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II

Kurzfassung

Der Hauptgegenstand dieser Arbeit sind die Jacobi-Theta-Funktionen 6;(z|t) mit j = 1,...,4;
und die Klasse der Probleme, die wir betrachten, sind die algebraischen Relationen zwischen
diesen. In vergangenen Jahrhunderten haben Forscher (einschliefilich Mathematikern, Physi-
kern und anderen) aufwindige, arithmetische Berechnungen verwendet, um selbst einfache
Identitdten von Theta-Funktionen per Hand zu beweisen. Dies ist eine miithsame (vielleicht
gar unmogliche) Aufgabe fiir komliziertere Identitaten.

In dieser Arbeit stellen wir Computeralgebraalgorithmen vor, die verschiedene, allgemeine
Klassen von Identitdten von Theta-Funktionen mit Hilfe eines Computers behandeln. Die es-
senziellen, mathematischen Werkzeuge, die verwendet wurden, um diese Algorithmen zu ent-
wickeln, sind die komplexe Analysis und insbesondere vor allem modulare Formen und die

Theorie elliptischer Funktionen.

Unser algorithmischer Zugang kann verwendet werden, um Identitdten in sehr allgemeinen
Funktionenklassen innerhalb weniger Minuten zu beweisen. Weiterhin kénnen wir auch neue
Identitdten in diesen Klassen mit Unterstiitzung des Computers entdecken. Wir haben diese

Algorithmen im Mathematica-Paket “ThetaFunctions” implementiert.

Als Nebenprodukt finden wir (alte und neue) Relationen, die die Weierstrafs’sche elliptische
Funktion involvieren. Auflerdem kann unser algorithmischer Ansatz auf andere Klassen von
Identitdten ausgeweitet werden wie zum Beispiel auf einen wesentlichen Teil der Identitidten
in Ramanujans verlorenen Notizbiichern sowie in anderen wissenschaftlichen Biichern und
Artikeln.
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Abstract

The main objects of this thesis are the Jacobi theta functions 6;(z|t), j = 1,...,4, and the classes
of problems we consider are algebraic relations between them. In the past centuries researchers,
including mathematicians, physicists, etc., have been using some difficult arithmetic manipula-
tions to prove even basic theta function identities by hand, a tedious (perhaps unfeasible) task
for more complicated identities.

In this thesis we present computer algebra algorithms to deal with several general classes of
theta function identities in computer-assisted manner. One essential mathematical tool used
for developing these algorithms is complex analysis, in particular, mainly modular form tech-
niques and the theory of elliptic functions.

Our algorithmic approaches can be used to prove identities from very general function classes
within a few minutes; moreover, we can also discover identities from such classes in a
computer-assisted way. We have implemented the algorithms into a Mathematica package

“ThetaFunctions.”

As a by-product, relations (old and new) involving the Weierstrass elliptic function are found.
Moreover, our algorithmic approaches can be extended further to other classes of identities, for
example a substantial amount of identities in Ramanujan’s lost notebooks and in other research

monographs and papers.
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Chapter 1

Infroduction

The theory of theta functions is far from a finished polished topic. -D. Mumford

The overall objective of this thesis is to provide tools for the computer-assisted treatment of
identities among Jacobi theta functions. In most of the books and papers about Jacobi theta
functions or containing Jacobi theta functions there are many identities, for instance [9], [18],
[23], [35], etc. Especially, in the book series “Ramanujan’s Notebooks I-V” [3], [4], [5],[6], and
[7] there is a substantial amount of identities involving theta functions, which are mostly in
Ramanujan’s notation but can be written in terms of Jacobi theta functions. For example the
well-known identity

62(0,9)* +64(0,9)* =103(0,¢)" (1.1)

has the form
0*(q9) = ¢*(—q) + 169y* (%)

in Ramanujan’s notation. Many researchers, e.g., B. C. Berndt, J]. M. Borwein, P. B. Borwein,
E. G. Garvan, etc., have been studying them and their applications for decades. In particular,
in partition analysis Ramanujan’s modular equations are widely applied, which are alterna-
tive expressions of Jacobi theta function identities. For instance, a form of the cubic modular

equation [17, p. 218] is

03(9)03(q°) — 04(9)04(q’) — 2(9)02(¢”) = 0.

1'We use the notation f; (z1,22,...) = fo(z1,22,...) if we want to emphasize that the equality between the functions
holds for all possible choices of the arguments z;.



2 Introduction

Since there was no global way of dealing with theta function identities, they usually use differ-
ent manipulations to prove different identities. Then the motivation of this thesis came to us,
namely, developing an algorithmic approach to systematically deal with theta function identi-
ties. More specifically, we expect to develop a package that whenever people want to prove an
identity or acquire new relations among theta functions, they press on a button then wait a few
seconds and the result will be shown on the screen.

In the first step of development, this amounts to zero-recognition of Taylor coefficients of the re-
spective series expansions of theta functions, which are some combinations of Gﬁk) (O|t). Hence
in Chapter 3 we deal with identities among ng) (0|t). The main content of Chapter 3 is also in
our paper [34]. In Chapter 4 we involve another variable z € C, and deal with identities among
ng) (0]t) and 8;(z|t). In Chapter 5 we extend the function space further and study identities
among Gg-k) (0|t) and 0;(az|t) with a € N\{0}. Based on our decomposition theory in Chapters 3
and 4, we are also able to generate relations of any given degree, which is described in Chap-
ter 6. In Chapter 7 we present some work that is ongoing or will be solved in the near future. In
Chapter 8 we introduce the Mathematica package “ThetaFunctions.” Since the programming
of the package is not completely done, we mainly present some key features that are already
available in the package.



Chapter 2

Preliminaries

Throughout the thesis N:= {0,1,2,...}, H:= {ze C: Im(z) > 0} and K < C is a field. We assume

i /4

that K contains all the complex constants we need (i.e., i, e*/%, etc.). In algorithmic contexts,

K is an effectively computable field. Throughout the thesis for z = ce® (¢ > 0,0 < ¢ < 27) we
define z" := c"e"® for r e 17Z.

2.1 Elliptic Functions

Definition 2.1. [15, Def. V.1.1] A subset L < C is a lattice, if and only if there exist two “vectors” ®;
and o, in C, which are linearly independent over R, and generate L as an abelian group; i.e.,

L:=7m + Zo, = {mm, + no,; m,n € Z}.
Definition 2.2. [15, Def. V.1.2] An elliptic function for the lattice L is a meromorphic function
f:C—>Cu{omw}

with the property
fz+®)=f(2) for@me Land ze C.

In this thesis we usually write an elliptic function without mentioning the corresponding lat-

tice, when it is clear from the context.
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Theorem 2.1. [15, p. 253, Th. V.1.3 (The First Liouville Theorem, |. Liouville, 1847)] Any elliptic

function without poles is constant.

Definition 2.3. Let 0,0, € C be linearly independent over R. A period-parallelogram with periods w;
and o, is denoted by
P(®y,m;) := {110 + 1, : 1,6 € [0, 1]}

Note. In this thesis we mainly use the case ®; = ® and w, = ©t where tH.
Definition 2.4. Given a meromorphic function f on C, we define
poles (f) :={ze€ C: f has a pole at z}

and
zeros (f) :={ze C: f has a zero at z}.

Definition 2.5. Given a lattice L = C, two points z;,z, € C are equivalent with regard to Lif z1 —z2 € L,
denoted by z; ~1, 2.

Lemma 2.1. Let L be the lattice generated by ®;,m, € C. For every z € C there exists one and only one
point z; € P(®y, ;) such that z; ~p z.

Proof. For any fixed z = aw; + bw, € C with a,b € R, we can always find m,n€ Z and 11,1, € [0, 1|
such thata =m+t and b =n+1,. Let z; :=110; + 1, then z; € P(®;,®;) and z; ~f, z. Assume
there exists another point z, € P(®;, ;) with z; ~1 z, then z, ~1 z1. Suppose 25 := 130 + 140,
with 13,14 € [0,1[. Thent; —t; € Zand t4 — 1, € Z. This implies t3 = t; and t4 = 1, i.e, o =z1. O

The following theorem is crucial for zero-recognition later in Chapters 4 and 5.
Theorem 2.2. For any nonzero elliptic function f with periods w, and o,, one has

# (poles (f) N P(o;,0,)) = # (zeros (f) N P(o,0,)) .

Note. poles (f) nP(w;,0,) and zeros (f) N P(o;,®,) are finite sets.
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Proof of Theorem 2.2. Let H := {z€ P(w;,m,) : f has a pole or zero at z}, hj := max{r; : 1;0] +10; €
H with t,hh € [0, 1[} and hy = max{tg THO+ o e H with t,lh € [0, 1[} We define a closed
period parallelogram by

P(a;01,0,) := {a+bw; +co, : b,ce[0,1]}

with
L—h 1=k
a:=— —
2 ! 2

The following image interprets the positions of P(a;®;,®,) and P(®;, ;).

).

P(a;®1,0,) y

By the definition of P(a;®;,,), one can easily check that for any y € P(®;,,) if y is a zero (or a
pole) of f(z), then y is also in the interior of P(a;®;,,); and f(z) has poles or zeros neither in
the gray area

{z:ze P(w,m,) and z ¢ P(a;®1,m,)}

nor on the line segments where P(®;,®,) intersects the boundary of P(a;®;,®;). Hence by
Lemma 2.1, f(z) does not have any zeros or poles on the whole boundary of P(a;®;,®,), and
no zeros or poles in the region

{ZI zep(a;(ol,coz)} andZ¢P((l)1,0)2)}.

Therefore the set of zeros and poles in P(®w;,,) is equal to the set of zeros and poles in the

interior of P(a;®;, ;).

By a classical argument, e.g. [11, p. 23, Th. 3] we complete the proof. O

Note. Usually in the literature Theorem 2.2 is stated in different ways, e.g. in [11, p. 23, Th. 3],
[20, p. 75, Th. 3.6.4] and [31, p. 432].
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Lemma 2.2. [31, p. 434] The series

1 1
<mm)ez22\{(o,o>} < (z—men —nap)  (moy +ney)? >

converges absolutely and uniformly (with regard to z) in compact sets in C which contain no points in
the lattice L := {m®; + nwy; m,n € Z}.

Definition 2.6. (Weierstrass ¢ Function) For z € C\{0} we define

P00, ) = = + D ( 1 | )
7;,01,02) 1= — — - - ).
e\ {(0,0)) (z—mw; —nwm)?*  (mo; +nw,)

One sees that @ is analytic in C\L and has poles of order 2 at each point of L, and we can

compute the Laurent expansion of ¢ at z = 0.

Proposition 2.1. [15, p. 266, Prop. V.2.11]

1 e8]
P(z;01,00) 1= 2 Z(2k+ 1) Exin (01, 00)2%,
=1
where Ex2(01,00) 1= D (mo; + nw,) =22 is an Eisenstein series.

(mn)€Z2\{(0,0)}

Note. The series Ex;12 converges absolutely when k > 1.

By Lemma 2.2, we can differentiate the series for £(z; 0;,®;) term-by-term and obtain

0. 2
P (zo,m)=— 3

o6}
Z (2k + 1) Egiinz?* 1. 2.1)

It is important to note that the functions ¢ and g’ depend on the lattice generated by w; and
. However, in this thesis 0, = wand o, = n7, thus instead of writing §(z; 7, nt) and @' (z; 7, wT)
everywhere, we use the abbreviations §(z) and g'(z).
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2.2 Jacobi Theta Functions

The functions that are the building blocks of this thesis are the Jacobi theta functions defined

as follows.

Definition 2.7. [14, 20.2(i)] Let te H := {z € C : Im(z) > 0} and q = ™", then

01(z,q) 1= 01 (2lt) := 2 3 (= 1)"g" 2 sin((2n + 1)z),

18

Il
o

n

g2 cos((2n+ 1)z),

18

02(z,q) := 02(z|T) :=2

n=0
L 2
03(z,q) :==03(z|7) ;=1 —1—22 q" cos(2nz),
n=1
& 2
04(z,q) :=04(z|T) := 1+2Z(—1)"q” cos(2nz).
n=1

For fixed t € H, Definition 2.7 implies that the 8;(z|t) (j = 1,...,4) are analytic functions on the
whole complex plane with respect to z. For fixed z € C, the 0;(z|t) (j = 1,...,4) are analytic

functions of 7 for all t € H, and correspondingly, analytic functions of ¢ for |g| < 1.

Proposition 2.2. [31, 21.12] For each j € {1,2,3,4}, 6(z) has one and only one zero in P(n,nt). The
zeros of 01(z), 82(z), 03(z), 84(z) are at the points congruent respectively to 0, 5, T+ %, 5t modulo
{mn+nnt: mnel}.

One can check by using Definition 2.7 that the following lemma holds.

Lemma 2.3. [31, p. 465] Let N := e ™"2, For je {1,2,3,4} we have 0 ;(z +7t|t) = €/()0,(z|t) and
0j(z+m|t) = €2())0(z|t), where €,(j) and € (j) are defined in Table 2.1.

j 1 [ 23] 4
e(j) | -N| N [N|—-N
&) | -1 |1 1] 1

Table 2.1
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For the other variable 7, the theta functions have the following transformations.

Lemma 2.4. [31, p. 475] For the substitution ©— —1/ton 6;(z|t) (j = 1,...,4) we have
1 . L1 1 NP v

0; (z\ —T> = —i(—it)2e = 01(zT|T); 6, <z| — T> = (—it)2e © B4(zT|7);
1 N 1 1o

03 (Z‘ — r) = (—it)2e © B3(zT|T); B4 (z‘ — 17) = (—it)2e © By(zT|T).

Directly from Definition 2.7 one can deduce the following:
Lemma 2.5. For the substitution tT+—t+10n6;(t) (j =1,...,4) we have

01(zlt+1)=e70;(z1); Ox(z|t+1)=e"0,(2)7);
03(z[t+ 1) = 04(2[7);  Ba(zft+1) =03(z[1).

(k)

In Chapter 3 we will generalize Lemmas 2.4 and 2.5 to the derivatives 6; (z|t), where

k

0°0;
0 (/) 1= Sz, ke .

2.3 Modular Forms

In the literature one finds several variants of definitions for modular forms. In this thesis we
use the [15, p. 326, Def. V1.2.4] for analytic functions on H.

Definition 2.8. Let

SL(Z) := {( ‘ Z ) - ad —be — landa,b,c,deZ},

q = €™ and t € H. Given k € Z, a modular form of weight k is an analytic function f on H such that

cT+d c

f (“Hb ) = (ct+d)¥f(r) forall (" Z) e SL,(Z), (2.2)
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and where f(t) can be written as a Taylor series in powers of g with complex coefficients; i.e.,

o0
f(R) =) a,e™™ = 2 ang". 2.3)
n=0
We denote the corresponding analytic function by
- 0
flq):= Z anq
n=0

Note. Substituting ( ) ( ) in (2.2) we obtain f(—¢) = f(t+1) = f(t) = f(q). There-

~ 0 @
fore f(—q) = Z a(—q)" = Z f(g), which implies by comparison of coefficients that
a, = —ay, for all odd neN. Consequently,

ee}
q) = amqg™ (2.4)
n=0

In the literature, as in [15], one often replaces (2.3) in Definition 2.8 by (2.4). We prefer to stay
with (2.3) in order to keep
g=e"" 1eH

throughout the thesis.

Example 2.1. When k > 1, the Eisenstein series Eyi2(m,nt) is a modular form of weight 2k + 2.
Example 2.2. Let e := £(03(0,9)* +04(0,9)*), e2 := —1(02(0,9)* +63(0,9)*) and e3 := 1(8,(0,¢)* —
04(0,9)*). Using Lemmas 2.4, 2.5 and 2.6 one can verify that the product e ezes is a modular form of
weight 6. 1

Definition 2.9. The K-vector space of modular forms of weight k € N is denoted by M (H).

Lemma 2.6. [29, p. 78, Thm. 2] The group SL,(Z) is generated by

L 0 -1 L 1 1
S'_<1 0>andT.—<0 1).

1Accorcling to [11, p. 33], ejeze3 = 35E4(m, mT).
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Definition 2.10. [29, p. 84] Let f be a nonzero meromorphic function on H, and a be a point of H. The

integer n such that f /(T —a)" is holomorphic and nonzero at a is called the order of f at a, and is denoted

by va(f).

One observes that
>0, ifaisazeroof f,

va(f){ <0, ifaisapoleof f,

=0, otherwise.

Definition 2.11. Let f be meromorphic on H satisfying

0¢] ] o0
f(‘C) = Z a,e™v" = Z anq'.
n=0 n=0
Ifay=--- = ap—1 = 0and a,, # 0, we define the order of f at w0 by v, (f) := m.

21T

Note. In classical textbooks g = ™" is used, thus their order of f at o is equal to our %Voo (f)-

Suppose f is a non-zero modular form of weight k, and let ( i Z > = ( 701 —Ol > then by

(2.2) we have

which means k must be an even number. Therefore in textbooks people often say a modular
form of weight 2k. But in this thesis for simplicity we prefer to say a modular form of weight k.
Using this together with the Note above, we rewrite valence formula from [29, p. 85, Th. 3] as

the following theorem.

Theorem 2.3. Let f be a modular form of weight k, then

1 k
EVOO (f) + Z ervr(f> = 12 (2.5)
reH/SL,(2)
where
1 1 0 e 2n
H/SLy(Z) :={zeH: 3 <Re(z) < 3 and |z| > 1, or z = €" where 7S 0 < 3

e,~=%,ewzéwithw:z—%—kgand@:lwhenr;ﬁi,w.
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Note. H/SL,(Z) gives a complete set of representatives of the group action of SL,(Z) on H. But
we omit the proof here.

By Definition 2.8, f is holomorphic on H, and every term on the left hand side of (2.5) is non-
negative. Hence

Voo (f) <

AN =

and we deduce the following corollary.

. o0
Corollary 2.1. Let g := ™" and f € My(H) with the g-expansion of f be Y. a;q'.
t=0

Ifa;j=0for j<|%], then f =0.
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Chapter 3

Proving Identities among Powers of
0'Y(0]7) (Class I)

To introduce the general idea and application domain of the method presented in this chapter,
consider the following lemma that has been used in numerous papers like [8], [19] and [16] to

prove relations between Jacobi theta series.

Lemma 3.1. [2](Atkin and Swinnerton-Dyer Lemma) Given a non-zero meromorphic function f on
C\{0} with f(wx) = cx" f(x) for some integer n and non-zero complex constants ¢ and w with 0 < |w| <
1, then

# poles(f) = # zeros(f) +n

in|w| < x| <1.1

To do zero recognition of such f(x) = f(x,q), where ¢ is a parameter, the lemma classically
is applied as follows: one cleverly chooses sufficiently many zeros xi,...,x, in the domain
lw| < |x| < 1. According to the lemma the number m of such zeros needs to be greater than the
number of poles of f minus #, in order to show that f is identically zero. By their clever choice
of x1,...,%n, f(xi,q) is a modular form when viewed as a function of g. And, zero-recognition

of modular forms is algorithmic owing to methods using Sturm bounds or valence formula.

Our approach is different and streamlines the idea above by choosing only one evaluation point,
namely x; = 1 for all i, and by verifying that f()(1,q) = 0 for j € {0,...,m — 1}. In this way we
prove that there is a zero of multiplicity at least m, which again implies that f(x) = 0.

1By # poles(f), resp. # zeros(f), we count poles, resp. zeros, with multiplicity.
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A crucial point is that, despite for j > 1 the Taylor coefficients, in general, are not modular
forms anymore, the task of proving such relations like £/)(1,g) = 0 again can be carried out
algorithmically for a large class of problems specified below. The functions that are the build-
ing blocks of this class are the Jacobi theta functions 0;(z|t) (j = 1,...,4) and their derivatives
evaluated at z = 0.

To illustrate our method of using Lemma 3.1, we consider the following classical example

which generates identity (1.1).

Example 3.1. [14] For g€ C with 0 < |q| < 1, prove

93 (07 q)293 (Z,Q)Z - 94(07 Q)264 (Z,Q)Z - 62 (07 Q)zez(z7q>2 =0. (31)

Proof. Let f;(x) := 0;(z,q) with x(z) = €*. Then using the series expansions in Definition 2.7 one
can verify directly that ff(qzx) =g 2x? sz (x). Define

g(x) :=02(0,9) f2(x)* — 03(0,9) f3(x)* — 04(0,¢)* fa(x)*.

Observing that g(¢*x) = ¢~ >x2g(x), to prove the identity, by Lemma 3.1 it is sufficient to show
that g(x) has at least three more zeros than poles in |¢?| < |x| < 1. By Definition 2.7, g(x) has no
pole in C. The Taylor expansion of g(x) around x = 1 is

) =)+ ¢ (0= )+ £ 1724 D1y o1y,
We need to show
g(1)=0, ¢(1)=0 and g"(1)=0. (3.2)

Let h(z) := LHS of (3.1). Because h(z) = g(e*?) = g(x), 1 (z) = 2ixg'(x) and h"(z) = —4xg'(x) —
4x%g" (x), to show (3.2), it is sufficient to show

h(0) =05(0,9)* —62(0,9)* — 64(0,9)* =0, (3.3)
K (0) =263(0,9)°05(0,4) —262(0,¢)°05(0,q) —264(0,9)*6,(0,4) =0, (3.4)
and  7"(0) =03(0,¢)°65(0,¢)* — 02(0,4)°65(0,¢)* — 04(0,¢)°6}(0,¢)°

+63(0,9)°05(0,9) — 62(0,9)°65(0,9) — 84(0,4)°64(0,4) = 0. (3.5)
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Note that identity (3.4) is trivial because 8} (0,q) = 65(0,9) = 6,(0,¢) = 0. The other two equali-
ties will be treated below. In general, proving such identities can be done in a purely algorith-
mic fashion which will be explained in this chapter.

3.1 Problem Specification

For fixed t € H, Definition 2.7 implies that the 8;(z|t) (j = 1,...,4) are analytic functions on the
whole complex plane with respect to z. For fixed z € C, the 0;(z|t) (j = 1,...,4) are analytic
functions of 7 for all T € H, and correspondingly, analytic functions of ¢ for |¢| < 1. When z =0,

>,keN.
z=0

we often denote
oke j

®) g . 00 _ 79
o= S| (-G ea)

Definition 2.7 also implies that ngl)(‘c) = 0 when k; € 2N, and 9,%2)(1) =0 (m = 2,3,4) when

k> € 2N + 1. Hence in the following setting we omit these cases.

. . . k .
Let {x;t}ken,j=1...4 be a set of indeterminates. For convenience, we use xﬁ- )= x k- Sometimes

we write x; for xgo) and x;- for xgl). Define Rg := K[®], where

0:= {6 ken}u{of: keNand j=2,3,4},
and Ry := K[X] where
Xi= {0 ken} o () keNand j-2,3,4}.

By a homomorphic extension we define the K-algebra homomorphism?

q): RX—>R(")7

X o),

In this chapter, we solve the following membership problem algorithmically:

2Here a K-algebra homomorphism is a ring homomorphism and a K-vector space homomorphism.
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Problem 3.1. Given p € Ry, decide whether p € ker¢.

To solve this problem, we need to extend the K-algebras and the map ¢ as follows:

0*:  Rx[s*] > Re[8%],
(k) (k)
X 0 i
52 82,
where for all te Hand re 1N, & (1) := 1. Since ¢ and ¢* are surjective, we have Ry /kerd = Re
and Ry[s2]/ker¢* =~ Rg[82]. Here we consider s? as a symbol for an indeterminate. We prefer to
use 52 instead of choosing a standard indeterminate like x or y as usual for polynomial rings.

Later from Section 4.1 on, we will also need to go to the quotient field of K[®], denoted by
K(®), which consists of all quotients P[®]/Q[0®] with P[®],Q[®] € K[O].

The chapter is structured as follows. In Section 3.2 we introduce a notion of degree in the
K-algebra Ry, and based on this we state a way to decompose any p € Ry into homogeneous
polynomials in Ry. We prove that showing p € ker¢ is equivalent to showing that the corre-
sponding homogeneous polynomials are in ker¢. In Section 3.3 we develop a recursive algo-
rithm to determine for a given homogeneous g € Ry whether g € ker or g ¢ kerd. In Section 3.4
we obtain a refined non-recursive algorithm which is more convenient to implement and with

linear computational complexity in the length of g.

3.2 Homogeneous Decomposition of p € Ry

We first extend Lemma 2.4 to derivatives.

Proposition 3.1. Define A := (—ir)% and E = "5 For (u,v) € {(1,1),(2,4),(3,3),(4,2)} and ke N
define

k
gu(k) = (EA)™! aagv (Z| _ 1) |

Then g, (k) can be written as

gu(k) = pro(2)0u(zT|T) + pr1 ()0, (zT|T) + -+ + pk7k(z)9,(,k) (zz|7) (%)
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: K (i) T
with pyj(z) = 5 (3) * © 2 By,(z) and

B () ao(k, j) —i—az(k,j)z2 +a4(k,j)z4 + -+ ap—j(k, j)zk’j, k— j even;
k7.j = .
a(k, j)z+az(k, )22 +as(k, j)2> + -+ ar—j(k, )27, k— jodd,

where for L € {0,...,k— j} when (u,v) = (1,1),

_ it 2 26
ag(k,j) = —i (n) W, (%)

and when (u,v) € {(2,4),(3,3),(4,2)},

2

Proof. We prove the statement for (u,v) = (1,1). The other three cases are analogous. We first
prove by complete induction on k that for k € N the relation (*) holds where the p; ;(z) (0 < j <k)

are polynomials in z. Then we prove that By j(z) has the desired form.

For k = 0 we have pgo(z) = —i by Lemma 2.4. Assume that (x) holds for k = n where the p, ;(z)
(0 < j < n) are polynomials in z.

Let k =n+ 1. We have

_,0"le 1 2iT 0
gi(n+1)=(EA)"! aznﬂl (z]—) = e )+ gl(n).

Since @"é—g’“) = Ppo(2)01(27[T) + (TP o(2) + P} 1 (2)) 0 (zT[T) + - - + Tp,,,,,GE”H) (zt|T), we obtain g (n+
1) = pn+10(2)01(zT|T) + put1.1(2)0](z7]T) + - +pn+1,n(z)6§"+1)(zr\1), where the p,.1(z) (j =
0,...,n+1) are polynomials in z.

Using the fact just proven we can exploit a recursive relation for g; (k) in the following way. On
one hand, by

EAgik+1)= 0 ( _1> _ AEAsI(K)

Ozk+1 T 0z ’
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we obtain
2izT og1(k
gik+1)= igl(k)ﬂL g(;()
Z
.k k
2izT 0 ;
=N e (2)8) (z1ln) + 2( pisle ”Pk,j—l(Z)) oy (ztlr)
T —
0
+Tpk7k(z)65k+l)(z1:]‘c) + pg’z( )Gl(ztl‘c).
On the other hand,
k1 .
gilk+1) = per1 ()01 (),
=0

and by coefficient comparison, and defining py —1(z) := 0 and py x+1(z) := 0 we obtain,

2izT opr.i(z .
Pi+1,j(2) = Tpk,j(z) + 6;( ) +Tprj-1(z), 0<j<k. (3.6)

Now we can prove that By ;(z) has the desired form by induction on k € N. By definition we
know By (z) = —i. Assume for k = n, By j(z) has the desired form. Let k = n+ 1. Applying (3.6)
we have for j=0,...,n+1,

(n+ D)Boy1 (2) = 22 (”) "Buy(o) + <”>_ 63’52@ B (2).

Case 1: n— jis even. Then

0 DB =2 () o)z axn ) 4+ )

_1

o\~ '
+ <ln> (2a2(n,j)z+4a4(n,j)z3 +oe (n—j)an_jznfjfl)

+j(a1(n,j— 1)Z+a3(l’l,j— 1)23 + ... +an—j+1(n,j— I)Zn_j—H).
We compare this to
Bui1j(@) =ai(n+1,j)z+a3s(n+1,/)2 +as(n+1,/) + - +an_jp1(n+1, )"+,

and obtain for 1 <2m+1<n—j—1,

1 1
. 1 iT)?2 . it 2 . . .
02m+1(”+1,1) = (2 (n> azm(”7])+ <TE) (2m+2)a2m+2(”,1)+]Clzm+1(”7]_1))

n+1
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B —i <Z'C "’H‘% 22m+l +<l.’c>m+% 22m+2
n+1\\m em)!("5L —m)!  \® @m+ 1)L —m—1)!

and for2m+1=n—j+1,

a2m<n+ 17.])

1T
( <n> ayn(n, j) + jaom+1(n, J—1)>
s 2m—+1 .
i (z’t) 2 | <l+ j
T+l 2m)! ("5 —m)! 2m+1

; m+% 22m+1
ofd)

@m+1)!1("5L —m)!

Thus for 1 <2m+1<n—j+1, ayni1(n+1,)) satisfies (xx).
Case 2: n—1t is odd. This case can be treated in the same way as Case 1, and the compu-

tation shows that for 0 < 2m <n—j+ 1, ayn(n+ 1, j) satisfies (x*). Thus we have proven that
By+1,j(z) has the desired form. O

Applying Proposition 3.1 with z = 0, we have:

Corollary 3.1. For ke 2N +1,

o® (_L1\ _ ;3 SV AA N TSN T
I = (=) Z p .,(k—j)!T 6,7 (1)

We are going to carry these analytic relations over to the symbolic algebra.
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b

Definition 3.1. For y= ( a 4
c

) €SLy(Z), ke Zand f: H — C, we define f|y: H — C by

(D) = (et +d)~*f (‘cf - f;) |

For instance, for the generators § and T, we have
(FlkS)(x) =" f(=1/7) and (feT)(7) = f(T+1).
Note. This action f|iy of Yy on f (for fixed k) is a group action. Hence knowing the action of
generators (here S and T acting on the function space) gives the full action.
Definition 3.2. We define G to be the permutation on {1,2,3,4} that transposes 2 and 4.
Definition 3.3. We define two K-algebra homomorphisms:
So: Re — Re[87]

by

and

(k) N k i\ ?2 k! ktitL ()
Sx(x7) = (=i)? Z = s

if ke 2N+ 1; and of

ifke2Nand ue {2,3,4}.

3S0f €Re [8%] owing to Corollary 3.1.
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Lemma 3.2. The following diagram commutes:

Ry S—X> Rx[sf]

0| |o*
Re — Re[8?]

Proof. The way Sy was introduced in Definition 3.3 as a homomorphic extension satisfies ex-

actly the required property. O

By Definition 3.3 we know the explicit form of Sx (p) for any p € Rx, and can set up the following

convention.

Convention. Whenever for a non-zero p € Ry we write
n
SX(p) = Z Sijj7
j=1
we assume that .
pieRx\{0} and ¢ <---<c,withcje EN'
For c € N the notation (s°)q refers to the coefficient of s° in g € Ry [s%].

Example 3.2. Let p = xg‘)xﬁ(. Then

Sx(p) = pas’ +p3s6 +p2s5 —|—p1s4,

4) 2 4) + 12 .10 12i 24i __ 24

. L/ . . v /! .
where py 1= —1x2x( , D3 1= 7X0X TX9XY, P2 = T3 XaXy + T3 XoXy and py = 3X2X4.

Now we consider the action when T +— T+ 1. Also the relations in Lemma 2.5 are carried over

to the algebraic side.

Definition 3.4. For k € N we define two K-algebra homomorphisms

To: Re — Reo

(Tof)(7) == (floT)(v) (= f(t+1));
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and
Tx . Rx —>Rx,

by the homomorphic extension of

( (2k+1) )

Tx (( )) ( ) and TX(xfk)):zxgm.

Analogous to Lemma 3.2 we have:

Lemma 3.3. The following diagram commutes:

RX —> RX
0l o
Re 70> Re

Proof. By Lemma 2.5 and Definition 3.4 we have

o(Tx () (1) = (e X x) (1) = e¥0V (1) =00 (14 1) = 0 (1 + 1) = (Moo (1)) ().

Analogously we have ¢(Tx (xﬁk)))(r) = ¢(x§.k)) (t+1) for j = 2,3,4. The rest follows from the fact
that Ty is defined by a homomorphic extension. O

Example 3.3. Let p = xé )X, Then

T 4
Tx(p) = e4xg )xg/.

Note. Obviously, 7§ = id.

A non-trivial monomial in Ry is a finite product of elements in {xﬁ.k) :keN,j=1,...,4}. The
empty product gives 1 € Ry; it is considered to be the trivial monomial. Hence a polynomial in
Ry is a K-linear combination of monomials in Ry.

(k) o) (k)

Definition 3.5. We define the degree of a non-trivial monomial x; "' x

Jie{l,...,4} by

€ Ry where k; € N and

Do)y =7 S,
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and define the degree of the trivial monomial by Deg(1) := 0. For every polynomial p € Rx, define
Deg(p) := highest degree of the monomials in its K-linear representation. If all these monomials have
the same degree, we say this polynomial is a homogeneous polynomial.

Example 3.4. Deg(—x?)) =7 Deg(2x§3)x4) =4, and 2x§3)x4 - E»xf)x’1 is a homogeneous polynomial.

Note. This definition is related to the weight of modular forms. See Definition 2.8 and
Lemma 3.11.

According to Definition 3.5, we can write a polynomial p € Ry as a sum of homogeneous poly-
nomials with pairwise different degrees. We are going to show that p € Rx is in ker¢ if and only
if these homogeneous parts are all in ker¢. The key tool we use here is the Sx operation. We
shall start by studying the patterns of the Sy action on monomials of Ry.

n
Lemma 3.4. Let p € Rx be a non-trivial monomial and Sx (p) = >, s p;. Then the p; are homogeneous

t=1
and

Deg ((s“)Sx(p)) = Deg(p:) = 2¢t —Deg(p), 1<t<n.

Moreover, we have

= Deg(p)

and, pr_x k) (kz) .x(km)

NS _ sDeg(p) S = (—i %+Cx(kl) x(kZ) ”.x(km)
™S (p) = PPy (p) = (i) Hexll) o) Lyl

where ¢ = number of 1s in (i, ia, ... ,in).

Proof. Suppose p—x( D (kZ) : ,(rf'”)

Then

with x;; =x;, = =x, =x;and x;;, # x; forc+1 < j < m.

3 5] Im

B <( )2X(k1) kit —i—Dx(k1 D=3 ... 4oy s21+1)

N (K ke1=2) keyi—1L Kerr 1
<(—l)2x( c.+1) sk(+1+z+mx( c+1— )Skc+1 24 X, ) 2 +2)

S(ict1) S (ict1)

3The boxes o stand for coefficients in K whose exact values are irrelevant for the proof.
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B —

(bt s )

Hence (P78 (p) = (s)Sx(p) = (=) xl) o8  xl) and

In the expansion of Sx(p) each monomial has the form

n ki+% a; M
Hx(k./. aj) ki j+i—a; _sjzl 2 ,-; ! Hx k,-.—2a,-)
o(ij) o(ij)

Jj=1 j=1
" (k=2a))
Deg(p)—a H j <4
s Yo(i)
j=1

where the a; are integers with 0 < a; < ’ forc+1<j<mand

m
a:= ) aj. Thus
j=1

Deg <<sDeg P)=5Sx (p ) Deg (ﬁ (kj=2aj) > :% i kj—2a;) = Deg(p) —2a.

Jj=1

Substituting Deg(p) — a by ¢, we obtain

Deg ((s“)Sx(p)) = 2¢; —Deg(p), 1<t<n.

For convenience we have:

Definition 3.6. For monomials p = xflkl) .. .ng’”) € Rx we define
u(p) : =m;
vi(p) : = number of 1s in (iy, ..., in),
Va(p) : = number of 2s in (iy, ..., i), and
(ki) (k)
O(P) = *o(1) "+ o)
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Now we study the Sy operator on homogeneous polynomials.

Corollary 3.2. Let p € Ry be homogeneous. Then Sx(p) = 0 if and only if p = 0.

Proof. “ <= "is obvious. So we prove “ = ". Assume 0 # p = a|p| + - +a,p, with the p; € Rx
linearly independent monomials over K\{0} with the same degree and the a; € K\{0}. Then
the o(p;) are also linearly independent monomials over K\{0} because the involution ¢ is an

automorphism on Ry, and

(sPEP)8x (p) = (PP (@1Sx (p1) + -+ + @uSx (P)
= ar(sPEP)Sx (p1) + -+ + an(s"EP)Sx (pn)

. u(py) u(pn)
= ay (—i)" P

6(p1) _|_ e +an(_i)vl(pn)+ 2

G(l’n)'

upj)

Since the (—i)¥1(P)*~2" are non-zero, we obtain (sP€(")}Sx (p) # 0. Therefore Sx (p) +# 0. O

n
Lemma 3.5. Given p € Ry homogeneous, and Sx(p) = >, s p; with p; € Rx and ¢, € %N such that
t=1
¢l <---<cy, then
(i) Deg(py) = Deg(p) = cx;
(ii) for t € {1,...,n} the p, are homogeneous ;

(iii) for i, j € {1,...,n} with i < j we have Deg(p;) < Deg(p;).

Proof. Suppose
p=rihi+---+rgshy

with ry € K\{0} and pairwise different monomials 4, € Rx. By assumption on p we have
Deg(h¢) =Deg(p) =:d forall £ € {1,...,q}. Suppose, for 1 <l <gq,

ny
he) =D s pe,
t=1

where the ¢/, and p,, are as in Lemma 3.4. Then

q

Z reSx (he) = Z Z repes

=1 =1 (tr)ec;
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where {c1,...,c,} = {cr; 1 1 <€ <gq, 1<t <n/} with the ordering ¢; < ¢, <--- <¢,, and
Ci:={(t,r)e{l,....q} x{1,...,n4} : coy = cj}.
Now the statements follow from observing that for (¢,7) € C; by Lemma 3.4
Deg(pe;) =2co; —d =2cj—d,
and for (¢,t) € C, (i.e., t = ny) again by Lemma 3.4

Deg(pes) = Deg(pen,) = con, = Deg(hy) = d = cp.

Remark. Note that Lemma 3.5 actually justifies the definition of Deg and also the Convention
we introduced after Definition 3.3. Namely, the highest power of s in Sx(p) is Deg(p).

n
Definition 3.7. For each g € Ry [s%] with q = ) s p;, using the Convention, we call p, the leading
=1
coefficient of g, denoted by Ic(q). We define 1c(0) := 0.

Definition 3.8. Let RS := {p € Rx : p homogeneous with Deg(p) = d} u {0}. We define the map

S: RY— R,

by S(0) := 0 and if p # 0:

~

S(p) :=1c(Sx(p))-
Example 3.5. §(x§3)X4 —xf)x’z) = —x?)xz + ixgz)xﬁl by Lemmas 3.4 and 3.5.

Proposition 3.2. The map S is a K-algebra homomorphism and S8 = id.

Proof. The linearity of § is obvious by Lemma 3.5. From Definition 3.3 we see that § also
preserves the multiplication. Thus S is a K-algebra homomorphism. Let p € R% be such that

q
p = rehy with rp € K\{0} and with monomials 4, € R%. Then, by Lemma 3.4, for 6 = (2,4)
=1

S (p) =rS¥ () + - + S8 (hy)

:rl(_i)S(@er(hl))G?S(hl)+“‘+rq(_i)fi(@Jrvl(hq))GS(hq)



3.2 Homogeneous Decomposition of p € Ry 27

According to Lemma 3.5, for any homogeneous p € Ry, Sx(p) has a presentation of the form

n

Sx(p) = Y s pi € Ry[s?] (3.7)

i=1

with homogeneous p; € Rx\{0} and where
c]<--<c, and Deg(p;)<---<Deg(pn);

moreover,

cn = Deg(pa) = Deg(p).
Definition 3.9. A sum presentation of Sx(p) as in (3.7) is called S-form presentation. We also say that
Sx (p) written as in (3.7) is in S-form.

n
Lemma 3.6. Suppose p € Rx with p = Y. p;, where the p, are homogeneous and Deg(p;) < Deg(p;) if

t=1

m ~
i< j. IfSx(p) = > s“q, is in S-form, then S(pp) = gm.
=1

Proof. First, by Lemma 3.5, we observe that

Deg(p;) = highest power of s in Sx(p;). (3.8)
One has,
G =1¢(Sx(p)) = 1c(Sx (p1) + -+ + Sx(pn)) =1¢(Sx (Pa) = S(p),
where we used (3.8) together with Deg(p;) < Deg(p,) forie {1,...,n—1}. O

For our context, a special case of the slash operator, introduced in Definition 3.1, is of special

importance.

Recall Sy from Definition 3.3.

Lemma 3.7. Given F(t) € R, let (SoF)(t) = Y 1 £,(t) (¢, € sN) with f,(t) e Rgand ¢; <y < -+ <
t=1

cyp. Then F(t) =0 ifand only if f;(t) =0 forallte {1,...,n}.
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Proof. “ <" is immediate.
“ =" If F(t) =0 then (SoF)(t) = 0. Since f;(t) = fi(t+ 8), the rest can be done by using the
same method as used to prove Lemma 1.1 in [26]. O

Applying Lemma 3.2, we carry Lemma 3.7 over to the symbolic world Ry.

n
Lemma 3.8. Let p € Ry and Sx(p) = Y, s p; in S-form. Then p € ker¢ if and only if p, € ker¢ for all
=1
te{l,...,n}.

Proof. The definitions of ¢ and ¢* imply that ¢* ‘ Ry = 0 Hence for te H,

0* (Sx(p))(7) = D 0% (s7po) (1) = D 790(p) (%) = So(9(p)) (v),
r=1 t=1

where the last equality follows from Lemma 3.2. Using also Lemma 3.7, we have the following

chain of equivalences:

peker) < 0(p) =0 < Sp(0(p)) =0 < Vr: d(p;) =0,
which completes the proof. O

n
Theorem 3.1. Let p € Rx with p = ), p;, where the p, € Rx are homogeneous and Deg(p;) < Deg(p;)
=1

ifi < j. Then p € ker¢ if and only if p, € ker¢ forall t € {1,...,n}.

Proof. “ «<=" is immediate.
ni ~
“—". Suppose p € ker¢p with Sx(p) = >, s“p;, in S-form. By Lemma 3.6, S(p,) = pi1.,, and

t=1

ny ~
by Lemma 3.8, pi,, € ker¢. Next, if Sy(pi,,) = D, s pa, in S-form, then S(pi,,) = p2n, and

t=1

P2, € kerd. Iterating this process after k steps gives SK(py) = Pk, With p € ker¢. For k =8,

~ n—1

Proposition 3.2 gives p, = S%(p,) = ps., € kerd. Because p € ker¢p we conclude that Y. p, € ker9.
=1

Applying the same procedure to this element we obtain p,_; € ker¢. Iterating we eventually

obtain p, € ker¢ for all t € {1,2,...,n}. O

Note. Theorem 3.1 is fundamental for our kernel membership test.
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3.3 Membership Recognition for Homogeneous p € Ry

Definition 3.10. Given p € Ry homogeneous, define:
LT(p) := {SO TS TS .. (p) : ke N},

We call LT (p) the leading term orbit of p.

Proposition 3.3. For homogeneous p € Rx, one has [LT(p)| <27 -3 and the bound is sharp.

Proof. Since p € Rx, p is a polynomial in infinitely many variables, that is p =
f(xl,...,x4,x§1),...,xﬁl),...). Assume ¢ € LT(p), then g = 6f(x1,...,m,x&l),...,xgl),...) for

some 6 = SN TRSBTH ... §-1T¢" . One can verify that

. 1 1 . ~ A ~ (1
Gf(xl,...,X4,x§),...,xé(‘),...):f(csxl,...,(m;,cxg),...,Gx‘(‘),...).

Therefore the number of possible 6f is bounded by the number of possible infinite vectors of
the form (6xy,...,G6x4, 6x§1), . ,6x£1), ...). Such a vector is uniquely determined by the first four
entries. We checked by computer that there are 384 possible values for the first four entries.

Therefore there are at most 384 = 27 - 3 different 6 f. O

Note. In fact, in view of T = id = S8, LT(p) is the p-orbit of a corresponding group action. For
instance,
if p1 e LT(p) then LT(p;) = LT(p).

Lemma 3.9. Suppose p € Rx. If p € kerd, then Tx (p) € ker¢.

Proof. If p € ker9, then ¢(p) = 0. Hence 6(7x(p))(t) = ¢(p)(t+ 1) = 0 by Lemma 3.3. Therefore
Tx (p) € ker¢. O

Lemma 3.10. Suppose p € Ry and g € LT(p). Then p € ker¢ if and only if g € ker¢.

Proof. “ —". Suppose Sx(p) = >, s“p; in S-form. From Lemma 3.8 we know that if p € ker¢,
=1

~

then S(p) = p, € ker¢. By Lemma 3.9, Tx(p) € ker¢. According to Definition 3.10, for each g €
LT(p), there exists k; € N such that g = ki T§2§k3 T}?“ o Skt T)?” (p). Thus if p € kerd, then g € ker¢.
“ «<=". Noting that p e LT(p) = LT(g) we can apply “ —". O
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Lemma 3.11. Given p € Rx homogeneous, if §(p) € My(H)\{0} then Deg(p) = k.

Proof. By Lemma 3.5, the highest power of s in the S-form of Sx(p) is Deg(p). Thus by Lemma
3.2 we know that the highest power of T in (Sod(p))(7) is Deg(p). If ¢(p) € My(H)\{0}, then
(S09(p))(x) = 0(p)(~1/7) = T“¢(p) (). Therefore Deg(p) = k. ]

Example 3.6. ° Let p = —5-(x3 +x3) (x4 +x}) (x3 —x%). One can easily verify that p is homogeneous and
Deg(p) = 6. On the other hand, §(p) = ey eze3 where ey := (03(0,9)* +64(0,9)*), e2:= —1(8,(0,¢)* +
03(0,9)*) and e3 := £(8,(0,q)* — 64(0,9)*). One also verifies that the product ejeses is a modular form
of weight 6.

According to Lemma 2.1, to prove that f € Rg is identically zero we follow two steps: first check
if f is a modular form, then check if the first few coefficients of the g-expansion of f are zero.

But usually the given f € Rg in our context is not a modular form in the sense of Definition 2.8.
To be able to apply Lemma 2.1, instead of directly dealing with f = ¢(p) (with homogeneous

p € Rx), we deal with [] ¢(u). We first check if this product is a modular form, and then
uelT(p)
we check whether the first few coefficients of the g-expansion of this product are zero. We will

also show that if this product is zero then each single ¢(u) is zero. This will imply f = ¢(p) =0
because p € LT(p).

nj
Lemma 3.12. Let p € Ry be homogeneous and LT(p) = {p1,..., pm} with Sx(pj) = > s p;, in S-form.
=1
prj’l,pj,z,...,pj,njfl ekerq)for llllje {1,...,1’1’1} then

m

[ [0(P/)(%) € Myypieg () (H).-

j=1

Proof. By Lemma 3.2 we have for je {1,...,m},

(0(p))]0S)(1) = 0% (Sx (p)) (x) = 9 <2p> = 3003 (0)
t=1 t=1

5Cf. Example 2.2.
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Let d = Deg(p). Applying Lemma 3.5 we have ¢y, = ¢, - ** = Cmn,, = d. Suppose je {1,...,m}
is fixed. If pj1,pj2,...,Pjn;—1 € kero then

(0(p))loS)(®) = ¥'0(pjn,)-
Note that p; ., € LT(p) by Definitions 3.8 and 3.10. Thus

(0(p)oS)(7) =0(p:)

for some p; := S(p i) € LT(p). Moreover, by Definition 3.10 we have Tx(p;) = p; for some p; €
LT(p) and thus, by Lemma 3.3,

@(p)loT)(7) = 0" (Tx (p;)) (%) = 0(p:) ().

Therefore
(0(pj)laS)(t) = 0(pi)(t) and  (0(p;)|aT)(T) = 0(p:) (7).
Thus for all ye SLy(Z):
<H¢(Pj) Y) ©=]] <¢(Pj) Y) ®=]]op)®). (3.9)
j=1 dm j=1 d j=1

(k)

In fact the functions 6, are analytic on H, which can be seen from their g-expansion. Therefore

(k)

the above product is analytic on H. Again by Definition 2.7, each of the functions ;" is a Taylor

series in powers of ¢!/*, therefore also the above product is a Taylor series in powers of ¢'/*.
Setting y = (1) f in (3.9) implies that the above product is invariant under the mapping

T+— T+ 2. It is known that analytic functions with this property may be written as Laurent
series in ¢; by the uniqueness of Laurent series the product is a Taylor series in g as required

from the definition of modular form. O

nj

Theorem 3.2. Let p € Rx be homogeneous, LT(p) = {p1,...,pm} with Sx(p;) = >, s pj; in S-form.
t=1

Ifforall je{l,...,m},

) _ mDeg(p)

pj,]apj,27"'7pj,n_,'—1 ekerq) and ord (Hq)(p])(r) 6 ’

Jj=1

where ord is the order of a power series in q in the usual sense, then p € ker¢.
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Proof. If for all j e {1,...,m}, pj1,pj2,---,Pjn;—1 € ker§, then by Lemma 3.12 we have
[10(p;)(t) € My peg(p)(H). This together with ord | ] ¢(p.,-)(r)> > mDeTg(p), by Lemma 2.1, we
j=1 j=1

obtain¢ [ [ pj | = []¢(p;) = 0. Thus for some j, p; € kerp, which by Lemma 3.10 implies that
Jj=1 Jj=1
for any h € LT(p;) = LT(p), h € ker¢. Therefore p € ker¢. O

Algorithm 3.1. Let p, LT(p) and Sx(p;) be the same as in Theorem 3.2, and d := Deg(p). We have the
following algorithm to prove or disprove p € ker¢.

Input: homogeneous p € Rx. Output: True if p € ker¢; False if p ¢ ker¢.

True, if p € ker;

Define Prove(p) :=
False, if p ¢ ker¢.

If d = 0 then Prove(p) :=True if p = 0; else Prove(p):= False.

If d > 0 then

Prove(p) :=True if ord (Hd)(pj)(’c)) = dTm

j=1
and Prove(p;)and ... and Prove(p;,;,—1);

else  Prove(p) := False.

Theorem 3.3. Algorithm 1 is correct.

Proof. Suppose p € ker¢. Using p; € LT(p) and Lemma 3.10 we have the equivalences

pekerg < pjekerdforall je{l,...,m} (a)
<= pjekerf for some je {1,...,m}
— [Jopn@=0. ®)
j=1

According to Theorem 3.2, (b) together with
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(1) True=Prove(p;1) = --- =Prove(p;n;—1), j = 1,...,m, gives Prove(p) =True; i.e., p € ker¢. By
(a) and Lemma 3.8 we have pj 1,...,pjn; € ker¢ for je {1,...,m}. We iterate the above procedure
and note that owing to Lemma 3.5 the procedure terminates; namely

Deg(pj1) <--- <Deg(pjn;—1) <Deg(pjn;) =d.

Suppose p ¢ kerd. This is equivalent to

(2) p¢ ker¢ forall je {1,...,m}. In case (1) holds, then by Lemma 3.12,

m

F@) =] ]o(p))(x) € Mam(H).

j=1

Because of (2) we know that f(t) # 0; thus ord(f(t)) < % and Algorithm 3.1 returns
Prove(p) =False. If at least one of the p;1,...,pj.,—1 (j = 1,...,m) is not in ker¢, the algorithm
detects this in a base case (i.e., p € K\{0}) when applying its steps recursively. ]

Example 3.7. Let us return to the task to do zero-recognition for (3.5) from Example 3.1. Since
85(0,q) = 05(0,9) = 6,(0,9) = 0, we need to prove the following identity.

02(1)’63(t) — 03(1) 65 (1) + 84(1) 60} (1) = 0.

Note that in Chapter 8 we will demonstrate how our Mathematica package can assist to prove

this identity.

Proof. For p:= x3x% — 32 + 3x?) € RY we want to prove p € kerd. We compute

LT(p) = {p1,p2} = {35 —dl? + o, — (35” — ) ).

Since Deg(p) =4 and |LT(p)| = 2, we need to show that ¢(p;p2)(t) has the form > a,¢', which
>3
holds because

0(p1p2)(1) =(82(1)°83 (1) —03(1) 03 (1) + 64(7)°64 (7))
(—82(7)*05 (1) +03(1) 65 (1) — 64(7)°65 (7))
qu2+mq3+....
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Moreover we have

2 2 2 2i 2i
Sx(pi) = (—33n” +dn” —od)st 4 (a4 ad - ad)s’ = past 4 Tpras?

and

2 2 2 2 2i
Sx(p2) = (x%xg ) —x%xg ) +x3x§ ))s4 + E(xé — X3+ = pist+ EPZ’ZAJ'

According to Theorem 3.2, it is now left to show that p; 2, p> > € ker¢. We compute
LT(p12) = LT(p22) = {—x3 + x5 —x§,05 —x3 + x5} = {p12, P22}
Since Deg(pi2) =2 and |[LT(p;2)| =2, we need to show ¢(p12p22)(7) has the form »; a;q', which

>4
holds because

¢(P1,2P2,2)(T) = (62(’5)4 —03 (‘C)4 + 94(‘C)4)(—92 (‘l?)dr + 03 (T)4 — 04 (1)4) =g+ \:q2 + ...
We also have

2

Sx(p12) = (3 —x3+x3)s* = pis* and  Sx(p22) = (—x3 +x3 —x})s* = pas”.

Thus p1 2, p22 € kerd. Consequently we obtain p € ker¢. O

Example 3.8. As another example, we present an identity from the famous book by Rademacher, (93.22)
in [24], which was used to derive the formula for the number of presentations of a natural number as a
sum of 10 squares:

05" (0)05 (1) —3(05(1))? — 265(1)?0 (1) 04(1)* =0.

The algorithmic effort to prove this identity is as simple as in Example 3.7. In Chapter 8 we will show
the procedures of proving this identity in our Mathematica package.

3.4 A Refined Algorithm

Definition 3.11. For any k= (ki,....kn) e N"and t € N, we define

D(k,t) := {(bl,...,bm) e N": Zbi = Zki—zﬁ bi < kjand b; = k; (modZ)}.
i=1 i-1
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Lemma 3.13. Let p = x(kl) cx®n) e Ry and ri= Degz(p) -2 V‘gp). Then re N and

lﬂl
Sx (P) _ sDeg(p)po _i_sDeg(p)flp1 4. _i_sDeg(p)frpr

is in S-form, and for 0 <t <r,

. m (1 by) (b
p;—(—l)V](p)+2 <n> Z Hb ' b b ‘ 0(1)“‘x6(im)'

beD(k.1)

Proof. Assume Sx(p) = s“g,+---+s g1 in S-form. Suppose x;, =x;, =--- = Xiy () =1 and x;; # x;

for vi(p) +1 < j < m. Then by Lemma 3.4, ¢, = Deg(p), and from the proof of Lemma 3.4, we

have
vi(p) m vi(p) m
1 1 ki ki 1
S B 5 M AR o
j=1 J=vi(p)+1 j=1 J=vi(p)+1
vi(p) m
_ ki 1 k;
-, (2 2>+ > 5 (3.10)
j=1 j=vi(p)+1
_ Z Q_ vi(p)
42 2
_ Deg(p) m_vi(p)
2 4 2

Thus ¢ = ¢, —r = Deg(p) — r. Moreover, for (3.10), since k; is odd when 1 < j <V(p) and is
even when v;(p) + 1 < j <m, we deduce that re N.

By Definition 3.3, for every xgk), regardless that ¢ is even or odd, if we sort the power of s in
Sx (xgk)) from big to small, then the power of s decreases by 1 every time when the j in Definition
3.3 increases by 2 every time. This together with ¢; = Deg(p) — r implies that

Sx (P) _ sDeg(p)po _i_sDeg(p)flp1 4. _i_sDeg(p)frpr

for some re N, pj € Ry and p, # 0. Now we show that p; # 0 for all j € {0,...,r}. By fully
invoking Definition 3.3, for 0 <t < r we derive

<SDeg(p)ft>SX (P) :<SDeg(p)7t>SX (xl(lkl))SX (X(kz)) .Sy (x(km))

5] Im
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i k,;bi m |
m 1\ /= ky (b1) (bm)
( l)VI(P)""z ] Z <> Hb '(kv—bL)'xG(lil) Xo(im)
beD(k.1) v=17V:A 2
Nt m
o+ (E L CCR () N ()
_( l) : : <7I> ) Z Hb |(k\ bt)‘xc(ll) xc(im)’

where b = (by,...,b,) and k = (ki,...,ky). Since k, = b, > 0, we have ]_[ > 0, which

L
implies (sP2(P)~")Sy (p) # 0. Therefore the expression of Sx(p) in the statement is in S-form.

We shall see that the following refined sets of compositions of numbers play a crucial role.
Throughout b € N has to be interpreted as b = (b, ..., by).

Definition 3.12. Given d e N", ke N, and j,t €N,
B(aT,l_c,t, ) {bGDkl Z IEdi+2j,di<biﬂlYlddiEbi (modZ)}
i=1 i=1
Lemma 3.14. Given j,t € Nand d e N" and k e N™, then

i Dl Hockv,b (by,d,) = (t+1) > Hakv,ev (ey,dy), (3.11)

beB(d k., éeB(d kit+1,j—1)v=1
where
(knver) = 2 and B(by,c) = ——
Vs €y) = (k‘;ev)! a v, Cy) 1= CV!(btfc\)‘
Proof. Let
My :={(b,b—2z;): be B(d,k,t,j),1 <i<mandb; >d;+2}
and

M, :={(e+2z,8): eeB(d,k,t+1,j—1),1 <i<mand e; < k;—2},

where z; = (ay,...,a,) witha; = 1 and a; = 0 (j # i). Then

LHS of (3.11) = Z (i ﬁa(kv,bv)ﬁ(bv,dv)>
= v=1

beB(d k.t,j)
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H (K, by) 3 B(bi = 2,dp) [ TB(br, )

<<
Il
iy

and

RHS of (3.11) = > (

where we define B(b; — 2,d;) := 0 if b; = d;, and define a(k;,e; +2) := 0 if ¢; = k;.
To prove the lemma we need to prove that M| = M,.

Take (b,é) := (b,b—2z;) € M; for some i€ {1,...,m}. Then b = &+ 2z;, and we can write (b,é) =
(€ +2z;,¢). Additionally, from the definition of M; we have b € B(d,k,t,j) and d; +2 < b; < k;,
which implies &+ 2z; € B(d, k,t, j) and d; + 2 < ¢; + 2 < k;. Then d; < ¢; < k; — 2 and by Definition

3.12 we have ., ., .
dewt2=>k—2t=>"d,+2j.
y=1 v=1 v=1
Hence . ” .
Y=k =2(t+1)= > d+2(j—1)
v=1 v=1 v=1
and d; < e; < k; — 2, which implies é € B(d,k,t + 1,j— 1) and d; < ¢; < k; — 2. Therefore (b,é) =
(€+2z;, ) € M,. The other direction goes analogously. O

Theorem 3.4. Let p = x(kl) . (”k'”) € Rx. According to Lemma 3.13 let Sx(p) = sPEWpy + - 4
sPee(P) =" in S-form and r := De%( p) _ n_ ép). We have

(1) Sx (p,) = sPe&(Pr) g with q € Rx\{0}; and
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(2) for any adjacent pair (p;, pi+1),t € {0,...,r—1},
Sx(pr+1) HlZsDe“f Ry

and

r—t
;) = Z sPeelp)—ig
j=0

with q:,j € Rx.

Proof. (1) According to Lemma 3.13, p, # 0. Therefore the statement is implied by Definition 3.3.

(2) We first prove that the low degree of Sx (p;) with respect to s is Deg(p;) —r +1, then we prove

that the coefficient relation _
<SDeg(p’)_">Sx(pt) _ t+1

(sPeeP)=i=15Sx (pry1)  J

is true for j € {0,...,r —t}. Suppose x;; = x;, = --- = x;, = x; and x;; # x1 for a+1 < j <m. Let

C(p) := (—i)""(P*2. Applying Lemma 3.13 we have

SX(PZ) :SX (C(P) (é)t Z Ha(kwb) (()) ’ xc(s(yzfl,Z))

beD(k,t)v=

—clp) (i) % ]_[oc(kv,b) (x5 -l ). (3.12)

beD(kyt)v=

Now let d; := Deg(p;). Concerning (3.12), for b € D(k,t) we apply Lemma 3.13 again and obtain

Sy (x(b',) oyl > —s%C(p )X;, () {bw)

G(l]) G(Zm) Im

i) (£) 3 B

ceD(b,1)v=1
_ i = ¢
+Sdt ZC(p) <n> Z HB bv,Cv (1 .. l(m)
ceD(b,2) v=1
+..

. i It m
+ 5% C<p>(n> S T8, (3.13)

ceD(b,r;) v=1
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where r;, := % -7 - # according to Lemma 3.13 and vi(p) = v, ( (b(‘”)) --x((sb(’l"’z)> Since b €

_ m m m m
D(k,t),ie., > b= > ki—2t, we have > b;+ % = > ki+ 5 —2t, which means d; = Deg(p) —2t.
i=1 i=1 i=1 i=1

This together with r = D%(p) o Vl(p ) implies

=N = 2 2

Deg(p)—2t m vi(p) _ (Deg(p) m Vvi(p)
2 i3 _( -7 >_t_r_"

Plugging (3.13) into (3.12), we get

Sx(pr) =C(p)? (T’E) (sd’ SV [t b) T [ By )PP

beD (k1) v=1 v=1

+sdr1(’) [Totknbn) >, TTBw e
beD(k,t)v=1 ceD(b,1)v=1
2 m m

+sdr2(’) [Tatk,bs) > TTBBr e xim
beD(k,t)v=1 ceD(b,2)v=1

+..

. i T m m .

w7 (1) alky.50) | [Blbrre) ()%, -,

beD (k1) v=1 v=1

=s%ho+ 5" hy 4+ 4+ 5"y,

where for j € {0,...,r}

st (75, [ 5, st
beD(k,t)v=1

D(k ceD(b,}) v=1

Analogously we have

i\
st = (1) (97 X [Taten?

éeD(kt+1)v=1

_'_Sd,f?) (;) Z H(x kwev Z HB €V,MV M] l(::m)

eeD(kt+1)v=1 ieD(e,1)

.\ 2
+Sd,74 (;) 2 H(x kwev Z HB €v,l,tv (Ul l(:m)

eeD(kt+1)v=1 aeD(e,2) v=1
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+...

.\ r—1 m
1 /
o (1) 8 et b)),

eeD(kt+1)v=1

=" g1+ 5" g+ + s ’_r’_lqr[,
where for je {l,...,r}
5 i t+j m (u (u)
4= C(p) <n> S TJotkee) S ] [Blewun® - a).
eeD(kt+1)v=1 aeD(e,j—1)v=1

Thus proving the statement to be true is equivalent to proving that
hy _t+1
q
For any fixed ¢ = (cy,...,cn) € N, the set of all possible b contributing to the coefficient of

xl(lc]) e (°”‘) in h; is equal to B(¢,k,t, j), and for any fixed ii = (u1,...,u,) € N the set of all possi-

ble e contrlbutmg to the coefficient of xgl 0. xl(m ") in q; is equal to B(ii,k,t + 1, j— 1). Therefore

i tJrj c C
hj = C(p)z <Tc> Z Ha(kv,bv)ﬁ(bv,c\;) xlgl 1) o .xlgmm)

ceN™ \ beB(C,k,t,j)v=1

and

i[+j m u u
TECIH CY DY DY § CTCAT o) FER

ueN™ \ e,eB(ik,t+1,j—1)v=1

Now fix (di,d,...,dn) € N". We need to prove that

<x(d1) . x(dm)>h] f+ 1

A lm

7 -
<x§1 RR >q] J

Applying Lemma 3.14 we immediately obtain the correctness of this equality.
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According to Lemma 3.13, for any homogeneous p € Ry, since Sx is a homomorphism, we
have that the powers of s in Sx(p) start from Deg(p) and decrease by integers; namely, Sx(p) =
sPeeP) py + .-+ sPee(P) =" with the p; € Ry and p, # 0. At this moment, we guess that some of
the po,..., pr—1 could be zero, but in Corollary 3.4 we will show that this is not the case.

Corollary 3.3. Let p € Ry be homogeneous and Sx (p) = sP%P) py + - - 4 sPeP)="p with r e N and
pr € Rx\{0}. Then

(1) Sx(p,) = sDeg(P’)q with g € Rx\{0}; and

(2) for any neighboring pair (p:, pi+1),t € {0, ...,r}, where p,+y := 0, there exists Y, € N such that
Deg(p)—j—1;,, .
S Pt+1 t+l ZS JPt,J

and

1
- Z sPee(p)=ip
j=0

with Pt,j € Rx.

Proof. We first prove (2). Suppose
p=ahi+---+ayh,
where the /1; are monomials in Ry of the same degree, and the a; € K\{0}.
Let d := Deg(p) = Deg(h;). By Lemma 3.13, there exists an integer b; such that
Sx(hj) = sdhj,o + sd_lhjyl +o Sd_bjhj,b,-

in S-form. Let r := max {b;}. Then
=

Sx(p) =s¥(athio+ -+ aphno) + -+ (athy , + - + anhn,)

=stpo 45"y,

where p; = ajhi;+---+ayh, fort =0,...,rand hj; = 0 whent > b;.
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Since the p; are homogeneous by Lemma 3.5(2), we can define d; := Deg(p;). Hence we can
suppose for 7 € {0,...,r} that

Sx(hjs) =s"qjo+s" g+ 54 Pigy, (3.14)

where the g;; € Ry and ¢;;,, # 0. Therefore by letting vy, := max {bj;} we obtain
' j

Sx(p) = a1Sx (hiy) + - +anSx () = s%qo + s ' q "'+Sd’_%qv,

where g; = a1q1,;+ -+ anqn; and q;; = 0 if i > ;. Furthermore, since the /; are monomials, we
immediately obtain from (3.14) by Theorem 3.4

b
-2 —1Pjr
Sx(hjr1) =877~ + s ik
Hence
Sx (Pi+1) =a1Sx (his41) + -+ + anSx (hps41)
1 b
_ d—2 dy—by,—1 Pl
a <S +1¢]11+ “+s t+1Q1b1,>
+...
1 b
d—2 dy—y—1 Yni
G
i (s (1 g t+1q””'”>
1 Y
_ =2 - di—y—1 t
St r+ 17
It remains to prove (1). This follows immediately from (2). O

Now we introduce a definition that will serve to increase readability.

Definition 3.13. For half integers a,b € 17, such that a < b and b—a € N:

{a,....b} :={a,a+l,a+2,...,b}

and ,
D 1h(j) :=h(a) +h(a+1)+ -+ h(b).
j=a
Deg(p) )
Corollary 3.4. Given p € Rx homogeneous, suppose Sx(p) = >, s/p; with pj € Rx and py # 0. Then
=Y

the sum is in S-form.
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Proof. Assume p; # 0 for j >vy. Then Sx(p;) # 0 by Corollary 3.2, which by Corollary 3.3(2)
implies Sx(pj+1) # 0, which again implies p;;1 # 0. O

By Definition 3.13 and Corollary 3.4, for homogeneous p € Ry, the notation of S-form Sx(p) =

n Deg(p)
> s%g; turns into Sx(p) = >, s/p; where ye %Z such that y = ¢;.
i=1 J=Y

The next theorem is crucial for refining Algorithm 3.1.

Theorem 3.5. Let p, g € Ry be homogeneous and assume that both sums

Deg(p) . Deg(g) .
Sx(p)= D, s'p; and Sx(g)= ) s'g;
j:Yp j:Yg

are in S-form. If g € LT (p) then Deg(p) = Deg(g), Yp = Yo, and

gjeLT(pj)v ]E{vaaDeg(p)}

Proof. By Definition 3.10, the LT orbit is built up by the powers of § and Tx. Since S and Tx both
keep the degree, we deduce that if g € LT(p) then Deg(p) = Deg(g).

The proof of the remaining part proceeds by induction on the length of
g=SuT" ... ShnTln(p).
For the induction step, it suffices to prove the statement for two neighboring situations:

g=3S(p) and g=Tx(p).

~

Assume g = S(p). Let p = ajh; +axh, + - - + a,h, where the h, are monomials in Ry with the
d .
same degree and the g, € K\{0}. Suppose Sx (i) = >, s/h; ; in S-form with d := Deg(p).

J=T1
We first prove that Sx(o(%;)) = 6(Sx(h;)). Since ¢ and Sy are homomorphisms, it suffices to
show this is true for the generators, which means we have to prove Sx(G(xl(k))) = o(Sx (xfk))) for

any i€ {l,...,4} and k € N. This is implied immediately by Definition 3.3.
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Letr:= n}ax {r;} and h; ; :== 0 when j < r;. Then by Lemma 3.13 we have
-

=1,..,n

Sx(p) =alSX(h1) + .- +anSX(hn)

d d
=a Z th17j+"'+an Z sjhn,j
Jj=r Jj=r
=sUathi g+ -+ aphya) + -+ (athy , + -+ aphy,).
By Definition 3.3 and the linearity of S we also have
g =5(p) = arS(h) + - +auS(ha) = ar(=i)16(h) + -+ an(—i) " (),

where the k, :=v; (k) + @ Then

Sx<g) Ial(—i)leX(G(h ))+-~-+an( leX hn)

el fm) ()
)

=s¥(a; (=)0 (h1.a) + - +an(—i)"o(h
+...
+5"(a (=)0 (hy,) + -+ an(—i) o (hy,,)).

Since for je {r,r+1,...,d},

Slarhj+ -+ aphy ;) = a1S(hi ;) + -+ + auS(hn,))
=a (*l')k]G(th) + -+ an(—i)k”c(hn?j),

we obtain
al(—i)klc(th) 4+ 4 an(—i)k"G(hnyj) € LT(alhlJ 4+ 4 anhnyj).

Hence
gj S LT(pj).

Then g; = 0 if and only if p; = 0. Therefore y, = v,.

For g = Tx(p) the proof is analogous. O
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Applying Corollary 3.3 and Theorem 3.5 we can simplify Algorithm 3.1 substantially. The
essence of the simplification is the following theorem.

Deg(p)
Theorem 3.6. Given p € Rx homogeneous and Sx(p) = >, s/q; in S-form, then
j=r

p € ker¢ if and only if ord ( H d(g ) Deg(qj)6]LT(qj)| forall je{r...,Deg(p)}.

g€LT(q;)

Proof. Assume p € ker¢p. By Lemma 3.8, g; € ker¢ for all j € {r,...,Deg(p)}. Therefore, for any

g€LT(g;), by Lemma 3.10 we have g € ker¢. This implies [] ¢(g)(t) =0. And hence
$€LT(q;)

_ Ord( I o ) Deg(cn)6|LT(qJ')|.

g€eLT(q;)

Assume p ¢ ker¢. According to Lemma 3.8, at least one of the g; is not in ker¢. Take

te{r...,Deg(p)} such that ¢, ¢ ker¢p and ¢; € ker) when i <r. We prove that [] ¢(g)(1) is
$€LT(q:)
a modular form.

Case 1: t = r. By Corollary 3.3.1, Sx(¢:) = Sx(g,) = s""h in S-form, where & ¢ ker¢ because ¢; ¢ ker¢.
Hence for every g € LT(q;), by Theorem 3.5, there exists g € Rx such that Sx(g) = s"¢ in S-form

and g ¢ ker¢. By Lemma 3.12, [] ¢(g)(t) € M(Deg(q:)|LT(g:)]).
8€LT(q1)

Deg(q:) X
Case 2: t > r. Suppose Sx(q;) = >, s’hjin S-form. Since ¢; ¢ ker¢, at least one of the #; is not
J=r
in ker¢. By rewriting of Corollary 3.3.2,

Deg(g:)—1

D i
Sx(qi-1) = Z sf_lezg(zt_)HjhjinS-form,
J=r

where, again by Lemma 3.8, /; € ker¢ for r, < j < Deg(q:) — 1 because g, € ker¢. Thus hpeg(y,) ¢
Deg(qr)
ker¢. Hence for g € LT(q;), applying Theorem 3.5 we have Sx(g) = >, s/g;in S-form with g; e
J=r
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LT(h;), which yields g; € ker¢ for r, < j < Deg(q,) — 1 and gpeg(q,) ¢ ker¢. Again by Lemma 3.12,

[T ¢(s)(r) e M(Deg(q;)[LT(q:)))-
8€LT(qr)

In addition, ¢; ¢ ker¢p implies ] ¢(g)(t) # 0. Therefore by Lemma 2.1 we obtain

8€LT(q1)
De LT
. ( M ¢(gm) < D)
8€LT(g1)
O
The algorithmic content of Theorem 3.6 is the following:

Deg(p)

Algorithm 3.2. Given p € Ry homogeneous and Sx(p) = >, s/q; in S-form, we have the following
j=r

algorithm to prove or disprove p € ker¢.

Input: homogeneous p € Rx. Output: True if p € ker¢; False if p ¢ ker¢.

If Deg(p) > O set j:=r. While j < Deg(p) do

iford( [ ¢(g)(t)) > Degla))ITla,)

8€LT(q;)
then j:= j+1,
else return False;
exit;
end do;

return True.

If Deg(p) = 0 then True if p = 0; False if p € K\{0}.

One can connect our method to classical methods using “Sturm bounds”. Namely, in The-
orem 3.6 one can replace [LT(g;)| with 384, owing to Proposition 3.3. Moreover, for every
g € LT(q,), the g-expansion of ¢(g) only contains non-negative powers of g. Thus to show that
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ord ( IT q)(g)(t)) is greater than a certain number, it suffices to show that ord(¢(g;)(t)) is
g€LT(q;)
greater than this number. Summarizing, we have the following corollary.

Deg(p)
Corollary 3.5. Let p € Ry be homogeneous and Sx(p) = >, s/q; in S-form. Then

j=r

p € ker¢ if and only if ord(¢(q;)(t)) > 2° - Deg(p) for all je {r...,Deg(p)}.

We also present a modular form version.

Proposition 3.4. Let p € Ry be homogeneous. If ¢(p) € My(H)\{0} then

ord(o(p)(r)) <2°-k.

Deg(p)
Proof. Let Sx(p) = >, s/q;in S-form. If ¢(p) # 0, by Corollary 3.5 we have
j=r
ord(¢(g;)(t)) < 2°-Deg(p) forall je {r...,Deg(p)}. (3.15)

If §(p) € My (H)\{0}, by Definition 3.3 and Definition 2.8 we have

(S00(p)) (%) = &(p)(—1/7) = T0(p)(1). (3.16)

This together with Lemma 3.2 implies that Sx(p) = s*S(p). Then (3.15) can be stated as

ord(0(S(p)) (1)) <2°-Deg(p)
=25k,

~

where the last equality follows from Lemma 3.11. Finally we show that ¢(S(p)) = ¢(p). Again

by using Lemma 3.2 we have

So0(p) = 0*(Sx(p)) = ¢*(s"S(p)) = T0*(S(p)) = T*0(S(p)). (3.17)

We plug (3.16) into (3.17) and complete the proof. ]

Next we do the complexity analysis.
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Definition 3.14. For homogeneous p € Rx define s(p) to be the number of Sx operations required to run
Algorithm 1 on p.

Definition 3.15. For homogeneous p € Rx define o(p) to be the number of LT operations required to
run Algorithm 1 on p. An LT operation is a function that computes the elements of the leading term
orbit of a given polynomial in Rx.

Definition 3.16. Lef p € Rx be homogeneous with Sx (p) = p1sPee(P) 4 pygPea(p)—1 4 .y g (Peg(p)—r+1
in S-form. We define {(p) := r to be the length of p.

Lemma 3.15. Let p € Ry be be homogeneous with Sx (p) = plsDeg(P) + pasPee(P) =1 .4 p Pee(p)—r+]
in S-form and |LT(p;)| = 384. Then the number of o(p) and s(p) applications on any polynomial p
appearing when running Algorithm 3.1 on p depends only on the length of p.

Proof. Suppose M = {p1,..., pm} are the polynomials appearing when running Algorithm 3.1 on
p. Consider M = My UMy U --- UM, where M := {pe M : {(p) = j}. By Corollary 3.3.1 it is clear
that for any p € Rx with ¢(p) = 1 we have o(p) = 1. Then by induction on j we prove that for
every f,ge M;: o(f) = o(g). Assume this is true for j < k. We prove that this is also true for j = k.
Define 6: {1,...,k— 1} - N by 6(j) := o(q) where g € M, which by the induction hypothesis is

well-defined. Let p € M. Then by Theorem 3.5 we have p € LT(p;) for some j€ {1,...,r}, hence
Deg(q;)
ILT(p)| = 384. Suppose LT(p) = {q1,...,q384} with Sx(¢;) = >, s'qj; in S-form. Note that
t=rj
Deg(g;) —rj+ 1= k. We know from Theorem 3.4 that /(g ;) = 1 and £(q;;) = £(q;—1) + 1 for all
je{l,...,384}. Therefore running Algorithm 1 on p results in one orbit computation on p and
triggers a running of Algorithm 1 on g;, forall je {1,...,384} and forallr e {1,...,Deg(g;) — 1}.

For the operation count this means,

384 Deg(p;)— 384 Deg(p;)—
1= rj 1= rj
384 Deg(p/) Deg(p;)—r;j

—1+Z Z ot —rj+1)=1+384 > 4(t)

t=r;j t=1
— 14384 Z (1)
t=1

Since this shows that o(p) is only dependent on k = ¢(j), this completes the induction proof for
the o(p) statement. The s(p) statement is proven analogously. O
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Corollary 3.6. Let Ni(p) and N»(p), respectively, be the total number of LT and Sx operations when
running Algorithm 3.1 and Algorithm 3.2 on a given homogeneous p € Rx. Let k be the length of p.
Then in the worst case Ny (p) is exponential and Ny(p) is linear in k.

Proof. According to Proposition 3.3, in the worst case |LT(p)| = 384 for every polynomial p
appearing when running Algorithm 3.1 on p. By Lemma 3.15 we have

k—1
o(p) = o(k) = 1+384 > 4(t)
t=1

with (1) = 1. Analogously we define §: {1,...,k— 1} — Nby §(j) := s(q) where g € M;. Then by
doing the same induction steps as Lemma 3.15 one can prove that

with §(1) = 1. Thus we obtain o(p) = 385! and s(p) = 385~! —385%=2 for k > 2. Therefore

Ni(p) =o(p) +s(p) =

2.385k—1 _385k—2 ifk>2
2 ifk=1

For Algorithm 3.2, since only one Sx operation and k LT operations happen, we have N,(p) =
I +k. O

3.5 Examples

There are many identities that fit in this class, from which we list the following examples. For
the examples below we denote ol = e§."> (0,9).

J
Example 3.9. The classical Jacobi’s identity
03 —03+0;=0,

which in Ramanujan’s notation is written as

¢*(q) = 0*(—q) + 169y*(4%),
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o0 o0
where ¢(q) := Y ¢ and y(q) := > ¢""*D/2. Because we can write 03 = ¢(q), 04 = y(—q) and

n=—0a0 n=0
% (n+1/2)? 3 n?+n+1/4 1/dvie( 42
6, =2 Zoq =2 Zoq =2q""y(q%).
Example 3.10. [22, p. 22]
653) 62// e 12 e 1

Example 3.11. [22, p. 22]
Example 3.12. [24, 93. 81]

Example 3.13. [24, 93. 7]

5
53_3<e&)2+2 o % (%) =0
6/1 e(x 60@ eﬁ ea e'Y ’

where o = 2,3,4.

For Examples 3.10 — 3.13 we clear the denominators and turn the left hand side to an element
in R@).

Example 3.14. The famous Eisenstein identity

0
O —R =1728¢" | [(1-¢"")*, (A)
n=1
where . .
n3q2n n5q2n
Q:= 1+24021_7q2n and R::1—50421_7q2n.
n=1 n=1

Note. In order to apply our algorithm, we need to rewrite both sides of relation (A) into quo-
tients of ng). Here Q = %544) and R = %(Eg), ® where the &(s) is the Riemann Zeta function and
the Ey := Ex(m,nt) is the Eisenstein series defined in Chapter 2. By equation (x) in Proposi-
tion 4.1, we have g, = —4(epe3 + e3e1 + eje2) and g3 = 4ejeres, where gy = 60E,, g3 = 140E¢ and

€] .= %(93(07Q)4+94(07q)4)1 €)= _%(92(07Q)4 +93(0,6])4) and €3 .= %(92(07('”4 _94(0,Q)4)- Hence

6 See p. 174 of [1].
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we can write Q and R in terms of quotients of G‘E.k). In addition, the right hand side of (A) is equal
to 27/407. We plug these into identity (A), simplify and get

54(07)% — (85 + 05 +6%) +2(—3656% — 36563 + 612 +6)2)% = 0. (B)

Thus to prove (A), it is equivalent to proving (B), which fits in our algorithm. Another way

to present Q and R in terms of quotients of ng)

is what we did for Example 4.5, where we can
obtain different presentations than above. Nevertheless, Algorithm 3.2 can verify that those

different presentations are in fact identically equal to the above rewriting for Q and R.

Example 3.15. [12, p. 54] Let Q and R be the same as in Example 3.14. Let 7 := ¢*(q) and x :=

16q“(';(( )),where 0(q) := Z q" * and y(q) := Z qn(n+1)/2 Then
n=-—a0 n=0

0 =71+ 14x+x%)
and

=22(1 4+ x)(1 —34x +x%).

Since Q, R, ¢(¢g) and y(g) can be written in forms of theta functions as in Examples 3.9 and 3.14,
these two identities also fits in our algorithm.
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Chapter 4

Proving Identities among Powers of
0" (0]t) & 8,(z|t) (Class II)

This chapter generalizes the algorithmic approach of Chapter 3 to the direction that deals with

the argument z € C. The main content of this chapter is from our paper [32].
Recall that by Rg := K[®] we define the K-algebra generated by

J

0= {eﬁ”‘“’ : keN} o {9(2") : keNandj=2,3,4},

where K < C is an effectively computable field which contains all the complex constants we

need (i.e., i, ¢"/*, etc.), and where

k

0"0;
0" := 0" (o)1= = ()

pa: ,keN.
z

In Chapter 3 we have presented an algorithm to do zero-recognition for every f € Rg. Now we

extend the function space Re to
Re = Re[01(z|T),02(z|T),03(z2|T),04(2|T)],

by which we define the Rg-algebra generated by 8, (z|1),02(z|t),03(z|t) and 64(z|t). In this chap-
ter, we solve the following problem algorithmically:

Problem 4.1: Given f € Rg, decide whether f = 0.
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In this chapter we should use the abbreviation

0;(z) :==0;(z|7), j = 1,2,3,4.

The framework used to solve this problem is the theory of elliptic functions and modular forms.
In particular, we have to use an essential tool, which is Algorithm 3.2 from Chapter 3. As a
result, we provide Algorithm 4.1 for solving Problem 4.1.

Example 4.1. Our algorithm will be used to prove !

103(2)%04(2)* + 204 (2)* + ¢303(2)* + €401 (2)*02(2)* = 0,

where
c1 1= —863036] — 26,036, —26,630] — 16036;6," + 160,63636,”,
¢y 1= 703030, + 0,030, + 0,030, + 8030,0,” — 80,030,
c3 1= 030] + 0,016] + 0,07 + 8030," — 86,010,
and

¢4 1= —605036;.

However, we observe that in the literature most identities fitting into Problem 4.1 are also in a

smaller class, in which the coefficient algebra Rg is replaced by a subalgebra of Re:
K[@]h = {p(GZ(O)v 03 (O)a 94(0)) ‘PE K[x7yv Z] homogeneous},

and we define

Hi := K[O]4[61(2]7), 02(2]7), 03 (2[7), B4 (2]7)].
Restricting Re to this subalgebra, we provide Algorithm 4.2 to solve the following problem
algorithmically without invoking Algorithm 3.2. Algorithm 4.2 is faster than Algorithm 4.1
in our experiments. We will give some brief arguments concerning the speed comparison in
Chapter 6. Moreover, working with this restricted class, we also found some classical mathe-

matical insights, such as Proposition 4.2 and Lemma 4.2.

Problem 4.2: Given g € Hx, decide whether g = 0.

1 See Chapter 6.
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Example 4.2. [14, 20.7.1] Our algorithm will be used to prove 2

0,(0)%0,(z2)> — 83(0)203(2)> + 04(0)%04(z)> = 0.

This chapter is organized as follows. In Section 4.1 we present a theorem to decompose any
f(z|7) € Re into the set of quasi-elliptic components of f(z|t), and prove that f(z|t) = 0 if and
only if its quasi-elliptic components are all equal to zero. In Section 4.2 we give an Algorithm
to decide if a quasi-elliptic component of any function in R is equal to zero or not, thus we
achieve the goal to prove or disprove f(z|t) = 0. In Section 4.3 we derive a theorem connecting
the Weierstrass elliptic function and the theta functions in a new way, which plays an important
role for solving Problem 4.2. Working in the restricted space Hy, in Section 4.4 we obtain a
critical lemma about the finite-orbit weight. In Section 4.5 we give an Algorithm to decide if
any function in Ay is equal to zero or not, thus we achieve the goal of Problem 4.2; i.e., to prove

or disprove g(z|t) =0.

Convention. (1) Given o = (0,0, 03,04) € Z*, we define

0%(2) := 0%(z]1) := 01(2|T) ™ 02(z]T) 203 (2]T)“ 04 (z]T)™ = 01 ()™ 02(2)*203(2)*304(z) ™.

(2) For two sets A and B, we use B* to present the set of functions {f : A — B}.

(3) For any o € Z" we assume that o = (i, ...,a,) and define |o| := o + - -+ + Q.

4.1 Quasi-Elliptic Decomposition of Y € Rg

For a given f € Rg, similarly to Chapter 3 we first decompose it into certain "smaller compo-

nents". However, here we do the decomposition with regard to z.

Definition 4.1. Given M < N* finite, define

fu: Re™ — Re

v fu(W) =: fiy

2 See Example 3.1 and Section 8.2.
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where
IMELE Z y()8%(z|T).

aeM

Notation. If M is clear from the context, we write f instead of f3;, and fVY instead of fj',,'.

Sometimes, for convenience, we use f¥(z) to present f¥(z|t). As an illustration of Definition 4.1,

let us look at the identity in Example 4.1. Here we have

M = {(0,0,2,2),(0,0,0,4),(0,0,4,0),(2,2,0,0)}, 4.1)
v((0,0,2,2)) = c1, ((0,0,0,4)) = c2, ¥((0,0,4,0)) = 3, ¥((2,2,0,0)) = ¢4 and

Y (2) = €103(2)%04(2)* + 204(2)* + ¢303(2)* + €401 (2)?02(2)%.
Definition 4.2. Given M = N* finite, a,b € {1,2},and t € N, let
Xiap(M) :={oeM: |a| =t,04 +04 =a+ 1(mod2), 0 + 0 =b+ 1(mod2)},

and define the following partition of M:

XM):={X;ap(M) # J:teNanda,be {1,2}}.
Example 4.3. (i) Let M be the the same as in expression (4.1). Then

X(M) = {Xa11(M)} = {M}.

(ii) Let M = {(0,0,2,0),(0,0,0,2),(2,0,2,0),(2,1,1,0)}. Then

X(M) = {X2,1,1(M),Xa,1,1(M),Xa21(M)}
= {{(0,0,2,0),(0,0,0,2)},{(2,0,2,0)},{(2,1,1,0)}}.

We shall note that for a given M < Z* finite, X(M) is unique. One can check that if X(M) =
{Y1,....7,} thenY;nY; = & when i # j and the disjoint union

YooYy, =M.
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Definition 4.3 (set of quasi-elliptic components of V). Given M = N* finite, let X(M) =
{My,...,M,}. For y € RY we define

Q(W) = {Wl;-- : 7Wﬂ}

where ;1= Y|y,

Definition 4.4. [set of quasi-elliptic components of fV] Given y € Ry, we define
O(fY) =AY M,

where {y1,...,¥,} = O(V).
Example 4.4. Let M = {(0,0,2,0),(0,0,0,2),(2,0,2,0),(2,1,1,0)} as in Example 4.3 (ii) and

Y= fir=c103(2)* + c204(2)% + 301 (2)%03(2)* + 401 (2)%02(2)03(2)

with the c¢j € K[®]. Then
Q(f‘V) = {f17f27f3}7
where fi = ¢103(2)% +¢204(2)?, f» = ¢301(2)?03(2)* and f3 = c401(2)?02(2)05(z).

Corollary 4.1. If gV is a quasi-elliptic component of some f¥, then it is the quasi-elliptic component of
itself.

Proof. The proof can be done by directly following Definitions 4.2 and 4.4. O

Definition 4.5. If fV is the quasi-elliptic component of itself, we say that fV is quasi-elliptic.
Theorem 4.1. Let f¥ = f,y and Q(f¥) = {f¥',..., f¥}, then

FY(z|t) =0 if and only if f¥i(z|t) =0 forall je{1...n}.

Proof. “ <" is immediate. We prove “ — . Write f¥(z|t) := >} y(a)6%(z|t) and write M as
oaeM
a union of disjoint non-empty sets X; (M) v Xa(M) U --- U X,;,(M) where fort € {1...m},

Xi(M):={aeM:|al=d}
with dj,...,d,, pairwise distinct. In this proof we use f(z) to present f¥(z|t). We can write
m

f(Z)=t§1fz(Z) where fi(z) ;== > w(a)6%(2).

oeX; (M)
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Next we write

0=f Ei 2) + fi2(2)),

t=1

where

fi@i= Y w(@)(©)8%z) and fia(x):i= D, w(o)

oeXy 1 (M) oeX; 2 (M)

with X; (M) := {o.e X;(M) : o + ageven} and X;»(M) := {ae X;(M) : a; + o 0dd}.

By employing Table 2.1, we obtain for 7 € {1,...,m},
fitlz+mt) =N4f,1(z) and  fia(z+7t) = —NUf 1 (2).
Then for k€ {0,1,...,2m— 1},
filz+knt) = fi1(z+knt) + fia(z+kn) = (N*YF £ 1(2) + (=N fi2(2).

Thus we have,

0=f(z) = flz+knt) = ) (N*)*fi1(2) + (=N)"f2(2),

NgE

t

which can be written as

1 1 - 1 1 fil
N N .. Ném — N¢m fiz2
: : : : : fma
(Ndl)Zm—l (_Nd|)2m—l . (Ndm)Zm—l (_Ndm)Zm—l fm,2

Since N # 0, the determinant of this Vandermonde matrix is nonzero. Therefore we can multiply
both sides of (4.2) by the inverse of the Vandermonde matrix and obtain f;; = 0 for all # €
{1,...,m} and i € {1,2}.

Next we write

0=fi1(2) = fi11(2) + fr12(z) and 0= fi2(2) = fi21(2) + fi22(2) (4.3)
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where for a e {1,2}

frat@i= ) w(@)(1)8%z) and fia2(@)i= Y, w(@)(1)6%(2)

(XEXl‘a,] (M) aEXl,a,Z (M)

with X; .1 (M) := {0 € X; o(M) : oy +0zeven} and X; ,2(M) := {at € X; ,(M) : a1 + 0 0dd}. Again
by using Table 2.1 on the terms appearing in f; ;(z) and f; »(z), we obtain for a € {1,2},

0= fia(2) = fra(z+7) = frag (@2 +7) + fra2(2+ ) = fra1(2) = fra2(2)-
This together with (4.3) implies f; o1 = fiap =0forallze {1,...,m} and a € {1,2}.
In view of Definition 4.2 choose j such that M; = X; , (M ). Then

ij( ftab Z\If EO

aEM;

forall je{l1,...,n} where n = |X(M)|. O

4.2 Zero-Recognition for f¥ € Rg

In this section we use elliptic function properties to decide whether any given fV € Rg is iden-
tically zero.

Theorem 4.2. Let Y w(a)0%(z|t) € Ro be quasi-elliptic. Then for all oa,BeY, eﬁg || is elliptic with
aeY

respect to z.

Proof. Suppose that > w(a)8%(z]t) is a quasi-elliptic component of some fy(z]t) =
acgYy

> y(a)8%(z|t). By assumption Y is equal to some element in X (M). Consequently Y = X; , ,(M)

aeM

for some 7 € {1,...,m} and a,b € {1,2}. Take an arbitrary o € X;,;(M). By Table 2.1 we

have 8%(z + nt) = (—1)“"IN8%(z) and 8%(z+ ) = (—1)°+16%(z), which implies that for any

o,BeX  p(M),

0%(z+m1) _ 0%3) and 6%(z+1) _ 6%(2)
OP(z+mt)  6B(2) BP(z+1)  OB(z)

8%(2)
88 ()

Therefore is elliptic. O
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Definition 4.6. Given M € N* finite, we define

min(M) = {(Bl,Bz,B3,B4) eEM: Bl = min{ocl : (OL1,0L2,0L3,OL4) EM}}

The following theorem is a key of doing zero-recognition in Re.

Theorem 4.3. Let f¥(z|t) := >, w(a)0%(z) be quasi-elliptic. For any B = (B1,B2,PB3,P4) € min(Y), let
oEM

|
gp(z[t) == ARLtL] w;g ((ZZ)IT)‘ Then

(1) the series expansion of gg(z|t) is of the form
w .
gp(20) = Y, (0)2,
with d;(t) e K(®), and

(2)ifdj(t) =0for j=0,...,p2+ B3+ Pa then f¥(z|1) = 0.

Proof. From Definition 2.7 we know that for fixed t € H the 6;(z|t) (j = 1,...,4) are analytic
functions on the whole complex plane with respect to z, and for fixed z € C, the 0;(z|t) (j =
1,...,4) are analytic functions of t for all Tt € H. By Proposition 2.2, only 6;(z) has a zero at
z = 0. Since 6 (z)P! in the denominator of gp(z|t) cancels against each 6%(z) by the choice of f3,
we deduce that gg(z|7) is analytic at z = 0. Hence we have a Taylor expansion around z = 0.

By Theorem 4.2, gg(z|7) is an elliptic function with respect to z. We observe that the only possible
poles of gg(z|t) in P(m,nt) are 5, 5 + 5 and 5. Thus gg(z|t) has at most B, + B3 + B4 poles
including multiplicities in P(w,7t). If a;(t) =0 for j =0,...,B> + B3 + B4, then gg(z|t) has a zero
at z = 0 with multiplicity at least B, + 3 4+ B4 + 1, which means the number of zeros of gg(z|t) in
P(m,mt) must be at least B + B3 + B4 + 1. By Theorem 2.2, gg(z|t) must be zero, so f¥(z|t) = 0.

We also obtain the algorithmic content of Theorem 4.3.

3 K(®) denotes the quotient field of K[®] consisting of all quotients P[0]/Q[®] with P[®],Q[0] € K[@].
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Algorithm 4.1. Given f¥ € Rg with f¥ = f,}, we have the following algorithm to decide whether f¥ = 0.

Input: f¥ € Re.

Output: True if f¥ = 0; False if fV # 0.

n

Write f¥(z|t) = 3, f¥i(z|t) where the fVi(z|t) are the quasi-elliptic components of f¥(z|t).

j=1

Set j:=1. While j <ndo

Choose I_)) = (B],BQ,B3, I.))4) EM; such that [31 = min{ocl : (061,062,063,064) € Mj};

v
Let g(z|7) := feﬁj((;'l;)) ;

write g(z|t) = Elodk(f)zk;
Set k := 0. While k < B, + B3 + B4 do
if de(t) =0;
k++;
otherwise return False;
end do;
J++
end do;

return True;

Note. In Algorithm 4.1, we use Algorithm 3.2 of Chapter 3 to check whether dj (1) = 0.

Theorem 4.4. Algorithm 4.1 is correct.



62 Proving Identities among Powers of 95’() (0]t) & 64(z|T) (Class II)

Proof. According to Definition 4.2 we can always write any fV € Re into a sum of quasi-elliptic
components of f¥ for some finite set M = N*.

Assume f¥ = 0. Then by Theorem 4.1, f¥i =0 for all j € {1,...,n}. Hence the corresponding
¢ = 0, which implies di(t) = 0 for all k € N. Therefore Algorithm 4.1 returns True.

Assume fY¥ # 0. By Theorem 4.1, there exists a ¢ € {1,...,n} such that f¥ +# 0. Then the corre-
sponding g is nonzero. If g is a constant, then dy # 0 and Algorithm 4.1 returns False. Assume
g is not a constant. By Theorem 4.2, g(z|t) is an elliptic function. Since g(z|t) has at most
B2 + B3 + B4 poles in P(xm,nt), by Theorem 2.2 we deduce that g(z|t) has at most B, + B3 + P4 ze-
ros in P(7t,nt). This means do(7),...,dp,+p,+p,(T) cannot all be zero. Thus Algorithm 4.1 returns
False. O

Example 4.1 (continued). Prove
Y(2) := c105(2)%04(2)* + 204(2)* + ¢303(2)* + 401 (2)?02(2)> = 0,

where the c; are chosen as in Example 4.1.

Proof. One can check by Definition 4.2 that f(z) is the quasi-elliptic component of itself, so in
this case f¥(z) = f¥!(z). Following Algorithm 4.1, let

_ @) 8327 03(2)" | 01(2)°02(2)°
g(z) = ) 1 0.(2)? +C2+C394(Z)4 +cy 0s0)

Then .
g(z) = Z di(t)Z
!

=0
with do(T) = 40303 + 303 + ¢10303 + 20} and dy(t) for k = 1,...,4 of a form similar to dy(t). By
Algorithm 3.2 we can prove that dy = --- = d4 = 0. Thus by Algorithm 4.1 we have g = 0. O

Note. This identity contains only one quasi-elliptic component, and in general the identities
we found in the literature are stated in their simplest form. Consequently, to produce an iden-
tity with more than one quasi-elliptic component, we need to take one identity containing one
quasi-elliptic component (multiplied by an element of Re) and add to it another identity con-
taining one quasi-elliptic component (multiplied by an element of Re).



4.3 Theta Functions and The Weierstrass § Function 63

4.3 Theta Functions and The Weierstrass §£ Function

We are going to derive some connections between theta functions and the @ function. By ap-

plying them, we will obtain a faster algorithm on the restricted class Hg.
Definition 4.7 (elliptic theta-quotients).

J:={06%(z) : o€ Z* such that 8% (z) is elliptic}.
Lemma 4.1. J forms a multiplicative group which is generated by

_ 92(2)2 L 93(Z)2
ST E R e

02(2)63(2)84(z)

and j3 ;= 8,(2)’

In particular, for a given p(z) = 01(2)*102(2)*03(2)*04(z)* € J, the presentation in terms of the gen-
erators is
.(X27(X4 .OC3—OL4

p=i 2 i’ i

Proof. With the help of Table 2.1, one can verify that ji, j», j3 € J and that J is a multiplicative
group. Suppose p(z) = 81(2)*02(z)*03(2)**04(2)* € J, then p(z) = p(z+77) and p(z) = p(z+7),
because every element in J is elliptic. On the other hand, by Table 2.1 we have

plz+mr) = ()N FTUNIFRTEEL L (7) and p(z+7) = (—1)M 7% p(2).

Hence o) + 02 + 03 + 04 = 0, 0y + 04 is even and o + o is even. This implies that if o, is even

then o3 and oy must be even, and if o, is odd then o3 and oy are also odd. Therefore @,
%% and oy are all integers. Moreover,
jlotz—;% j2‘>‘3;“4 ng =0 (Z)*(X2+(X4*(X3+0£4*3(X462 (Z)oczf(mﬂm% (Z)(X3f(x4+(x4e4(z)(x4
= el (Z)*(XZ*(X3*(X462(Z)(1263 (Z)a3e4(z)(x4
=0 (Z)alez(Z)azeg(z)a394(z)a4
= p.
O

Recall that in this chapter we denote eﬁ.") = 95-]() (0]7).
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Theorem 4.5. The generators ji, j, and j3 of J satisfy

92
j1=23(0@) —er),?
91
92
Jo = 2(0(z) —e3),
e1
: .,
J3 29/12 o (Z)a

where §(z) := @(z; 7, 1) is the Weierstrass elliptic function with periods @ and Tt , ey := (6 + 6%)
and e3 := (65— 0).

Proof. Since %22 is elliptic with a double pole at z = 0 and is an even function, we can expand

0" _ (6 _e§e§3>+ezez” 2
01(2) 02 303 92

02 , [ 637 00"
S *(‘ 3 e )

it as

By Proposition 2.1, §(z) has a double pole at z = 0. Thus §#(z) — %‘;gfggz
2

together with Theorem 2.1 implies that it has to be a constant function, i.e.,

has no pole, which

020,22 67 8" 1.,
_ e WA 0 I A
02 0,(z)> 30, 6, 3O +80) =er,

#(z)

where the second last equality is proven using Algorithm 3.2. Thus

= —5(9(z) —e1). (4.4)
Analogously, we have

9/12 03 (Z)z 953) 05" L 4 4
- =1 2 — _(05-07)=
9% el(Z)2 39/1 93 3( 2 4) €2,

#(z)

2See p.102 of [21].
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where the second last equality is proven using Algorithm 3.2, and thus

03(2)> _ 63
= — p Z)—e3). 4.5
e] (Z)2 6%( ( ) 3) ( )
One can verify that j3 = W e J is an odd elliptic function, and we have the series
expansion
0,(2)05(2)0
Z(Z)e 3((;))3 4(2) =a_37  ta_i7 faizt e,
1
where
s 0,050,
03

(03046]26," +0,0,61°0" +0,0301°0," + 6,050/6'"),

aflzf,ls

and q; is also in K(®) but irrelevant to this proof. We have checked with Algorithm 3.2 thata_;

is zero.

By the series expression of '(z) in (2.1),

o SR o) 6

has no poles, which implies by Theorem 2.1 that (4.6) is constant. We take z = 0 and it turns out

that the expression (4.6) is zero. Then

92 (2)93 (2)94 (Z) . 1 929394 ’ . 1 /
where the last equality follows from the famous identity
9’1 = 0,030,
which can be also proven with Algorithm 3.2. O

Remark 4.1. Replacing z by 5 in (4.4) and using 6, (%) = 0, we obtain go(%) = ey; substituting z by

T in (4.5) and using 63 (%) = 0 gives 50(%) = e3. It can be verified that 8782 is also elliptic,

and similarly we have
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where e; := —1(03 + 0%). Moreover, by 04(%F) = 0 we obtain @(%) =e;.

The following proposition is a by-product of our reasoning, but will not be used to deduce the
algorithm.

Proposition 4.1. For any y € J, there exist a,b,c € Z, such that

0,(0 2ae 0 2b
ye {(j(((})zjzﬁ,jz (=€) (9—e)*(P—e3)d e N, d = 1ord = — ¢ } «7)
1

Proof. Suppose y = 8%(z) € J with a € Z*. By Lemma 4.1 and Theorem 4.5 there exist integers

a,b,c, such that
1\e 62(0)%85(0)
r=(=3) G o

where p(z) := (#(z) — 1) (2(z) —e3)? 9'(2)°. Let the set in (4.7) be denoted by G;.
Case 1: ¢ > 0.

Assume ¢ = 2n+ 1 (n € N). By the classical differential equation g'? = 4 0° —g, 2 —g3, we get
= (49’ —g0—g3)" ' Applying Remark 4.1 together with the fact that 3, % and ™ are

the roots of ', we can write

49" —gr—g3 = 4(P—e1)(P—e2) (0 —e3). (%)

Then

Lions1 02(0)%463(0)*

y=(=3) W(@—61)“(@—63)b(4503—gzso—gs)"@,

0-(0)249.(0)2
- _zgf(()))ZaibJ)r%(80—61)Hn(@—ez)”(go_%)bm80/ G,
1
Assume ¢ = 2n (n € N\{0}). We have

0,(0 Zae 0 2b
. 92/1((0))2a+32(b+)2c(@—e1)“+"(80—62)"(80—6’3)b+n €G-

3See p.102 of [21].
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Case 2: ¢ < 0. We can write

1 p’ 0’ 0’

O 07 AP -gp—g  Hp—e)(P—e)(P—e3)

Ifc=—-2n—1 (neN), we have

, 1 2n+1 80/ 2n+1 80/ 2n+1
w= <SO’> - <80’2> - (4803—g250—g3>

_ o’ _ (d(@—e)(p-e)(9—e3)" 9’
AP —e)(P—e2)(P—ex) P (@(p—en)(—ex) (P—es) 7]
p/

(4(80_el>(80—62)(80_e3))n+1 ’
Then

_ (_1>c_ 02(0)26;(0)*  (p—e1)(9—e3)" '
y 2 ell (0)2a+2b+2c (4(80—61)(8/0—62)(50—63))""'1
92(0)2ae3 (O)Zb
729/1 (0)2a+2b+2¢ '

(P—e) " (p—e) " (—e3) " €G.

If c = —2n (n € N), we have

e 1 B 1
0T o T @(p—er)(9—ea) (9—e3)"

Then

(b, 002002 () (9—e)
YT T (0)2 22 (4(p—ep) (—e2) (—e3))"

0,(0)205(0)% n —n —n
1

4.4 The Finite-Orbit Weight

This section will show the particularity of g, in terms of the finite-orbit weight, which will be

used in the next section as a crucial property.
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Definition 4.8. Let M(H) := {g : gmeromorphic on H}. Define a group action

SL»(Z) x M(H) — M(H)
(P, &) — glkp

ct+d

b
where glip(t) 1= (ct+d) g (M> for p:= . a’) € SLy(Z) and © € H. For each k € Z we define
c

the k-orbit of g by Gi(g) := {g|xp : p € SLa2(Z)}.

Proposition 4.2. For a nonzero g € M(H) and k € Z, if |Gi(g)| is finite then k is unique with this
property.

Proof. Let k and ¢ be integers such that Gx(g) and G;(g) are both finite orbit sets. We need to

b
prove that k = ¢. Let s := k—t. Take any g|,p € G;(g) with p = (a d> . Then
c

B _ [at+b
elole) = (cv ) 'e (27

+b
_ Py P
(ct+d)*(ct+d) g<ct+d>

= (ct+d)* - glip(7).

Hence we can rewrite the set G;(g) as
s a b
Gi(g) = {(cHd) glp i p= (C d) GSL2(Z)}

, a b
= {(C’C —I—d)‘S “8abed - (C d> € SLz(Z) and 8abed € Gk(g)} ,

b
where g, pcq 1= glkp With p = (a d). Assume s # 0 and Gi(g) = {ai,...,a,}, and define the
c

map

Y: SLa(Z) — Gi(g)

a b
c d — 8ab,cd-
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b
LetA;:= { (j d) €SLy(Z): gapca=a ]}. By Definition 4.8, the map 7y is surjective, thus A; #

n
. Then we can write SL,(Z) = | JAj where A;nA; = Jif i # j. Let
j=1

Bj = {(C,d): (j Z) EAJ'}.

For every pair (c,d) € Z> with ged(c,d) = 1, there must exist some pairs (a,b) € Z* such

a b
that J € SLy2(Z). Hence there exists r € {l1,...,n} such that B, is infinite; otherwise
c

SLy(Z) # |J A;. We also have
Jj=1

{(c‘c—i—d)sar: <ch Z) eAr} c {(c’c—&—d)sga./;md: (j Z) € SLZ(Z)} = G(g),

which implies
a b
N:=‘{(C’c+d)sa,: < ) eAr}
c d

N=|{(ct+d): (c,d) € B,}|, (4.9)

<[Gi(g)l- (4.8)

On the other hand

and the right hand side of (4.9) is equal to infinity because ¢t +d; # ¢2T +d, when (c1,d;) #
(¢2,d>), and because the set B, is infinite. Thus N is equal to infinity, and by (4.8), |G;(g)| = «,
which contradicts the assumption that G;(g) is a finite orbit set. Therefore s = 0. O

Definition 4.9. Given g € M(H) nonzero and k € Z such that |Gy (g)| is finite, we define the finite-orbit-
weight of g by
W(g):=k.

By using Definition 4.8 one can verify:

Proposition 4.3. Given gi,...,g, € M(H) with W(g;) = k;, then

(DW(g1--gn) =ki+-- +ky,
) Ifky = =ky=kand g +---+ g, # 0, then W(g1 +--- +g,) = k.
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Note. According to Lemma 2.6, we have SL,(Z) = (S, T). Hence

Gi(g) = {glp: pe(S,T)}.

Thus in our working frame, to compute G(g), we compute {g[xp : p € (S, T)}.
Lemma 4.2. Let quasi-elliptic f¥(z|t) = >, y(0)0%(z) € I:Ié and B € min(M). Suppose the series
oaeM

o0

expansion of B)éLT()) around z = 0 is of the form . d,(t)Z" with d,(t) € K(®). Then W(d,) = n when
n=0

d, # 0.

Proof. By Theorem 4.3, (B)(Zh() ) always has a Taylor expansion around z = 0. Since fV is a quasi-
8%(2) ;

elliptic component of itself, by Theorem 4.2 is elliptic for every o.e M.

7 8(2)
In view of ‘I’J(Cﬁ(él:(l) > x(“)eﬁ (o) We are going to show that the assertion is true for every
aeM
W(0)6%(2) ion i 1Y) i
VP’ and then we show the assertion is true for LB For any fixed o€ M, by Lemma 4.1

and Theorem 4.5 there exist integers a,b, ¢, such that

0%(2) (- 1 ) 0,(0)2905(0)%

P W‘D(Z) (4.10)

2

where p(z) 1= (9(z) — e1)*(#(z) — e3)? 9'(z)°. Applying Lemma 2.4 and Lemma 2.5 one can
verify that W(68,(0)?) = 1 and

G1(02(0)?) = {+0,(0)%,+i0,(0)%,+£65(0)2, +i03(0)%, +04(0)%, £i04(0)?}.

Similarly we have W (63(0)?) = 1 and W (8/(0)?) = 3. Then by Proposition 4.3.1 we obtain
92 0 2a93 0 2b u . .
W (efl((o))za+z(b+)zc = W(02(0)%03(0)%) — W (8] (0)2¢ T2 +2)
= W(GQ(O)Z") +W (83 (0)2b) —W (e, (O)2a+2b+2C)
=a+b—3a—3b—3c
= —2a—2b—3c.

Next we compute W([z"]p(z)), where by [Z"]p(z) we mean the coefficient of 7" in the series

expansion of p(z) around z = 0. Let us first consider

2a+2b+3c

Pi(z) =z p(z) = 24(0(z) — )" (P(z) —e3)'2* o (2)°. (4.11)
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Let g1(z) := 2>(§2—e1). By Proposition 2.1 we have
0
g1(z) = 1—eiZ? + Y (2m+ 1) By o™+
m=1

where Ey,2:= Y. o (*"*2) is an Eisenstein series and L is the lattice generated by ©t and
weLl,w#0
7t. One can easily verify by using Definition 4.9 that W(1) = 0. Again using Lemma 2.4 and

Lemma 2.5 one can verify that W(e;) = 2. In addition, according to [29, p. 83] form > 1,

W (Eomis) =W ( > m—(2m+2)> =2m+2.

WeL,m#0

Therefore, for any n > 0, if [z"]g1(z) # O then

W(["]g1(2)) = n. (4.12)

Next we do a case distinction on the power of g (z) in (4.11).

Case 1: a = 0. Then

W (["]e1(2)") =W < Y, s [Z”"]&(Z)) :

ny+ny+--+ng=n

By (4.12) and by Proposition 4.3.1, for any combination ny,...,n, such that ny +---+n, = n we

have

W([2"]g1(2) - [2"]e1(2)) = W(["]g1(2)) + - + W([2"]81(2))
=np+--+ng

=n.
Hence if a = 0, we find that

W ([z"]g1(2)*) =n when [7"]g1(z)* # 0.

Case 2: a < 0. Then
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o3 ) )

00 . 0 .
Assuming g;(z) = Y, v;z/ we have g%(z) = >, u;z/, noting that vop = ug = 1. We have proven that
J=0 J=0

foralln >0, W(v,) = n when v, # 0. Now we prove that W (u,) = n when u,, # 0 by induction on
n. When n = 0 we have W(ug) = W(vp) = 0. Assume for n <N, W(u,) = n. Let n = N+ 1. Using
2. vjz/ - 21 ujz/ =1 we obtain

Jj=0 Jj=0

viuy +voun—1+ -+ +VnNuUp + VN41Uo
UN+1 = — v = —VIUN —V2UN—1 — " —VNU] —VN41-
0

By Proposition 4.3.2, if uy; # 0, then

W (unt1) = W(—viuy —vouy—1 — -+ —vyur —vy41) = N+ 1. (4.13)
Hence W (u,) = n when u,, # 0. For any combination n,...,n_, thatn; +--- +n_, = n we have
(et ) ) v )
81(2) 81(2) 81(2) 81(2)
=n+--+n_,
=n.

Again by Proposition 4.3.2 and by (4.13), for any a < 0 we find that
W ([Z"]g1(z)*) =n when [7"]g1(2)* # 0.
Analogously we deduce that for b,c € Z,
W ([ (9—e3)") =n and W ([0 (2)) =n

whenever the function to which W is applied is nonzero. Consequently we deduce that when
[Z"]p1(2) # 0,

W ([Z']p1(2)) = W ([2']2(9(z) —e1) 2" (9(2) — €3)"2* 9 (2)°)
- ( D M) —e) [ (9(z) —e3)”- [Zn3]Z3C50/(Z)C>

ny+ny+n3=n

=n|+ny+n3
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:n’

where the second last equality follows from Proposition 4.3.1. This implies when [z"]p(z) # 0,

W ([']p(z)) = W ([ pi(2)) = n+2a+2b+3c.
Therefore if [7"] 6:(2) # 0, identity (4.10) implies

0P (z
n 9%() L. 62(0)83(0)*
¥ () = (2 opeert)

2a 2b

=—2a—2b—3c+n+2a+2b+3c

N

=n.

~

Moreover, since both y(a) and y(B), by definition of B, are homogeneous polynomials in K[®],

with the same degree, one can check, by using Lemma 2.4 and Lemma 2.5, that W (W

for all oo € M. Hence

and

4.5 Zero-Recognition for [V € Hy

Let us recall Definition 4.7. By Lemma 4.1 and Theorem 4.5, for any g—; eJwitho = (o,...

and B = (Bi,...,Ps), we can write

0%(2) _ (_ ! ) 02(0)>*03(0)*

3 WW%

where p(z) := (#(z) — 1) ($(z) — e3)? 9'(z)°. The p(z) has the following property.

):0
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Proposition 4.4. Let p(z) be the same as above and let g, denote the coefficient of 7" in the series
expansion of p(z) around z = 0. Then when g, # 0 we have

G, (8n) | <3 =Ga(e)],

where wy, is the finite-orbit-weight of g,.

Proof. From the proof of Lemma 4.2 we observe that g, is a polynomial in ey, e3 and E»,1» with
some s > 1, and
W(gy) =n':=n+2a;+2b;+3c;

when g, # 0. Let py,...,p; be the components of g,, where each such component is a (finite)

ower product X' e?EVEL ... with a coefficient in K. One has
p P 1 €2 Ly L

G (gn)l = {(p1+ -+ pi)lwp : peSLa(Z)}]. (4.15)

Additionally, from the proof of Lemma 4.2, the p; in (4.15) are of the form

ki ko ¢,
€ €3 HE2§+2
SEM;

where ki,k»,ls € N, M; € N and 2k + 2k, + >, (2s +2)¢; = n’. It can be verified by using
SEM;

Lemma 2.4 and Lemma 2.5 that G,(e;) = Gz(e3) = {e1,e2,e3}, thus W(e;) = W(e3) = 3.

By [29, p. 83] when m > 1, E»» is a modular form of weight 2s 4+ 2, which means

E25+2|25+2p = E25+2 for all PEeE SLz(Z).

Consequently,
E§§+2\(zs+2)&p = Ef;+2 for all p € SL,(Z).

By Proposition 4.3 (1),
w <H E§;+2> =) (25 +2)L,.
SEM; SEM;

By Proposition 4.3 (2) we obtain W (p;) = 2k; +2ka + >, (2s+2)l; =n'forallie {1,...,7}. Hence
SEM;
we continue (4.15) by

|G (8n)l = {(p1+--+pi)lwp: peSLa(Z)}|
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<|{{p]’n p7 7pt’n’p}: pESL2<Z)}‘
= (" ) wps -, (€ ) [wp) - p e SLa(Z)}]
k k/
= |{{(e," 1f33 Motk +h12)Ps -+ (€] 163 Motk +412)P} 2 P € SLa(Z)}, (4.16)

where the v; are the corresponding [ ] E2§ +» of pi. On the other hand, for ke N,

meM;

Golef) = {ef|up : pESL2(Z)} = {e1]op---e1]op: p € SLo(Z)} = {ef,éb, €5}
—_—
k

and analogously Gy (€8) = Ga(e}) = {et, €5, ek} Then

{1 oty 1P - PESL2Z)} = {€]' o, p - €5 [P : p € SLa(Z)} = {5 €}, f' e e e},

which means there are only three possibilities when applying an arbitrary p € SL,(Z) on every

elf’ le];’ 2 of (4.16). Note that the powers k; ; are irrelevant, i.e., we can choose three representatives

p1, P2 and p3 such that forallie {1,...,t},

kit iy k
(e)" e% )|2 11+k,z)pl—ezllellz’

kit kv k
(er" e3 )|2 11+k12)p2_e3116212

and
ki1 ki1 kip
(e)" 63 )\2 kii+kip)P3 =€y €37

Hence the right hand side of (4.16) is equal to

kig ki ktl ki o ki1 klz ket kin k11 klz ket kin
{{aer, g e p ey, ety e, e

Thus |G,/ (g,)| <3 when g, # 0. O
Lemma 4.3. Let quasi-elliptic f¥(z|t) = >, w(a)8%(z) € FI(:) and B = (B1,B2,B3,P4) € min(M). Sup-

oeM
pose

= 3 ()2 with dy () € K(O).

Let M = {y(1 ... ym} with yU) = (ygj),yg),yg ),yg)) For 1 < j<mlet

P—m+m
2 7

)
aj =
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b ,7y§j)—y§j)—l33+ﬁ4
j= )
2
cyimy B

rj :ygl) _Bla
and

. y(31))0,(0)*403(0)%
I ‘I’(B)ell (O)Zaj+2bj+2c,-

Foralln >0, ifd, # 0 then

Gu(dn)| < [{{11]rPs - i, pse1]2p} - p € SLa(Z)}],

Proof. First of all we write

AL
T =y,
V(B)OP(z)
e
with hj := %gﬁ(jz)@. From the proof of Lemma 4.2 we see that for all je {1,...,m},

W (["hj(z)) = n

and

W(y(]) ) 62 (O) 2a; 63 (O)Zhj
" ( W(B)6] (0)2at2bit2e; = —2a;—2bj—3c;.

Then by Proposition 4.4 and expression (4.14) we deduce

|G ([2"11(2))| < [{{1)l-;p; e1]2p} - p e SLa(Z)}],

where r; := —2a; —2b; —3c; = ysj ) — B1 following from the definition of a;,bj,c; and where

_ y(9)82(0)*165(0)*
= \V(B)ell (O)2aj+2bj+2£j

tj: . Consequently, when d,, # 0 we have W (d,) = n by Lemma 4.2 and

Guldn)| = [{[211011(2) +---+hm(z)))np: peSLa(2) ||
H{[Z"]m(z) p,...,[z”]hm(z)‘np} pe SLZ(Z)}‘
< [{t1lnps--stmln,Pre1l2p} = p € SLa(Z)}].

N

n
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Theorem 4.6. Let g := €™, t1,...,t,, 11 ...,y and d, be the same as in Lemma 4.3, and let

C:={nlnps- - tmlr,prel2p} - p e SLa(Z)}].

For n > 0 suppose d,, has the g-expansion
0

Z Vnyjqj.

Jj=0
Then '
d, = 0if and only if v, ; = 0 for j < [%J.

Proof. “ =" 1fd,(t) = >72 s s jq¢’ =0, it immediately implies that all v; are zero.

“ <= " Assume v,; = 0 for j < |%|. If d, # 0, by Lemma 4.2 we have W(d,) = n and by
Lemma 4.3, |G,(d,)| < ¢. Suppose G,(d,) = {s1,...,50,} and ¢, < L. Then for every i€ {1,...,4,},
there exists a unique j € {1,...,4,} such that s;/,S = 5;; and there exists a unique k€ {1,...,4,}
such that s;|,T = s¢. Then

This yields
K}l 'ef‘l
(Hs,) p=][s; forallpeSLy(Z).
i=1 nn =1
£y Ly
Moreover, we have proven in Lemma 3.12 that []s; is a Taylor series in ¢. Thus [][s; is a
j=1 j=1

modular form of weight n/,,.

Ln
Since ¢, <{wehave v, ; =0 for j < [%J By Corollary 2.1, [ | s; = 0. Because of the fact that for

j=1
any meromorphic functions 4 and g on H, if (A|,p)(t) = g(t) then (1) = 0 if and only if g(t) =0,

we deduce that s; must be zero for all j € {1,...,4,}, otherwise s; # 0 for all j € {1,...,¢,} which

é’l

contradicts [ [ s; =0. As d, € Gn(d,) = {s1,...,5¢,}, we deduce that d, = 0, which contradicts the
j=1

earlier assumption d, # 0. Therefore d,, = 0. O

Algorithm 4.2. Let g = ™ and fY¥(z]t) = Y. w(a)8%(z]t) € FI@. We have the following algorithm to
oeM
prove or disprove f¥(z|t) = 0.
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Input: fV¥ e Hy,

Output: True if f¥ = 0; False if f¥ # 0.

Write fY(z|t) =
of fY¥(zl).

Jj=1

Seti:=1. Whilei <ndo

Let m:= |M;| and {yV), ...y} = M;;
Choose B € min(M;);
For je{l,...,m},
U0 W)
compute a; M, bj:=

compute rj 1= y1 —Bi;

v(r1)62(0)**763(0)*"

let t] \V(ﬁ)e/( )Za +2b +2€ /

Compute £ := |{{t1|,,p,. .

Vi
Let g(z) := —J;B ((ZZ'));

o0
Compute g(z) = 3. dp(1)Z;
k=0

Set k := 0. While k < B, + B3 + B4 do

kt

if di(t) = O(qo ™)

k++;

otherwise return False;

i fYi(z|t) where the f¥i(z|t) :=

>, y(0)6%(z|T) are the quasi-elliptic components
aEM;

@)
Lo o hh, Ptbs | — B,

im|r, P} = P € SLa(Z)};
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end do;
j++
end do;

return True;

Theorem 4.7. Algorithm 4.2 is correct.

Proof. By Lemma 4.6, di(t) = 0 if and only if di(7) = O(q%“). Since the only difference be-
tween Algorithm 4.1 and Algorithm 4.2 is the way in which we check di(t) = 0, it follows that
Algorithm 4.2 is correct. O

Example 4.2 continued.[14, 20.7.1] Prove

0,(0)?02(z)* — 03(0)%03(2)* + 04(0)%04(z)> = 0.

Proof. Let :=(0,0,0,2) and

_ 92(0%60:(2)*  65(0)%65(2)°
8(z) == 6:(026: ()7 8:(0)%04 (o) +1.

Since g(z) is an even analytic function we obtain

g(x) = ) du (0
k=0

with
0,(0)* —03(0)* +0,4(0)*
dO(T) = 94(0)4 ’
 6,(0)%64(0)8,"(0) — 63(0)764(0)63"(0) — 82(0)*64”(0) + 63(0)*64”(0)
d2 (T) - 94 (0)5

and di(t)(k > 1) are of a form similar to dy(t) and d»(t). According to Algorithm 4.2 we need to
show that dy(t) = O(q) and d»(7) = 0(q§+1) where

- ’{62(0)493(0)2 02(0)203(0)*

0,02 10" 00 prerkpipesia(@)]].
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By implementing Algorithm 4.2 in Mathematica, we obtain that £ = 6, and dy(t) = O(q) and
d(1) = 0(). O

Remark 4.2. Example 4.2 can also be solved by Algorithm 4.1. The speed comparison of Algorithms
4.1 and 4.2 can be found in Chapter 6.

The following proposition shows that there is a further decomposition step that can be done

before doing zero-recognition.

Proposition 4.5. Given f¥(z) = Y. w(®)8%(z) € Re, then f(z) =0 if and only if
aeM

> w(@)8%(z) =0

aeM;

fori=1,2, where My := {(al,...,04) € M : 0 is odd} and M := {(01,...,0) € M : 0 is even}.

Proof. “ «<=" is immediate. We show “ == ". Let f;(z) = >, y(a)06%(z). By Definition 2.7, 8;(z)
aEM;
is an odd function while the other three are even functions, hence

0=1Y(2) =fY(—2) =—fiz) + f2(2).

This together with f¥(z) = fi(z) + f2(z) implies fi(z) =0 and f>(z) =0.

4.6 Examples

Example 4.5. Prove the differential equation [11, p. 29, Thm. 3]

0'(2)*=49(z)° —g20(2) — g3,

where & = 60E4 and g3 = 14OE6 with E2k+2 = E2k+2 (TC,?T,T).
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From the proof of Theorem 4.5 we see that

0/20(z)> 1
9(z) = 91%9?82 +§(eg‘+ei) (4.17)
e 26)%62(2)03(2)64(2)
N 2(2)Y3(2)Y4(Z
® (Z) - : 91(2)3 :

In addition, we expand both sides of (4.17) around z = 0. The coefficients of z” on both sides
must be equal. Proposition 2.1 gives us the coefficients in the expansion of §(z), which are

Eri+2. The coefficients in the expansion of the right hand side of (4.17) are some quotients of

o) )
He

in Example 4.5 in terms of theta quotients, and this example fits in the class studied in this

Hence we can express g and g3 in terms of some Oﬁ-k . Therefore, we can write the identity

chapter.

In the literature there are not many high degree (already in an expression like Examples 4.1 and
4.2, not in an implicit form like Example 4.5) identities found in Rg and I:I@. The one with the

highest degree we are able to find in Rg is
0, (Z>4 + 03 (Z)4 =0, (Z)4 + 94(2)4

from [31, p. 462], whilst we have a way of producing all relations in Re, which will be intro-
duced in Chapter 6. Moreover, we are preparing a paper [28] that determines the generators of
the ideal containing all relations in Hj.

On the other hand, based on this chapter, algorithmically dealing with other types of identi-
ties becomes possible. For instance, in Chapter 5 we will provide an algorithm to deal with
identities like

02030401 (2z,9) —201(2)02(2)03(2)04(2) =0,

from [31, p. 485].






83

Chapter 5

Proving Identities among Powers of
0'Y(0]t) & 8,(az|t) (Class Iy

In this chapter we extend K|[®] further to K[®][G], by which we define the K[®]-algebra gen-
erated by
Gy :={0j(az,q): j=1,2,3,4and a € N\{0}}.

We solve the following problem algorithmically:

Problem 5.1: Given f € K[®][G]; decide whether f = 0.

Example 5.1. [14, 20.7.10] Our algorithm will be used to prove

0> (0761)93 (qu)e4(07 q)el (2Z7CI) —26, (Zv Q)ez (Zv Q>e3 (Z7Q)e4 (qu) =0.

5.1 Quasi-Elliptic Decomposition of f € K[®][G]

First of all we examine any single theta function, say 03(az,q) with a € N\{0}. Substituting
7z z+mand z+— z+ 71T, we find that

0

o0
O3(a(z+m),q) = Y, ¢" ¥ = N g = B5(az, q)

n=—a0 n=—0o0
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and

0
2 : 2 .
n° 2nia(z+7wt) _ n- 2na 2niaz
gt = N g e

0
n=—0o0 n=—0o0
& 2 2 2
Z (n+a) q—a eZ(n-‘,—a)zaze—Zza z
2 P~ 2
qfa e~ 2iaz Z q(n+a) 62(n+a)laz
n=—oo

0
2 52 2 :
=g a, 2ia*z Z qn eZmaz

n=—0uo0

= Na263 (az, Q)v

where N := g~ !le~?%. Carrying out the same steps for 0;(az,q), 82(az,q) and 84(az,q) we obtain
for je{1,2,3,4},0;(a(z+ 7)) = €1(j)0;(az) and 8;(a(z+ 7)) = €,(/)0;(az), where €, () and €,(})

are defined in Table 5.1.

j 1 2 3 4

e1(j) | (=D)eNe | N | N | (=1)sN®

e/) | =D [ (=D ] 1 1
Table 5.1

Then we look at any product of the theta functions.

Definition 5.1. Define W := {(j,a,a) : j€{1,2,3,4} and a,o. € N\{0}}. Given a finite subset X = W
and ¢ € K[®], we define
Oxc(z):=c H 0(az)®.
(j,a,0)eX

Given X = (X1,...,Xmm) and ¢ = (c1,...,cn) with finite subsets X; € W and ¢; € K[®], we define

m

GX,E(Z) = Z Ox,.c; ()

i=1

By Definition 5.1, every element in K[®][G)] can be written in the form of 6% -(z).
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Definition 5.2. Given a finite subset X € W and c € K[®], we define

Vj(ex7c) = Z adl,

(j,a,0)€X
.uj(eX,c) = Z o
(j,a,0)€X
and OOxc): = Z a*a.
(j,a,00)€X

Example 5.2. Let p :=04(0,4)02(22,9)*02(z,9)01(4z,q). Then vo(p) = 5 and o(p) = 25.

Definition 5.3. Let f:= ) f; with f; := Ox,,, where X; € W finite and ¢; € K[®]. We define
i=1

Yios(f) :i={ie{l,....m}: @(f;) = 1,vi(fi) +va(f;) = b(mod2), Vi (f;) +V2(f;) = s (mod2)}.

Then we call

{ N fi# @ e N\{0) andb,se{o,l}}

ieY}.bJ (f)

the set of quasi-elliptic components of f.
Theorem 5.1. Let {gi,...,8} be the set of quasi-elliptic components of f € K[®][G1]. Then

f=0iffgi=0forallie{l,...r}.

m
Proof. “ <" is immediate. We prove “ — ”. Suppose f := ) f; with f; := 0y, .,. Let
i=1

Yio(f) :={ie{l,....m} - o(fi) = 1,v1(fi) + va(fi) even}

and

Yo(f) :={ie{l,....m}: o(f;) =t,vi(fi) +va(f;) odd}.
Assume {®0(f1),...,0(fn)} =1{d1,...,ds}. We can write

= (Z fit ) f)
de}

i€Y;0(f) i€Y;1(f)
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Then by using Table 5.1 and the definition of d(f;) we have

0= f(z+mr) = Z Z fi(z+mT) + Z f,-(z+m)>

te{dy,....de} \i€Yo(f) i€Y; 1(f)

= Z Z (71)V1(ﬁ)+v4(ﬁ)N’ﬁ(Z)+ Z (l)vl(ﬁHv“(ﬁ)Ntﬁ(Z))

te{dy,....d¢} \i€Yio(f) i€Y,1(f)
= 2 | X NA@+ Y NAE .
te{dy,....de} \i€Yo(f) i€, 1(f)

Hence for ke N,

0=fzt+knr)= O] ( DN R+ ) (Nt)kfi(z))

te{dy,...,de} \i€Yo(f) €Y, 1(f)

= Z (N”‘ Z fi(z) + (=N 2 f,-(z)), (5.1)

tE{dl,...,dk} iEYt"o(f) iGYM(f)

Letgio(z) = > fi(z)and g 1(z)= 2 fi(z). Then (5.1) can be written as

€Y, 0(f) €Y 1(f)
N _ N ce N —N% 8d, 2
(N2 (=N4)2 o (N2 (—N4)? =0 (5.2)
: : . 8dy,1
(Nd|)2€—l (_Nd|)2€—l (Nd[)%—l (_ng)ZZ—l 24,2
B

Since N # 0, the determinant of this Vandermonde matrix B is nonzero. Therefore we can
multiply both sides of (5.2) by the inverse of B and obtain g;; = 0 for all 7 € {d,...,d;} and
i€{0,1}.

Next we write

0=2g0(2) =8.00(z)+801(z) and 0=g.1(z) =gr.10(2) +8&.1.1(2), (5.3)
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where for b € {0, 1} we denote

gs0(x)i= Y. file) and gui(x):= Y fi(2)

i€Y; p.0(f) i€Y; p.1(f)

with th,()(f) = {i € Ytb(f) . Vl(ﬁ) -I-Vg(f,') even} and Yt,b,l(f) = {i € Y,b(f) : V](f,') +V4(f,') Odd}
Again by using Table 5.1 on fj(z) we obtain for s € {0,1},

0=gp(2) =gp(z+T) =g po(2+7) +&p1(2+T) =g 50(2) — &.5,1(2)-

This together with (5.3) implies g, 0 = g:»,1 =0 forallt € {dy,...,d;} and b,s € {0, 1}.

In view of Definition 5.3 we have

{gips:teld,....,d} and a,be {0,1}} = {g1,...,8}.

Therefore g; =0 forallie {1,...,r}. O

5.2 Zero-Recognition for f € K[O][G]

Lemma 5.1. Let f:= ) f; with fi := Ox,,, and let Y, f; be a quasi-elliptic component of f, where
i=1 iev

Vc{l,...,m}. Then foralli,jeV, ]]%(é)) is elliptic with respect to z.

Proof. According to Definition 5.3, we suppose that V is equal to some fixed X, . with a € N\ {0}
and b,s € {0,1}. Take an arbitrary i € X, ;.. By Table 5.1 we have f;(z+x) = (—1)"1 )20 £(2)
and fi(z+mt) = (= 1))+ Na £ (z), which together with the definition of X, ;. implies that
forany i, j € Xy p.c,

filz+m) _ fi(2) filz+m1) _ fi(2)

= and =

fiz+m)  fi(2) file+m) — fi(2)
is elliptic. O

fi(2)

Therefore 6
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m

Theorem 5.2. Let f:= ) fj with f; :=0x, ., and let g := Y f; be a quasi-elliptic component of f, where
i=1 iev

Vc{l,...,m}. Taket €V such that u, (f;) = mi‘p{yl (fi)}. Then ? has the series expansion around z =0

i€ !

Q0
of the form Y ax(t)7*, and
k=0

g(z)=0ifand only if ax(t) =0 for k =0,1,...,u(f;) +u3(f;) + pa(fi)-

Proof. According to Proposition 2.2, only 6, has a zero at z = 0. Then the choice of ¢ can insure
that £ hasno pole at z= 0. Hence £ is analytic around z = 0, and then we have the Taylor expan-
sion around z = 0. Moreover, £ is elliptic by Theorem 5.1, and has at most 2 (f;) +p3(f) +pa(f2)
poles in the period-parallelogram P(n,nt) by Proposition 2.2. If ax(t) =0 for k = 0,1,...,u(f;),
we deduce that % has more than u (f;) +u3(f:) + ua(ft) zeros in P(r, wt), which implies by The-
orem 2.2 that j% = 0. On the other hand if g = 0 then % = 0 and we have a,(t) =0 for all k > 0.

O]

Theorem 5.2 can also be stated as an algorithm.

Algorithm 5.1. Given f € K[®][G)], we have the following algorithm to decide whether f = 0.
Input: f e K[O][G].

Output: True if f = 0; False if f # 0.

Let f:= >, Ox,, and let {gi,...,g,} be the set of quasi-elliptic components of f.
i=1

1

Set j:= 1. While j < rdo

Let p = gj. Write p = ) Ox, ., where V; < {1,...,m};

lEVj

Choose t € V; such that u; (8x, .,) = m‘i/n{,ul (Ox.c,)};
1€V
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ak(’C)Zk,’

18

Write h(z|t) =
K

0

Set k:=0. While k < u»(8x, ¢,) + 13(0x, ¢, ) + 1a(0x, ,) do
ifar(t)=0;
k++;
otherwise return False;
end do;
i++;
end do;

return True;

Note. In Algorithm 5.1, we use Algorithm 3.2 to check whether a;(t) = 0.

Theorem 5.3. Algorithm 5.1 is correct.

Proof. By Definition 5.3, we can always write f as the sum of its quasi-elliptic components. If
f =0, then by Theorem 5.1 every g; is zero. Thus every «; is zero, and Algorithm 5.1 returns
True.

If f # 0, again by Theorem 5.1, there exists £ € {1,...,r} such that g; # 0. Then in Algorithm
5.1 the corresponding / is nonzero. Assume # is constant. Then ap # 0 and Algorithm 5.1
returns False. Assume / is not constant. By Theorem 5.1, # is elliptic. Since & has at most £ :=
w(0x,.¢,) +13(0x, ¢, ) + 1a(Ox, o, ) poles in P(r,mt), by Theorem 2.2, it has at most ¢ zeros in P(m, 7t).
Therefore a; can not be all zero for k € {0,1,...,¢}. Thus Algorithm 5.1 returns False. O

Example 5.1. Prove

f(2) :=02(0,4)83(0,4)04(0,9)01(22,9) —261(z,9)02(z,9)03(z,4)64(z,9) = 0.
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Proof. One can check that f(z) is a quasi-elliptic component of itself. Let

hz) = 2(0:006:(0.9)04(0,9)6,122,9)
- 201(2,9)82(2,9)83(2,9)8a(z,9)

0

We write h(z) = )] a,7". Then according to Algorithm 5.1 we need to check whether ay =
n=1

a; =ap; =0. Let Qs-k) = 95-]() (0,9). When expanding h(z) we find that ag, a; and a3 vanish by

computation and

By using Algorithm 3.2 we verify that a, = 0. O

5.3 Examples

We list some examples from [31].
Example 5.3. 0; (2)391 (3Z) + 94(Z>394(3Z) — 04 (2Z)394 =0.
Example 5.4. 0,0,(22)04(z)% — 02(2)?04(z)> — 01(2)?05(z)> = 0.

Example 5.5. 63604(2z)> —63(z)* — 6,(z)* = 0.

Remark. A natural generalization is to extend K[®][G] to K[®][G], where
Gy :={0j(a1z1 -+ anzn,q) 1 j={1,...,4} and (ay,...,a,) € N"\{0} with n € N\{0}}.

We have a method to solve the following problem.
Problem 5.2: Given f € K[®][G]; decide whether f = 0.

We tested our method on many examples including the ones below, and it worked fine. The
main idea is to reduce the variables zj,...,z, once at a time. In the end we only have one
variable, and then we can solve it by Algorithm 5.1. More details will be find in the paper [33]

that we are currently writing.
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Example 5.6. [14, 20. 7. 6]Prove

04(0,9)°01 (W +2,9)01 (W —z,q) — 03(w,9)*02(z,4)* + 82(w, 4)*03(z,9)* = 0.

Example 5.7. [23, p. 17]

~

Z 1)7419,(x)0;()0; (1) (v) — 2603 (x1)03(v1)03(11)03(v1) =0,

where x) == Y(x+y+u+v)and y; == J(x+y—u—v), uy := 3 (x—y+u—v)and vy := L (x—y—u+v).

Example 5.8. [35] Let o, B; (i € Z/37Z) be six numbers satisfying > o; = >,B; = 0. Then

291 0,;)01(Bi)01(ti—1 + Bit1)01(tiy1 —Pi—1) =0.

Example 5.9. [31, p. 480]
0301(y+2)01(y—2) — 03(y)*02(2) + 02(1)*03(2)> = 0.
Example 5.10. [22, p. 21]

01(x—y)01(x+y)01(z—w)01(z+w) —01(z—x)01(z+x)01 (y —w)01 (y + W)
+01(y—2)01(y+2)01(x—w)0(x+w) =0.

Example 5.11. [13][Gosper and Schroeppel] Let wi,wa,w3,z1,22 and z3 be complex variables, and con-
sider the 3 x 3 matrix whose j,k entry is ©,(w; — zk|t)0s(w; + z¢|T), where r,s € {1,2,3,4}. Then

det(6,(wj — zx|T)0s(w; + z|7T) ) 1< k<3 = 0.
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Chapter 6

Ongoing Work and the
"ThetaFunctions” Package

This chapter consists of some work that we are still working on. In Section 1 we illustrate the
discovery procedures for new relations among Jacobi theta functions. In Section 2 we indi-
cate our current step of generalizing the previous chapters, which will systematically prove
Ramanujan’s modular equations and will solve many problems in related research papers and

monographs. In Section 3 we demonstrate our Mathematica package "ThetaFunctions".

6.1 Producing Identities

We mainly discuss how to produce relations in Classes I and II. The implementation is not
finished yet. Thus we only present the main ideas and some important steps.

6.1.1 Class 1

According to the homogeneous decomposition described in Theorem 3.1 of Chapter 3, to find
relations in Rg, we need to find homogeneous polynomials p € Ry which map to identities
¢(p) = 0 in Rg. However, for a given degree d, there might be infinitely many homogeneous

polynomials in Ry that map to identities in Rg, e.g., any linear combination of such polynomials
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still maps to an identity. Therefore, we restrict the recovery procedures only on the building-

block-relations, which will be described below.

Following Definition 3.5, we can generate all monomials in Ry for a given degree. For instance,

the set of all monomials of degree 3 is

6 5 4 2 3,3 2 4 5 6 5
{Xz, X2 X3, X2 X3, X2 X3, X2 X3, X2 X3, X3, X2 X4,

4 3.2 2 .3 4 5
X, X3 X4, X, X3 X4, X5 X3 X4, Xp X3 Xg, X3 Xa,

4 2 3 2 2,2 2 3,2 4 2 3,3
X2 X4, X2 X3 X4, Xz X3 X4, XZ X3 X4, X3 X4, X2 X4,

2 3 2,3 3.3 2 4 4,2 4
X5 X3 X3, Xp X3 X1, X3X3, X5 X4, Xo X3X,, X3X4,

5 5 6 3 ’ 2 ’ 2 ’
Xo Xgyr X3 Xgyp Xgy Xy X1y Xy X3 X1y X2X3X1 g

3 ’ 2 ’ ’ 2 ’ 2 ’
X3 X1y Xy Xg Xy, XpX3Xg X1y X3Xg X1y XpXy Xy

2 4 3 4 4 2 124 144 r7
X3 Xy X1, X3 x1', (X17)7, x2 %", x3 ", x4 %",
%2 %3, X3 %37, x4 %3, X2 x4, X3 %47, %y X4”}
We produce the building-block-relations of degree k in the following way.
Step 1: find all monomials of degree k in Ry, say {yi,...,yn}-

Step 2: set s := 1, or choose s to be any positive value.

Step 3: make an ansatz of the form

c10(y1) + -+ +cnd(yn) =0, (6.1)

where ¢; € K and ¢ is defined in Section 3.1. In view of Definition 2.7, every ¢(y;) can be written
as a ¢'/*-series. Hence from the left hand side of (6.1) we can extract the coefficients of

g (q1/4)“'

and obtain a system of equations in the unknowns cy, ..., c,.

Step 4: find a basis of the solution set for the above system of equations in Step 3, say
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where al/) = (agj),...,aflj)) with afj) eKand al(j)([)(yi) =O0forall je{l,...,m}.
i=1

Step 5: apply Algorithm 3.2 on every f; := al(j )q)(yi) and if f; is nonzero for some j, increase
i=1
s by one and go back to step 4. If all f; are zero, then go to step 6.

Step 6: let A := {fi,...,fn} and delete the polynomials which are multiples of relations with

degree smaller than k. This step gives a reduced polynomial set

{g17"'7gt}gA7

which is the desired set of building-block-relations of degree .

Note. In the setting of our ThetaFunction package, we do not use the Deg, instead, we use
another definition of degree which is equal to 2Deg. This makes the degree always be an integer

and it is more convenient for implementation.

Example. Suppose that we want to find the building-block-relations of degree 3. We run our
package and execute the command identities[d,s], where d presents the degree and s is the num-
ber in Step 2. We first try s = 9.

ne4]= identities[6, 9]

oue- {0503 -6,05-6650,01"+6030;61"+100360," -116,0," -20,05"+36,6,",
6,65-17656;+12636,-1660560,+20056;+65+86565" -186,05"+2656," +86,6,",
6,63-6,60,-66560,6,+6605620,+11656,"-116,6," -36,65" +36,6,,
65-1760565+12636; -17656;+200656; +65+86365" -186,65" +26:6,” +86,6,”,
6304 +6, 60, +604 6, —6,0,", 0565604+6,65 -656,",
6, 60564+6,60, —6,6,", 036,-656, +6,65" -056,", 6,056;+656,” -6, 065",
636, +6,65 -656,", 636, +6,6, -6,6,", 6,6, +656," -6, 93”}

We use Algorithm 3.2 to check the above set, and find that some are nonzero. So we try s = 10.

ineo}= identities[6, 10]
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oui20- {0365 -60, 03 -056," +0, 05", 030, +0,0, +0,0,” —0,0,", 02650, +6,05 -0506,",
2 3 2 4 2
6,056, +6,60, —6,6,", 636,-656;+6,65" -656,", 6,056, +656," -6, 65",
0501 +0, 03" 030,47, 6561 +0, 6, -0,0,", 6,6, +656,” -6,65"}

We use Algorithm 3.2 to check the above set, and it turns out that all elements are zero. Note

that in our implementation, the above set is already reduced as in Step 5.

Thus the set of building-block-relations of degree 3 is

{656:-6,05-6:6,"+6,05" =0,
6360, +6,605+6,6," -6,0,” =0,
056056, +6465" -656," =0,
6,0356,+646, -6,6," =0,
6364 -636;+6465 -6:06,” =0,
6,636; +636, -6,65" =0,
6361 +6,65" -656," =0,

6361 +6,6," -6,6," =0,
0; 61" + 630, -0, 65" =0}

6.1.2 Class II

From Chapter 4 we know that to generate identities in Rg we only need to generate quasi-
elliptic functions which equal to zero. For any o = (0,02, 03,04) € N* we define that the degree
of the monomial 6%(z|t) is equal to |a| := o) + 0z + 03 + 0. By Definition 4.2 we know that for
any quasi-elliptic fV e Re, the summand monomials have the same degree.

Definition 6.1. We define the degree of a quasi-elliptic f¥ € Re to be the degree of its summands,
denoted by deg(fV).

For instance, the degree of the quasi-elliptic function 8,(0|t)?6,(z|t)? + 62(0[7)?02(z|t)? is 2.

Definition 6.2. Given ke Nand a,b e {1,2}, let

Yop(k):={6%: |a| =k, 01 + 04 = a+ 1(mod2), a; + 0 = b+ 1(mod2)}
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and define the following partition of monomials in Re of degree k:
Y(k):={Yup(k) # & :a,be {1,2}}.
We call Y (k) the set of quasi-elliptic monomial sets of degree k.

Hence generating quasi-elliptic functions is equivalent to generating Y (k) for k € N. Note that
Definition 6.2 also gives us a way to compute Y (k). For example, let 6,(z) := 8;(z|t), then

Y(2) = {{61(2)*,82(2)*,03(2)7,04(2)*}}
and

Y(3) = {{63(2)04(2)*,03(2), 02(2)*
{04(2)*,03(2)%04(2),01(z)?
{61(2)04(2)2,01(2)03(2)%,01(2)02(2)%,01(2)°}}.

o0

Lemma 6.1. Let fY := f) be quasi-elliptic with deg(f¥) =t and f¥(z) = 3 v;(t)z/. If v;(t) =0 for
Jj=0

Jj€{0,...,t} then f¥ =0.

0 Q0
Proof. Let g(z) := fw('z) = Y di(t)7" and 85(z)" = Y. uy(t)z’. One can check that ug # 0. Then

D
o
—~
~N
~

k=0 (=0

0 0 0

Z vi(1)z = Z di ()" Z ue(t)7"

j=0 k=0 (=0
and .

J
Vj = Zu,‘dj_i. (62)
i=0

Assume that vj(t) =0 for j € {0,...,t}. First we let j = 0. By equation (6.2) and u # 0 we have
do = 0. Next we let j = 1. Again by (6.2) and ug # 0 we have 0 = u1dy +uod; and d; = —u1do/up =
0. Once more we let j = 2. We have 0 = updy + uyd; + uod, and d, = (—updy — u1dy) /up = 0. We

j
continue this procedure and obtain that dy = (— >, uid;—;)/ug = 0 for all k € {0,...,t}. Therefore

i=1
g(z) has a zero at z = 0 with multiplicity at least z + 1, i.e., g(z) has at least r + 1 zeros in the
period-parallelogram P(m,nt). On the other hand, 63(z)" has exactly one zero with multiplicity
t in P(m,nt), which means, g(z) has at most 7 poles in P(w,nt). Thus g(z)? has at least 27 + 2 zeros
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and at most 2t poles in P(x,nt). Since g(z)? is elliptic, by Theorem 2.2 we deduce that g(z)> = 0.
Therefore, f¥ = 0. O

For any k € N\{0}, to generate building-block quasi-elliptic functions f¥ such that deg(fV) =
and fY = 0, we follow the steps below.

Step 1: compute Y (k).

Step 2: for each x € Y (k), divide out the common factor of elements in x and obtain the reduced
set Y (k). For instance
Y1(2) = {{81(2)%,62(2). 03(2)°, 84(2)*}}

and

Y1(3) = {{64(2)*,03(2)%,02(2)%,01(2)*},
{64(2)*,03(2)%,01(2)*}}-

Step 3: for any a,b € Y;(k), if a < b then delete a from Y (k) and obtain a new set ¥ (k). For

instance
Y(2) = {{64(2)*,03(2)*,02(2)*, 01(2)°}}

and
Y (3) = {{64(2)?,05(2)*,02(2)*, 81 (2)*}}-

Note. We see from the above that ¥ (3) generates the same identities as ¥(2). In this case,
to produce identities of degree 3 we produce identities of degree 2 and then multiply every
identity by a single 8;(z). In other words, the identities of degree 3 are equivalent to identities
of degree 2. But for a given degree k, if ¥ (k) # ¥ () for all 0 < ¢ < k, we continue the next steps.

Step 4: choose an arbitrary but fixed y € ¥ (k); assume y = {y1,...,yn}.

Step 5: make an ansatz of the form
ciy1+-+cpyn =0, (6.3)

where ¢; € Rg.
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Step 6: expand the left hand side of (6.3) around z = 0, and deduce that for ¢ > 0,

n £)
Zciyi (0) —0,

|
i=0 ¢

where y(g) (0) € Re. Hence

i

> en(0) 0. (6.4)
i=0

By Lemma 6.1, we only need to make sure that the first k + 1 coefficients in the expansion are

zero. Thus we have:

Step 7: write the first k + 1 equations into the form

yi(0) - y(0)\ [
S o ) (6.5)

Step 8: apply Algorithm 3.2 on every entry of D and replace by 0 when Algorithm 3.2 returns
True; and obtain a simplified version of D, denoted by D;.

Step 9: apply row reduction on D; to obtain a triangular matrix D,.

Note. Here in the row reduction, Algorithm 3.2 is crucial to ensure that the pivot element
chosen in each step of the row reduction is nonzero.

Step 10: compute the basis of the null space of the matrix D, and use the relations generated
in Section 6.1 to simplify the solutions. Suppose the simplified solutions are {1, ...,b,}, where

bj= (bﬁ.l), e ,bﬁ")) with bg.t) € Rg, then the relations for this chosen y are

{Zby)yi D JE {1,...,m}}.
i=1

Step 11: repeat the above steps on every element of ¥ (k), and take the union of all sets of
relations, and obtain a desired set of relations of degree k.
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Compared to Class I, the procedures of discovery for this Class in our package have far more
tedious computations. So in the following example we omit the demonstration and only list

the results.

For example, the building-block identities of degree 2 are

0

03(0)%0,(2)% +04(0)202(2)> — 02(0)%04(z)?

and
0.

04(0)%01(2)% + 03(0)%0,(2)> — 6,(0)%03(z)?

In [14, 20.7] one finds four identities of degree 2, two more than our result. The other two in

fact are combinations of the above two, thus are generated by the above two.

6.2 Generalizations to powers of ¢

Besides the ongoing generalizations we have mentioned at the end of each chapter, there are
several further extensions and generalizations of our algorithmic approach. An interesting
extension is from g to powers of g, as this is connected to Ramanujan’s modular equations. Let

us consider Rg,, by which we define a K-algebra generated by
0 := {GEZHI)(O,qn) ck,ne N} V) {952")(0,61") :k,neNand j = 2,3,4} .
We have a method to deal with the following problem.

Problem 6.1. Given f € Rg,, decide whether f = 0.

Remark. We are still working on some details to complete the algorithm. Therefore we do not
present the method here. Nevertheless, our method succeeded on all of the examples listed
below. One of the key ingredients to solve this problem is a variation of Algorithm 3.2.

Notation. For convenience, in this section we define 08;(¢") :=0;(0,4").

Example 6.1. [17, p. 218] A form of the cubic modular equation is

0.

03(9)03(q°) — 04(9)04(q°) — 02(q)02(¢°)
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Example 6.2. [9, p. 112] A form of the seventh-order modular equation is

\/ 63 6% \/ 94 94 \/ 92 62 =0

Here one can move one term to the other side and square both sides to remove the square root

and so on to make it fit into our function space.

Example 6.3. The identity

03(4°)04(°) | 02(¢°)03(¢°) _ 02(¢°)0a(q”) _ |
03(9)04(q)  62(¢)83(q)  02(q)64(q) '

n [5, p.276] it is written in the form

which can be written as
203(¢°)* — 03(q)> —04(q)* = 0.

0
Example 6.5. [10,2.7] Let a(q) := > g™ ™ then

m,n=—0a0

a(q) = 0(9)9(q) + 4qw(q*)w(q®). (6.6)

From its definition, a(g) can be written as 8:(¢)82(¢>) + 03(¢)03(¢%). If we also replace ¢(g) by
03(¢) and y(¢*) by (2q%)—192 (¢), then (6.6) becomes trivial.

©¢]
Example 6.6. [10, p. 4182] Let ¢(q) := 5.  qUmt1/3*+(mt1/3)(nt1/3)+(n41/3)* Tpep

m,n=—0o0

0@ eld) 6.7)
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Note that ¢(q) can be written as

02(¢")02(q) +63(¢"*)83(q) +62(9)82(4°) + 63(¢)83(4°).

The rewriting is very straight forward, by just comparing the series of theta functions. We plug
this into (6.7) and substitute ¢ by ¢°; then the left hand side will be in R, and we can run our
algorithm.

Example 6.7. [10] Let a(q) and c(q) be defined as in the previous examples, and let

0
b(q) — Z (anmqanranrm2

m,n=—0o0

where ® := e*™/3, Then

and
a(q)a(q®) = b(q)b(q*) + c(q)c(q?). (6.8)

Since b(g) can also be written as a combination of theta functions, we again can run our algo-
rithm as for the previous examples.

0
Example 6.8. [5, p. 285] Let n(q) := ¢"/"2 T[] (1 — ¢*). Then
k=1

03(9)°03(4°)* — 02(¢)°02(¢q°)* — 04(¢)°04(¢°)* = 8n(4°)*n(¢")*.

In [5], this identity was considered to be with no direct proofs.

Remark. All the Dedekind eta function identities in Micheal Somos’s data base [30] in princi-
ple can be proven by our algorithm, including his conjecture about a remarkable eta product
identity of level 60. Some different ways to prove the identities in [30] can be found in [26] and
[27].
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6.3 The “ThetaFunctions” Package

We have indicated in Section 6.1 that our package can assist us in the discovery of identities.
In this chapter we mainly demonstrate how the package helps to prove identities, based on
Algorithms 3.2 and 4.2. However, the implementation is not finished yet. So, here we only
show some key features or commands that are already available. The official package will be

done soon and the reader will find it on RISC homepage under this link:

http://www.risc.jku.at/research/combinat/software/

6.3.1 Proving Identities in Class I

Recall Example 3.7: prove
0,(0]7)%05(0|7) — 05(0|7)*0%(0|) + 64(0|7) 8} (0]7) = 0.

In Example 3.7 we used Algorithm 3.1 to prove this identity. Now we are using Algorithm 3.2
to prove it. According to Chapter 3, we need to show that

oxy — x%xg' +x3x] € kerd.

In our package setting, we use the symbols ay, respectively by, cy, di, to present xsk), respectively

xgk), xgk) and xf‘k). The input for the above example is

biby — cicr +didy.

The command ProveClass1 gives True if the input is in ker¢, otherwise it gives False. For this

example we have

In43)- ProveClassl[by”3 by -cg*3cy+dg”3d,]

outja3]= True


http://www.risc.jku.at/research/combinat/software/
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If the users want to see more details of the proving procedures, some other commands are also
available, which we describe as follows. According to Algorithm 3.2, we first have to compute
the coefficients of the Sx transformation, which is done by the command SXCoefficientList.

ins9]- SXCoefficientList[bg”"3by,-co”"3cy+dpy”"3d;]

2iby 2icy 21idg s s s
Out[89]= {— + - , —bgby+cycy-dj dz}
7T 7T 7T

This means
Sc() - +e)) = 1+ 25"

204 2k 2 ;
where g = — =2 + =4 — ’7:“, g2 = —x3x5 +x3x§ — x3x] and ¢ # ¢, are some half integers.

Next we need to compute LT(g;) and LT(g2). The computation for the leading term orbit is

carried out by the command LeadingtermOrb.
. 3 3 3
In[90]:= Leadzl.ngtermOrb[—b0 by +cy ey -d; dz]

oufeoj- {-bg by + g ca - dj dp, by by - ¢ ez +dy dy }

2ib; 2ic; 2id]
ingi)= LeadingtermOrb [— + - ]
7T 7T 7T

L1 4 L4 L4 14 L4 L 14

21 Db, 21 c 21d;, 21b 21 cy 2 1d,

Out[91]= {7 + - ’ - + }
Tt Tt Tt Tt Tt T

This means

LT(p2) = {—x3x5 + 0385 — X3}, 1325 — 3305 + 2304 }

and

2ix3 N 2y 2ixy 2ixy  2ix] N 2ix}
o o T n o o

1) - { -
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Finally we compute the order of the g-series expansions of [[ ¢(g) and [] ¢(g). The

8ELT(p1) 8€LT(p2)
command for this is CheckTheSeries, and CheckTheSeries(p;) returns True if

ord | ] ole) >Deg(pj)6\LT(pj)|;

geLT(p;)

otherwise it returns False.

_2ib} 2ici 24ds
nz- CheckTheSer-ies [— + -

]

JT JT T
out3l= True
. 3 3 3
4~ CheckTheSeries [— b3 b, + ¢3¢, - dj dz]
outa= True

Similarly, for Example 3.8 we have the input
caco — 3¢5 — 2c§bidy,
and

in45:-= ProveClassl[cgcys-3cy,"2-2bg"4 cgcodp™4]

outja5]= True

We ask for the details of the proving procedures and it gives

Ine9)- SXCoefficientlist[cycp-3c2"2-2¢cp"2bp"4dy"4]
Out[99]= {3 ici-1icyocy+21bych dé}

infoo)- LeadingtermOrb [3 ici-icoey+21ib)cl dg]
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Out{100]= {—30§+coc4—2bécédé, -3ici+icocs-21ibgcidy, 3ici-1icocy+21ibgcsdg,
3ci-cpcg+2bycids, 3b5-bobs-2bjcidy, 3105 -1byb,-21bschds,
~3ibi+ibybs+21ibjcydy, —3b%+byby+2b3cidy, -2bgcgds+3d3-dydy,
-2ibgcydf+3idi-idyds, 2ibgcydf-3id]+idyds, 2bgchdf-3d5+dyds}

nei- CheckTheSeries[3 i c3 -1 coCq+ 2 i bg c§ d]

outel= True

6.3.2 Proving Identities in Class II

We have two algorithms for proving identities in Class II, namely Algorithms 4.1 and 4.2. For
elements from Rg we use Algorithm 4.1 and for elements from I-AI@ we use Algorithm 4.2. Note
that Algorithm 4.1 is also suitable for Ay, but is slower compared to Algorithm 4.2,

Recall Example 4.1, which is suitable for Algorithm 4.1. The input for Class Il is a set like the

following test1.

mez- €l = -8 dd2° dd3? dd4® - 2 dd2 dd3°® dd4° -
2 dd2 dd3? dd4” - 16 dd3? dd4® d2[2] + 16 dd2 dd3? dd42 d4[2];
c2 = 7dd2° dd3* dd4 + dd2 dd3® dd4 + dd2 dd3* dd4° +
8 dd3* dd4 d2[2] - 8 dd2 dd3* d4[2];
c3 = dd2° dd4® + dd2 dd3* dd4° + dd2 dd4°® + 8 dd4° d2[2] - 8 dd2 dd4* d4[2];
c4 = -6 dd2° dd3? dd43;
testl = {{cl1l, {0, O, 2, 2}},
{c2, {6, 0, 0, 4}}, {c3, {0, O, 4, 0}}, {c4, {2,2, 0, 0}}};

Every pair in the set, for example {c1,{0,2,0,0}} represents the following combination:

o The first component of each pair represents a coefficient. The special notion dd2, respec-
tively dd3 and dd4, stands for 6,(0|t), respectively 83(0|t) and 64(0|t); and d1[k], respec-
tively d2[k], d3[k], d4[k], stands for 8" (0]1), respectively, 8% (0[1), 8 (0]), 6" (0]).

e The tuple {aj,a,a3,as} represents the monomial 6;(z|t)* 02(z|T)*203(z|T)*04(z|T)*. For
example {0,0,2,2} stands for 03(z|t)?04(z|7)>.
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The command for automatic zero-recognition for R is ProveClass21. It returns true if the tested

function is zero, otherwise it returns False. For this example we have

ne7- ProveClass21[testl]
oua7= True

Recall Example 4.2: prove
0,(0]7)%02(z|7)* — 03(0]7)203(2]7) + 04(0]7)*04(2|7)* = 0.
The input is:

neo- test2 = {{dd2*2, {0, 2, 0, 0}},
{-dd3*2, {0, 0, 2, 0}}, {dd4"2, {0, 0, 0, 2}}};

The command for automatic zero-recognition for Hy is ProveClass22. It returns true if the tested
function is zero, otherwise it returns False. We compare the time of Algorithm 4.1 and Algo-
rithm 4.2 and get

mia= Timing[ProveClass21[test2]]
ouriz- {0.035143, True}
mia- Timing[ProveClass22[test2]]

oupia= {0.025771, True}

For this example the time of running Algorithm 4.1 is slightly longer than the time of running
Algorithm 4.2.

We consider another example. By applying the producing-identity feature for Class I, which
we have introduced in Section 6.1, we can simplify the coefficients in Example 4.2 by looking
at the tables of relations and plugging into the coefficients. We find that the left hand side of
Example 4.2 is equal to

€193 (2‘1)294(Z|T)2 + 6294(Z|’C)4 + 303 (Z|T)4 + 46 (z]r)262 (Z|T)2, (6.9)
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where ¢; = 6,(0]7)* —263(0[7)*, c2 = c3 = 83(0|7)?04(0|7)? and ¢4 = 8,(0|1)*. To prove that expres-
sion (6.9) is identically zero, we have the input

wee- test3 = {{dd2”*4 -2dd3*4, {0, 0, 2, 2}},
{dd3*2dd4*2, {0, 0, 0, 4}},
{dd3*2dd4*2, {0, 0, 4, 0}}, {dd2"4, {2, 2, 0, 0}}};

Although the coefficients are more complicated than the previous example, this example still
fits in both Algorithms 4.1 and 4.2. We compare the time and get

nezi= Timing [ProveClass21[test3]]
ouzz= {1.43589, True}
neai- Timing[ProveClass22[test3]]

ous= {0.115965, True}

For this example the time of running Algorithm 4.1 is substantially longer than the time of

running Algorithm 4.2.

We now analyze why Algorithm 4.2 is faster. The most difficult and time-consuming part in

Algorithm 4.2 is to compute the orbit

{tl |r1p7 s 7tm|rmp ‘pE SLZ(Z)}7

which is needed for the orbit length ¢. The #; do not contain any of Gﬁ-k) (k = 1), except for 6.
According to Lemmas 2.4 and 2.5, all of 8,,03,0, and 6] have very simple modular transfor-
mations. In contrast, Algorithm 4.1 uses Algorithm 3.2 and it directly computes the leading

0
term orbits of certain coefficients in the series expansion 3’ di(t)z¥, which contains GSk) (k=1).

According to Corollary 3.1, the modular transformations for Gﬁ-k) (k > 1) are sophisticated. In
addition, the coefficients become more complicated when the degree of z goes higher. Thus

Algorithm 4.1 needs more time on the orbit computation.

The orbit computation in Algorithm 4.2 is done by the command TheOrbit.
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For test2 we know that 8,(0|1)260,(z|t)? — 03(0]7)?03(z|t)? +04(0|7)?64(z|t)? is a quasi-elliptic com-
ponent of itself and hence can ask for the corresponding orbit. We have

nai= Timing[TheOrbitClass2[test2]]

_ dd3* dd42d1[1]2} {1 _ dd3* dd22dl[1]2}
dd2*’ dd26dd3? J’ U7’ dda*’ dd32ddas J’
dd4* dd3?d1[1]? dd4* dd2?2d1[1]2
{1, [1] }, {1, [1] },

outet- {0.@23088, {{1,

dd2*’  dd2° dd4? S dd3*’ dd3°dd4?
dd2* dd3?d1[1]? dd2* dd4?d1[1]?
{1 b (1 )

dd4*’  dd22 dd4®

“dd3*’  dd2? dds®
where the meanings of dd and d1[1] are explained in the beginning of this sub-section.

Only 0.023 second was needed for the whole computation, given that this was done on a 4 year
old 1.8 GHz Intel Core i5 laptop.

We can also ask for the orbit for test3.

nazi= Timing[TheOrbitClass2[test3]]
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ouezi {0.072315, {{1

1,

1,

1,

1,

1,

1, -

1,

1,

{
{
{
{
{1,
{
{
{
{
{

1,

dd42d1i[1]? dd2? dd3° dd4? dd28
> dd2? dd3? (dd2%-2dd3*) ’ (dd2*-2dd3%) d1[1]2’ dd2*-2dd3*
~ dd22d1[1]? ~ dd2? dd3°® dd4? dd4® }
2 dd3° dd4® - dd3* dd4°’  (2dd3?-dd4%) d1[1]2’ 2dd3*-dd4* )’
~ dd32d1[1]? ~ dd2? dd3? dd4° ~ dd2® }
dd2° dd4? + 2 dd2? dd4®’  (dd2®+2dd4%) d1[1]2’ dd2*+2dd4*])’
dd42d1[1]2 dd2? dd3® dd4? dd28 }
dd2® dd3® - 2 dd2? dd3°’ (dd2*-2dd3*) d1[1]2’ dd2®-2dd3*]’
dd22d1i[1]2 dd2? dd3? dd4® B dd3® }
-dd3® dd4” + 2 dd3” dd4®’ (dd3*-2dd4%) d1[1]2’ dd3*-2dd4*])’
- dd32d1[1]?2 - dd2° dd3? dd4? dd4® }
2dd2° dd4” + dd2” dd4®’  (2dd2* +dd4*) d1[1]2’ 2dd2*+dd4* )’
dd4?d1[1]2 - dd2° dd32 dd4? dd3?® }
2dd2° dd3” - dd2” dd3°’  (2dd2*-dd3*) d1[1]2’ -2dd2*+dd3*])’
dd22d1[1]? dd2? dd3° dd4? dd48 }
2 dd3° dd4® - dd3” dd4°®’ (-2dd3*+dd4*) d1[1]2’ 2dd3*-dd4* )’
dd4?d1[1]2 dd2® dd3? dd4? dd3?® }
2 dd2° dd3? - dd2? dd3®’ (-2dd2®+dd3*) d1[1]2’ -2dd2*+dd3*]’
- dd2? d1[1]?2 dd2? dd3? dd4° - dds?® }
dd3° dd4® - 2 dd3* dd4°®’ (dd3*-2dd4*) d1[1]2’ dd3*-2dd4* )’
dd22d1[1]2 dd2? dd3° dd4? dd48 H}
-2dd3°dd4” + dd3® dd4°’ (-2dd3*+dd4*) d1[1]2’ 2dd3*-dd4*

}s
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