefficient relation

xsDegpptq´ jySXpptq

xsDegpptq´ j´1ySXppt`1q
“

t`1
j

is true for j P t0, . . . ,r´ tu. Suppose xi1 “ xi2 “ ¨¨ ¨ “ xia “ x1 and xi j ‰ x1 for a` 1 ď j ď m. Let
Cppq :“ p´iqν1ppq`m

2 . Applying Lemma 3.13 we have

SXpptq “ SX

˜

Cppq
` i

π

˘t ř

b̄PDpk̄,tq

m
ś

v“1
αpkv,bvqx

pb1q

σpi1q
¨ ¨ ¨xpbmq

σpimq

¸

“Cppq
` i

π

˘t ř

b̄PDpk̄,tq

m
ś

v“1
αpkv,bvqSX

´

xpb1q

σpi1q
¨ ¨ ¨xpbmq

σpimq

¯

. (3.12)

Now let dt :“ Degpptq. Concerning (3.12), for b̄ P Dpk̄, tqwe apply Lemma 3.13 again and obtain

SX

´

xpb1q

σpi1q
¨ ¨ ¨xpbmq

σpimq

¯

“sdtCppqxpb1q
i1 ¨ ¨ ¨xpbmq

im

` sdt´1Cppq
ˆ

i
π

˙

ÿ

c̄PDpb̄,1q

m
ź

v“1

βpbv,cvqx
pc1q
i1 ¨ ¨ ¨xpcmq

im

` sdt´2Cppq
ˆ

i
π

˙2
ÿ

c̄PDpb̄,2q

m
ź

v“1

βpbv,cvqx
pc1q
i1 ¨ ¨ ¨xpcmq

im

` . . .

` sdt´rtCppq
ˆ

i
π

˙rt
ÿ

c̄PDpb̄,rtq

m
ź

v“1

βpbv,cvqx
pc1q
i1 ¨ ¨ ¨xpcmq

im , (3.13)
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where rt :“ dt
2 ´

m
4 ´

ν1ppq
2 according to Lemma 3.13 and ν1ppq “ ν1

´

xpb1q

σpi1q
¨ ¨ ¨xpbmq

σpimq

¯

. Since b̄ P

Dpk̄, tq, i.e.,
m
ř

i“1
bi “

m
ř

i“1
ki´ 2t, we have

m
ř

i“1
bi`

m
2 “

m
ř

i“1
ki`

m
2 ´ 2t, which means dt “ Degppq´ 2t.

This together with r “ Degppq
2 ´ m

4 ´
ν1ppq

2 implies

rt “
Degppq´2t

2
´

m
4
´

ν1ppq
2

“

ˆ

Degppq
2

´
m
4
´

ν1ppq
2

˙

´ t “ r´ t.

Plugging (3.13) into (3.12), we get

SXpptq “Cppq2
ˆ

i
π

˙t
¨

˝sdt
ÿ

b̄PDpk̄,tq

m
ź

v“1

αpkv,bvq

m
ź

v“1

βpbv,cvqx
pb1q
i1 ¨ ¨ ¨xpbmq

im

` sdt´1
ˆ

i
π

˙

ÿ

b̄PDpk̄,tq

m
ź

v“1

αpkv,bvq
ÿ

c̄PDpb̄,1q

m
ź

v“1

βpbv,cvqx
pc1q
i1 ¨ ¨ ¨xpcmq

im

` sdt´2
ˆ

i
π

˙2
ÿ

b̄PDpk̄,tq

m
ź

v“1

αpkv,bvq
ÿ

c̄PDpb̄,2q

m
ź

v“1

βpbv,cvqx
pc1q
i1 ¨ ¨ ¨xpcmq

im

` . . .

`sdt´rt

ˆ

i
π

˙rt
ÿ

b̄PDpk̄,tq

m
ź

v“1

αpkv,bvq

m
ź

v“1

βpbv,cvqpx11q
axia`1 ¨ ¨ ¨xim

˛

‚

“sdt h0` sdt´1h1`¨¨ ¨` sdt´rt hrt ,

where for j P t0, . . . ,rtu

h j “Cppq2
ˆ

i
π

˙t` j
ÿ

b̄PDpk̄,tq

m
ź

v“1

αpkv,bvq
ÿ

c̄PDpb̄, jq

m
ź

v“1

βpbv,cvqx
pc1q
i1 ¨ ¨ ¨xpcmq

im .

Analogously we have

SXppt`1q “Cppq2
ˆ

i
π

˙t`1
¨

˝sdt´2
ÿ

ēPDpk̄,t`1q

m
ź

v“1

αpkv,evqx
pe1q
i1 ¨ ¨ ¨xpemq

im

` sdt´3
ˆ

i
π

˙

ÿ

ēPDpk̄,t`1q

m
ź

v“1

αpkv,evq
ÿ

ūPDpē,1q

m
ź

v“1

βpev,uvqx
pu1q
i1 ¨ ¨ ¨xpumq

im

` sdt´4
ˆ

i
π

˙2
ÿ

ēPDpk̄,t`1q

m
ź

v“1

αpkv,evq
ÿ

ūPDpē,2q

m
ź

v“1

βpev,uvqx
pu1q
i1 ¨ ¨ ¨xpumq

im
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` . . .

`sdt´rt´1
ˆ

i
π

˙rt´1
ÿ

ēPDpk̄,t`1q

m
ź

v“1

αpkv,evq

m
ź

v“1

βpev,uvqpx11q
axia`1 ¨ ¨ ¨xim

˛

‚

“sdt´2q1` sdt´3q2`¨¨ ¨` sdt´rt´1qrt ,

where for j P t1, . . . ,rtu

q j “Cppq2
ˆ

i
π

˙t` j
ÿ

ēPDpk̄,t`1q

m
ź

v“1

αpkv,evq
ÿ

ūPDpē, j´1q

m
ź

v“1

βpev,uvqx
pu1q
i1 ¨ ¨ ¨xpumq

im .

Thus proving the statement to be true is equivalent to proving that

h j

q j
“

t`1
j

.

For any fixed c̄ “ pc1, . . . ,cmq P Nm, the set of all possible b̄ contributing to the coefficient of
xpc1q

i1 ¨ ¨ ¨xpcmq
im in h j is equal to Bpc̄, k̄, t, jq, and for any fixed ū“ pu1, . . . ,umq PNm the set of all possi-

ble ē contributing to the coefficient of xpu1q
i1 ¨ ¨ ¨xpumq

im in q j is equal to Bpū, k̄, t`1, j´1q. Therefore

h j “Cppq2
ˆ

i
π

˙t` j
ÿ

c̄PNm

¨

˝

ÿ

b̄PBpc̄,k̄,t, jq

m
ź

v“1

αpkv,bvqβpbv,cvq

˛

‚xpc1q
i1 ¨ ¨ ¨xpcmq

im

and

q j “Cppq2
ˆ

i
π

˙t` j
ÿ

ūPNm

¨

˝

ÿ

evPBpū,k̄,t`1, j´1q

m
ź

v“1

αpkv,evqβpev,uvq

˛

‚xpu1q
i1 ¨ ¨ ¨xpumq

im .

Now fix pd1,d2, . . . ,dmq P Nm. We need to prove that

xxpd1q
i1 ¨ ¨ ¨xpdmq

im yh j

xxpd1q
i1 ¨ ¨ ¨xpdmq

im yq j

“
t`1

j
.

Applying Lemma 3.14 we immediately obtain the correctness of this equality.
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According to Lemma 3.13, for any homogeneous p P RX , since SX is a homomorphism, we
have that the powers of s in SXppq start from Degppq and decrease by integers; namely, SXppq “

sDegppqp0`¨¨ ¨` sDegppq´r pr with the p j P RX and pr ‰ 0. At this moment, we guess that some of
the p0, . . . , pr´1 could be zero, but in Corollary 3.4 we will show that this is not the case.

Corollary 3.3. Let p P RX be homogeneous and SXppq “ sDegppqp0` ¨¨ ¨` sDegppq´r pr with r P N and
pr P RXzt0u. Then

(1) SXpprq “ sDegpprqq with q P RXzt0u; and

(2) for any neighboring pair ppt , pt`1q, t P t0, . . . ,ru, where pr`1 :“ 0, there exists γt P N such that

SXppt`1q “
1

t`1

γt
ÿ

j“1

sDegpptq´ j´1 jpt, j

and

SXpptq “

γt
ÿ

j“0

sDegpptq´ j pt, j

with pt, j P RX .

Proof. We first prove (2). Suppose

p“ a1h1`¨¨ ¨`anhn

where the h j are monomials in RX of the same degree, and the a j PKzt0u.

Let d :“ Degppq “ Degph jq. By Lemma 3.13, there exists an integer b j such that

SXph jq “ sdh j,0` sd´1h j,1`¨¨ ¨` sd´b j h j,b j

in S-form. Let r :“ max
j“1,...,n

tb ju. Then

SXppq “sdpa1h1,0`¨¨ ¨`anhn,0q` ¨ ¨ ¨` sd´rpa1h1,r`¨¨ ¨`anhn,rq

“sd p0`¨¨ ¨` sd´r pr,

where pt “ a1h1,t `¨¨ ¨`anhn,t for t “ 0, . . . ,r and h j,t “ 0 when t ą b j.
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Since the pt are homogeneous by Lemma 3.5(2), we can define dt :“ Degpptq. Hence we can
suppose for t P t0, . . . ,ru that

SXph j,tq “ sdt q j,0` sdt´1q j,1`¨¨ ¨` sdt´b j,t q j,b j,t (3.14)

where the q j,i P RX and q j,b j,t ‰ 0. Therefore by letting γt :“ max
j“1,...,m

tb j,tuwe obtain

SXpptq “ a1SXph1,tq` ¨ ¨ ¨`anSXphn,tq “ sdt q0` sdt´1q1 ¨ ¨ ¨` sdt´γt qγt

where qi “ a1q1,i`¨¨ ¨`anqn,i and q j,i “ 0 if ią γt . Furthermore, since the h j are monomials, we
immediately obtain from (3.14) by Theorem 3.4

SXph j,t`1q “ sdt´2 1
t`1

q j,1`¨¨ ¨` sdt´b j,t´1 b j,t

t`1
q j,b j,t .

Hence

SXppt`1q “a1SXph1,t`1q` ¨ ¨ ¨`anSXphn,t`1q

“a1

ˆ

sdt´2 1
t`1

q1,1`¨¨ ¨` sdt´b1,t´1 b1,t

t`1
q1,b1,t

˙

` . . .

`an

ˆ

sdt´2 1
t`1

qn,1`¨¨ ¨` sdt´γt´1 bn,t

t`1
qn,bn,t

˙

“sdt´2 1
t`1

q1`¨¨ ¨` sdt´γt´1 γt

t`1
qγt .

It remains to prove (1). This follows immediately from (2).

Now we introduce a definition that will serve to increase readability.

Definition 3.13. For half integers a,b P 1
2Z, such that aď b and b´a P N:

ta, . . . ,bu :“ ta,a`1,a`2, . . . ,bu

and
b
ÿ

j“a

hp jq :“ hpaq`hpa`1q` ¨ ¨ ¨`hpbq.

Corollary 3.4. Given p P RX homogeneous, suppose SXppq “
Degppq
ř

j“γ

s j p j with p j P RX and pγ ‰ 0. Then

the sum is in S-form.
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Proof. Assume p j ‰ 0 for j ě γ. Then SXpp jq ‰ 0 by Corollary 3.2, which by Corollary 3.3(2)
implies SXpp j`1q ‰ 0, which again implies p j`1 ‰ 0.

By Definition 3.13 and Corollary 3.4, for homogeneous p P RX , the notation of S-form SXppq “
n
ř

i“1
sciqi turns into SXppq “

Degppq
ř

j“γ

s j p j where γ P 1
2Z such that γ“ c1.

The next theorem is crucial for refining Algorithm 3.1.

Theorem 3.5. Let p,g P RX be homogeneous and assume that both sums

SXppq “
Degppq
ÿ

j“γp

s j p j and SXpgq “
Degpgq
ÿ

j“γg

s jg j

are in S-form. If g P LTppq then Degppq “ Degpgq, γp “ γg, and

g j P LTpp jq, j P tγp, . . . ,Degppqu.

Proof. By Definition 3.10, the LT orbit is built up by the powers of rS and TX . Since rS and TX both
keep the degree, we deduce that if g P LTppq then Degppq “ Degpgq.

The proof of the remaining part proceeds by induction on the length of

g“ Sk1T `1 ¨ ¨ ¨SkmT `mppq.

For the induction step, it suffices to prove the statement for two neighboring situations:

g“ rSppq and g“ TXppq.

Assume g “ rSppq. Let p “ a1h1` a2h2` ¨¨ ¨ ` anhn where the ht are monomials in RX with the

same degree and the at PKzt0u. Suppose SXphtq “
d
ř

j“rt

s jht, j in S-form with d :“ Degppq.

We first prove that SXpσphtqq “ σpSXphtqq. Since σ and SX are homomorphisms, it suffices to
show this is true for the generators, which means we have to prove SXpσpx

pkq
i qq “ σpSXpx

pkq
i qq for

any i P t1, . . . ,4u and k P N. This is implied immediately by Definition 3.3.
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Let r :“ max
t“1,...,n

trtu and ht, j :“ 0 when j ă rt . Then by Lemma 3.13 we have

SXppq “a1SXph1q` ¨ ¨ ¨`anSXphnq

“a1

d
ÿ

j“r1

s jh1, j`¨¨ ¨`an

d
ÿ

j“rn

s jhn, j

“sdpa1h1,d`¨¨ ¨`anhn,dq` ¨ ¨ ¨` srpa1h1,r`¨¨ ¨`anhn,rq.

By Definition 3.3 and the linearity of rS we also have

g“ rSppq “ a1rSph1q` ¨ ¨ ¨`anrSphnq “ a1p´iqk1σph1q` ¨ ¨ ¨`anp´iqknσphnq,

where the kt :“ ν1phtq`
µphtq

2 . Then

SXpgq “a1p´iqk1SXpσph1qq` ¨ ¨ ¨`anp´iqk1SXpσphnqq

“a1p´iqk1σ

˜

d
ÿ

j“r1

s jh1, j

¸

`¨¨ ¨`anp´iqknσ

˜

d
ÿ

j“rn

s jhn, j

¸

“sdpa1p´iqk1σph1,dq` ¨ ¨ ¨`anp´iqknσphn,dqq

` . . .

` srpa1p´iqk1σph1,rq` ¨ ¨ ¨`anp´iqknσphn,rqq.

Since for j P tr,r`1, . . . ,du,

rSpa1h1, j`¨¨ ¨`anhn, jq “ a1rSph1, jq` ¨ ¨ ¨`anrSphn, jq

“ a1p´iqk1σph1, jq` ¨ ¨ ¨`anp´iqknσphn, jq,

we obtain
a1p´iqk1σph1, jq` ¨ ¨ ¨`anp´iqknσphn, jq P LTpa1h1, j`¨¨ ¨`anhn, jq.

Hence
g j P LTpp jq.

Then g j “ 0 if and only if p j “ 0. Therefore γp “ γg.

For g“ TXppq the proof is analogous.



3.4 A Refined Algorithm 45

Applying Corollary 3.3 and Theorem 3.5 we can simplify Algorithm 3.1 substantially. The
essence of the simplification is the following theorem.

Theorem 3.6. Given p P RX homogeneous and SXppq “
Degppq
ř

j“r
s jq j in S-form, then

p P kerφ if and only if ord

¨

˝

ź

gPLTpq jq

φpgqpτq

˛

‚ą
Degpq jq|LTpq jq|

6
for all j P tr . . . ,Degppqu.

Proof. Assume p P kerφ. By Lemma 3.8, q j P kerφ for all j P tr, . . . ,Degppqu. Therefore, for any
g P LTpq jq, by Lemma 3.10 we have g P kerφ. This implies

ś

gPLTpq jq

φpgqpτq ” 0. And hence

8“ ord

¨

˝

ź

gPLTpq jq

φpgqpτq

˛

‚ą
Degpq jq|LTpq jq|

6
.

Assume p R kerφ. According to Lemma 3.8, at least one of the q j is not in kerφ. Take
t P tr, . . . ,Degppqu such that qt R kerφ and qi P kerφ when i ă t. We prove that

ś

gPLTpqtq

φpgqpτq is

a modular form.

Case 1: t “ r. By Corollary 3.3.1, SXpqtq “ SXpqrq “ srt h in S-form, where h R kerφ because qt R kerφ.
Hence for every g P LTpqtq, by Theorem 3.5, there exists q P RX such that SXpgq “ srt q in S-form
and q R kerφ. By Lemma 3.12,

ś

gPLTpqtq

φpgqpτq PMpDegpqtq|LTpqtq|q.

Case 2: t ą r. Suppose SXpqtq “
Degpqtq
ř

j“rt

s jh j in S-form. Since qt R kerφ, at least one of the h j is not

in kerφ. By rewriting of Corollary 3.3.2,

SXpqt´1q “

Degpqtq´1
ÿ

j“rt

s j´1 Degpqtq´ j´1
t`1

h j in S-form,

where, again by Lemma 3.8, h j P kerφ for rt ď j ď Degpqtq´1 because qt´1 P kerφ. Thus hDegpqtq R

kerφ. Hence for g P LTpqtq, applying Theorem 3.5 we have SXpgq “
Degpqtq
ř

j“rt

s jg j in S-form with g j P
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LTph jq, which yields g j P kerφ for rt ď j ď Degpqtq´1 and gDegpqtq R kerφ. Again by Lemma 3.12,
ś

gPLTpqtq

φpgqpτq PMpDegpqtq|LTpqtq|q.

In addition, qt R kerφ implies
ś

gPLTpqtq

φpgqpτq ‰ 0. Therefore by Lemma 2.1 we obtain

ord

¨

˝

ź

gPLTpqtq

φpgqpτq

˛

‚ď
Degpqtq|LTpqtq|

6
.

The algorithmic content of Theorem 3.6 is the following:

Algorithm 3.2. Given p P RX homogeneous and SXppq “
Degppq
ř

j“r
s jq j in S-form, we have the following

algorithm to prove or disprove p P kerφ.

Input: homogeneous p P RX . Output: True if p P kerφ; False if p R kerφ.

If Degppq ą 0 set j :“ r. While j ď Degppq do

if ord

¨

˝

ź

gPLTpq jq

φpgqpτq

˛

‚ą
Degpq jq|LTpq jq|

6

then j :“ j`1;

else return False;

exit;

end do;

return True.

If Degppq “ 0 then True if p“ 0; False if p PKzt0u.

One can connect our method to classical methods using “Sturm bounds”. Namely, in The-
orem 3.6 one can replace |LTpq jq| with 384, owing to Proposition 3.3. Moreover, for every
g P LTpq jq, the q-expansion of φpgq only contains non-negative powers of q. Thus to show that
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ord

˜

ś

gPLTpq jq

φpgqpτq

¸

is greater than a certain number, it suffices to show that ordpφpq jqpτqq is

greater than this number. Summarizing, we have the following corollary.

Corollary 3.5. Let p P RX be homogeneous and SXppq “
Degppq
ř

j“r
s jq j in S-form. Then

p P kerφ if and only if ordpφpq jqpτqq ą 26 ¨Degppq for all j P tr . . . ,Degppqu.

We also present a modular form version.

Proposition 3.4. Let p P RX be homogeneous. If φppq PMkpHqzt0u then

ordpφppqpτqq ď 26 ¨ k.

Proof. Let SXppq “
Degppq
ř

j“r
s jq j in S-form. If φppq ‰ 0, by Corollary 3.5 we have

ordpφpq jqpτqq ď 26 ¨Degppq for all j P tr . . . ,Degppqu. (3.15)

If φppq PMkpHqzt0u, by Definition 3.3 and Definition 2.8 we have

pS0φppqqpτq “ φppqp´1{τq “ τ
k
φppqpτq. (3.16)

This together with Lemma 3.2 implies that SXppq “ sk
rSppq. Then (3.15) can be stated as

ordpφprSppqqpτqq ď 26 ¨Degppq

“ 26 ¨ k,

where the last equality follows from Lemma 3.11. Finally we show that φprSppqq “ φppq. Again
by using Lemma 3.2 we have

S0φppq “ φ
˚pSXppqq “ φ

˚psk
rSppqq “ τ

k
φ
˚prSppqq “ τ

k
φprSppqq. (3.17)

We plug (3.16) into (3.17) and complete the proof.

Next we do the complexity analysis.
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Definition 3.14. For homogeneous p P RX define sppq to be the number of SX operations required to run
Algorithm 1 on p.

Definition 3.15. For homogeneous p P RX define oppq to be the number of LT operations required to
run Algorithm 1 on p. An LT operation is a function that computes the elements of the leading term
orbit of a given polynomial in RX .

Definition 3.16. Let p PRX be homogeneous with SXppq “ p1sDegppq` p2sDegppq´1`¨¨ ¨` prsDegppq´r`1

in S-form. We define `ppq :“ r to be the length of p.

Lemma 3.15. Let p P RX be be homogeneous with SXppq “ p1sDegppq` p2sDegppq´1`¨¨ ¨` prsDegppq´r`1

in S-form and |LTpp jq| “ 384. Then the number of op p̃q and sp p̃q applications on any polynomial p̃

appearing when running Algorithm 3.1 on p depends only on the length of p̃.

Proof. Suppose M“tp̃1, . . . , p̃mu are the polynomials appearing when running Algorithm 3.1 on
p. Consider M “M1YM2Y¨¨ ¨YMn where M j :“ t p̃ PM : `p p̃q “ ju. By Corollary 3.3.1 it is clear
that for any p̃ P RX with `p p̃q “ 1 we have op p̃q “ 1. Then by induction on j we prove that for
every f ,g PM j : op f q “ opgq. Assume this is true for jă k. We prove that this is also true for j“ k.
Define õ : t1, . . . ,k´1u Ñ N by õp jq :“ opqq where q PM j, which by the induction hypothesis is
well-defined. Let p̃ PMk. Then by Theorem 3.5 we have p̃ P LTpp jq for some j P t1, . . . ,ru, hence

|LTpp̃q| “ 384. Suppose LTp p̃q “ tq1, . . . ,q384u with SXpq jq “
Degpq jq
ř

t“r j

stq j,t in S-form. Note that

Degpq jq´ r j`1“ k. We know from Theorem 3.4 that `pq j,r jq “ 1 and `pq j,iq “ `pq j,i´1q`1 for all
j P t1, . . . ,384u. Therefore running Algorithm 1 on p̃ results in one orbit computation on p̃ and
triggers a running of Algorithm 1 on q j,t for all j P t1, . . . ,384u and for all t P t1, . . . ,Degpq jq´1u.
For the operation count this means,

opp̃q “ 1`
384
ÿ

j“1

Degpp jq´1
ÿ

t“r j

opq j,tq “ 1`
384
ÿ

j“1

Degpp jq´1
ÿ

t“r j

õp`pq j,tqq

“ 1`
384
ÿ

j“1

Degpp jq´1
ÿ

t“r j

õpt´ r j`1q “ 1`384
Degpp jq´r j

ÿ

t“1

õptq

“ 1`384
k´1
ÿ

t“1

õptq.

Since this shows that opp̃q is only dependent on k“ `p p̃q, this completes the induction proof for
the oppq statement. The sppq statement is proven analogously.
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Corollary 3.6. Let N1ppq and N2ppq, respectively, be the total number of LT and SX operations when
running Algorithm 3.1 and Algorithm 3.2 on a given homogeneous p P RX . Let k be the length of p.
Then in the worst case N1ppq is exponential and N2ppq is linear in k.

Proof. According to Proposition 3.3, in the worst case |LTp p̃q| “ 384 for every polynomial p̃

appearing when running Algorithm 3.1 on p. By Lemma 3.15 we have

oppq “ õpkq “ 1`384
k´1
ÿ

t“1

õptq

with õp1q “ 1. Analogously we define s̃ : t1, . . . ,k´1uÑN by s̃p jq :“ spqqwhere q PM j. Then by
doing the same induction steps as Lemma 3.15 one can prove that

sppq “ s̃pkq “ 384
k´1
ÿ

t“1

s̃ptq

with s̃p1q “ 1. Thus we obtain oppq “ 385k´1 and sppq “ 385k´1´385k´2 for k ě 2. Therefore

N1ppq “ oppq` sppq “

#

2 ¨385k´1´385k´2 if k ě 2

2 if k “ 1
.

For Algorithm 3.2, since only one SX operation and k LT operations happen, we have N2ppq “

1` k.

3.5 Examples

There are many identities that fit in this class, from which we list the following examples. For
the examples below we denote θ

pkq
j :“ θ

pkq
j p0,qq.

Example 3.9. The classical Jacobi’s identity

θ
4
2´θ

4
3`θ

4
4 “ 0,

which in Ramanujan’s notation is written as

ϕ
4pqq ” ϕ

4p´qq`16qψ
4pq2q,
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where ϕpqq :“
8
ř

n“´8
qn2

and ψpqq :“
8
ř

n“0
qnpn`1q{2. Because we can write θ3 “ ϕpqq, θ4 “ ψp´qq and

θ2 “ 2
8
ř

n“0
qpn`1{2q2 “ 2

8
ř

n“0
qn2`n`1{4 “ 2q1{4ψpq2q.

Example 3.10. [22, p. 22]
θ
p3q
1
θ11
´

θ2
11

θ2
´

θ3
11

θ3
´

θ4
11

θ4
“ 0.

Example 3.11. [22, p. 22]
θ4
11

θ4
´

θ3
11

θ3
´θ

4
2 “ 0,

Example 3.12. [24, 93. 81]
θ1

θ11
´

θ22
θ2
´

θ23
θ3
´

θ24
θ4
“ 0,

Example 3.13. [24, 93. 7]

θ
p5q
α

θ11
´3

ˆ

θ2α

θα

˙2

`2

˜

θ2α

θα

´
θ2

β

θβ

¸

ˆ

θ2α

θα

´
θ2γ

θγ

˙

“ 0,

where α“ 2,3,4.

For Examples 3.10 – 3.13 we clear the denominators and turn the left hand side to an element
in RΘ.

Example 3.14. The famous Eisenstein identity

Q3´R2 “ 1728q2
8
ź

n“1

p1´q2nq24, (A)

where

Q :“ 1`240
8
ÿ

n“1

n3q2n

1´q2n and R :“ 1´504
8
ÿ

n“1

n5q2n

1´q2n .

Note. In order to apply our algorithm, we need to rewrite both sides of relation pAq into quo-
tients of θ

pkq
j . Here Q “ π4E4

2ξp4q and R “ π6E6
2ξp6q ,

6 where the ξpsq is the Riemann Zeta function and
the Ek :“ Ekpπ,πτq is the Eisenstein series defined in Chapter 2. By equation p˚q in Proposi-
tion 4.1, we have g2 “´4pe2e3` e3e1` e1e2q and g3 “ 4e1e2e3, where g2 “ 60E4, g3 “ 140E6 and
e1 :“ 1

3pθ3p0,qq4`θ4p0,qq4q, e2 :“´1
3pθ2p0,qq4`θ3p0,qq4q and e3 :“ 1

3pθ2p0,qq4´θ4p0,qq4q. Hence

6 See p. 174 of [1].
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we can write Q and R in terms of quotients of θ
pkq
j . In addition, the right hand side of pAq is equal

to 27{4θ181 . We plug these into identity pAq, simplify and get

54pθ11q
8´pθ8

2`θ
8
3`θ

8
4q

3`2p´3θ
8
2θ

4
3´3θ

8
2θ

4
4`θ

12
3 `θ

12
4 q

2 “ 0. (B)

Thus to prove pAq, it is equivalent to proving pBq, which fits in our algorithm. Another way
to present Q and R in terms of quotients of θ

pkq
j is what we did for Example 4.5, where we can

obtain different presentations than above. Nevertheless, Algorithm 3.2 can verify that those
different presentations are in fact identically equal to the above rewriting for Q and R.

Example 3.15. [12, p. 54] Let Q and R be the same as in Example 3.14. Let z :“ ϕ2pqq and x :“

16q ψ4pq2q

ϕ4pqq , where ϕpqq :“
8
ř

n“´8
qn2

and ψpqq :“
8
ř

n“0
qnpn`1q{2. Then

Q“ z4p1`14x` x2q

and
R“ z6p1` xqp1´34x` x2q.

Since Q, R, ϕpqq and ψpqq can be written in forms of theta functions as in Examples 3.9 and 3.14,
these two identities also fits in our algorithm.
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Chapter 4

Proving Identities among Powers of
θ

pkq

j p0|τq & θ`pz|τq (Class II)

This chapter generalizes the algorithmic approach of Chapter 3 to the direction that deals with
the argument z P C. The main content of this chapter is from our paper [32].

Recall that by RΘ :“KrΘswe define the K-algebra generated by

Θ :“
!

θ
p2k`1q
1 : k P N

)

Y

!

θ
p2kq
j : k P N and j “ 2,3,4

)

,

where K Ď C is an effectively computable field which contains all the complex constants we
need (i.e., i, eπi{4, etc.), and where

θ
pkq
j :“ θ

pkq
j p0|τq :“

Bkθ j

Bzk pz|τq
ˇ

ˇ

ˇ

ˇ

z“0
, k P N.

In Chapter 3 we have presented an algorithm to do zero-recognition for every f P RΘ. Now we
extend the function space RΘ to

R̂Θ :“ RΘrθ1pz|τq,θ2pz|τq,θ3pz|τq,θ4pz|τqs,

by which we define the RΘ-algebra generated by θ1pz|τq,θ2pz|τq,θ3pz|τq and θ4pz|τq. In this chap-
ter, we solve the following problem algorithmically:

Problem 4.1: Given f P R̂Θ, decide whether f “ 0.
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In this chapter we should use the abbreviation

θ jpzq :“ θ jpz|τq, j “ 1,2,3,4.

The framework used to solve this problem is the theory of elliptic functions and modular forms.
In particular, we have to use an essential tool, which is Algorithm 3.2 from Chapter 3. As a
result, we provide Algorithm 4.1 for solving Problem 4.1.

Example 4.1. Our algorithm will be used to prove 1

c1θ3pzq2θ4pzq2` c2θ4pzq4` c3θ3pzq4` c4θ1pzq2θ2pzq2 ” 0,

where
c1 :“´8θ

5
2θ

2
3θ

3
4´2θ2θ

6
3θ

3
4´2θ2θ

2
3θ

7
4´16θ

2
3θ

3
4θ2

11`16θ2θ
2
3θ

2
4θ4

11,

c2 :“ 7θ
5
2θ

4
3θ4`θ2θ

8
3θ4`θ2θ

4
3θ

5
4`8θ

4
3θ4θ2

11´8θ2θ
4
3θ4

11,

c3 :“ θ
5
2θ

5
4`θ2θ

4
3θ

5
4`θ2θ

9
4`8θ

5
4θ2

11´8θ2θ
4
4θ4

11,

and
c4 :“´6θ

5
2θ

2
3θ

3
4.

However, we observe that in the literature most identities fitting into Problem 4.1 are also in a
smaller class, in which the coefficient algebra RΘ is replaced by a subalgebra of RΘ:

KrrΘsh :“ tppθ2p0q,θ3p0q,θ4p0qq : p PKrx,y,zs homogeneousu,

and we define
Ĥ
rΘ

:“KrrΘshrθ1pz|τq,θ2pz|τq,θ3pz|τq,θ4pz|τqs.

Restricting R̂Θ to this subalgebra, we provide Algorithm 4.2 to solve the following problem
algorithmically without invoking Algorithm 3.2. Algorithm 4.2 is faster than Algorithm 4.1
in our experiments. We will give some brief arguments concerning the speed comparison in
Chapter 6. Moreover, working with this restricted class, we also found some classical mathe-
matical insights, such as Proposition 4.2 and Lemma 4.2.

Problem 4.2: Given g P Ĥ
rΘ

, decide whether g“ 0.

1 See Chapter 6.
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Example 4.2. [14, 20.7.1] Our algorithm will be used to prove 2

θ2p0q2θ2pzq2´θ3p0q2θ3pzq2`θ4p0q2θ4pzq2 ” 0.

This chapter is organized as follows. In Section 4.1 we present a theorem to decompose any
f pz|τq P R̂Θ into the set of quasi-elliptic components of f pz|τq, and prove that f pz|τq ” 0 if and
only if its quasi-elliptic components are all equal to zero. In Section 4.2 we give an Algorithm
to decide if a quasi-elliptic component of any function in R̂Θ is equal to zero or not, thus we
achieve the goal to prove or disprove f pz|τq ” 0. In Section 4.3 we derive a theorem connecting
the Weierstrass elliptic function and the theta functions in a new way, which plays an important
role for solving Problem 4.2. Working in the restricted space Ĥ

rΘ
, in Section 4.4 we obtain a

critical lemma about the finite-orbit weight. In Section 4.5 we give an Algorithm to decide if
any function in Ĥ

rΘ
is equal to zero or not, thus we achieve the goal of Problem 4.2; i.e., to prove

or disprove gpz|τq ” 0.

Convention. (1) Given α“ pα1,α2,α3,α4q P Z4, we define

θ
αpzq :“ θ

αpz|τq :“ θ1pz|τqα1θ2pz|τqα2θ3pz|τqα3θ4pz|τqα4 “ θ1pzqα1θ2pzqα2θ3pzqα3θ4pzqα4 .

(2) For two sets A and B, we use BA to present the set of functions t f : AÑ Bu.

(3) For any α P Zn we assume that α“ pα1, . . . ,αnq and define |α| :“ α1`¨¨ ¨`αn.

4.1 Quasi-Elliptic Decomposition of f ψ P R̂Θ

For a given f P R̂Θ, similarly to Chapter 3 we first decompose it into certain "smaller compo-
nents". However, here we do the decomposition with regard to z.

Definition 4.1. Given M Ď N4 finite, define

fM : RΘ
M Ñ R̂Θ

ψ ÞÑ fMpψq “: f ψ

M

2 See Example 3.1 and Section 8.2.
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where
f ψ

Mpz|τq :“
ÿ

αPM

ψpαqθαpz|τq.

Notation. If M is clear from the context, we write f instead of fM, and f ψ instead of f ψ

M.

Sometimes, for convenience, we use f ψpzq to present f ψpz|τq. As an illustration of Definition 4.1,
let us look at the identity in Example 4.1. Here we have

M “ tp0,0,2,2q,p0,0,0,4q,p0,0,4,0q,p2,2,0,0qu, (4.1)

ψpp0,0,2,2qq “ c1, ψpp0,0,0,4qq “ c2, ψpp0,0,4,0qq “ c3, ψpp2,2,0,0qq “ c4 and

f ψpzq “ c1θ3pzq2θ4pzq2` c2θ4pzq4` c3θ3pzq4` c4θ1pzq2θ2pzq2.

Definition 4.2. Given M Ď N4 finite, a,b P t1,2u, and t P N, let

Xt,a,bpMq :“ tα PM : |α| “ t, α1`α4 ” a`1pmod2q, α1`α2 ” b`1pmod2qu,

and define the following partition of M:

XpMq :“ tXt,a,bpMq ‰H : t P N and a,b P t1,2uu.

Example 4.3. (i) Let M be the the same as in expression (4.1). Then

XpMq “ tX4,1,1pMqu “ tMu.

(ii) Let M “ tp0,0,2,0q,p0,0,0,2q,p2,0,2,0q,p2,1,1,0qu. Then

XpMq “ tX2,1,1pMq,X4,1,1pMq,X4,2,1pMqu

“ ttp0,0,2,0q,p0,0,0,2qu,tp2,0,2,0qu,tp2,1,1,0quu.

We shall note that for a given M Ď Z4 finite, XpMq is unique. One can check that if XpMq “

tY1, . . . ,Ynu then YiXYj “H when i‰ j and the disjoint union

Y1 9Y¨¨ ¨ 9YYn “M.
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Definition 4.3 (set of quasi-elliptic components of ψ). Given M Ď N4 finite, let XpMq “

tM1, . . . ,Mnu. For ψ P RM
Θ

we define

Qpψq :“ tψ1, . . . ,ψnu

where ψ j :“ ψ|M j .

Definition 4.4. [set of quasi-elliptic components of f ψ] Given ψ P Rθ
M, we define

Qp f ψq :“ t f ψ1 , . . . , f ψnu,

where tψ1, . . . ,ψnu “ Qpψq.

Example 4.4. Let M “ tp0,0,2,0q,p0,0,0,2q,p2,0,2,0q,p2,1,1,0qu as in Example 4.3 (ii) and

f ψ “ f ψ

M “ c1θ3pzq2` c2θ4pzq2` c3θ1pzq2θ3pzq2` c4θ1pzq2θ2pzqθ3pzq

with the c j PKrΘs. Then
Qp f ψq “ t f1, f2, f3u,

where f1 “ c1θ3pzq2` c2θ4pzq2, f2 “ c3θ1pzq2θ3pzq2 and f3 “ c4θ1pzq2θ2pzqθ3pzq.

Corollary 4.1. If gψ is a quasi-elliptic component of some f ψ, then it is the quasi-elliptic component of
itself.

Proof. The proof can be done by directly following Definitions 4.2 and 4.4.

Definition 4.5. If f ψ is the quasi-elliptic component of itself, we say that f ψ is quasi-elliptic.

Theorem 4.1. Let f ψ “ f ψ

M and Qp f ψq “ t f ψ1 , . . . , f ψnu, then

f ψpz|τq ” 0 if and only if f ψ jpz|τq ” 0 for all j P t1 . . .nu.

Proof. “ðù ” is immediate. We prove “ ùñ ”. Write f ψpz|τq :“
ř

αPM
ψpαqθαpz|τq and write M as

a union of disjoint non-empty sets X1pMqYX2pMqY ¨ ¨ ¨YXmpMqwhere for t P t1 . . .mu,

XtpMq :“ tα PM : |α| “ dtu

with d1, . . . ,dm pairwise distinct. In this proof we use f pzq to present f ψpz|τq. We can write

f pzq “
m
ř

t“1
ftpzqwhere ftpzq :“

ř

αPXtpMq
ψpαqθαpzq.
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Next we write

0” f pzq ”
m
ÿ

t“1

p ft,1pzq` ft,2pzqq ,

where
ft,1pzq :“

ÿ

αPXt,1pMq

ψpαqpτqθαpzq and ft,2pzq :“
ÿ

αPXt,2pMq

ψpαqpτqθαpzq

with Xt,1pMq :“ tα P XtpMq : α1`α4 evenu and Xt,2pMq :“ tα P XtpMq : α1`α4 oddu.

By employing Table 2.1, we obtain for t P t1, . . . ,mu,

ft,1pz`πτq ” Ndt ft,1pzq and ft,2pz`πτq ” ´Ndt ft,1pzq.

Then for k P t0,1, . . . ,2m´1u,

ftpz` kπτq ” ft,1pz` kπτq` ft,2pz` kπq ” pNdt qk ft,1pzq`p´Ndt qk ft,2pzq.

Thus we have,

0” f pzq ” f pz` kπτq ”

m
ÿ

t“1

pNdt qk ft,1pzq`p´Ndt qk ft,2pzq,

which can be written as
¨

˚

˚

˚

˚

˚

˚

˚

˝

1 1 ¨ ¨ ¨ 1 1

Nd1 ´Nd1 ¨ ¨ ¨ Ndm ´Ndm

pNd1q2 p´Nd1q2 ¨ ¨ ¨ pNdmq2 p´Ndmq2

...
...

...
...

...
pNd1q2m´1 p´Nd1q2m´1 ¨ ¨ ¨ pNdmq2m´1 p´Ndmq2m´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˝

f1,1

f1,2
...

fm,1

fm,2

˛

‹

‹

‹

‹

‹

‹

‹

‚

“ 0 (4.2)

Since N‰ 0, the determinant of this Vandermonde matrix is nonzero. Therefore we can multiply
both sides of (4.2) by the inverse of the Vandermonde matrix and obtain ft,i “ 0 for all t P

t1, . . . ,mu and i P t1,2u.

Next we write

0” ft,1pzq ” ft,1,1pzq` ft,1,2pzq and 0” ft,2pzq ” ft,2,1pzq` ft,2,2pzq (4.3)
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where for a P t1,2u

ft,a,1pzq :“
ÿ

αPXt,a,1pMq

ψpαqpτqθαpzq and ft,a,2pzq :“
ÿ

αPXt,a,2pMq

ψpαqpτqθαpzq

with Xt,a,1pMq :“ tα P Xt,apMq : α1`α2 evenu and Xt,a,2pMq :“ tα P Xt,apMq : α1`α2 oddu. Again
by using Table 2.1 on the terms appearing in ft,1pzq and ft,2pzq, we obtain for a P t1,2u,

0” ft,apzq ” ft,apz`πq ” ft,a,1pz`πq` ft,a,2pz`πq ” ft,a,1pzq´ ft,a,2pzq.

This together with (4.3) implies ft,a,1 “ ft,a,2 “ 0 for all t P t1, . . . ,mu and a P t1,2u.

In view of Definition 4.2 choose j such that M j “ Xt,a,bpMq. Then

f ψ jpzq ” ft,a,bpzq ”
ÿ

αPM j

ψpαqpτqθαpzq ” 0

for all j P t1, . . . ,nuwhere n“ |XpMq|.

4.2 Zero-Recognition for f ψ P R̂Θ

In this section we use elliptic function properties to decide whether any given f ψ P R̂Θ is iden-
tically zero.

Theorem 4.2. Let
ř

αPY
ψpαqθαpz|τq P R̂Θ be quasi-elliptic. Then for all α,β P Y , θαpz|τq

θβpz|τq is elliptic with

respect to z.

Proof. Suppose that
ř

αPY
ψpαqθαpz|τq is a quasi-elliptic component of some f ψ

Mpz|τq “
ř

αPM
ψpαqθαpz|τq. By assumption Y is equal to some element in XpMq. Consequently Y “ Xt,a,bpMq

for some t P t1, . . . ,mu and a,b P t1,2u. Take an arbitrary α P Xt,a,bpMq. By Table 2.1 we
have θαpz` πτq ” p´1qa`1Ndt θαpzq and θαpz` πq ” p´1qb`1θαpzq, which implies that for any
α,β P Xt,a,bpMq,

θαpz`πτq

θβpz`πτq
”

θαpzq
θβpzq

and
θαpz` τq

θβpz` τq
”

θαpzq
θβpzq

.

Therefore θαpzq
θβpzq is elliptic.
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Definition 4.6. Given M P N4 finite, we define

minpMq :“ tpβ1,β2,β3,β4q PM : β1 “mintα1 : pα1,α2,α3,α4q PMuu.

The following theorem is a key of doing zero-recognition in R̂Θ.

Theorem 4.3. Let f ψpz|τq :“
ř

αPM
ψpαqθαpzq be quasi-elliptic. For any β“ pβ1,β2,β3,β4q PminpY q, let

gβpz|τq :“ f ψ|Y pz|τq
θβpzq . Then

(1) the series expansion of gβpz|τq is of the form

gβpz|τq “
8
ÿ

j“0

d jpτqz j,

with d jpτq PKpΘq;3 and

(2) if d jpτq ” 0 for j “ 0, . . . ,β2`β3`β4 then f ψpz|τq ” 0.

Proof. From Definition 2.7 we know that for fixed τ P H the θ jpz|τq ( j “ 1, . . . ,4) are analytic
functions on the whole complex plane with respect to z, and for fixed z P C, the θ jpz|τq ( j “

1, . . . ,4) are analytic functions of τ for all τ P H. By Proposition 2.2, only θ1pzq has a zero at
z “ 0. Since θ1pzqβ1 in the denominator of gβpz|τq cancels against each θαpzq by the choice of β,
we deduce that gβpz|τq is analytic at z“ 0. Hence we have a Taylor expansion around z“ 0.

By Theorem 4.2, gβpz|τq is an elliptic function with respect to z. We observe that the only possible
poles of gβpz|τq in Ppπ,πτq are π

2 , π

2 `
πτ

2 and πτ

2 . Thus gβpz|τq has at most β2` β3` β4 poles
including multiplicities in Ppπ,πτq. If a jpτq ” 0 for j “ 0, . . . ,β2`β3`β4, then gβpz|τq has a zero
at z“ 0 with multiplicity at least β2`β3`β4`1, which means the number of zeros of gβpz|τq in
Ppπ,πτqmust be at least β2`β3`β4`1. By Theorem 2.2, gβpz|τqmust be zero, so f ψpz|τq ” 0.

We also obtain the algorithmic content of Theorem 4.3.

3 KpΘq denotes the quotient field of KrΘs consisting of all quotients PrΘs{QrΘswith PrΘs,QrΘs PKrΘs.
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Algorithm 4.1. Given f ψ P R̂Θ with f ψ“ f ψ

M, we have the following algorithm to decide whether f ψ“ 0.

Input: f ψ P R̂Θ.

Output: True if f ψ “ 0; False if f ψ ‰ 0.

Write f ψpz|τq “
n
ř

j“1
f ψ jpz|τqwhere the f ψ jpz|τq are the quasi-elliptic components of f ψpz|τq.

Set j :“ 1. While j ď n do

Choose β“ pβ1,β2,β3,β4q PM j such that β1 “mintα1 : pα1,α2,α3,α4q P M ju;

Let gpz|τq :“ f ψ j pz|τq
θβpz|τq ;

write gpz|τq “
8
ř

k“0
dkpτqzk;

Set k :“ 0. While k ď β2`β3`β4 do

if dkpτq ” 0;

k``;

otherwise return False;

end do;

j``;

end do;

return True;

Note. In Algorithm 4.1, we use Algorithm 3.2 of Chapter 3 to check whether dkpτq ” 0.

Theorem 4.4. Algorithm 4.1 is correct.
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Proof. According to Definition 4.2 we can always write any f ψ P R̂Θ into a sum of quasi-elliptic
components of f ψ for some finite set M Ď N4.

Assume f ψ “ 0. Then by Theorem 4.1, f ψ j “ 0 for all j P t1, . . . ,nu. Hence the corresponding
g“ 0, which implies dkpτq ” 0 for all k P N. Therefore Algorithm 4.1 returns True.

Assume f ψ ‰ 0. By Theorem 4.1, there exists a t P t1, . . . ,nu such that f ψt ‰ 0. Then the corre-
sponding g is nonzero. If g is a constant, then d0 ‰ 0 and Algorithm 4.1 returns False. Assume
g is not a constant. By Theorem 4.2, gpz|τq is an elliptic function. Since gpz|τq has at most
β2`β3`β4 poles in Ppπ,πτq, by Theorem 2.2 we deduce that gpz|τq has at most β2`β3`β4 ze-
ros in Ppπ,πτq. This means d0pτq, . . . ,dβ2`β3`β4pτq cannot all be zero. Thus Algorithm 4.1 returns
False.

Example 4.1 (continued). Prove

f ψpzq :“ c1θ3pzq2θ4pzq2` c2θ4pzq4` c3θ3pzq4` c4θ1pzq2θ2pzq2 ” 0,

where the c j are chosen as in Example 4.1.

Proof. One can check by Definition 4.2 that f pzq is the quasi-elliptic component of itself, so in
this case f ψpzq “ f ψ1pzq. Following Algorithm 4.1, let

gpzq :“
f ψpzq

c3θ4pzq4
“ c1

θ3pzq2

θ4pzq2
` c2` c3

θ3pzq4

θ4pzq4
` c4

θ1pzq2θ2pzq2

θ4pzq4
.

Then

gpzq “
8
ÿ

k“0

dkpτqzk

with d0pτq “ c4θ2
1θ2

2` c3θ4
3` c1θ2

3θ2
4` c2θ4

4 and dkpτq for k “ 1, . . . ,4 of a form similar to d0pτq. By
Algorithm 3.2 we can prove that d0 “ ¨¨ ¨ “ d4 “ 0. Thus by Algorithm 4.1 we have g“ 0.

Note. This identity contains only one quasi-elliptic component, and in general the identities
we found in the literature are stated in their simplest form. Consequently, to produce an iden-
tity with more than one quasi-elliptic component, we need to take one identity containing one
quasi-elliptic component (multiplied by an element of R̂Θ) and add to it another identity con-
taining one quasi-elliptic component (multiplied by an element of R̂Θ).



4.3 Theta Functions and The Weierstrass ℘Function 63

4.3 Theta Functions and The Weierstrass ℘Function

We are going to derive some connections between theta functions and the ℘ function. By ap-
plying them, we will obtain a faster algorithm on the restricted class Ĥ

rΘ
.

Definition 4.7 (elliptic theta-quotients).

J :“ tθαpzq : α P Z4 such that θ
αpzq is ellipticu.

Lemma 4.1. J forms a multiplicative group which is generated by

j1 :“
θ2pzq2

θ1pzq2
, j2 :“

θ3pzq2

θ1pzq2
and j3 :“

θ2pzqθ3pzqθ4pzq
θ1pzq3

.

In particular, for a given ppzq “ θ1pzqα1θ2pzqα2θ3pzqα3θ4pzqα4 P J, the presentation in terms of the gen-
erators is

p“ j
α2´α4

2
1 j

α3´α4
2

2 jα4
3 .

Proof. With the help of Table 2.1, one can verify that j1, j2, j3 P J and that J is a multiplicative
group. Suppose ppzq “ θ1pzqα1θ2pzqα2θ3pzqα3θ4pzqα4 P J, then ppzq “ ppz`πτq and ppzq “ ppz`πq,
because every element in J is elliptic. On the other hand, by Table 2.1 we have

ppz`πτq “ p´1qα1`α4Nα1`α2`α3`α4 ppzq and ppz`πq “ p´1qα1`α2 ppzq.

Hence α1`α2`α3`α4 “ 0, α1`α4 is even and α1`α2 is even. This implies that if α2 is even
then α3 and α4 must be even, and if α2 is odd then α3 and α4 are also odd. Therefore α2´α4

2 ,
α3´α4

2 and α4 are all integers. Moreover,

j
α2´α4

2
1 j

α3´α4
2

2 jα4
3 “ θ1pzq´α2`α4´α3`α4´3α4θ2pzqα2´α4`α4θ3pzqα3´α4`α4θ4pzqα4

“ θ1pzq´α2´α3´α4θ2pzqα2θ3pzqα3θ4pzqα4

“ θ1pzqα1θ2pzqα2θ3pzqα3θ4pzqα4

“ p.

Recall that in this chapter we denote θ
pkq
j :“ θ

pkq
j p0|τq.
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Theorem 4.5. The generators j1, j2 and j3 of J satisfy

j1 “
θ2

2

θ2
1
p℘pzq´ e1q,

2

j2 “
θ2

3

θ2
1
p℘pzq´ e3q,

2

j3 “´
1

2θ11
2 ℘

1pzq,

where ℘pzq :“℘pz;π,πτq is the Weierstrass elliptic function with periods π and πτ , e1 :“ 1
3pθ

4
3`θ4

4q

and e3 :“ 1
3pθ

4
2´θ4

4q.

Proof. Since θ2pzq2

θ1pzq2
is elliptic with a double pole at z“ 0 and is an even function, we can expand

it as

θ2pzq2

θ1pzq2
“ z´2

˜

θ2
2

θ11
2 `

˜

´
θ2

2θ
p3q
1

3θ11
3 `

θ2θ2
11

θ11
2

¸

z2`¨¨ ¨

¸

“
θ2

2
θ11

2 z´2`

˜

´
θ2

2θ
p3q
1

3θ11
3 `

θ2θ2
11

θ11
2

¸

`¨¨ ¨ .

By Proposition 2.1, ℘pzq has a double pole at z “ 0. Thus ℘pzq´ θ11
2

θ2
2

θ2pzq2

θ1pzq2
has no pole, which

together with Theorem 2.1 implies that it has to be a constant function, i.e.,

℘pzq´
θ11

2

θ2
2

θ2pzq2

θ1pzq2
“

θ
p3q
1

3θ11
´

θ2
11

θ2
“

1
3
pθ4

3`θ
4
4q “ e1,

where the second last equality is proven using Algorithm 3.2. Thus

θ2pzq2

θ1pzq2
“

θ2
2

θ11
2 p

℘pzq´ e1q. (4.4)

Analogously, we have

℘pzq´
θ11

2

θ2
3

θ3pzq2

θ1pzq2
“

θ
p3q
1

3θ11
´

θ3
11

θ3
“

1
3
pθ4

2´θ
4
4q “ e2,

2See p.102 of [21].
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where the second last equality is proven using Algorithm 3.2, and thus

θ3pzq2

θ1pzq2
“

θ2
3

θ2
1
p℘pzq´ e3q. (4.5)

One can verify that j3 “
θ2pzqθ3pzqθ4pzq

θ1pzq3
P J is an odd elliptic function, and we have the series

expansion
θ2pzqθ3pzqθ4pzq

θ1pzq3
“ a´3z´3`a´1z´1`a1z`¨¨ ¨ ,

where
a´3 :“

θ2θ3θ4

θ11
3 ,

a´1 “
1

2θ11
5 pθ3θ4θ

1
1

2
θ2
11`θ2θ4θ

1
1

2
θ3
11`θ2θ3θ

1
1

2
θ4
11`θ2θ3θ

1
1θ
p3q
1 q,

and a1 is also in KpΘq but irrelevant to this proof. We have checked with Algorithm 3.2 that a´1

is zero.

By the series expression of ℘ 1pzq in (2.1),

θ2pzqθ3pzqθ4pzq
θ1pzq3

`
1
2

θ2θ3θ4

θ11
3 ℘

1pzq (4.6)

has no poles, which implies by Theorem 2.1 that (4.6) is constant. We take z“ 0 and it turns out
that the expression (4.6) is zero. Then

θ2pzqθ3pzqθ4pzq
θ1pzq3

“´
1
2

θ2θ3θ4

θ11
3 ℘

1pzq “ ´
1

2θ11
2 ℘

1pzq,

where the last equality follows from the famous identity

θ
1
1 ” θ2θ3θ4,

which can be also proven with Algorithm 3.2.

Remark 4.1. Replacing z by π

2 in (4.4) and using θ2

´

π

2

¯

“ 0, we obtain ℘

´

π

2

¯

“ e1; substituting z by
π`πτ

2 in (4.5) and using θ3

´

π`πτ

2

¯

“ 0 gives ℘

´

π`πτ

2

¯

“ e3. It can be verified that θ3pzq2

θ1pzq2
is also elliptic,

and similarly we have
θ4pzq2

θ1pzq2
“

θ2
4

θ2
1
p℘pzq´ e2q,

3
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where e2 :“´ 1
3pθ

4
2`θ4

3q. Moreover, by θ4p
πτ

2 q “ 0 we obtain ℘

´

πτ

2

¯

“ e2.

The following proposition is a by-product of our reasoning, but will not be used to deduce the
algorithm.

Proposition 4.1. For any y P J, there exist a,b,c P Z, such that

y P

#

θ2p0q2aθ3p0q2b

θ11p0q2a`2b`2c ¨ p
℘´e1q

`1p℘´e2q
`2p℘´e3q

`3d : `i P N, d “ 1 or d “´℘
1

+

. (4.7)

Proof. Suppose y “ θαpzq P J with α P Z4. By Lemma 4.1 and Theorem 4.5 there exist integers
a,b,c, such that

y“
´

´
1
2

¯c
¨

θ2p0q2aθ3p0q2b

θ11p0q2a`2b`2c ppzq

where ppzq :“ p℘pzq´ e1q
ap℘pzq´ e3q

b℘ 1pzqc. Let the set in (4.7) be denoted by G1.

Case 1: cą 0.

Assume c “ 2n` 1 (n P N). By the classical differential equation ℘ 12 “ 4℘3´g2℘´g3, we get
℘ 1c “ p4℘3´g2℘´g3q

n℘ 1. Applying Remark 4.1 together with the fact that π

2 , πτ

2 and π`πτ

2 are
the roots of ℘ 1, we can write

4℘
3´g2℘´g3 “ 4p℘´e1qp℘´e2qp℘´e3q. (˚)

Then

y“ p´
1
2
q2n`1 ¨

θ2p0q2aθ3p0q2b

θ11p0q2a`2b`2c p
℘´e1q

ap℘´e3q
bp4℘

3´g2℘´g3q
n
℘
1

“´
θ2p0q2aθ3p0q2b

2θ11p0q2a`2b`2c p
℘´e1q

a`np℘´e2q
np℘´e3q

b`n
℘
1 P G1.

Assume c“ 2n (n P Nzt0u). We have

y“
θ2p0q2aθ3p0q2b

θ11p0q2a`2b`2c p
℘´e1q

a`np℘´e2q
np℘´e3q

b`n P G1.

3See p.102 of [21].
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Case 2: cď 0. We can write

1
℘ 1

“
℘ 1

℘ 12 “
℘ 1

4℘3´g2℘´g3
“

℘ 1

4p℘´e1qp℘´e2qp℘´e3q
.

If c“´2n´1 (n P N), we have

℘
1c “

ˆ

1
℘ 1

˙2n`1

“

ˆ

℘ 1

℘ 12

˙2n`1

“

ˆ

℘ 1

4℘3´g2℘´g3

˙2n`1

“
℘ 12n℘ 1

p4p℘´e1qp℘´e2qp℘´e3qq2n`1 “
p4p℘´e1qp℘´e2qp℘´e3qq

n℘ 1

p4p℘´e1qp℘´e2qp℘´e3qq2n`1

“
℘ 1

p4p℘´e1qp℘´e2qp℘´e3qqn`1 .

Then

y“ p´
1
2
qc ¨

θ2p0q2aθ3p0q2b

θ11p0q2a`2b`2c ¨
p℘´e1q

ap℘´e3q
b℘ 1

p4p℘´e1qp℘´e2qp℘´e3qqn`1

“´
θ2p0q2aθ3p0q2b

2θ11p0q2a`2b`2c ¨ p
℘´e1q

a´n´1p℘´e2q
´n´1p℘´e3q

´n´1
℘
1 P G1.

If c“´2n (n P N), we have

℘
1c “

1
℘ 12n “

1
p4p℘´e1qp℘´e2qp℘´e3qqn

.

Then

y“ p´
1
2
qc ¨

θ2p0q2aθ3p0q2b

θ11p0q2a`2b`2c ¨
p℘´e1q

ap℘´e3q
b

p4p℘´e1qp℘´e2qp℘´e3qqn

“
θ2p0q2aθ3p0q2b

θ11p0q2a`2b`2c ¨ p
℘´e1q

a´np℘´e2q
´np℘´e3q

b´n P G1.

4.4 The Finite-Orbit Weight

This section will show the particularity of Ĥ
rΘ

, in terms of the finite-orbit weight, which will be
used in the next section as a crucial property.
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Definition 4.8. Let MpHq :“ tg : gmeromorphic on Hu. Define a group action

SL2pZqˆMpHq ÝÑMpHq

pρ, gq ÞÑ g|kρ

where g|kρpτq :“ pcτ` dq´kg
´

aτ`b
cτ`d

¯

for ρ :“

˜

a b

c d

¸

P SL2pZq and τ P H. For each k P Z we define

the k-orbit of g by Gkpgq :“ tg|kρ : ρ P SL2pZqu.

Proposition 4.2. For a nonzero g P MpHq and k P Z, if |Gkpgq| is finite then k is unique with this
property.

Proof. Let k and t be integers such that Gkpgq and Gtpgq are both finite orbit sets. We need to

prove that k “ t. Let s :“ k´ t. Take any g|tρ P Gtpgqwith ρ“

˜

a b

c d

¸

. Then

g|tρpτq “ pcτ`dq´tg
ˆ

aτ`b
cτ`d

˙

“ pcτ`dqspcτ`dq´kg
ˆ

aτ`b
cτ`d

˙

“ pcτ`dqs ¨g|kρpτq.

Hence we can rewrite the set Gtpgq as

Gtpgq “

#

pcτ`dqs ¨g|kρ : ρ“

˜

a b

c d

¸

P SL2pZq

+

“

#

pcτ`dqs ¨ga,b,c,d :

˜

a b

c d

¸

P SL2pZq and ga,b,c,d P Gkpgq

+

,

where ga,b,c,d :“ g|kρ with ρ “

˜

a b

c d

¸

. Assume s ‰ 0 and Gkpgq “ ta1, . . . ,anu, and define the

map

γ : SL2pZq Ñ Gkpgq
˜

a b

c d

¸

ÞÑ ga,b,c,d .
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Let A j :“

#˜

a b

c d

¸

P SL2pZq : ga,b,c,d “ a j

+

. By Definition 4.8, the map γ is surjective, thus A j ‰

H. Then we can write SL2pZq “
n
Ť

j“1
A j where AiXA j “H if i‰ j. Let

B j :“

#

pc,dq :

˜

a b

c d

¸

P A j

+

.

For every pair pc,dq P Z2 with gcdpc,dq “ 1, there must exist some pairs pa,bq P Z2 such

that

˜

a b

c d

¸

P SL2pZq. Hence there exists r P t1, . . . ,nu such that Br is infinite; otherwise

SL2pZq ‰
n
Ť

j“1
A j. We also have

#

pcτ`dqsar :

˜

a b

c d

¸

P Ar

+

Ď

#

pcτ`dqsga,b,c,d :

˜

a b

c d

¸

P SL2pZq

+

“ Gtpgq,

which implies

N :“

ˇ

ˇ

ˇ

ˇ

ˇ

#

pcτ`dqsar :

˜

a b

c d

¸

P Ar

+ˇ

ˇ

ˇ

ˇ

ˇ

ď |Gtpgq|. (4.8)

On the other hand
N “ |tpcτ`dqs : pc,dq P Bru| , (4.9)

and the right hand side of (4.9) is equal to infinity because c1τ` d1 ‰ c2τ` d2 when pc1,d1q ‰

pc2,d2q, and because the set Br is infinite. Thus N is equal to infinity, and by (4.8), |Gtpgq| “ 8,
which contradicts the assumption that Gtpgq is a finite orbit set. Therefore s“ 0.

Definition 4.9. Given g PMpHq nonzero and k PZ such that |Gkpgq| is finite, we define the finite-orbit-
weight of g by

W pgq :“ k.

By using Definition 4.8 one can verify:

Proposition 4.3. Given g1, . . . ,gn PMpHq with W pg jq “ k j, then
(1) W pg1 ¨ ¨ ¨gnq “ k1`¨¨ ¨` kn,
(2) If k1 “ ¨¨ ¨ “ kn “ k and g1`¨¨ ¨`gn ‰ 0, then W pg1`¨¨ ¨`gnq “ k.



70 Proving Identities among Powers of θ
pkq
j p0|τq & θ`pz|τq (Class II)

Note. According to Lemma 2.6, we have SL2pZq “ xS,T y. Hence

Gkpgq “ tg|kρ : ρ P xS,T yu.

Thus in our working frame, to compute Gkpgq, we compute tg|kρ : ρ P xS,T yu.

Lemma 4.2. Let quasi-elliptic f ψpz|τq “
ř

αPM
ψpαqθαpzq P Ĥ

rΘ
and β P minpMq. Suppose the series

expansion of f ψpz|τq
ψpβqθβpzq around z“ 0 is of the form

8
ř

n“0
dnpτqzn with dnpτq PKpΘq. Then W pdnq “ n when

dn ‰ 0.

Proof. By Theorem 4.3, f ψpz|τq
ψpβqθβpzq always has a Taylor expansion around z“ 0. Since f ψ is a quasi-

elliptic component of itself, by Theorem 4.2, θαpzq
θβpzq is elliptic for every α PM.

In view of f ψpz|τq
ψpβqθβpzq “

ř

αPM

ψpαqθαpzq
ψpβqθβpzq , we are going to show that the assertion is true for every

ψpαqθαpzq
ψpβqθβpzq , and then we show the assertion is true for f ψpz|τq

ψpβqθβpzq . For any fixed α PM, by Lemma 4.1
and Theorem 4.5 there exist integers a,b,c, such that

θαpzq
θβpzq

“

´

´
1
2

¯c
¨

θ2p0q2aθ3p0q2b

θ11p0q2a`2b`2c ppzq (4.10)

where ppzq :“ p℘pzq ´ e1q
ap℘pzq ´ e3q

b℘ 1pzqc. Applying Lemma 2.4 and Lemma 2.5 one can
verify that W pθ2p0q2q “ 1 and

G1pθ2p0q2q “ t˘θ2p0q2,˘iθ2p0q2,˘θ3p0q2,˘iθ3p0q2,˘θ4p0q2,˘iθ4p0q2u.

Similarly we have W pθ3p0q2q “ 1 and W pθ11p0q
2q “ 3. Then by Proposition 4.3.1 we obtain

W
ˆ

θ2p0q2aθ3p0q2b

θ11p0q2a`2b`2c

˙

“W pθ2p0q2a
θ3p0q2bq´W pθ11p0q

2a`2b`2cq

“W pθ2p0q2aq`W pθ3p0q2bq´W pθ11p0q
2a`2b`2cq

“ a`b´3a´3b´3c

“´2a´2b´3c.

Next we compute W prznsppzqq, where by rznsppzq we mean the coefficient of zn in the series
expansion of ppzq around z“ 0. Let us first consider

p1pzq :“ z2a`2b`3c ppzq “ z2ap℘pzq´ e1q
az2bp℘pzq´ e3q

bz3c
℘
1pzqc. (4.11)
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Let g1pzq :“ z2p℘´e1q. By Proposition 2.1 we have

g1pzq “ 1´ e1z2`

8
ÿ

m“1

p2m`1qE2m`2z2m`2

where E2m`2 :“
ř

ωPL,ω‰0
ω´p2m`2q is an Eisenstein series and L is the lattice generated by π and

πτ. One can easily verify by using Definition 4.9 that W p1q “ 0. Again using Lemma 2.4 and
Lemma 2.5 one can verify that W pe1q “ 2. In addition, according to [29, p. 83] for mě 1,

W pE2m`2q “W

˜

ÿ

ωPL,ω‰0

ω
´p2m`2q

¸

“ 2m`2.

Therefore, for any ně 0, if rznsg1pzq ‰ 0 then

W prznsg1pzqq “ n. (4.12)

Next we do a case distinction on the power of g1pzq in (4.11).

Case 1: aě 0. Then

W prznsg1pzqaq “W

˜

ÿ

n1`n2`¨¨¨`na“n

rzn1sg1pzq ¨ ¨ ¨ rznasg1pzq

¸

.

By (4.12) and by Proposition 4.3.1, for any combination n1, . . . ,na such that n1`¨¨ ¨` na “ n we
have

W przn1sg1pzq ¨ ¨ ¨ rznasg1pzqq “W przn1sg1pzqq` ¨ ¨ ¨`W prznasg1pzqq

“ n1`¨¨ ¨`na

“ n.

Hence if aě 0, we find that

W prznsg1pzqaq “ n when rznsg1pzqa ‰ 0.

Case 2: aă 0. Then

W prznsg1pzqaq “W

˜

rzns

ˆ

1
g1pzq

˙´a
¸
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“W

˜

ÿ

n1`n2`¨¨¨`n´a“n

rzn1s

ˆ

1
g1pzq

˙

¨ ¨ ¨ rzn´as

ˆ

1
g1pzq

˙

¸

.

Assuming g1pzq “
8
ř

j“0
v jz j we have 1

g1pzq
“

8
ř

j“0
u jz j, noting that v0 “ u0 “ 1. We have proven that

for all ně 0, W pvnq “ n when vn ‰ 0. Now we prove that W punq “ n when un ‰ 0 by induction on
n. When n“ 0 we have W pu0q “W pv0q “ 0. Assume for nď N, W punq “ n. Let n“ N`1. Using
8
ř

j“0
v jz j ¨

8
ř

j“0
u jz j “ 1 we obtain

uN`1 “´
v1uN` v2uN´1`¨¨ ¨` vNu1` vN`1u0

v0
“´v1uN´ v2uN´1´¨¨ ¨´ vNu1´ vN`1.

By Proposition 4.3.2, if uN`1 ‰ 0, then

W puN`1q “W p´v1uN´ v2uN´1´¨¨ ¨´ vNu1´ vN`1q “ N`1. (4.13)

Hence W punq “ n when un ‰ 0. For any combination n1, . . . ,n´a that n1`¨¨ ¨`n´a “ n we have

W
ˆ

rzn1s

ˆ

1
g1pzq

˙

¨ ¨ ¨ rznas

ˆ

1
g1pzq

˙˙

“W
ˆ

rzn1s

ˆ

1
g1pzq

˙˙

`¨¨ ¨`W
ˆ

rznas

ˆ

1
g1pzq

˙˙

“ n1`¨¨ ¨`n´a

“ n.

Again by Proposition 4.3.2 and by (4.13), for any aă 0 we find that

W prznsg1pzqaq “ n when rznsg1pzqa ‰ 0.

Analogously we deduce that for b,c P Z,

W
`

rznsz2bp℘´e3q
b˘“ n and W prznsz3c

℘
1pzqcq “ n

whenever the function to which W is applied is nonzero. Consequently we deduce that when
rznsp1pzq ‰ 0,

W prznsp1pzqq “W
`

rznsz2ap℘pzq´ e1q
az2bp℘pzq´ e3q

bz3c
℘
1pzqc

˘

“W

˜

ÿ

n1`n2`n3“n

rzn1sp℘pzq´ e1q
a ¨ rzn1sz2bp℘pzq´ e3q

b ¨ rzn3sz3c
℘
1pzqc

¸

“ n1`n2`n3
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“ n,

where the second last equality follows from Proposition 4.3.1. This implies when rznsppzq ‰ 0,

W prznsppzqq “W
`

rzn`2a`2b`3csp1pzq
˘

“ n`2a`2b`3c.

Therefore if rzns
θαpzq
θβpzq ‰ 0, identity (4.10) implies

W
ˆ

rzns
θαpzq
θβpzq

˙

“W
ˆ

p´
1
2
qc ¨

θ2p0q2aθ3p0q2b

θ11p0q2a`2b`2c ppzq
˙

“W
ˆ

θ2p0q2aθ3p0q2b

θ11p0q2a`2b`2c

˙

`W
`

rz2nsppzq
˘

“´2a´2b´3c`n`2a`2b`3c

“ n.

Moreover, since both ψpαq and ψpβq, by definition of β, are homogeneous polynomials in KrrΘsh
with the same degree, one can check, by using Lemma 2.4 and Lemma 2.5, that W

´

ψpαq

ψpβq

¯

“ 0

for all α PM. Hence

W
ˆ

rzns
ψpαqθαpzq
ψpβqθβpzq

˙

“ 0`n“ n when rzns
ψpαqθαpzq
ψpβqθβpzq

‰ 0

and
W pdnq “

ÿ

αPM

rzns
ψpαqθαpzq
ψpβqθβpzq

“ n when dn ‰ 0.

4.5 Zero-Recognition for f ψ P Ĥ
rΘ

Let us recall Definition 4.7. By Lemma 4.1 and Theorem 4.5, for any θα

θβ
P J with α“ pα1, . . . ,α4q

and β“ pβ1, . . . ,β4q, we can write

θαpzq
θβpzq

“

´

´
1
2

¯c
¨

θ2p0q2aθ3p0q2b

θ11p0q2a`2b`2c ppzq, (4.14)

where ppzq :“ p℘pzq´ e1q
ap℘pzq´ e3q

b℘ 1pzqc. The ppzq has the following property.
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Proposition 4.4. Let ppzq be the same as above and let gn denote the coefficient of zn in the series
expansion of ppzq around z“ 0. Then when gn ‰ 0 we have

|Gwn pgnq | ď 3“ |G2pe1q|,

where wn is the finite-orbit-weight of gn.

Proof. From the proof of Lemma 4.2 we observe that gn is a polynomial in e1, e3 and E2s`2 with
some sě 1, and

W pgnq “ n1 :“ n`2a j`2b j`3c j

when gn ‰ 0. Let p1, . . . , pt be the components of gn, where each such component is a (finite)
power product ek1

1 ek2
2 E`1

4 E`2
6 ¨ ¨ ¨ with a coefficient in K. One has

|Gn1pgnq| “ |tpp1`¨¨ ¨` ptq|n1ρ : ρ P SL2pZqu|. (4.15)

Additionally, from the proof of Lemma 4.2, the pi in (4.15) are of the form

ek1
1 ek2

3

ź

sPMi

E`s
2s`2

where k1,k2, `s P N, Mi Ď N and 2k1 ` 2k2 `
ř

sPMi

p2s` 2q`s “ n1. It can be verified by using

Lemma 2.4 and Lemma 2.5 that G2pe1q “ G2pe3q “ te1,e2,e3u, thus W pe1q “W pe3q “ 3.

By [29, p. 83] when mě 1, E2s`2 is a modular form of weight 2s`2, which means

E2s`2|2s`2ρ“ E2s`2 for all ρ P SL2pZq.

Consequently,
E`s

2s`2|p2s`2q`sρ“ E`s
2s`2 for all ρ P SL2pZq.

By Proposition 4.3 (1),

W

˜

ź

sPMi

E`s
2s`2

¸

“
ÿ

sPMi

p2s`2q`s.

By Proposition 4.3 (2) we obtain W ppiq “ 2k1`2k2`
ř

sPMi

p2s`2q`s “ n1 for all i P t1, . . . , tu. Hence

we continue (4.15) by

|Gn1pgnq| “ tpp1`¨¨ ¨` ptq|n1ρ : ρ P SL2pZqu|
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ď |ttp1|n1ρ, . . . , pt |n1ρu : ρ P SL2pZqu|

“ |ttpek1,1
1 ek1,2

3 γ1q|n1ρ, . . . ,pe
kt,1
1 ekt,2

3 γtq|n1ρu : ρ P SL2pZqu|

“ |ttpek1,1
1 ek1,2

3 q|2pk1,1`k1,2qρ, . . . ,pe
kt,1
1 ekt,2

3 q|2pk1,1`k1,2qρu : ρ P SL2pZqu|, (4.16)

where the γi are the corresponding
ś

mPMi

E`s
2s`2 of pi. On the other hand, for k P N,

G2kpek
1q “ te

k
1|2kρ : ρ P SL2pZqu “ te1|2ρ ¨ ¨ ¨e1|2ρ

loooooomoooooon

k

: ρ P SL2pZqu “ tek
1,e

k
2,e

k
3u

and analogously G2kpek
2q “ G2kpek

3q “ te
k
1,e

k
2,e

k
3u. Then

tek1
1 ek2

3 |2pk1`k2qρ : ρ P SL2pZqu “ tek1
1 |2k1ρ ¨ ek2

2 |2k2ρ : ρ P SL2pZqu “ tek1
2 ek2

1 ,ek1
3 ek2

2 ,ek1
1 ek2

3 u,

which means there are only three possibilities when applying an arbitrary ρ P SL2pZq on every
eki,1

1 eki,2
3 of (4.16). Note that the powers ki, j are irrelevant, i.e., we can choose three representatives

ρ1, ρ2 and ρ3 such that for all i P t1, . . . , tu,

peki,1
1 eki,2

3 q|2pki,1`ki,2qρ1 “ eki,1
2 eki,2

1 ,

peki,1
1 eki,2

3 q|2pki,1`ki,2qρ2 “ eki,1
3 eki,2

2

and
peki,1

1 eki,2
3 q|2pki,1`ki,2qρ3 “ eki,1

1 eki,2
3 .

Hence the right hand side of (4.16) is equal to

!

tek1,1
2 ek1,2

1 , . . . ,ekt,1
2 ekt,2

1 u,te
k1,1
3 ek1,2

2 , . . . ,ekt,1
3 ekt,2

2 u,te
k1,1
1 ek1,2

3 , . . . ,ekt,1
1 ekt,2

3 u

)

.

Thus |Gn1pgnq| ď 3 when gn ‰ 0.

Lemma 4.3. Let quasi-elliptic f ψpz|τq “
ř

αPM
ψpαqθαpzq P Ĥ

rΘ
and β “ pβ1,β2,β3,β4q P minpMq. Sup-

pose
f ψpz|τq

ψpβqθβpzq
“

8
ÿ

n“0

dnpτqzn with dnpτq PKpΘq.

Let M “ typ1q, . . . ,ypmqu with yp jq “ pyp jq
1 ,yp jq

2 ,yp jq
3 ,yp jq

4 q. For 1ď j ď m let

a j :“
yp jq

2 ´ yp jq
4 ´β2`β4

2
,
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b j :“
yp jq

3 ´ yp jq
4 ´β3`β4

2
,

c j :“yp jq
4 ´β4,

r j :“yp jq
1 ´β1,

and

t j :“
ψpyp jqqθ2p0q2a j θ3p0q2b j

ψpβqθ11p0q
2a j`2b j`2c j

For all ně 0, if dn ‰ 0 then

|Gnpdnq| ď |ttt1|r1ρ, . . . , tm|rmρ,e1|2ρu : ρ P SL2pZqu| ,

Proof. First of all we write
f ψpz|τq

ψpβqθβpzq
“ h1`¨¨ ¨`hm

with h j :“ ψpyp jqqθyp jq
pzq

ψpβqθβpzq . From the proof of Lemma 4.2 we see that for all j P t1, . . . ,mu,

W prznsh jpzqq “ n

and

W

˜

ψpyp jqqθ2p0q2a j θ3p0q2b j

ψpβqθ11p0q
2a j`2b j`2c j

¸

“´2a j´2b j´3c j.

Then by Proposition 4.4 and expression (4.14) we deduce

|Gn prznsh jpzqq| ď
ˇ

ˇ

  

t j|r j ρ, e1|2ρ
(

: ρ P SL2pZq
(ˇ

ˇ ,

where r j :“ ´2a j ´ 2b j ´ 3c j “ yp jq
1 ´ β1 following from the definition of a j,b j,c j and where

t j :“ ψpyp jqqθ2p0q
2a j θ3p0q

2b j

ψpβqθ11p0q
2a j`2b j`2c j

. Consequently, when dn ‰ 0 we have W pdnq “ n by Lemma 4.2 and

|Gnpdnq| “

ˇ

ˇ

ˇ

!

rznsph1pzq` ¨ ¨ ¨`hmpzqq
ˇ

ˇ

ˇ

n
ρ : ρ P SL2pZq

)ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

!!

rznsh1pzq
ˇ

ˇ

ˇ

n
ρ, . . . , rznshmpzq

ˇ

ˇ

ˇ

n
ρ

)

: ρ P SL2pZq
)ˇ

ˇ

ˇ

ď |ttt1|r1ρ, . . . , tm|rmρ,e1|2ρu : ρ P SL2pZqu| .
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Theorem 4.6. Let q :“ eπiτ, t1, . . . , tm, r1 . . . ,rm and dn be the same as in Lemma 4.3, and let

` :“ |ttt1|r1ρ, . . . , tm|rmρ,e|2ρu : ρ P SL2pZqu| .

For ně 0 suppose dn has the q-expansion
8
ÿ

j“0

vn, jq j.

Then
dn “ 0 if and only if vn, j “ 0 for j ď t

n`
6
u.

Proof. “ùñ ” If dnpτq ”
ř8

j“0 vn, jq j ” 0, it immediately implies that all v j are zero.

“ ðù ” Assume vn, j “ 0 for j ď tn`
6 u. If dn ‰ 0, by Lemma 4.2 we have W pdnq “ n and by

Lemma 4.3, |Gnpdnq| ď `. Suppose Gnpdnq “ ts1, . . . ,s`nu and `n ď `. Then for every i P t1, . . . , `nu,
there exists a unique j P t1, . . . , `nu such that si|nS “ s j; and there exists a unique k P t1, . . . , `nu

such that si|nT “ sk. Then

˜

`n
ź

i“1

si

¸

ˇ

ˇ

ˇ

n`n
S“

`n
ź

j“1

s j and

˜

`n
ź

i“1

si

¸

ˇ

ˇ

ˇ

n`n
T “

`n
ź

j“1

s j.

This yields
˜

`n
ź

i“1

si

¸

ˇ

ˇ

ˇ

n`n
ρ“

`n
ź

j“1

s j for all ρ P SL2pZq.

Moreover, we have proven in Lemma 3.12 that
`n
ś

j“1
s j is a Taylor series in q. Thus

`n
ś

j“1
s j is a

modular form of weight n`n.

Since `n ď ` we have vn, j “ 0 for jď t
n`n
6 u. By Corollary 2.1,

`n
ś

j“1
s j “ 0. Because of the fact that for

any meromorphic functions h and g on H, if ph|nρqpτq “ gpτq then hpτq ” 0 if and only if gpτq ” 0,
we deduce that s j must be zero for all j P t1, . . . , `nu, otherwise s j ‰ 0 for all j P t1, . . . , `nuwhich

contradicts
`n
ś

j“1
si “ 0. As dn PGnpdnq “ ts1, . . . ,s`nu, we deduce that dn “ 0, which contradicts the

earlier assumption dn ‰ 0. Therefore dn “ 0.

Algorithm 4.2. Let q“ eπiτ and f ψpz|τq “
ř

αPM
ψpαqθαpz|τq P Ĥ

rΘ
. We have the following algorithm to

prove or disprove f ψpz|τq ” 0.
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Input: f ψ P Ĥ
rΘ

.

Output: True if f ψ “ 0; False if f ψ ‰ 0.

Write f ψpz|τq “
n
ř

j“1
f ψ jpz|τq where the f ψ jpz|τq :“

ř

αPM j

ψpαqθαpz|τq are the quasi-elliptic components

of f ψpz|τq.

Set i :“ 1. While iď n do

Let m :“ |Mi| and typ1q, . . . ,ypmqu :“Mi;

Choose β PminpMiq;

For j P t1, . . . ,mu,

compute a j :“ yp jq
2 ´yp jq

4 ´β2`β4
2 , b j :“ yp jq

3 ´yp jq
4 ´β3`β4

2 , c j :“ yp jq
4 ´β4;

compute r j :“ yp jq
1 ´β1;

let t j :“ ψpyp jqqθ2p0q
2a j θ3p0q

2b j

ψpβqθ11p0q
2a j`2b j`2c j

;

Compute ` :“ |ttt1|r1ρ, . . . , tm|rmρu : ρ P SL2pZqu|;

Let gpzq :“ f ψi pzq
θβpzq ;

Compute gpzq “
8
ř

k“0
dkpτqzk;

Set k :“ 0. While k ď β2`β3`β4 do

if dkpτq ” Opq
k`
6 `1q;

k``;

otherwise return False;
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end do;

j``;

end do;

return True;

Theorem 4.7. Algorithm 4.2 is correct.

Proof. By Lemma 4.6, dkpτq ” 0 if and only if dkpτq ” Opq
k`
6 `1q. Since the only difference be-

tween Algorithm 4.1 and Algorithm 4.2 is the way in which we check dkpτq ” 0, it follows that
Algorithm 4.2 is correct.

Example 4.2 continued.[14, 20.7.1] Prove

θ2p0q2θ2pzq2´θ3p0q2θ3pzq2`θ4p0q2θ4pzq2 ” 0.

Proof. Let β :“ p0,0,0,2q and

gpzq :“
θ2p0q2θ2pzq2

θ4p0q2θ4pzq2
´

θ3p0q2θ3pzq2

θ4p0q2θ4pzq2
`1.

Since gpzq is an even analytic function we obtain

gpzq “
8
ÿ

k“0

d2kpτqz2k

with

d0pτq “
θ2p0q4´θ3p0q4`θ4p0q4

θ4p0q4
,

d2pτq “
θ2p0q3θ4p0qθ2

11p0q´θ3p0q3θ4p0qθ3
11p0q´θ2p0q4θ4

11p0q`θ3p0q4θ4
11p0q

θ4p0q5

and dkpτqpką 1q are of a form similar to d0pτq and d2pτq. According to Algorithm 4.2 we need to
show that d0pτq “ Opqq and d2pτq “ Opq

`
3`1qwhere

`“

ˇ

ˇ

ˇ

ˇ

"

θ2p0q4θ3p0q2

θ11p0q2

ˇ

ˇ

ˇ

0
ρ,

θ2p0q2θ3p0q4

θ11p0q2

ˇ

ˇ

ˇ

0
ρ,e1|2ρ : ρ P SL2pZq

*ˇ

ˇ

ˇ

ˇ

.
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By implementing Algorithm 4.2 in Mathematica, we obtain that ` “ 6, and d0pτq “ Opqq and
d2pτq “ Opq3q.

Remark 4.2. Example 4.2 can also be solved by Algorithm 4.1. The speed comparison of Algorithms
4.1 and 4.2 can be found in Chapter 6.

The following proposition shows that there is a further decomposition step that can be done
before doing zero-recognition.

Proposition 4.5. Given f ψpzq “
ř

αPM
ψpαqθαpzq P R̂Θ, then f pzq ” 0 if and only if

ÿ

αPMi

ψpαqθαpzq ” 0

for i“ 1,2, where M1 :“ tpα1, . . . ,α4q PM : α1 is oddu and M2 :“ tpα1, . . . ,α4q PM : α1 is evenu.

Proof. “ðù ” is immediate. We show “ùñ ”. Let fipzq ”
ř

αPMi

ψpαqθαpzq. By Definition 2.7, θ1pzq

is an odd function while the other three are even functions, hence

0” f ψpzq ” f ψp´zq ” ´ f1pzq` f2pzq.

This together with f ψpzq ” f1pzq` f2pzq implies f1pzq ” 0 and f2pzq ” 0.

4.6 Examples

Example 4.5. Prove the differential equation [11, p. 29, Thm. 3]

℘
1pzq2 ” 4℘pzq3´g2℘pzq´g3,

where g2 :“ 60E4 and g3 :“ 140E6 with E2k`2 :“ E2k`2pπ,πτq.
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From the proof of Theorem 4.5 we see that

℘pzq “
θ11

2

θ2
2

θ2pzq2

θ1pzq2
`

1
3
pθ4

3`θ
4
4q (4.17)

and

℘
1pzq “ ´

2θ11
2θ2pzqθ3pzqθ4pzq

θ1pzq3
.

In addition, we expand both sides of (4.17) around z “ 0. The coefficients of zn on both sides
must be equal. Proposition 2.1 gives us the coefficients in the expansion of ℘pzq, which are
E2k`2. The coefficients in the expansion of the right hand side of (4.17) are some quotients of
θ
pkq
j . Hence we can express g2 and g3 in terms of some θ

pkq
j . Therefore, we can write the identity

in Example 4.5 in terms of theta quotients, and this example fits in the class studied in this
chapter.

In the literature there are not many high degree (already in an expression like Examples 4.1 and
4.2, not in an implicit form like Example 4.5) identities found in R̂Θ and Ĥ

rΘ
. The one with the

highest degree we are able to find in R̂Θ is

θ1pzq4`θ3pzq4 ” θ2pzq4`θ4pzq4

from [31, p. 462], whilst we have a way of producing all relations in R̂Θ, which will be intro-
duced in Chapter 6. Moreover, we are preparing a paper [28] that determines the generators of
the ideal containing all relations in Ĥ

rΘ
.

On the other hand, based on this chapter, algorithmically dealing with other types of identi-
ties becomes possible. For instance, in Chapter 5 we will provide an algorithm to deal with
identities like

θ2 θ3 θ4 θ1p2z,qq´2θ1pzqθ2pzqθ3pzqθ4pzq ” 0,

from [31, p. 485].
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Chapter 5

Proving Identities among Powers of
θ

pkq

j p0|τq & θ`paz|τq (Class III)

In this chapter we extend KrΘs further to KrΘsrG1s, by which we define the KrΘs-algebra gen-
erated by

G1 :“ tθ jpaz,qq : j “ 1,2,3,4 and a P Nzt0uu.

We solve the following problem algorithmically:

Problem 5.1: Given f PKrΘsrG1s; decide whether f “ 0.

Example 5.1. [14, 20.7.10] Our algorithm will be used to prove

θ2p0,qqθ3p0,qqθ4p0,qqθ1p2z,qq´2θ1pz,qqθ2pz,qqθ3pz,qqθ4pz,qq ” 0.

5.1 Quasi-Elliptic Decomposition of f P KrΘsrG1s

First of all we examine any single theta function, say θ3paz,qq with a P Nzt0u. Substituting
z ÞÑ z`π and z ÞÑ z`πτ, we find that

θ3papz`πq,qq “
8
ÿ

n“´8

qn2
e2niapz`πq “

8
ÿ

n“´8

qn2
e2niaz “ θ3paz,qq
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and

θ3papz`πτq,qq “
8
ÿ

n“´8

qn2
e2niapz`πτq “

8
ÿ

n“´8

qn2
q2nae2niaz

“

8
ÿ

n“´8

qpn`aq2q´a2
e2pn`aqiaze´2ia2z

“ q´a2
e´2ia2z

8
ÿ

n“´8

qpn`aq2e2pn`aqiaz

“ q´a2
e´2ia2z

8
ÿ

n“´8

qn2
e2niaz

“ Na2
θ3paz,qq,

where N :“ q´1e´2iz. Carrying out the same steps for θ1paz,qq, θ2paz,qq and θ4paz,qq we obtain
for j P t1,2,3,4u, θ jpapz`πτqq “ ε1p jqθ jpazq and θ jpapz`πqq “ ε2p jqθ jpazq, where ε1p jq and ε2p jq

are defined in Table 5.1.

j 1 2 3 4
ε1p jq p´1qaNa2

Na2
Na2

p´1qaNa2

ε2p jq p´1qa p´1qa 1 1

Table 5.1

Then we look at any product of the theta functions.

Definition 5.1. Define W :“ tp j,a,αq : j P t1,2,3,4u and a,α P Nzt0uu. Given a finite subset X ĎW

and c P KrΘs, we define
θX ,cpzq :“ c

ź

p j,a,αqPX

θ jpazqα.

Given X̄ “ pX1, . . . ,Xmq and c̄“ pc1, . . . ,cmq with finite subsets Xi ĎW and ci P KrΘs, we define

θX̄ ,c̄pzq :“
m
ÿ

i“1

θXi,cipzq

By Definition 5.1, every element in KrΘsrG1s can be written in the form of θX̄ ,c̄pzq.
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Definition 5.2. Given a finite subset X ĎW and c PKrΘs, we define

ν jpθX ,cq :“
ÿ

p j,a,αqPX

aα,

µ jpθX ,cq :“
ÿ

p j,a,αqPX

α

and ωpθX ,cq :“
ÿ

p j,a,αqPX

a2
α.

Example 5.2. Let p :“ θ4p0,qqθ2p2z,qq2θ2pz,qqθ1p4z,qq. Then ν2ppq “ 5 and ωppq “ 25.

Definition 5.3. Let f :“
m
ř

i“1
fi with fi :“ θXi,ci , where Xi ĎW finite and ci P KrΘs. We define

Yt,b,sp f q :“ ti P t1, . . . ,mu : ωp fiq “ t,ν1p fiq`ν4p fiq “ bpmod2q, ν1p fiq`ν2p fiq “ spmod2qu.

Then we call
$

&

%

ÿ

iPYt,b,sp f q

fi ‰H : t P Nzt0u and b,s P t0,1u

,

.

-

the set of quasi-elliptic components of f .

Theorem 5.1. Let tg1, . . . ,gru be the set of quasi-elliptic components of f PKrΘsrG1s. Then

f “ 0 iff gi “ 0 for all i P t1, . . . ,ru.

Proof. “ðù ” is immediate. We prove “ùñ ”. Suppose f :“
m
ř

i“1
fi with fi :“ θXi,ci . Let

Yt,0p f q :“ ti P t1, . . . ,mu : ωp fiq “ t,ν1p fiq`ν4p fiq evenu

and
Yt,1p f q :“ ti P t1, . . . ,mu : ωp fiq “ t,ν1p fiq`ν4p fiq oddu.

Assume tωp f1q, . . . ,ωp fmqu “ td1, . . . ,d`u. We can write

f “
ÿ

tPtd1,...,d`u

¨

˝

ÿ

iPYt,0p f q

fi`
ÿ

iPYt,1p f q

fi

˛

‚.
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Then by using Table 5.1 and the definition of dp fiqwe have

0” f pz`πτq ”
ÿ

tPtd1,...,d`u

¨

˝

ÿ

iPYt,0p f q

fipz`πτq`
ÿ

iPYt,1p f q

fipz`πτq

˛

‚

”
ÿ

tPtd1,...,d`u

¨

˝

ÿ

iPYt,0p f q

p´1qν1p fiq`ν4p fiqNt fipzq`
ÿ

iPYt,1p f q

p´1qν1p fiq`ν4p fiqNt fipzq

˛

‚

”
ÿ

tPtd1,...,d`u

¨

˝

ÿ

iPYt,0p f q

Nt fipzq`
ÿ

iPYt,1p f q

p´Ntq fipzq

˛

‚.

Hence for k P N,

0” f pz` kπτq ”
ÿ

tPtd1,...,d`u

¨

˝

ÿ

iPYt,0p f q

Nt k fipzq`
ÿ

iPYt,1p f q

p´Ntqk fipzq

˛

‚

”
ÿ

tPtd1,...,d`u

¨

˝Nt k
ÿ

iPYt,0p f q

fipzq`p´Ntqk
ÿ

iPYt,1p f q

fipzq

˛

‚, (5.1)

Let gt,0pzq “
ř

iPYt,0p f q
fipzq and gt,1pzq “

ř

iPYt,1p f q
fipzq. Then (5.1) can be written as

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 1 ¨ ¨ ¨ 1 1

Nd1 ´Nd1 ¨ ¨ ¨ Nd` ´Nd`

pNd1q2 p´Nd1q2 ¨ ¨ ¨ pNd`q2 p´Nd`q2

...
...

...
...

...
pNd1q2`´1 p´Nd1q2`´1 ¨ ¨ ¨ pNd`q2`´1 p´Nd`q2`´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

B

¨

˚

˚

˚

˚

˚

˚

˚

˝

gd1,1

gd1,2
...

gd`,1

gd`,2

˛

‹

‹

‹

‹

‹

‹

‹

‚

“ 0 (5.2)

Since N ‰ 0, the determinant of this Vandermonde matrix B is nonzero. Therefore we can
multiply both sides of (5.2) by the inverse of B and obtain gt,i “ 0 for all t P td1, . . . ,d`u and
i P t0,1u.

Next we write

0” gt,0pzq ” gt,0,0pzq`gt,0,1pzq and 0” gt,1pzq ” gt,1,0pzq`gt,1,1pzq, (5.3)
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where for b P t0,1uwe denote

gt,b,0pzq :“
ÿ

iPYt,b,0p f q

fipzq and gt,b,1pzq :“
ÿ

iPYt,b,1p f q

fipzq

with Yt,b,0p f q :“ ti P Yt,bp f q : ν1p fiq`ν2p fiq evenu and Yt,b,1p f q :“ ti P Yt,bp f q : ν1p fiq`ν4p fiq oddu.
Again by using Table 5.1 on fipzqwe obtain for s P t0,1u,

0” gt,bpzq ” gt,bpz`πq ” gt,b,0pz`πq`gt,b,1pz`πq ” gt,b,0pzq´gt,b,1pzq.

This together with (5.3) implies gt,b,0 “ gt,b,1 “ 0 for all t P td1, . . . ,d`u and b,s P t0,1u.

In view of Definition 5.3 we have

tgt,b,s : t P td1, . . . ,d`u and a,b P t0,1uu “ tg1, . . . ,gru.

Therefore gi “ 0 for all i P t1, . . . ,ru.

5.2 Zero-Recognition for f P KrΘsrG1s

Lemma 5.1. Let f :“
m
ř

i“1
fi with fi :“ θXi,ci , and let

ř

iPV
fi be a quasi-elliptic component of f , where

V Ď t1, . . . ,mu. Then for all i, j PV , fipzq
f jpzq

is elliptic with respect to z.

Proof. According to Definition 5.3, we suppose that V is equal to some fixed Xa,b,c with a PNzt0u
and b,s P t0,1u. Take an arbitrary i P Xa,b,c. By Table 5.1 we have fipz`πq ” p´1qν1p fiq`ν2p fiq fipzq

and fipz`πτq ” p´1qν1p fiq`ν4p fiqNa fipzq, which together with the definition of Xa,b,c implies that
for any i, j P Xa,b,c,

fipz`πq

f jpz`πq
”

fipzq
f jpzq

and
fipz`πτq

f jpz`πτq
”

fipzq
f jpzq

.

Therefore fipzq
f jpzq

is elliptic.
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Theorem 5.2. Let f :“
m
ř

i“1
fi with fi :“ θXi,ci , and let g :“

ř

iPV
fi be a quasi-elliptic component of f , where

V Ď t1, . . . ,mu. Take t PV such that µ1p ftq “min
iPV
tµ1p fiqu. Then g

ft
has the series expansion around z“ 0

of the form
8
ř

k“0
akpτqzk, and

gpzq ” 0 if and only if akpτq ” 0 for k “ 0,1, . . . ,µ2p ftq`µ3p ftq`µ4p ftq.

Proof. According to Proposition 2.2, only θ1 has a zero at z“ 0. Then the choice of t can insure
that g

ft
has no pole at z“ 0. Hence g

ft
is analytic around z“ 0, and then we have the Taylor expan-

sion around z“ 0. Moreover, g
ft

is elliptic by Theorem 5.1, and has at most µ2p ftq`µ3p ftq`µ4p ftq

poles in the period-parallelogram Ppπ,πτq by Proposition 2.2. If akpτq ” 0 for k “ 0,1, . . . ,µp ftq,
we deduce that g

ft
has more than µ2p ftq`µ3p ftq`µ4p ftq zeros in Ppπ,πτq, which implies by The-

orem 2.2 that g
ft
“ 0. On the other hand if g“ 0 then g

ft
“ 0 and we have akpτq ” 0 for all k ě 0.

Theorem 5.2 can also be stated as an algorithm.

Algorithm 5.1. Given f PKrΘsrG1s, we have the following algorithm to decide whether f “ 0.

Input: f PKrΘsrG1s.

Output: True if f “ 0; False if f ‰ 0.

Let f :“
m
ř

i“1
θXi,ci and let tg1, . . . ,gru be the set of quasi-elliptic components of f .

Set j :“ 1. While j ď r do

Let p“ g j. Write p“
ř

iPVj

θXi,ci where Vj Ď t1, . . . ,mu;

Choose t PVj such that µ1pθXt ,ct q “min
iPVj
tµ1pθXi,ciqu;

Let h :“ p
θXt ,ct

;
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Write hpz|τq “
8
ř

k“0
akpτqzk;

Set k :“ 0. While k ď µ2pθXt ,ct q`µ3pθXt ,ct q`µ4pθXt ,ct q do

if akpτq ” 0;

k++;

otherwise return False;

end do;

i++;

end do;

return True;

Note. In Algorithm 5.1, we use Algorithm 3.2 to check whether akpτq ” 0.

Theorem 5.3. Algorithm 5.1 is correct.

Proof. By Definition 5.3, we can always write f as the sum of its quasi-elliptic components. If
f “ 0, then by Theorem 5.1 every g j is zero. Thus every ak is zero, and Algorithm 5.1 returns
True.

If f ‰ 0, again by Theorem 5.1, there exists ` P t1, . . . ,ru such that g` ‰ 0. Then in Algorithm
5.1 the corresponding h is nonzero. Assume h is constant. Then a0 ‰ 0 and Algorithm 5.1
returns False. Assume h is not constant. By Theorem 5.1, h is elliptic. Since h has at most ` :“

µ2pθXt ,ct q`µ3pθXt ,ct q`µ4pθXt ,ct q poles in Ppπ,πτq, by Theorem 2.2, it has at most ` zeros in Ppπ,πτq.
Therefore ak can not be all zero for k P t0,1, . . . , `u. Thus Algorithm 5.1 returns False.

Example 5.1. Prove

f pzq :“ θ2p0,qqθ3p0,qqθ4p0,qqθ1p2z,qq´2θ1pz,qqθ2pz,qqθ3pz,qqθ4pz,qq ” 0.



90 Proving Identities among Powers of θ
pkq
j p0|τq & θ`paz|τq (Class III)

Proof. One can check that f pzq is a quasi-elliptic component of itself. Let

hpzq :“
θ2p0,qqθ3p0,qqθ4p0,qqθ1p2z,qq
2θ1pz,qqθ2pz,qqθ3pz,qqθ4pz,qq

´1.

We write hpzq “
8
ř

n“1
anzn. Then according to Algorithm 5.1 we need to check whether a0 “

a1 “ a2 “ 0. Let θ
pkq
j :“ θ

pkq
j p0,qq. When expanding hpzq we find that a0, a1 and a3 vanish by

computation and

a2 “
1
2

˜

θ
p3q
1
θ11
´

θ2
11

θ2
´

θ3
11

θ3
´

θ4
11

θ4

¸

.

By using Algorithm 3.2 we verify that a2 “ 0.

5.3 Examples

We list some examples from [31].

Example 5.3. θ1pzq3θ1p3zq`θ4pzq3θ4p3zq´θ4p2zq3θ4 ” 0.

Example 5.4. θ2θ2p2zqθ4pzq2´θ2pzq2θ4pzq2´θ1pzq2θ3pzq2 ” 0.

Example 5.5. θ3
4θ4p2zq2´θ3pzq4´θ2pzq4 ” 0.

Remark. A natural generalization is to extend KrΘsrG1s to KrΘsrG2s, where

G2 :“ tθ jpa1z1 ¨ ¨ ¨`anzn,qq : j “ t1, . . . ,4u and pa1, . . . ,anq P Nnzt0uwith n P Nzt0uu.

We have a method to solve the following problem.

Problem 5.2: Given f PKrΘsrG2s; decide whether f “ 0.

We tested our method on many examples including the ones below, and it worked fine. The
main idea is to reduce the variables z1, . . . ,zn once at a time. In the end we only have one
variable, and then we can solve it by Algorithm 5.1. More details will be find in the paper [33]
that we are currently writing.
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Example 5.6. [14, 20. 7. 6]Prove

θ4p0,qq2θ1pw` z,qqθ1pw´ z,qq´θ3pw,qq2θ2pz,qq2`θ2pw,qq2θ3pz,qq2 ” 0.

Example 5.7. [23, p. 17]

4
ÿ

j“1

p´1q j`1
θ jpxqθ jpyqθ jpuqθ jpvq´2θ3px1qθ3py1qθ3pu1qθ3pv1q ” 0,

where x1 :“ 1
2px`y`u`vq and y1 :“ 1

2px`y´u´vq, u1 :“ 1
2px´y`u´vq and v1 :“ 1

2px´y´u`vq.

Example 5.8. [35] Let αi,βi (i P Z{3Z) be six numbers satisfying
ř

i
αi “

ř

i
βi “ 0. Then

ÿ

i

θ1pαiqθ1pβiqθ1pαi´1`βi`1qθ1pαi`1´βi´1q ” 0.

Example 5.9. [31, p. 480]

θ
2
4 θ1py` zqθ1py´ zq´θ3pyq2θ2pzq2`θ2pyq2θ3pzq2 ” 0.

Example 5.10. [22, p. 21]

θ1px´ yqθ1px` yqθ1pz´wqθ1pz`wq´θ1pz´ xqθ1pz` xqθ1py´wqθ1py`wq

`θ1py´ zqθ1py` zqθ1px´wqθ1px`wq ” 0.

Example 5.11. [13][Gosper and Schroeppel] Let w1,w2,w3,z1,z2 and z3 be complex variables, and con-
sider the 3ˆ3 matrix whose j,k entry is θrpw j´ zk|τqθspw j` zk|τq, where r,s P t1,2,3,4u. Then

detpθrpw j´ zk|τqθspw j` zk|τqq1ď j,kď3 “ 0.
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Chapter 6

Ongoing Work and the
"ThetaFunctions" Package

This chapter consists of some work that we are still working on. In Section 1 we illustrate the
discovery procedures for new relations among Jacobi theta functions. In Section 2 we indi-
cate our current step of generalizing the previous chapters, which will systematically prove
Ramanujan’s modular equations and will solve many problems in related research papers and
monographs. In Section 3 we demonstrate our Mathematica package "ThetaFunctions".

6.1 Producing Identities

We mainly discuss how to produce relations in Classes I and II. The implementation is not
finished yet. Thus we only present the main ideas and some important steps.

6.1.1 Class I

According to the homogeneous decomposition described in Theorem 3.1 of Chapter 3, to find
relations in RΘ, we need to find homogeneous polynomials p P RX which map to identities
φppq “ 0 in RΘ. However, for a given degree d, there might be infinitely many homogeneous
polynomials in RX that map to identities in RΘ, e.g., any linear combination of such polynomials
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still maps to an identity. Therefore, we restrict the recovery procedures only on the building-
block-relations, which will be described below.

Following Definition 3.5, we can generate all monomials in RX for a given degree. For instance,
the set of all monomials of degree 3 is

9x2
6
, x2

5
x3, x2

4
x3
2
, x2

3
x3
3
, x2

2
x3
4
, x2 x3

5
, x3

6
, x2

5
x4,

x2
4
x3 x4, x2

3
x3
2
x4, x2

2
x3
3
x4, x2 x3

4
x4, x3

5
x4,

x2
4
x4
2
, x2

3
x3 x4

2
, x2

2
x3
2
x4
2
, x2 x3

3
x4
2
, x3

4
x4
2
, x2

3
x4
3
,

x2
2
x3 x4

3
, x2 x3

2
x4
3
, x3

3
x4
3
, x2

2
x4
4
, x2 x3 x4

4
, x3

2
x4
4
,

x2 x4
5
, x3 x4

5
, x4

6
, x2

3
x1
¢

, x2
2
x3 x1

¢

, x2 x3
2
x1
¢

,

x3
3
x1
¢

, x2
2
x4 x1

¢

, x2 x3 x4 x1
¢

, x3
2
x4 x1

¢

, x2 x4
2
x1
¢

,

x3 x4
2
x1
¢

, x4
3
x1
¢

, Hx1¢L2, x2 x2
¢¢

, x3 x2
¢¢

, x4 x2
¢¢

,

x2 x3
¢¢

, x3 x3
¢¢

, x4 x3
¢¢

, x2 x4
¢¢

, x3 x4
¢¢

, x4 x4
¢¢= .

We produce the building-block-relations of degree k in the following way.

Step 1: find all monomials of degree k in RX , say ty1, . . . ,ynu.

Step 2: set s :“ 1, or choose s to be any positive value.

Step 3: make an ansatz of the form

c1φpy1q` ¨ ¨ ¨` cnφpynq “ 0, (6.1)

where ci PK and φ is defined in Section 3.1. In view of Definition 2.7, every φpy jq can be written
as a q1{4-series. Hence from the left hand side of (6.1) we can extract the coefficients of

q1{4, . . . ,
´

q1{4
¯s

and obtain a system of equations in the unknowns c1, . . . ,cn.

Step 4: find a basis of the solution set for the above system of equations in Step 3, say

tap1q, . . . ,apmqu,
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where ap jq “ pap jq
1 , . . . ,ap jq

n qwith ap jq
i PK and

n
ř

i“1
ap jq

i φpyiq “ 0 for all j P t1, . . . ,mu.

Step 5: apply Algorithm 3.2 on every f j :“
n
ř

i“1
ap jq

i φpyiq and if f j is nonzero for some j, increase

s by one and go back to step 4. If all f j are zero, then go to step 6.

Step 6: let A :“ t f1, . . . , fmu and delete the polynomials which are multiples of relations with
degree smaller than k. This step gives a reduced polynomial set

tg1, . . . ,gtu Ď A,

which is the desired set of building-block-relations of degree k.

Note. In the setting of our ThetaFunction package, we do not use the Deg, instead, we use
another definition of degree which is equal to 2Deg. This makes the degree always be an integer
and it is more convenient for implementation.

Example. Suppose that we want to find the building-block-relations of degree 3. We run our
package and execute the command identities[d,s], where d presents the degree and s is the num-
ber in Step 2. We first try s“ 9.

In[24]:= identities@6, 9D

Out[24]= 9Θ2
5
Θ3 - Θ2 Θ4

5
- 6 Θ3

2
Θ4 Θ1

¢
+ 6 Θ3 Θ4

2
Θ1
¢
+ 10 Θ3 Θ2

¢¢
- 11 Θ4 Θ2

¢¢
- 2 Θ2 Θ3

¢¢
+ 3 Θ2 Θ4

¢¢
,

Θ2
4
Θ3
2
- 17 Θ3

4
Θ4
2
+ 12 Θ3

3
Θ4
3
- 16 Θ3

2
Θ4
4
+ 20 Θ3 Θ4

5
+ Θ4

6
+ 8 Θ3 Θ3

¢¢
- 18 Θ4 Θ3

¢¢
+ 2 Θ3 Θ4

¢¢
+ 8 Θ4 Θ4

¢¢
,

Θ2 Θ3
5
- Θ2 Θ4

5
- 6 Θ3

2
Θ4 Θ1

¢
+ 6 Θ3 Θ4

2
Θ1
¢
+ 11 Θ3 Θ2

¢¢
- 11 Θ4 Θ2

¢¢
- 3 Θ2 Θ3

¢¢
+ 3 Θ2 Θ4

¢¢
,

Θ3
6
- 17 Θ3

4
Θ4
2
+ 12 Θ3

3
Θ4
3
- 17 Θ3

2
Θ4
4
+ 20 Θ3 Θ4

5
+ Θ4

6
+ 8 Θ3 Θ3

¢¢
- 18 Θ4 Θ3

¢¢
+ 2 Θ3 Θ4

¢¢
+ 8 Θ4 Θ4

¢¢
,

Θ2
5
Θ4 + Θ2 Θ4

5
+ Θ4 Θ2

¢¢
- Θ2 Θ4

¢¢
, Θ2

4
Θ3 Θ4 + Θ4 Θ3

¢¢
- Θ3 Θ4

¢¢
,

Θ2 Θ3
4
Θ4 + Θ4 Θ2

¢¢
- Θ2 Θ4

¢¢
, Θ3

5
Θ4 - Θ3 Θ4

5
+ Θ4 Θ3

¢¢
- Θ3 Θ4

¢¢
, Θ2 Θ3 Θ4

4
+ Θ3 Θ2

¢¢
- Θ2 Θ3

¢¢
,

Θ2
3
Θ1
¢
+ Θ4 Θ3

¢¢
- Θ3 Θ4

¢¢
, Θ3

3
Θ1
¢
+ Θ4 Θ2

¢¢
- Θ2 Θ4

¢¢
, Θ4

3
Θ1
¢
+ Θ3 Θ2

¢¢
- Θ2 Θ3

¢¢=

We use Algorithm 3.2 to check the above set, and find that some are nonzero. So we try s“ 10.

In[20]:= identities@6, 10D
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Out[20]= 9Θ2
5
Θ3 - Θ2 Θ3

5
- Θ3 Θ2

¢¢
+ Θ2 Θ3

¢¢
, Θ2

5
Θ4 + Θ2 Θ4

5
+ Θ4 Θ2

¢¢
- Θ2 Θ4

¢¢
, Θ2

4
Θ3 Θ4 + Θ4 Θ3

¢¢
- Θ3 Θ4

¢¢
,

Θ2 Θ3
4
Θ4 + Θ4 Θ2

¢¢
- Θ2 Θ4

¢¢
, Θ3

5
Θ4 - Θ3 Θ4

5
+ Θ4 Θ3

¢¢
- Θ3 Θ4

¢¢
, Θ2 Θ3 Θ4

4
+ Θ3 Θ2

¢¢
- Θ2 Θ3

¢¢
,

Θ2
3
Θ1
¢
+ Θ4 Θ3

¢¢
- Θ3 Θ4

¢¢
, Θ3

3
Θ1
¢
+ Θ4 Θ2

¢¢
- Θ2 Θ4

¢¢
, Θ4

3
Θ1
¢
+ Θ3 Θ2

¢¢
- Θ2 Θ3

¢¢=

We use Algorithm 3.2 to check the above set, and it turns out that all elements are zero. Note
that in our implementation, the above set is already reduced as in Step 5.

Thus the set of building-block-relations of degree 3 is

9Θ2
5
Θ3 - Θ2 Θ3

5
- Θ3 Θ2

¢¢
+ Θ2 Θ3

¢¢
= 0,

Θ2
5
Θ4 + Θ2 Θ4

5
+ Θ4 Θ2

¢¢
- Θ2 Θ4

¢¢
= 0,

Θ2
4
Θ3 Θ4 + Θ4 Θ3

¢¢
- Θ3 Θ4

¢¢
= 0,

Θ2 Θ3
4
Θ4 + Θ4 Θ2

¢¢
- Θ2 Θ4

¢¢
= 0,

Θ3
5
Θ4 - Θ3 Θ4

5
+ Θ4 Θ3

¢¢
- Θ3 Θ4

¢¢
= 0,

Θ2 Θ3 Θ4
4
+ Θ3 Θ2

¢¢
- Θ2 Θ3

¢¢
= 0,

Θ2
3
Θ1
¢
+ Θ4 Θ3

¢¢
- Θ3 Θ4

¢¢
= 0,

Θ3
3
Θ1
¢
+ Θ4 Θ2

¢¢
- Θ2 Θ4

¢¢
= 0,

Θ4
3
Θ1
¢
+ Θ3 Θ2

¢¢
- Θ2 Θ3

¢¢
= 0= .

6.1.2 Class II

From Chapter 4 we know that to generate identities in R̂Θ we only need to generate quasi-
elliptic functions which equal to zero. For any α“ pα1,α2,α3,α4q PN4 we define that the degree
of the monomial θαpz|τq is equal to |α| :“ α1`α2`α3`α4. By Definition 4.2 we know that for
any quasi-elliptic f ψ P R̂Θ, the summand monomials have the same degree.

Definition 6.1. We define the degree of a quasi-elliptic f ψ P R̂Θ to be the degree of its summands,
denoted by degp f ψq.

For instance, the degree of the quasi-elliptic function θ2p0|τq2θ2pz|τq2`θ2p0|τq2θ2pz|τq2 is 2.

Definition 6.2. Given k P N and a,b P t1,2u, let

Ya,bpkq :“ tθα : |α| “ k, α1`α4 ” a`1pmod2q, α1`α2 ” b`1pmod2qu
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and define the following partition of monomials in R̂Θ of degree k:

Y pkq :“ tYa,bpkq ‰H : a,b P t1,2uu.

We call Y pkq the set of quasi-elliptic monomial sets of degree k.

Hence generating quasi-elliptic functions is equivalent to generating Y pkq for k P N. Note that
Definition 6.2 also gives us a way to compute Y pkq. For example, let θ jpzq :“ θ jpz|τq, then

Y p2q “ ttθ1pzq2,θ2pzq2,θ3pzq2,θ4pzq2uu

and

Y p3q “ ttθ3pzqθ4pzq2,θ3pzq3,θ2pzq2θ3pzq,θ1pzq2θ3pzqu,

tθ4pzq3,θ3pzq2θ4pzq,θ1pzq2θ4pzqu,

tθ1pzqθ4pzq2,θ1pzqθ3pzq2,θ1pzqθ2pzq2,θ1pzq3uu.

Lemma 6.1. Let f ψ :“ f ψ

M be quasi-elliptic with degp f ψq “ t and f ψpzq ”
8
ř

j“0
v jpτqz j. If v jpτq ” 0 for

j P t0, . . . , tu then f ψ “ 0.

Proof. Let gpzq :“ f ψpzq
θ3pzqt

”
8
ř

k“0
dkpτqzk and θ3pzqt ”

8
ř

`“0
u`pτqz`. One can check that u0 ‰ 0. Then

8
ÿ

j“0

v jpτqz j ”

8
ÿ

k“0

dkpτqzk
8
ÿ

`“0

u`pτqz`

and

v j “

j
ÿ

i“0

uid j´i. (6.2)

Assume that v jpτq ” 0 for j P t0, . . . , tu. First we let j “ 0. By equation (6.2) and u0 ‰ 0 we have
d0 “ 0. Next we let j“ 1. Again by (6.2) and u0 ‰ 0 we have 0“ u1d0`u0d1 and d1 “´u1d0{u0 “

0. Once more we let j “ 2. We have 0 “ u2d0` u1d1` u0d2 and d2 “ p´u2d0´ u1d1q{u0 “ 0. We

continue this procedure and obtain that dk “ p´
j
ř

i“1
uid j´iq{u0 “ 0 for all k P t0, . . . , tu. Therefore

gpzq has a zero at z “ 0 with multiplicity at least t ` 1, i.e., gpzq has at least t ` 1 zeros in the
period-parallelogram Ppπ,πτq. On the other hand, θ3pzqt has exactly one zero with multiplicity
t in Ppπ,πτq, which means, gpzq has at most t poles in Ppπ,πτq. Thus gpzq2 has at least 2t`2 zeros
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and at most 2t poles in Ppπ,πτq. Since gpzq2 is elliptic, by Theorem 2.2 we deduce that gpzq2 ” 0.
Therefore, f ψ “ 0.

For any k P Nzt0u, to generate building-block quasi-elliptic functions f ψ such that degp f ψq “ k

and f ψ “ 0, we follow the steps below.

Step 1: compute Y pkq.

Step 2: for each x P Y pkq, divide out the common factor of elements in x and obtain the reduced
set Y1pkq. For instance

Y1p2q “ ttθ1pzq2,θ2pzq2,θ3pzq2,θ4pzq2uu

and

Y1p3q “ ttθ4pzq2,θ3pzq2,θ2pzq2,θ1pzq2u,

tθ4pzq2,θ3pzq2,θ1pzq2uu.

Step 3: for any a,b P Y1pkq, if a Ď b then delete a from Y1pkq and obtain a new set Ỹ pkq. For
instance

Ỹ p2q “ ttθ4pzq2,θ3pzq2,θ2pzq2,θ1pzq2uu

and
Ỹ p3q “ ttθ4pzq2,θ3pzq2,θ2pzq2,θ1pzq2uu.

Note. We see from the above that Ỹ p3q generates the same identities as Ỹ p2q. In this case,
to produce identities of degree 3 we produce identities of degree 2 and then multiply every
identity by a single θ jpzq. In other words, the identities of degree 3 are equivalent to identities
of degree 2. But for a given degree k, if Ỹ pkq ‰ Ỹ ptq for all 0ă t ă k, we continue the next steps.

Step 4: choose an arbitrary but fixed y P Ỹ pkq; assume y“ ty1, . . . ,ynu.

Step 5: make an ansatz of the form

c1y1`¨¨ ¨` cnyn “ 0, (6.3)

where ci P RΘ.
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Step 6: expand the left hand side of (6.3) around z“ 0, and deduce that for `ě 0,

n
ÿ

i“0

ci
yp`qi p0q
`!

“ 0,

where yp`qi p0q P RΘ. Hence
n
ÿ

i“0

ciy
p`q
i p0q “ 0. (6.4)

By Lemma 6.1, we only need to make sure that the first k` 1 coefficients in the expansion are
zero. Thus we have:

Step 7: write the first k`1 equations into the form

¨

˚

˚

˝

y1p0q ¨ ¨ ¨ ynp0q
...

...
...

ypkq1 p0q ¨ ¨ ¨ ypkqn p0q

˛

‹

‹

‚

looooooooooooomooooooooooooon

D

¨

˚

˚

˝

c1
...

cn

˛

‹

‹

‚

“ 0. (6.5)

Step 8: apply Algorithm 3.2 on every entry of D and replace by 0 when Algorithm 3.2 returns
True; and obtain a simplified version of D, denoted by D1.

Step 9: apply row reduction on D1 to obtain a triangular matrix D2.

Note. Here in the row reduction, Algorithm 3.2 is crucial to ensure that the pivot element
chosen in each step of the row reduction is nonzero.

Step 10: compute the basis of the null space of the matrix D2 and use the relations generated
in Section 6.1 to simplify the solutions. Suppose the simplified solutions are tb1, . . . ,bmu, where
b j “ pb

p1q
j , . . . ,bpnqj qwith bptqj P RΘ, then the relations for this chosen y are

#

n
ÿ

i“1

bpiqj yi : j P t1, . . . ,mu

+

.

Step 11: repeat the above steps on every element of Ỹ pkq, and take the union of all sets of
relations, and obtain a desired set of relations of degree k.



100 Ongoing Work and the "ThetaFunctions" Package

Compared to Class I, the procedures of discovery for this Class in our package have far more
tedious computations. So in the following example we omit the demonstration and only list
the results.

For example, the building-block identities of degree 2 are

θ3p0q2θ1pzq2`θ4p0q2θ2pzq2´θ2p0q2θ4pzq2 ” 0

and
θ4p0q2θ1pzq2`θ3p0q2θ2pzq2´θ2p0q2θ3pzq2 ” 0.

In [14, 20.7] one finds four identities of degree 2, two more than our result. The other two in
fact are combinations of the above two, thus are generated by the above two.

6.2 Generalizations to powers of q

Besides the ongoing generalizations we have mentioned at the end of each chapter, there are
several further extensions and generalizations of our algorithmic approach. An interesting
extension is from q to powers of q, as this is connected to Ramanujan’s modular equations. Let
us consider RΘ1 , by which we define a K-algebra generated by

Θ1 :“
!

θ
p2k`1q
1 p0,qnq : k,n P N

)

Y

!

θ
p2kq
j p0,qnq : k,n P N and j “ 2,3,4

)

.

We have a method to deal with the following problem.

Problem 6.1. Given f P RΘ1 , decide whether f “ 0.

Remark. We are still working on some details to complete the algorithm. Therefore we do not
present the method here. Nevertheless, our method succeeded on all of the examples listed
below. One of the key ingredients to solve this problem is a variation of Algorithm 3.2.

Notation. For convenience, in this section we define θ jpqnq :“ θ jp0,qnq.

Example 6.1. [17, p. 218] A form of the cubic modular equation is

θ3pqqθ3pq3q´θ4pqqθ4pq3q´θ2pqqθ2pq3q ” 0.
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Example 6.2. [9, p. 112] A form of the seventh-order modular equation is

b

θ3pqqθ3pq7q´

b

θ4pqqθ4pq7q´

b

θ2pqqθ2pq7q ” 0.

Here one can move one term to the other side and square both sides to remove the square root
and so on to make it fit into our function space.

Example 6.3. The identity

θ3pq5qθ4pq5q

θ3pqqθ4pqq
`

θ2pq5qθ3pq5q

θ2pqqθ3pqq
´

θ2pq5qθ4pq5q

θ2pqqθ4pqq
” 1.

In [5, p.276] it is written in the form

ϕ2p´q10q

ϕ2p´q2q
`q

ˆ

ψ2pq5q

ψ2pqq
´

ψ2p´q5q

ψ2p´qq

˙

” 1.

Example 6.4. [9, p. 40] Entry 25(vi)

2ϕ
2pqq ” ϕ

2pq
1
2 q`ϕ

2p´q
1
2 q,

which can be written as
2θ3pq2q2´θ3pqq2´θ4pqq2 ” 0.

Example 6.5. [10, 2.7] Let apqq :“
8
ř

m,n“´8
qm2`mn`n2

, then

apqq ” ϕpqqϕpq3q`4qψpq2qψpq6q. (6.6)

From its definition, apqq can be written as θ2pqqθ2pq3q`θ3pqqθ3pq3q. If we also replace ϕpqq by
θ3pqq and ψpq2q by p2q

1
4 q´1θ2pqq, then (6.6) becomes trivial.

Example 6.6. [10, p. 4182] Let cpqq :“
8
ř

m,n“´8
qpm`1{3q2`pm`1{3qpn`1{3q`pn`1{3q2 . Then

1´
ϕpqq2

ϕp´q3q2
´4

cpq4q

cpqq
” 0. (6.7)
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Note that cpqq can be written as

θ2pq1{3qθ2pqq`θ3pq1{3qθ3pqq`θ2pqqθ2pq3q`θ3pqqθ3pq3q.

The rewriting is very straight forward, by just comparing the series of theta functions. We plug
this into (6.7) and substitute q by q3; then the left hand side will be in RΘ1 and we can run our
algorithm.

Example 6.7. [10] Let apqq and cpqq be defined as in the previous examples, and let

bpqq :“
8
ÿ

m,n“´8

ω
n´mqn2`mn`m2

where ω :“ e2πi{3. Then
apqq3 “ bpqq3` cpqq3

and
apqqapq2q “ bpqqbpq2q` cpqqcpq2q. (6.8)

Since bpqq can also be written as a combination of theta functions, we again can run our algo-
rithm as for the previous examples.

Example 6.8. [5, p. 285] Let ηpqq :“ q1{12
8
ś

k“1
p1´q2kq. Then

θ3pqq2θ3pq5q2´θ2pqq2θ2pq5q2´θ4pqq2θ4pq5q2 ” 8ηpq2q2ηpq10q2.

In [5], this identity was considered to be with no direct proofs.

Remark. All the Dedekind eta function identities in Micheal Somos’s data base [30] in princi-
ple can be proven by our algorithm, including his conjecture about a remarkable eta product
identity of level 60. Some different ways to prove the identities in [30] can be found in [26] and
[27].
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6.3 The “ThetaFunctions” Package

We have indicated in Section 6.1 that our package can assist us in the discovery of identities.
In this chapter we mainly demonstrate how the package helps to prove identities, based on
Algorithms 3.2 and 4.2. However, the implementation is not finished yet. So, here we only
show some key features or commands that are already available. The official package will be
done soon and the reader will find it on RISC homepage under this link:

http://www.risc.jku.at/research/combinat/software/

6.3.1 Proving Identities in Class I

Recall Example 3.7: prove

θ2p0|τq3θ
2
2p0|τq´θ3p0|τq3θ

2
3p0|τq`θ4p0|τq3θ

2
4p0|τq ” 0.

In Example 3.7 we used Algorithm 3.1 to prove this identity. Now we are using Algorithm 3.2
to prove it. According to Chapter 3, we need to show that

x3
2x22´ x3

3x23` x3
4x24 P kerφ.

In our package setting, we use the symbols ak, respectively bk, ck, dk, to present xpkq1 , respectively
xpkq2 , xpkq3 and xpkq4 . The input for the above example is

b3
0b2´ c3

0c2`d3
0d2.

The command ProveClass1 gives True if the input is in kerφ, otherwise it gives False. For this
example we have

In[43]:= ProveClass1@b0^3 b2 - c0^3 c2 + d0^3 d2D

Out[43]= True

http://www.risc.jku.at/research/combinat/software/
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If the users want to see more details of the proving procedures, some other commands are also
available, which we describe as follows. According to Algorithm 3.2, we first have to compute
the coefficients of the SX transformation, which is done by the command SXCoefficientList.

In[89]:= SXCoefficientList@b0^3 b2 - c0^3 c2 + d0^3 d2D

Out[89]= :-
2 ä b

0
4

Π

+

2 ä c
0
4

Π

-

2 ä d
0
4

Π

, -b0
3
b2 + c0

3
c2 - d0

3
d2>

This means
SXpx3

2x22´ x3
3x23` x3

4x24q “ g1sc1 `g2sc2 ,

where g1 “´
2ix4

2
π
`

2ix4
3

π
´

2ix4
4

π
, g2 “´x3

2x22` x3
3x23´ x3

4x24 and c1 ‰ c2 are some half integers.

Next we need to compute LTpg1q and LTpg2q. The computation for the leading term orbit is
carried out by the command LeadingtermOrb.

In[90]:= LeadingtermOrbA-b0
3 b2 + c0

3 c2 - d0
3 d2E

Out[90]= 9-b0
3
b2 + c0

3
c2 - d0

3
d2, b0

3
b2 - c0

3
c2 + d0

3
d2=

In[91]:= LeadingtermOrbB-
2 ä b0

4

Π

+

2 ä c0
4

Π

-

2 ä d0
4

Π

F

Out[91]= :-
2 ä b

0
4

Π

+

2 ä c
0
4

Π

-

2 ä d
0
4

Π

,
2 ä b

0
4

Π

-

2 ä c
0
4

Π

+

2 ä d
0
4

Π

>

This means
LTpp2q “ t´x3

2x22` x3
3x23´ x3

4x24, x3
2x22´ x3

3x23` x3
4x24u

and

LTpp1q “

"

´
2ix4

2
π
`

2ix4
3

π
´

2ix4
4

π
,

2ix4
2

π
´

2ix4
3

π
`

2ix4
4

π

*

.
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Finally we compute the order of the q-series expansions of
ś

gPLTpp1q

φpgq and
ś

gPLTpp2q

φpgq. The

command for this is CheckTheSeries, and CheckTheSeriespp jq returns True if

ord

¨

˝

ź

gPLTpp jq

φpgq

˛

‚ą
Degpp jq|LTpp jq|

6
;

otherwise it returns False.

������� CheckTheSeries
2 ⅈ b

0
4

π

2 ⅈ c
0
4

π

2 ⅈ d
0
4

π


������� True

������� CheckTheSeries b
0

3
b2 + c03 c2 d

0

3
d2

������� True

Similarly, for Example 3.8 we have the input

c4c0´3c2
2´2c2

0b4
0d4

0 ,

and

In[45]:= ProveClass1@c0 c4 - 3 c2^2 - 2 b0^4 c0 c0 d0^4D

Out[45]= True

We ask for the details of the proving procedures and it gives

In[99]:= SXCoefficientList@c4 c0 - 3 c2^2 - 2 c0^2 b0^4 d0^4D

Out[99]= 93 ä c2
2
- ä c0 c4 + 2 ä b0

4
c
0

2
d
0

4=

In[100]:= LeadingtermOrbA3 ä c2
2
- ä c0 c4 + 2 ä b0

4 c0
2 d0

4E
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Out[100]= 9-3 c2
2
+ c0 c4 - 2 b0

4
c0
2
d0
4
, -3 ä c2

2
+ ä c0 c4 - 2 ä b0

4
c0
2
d0
4
, 3 ä c2

2
- ä c0 c4 + 2 ä b0

4
c0
2
d0
4
,

3 c2
2
- c0 c4 + 2 b0

4
c0
2
d0
4
, 3 b2

2
- b0 b4 - 2 b0

2
c0
4
d0
4
, 3 ä b2

2
- ä b0 b4 - 2 ä b0

2
c0
4
d0
4
,

-3 ä b2
2
+ ä b0 b4 + 2 ä b0

2
c0
4
d0
4
, -3 b2

2
+ b0 b4 + 2 b0

2
c0
4
d0
4
, -2 b0

4
c0
4
d0
2
+ 3 d2

2
- d0 d4,

-2 ä b0
4
c0
4
d0
2
+ 3 ä d2

2
- ä d0 d4, 2 ä b0

4
c0
4
d0
2
- 3 ä d2

2
+ ä d0 d4, 2 b0

4
c0
4
d0
2
- 3 d2

2
+ d0 d4=

������� CheckTheSeries3 ⅈ c
2

2 ⅈ c0 c4 2 ⅈ b
0

4
c
0

2
d
0

4

������� True

6.3.2 Proving Identities in Class II

We have two algorithms for proving identities in Class II, namely Algorithms 4.1 and 4.2. For
elements from R̂Θ we use Algorithm 4.1 and for elements from Ĥ

rΘ
we use Algorithm 4.2. Note

that Algorithm 4.1 is also suitable for Ĥ
rΘ

, but is slower compared to Algorithm 4.2.

Recall Example 4.1, which is suitable for Algorithm 4.1. The input for Class II is a set like the
following test1.

�������� c1 = -8 dd25 dd32 dd43 - 2 dd2 dd36 dd43 -

2 dd2 dd32 dd47 - 16 dd32 dd43 d2[2] + 16 dd2 dd32 dd42 d4[2];

c2 = 7 dd25 dd34 dd4 + dd2 dd38 dd4 + dd2 dd34 dd45 +

8 dd34 dd4 d2[2] - 8 dd2 dd34 d4[2];

c3 = dd25 dd45 + dd2 dd34 dd45 + dd2 dd49 + 8 dd45 d2[2] - 8 dd2 dd44 d4[2];

c4 = -6 dd25 dd32 dd43;

test1 = {{c1, {0, 0, 2, 2}},

{c2, {0, 0, 0, 4}}, {c3, {0, 0, 4, 0}}, {c4, {2, 2, 0, 0}}};

Every pair in the set, for example tc1,t0,2,0,0uu represents the following combination:

• The first component of each pair represents a coefficient. The special notion dd2, respec-
tively dd3 and dd4, stands for θ2p0|τq, respectively θ3p0|τq and θ4p0|τq; and d1rks, respec-
tively d2rks, d3rks, d4rks, stands for θ

pkq
1 p0|τq, respectively, θ

pkq
2 p0|τq, θ

pkq
3 p0|τq, θ

pkq
4 p0|τq.

• The tuple ta1,a2,a3,a4u represents the monomial θ1pz|τqa1θ2pz|τqa2θ3pz|τqa3θ4pz|τqa4 . For
example t0,0,2,2u stands for θ3pz|τq2θ4pz|τq2.
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The command for automatic zero-recognition for R̂Θ is ProveClass21. It returns true if the tested
function is zero, otherwise it returns False. For this example we have

�������� ProveClass21[test1]

�������� True

Recall Example 4.2: prove

θ2p0|τq2θ2pz|τq2´θ3p0|τq2θ3pz|τq2`θ4p0|τq2θ4pz|τq2 ” 0.

The input is:

�������� test2 = {{dd2^2, {0, 2, 0, 0}},

{-dd3^2, {0, 0, 2, 0}}, {dd4^2, {0, 0, 0, 2}}};

The command for automatic zero-recognition for Ĥ
rΘ

is ProveClass22. It returns true if the tested
function is zero, otherwise it returns False. We compare the time of Algorithm 4.1 and Algo-
rithm 4.2 and get

�������� Timing[ProveClass21[test2]]

�������� {0.035143, True}

�������� Timing[ProveClass22[test2]]

�������� {0.025771, True}

For this example the time of running Algorithm 4.1 is slightly longer than the time of running
Algorithm 4.2.

We consider another example. By applying the producing-identity feature for Class I, which
we have introduced in Section 6.1, we can simplify the coefficients in Example 4.2 by looking
at the tables of relations and plugging into the coefficients. We find that the left hand side of
Example 4.2 is equal to

c1θ3pz|τq2θ4pz|τq2` c2θ4pz|τq4` c3θ3pz|τq4` c4θ1pz|τq2θ2pz|τq2, (6.9)
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where c1 “ θ2p0|τq4´2θ3p0|τq4, c2 “ c3 “ θ3p0|τq2θ4p0|τq2 and c4 “ θ2p0|τq4. To prove that expres-
sion (6.9) is identically zero, we have the input

�������� test3 = {{dd2^4 - 2 dd3^4, {0, 0, 2, 2}},

{dd3^2 dd4^2, {0, 0, 0, 4}},

{dd3^2 dd4^2, {0, 0, 4, 0}}, {dd2^4, {2, 2, 0, 0}}};

Although the coefficients are more complicated than the previous example, this example still
fits in both Algorithms 4.1 and 4.2. We compare the time and get

�������� Timing[ProveClass21[test3]]

�������� {1.43589, True}

�������� Timing[ProveClass22[test3]]

�������� {0.115965, True}

For this example the time of running Algorithm 4.1 is substantially longer than the time of
running Algorithm 4.2.

We now analyze why Algorithm 4.2 is faster. The most difficult and time-consuming part in
Algorithm 4.2 is to compute the orbit

tt1|r1ρ, . . . , tm|rmρ : ρ P SL2pZqu ,

which is needed for the orbit length `. The ti do not contain any of θ
pkq
j (k ě 1), except for θ11.

According to Lemmas 2.4 and 2.5, all of θ2,θ3,θ4 and θ11 have very simple modular transfor-
mations. In contrast, Algorithm 4.1 uses Algorithm 3.2 and it directly computes the leading

term orbits of certain coefficients in the series expansion
8
ř

k“0
dkpτqzk, which contains θ

pkq
j (k ě 1).

According to Corollary 3.1, the modular transformations for θ
pkq
j (k ě 1) are sophisticated. In

addition, the coefficients become more complicated when the degree of z goes higher. Thus
Algorithm 4.1 needs more time on the orbit computation.

The orbit computation in Algorithm 4.2 is done by the command TheOrbit.
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For test2 we know that θ2p0|τq2θ2pz|τq2´θ3p0|τq2θ3pz|τq2`θ4p0|τq2θ4pz|τq2 is a quasi-elliptic com-
ponent of itself and hence can ask for the corresponding orbit. We have

�������� Timing[TheOrbitClass2[test2]]

�������� 0.023088, 1, dd34

dd24
,
dd42 d1[1]2
dd26 dd32

, 1, -
dd34

dd44
,
dd22 d1[1]2

dd32 dd46
,

1, dd44

dd24
, -

dd32 d1[1]2

dd26 dd42
, 1, -

dd44

dd34
, -

dd22 d1[1]2

dd36 dd42
,

1, dd24

dd44
, -

dd32 d1[1]2

dd22 dd46
, 1, -

dd24

dd34
, -

dd42 d1[1]2

dd22 dd36


,

where the meanings of dd and d1r1s are explained in the beginning of this sub-section.

Only 0.023 second was needed for the whole computation, given that this was done on a 4 year
old 1.8 GHz Intel Core i5 laptop.

We can also ask for the orbit for test3.

�������� Timing[TheOrbitClass2[test3]]
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�������� 0.072315, 1, dd42 d1 1]2
dd22 dd32 dd24 - 2 dd34 ,

dd22 dd36 dd42

dd24 - 2 dd34 d1 1]2 ,
dd28

dd24 - 2 dd34 ,

1, - dd22 d1 1]2
2 dd36 dd42 - dd32 dd46 , - dd22 dd36 dd42

2 dd34 - dd44 d1 1]2 ,
dd48

2 dd34 - dd44 ,

1, - dd32 d1 1]2
dd26 dd42 + 2 dd22 dd46

, -
dd22 dd32 dd46

dd24 + 2 dd44 d1[1]2
, -

dd28

dd24 + 2 dd44
,

1, dd42 d1[1]2

dd26 dd32 - 2 dd22 dd36
,

dd22 dd36 dd42

dd24 - 2 dd34 d1[1]2
,

dd28

dd24 - 2 dd34
,

1, dd22 d1[1]2

-dd36 dd42 + 2 dd32 dd46
,

dd22 dd32 dd46

dd34 - 2 dd44 d1[1]2
, -

dd38

dd34 - 2 dd44
,

1, -
dd32 d1[1]2

2 dd26 dd42 + dd22 dd46
, -

dd26 dd32 dd42

2 dd24 + dd44 d1[1]2
,

dd48

2 dd24 + dd44
,

1, dd42 d1[1]2

2 dd26 dd32 - dd22 dd36
, -

dd26 dd32 dd42

2 dd24 - dd34 d1[1]2
,

dd38

-2 dd24 + dd34
,

1, -
dd22 d1[1]2

2 dd36 dd42 - dd32 dd46
,

dd22 dd36 dd42

-2 dd34 + dd44 d1[1]2
,

dd48

2 dd34 - dd44
,

1, dd42 d1[1]2

2 dd26 dd32 - dd22 dd36
,

dd26 dd32 dd42

-2 dd24 + dd34 d1[1]2
,

dd38

-2 dd24 + dd34
,

1, -
dd22 d1[1]2

dd36 dd42 - 2 dd32 dd46
,

dd22 dd32 dd46

dd34 - 2 dd44 d1[1]2
, -

dd38

dd34 - 2 dd44
,

1, dd22 d1[1]2

-2 dd36 dd42 + dd32 dd46
,

dd22 dd36 dd42

-2 dd34 + dd44 d1[1]2
,

dd48

2 dd34 - dd44
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