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Abstract

In this thesis, we investigate a class of fast gradient-based iterative regularization meth-
ods for nonlinear Inverse and Ill-Posed Problems based on Landweber iteration and
Nesterov’s acceleration scheme. These so-called Two Point Gradient (TPG) methods
have been found to be very useful in practical applications, since they are both easy
to implement and lead to a great speedup compared to standard gradient-based meth-
ods. While methods utilizing second-order information, which are known for their fast
convergence, often become infeasible when dealing with large datasets, gradient-based
methods are usually more flexible and able to deal with large datasets, at the disad-
vantage of requiring a large number of iterations. TPG methods have the potential
to bridge the apparent gap between these two classes of methods, being both fast,
flexible, and able to deal with large datasets, which are important requirements for
any iterative regularization method used for solving inverse problems.

This thesis provides a convergence analysis of TPG methods under the common as-
sumption of a tangential cone condition, and covers some well-known choices of com-
monly used stepsizes. Furthermore, a convergence analysis with the tangential cone
condition being replaced by a local convexity assumption more natural to Nesterov’s
original acceleration idea is performed. These results provide the first successful con-
vergence analysis for TPG methods for the solution of nonlinear ill-posed problems.

Apart from these theoretical results, this thesis presents a number of numerical exam-
ples showing the usefulness of TPG methods in practical applications. In a number of
academic examples, the assumptions required for convergence are considered in detail,
and precise comparisons between several TPG methods and standard gradient-based
methods are performed. Afterwards, TPG methods are applied to two problems aris-
ing in Medical Imaging. The first of these two problems is the imaging technique of
Single Photon Emission Computed Tomography (SPECT), where TPG methods are
shown to lead to a large speedup in the reconstruction process. The second problem
concerns Magnetic Resonance Advection Imaging (MRAI), which is a novel imaging
technique for mapping the pulse wave velocity in brain vessel from Magnetic Reso-
nance Imaging (MRI) measurements. For this problem, for which a precise modelling
is performed, TPG methods are essential due to the large datasets involved.
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Zusammenfassung

In dieser Arbeit betrachten wir eine Klasse von Gradienten-Basierten Iterativen Me-
thoden für Inverse und Schlecht-Gestellte Probleme basierend auf der Landweber Ite-
ration und Nesterov’s Beschleunigungsschema. Diese sogenannten Zwei-Punkt Gradi-
enten (TPG) Methoden sind sehr nützlich in praktischen Anwendungen, da sie einfach
zu implementieren sind und zu einer großen Beschleunigung gegenüber Gradienten-
Basierten Standardverfahren führen. Während Methoden zweiter Ordnung, die für ihre
schnelle Konvergenz bekannt sind, bei großen Datenmengen oft undurchführbar wer-
den, sind Gradienten-Basierte Methoden normalerweise flexibeler und erlauben auch
die Behandlung großer Datensätze, mit dem Nachteil, dass sie eine größere Anzahl an
Iterationen benötigen. TPG Methoden haben das Potential, die Lücke zwischen die-
sen beiden Klassen von Methoden zu füllen, da sie schnell und flexibel sind und mit
großen Datensätzen arbeiten können, was wichtige Voraussetzungen für alle Iterative
Regularisierungsverfahren für Inverse Probleme sind.

Diese Arbeit beinhaltet eine Konvergenzanalyse von TPG Methoden unter der Stan-
dardannahme einer Tangentialkegel-Bedingung, und umfasst einige bekannte Fälle von
oft benutzten Schrittweiten. Darüberhinaus beinhaltet diese Arbeit eine Konvergenz-
analyse, bei der die Tangentialkegel-Bedingung durch eine Lokale Konvexitätsannahme
ersetzt wird. Diese Resultate stellen die erste erfolgreiche Konvergenzanalyse von TPG
Methoden für die Lösung von nichtlinearen schlecht-gestellten Problemen dar.

Neben diesen theoretischen Resultaten beinhaltet diese Arbeit auch eine Reihe von
numerischen Beispielen, welche den Nutzen von TPG Methoden in praktischen An-
wendungen verdeutlichen. In einer Reihe von akademischen Beispielen werden die An-
nahmen der Konvergenzanalyse im Detail betrachtet, und genau Vergleiche zwischen
verschiedenen TPG Methoden und Gradienten-Basierten Standardmethoden durch-
geführt. Anschliessend werden TPG Methoden auf zwei Probleme angewendet, die in
der medizinischen Bildberarbeitung auftreten. Das erste dieser zwei Probleme ist das
bildgebende Verfahren der Einzelphotonen-Emissionscomputertomographie (SPECT),
für das TPG Methoden zu einer großen Beschleunigung im Rekunstruktionsprozess
führen. Das zweite Problem behandelt Magnet Resonanz Advektions Tomographie
(MRAI), das ein neues bildgebendes Verfahren zur Bestimmung der Pulswellen Ge-
schwindigkeit in Blutgefäßen im Gehirn durch Magnet Resonanz Tomographie (MRI)
Daten ist. Für dieses Problem, für das eine genaue Modellierung durchgeführt wird,
sind TPG Methoden essentiell, aufgrund der dabei auftretenden großen Datensätze.
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Chapter 1

Introduction

1.1 Motivation

Many important problems of practical significance in science and industry fall within
the area of Inverse Problems. In general terms, this field can be described as be-
ing concerned with finding causes for observed effects from often noisy or incomplete
data. Popular examples of inverse problems are prominent in medicine, especially in
the various forms of tomographic imaging techniques, where the aim is to take a look
“inside” an object, or part of a body, without damaging or destroying it. Well know
medical imaging techniques include for example Magnetic Resonance Imaging (MRI)
or Computerized Tomography (CT), among many others. The basic principles of to-
mography also find application in other areas of science, for example in Atmospheric
Tomography, used to enhance the imaging quality of ground based telescopes, as well
as in non-destructive testing of materials or seismic imaging.

A multitude of reconstruction techniques exist for solving the various inverse prob-
lems considered today. In general, those techniques can be divided into variational
and iterative methods. While for the successful application of variational methods, by
far the most prominent of which being Tikhonov regularization, iterative optimization
methods are required as well, the approach of directly using so-called iterative regu-
larization methods has a number of advantages, especially in the case of large scale
inverse problems, which are becoming more and more commonplace in recent years.

Iterative regularization methods divide quite naturally into two main classes, on the
one hand, so-called first-order or gradient-based methods such as the well-known
Landweber iteration and its various variants and, on the other hand, second-order
methods such as the Levenberg-Marquardt or the iteratively regularized Gauss-Newton
method. While second-order methods are known to require much less iterations than
gradient-based methods to arrive at suitable reconstructions, this advantage is often
lost in practise in the case of large datasets, for which second-order methods are often
at a disadvantage or even become infeasible. Furthermore, the convergence analysis of
second-order methods usually requires much stronger assumptions than the analysis
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CHAPTER 1. INTRODUCTION 2

of gradient-based methods. On the other hand, gradient-based methods, which are
known for their simplicity, ease of implementation, and capacity to deal with large
datasets, often require too many iterations to be practically feasible as well.

To deal with this apparent gap, various strategies have been proposed so far. On
the one hand, there are ways to improve the feasibility of second-order methods by
using certain inexact Newton methods, while on the other hand, there are acceleration
techniques to speed up first-order methods. Unfortunately, many of those techniques
developed for the linear case, like the ν-methods of Brakhage, do not readily translate
to the nonlinear case, while other methods, although working well in practise, have
as of yet no proofs of convergence. One acceleration technique giving very promising
results in practise is Nesterov’s acceleration strategy, which has a long tradition of
both analysis and application for solving convex, well-posed optimization problems
and also forms the basis of the well-known FISTA algorithm. Being very intuitive
and exceedingly simple to implement, this technique has already been successfully
employed in solving both linear and nonlinear inverse problems, even though so far
only the linear case has been theoretically investigated, and this only quite recently.

Therefore, in this thesis, we investigate some accelerated gradient-based methods based
on Nesterov’s acceleration strategy, proving convergence under various standard as-
sumptions as well as providing a number of applications showing the usefulness of
these methods in practise.

1.2 Organization of the Thesis

This thesis, which is based on and uses parts of our work from [37–39], is structured as
follows. First, we provide some important mathematical background in the theory of
nonlinear Inverse Problems (Chapter 2), focusing especially on iterative regularization
methods. Following this, in Part I we provide a convergence analysis of the considered
methods under a standard tangential cone condition (Chapter 3) and a local convexity
assumption (Chapter 4). Afterwards, in Part II we provide a number of applications
of general TPG methods on examples of a Hammerstein operator and a problem from
Single Photon Emission Computed Tomography (Chapter 5) and of specific TPG
methods on examples of a nonlinear diagonal operator, an auto-convolution problem,
and the parameter estimation problem of Magnetic Resonance Advection Imaging
(Chapter 6). Finally, we provide a conclusion and a short outlook (Chapter 7).



Chapter 2

Theoretical Background

In this chapter, we provide the necessary mathematical background and context re-
quired for this thesis. After a short general introduction into the field of nonlinear
Inverse and Ill-Posed Problems, we present various ways of solving them, focusing es-
pecially on iterative regularization methods of relevance to this thesis. Furthermore,
we present some important results on Nesterov’s accelerated gradient method for well-
posed convex minimization problems. This chapter is mainly based on the well-known
monographs [21, 26, 46,53,73] and the research article [3].

2.1 Nonlinear Ill-Posed Problems

In this section, we introduce the general form of nonlinear inverse problems considered
throughout this thesis. For this, we consider the general operator equation

F (x) = y , (2.1)

where F : D(F ) ⊂ X → Y is a continuously Fréchet-differentiable, nonlinear operator
between real Hilbert spaces X and Y . The general goal in Inverse Problems is to recover
a solution x∗ of (2.1), where instead of the true data y only noisy measurement data
yδ are given. A common assumption on the noisy data yδ which we assume to hold
throughout this thesis is that

∥

∥y − yδ
∥

∥ ≤ δ , (2.2)

where δ denotes the noise level. Such problems as these are usually ill-posed in the
sense of Hadamard [28], since either one or more of the following well-posedness criteria
are violated:

• For every right-hand side y there exists a solution of (2.1).

• For every right-hand side y the solution of (2.1) is unique.

• The solution of (2.1) depends continuously on the data y.

3
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While all three of the above criteria are important, violation of the third condition
usually leads to the most severe problems, since it implies that arbitrarily small changes
in the data can lead to arbitrarily large changes in the reconstructions. In order to
counter this instability issue, one has to employ so-called regularization methods to
obtain stable reconstructions of the sought for solutions. These methods can in general
be divided into the two main classes of variational and iterative regularization methods,
the two most prominent examples of those classes being Tikhonov regularization and
Landweber iteration, respectively.

2.2 Tikhonov Regularization

By far the most prominent regularization method is the so-called Tikhonov or
Tikhonov-Phillips regularization. Here, one attempts to approximate an x0-minimum-
norm solution x† of (2.1), defined by

x† = arg min
x∈D(F )

{‖x− x0‖ |F (x) = y} ,
through minimizing the functional

T δ
α (x) :=

∥

∥F (x)− yδ
∥

∥

2
+ α ‖x− x0‖2 , (2.3)

where α is a suitably chosen regularization parameter. Under very mild assumptions
on F , it can be shown that the minimizers of T δ

α , usually denoted by xδα, converge
subsequentially to a minimum norm solution x† as δ → 0, given that the regularization
parameter α = α(δ) and the noise level δ are coupled in an appropriate way [21], e.g.,

lim
δ→0

α(δ) = lim
δ→0

δ2

α(δ)
= 0 .

While for linear operators F = T the minimization of T δ
α is straightforward, requiring

only the solution of the linear equation

(T ∗T + αI)x = T ∗yδ + αx0 ,

in the case of nonlinear operators F the computation of xδα requires the global min-
imization of the then also nonlinear functional T δ

α . This global minimization can
be very costly and difficult and is usually done using various iterative optimization
algorithms, which motivates the direct application of iterative algorithms to (2.1).

2.3 Iterative Regularization Methods

One of the most well-known iterative regularization method is the so-called Landweber
iteration, given by

xδk+1 = xδk + ωF ′(xδk)
∗(yδ − F (xδk)) ,

xδ0 = x0 ,
(2.4)
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where ω is a scaling parameter and x0 is again a given initial guess. Seen in the
context of classical optimization algorithms, Landweber iteration is nothing else than
the gradient descent method applied to the functional

Φδ(x) := 1
2

∥

∥F (x)− yδ
∥

∥

2
, (2.5)

and therefore, due to the ill-posedness issue, in order to arrive at a convergent regu-
larization method, one has to use a suitable stopping rule to terminate the iteration.
A very prominent stopping rule is Morozov’s discrepancy principle, which suggests to
stop the iteration after k∗ steps, where k∗ is the smallest integer such that

∥

∥yδ − F (xδk∗)
∥

∥ ≤ τδ <
∥

∥yδ − F (xδk)
∥

∥ , 0 ≤ k < k∗ , (2.6)

with a suitable constant τ > 1. For proving convergence of Landweber iteration,
strong assumptions are generally required on the underlying operator F such as the
(strong) tangential cone condition

‖F (x)− F (x̃)− F ′(x)(x− x̃)‖ ≤ η ‖F (x)− F (x̃)‖ , η < 1
2
,

x, x̃ ∈ B2ρ(x0) ,
(2.7)

where B2ρ(x0) denotes the closed ball of radius 2ρ around x0. Furthermore, the scaling
parameter ω needs to satisfy

ω ‖F ′(x)‖2 ≤ 1 , ∀x ∈ B2ρ(x0) ⊂ D(F ) . (2.8)

If these conditions are satisfied and τ in (2.6) is chosen such that

τ > 2
1 + η

1− 2η
, (2.9)

then the following convergence result can be proven (see, e.g., [46, Theorem 2.6]).

Theorem 2.3.1. Assume that (2.7) and (2.8) are satisfied and let k∗ = k∗(δ, y
δ) be

chosen according to the stopping rule (2.6), (2.9). Then the Landweber iterates xδk∗
converge to a solution of (2.1) for δ → 0. Moreover, if N (F ′(x†)) ⊂ N (F ′(x)) for all
x ∈ Bρ(x

†), then xδk∗ converges to x† as δ → 0.

Since condition (2.7) poses strong restrictions on the nonlinearity of F which are not
always satisfied, attempts have been made to use weaker conditions instead [71]. For
example, assuming only the weak tangential cone condition

〈F (x)− F (x∗)− F ′(x)(x− x∗), F (x)− F (x∗) 〉 ≤ η ‖F (x)− F (x∗)‖2 ,
∀x ∈ Bρ(x0) , 0 < η < 1 ,

(2.10)

to hold, one can show weak convergence of the Landweber iteration [71]. Similarly, if
the residual functional Φ0(x) defined by (2.5) is (locally) convex, weak subsequential
convergence of the iterates of Landweber iteration to a stationary point of Φ0 can be
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proven. Even though they both lead to convergence in the weak topology, besides some
results presented in [71], the connections between the local convexity of the residual
functional and the (weak) tangential cone condition remain largely unexplored. In his
recent paper [47], Kindermann showed that both the local convexity of the residual
functional and the weak tangential cone condition imply another condition, which
he termed NC(0, β > 0), and which is sufficient to guarantee weak subsequential
convergence of the iterates.

Apart from convergence itself, the speed of convergence, in the form of convergence
rates, is an important issue in Inverse Problems. For nonlinear inverse problems,
source conditions of the form

x† − x0 ∈
(

F ′(x†)∗F ′(x†)
)µ
v , v ∈ N (F ′(x†))⊥ , (2.11)

play an important role and, together with further restrictions on the nonlinearity of
the operator F , often lead to order optimal results of the form

k∗ = O
(

δ−
2

2µ+1

)

and
∥

∥xδk − x†
∥

∥ = O
(

δ
2µ

2µ+1

)

. (2.12)

These results can also be generalized to the case when instead of a constant stepsize
ω one uses for example the steepest-descent stepsize

ωδ
k :=

∥

∥sδk
∥

∥

2

∥

∥F ′(xδk)s
δ
k

∥

∥

2 ,

or the minimal error stepsize

ωδ
k :=

∥

∥yδ − F (xδk)
∥

∥

2

∥

∥sδk
∥

∥

2 ,

where sδk := F ′(xδk)
∗(yδ −F (xδk)), see for example [60,72]. This can also be generalized

to a broader class of stepsizes [60].

As is well known, in general Landweber iteration is quite slow. Hence, acceleration
strategies have to be used in order to speed it up in order to make it applicable in prac-
tise. Acceleration methods and their analysis for linear problems like the ν-methods
can be found for example in [21] and [29]. Unfortunately, since their convergence proofs
are mainly based on spectral theory, their analysis cannot be generalized to nonlinear
problems immediately. However, there are some acceleration strategies for Landweber
iteration for nonlinear ill-posed problems, for example Landweber iteration in Hilbert
scales [58] or approximate Landweber methods [65].

As an alternative to (accelerated) Landweber-type methods, one can use second order
iterative methods for solving (2.1), such as the Levenberg-Marquardt method [30,43]

xδk+1 = xδk + (F ′(xδk)
∗F ′(xδk) + αkI)

−1F ′(xδk)
∗(yδ − F (xδk)) , (2.13)
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or the iteratively regularized Gauss-Newton method [9, 45]

xδk+1 = xδk + (F ′(xδk)
∗F ′(xδk) + αkI)

−1(F ′(xδk)
∗(yδ − F (xδk)) + αk(x0 − xδk)) . (2.14)

The advantage of those methods is that they require much less iterations to meet their
respective stopping criteria compared to Landweber iteration or the steepest descent
method. However, each update step of those iterations can take considerably longer
than one step of Landweber iteration, due to the fact that in both cases a linear system
involving the operator

F ′(xδk)
∗F ′(xδk) + αkI ,

has to be solved. In practical applications, this usually means that a huge linear
system of equations has to be solved, which often proves to be costly, if not infeasible,
even if those systems are only solved approximately for example with the conjugate
gradient method, which gives rise to so-called inexact Newton methods [68]. Hence,
accelerated Landweber type methods avoiding this drawback are desirable in practise.

2.4 Nesterov’s Acceleration Scheme

In case that the residual functional Φδ(x) is locally convex, one can think of using
methods from convex optimization to minimize Φδ(x), instead of using the gradient
method like in Landweber iteration. One of those methods, which works remarkably
well for nonlinear, convex and well-posed optimization problems of the form

min{Φ(x) | x ∈ X} , (2.15)

was first introduced by Nesterov in [57] and is given by

zk = xk +
k−1

k+α−1
(xk − xk−1) ,

xk+1 = zk − ω(∇Φ(zk)) ,
(2.16)

where again ω is a given scaling parameter and α ≥ 3 (with α = 3 being common
practise). This so-called Nesterov acceleration scheme is of particular interest, since
not only is it extremely easy to implement, but Nesterov himself was also able to prove
that it generates a sequence of iterates xk for which there holds

‖Φ(xk)− Φ(x∗)‖ = O(k−2) , (2.17)

where x∗ is any minimizer of (2.15). This is a big improvement over the classical rate
O(k−1). The even further improved rate O(k−2) for α > 3 was recently proven in [3]
and it is known that the iterates xk converge weakly to a minimizer of (2.15). Further-
more, Nesterov’s acceleration scheme can also be used to solve compound optimization
problems of the form

min{Φ(x) + Ψ(x) | x ∈ X} , (2.18)
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where both Φ(x) and Ψ(x) are convex functionals, and is in this case given by

zk = xk +
k−1

k+α−1
(xk − xk−1) ,

xk+1 = proxωΨ (zk − ω(∇Φ(zk))) ,
(2.19)

where the proximal operator proxωΨ (.) is defined by

proxωΨ (x) := argmin
u

{

ωΨ(u) + 1
2
‖x− u‖2

}

. (2.20)

If in addition to being convex, Ψ is also proper and lower-semicontinous and Φ is
continuously Fréchet differentiable with a Lipschitz continuous gradient, then it was
again shown in [3] that the sequence defined by (2.19) satisfies

‖(Φ−Ψ)(xk)− (Φ−Ψ)(x∗)‖ = O(k−2) , (2.21)

or even O(k−2) if α > 3, which is again much faster than ordinary gradient-based
methods for minimizing (2.18). This accelerating property was exploited in the highly
successful FISTA algorithm [7], designed for the fast solution of linear ill-posed prob-
lems with sparsity constraints. Since for linear operators, the residual functional Φδ

is globally convex, minimizing the resulting Tikhonov functional (2.3) exactly fits into
the category of minimization problems considered in (2.18).

Motivated by the above considerations, one can think of applying Nesterov’s acceler-
ation scheme (2.16) to the residual functional Φδ, which leads to the algorithm

zδk = xδk +
k−1

k+α−1
(xδk − xδk−1) ,

xδk+1 = zδk + ωF ′(zδk)
∗(yδ − F (zδk)) ,

xδ0 = xδ−1 = x0 ,

(2.22)

which in this form was first proposed in [44] to accelerate the Landweber iteration for
solving (nonlinear) ill-posed problems. Although no convergence analysis for (2.22)
could be given, the numerical examples presented in [44] clearly show its usefulness and
acceleration effect. Motivated by this, a slightly modified version of (2.22) promoting
sparsity was used in [37] and one of the authors of that paper went on to show [61]
that for linear operators F = T and given the source condition x† ∈ R((T ∗T )µ), using
an a priori stopping rule one gets for 0 ≤ µ ≤ 1/2 that

k∗ = O(δ−
1

2µ+1 ) , and
∥

∥xδk∗ − xδ
∥

∥ = O

(

δ
2µ

2µ+1

)

,

while for µ > 1/2,

k∗ = O(δ−
2

2µ+3 ) , and
∥

∥xδk∗ − xδ
∥

∥ = O

(

δ
2µ+1

2µ+3

)

.

Similar results can also be obtained if the iteration is stopped by the discrepancy
principle. This should be compared to the results for classical Landweber iteration
(2.12), which shows that asymptotically much less iterations are required.
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The above considerations strongly suggest to consider the following generalization of
Nesterov’s acceleration scheme, termed Two-Point Gradient (TPG) methods :

zδk = xδk + λδk(x
δ
k − xδk−1) ,

xδk+1 = zδk + αδ
ks

δ
k , sδk := F ′(zδk)

∗(yδ − F (zδk)) ,

xδ0 = xδ−1 = x0 ,

(2.23)

which we analyse in detail in this thesis. Note that (2.23) can also be rewritten in
terms of zδk, leading to

zδk+1 = (1 + λδk+1)(z
δ
k + αδ

ks
δ
k)− λδk+1(z

δ
k−1 + αδ

k−1s
δ
k−1)

= zδk + λδk+1(z
δ
k − zδk−1) + (1 + λδk+1)α

δ
ks

δ
k − λδk+1α

δ
k−1s

δ
k−1 ,

(2.24)

which structurally differs from the iteration methods considered by Scherzer in [72] by
the additional term λδk+1(z

δ
k − zδk−1). However, many of his ideas and arguments for

proving convergence of those methods were re-used in the proofs in Chapter 3.

2.5 Further Topics

The above discussion is obviously far away from giving a comprehensive overview of
the field of Inverse Problems as a whole. Hence, although not strictly necessary for the
understanding of the topics considered in this thesis, we devote this section to indicate
a number of extensions of the theory as well as some alternative lines of investigations
and interesting topics in connection with Inverse Problems.

First of all, besides variational and iterative regularization methods, there also exists
a number of different solution methods fitting into neither of these two categories.
Among those are for example certain spectral theory based methods like the trun-
cated singular value decomposition, or the method of the approximate inverse [53] for
linear problems, as well as derivative free or asymptotic methods for general (non-
linear) problems. Another popular but problem dependent approach is the use of
explicit solution formulas such as filtered back-projection employed in tomography or
the method of complex geometric optics (CGO) solutions, which is for example used
in Electrical Impedance Tomography (EIT).

Especially in connection with explicit solution formulas, questions of existence and
uniqueness of solutions, identifiability of parameters, and stability estimates form an
important branch of the field of Inverse Problems. There is a rich theory in connection
with these topics for parameter identification problems with PDE models [41], where
often so-called Carleman estimates [48] are used for addressing the uniqueness question.

On the technical side, the extension of regularization theory from the Hilbert space
to the Banach space setting has been an important topic in recent years [73, 74]. For
example, instead of classical Tikhonov regularization (2.3), one can consider

min
x∈X

∥

∥F (x)− yδ
∥

∥

p

Y
+ αR(u) , (2.25)
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where R is a general regularization functional and X ,Y are Banach spaces in this
case. Under general assumptions, the convergence analysis for classical Tikhonov
regularization can be carried over to the above setting. This allows one to work for
example in Lp spaces for 1 ≤ p ≤ ∞, where however the interesting border cases L1

and L∞ are still not satisfactorily analysed due to non-reflexivity and other technical
difficulties. It is also possible to prove convergence rates in the Banach space setting,
which are usually obtained in the so-called Bregman distance

DR(x, x̃) := R(x̃)−R(x)−R′(x, x̃− x) ,

whereR′(x, x̃−x) denotes the one-sided directional derivative ofR at x in the direction
x̃− x. For this, one uses generalizations of the source condition (2.11) in the form of
variational inequalities like

〈

ξ∗, x† − x
〉

X ∗,X
≤ β1Dξ∗(x, x

†) + β2
∥

∥F (x)− F (x†)
∥

∥ , (2.26)

where β1 and β2 are suitable constants and ξ∗ ∈ ∂R(x†), i.e., is an element of the
subdifferential of R at x†. If for example α(δ) ∼ δ1−ε is chosen in (2.25), then it can
be shown that for the corresponding minimizers xδα there holds

Dξ∗(x
δ
α, x

†) = O(δ1−ε) ,
∥

∥F (xδα)− yδ
∥

∥ = O(δ) .

Also iterative regularization methods can be transferred to the Banach space setting
[74]. For example, an equivalent for Landweber iteration in Banach spaces is given by

xδk+1 = JX ∗

q∗

(

JX
q (xδk)− µkF

′(xδk)
∗jYp (F (x

δ
k)− yδ)

)

,

where here F ′(x)∗ denotes the Banach space adjoint of F ′(x), the functionals JX ∗

q∗ , J
X
q

are (set-valued) duality mappings and jYp is a singled valued selection of the duality
functional JY

p . For this method, convergence under suitable assumptions, most notably
(a Banach space generalization of) the tangential cone condition (2.7), can be shown,
and these results can be extended to second-order methods as well.

Important special cases of regularization in Banach spaces include for example bounded
variation (BV) and total variation (TV) regularization, as well as regularization in ℓp

spaces. Although those cases can be fit into the Banach space setting by for example
by using the BV, TV, or ℓp norm for R(x) in (2.25), respectively, special theory
has been developed for these cases due to their peculiarities and practical importance.
Especially ℓp regularization for small p, which is used to promote sparsity in regularized
solutions, has attracted lots of attention (see for example [14, 66,67]).

As the last of the many further possible topics in Inverse Problems presented here,
we mention that attempts have been made to further generalize the source conditions
(2.11) and (2.26) using the concept of index functions, which leads to the concept of
generalized source conditions and includes the important special case of logarithmic
source conditions used for severely ill-posed problems. The concept of variational
inequalities mentioned above, as well as approximate source conditions [35] are also
important theoretical developments in this research direction.



Part I

Analysis of TPG Methods
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Chapter 3

Convergence under a Tangential
Cone Condition

In this chapter, which is mainly based on [38], we perform a convergence analysis of
the TPG methods (2.23), i.e.,

zδk = xδk + λδk(x
δ
k − xδk−1) ,

xδk+1 = zδk + αδ
ks

δ
k , sδk := F ′(zδk)

∗(yδ − F (zδk)) ,

xδ0 = xδ−1 = x0 ,

under the assumption of a tangential cone condition of the form (3.1). The main part
of the analysis, which is based on the classical convergence analysis of gradient-based
iterative regularization methods (see [46, 72]) is presented in detail in Section 3.1.
Thereby, certain abstract conditions on λδk and αδ

k are required, which we show to be
satisfied for a constant stepsize as well as the steepest descent and the minimal error
stepsizes and suitable choices of λδk in Section 3.2. For multiple numerical examples
treating various versions of TPG methods see Part II of this thesis.

3.1 Convergence Analysis I

For the following analysis of TPG methods of the form (2.23), we need a few assump-
tions which are quite similar to the assumptions needed for the analysis of Landweber
iteration or the steepest descent method [72]. Firstly, we need the following version of
the tangential cone condition (2.7):

‖F (x)− F (x̃)− F ′(x)(x− x̃)‖ ≤ η ‖F (x)− F (x̃)‖ , η <
1

2
,

x, x̃ ∈ B4ρ(x0) ⊂ D(F ) ,
(3.1)

where B4ρ(x0) denotes the closed ball around x0 with radius 4ρ. Assuming this condi-
tion to hold allows the application of the following:

12
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Lemma 3.1.1. Let ρ, ε > 0 be such that

‖F (x)− F (x̃)− F ′(x)(x− x̃)‖ ≤ c(x, x̃) ‖F (x)− F (x̃)‖ ,
x, x̃ ∈ Bρ(x0) ⊂ D(F ) ,

(3.2)

where c(x, x̃) ≥ 0 and c(x, x̃) < 1 if ‖x− x̃‖ ≤ ε. If F (x) = y is solvable in Bρ(x0),
then a unique x0-minimum-norm solution exists. It is characterized as the solution x†

of F (x) = y in Bρ(x0) satisfying the condition

x† − x0 ∈ N (F ′(x†))⊥ . (3.3)

Proof. [46, Proposition 2.1]

It is necessary to place some restrictions on the stepsizes αδ
k and the combination

parameters λδk. Minimal requirements on their values are:

λδ0 = 0 , 0 ≤ λδk ≤ 1 , ∀ k ∈ N , αδ
k ≥ 0 , ∀ k ∈ N . (3.4)

With this, we can prove the following important:

Proposition 3.1.2. Assume that (3.1) and (3.4) hold and that equation F (x) = y
has a solution x∗ in Bρ(x0) = Bρ(x−1) and let xδk, x

δ
k−1 ∈ Bρ(x∗). Let

∥

∥yδ − F (zδk)
∥

∥ > τδ , (3.5)

with τ satisfying

τ > 2
1 + η

1− 2η
. (3.6)

Setting

∆k :=
∥

∥xδk − x∗
∥

∥

2 −
∥

∥xδk−1 − x∗
∥

∥

2
, (3.7)

and
Ψ := (1− 2η)− 2τ−1(1 + η) > 0 , (3.8)

there holds

∆k+1 ≤ λδk∆k + λδk(λ
δ
k + 1)

∥

∥xδk − xδk−1

∥

∥

2 − (1 + Ψ)αδ
k

∥

∥yδ − F (zδk)
∥

∥

2
+ (αδ

k)
2
∥

∥sδk
∥

∥

2
.

(3.9)

Proof. Since xδk, x
δ
k−1 ∈ Bρ(x∗), using the triangle inequality and x∗ ∈ Bρ(x0), we get

that xδk, x
δ
k−1 ∈ B2ρ(x0). Together with λ

δ
k ≤ 1, this implies

∥

∥zδk − x0
∥

∥ ≤
∥

∥zδk − xδk
∥

∥+
∥

∥xδk − x0
∥

∥ = λδk
∥

∥xδk − xδk−1

∥

∥+
∥

∥xδk − x0
∥

∥

≤ λδk
∥

∥xδk − x∗
∥

∥+ λδk
∥

∥x∗ − xδk−1

∥

∥+
∥

∥xδk − x0
∥

∥ ≤ 2λδkρ+ 2ρ ≤ 4ρ .
(3.10)
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which shows that zδk ∈ B4ρ(x0). Hence, we can apply (3.1), which leads to
∥

∥xδk+1 − x∗
∥

∥

2 −
∥

∥zδk − x∗
∥

∥

2
=
∥

∥xδk+1 − zδk + zδk − x∗
∥

∥

2 −
∥

∥zδk − x∗
∥

∥

2

= 2
〈

xδk+1 − zδk, z
δ
k − x∗

〉

+
∥

∥xδk+1 − zδk
∥

∥

2

(2.23)
= 2αδ

k

〈

yδ − F (zδk), F
′(zδk)(z

δ
k − x∗)

〉

+ (αδ
k)

2
∥

∥sδk
∥

∥

2

= 2αδ
k

〈

yδ − F (zδk), y
δ − y

〉

+ 2αδ
k

〈

yδ − F (zδk), F (z
δ
k)− yδ

〉

+ 2αδ
k

〈

yδ − F (zδk), y − F (zδk) + F ′(zδk)(z
δ
k − x∗)

〉

+ (αδ
k)

2
∥

∥sδk
∥

∥

2

≤ 2αδ
k

∥

∥yδ − F (zδk)
∥

∥ δ − 2αδ
k

∥

∥yδ − F (zδk)
∥

∥

2
+ (αδ

k)
2
∥

∥sδk
∥

∥

2

+ 2αδ
k

∥

∥yδ − F (zδk)
∥

∥

∥

∥y − F (zδk) + F ′(zδk)(z
δ
k − x∗)

∥

∥

(3.1)

≤ 2αδ
k

∥

∥yδ − F (zδk)
∥

∥ δ − 2αδ
k

∥

∥yδ − F (zδk)
∥

∥

2
+ (αδ

k)
2
∥

∥sδk
∥

∥

2

+ 2αδ
kη
∥

∥yδ − F (zδk)
∥

∥

∥

∥F (x∗)− F (zδk)
∥

∥

≤ 2αδ
k

∥

∥yδ − F (zδk)
∥

∥ δ − 2αδ
k

∥

∥yδ − F (zδk)
∥

∥

2
+ (αδ

k)
2
∥

∥sδk
∥

∥

2

+ 2αδ
kη
∥

∥yδ − F (zδk)
∥

∥ (
∥

∥F (zδk)− yδ
∥

∥+ δ)

= αδ
k

∥

∥yδ − F (zδk)
∥

∥

(

2δ(1 + η)− (1− 2η)
∥

∥yδ − F (zδk)
∥

∥

)

− αδ
k

(

∥

∥F (zδk)− yδ
∥

∥

2 − αδ
k

∥

∥sδk
∥

∥

2
)

(3.5)

≤ αδ
k

∥

∥yδ − F (zδk)
∥

∥

2 (
2τ−1(1 + η)− (1− 2η)

)

− αδ
k

(

∥

∥F (zδk)− yδ
∥

∥

2 − αδ
k

∥

∥sδk
∥

∥

2
)

(3.11)

Hence, using (3.8), we arrive at the estimate
∥

∥xδk+1 − x∗
∥

∥

2 ≤
∥

∥zδk − x∗
∥

∥

2 − (1 + Ψ)αδ
k

∥

∥F (zδk)− yδ
∥

∥

2
+ (αδ

k)
2
∥

∥sδk
∥

∥

2
. (3.12)

Now, using the above inequality, we get

∆k+1 =
∥

∥xδk+1 − x∗
∥

∥

2 −
∥

∥xδk − x∗
∥

∥

2

(3.12)

≤
∥

∥zδk − x∗
∥

∥

2 −
∥

∥xδk − x∗
∥

∥

2 − (1 + Ψ)αδ
k

∥

∥F (zδk)− yδ
∥

∥

2
+ (αδ

k)
2
∥

∥sδk
∥

∥

2

= 2
〈

zδk − xδk, x
δ
k − x∗

〉

+
∥

∥zδk − xδk
∥

∥

2 − (1 + Ψ)αδ
k

∥

∥F (zδk)− yδ
∥

∥

2
+ (αδ

k)
2
∥

∥sδk
∥

∥

2

(2.23)
= −2λδk

〈

xδk−1 − xδk, x
δ
k − x∗

〉

+ (λδk)
2
∥

∥xδk − xδk−1

∥

∥

2

− (1 + Ψ)αδ
k

∥

∥F (zδk)− yδ
∥

∥

2
+ (αδ

k)
2
∥

∥sδk
∥

∥

2

= −λδk
(

∥

∥xδk−1 − xδk + xδk − x∗
∥

∥

2 −
∥

∥xδk − x∗
∥

∥

2 −
∥

∥xδk − xδk−1

∥

∥

2
)

+ (λδk)
2
∥

∥xδk − xδk−1

∥

∥

2 − (1 + Ψ)αδ
k

∥

∥F (zδk)− yδ
∥

∥

2
+ (αδ

k)
2
∥

∥sδk
∥

∥

2

= −λδk
(

∥

∥xδk−1 − x∗
∥

∥

2 −
∥

∥xδk − x∗
∥

∥

2
)

+ λδk(λ
δ
k + 1)

∥

∥xδk − xδk−1

∥

∥

2

− (1 + Ψ)αδ
k

∥

∥F (zδk)− yδ
∥

∥

2
+ (αδ

k)
2
∥

∥sδk
∥

∥

2

= λδk∆k + λδk(λ
δ
k + 1)

∥

∥xδk − xδk−1

∥

∥

2 − (1 + Ψ)αδ
k

∥

∥F (zδk)− yδ
∥

∥

2
+ (αδ

k)
2
∥

∥sδk
∥

∥

2
,
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which yields the assertion.

In order to stop the iteration, we use the discrepancy principle (see (2.6)), but here
with respect to zδk instead of xδk, i.e., we stop the iteration after k∗ iterations, where
k∗ = k∗(δ, y

δ) is the smallest integer such that
∥

∥yδ − F (zδk∗)
∥

∥ ≤ τδ <
∥

∥yδ − F (zδk)
∥

∥ , 0 ≤ k < k∗ , (3.13)

and use zδk∗ as approximation of x†. For the constant τ , as suggested by Proposi-
tion 3.1.2, we use the condition (compare with (2.9))

τ > 2
1 + η

1− 2η
. (3.14)

In the convergence analysis of Landweber iteration, one uses the fact that ∆k+1 ≤ 0
for all k < k∗, i.e., that x

δ
k+1 is a better approximation of x∗ than xδk as long as the

discrepancy principle (2.6) is not yet satisfied. We would like our TPG methods to
share this property. Hence, in view of (3.9), we use the following coupling condition:

λδk(λ
δ
k + 1)

∥

∥xδk − xδk−1

∥

∥

2 −
(

1 +
Ψ

µ

)

αδ
k

∥

∥F (zδk)− yδ
∥

∥

2
+ (αδ

k)
2
∥

∥sδk
∥

∥

2 ≤ 0 . (3.15)

which has to hold for all 0 ≤ k < k∗ with k∗ determined by (3.13) and where µ is a
constant satisfying µ > 1. This implies ∆k+1 ≤ λδk ∆k and therefore, in view of λδ0 = 0
and λδk ≥ 0 for all k, we inductively get that ∆k+1 ≤ 0.

Condition (3.15) essentially yields restrictions on the parameters λδk and αδ
k. As a

result, one has to ask if there exist choices of λδk and αδ
k such that (3.15) is satisfied.

For all stepsizes αδ
k considered below, we are going to see that there holds

αδ
k

∥

∥sδk
∥

∥

2 ≤
∥

∥F (zδk)− yδ
∥

∥

2
, (3.16)

and hence, a sufficient condition for (3.15) to hold is given by

λδk(λ
δ
k + 1)

∥

∥xδk − xδk−1

∥

∥

2 ≤ Ψ

µ
αδ
k

∥

∥F (zδk)− yδ
∥

∥

2
. (3.17)

Obviously, λδk = 0 satisfies this inequality, which corresponds to classical Landweber
type iterations. In finding other admissible choices of λδk and α

δ
k, one has to be careful,

since both αδ
k and zδk might depend on λδk. Even for constant stepsizes αδ

k = ω one is
left with

λδk(λ
δ
k + 1)

∥

∥xδk − xδk−1

∥

∥

2 ≤ Ψ

µ
ω
∥

∥F (zδk)− yδ
∥

∥

2
, (3.18)

where it is not immediately clear how to choose λδk such that this inequality is satisfied.
From the discrepancy principle (3.13), one can derive the sufficient condition

λδk(λ
δ
k + 1)

∥

∥xδk − xδk−1

∥

∥

2 ≤ Ψ

µ
ω(τδ)2 , (3.19)
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which leads to the choice

λδk = min

{

−1

2
+

√

1

4
+

Ψω(τδ)2

µ
∥

∥xδk − xδk−1

∥

∥

2 , 1

}

, (3.20)

where the minimum with 1 is taken in order to guarantee 0 ≤ λδk ≤ 1. As the numerical
examples presented in Part II show, this choice indeed leads to a speedup compared
to classical Landweber iteration which, however, decreases as δ → 0, which could
be expected, since for δ = 0, we get λδk = λ0k = 0 and hence, we recover classical
Landweber iteration, known to be slow.

One possibility for finding a sequence λδk, based on a backtracking search procedure,
which takes nonzero values also for δ = 0, satisfies condition (3.15) and leads to a
considerable acceleration effect is presented in Section 3.2.

We now continue the convergence analysis of the TPG methods (2.23) by deducing the
following proposition based on Proposition 3.1.2 and the coupling condition (3.15):

Proposition 3.1.3. Assume that (3.1) and (3.4) hold and that equation F (x) = y
has a solution x∗ in Bρ(x0) = Bρ(x−1). Let k∗ = k(δ, yδ) be chosen according to the
stopping rule (3.13), (3.14) and assume that (3.15) holds for all 0 ≤ k < k∗. Then x

δ
k

as in (2.23) is well-defined and

∥

∥xδk+1 − x∗
∥

∥ ≤
∥

∥xδk − x∗
∥

∥ , ∀(−1) ≤ k < k∗ . (3.21)

Moreover, xδk ∈ Bρ(x∗) ⊂ B2ρ(x0) for all (−1) ≤ k ≤ k∗ and

(

min
0≤k<k∗

{αδ
k}
)

k∗(τδ)
2 ≤

k∗−1
∑

k=0

αδ
k

∥

∥yδ − F (zδk)
∥

∥

2 ≤ (µ̄Ψ)−1
∥

∥xδ0 − x∗
∥

∥

2
, (3.22)

where µ̄ = (µ− 1)/µ > 0.

Proof. From (3.9) it follows for k = 0 that

∆1 ≤ λδ0∆0 + λδ0(λ
δ
0 + 1)

∥

∥xδ0 − xδ−1

∥

∥

2 − (1 + Ψ)αδ
0

∥

∥yδ − F (zδ0)
∥

∥

2
+ (αδ

0)
2
∥

∥sδ0
∥

∥

2
.

Using (3.15) and λδ0 = 0, we can deduce that

∆1 ≤ λδ0(λ
δ
0 + 1)

∥

∥xδ0 − xδ−1

∥

∥

2 − (1 + Ψ)αδ
0

∥

∥yδ − F (zδ0)
∥

∥

2
+ (αδ

0)
2
∥

∥sδ0
∥

∥

2

(3.15)

≤ −µ− 1

µ
Ψαδ

0

∥

∥yδ − F (zδ0)
∥

∥

2
= −µ̄Ψαδ

0

∥

∥yδ − F (zδ0)
∥

∥

2 ≤ 0 ,
(3.23)

from which we get that xδ1 ∈ Bρ(x∗). Now, we proceed inductively to show that

∆k+1 ≤ −µ̄Ψαδ
k

∥

∥yδ − F (zδk)
∥

∥

2 ≤ 0 , (3.24)
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and xδk+1 ∈ Bρ(x∗) for all 0 ≤ k < k∗. To do so, we assume that this holds for all
0 ≤ m ≤ k. Again using (3.9), we deduce that

∆k+1 ≤ λδk∆k + λδk(λ
δ
k + 1)

∥

∥xδk − xδk−1

∥

∥

2 − (1 + Ψ)αδ
k

∥

∥F (zδk)− yδ
∥

∥

2
+ (αδ

k)
2
∥

∥sδk
∥

∥

2
,

(3.25)
which, together with (3.15) and the induction hypothesis yields (3.24). From this, we
can deduce xδk+1 ∈ Bρ(x∗) ⊂ B2ρ(x0), which completes the induction.

Furthermore, from (3.24) we can deduce that

µ̄Ψαδ
k

∥

∥yδ − F (zδk)
∥

∥

2 ≤
∥

∥xδk − x∗
∥

∥

2 −
∥

∥xδk+1 − x∗
∥

∥

2
, (3.26)

and hence, also

k∗−1
∑

k=0

µ̄Ψαδ
k

∥

∥yδ − F (zδk)
∥

∥

2 ≤
∥

∥xδ0 − x∗
∥

∥

2 −
∥

∥xδk∗ − x∗
∥

∥

2 ≤
∥

∥xδ0 − x∗
∥

∥

2
. (3.27)

From this, we get the estimate

(

min
0≤k<k∗

{αδ
k}
)

k∗(τδ)
2 ≤

k∗−1
∑

k=0

αδ
k

∥

∥yδ − F (zδk)
∥

∥

2 ≤ (µ̄Ψ)−1
∥

∥xδ0 − x∗
∥

∥

2
, (3.28)

which yields the assertion.

From the above proposition, we get the following simple:

Corollary 3.1.4. Under the assumptions of Proposition 3.1.3, we have

k∗ ≤
(

min
0≤k<k∗

{αδ
k}
)−1

∥

∥xδ0 − x∗
∥

∥

2

µ̄Ψ(τδ)2
. (3.29)

If we are given exact data yδ = y, i.e., if δ = 0, then (3.22) implies

∞
∑

k=0

αk ‖y − F (zk)‖2 <∞ , (3.30)

as in this case k∗ = ∞. Note that this only holds if F (zk) 6= y for all k ∈ N, since
otherwise the sum terminates in a finite number of steps. However, this is not a
restriction, since if F (zk) = y for some k, then a solution is found and the iteration is
terminated.

Combining (3.30) together with (3.15), we furthermore get that

∞
∑

k=0

λ0k(λ
0
k + 1) ‖xk − xk−1‖2 <∞ , (3.31)
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and
∞
∑

k=0

(αk)
2 ‖sk‖2 <∞ , (3.32)

from which there obviously follows

lim
k→∞

αk ‖y − F (zk)‖2 = 0 ,

lim
k→∞

λ0k(λ
0
k + 1) ‖xk − xk−1‖2 = 0 ,

lim
k→∞

(αk)
2 ‖sk‖2 = 0 .

(3.33)

If, additionally, αδ
k is bounded from below, i.e.,

0 < αδ
min := min

k∈N
{αδ

k} , (3.34)

then it even follows that
lim
k→∞

‖y − F (zk)‖ = 0 . (3.35)

If we can show that zk converges as well, then we get convergence of the iteration to a
solution of F (x) = y. In order to do this, we first have to show a couple of intermediate
results. We start by showing that under certain assumptions, the sequence ‖zk − x∗‖
has a finite limit as k → ∞.

Proposition 3.1.5. Let x∗ be a solution of F (x) = y, and let xk be the iterates (2.23)
with exact data, i.e., δ = 0. Assume that ‖xk − x∗‖ → ε as k → ∞, where ε ≥ 0 is a
constant. If λ0k ‖xk − xk−1‖ → 0 and αk ‖sk‖ → 0 as k → ∞, then there holds

lim
k→∞

‖zk − x∗‖ = ε . (3.36)

Proof. From the definition of the iterates (2.23), we have the inequality

‖zk − x∗‖ =
∥

∥xk − x∗ + λ0k(xk − xk−1)
∥

∥ ≤ ‖xk − x∗‖+ λ0k ‖xk − xk−1‖ (3.37)

and
‖xk+1 − x∗‖ = ‖zk − x∗ + αksk‖ ≤ ‖zk − x∗‖+ αk ‖sk‖ , (3.38)

from which there follows

‖xk+1 − x∗‖ − αk ‖sk‖ ≤ ‖zk − x∗‖ ≤ ‖xk − x∗‖+ λ0k ‖xk − xk−1‖ (3.39)

Taking the limit as k → ∞ now yields the assertion.

The following characterisation of the iterates xδk is useful later on:
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Lemma 3.1.6. For the iterates of the TPG methods (2.23) there holds

xδk = x0 +
k−1
∑

i=0

λδi (x
δ
i − xδi−1) +

k−1
∑

i=0

αδ
i s

δ
i , (3.40)

as well as

xδl − xδj =
l−1
∑

i=j

λδi (x
δ
i − xδi−1) +

l−1
∑

i=j

αδ
i s

δ
i , (3.41)

and

xδi − xδi−1 =
i−2
∑

m=0

(

i−1
∏

n=m+1

λδn

)

αδ
ms

δ
m + αδ

i−1s
δ
i−1 . (3.42)

Proof. The first two of the above statements follow immediately from (2.23). Hence,
it remains to prove (3.42), which we do by induction. For i = 1 the statement follows
immediately from (2.23). Assuming now that (3.42) holds for all 1 ≤ l ≤ i, we get

xδi+1 − xδi
(2.23)
= λδi (x

δ
i − xδi−1) + αδ

i s
δ
i

= λδi

(

i−2
∑

m=0

(

i−1
∏

n=m+1

λδn

)

αδ
ms

δ
m + αδ

i−1s
δ
i−1

)

+ αδ
i s

δ
i

=
i−1
∑

m=0

(

i
∏

n=m+1

λδn

)

αδ
ms

δ
m + αδ

i s
δ
i ,

(3.43)

which concludes the induction and hence the lemma is shown.

Lemma 3.1.7. Assume that (3.1) holds, let x∗ ∈ B4ρ(x0) be a solution of F (x) = y
and let x1, x2 ∈ B4ρ(x0). Then there holds

‖F ′(x1)(x∗ − x2)‖ ≤ 2(1 + η) ‖F (x1)− y‖+ (1 + η) ‖F (x2)− y‖ . (3.44)

Proof. The proof of this lemma was already done in [72] and is re-stated here for the
sake of completeness. Using (3.1), it follows that

‖F ′(x1)(x∗ − x2)‖ = ‖F ′(x1)(x∗ − x1 + x1 − x2)‖
≤ ‖−F (x∗) + F (x1) + F ′(x1)(x∗ − x1)− F (x1) + F (x∗)‖
+ ‖F (x2)− F (x1) + F ′(x1)(x1 − x2)− F (x2) + F (x1)‖

≤ (1 + η) ‖F (x1)− y‖+ (1 + η) ‖F (x1)− F (x2)‖
≤ 2(1 + η) ‖F (x1)− y‖+ (1 + η) ‖F (x2)− y‖ ,

(3.45)

which yields the assertion.
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In order to prove convergence in the case of exact data in Theorem 3.1.8 below, we
need the following additional assumption on the combination parameters λ0k:

∞
∑

k=0

λ0k ‖xk − xk−1‖ <∞ . (3.46)

Since under the previous assumptions ‖xk − xk−1‖ can be bounded (by 2ρ), it follows
that a sufficient condition for (3.46) to hold is given by

∞
∑

k=0

λ0k <∞ . (3.47)

For λδk defined by (3.20), condition (3.47) is obviously satisfied. However, it is quite
a restrictive condition, since it implies λ0k → 0 as k → ∞. Comparing this with the
classical Nesterov combination parameters λδk = (k − 1)/(k + α− 1), which tend to 1
as k → ∞ even for δ = 0, we see that in order to achieve a non-negligible acceleration
effect also for δ = 0, one has to work with condition (3.46) instead of only the sufficient
condition (3.47). In Section 3.2, we present an algorithm for choosing λδk such that
(3.46) is satisfied and the numerical examples presented in Part II show that for this
sequence, under a suitable choice of parameters, there holds λδk → 1 as k → ∞, leading
to the desired acceleration effect. Using (3.46), we can now prove the following:

Theorem 3.1.8. Assume that (3.1) holds and that equation F (x) = y has a solution x∗
in Bρ(x0) = Bρ(x−1). Let k∗ = k∗(0, y) = ∞, λδk and αδ

k satisfy (3.4), (3.34) and (3.46)
and assume that (3.15) holds for all k ∈ N. Then the iterates zk defined as in (2.23)
with exact data yδ = y converge to a solution of F (x) = y. If N (F ′(x†)) ⊂ N (F ′(x))
for all x ∈ B4ρ(x

†), then zk converges to x† as k → ∞.

Proof. This proof closely follows the corresponding proof for Landweber iteration given
in [21]. Let x∗ be a solution of F (x) = y in Bρ(x0) and define

ek := zk − x∗ . (3.48)

From Proposition 3.1.3 it follows that ‖xk − x∗‖ converges to some ε ≥ 0 and hence,
using (3.33) and Proposition 3.1.5, we can deduce that ‖ek‖ converges to this same ε
as well. We are now going to show that ek is a Cauchy sequence. Given j ≥ k, we
choose some integer l between k and j with

‖y − F (zl)‖ ≤ ‖y − F (zi)‖ , ∀ k ≤ i ≤ j . (3.49)

We have
‖ej − ek‖ ≤ ‖ej − el‖+ ‖el − ek‖ , (3.50)

and

‖ej − el‖2 = 2 〈 el − ej, el 〉+ ‖ej‖2 − ‖el‖2 ,
‖el − ek‖2 = 2 〈 el − ek, el 〉+ ‖ek‖2 − ‖el‖2 ,

(3.51)
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For k → ∞, the last two terms on each of the right hand sides of the above equations
converge to ε2 − ε2 = 0. We now show that 〈 el − ek, el 〉 and 〈 el − ej, el 〉 also tend to
0 as k → ∞. For this we first consider:

|〈 el − ek, el 〉| = |〈 zl − zk, el 〉| =
∣

∣

〈

xl − xk + λ0l (xl − xl−1)− λ0k(xk − xk−1), el
〉∣

∣

≤ |〈 xl − xk, el 〉|+ λ0l |〈 xl − xl−1, el 〉|+ λ0k |〈 xk − xk−1, el 〉|
≤ |〈 xl − xk, el 〉|+ λ0l ‖xl − xl−1‖ ‖el‖+ λ0k ‖xk − xk−1‖ ‖el‖ .

(3.52)

Now, using (3.33) and the fact that ‖ek‖ converges to ε, we get that

lim
k→∞

(

λ0l ‖xl − xl−1‖ ‖el‖+ λ0k ‖xk − xk−1‖ ‖el‖
)

= 0 . (3.53)

Hence, it remains to consider

|〈 xl − xk, el 〉|
(3.41)
=

∣

∣

∣

∣

∣

〈

l−1
∑

i=k

λ0i (xi − xi−1) +
l−1
∑

i=k

αisi, el

〉∣

∣

∣

∣

∣

≤
l−1
∑

i=k

λ0i |〈 xi − xi−1, el 〉|+
l−1
∑

i=k

αi |〈 si, el 〉| .
(3.54)

We now consider the above two sums separately, starting with the second one. By
Lemma 3.1.7, we have

l−1
∑

i=k

αi |〈 si, el 〉| =
l−1
∑

i=k

αi |〈 y − F (zi), F
′(zi)(zl − x∗) 〉|

≤
l−1
∑

i=k

αi ‖y − F (zi)‖ ‖F ′(zi)(zl − x∗)‖

(3.44)

≤ 2(1 + η)
l−1
∑

i=k

αi ‖y − F (zi)‖2 + (1 + η)
l−1
∑

i=k

αi ‖y − F (zi)‖ ‖y − F (zl)‖ .

≤ 3(1 + η)
l−1
∑

i=k

αi ‖y − F (zi)‖2 ≤ 3(1 + η)
∞
∑

i=k

αi ‖y − F (zi)‖2 ,

(3.55)

where we have used (3.49). From this, it follows by using (3.30) that

lim
k→∞

(

l−1
∑

i=k

αi |〈 si, el 〉|
)

= 0 . (3.56)

Next we consider

l−1
∑

i=k

λ0i |〈 xi − xi−1, el 〉| ≤
l−1
∑

i=k

λ0i ‖xi − xi−1‖ ‖el‖ ≤
∞
∑

i=k

λ0i ‖xi − xi−1‖ ‖el‖ . (3.57)
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Since ‖el‖ is bounded, it immediately follows from (3.46) that

lim
k→∞

(

l−1
∑

i=k

λ0i |〈 xi − xi−1, el 〉|
)

= 0 . (3.58)

Combining the above estimates, we arrive at |〈 xl − xk, el 〉| → 0, from which there
follows that |〈 el − ek, el 〉| → 0 as k → ∞. Since it can similarly be shown that
|〈 el − ej, el 〉| → 0 as k → ∞, it follows that

lim
k→∞

‖ej − ek‖ = 0 , (3.59)

from which we deduce that ek and hence, also zk is a Cauchy sequence and therefore
convergent in the Hilbert space X . Since ‖F (zk)− y‖ converges to 0, the limit of zk
is a solution of F (x) = y.

Now we turn to the second part of the proof. If N (F ′(x†)) ⊂ N (F ′(x)) for all x ∈
B4ρ(x

†), then by the definition of the iterates (2.23) we have

zk+1 − zk = xk+1 + λ0k+1(xk+1 − xk)− zk = αksk + λ0k+1(xk+1 − xk)

= (1 + λ0k+1)αksk + λ0k+1(zk − xk) = (1 + λ0k+1)αksk + λ0k+1λ
0
k(xk − xk−1)

and therefore

zk − z0 =
k−1
∑

i=0

(zi+1 − zi) =
k−1
∑

i=0

(

(1 + λ0i+1)αisi + λ0i+1λ
0
i (xi − xi−1)

)

. (3.60)

Since obviously (1 + λ0i+1)αisi ∈ R(F ′(zi)
∗) and since

R(F ′(zi)
∗) ⊂ N (F ′(zi))

⊥ ⊂ N (F ′(x†))⊥ for all i ∈ N , (3.61)

it follows that
k−1
∑

i=0

(1 + λ0i+1)αisi ∈ N (F ′(x†))⊥ . (3.62)

Similarly as above, it can be seen by using Lemma 3.1.6 that also

k−1
∑

i=0

λ0i+1λ
0
i (xi − xi−1) ∈ N (F ′(x†))⊥ , (3.63)

and we therefore conclude that

zk − z0 ∈ N (F ′(x†))⊥ for all k ∈ N . (3.64)

Since this also holds for the limit of zk and since x† is the unique solution for which
this condition holds (cf. Lemma 3.1.1), this proves that zk → x† as k → ∞.
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In the next corollary, we deduce the convergence of xk given the convergence of zk.

Corollary 3.1.9. Under the assumptions of Theorem 3.1.8, we get that xk converges
to x∗, where x∗ is the limit of zk as k → ∞.

Proof. The statement follows immediately from

‖xk+1 − x∗‖ ≤ ‖zk − x∗‖+ αk ‖sk‖ , (3.65)

together with (3.33).

Next, we show that using the discrepancy principle (3.13) as a stopping rule, our TPG
method (2.23) becomes a convergent regularization method, if we additionally assume
that λδk depends continuously on δ for δ → 0.

Theorem 3.1.10. Assume that (3.1) holds and that equation F (x) = y has a solution
x∗ in Bρ(x0) = Bρ(x−1). Let k∗ = k∗(δ, y

δ) be chosen according to the discrepancy
principle (3.13), (3.14) and assume that (3.15) holds for all 0 ≤ k < k∗. Assume
that λδk and αδ

k satisfy (3.4), (3.34) and (3.46) and that λδk → λ0k as δ → 0. Then
the iterates zδk∗ defined by (2.23) converge to a solution of F (x) = y, as δ → 0. If
N (F ′(x†)) ⊂ N (F ′(x)) for all x ∈ B4ρ(x

†), then zδk∗ converges to x† as δ → 0.

Proof. Again this proof closely follows the corresponding proof for Landweber iteration
given in [21]. Let x∗ be the limit point of zk (and hence, by Corollary 3.1.9, also of xk)
given exact data y and let δn be a sequence converging to 0 as n→ ∞. Let furthermore
yn := yδn be a sequence of noisy data with ‖y − yn‖ ≤ δn and let kn := k∗(δn, yn) be
the stopping index determined by the discrepancy principle applied to the pair (δn, yn).
There are two cases. First, assume that k is a finite accumulation point of kn. Without
loss of generality, we can assume that kn = k for all n ∈ N. Thus, from the definition
of the discrepancy principle, it follows that

∥

∥yn − F (zδnk )
∥

∥ ≤ τδn . (3.66)

As k is fixed, zδk depends continuously on the data yδ and we can take the limit n→ ∞
in the above inequality, which yields

zδnk → zk , F (zδnk ) → F (zk) = y , as n→ ∞ . (3.67)

In other words, the kth iterate of Landweber iteration with exact data is a solution
of F (x) = y and hence, the iteration terminates with zk = x∗, and z

δn
kn

→ x∗ for this
subsequence as δn → 0.

For the second case, assume that kn → ∞ as n → ∞. For some k and kn > k + 1,
Proposition 3.1.3 and 0 ≤ λδk ≤ 1 yield

∥

∥zδnkn − x∗
∥

∥ ≤
∥

∥xδnkn − x∗
∥

∥+ λδk
∥

∥xδnkn − x∗
∥

∥+ λδk
∥

∥xδnkn−1 − x∗
∥

∥

≤
∥

∥xδnk − x∗
∥

∥+ λδk
∥

∥xδnk − x∗
∥

∥+ λδk
∥

∥xδnk − x∗
∥

∥

≤ 3
∥

∥xδnk − x∗
∥

∥ ≤ 3
∥

∥xδnk − xk
∥

∥+ 3 ‖xk − x∗‖ .
(3.68)
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If we fix some ε > 0, it follows from Proposition 3.1.2 and from Corollary 3.1.9 that
we can fix some k = k(ε) such that ‖xk − x∗‖ ≤ ε/6. Since, for fixed k, the iterates
depend continuously on the data, there is an n = n(ε, k) such that

∥

∥xδnk − xk
∥

∥ ≤ ε/6
for all n > n(ε, k). Thus if we choose n sufficiently large, such that also kn > k + 1,
we get that

∥

∥zδnkn − x∗
∥

∥ ≤ 3
∥

∥xδnk − x∗
∥

∥ ≤ 3
∥

∥xδnk − xk
∥

∥+ 3 ‖xk − x∗‖ ≤ 3
ε

6
+ 3

ε

6
= ε , (3.69)

and therefore zδnkn → x∗ as n → ∞, which shows the first part of the assertion. If
N (F ′(x†)) ⊂ N (F ′(x)) for all x ∈ B4ρ(x

†), then x∗ can be chosen as x∗ = x†, in which
case Theorem 3.1.8 guarantees convergence of zk → x† (and then also xk → x†). Thus
the above arguments apply to that case as well, which yields the assertion.

We can now apply the above result to the TPG method (2.23) with constant stepsize
αδ
k = ω and λδk defined by (3.20). For this, we need the additional assumption

sup
x∈B4ρ(x0)

‖F ′(x)‖ ≤ ω̄ <∞ . (3.70)

Theorem 3.1.11. Assume that (3.1) and (3.70) hold and that equation F (x) = y
has a solution x∗ in Bρ(x0) = Bρ(x−1). Let k∗ = k∗(δ, y

δ) be chosen according to the
discrepancy principle (3.13), (3.14). Assume that αδ

k = ω ≤ 1/ω̄2, where ω̄ satisfies
(3.70) and that λδk is defined by (3.20), for some µ > 1 and Ψ defined by (3.8). Then
the iterates zδk∗ defined by (2.23) converge to a solution of F (x) = y, as δ → 0. If
N (F ′(x†)) ⊂ N (F ′(x)) for all x ∈ B4ρ(x

†), then zδk∗ converges to x† as δ → 0.

Proof. Due to αδ
k = ω ≤ 1/ω̄2 and (3.70), there holds

αδ
k

∥

∥sδk
∥

∥

2 ≤
∥

∥F (zδk)− yδ
∥

∥

2
, (3.71)

and hence, due to the discrepancy principle (3.13) and the definition of λδk by (3.20),
we get that (3.15) is satisfied for all 0 ≤ k < k∗. Obviously, (3.4) and (3.34) hold,
λδk depends continuously on δ for fixed k and, since λ0k = 0, also (3.46) is trivially
satisfied. Hence, Theorem 3.1.10 is applicable, which immediately yields the desired
results.

3.2 Examples of TPG methods based on the Steep-

est Descent and the Minimal Error stepsize

In this section, we introduce two TPG methods (2.23) based on the steepest descent
and on the minimal error stepsize and show that, under some assumptions, they lead
to convergent regularization methods. If we again denote

sδk := F ′(zδk)
∗(yδ − F (zδk)) , (3.72)
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then the steepest descent stepsize αSD
k is defined by

αSD
k := αSD

k (zδk) :=

∥

∥sδk
∥

∥

2

∥

∥F ′(zδk)s
δ
k

∥

∥

2 , (3.73)

and the minimal error stepsize αME
k is defined by

αME
k := αME

k (zδk) :=

∥

∥yδ − F (zδk)
∥

∥

2

∥

∥sδk
∥

∥

2 . (3.74)

The choice of the steepest descent stepsize αSD
k is motivated by line-search procedures

for optimization methods, where one tries to find an αδ
k such that the functional

1

2

∥

∥F (zδk + αδ
ks

δ
k)− yδ

∥

∥

2
(3.75)

is minimized. The stepsize αSD
k minimizes the linearisation of this functional, i.e.,

αSD
k = argmin

αδ
k

1

2

∥

∥F (zδk) + αδ
kF

′(zδk)s
δ
k − yδ

∥

∥

2
. (3.76)

As for the minimal error stepsize αME
k , note that in the proof of Proposition 3.1.2 we

showed the following inequality:

∥

∥xδk+1 − x∗
∥

∥

2 ≤
∥

∥zδk − x∗
∥

∥

2 − αδ
k

(

∥

∥F (zδk)− yδ
∥

∥

2 − αδ
k

∥

∥sδk
∥

∥

2
)

. (3.77)

Now, in order to ensure that
∥

∥xδk+1 − x∗
∥

∥ ≤
∥

∥zδk − x∗
∥

∥, the stepsize αδ
k has to satisfy

αδ
k

∥

∥sδk
∥

∥

2 ≤
∥

∥F (zδk)− yδ
∥

∥

2
, (3.78)

and the choice of αδ
k = αME

k is the largest stepsize fulfilling that requirement.

In the following proposition we show that αSD
k and αME

k are well defined. The proof is
almost completely similar to the one of [46, Proposition 3.20].

Proposition 3.2.1. Assume that (3.1) holds and that equation F (x) = y has a so-
lution x∗ in Bρ(x0). Assume that xδk, x

δ
k−1 ∈ Bρ(x∗) for an arbitrary k ∈ N ∪ {0}

and
∥

∥yδ − F (zδk)
∥

∥ > 2
1 + η

1− 2η
δ (3.79)

holds. Then sδk 6= 0 and F ′(zδk)s
δ
k 6= 0 and consequently, αSD

k and αME

k defined by (3.73)
and (3.74) are well-defined.
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Proof. Since xδk, x
δ
k−1 ∈ Bρ(x∗) it follows as in Proposition 3.1.2 that zk ∈ B4ρ(x0) and

hence (3.1) is applicable. Assume now that sδk = 0. Then we have

0 =
〈

sδk, z
δ
k − x∗

〉

=
〈

F ′(zδk)
∗(yδ − F (zδk)), z

δ
k − x∗

〉

=
〈

yδ − F (zδk), F
′(zδk)(z

δ
k − x∗)

〉

=
〈

yδ − F (zδk), y
δ − y + y − yδ + F (zδk)− F (zδk) + F ′(zδk)(z

δ
k − x∗)

〉

=
〈

yδ − F (zδk), y
δ − y

〉

−
∥

∥yδ − F (zδk)
∥

∥

2

−
〈

yδ − F (zδk), F (z
δ
k)− F (x∗)− F ′(zδk)(z

δ
k − x∗)

〉

.

(3.80)

Using (2.2) and (3.1), we get

∥

∥yδ − F (zδk)
∥

∥

2 ≤
∥

∥yδ − F (zδk)
∥

∥ δ + η
∥

∥yδ − F (zδk)
∥

∥

∥

∥F (zδk)− F (x∗)
∥

∥

≤
∥

∥yδ − F (zδk)
∥

∥ δ + η
∥

∥yδ − F (zδk)
∥

∥ (
∥

∥yδ − F (zδk)
∥

∥+ δ)

=
∥

∥yδ − F (zδk)
∥

∥

(

δ + η(δ +
∥

∥yδ − F (zδk)
∥

∥)
)

,

(3.81)

and therefore
∥

∥yδ − F (zδk)
∥

∥ ≤ 1 + η

1− η
δ , (3.82)

which is a contradiction to (3.79). Hence, sδk 6= 0.

Now assume that F ′(zδk)s
δ
k = 0. Then obviously sδk ∈ N (F ′(zδk)). By the definition of

sδk, we also have that sδk ∈ R(F ′(zδk)
∗) ⊂ N (F ′(zδk))

⊥. Hence, we have sδk = 0, which is
a contradiction to what we have shown above. Hence, F ′(zδk)s

δ
k 6= 0 and therefore αSD

k

and αME
k are well-defined.

We now want to prove that all conditions on the stepsize αδ
k used in the previous

section also hold for αSD
k and αME

k . We start by considering condition (3.34). Assuming
(3.70) to hold, it then obviously follows that αSD

k ≥ 1/ω̄2 and αME
k ≥ 1/ω̄2 and hence,

condition (3.34) is satisfied. Now we state another helpful result due to [72]:

Lemma 3.2.2. For the stepsizes αδ
k = αSD

k , αME

k defined by (3.73) and (3.74), respec-
tively, there holds

αδ
k

∥

∥sδk
∥

∥

2 ≤
∥

∥yδ − F (zδk)
∥

∥

2
, (3.83)

where equality holds for αδ
k = αME

k in the above inequality.

Proof. According to its definition, the statement is trivial for αME
k . For αSD

k , it follows
immediately from

αSD
k

∥

∥sδk
∥

∥

2
=

〈

F ′(zδk)s
δ
k, y

δ − F (zδk)
〉2

∥

∥F ′(zδk)s
δ
k

∥

∥

2 ≤
∥

∥yδ − F (zδk)
∥

∥

2
. (3.84)
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We now turn back to the very important condition (3.15). Due to Lemma 3.2.2, if we
use αδ

k = αSD
k or αδ

k = αME
k , then a sufficient condition for (3.15) to hold is given by

λδk(λ
δ
k + 1)

∥

∥xδk − xδk−1

∥

∥

2 ≤ Ψ

µ
αδ
k

∥

∥F (zδk)− yδ
∥

∥

2
. (3.85)

As we previously noted in Section 3.1, the choice λδk = 0 satisfies this inequality,
which, however, corresponds to the classical steepest descent or minimal error method,
respectively. Another possibility which, using (3.70), can be derived analogously to
(3.20), is given by

λδk = min

{

−1

2
+

√

1

4
+

Ψ(τδ)2

µ ω̄2
∥

∥xδk − xδk−1

∥

∥

2 , 1

}

. (3.86)

Note that this is the same as (3.20), given that the optimal stepsize ω = 1/ω̄2 is being
used. For λδk as in (3.86), we can deduce the following:

Theorem 3.2.3. Assume that (3.1) and (3.70) hold and that equation F (x) = y has
a solution x∗ in Bρ(x0) = Bρ(x−1). Let k∗ = k∗(δ, y

δ) be chosen according to the
discrepancy principle (3.13), (3.14). Assume that either αδ

k = αSD

k or αδ
k = αME

k ,
defined by (3.73) or (3.74), respectively. Furthermore, let λδk be defined by (3.86), for
some µ > 1, Ψ defined by (3.8) and ω̄ satisfying (3.70). Then the iterates zδk∗ defined
by (2.23) converge to a solution of F (x) = y, as δ → 0. If N (F ′(x†)) ⊂ N (F ′(x)) for
all x ∈ B4ρ(x

†), then zδk∗ converges to x† as δ → 0.

Proof. From Lemma 3.2.2, we get that

αδ
k

∥

∥sδk
∥

∥

2 ≤
∥

∥F (zδk)− yδ
∥

∥

2
. (3.87)

Together with αSD
k , αME

k ≥ 1/ω̄2, the statements of the theorem now follow from The-
orem 3.1.10, analogously as in the proof of Theorem 3.1.11.

As for λδk defined by (3.20), for λδk defined by (3.86) there also holds λδk = 0 for
δ = 0. Since this corresponds to classical Landweber iteration, the steepest descent or
minimal error method, the acceleration effect due to those choices of λδk decrease for
δ → 0. Since for small values of δ acceleration is needed most, other choices of λδk also
have to be considered.

The crucial conditions which a pair (λδk, α
δ
k) has to satisfy in order for Theorem 3.1.10

to be applicable are the conditions (3.15) and (3.46). We have already seen that
λδk = 0 and λδk defined by either (3.20) or (3.86), and hence, all sequences in between
those two, satisfy the coupling condition (3.15). Given a stepsize αδ

k, one could think of
choosing λδk ≤ 1 as large as possible such that the coupling condition (3.15) is satisfied.
However, one also has to guarantee that condition (3.46) is satisfied as well.

One possibility is to choose λδk as a subsequence of a summable sequence like (cqk)k∈N,
0 ≤ q < 1, in such a way that (3.15) is satisfied, which, together with the boundedness
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of
∥

∥xδk − xδk−1

∥

∥, guarantees (3.46). Unfortunately, the resulting sequence λδk tends to 0
as k → ∞, which in turn only leads to a negligible acceleration effect. However, note
that for condition (3.46) to be satisfied, it suffices that the sequence λ0k ‖xk − xk−1‖ is
summable. Hence, we propose the following strategy:

Given a stepsize αδ
k, define the combination parameters λδk by

λδk =







0 , k = 0 ,

min

{

qδk

‖xδ
k
−xδ

k−1‖ , 1
}

, k ≥ 1 ,
, (3.88)

where (qδk)k∈N is a decreasing sequence depending continuously on δ for fixed k, satis-
fying

∞
∑

k=0

qδk <∞ , (3.89)

and chosen such that condition (3.15) holds. If the sequence (qδk)k∈N can be chosen
in such a way that it converges to 0 fast enough to satisfy (3.89) but slower than
∥

∥xδk − xδk−1

∥

∥, the resulting sequence λδk stays away from 0 and possibly even tend
towards 1 as k → ∞.

Finding a sequence (qδk)k∈N satisfying all the required properties such that the resulting
TPG method indeed gives rise to a convergent regularization method and how to
compute a viable sequence λδk in practise is the topics of the remainder of this section.
First, we consider the problem of finding a suitable sequence (qδk)k∈N, or alternatively,
λδk, by what in the following we call the backtracking search (BTS) algorithm:

Algorithm 3.2.1. [Backtracking search (BTS) algorithm for λδk, k > 1]

• Given: xδk, x
δ
k−1, Ψ, µ, yδ, F , q : R+

0 → R
+
0 , m

δ
k−1 ∈ R.

• Calculate
∥

∥xδk − xδk−1

∥

∥ and define

βδ
k(m) := min

{

q(m)
∥

∥xδk − xδk−1

∥

∥

, 1

}

. (3.90)

• Define the functions

λ̃δk(m) := βδ
k(m

δ
k−1 + 1 +m) ,

z̃δk(m) := xδk + λ̃δk(m)(xδk − xδk−1) ,

α̃δ
k(m) := αδ

k(z̃
δ
k(m)) .

(3.91)

• Calculate

m̃δ
k = inf

{

m ≥ 0
∣

∣

∣
λ̃δk(m)(λ̃δk(m) + 1)

∥

∥xδk − xδk−1

∥

∥

2

≤ Ψ

µ
α̃δ
k(m)

∥

∥yδ − F (z̃δk(m))
∥

∥

2
}

.

(3.92)
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• Define λδk := λ̃δk(m̃
δ
k), z

δ
k := z̃δk(m̃

δ
k) and m

δ
k := mδ

k−1 + 1 + m̃δ
k.

• Output: λδk, z
δ
k, m

δ
k.

In order to carry out the above algorithm, a function q : R
+
0 → R

+
0 needs to be

specified. In order to prove convergence of our iteration method with λδk chosen by
Algorithm 3.2.1, we have to make the following assumptions on this function:

q(m1) ≤ q(m2) ∀m1 > m2 ,
∞
∑

k=0

q(k) <∞ . (3.93)

Concerning the calculation of m̃δ
k, note first that it is possible that α̃δ

k(m) is not well-
defined for certain values of m. However, by Proposition 3.2.1 this can only happen if
z̃δk(m) is such that (3.79) holds, i.e., that the stopping criterion (3.13) is satisfied, and
we therefore consider the inequality in (3.92) to be satisfied for those m. Furthermore,
if there is no m ≥ 0 such that the inequality

λ̃δk(m)(λ̃δk(m) + 1)
∥

∥xδk − xδk−1

∥

∥

2 ≤ Ψ

µ
α̃δ
k(m)

∥

∥yδ − F (z̃δk(m))
∥

∥

2
(3.94)

is satisfied, then m̃δ
k = inf ∅ = ∞ and hence λ̃δk(m̃

δ
k) and z̃

δ
k(m̃

δ
k) have to be understood

in the limit sense, i.e.,

λ̃δk(∞) := lim
m→∞

λ̃δk(m) = 0 , z̃δk(∞) := lim
m→∞

z̃δk(m) = xδk . (3.95)

However, since by (3.90) and (3.93) there holds λ̃δk(m) → 0 as m → 0 and since αδ
k is

bounded away from 0 in this case, m̃δ
k = ∞ can only happen if

∥

∥yδ − F (z̃δk(m))
∥

∥→ 0
as m → ∞. By the continuity of the involved quantities, this in turn implies
∥

∥yδ − F (z̃δk(∞))
∥

∥ = 0 and hence, due to the discrepancy principle, the TPG method
is terminated with zδk = z̃δk(∞) after the current iteration.

Combining the above considerations, for TPG methods (2.23) combined with the BTS
algorithm (3.2.1) for determining a suitable sequence λδk we can now prove the following
convergence result:

Theorem 3.2.4. Assume that (3.1) and (3.70) hold and that equation F (x) = y has
a solution x∗ in Bρ(x0) = Bρ(x−1). Let x

δ
k, z

δ
k be defined by (2.23) with αδ

k being given
by either (3.73) or (3.74). Let λδk be defined by Algorithm 3.2.1 with λδ0 = 0, mδ

0 = 0,
µ > 1, Ψ as in (3.8) and q : R+

0 → R
+
0 satisfying (3.93). Let k∗ = k∗(δ, y

δ) be chosen
according to the discrepancy principle (3.13), (3.14). Then the following statements
hold:

1. If y = yδ, i.e., if δ = 0, and if k∗ = k∗(0, y) = ∞ then the iterates zk and xk
converge to a solution of F (x) = y as k → ∞. If N (F ′(x†)) ⊂ N (F ′(x)) for all
x ∈ B4ρ(x

†), then zk and xk converge to x† as k → ∞.
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2. For all (−1) ≤ k < k∗ there holds
∥

∥xδk+1 − x∗
∥

∥ ≤
∥

∥xδk − x∗
∥

∥. Furthermore, if,
for fixed k, m̃δ

k defined by (3.92) depends continuously on the data as δ → 0 then
zδk∗ converges to a solution of F (x) = y as δ → 0. If additionally N (F ′(x†)) ⊂
N (F ′(x)) for all x ∈ B4ρ(x

†), then zδk∗ converges to x† as δ → 0.

Proof. From Algorithm 3.2.1 it is obvious that mδ
k ≥ mδ

k−1 + 1 and therefore mδ
k ≥ k.

Using this together with (3.93), we get that

∞
∑

k=0

λ0k ‖xk − xk−1‖ ≤
∞
∑

k=0

β0
k(m

0
k) ‖xk − xk−1‖ =

∞
∑

k=0

min
{

q(m0
k), ‖xk − xk−1‖

}

≤
∞
∑

k=0

q(m0
k) ≤

∞
∑

k=0

q(k) <∞ ,

(3.96)

from which it follows that (3.46) holds. Furthermore, condition (3.85) follows directly
from the definition of λδk = λ̃δk(m̃

δ
k) and due to (3.90), also 0 ≤ λδk ≤ 1 holds. Together

with the observations made above, the first part of this theorem follows immediately
from Theorem 3.1.8 and Corollary 3.1.9, as does the monotonicity result in the second
part of the theorem. Furthermore, if m̃δ

k depends continuously on the data, i.e., if, for
fixed k, m̃δ

k → m̃0
k as δ → 0, then by the continuity of the involved quantities, also

the sequence λδk defined by Algorithm 3.2.1 depends continuously on δ for δ → 0 and
fixed k. Using this, the remaining statements of the theorem now follow immediately
from Theorem 3.1.10.

Concerning the convergence analysis above, note that we require that m̃δ
k depends

continuously on δ as δ → 0. Comparing this with the definition (3.92) of m̃δ
k, we see

that it is equivalent to requiring that the first point of intersection of the two functions

f δ(m) := λ̃δk(m)(λ̃δk(m) + 1)
∥

∥xδk − xδk−1

∥

∥

2
and gδ(m) := Ψ

µ
α̃δ
k(m)

∥

∥yδ − F (z̃δk(m))
∥

∥

2

depends continuously on δ as δ → 0. Although this might not always necessarily be
true due to pathological cases, it is reasonable to expect this to be true in practise.

The BTS algorithm 3.2.1 has one disadvantage, namely the fact that one has to cal-
culate an infimum for determining m̃δ

k. While this might be possible analytically for
very specific problems, in general one cannot hope to be able to resolve the infimum
explicitly. In order to avoid having to approximate this infimum numerically by some
potentially very costly numerical routine, we introduce a numerically feasible version
of the BTS algorithm, which we call discrete backtracking search (DBTS) algorithm.
It is based on the same ideas as the BTS algorithm and takes the following form:

Algorithm 3.2.2. [Discrete backtracking search (DBTS) algorithm for λδk, k > 1]

• Given: xδk, x
δ
k−1, τ , Ψ, µ, yδ, F , q : R+

0 → R
+
0 , ik−1 ∈ N, jmax ∈ N.
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• Calculate
∥

∥xδk − xδk−1

∥

∥ and define

βk(i) = min

{

q(i)
∥

∥xδk − xδk−1

∥

∥

, 1

}

. (3.97)

• For: j = 1 , . . . , jmax,

Set λδk = βk(ik−1 + j).

Calculate zδk = xδk + λδk(x
δ
k − xδk−1) and α

δ
k = αδ

k(z
δ
k).

If:
(∥

∥yδ − F (zδk)
∥

∥ ≤ τδ
)

,

ik = ik−1 + j,

break.

Elseif:
(

λδk(λ
δ
k + 1)

∥

∥xδk − xδk−1

∥

∥

2 ≤ Ψ
µ
αδ
k

∥

∥yδ − F (zδk)
∥

∥

2
)

,

ik = ik−1 + j,

break.

Else: λδk = 0, ik = ik−1 + jmax.

End For

• Output: λδk, ik.

The above algorithm is easy to implement and does not require the computation of an
infimum. Furthermore, similarly to above we can show a convergence result:

Theorem 3.2.5. Assume that (3.1) and (3.70) hold and that equation F (x) = y has
a solution x∗ in Bρ(x0) = Bρ(x−1). Let xδk, z

δ
k be defined by (2.23) with αδ

k being
given by either (3.73) or (3.74). Let λδk be defined by Algorithm 3.2.2 with λδ0 = 0,
jmax ∈ N, µ > 1, τ as in (3.14), Ψ as in (3.8) and q : R+

0 → R
+
0 satisfying (3.93). Let

k∗ = k∗(δ, y
δ) be chosen according to the discrepancy principle (3.13), (3.14). Then

there holds:

1. If y = yδ, i.e., if δ = 0, and if k∗ = k∗(0, y) = ∞ then the iterates zk and xk
converge to a solution of F (x) = y as k → ∞. If N (F ′(x†)) ⊂ N (F ′(x)) for all
x ∈ B4ρ(x

†), then zk and xk converge to x† as k → ∞.

2. For all (−1) ≤ k < k∗ there holds
∥

∥xδk+1 − x∗
∥

∥ ≤
∥

∥xδk − x∗
∥

∥. Furthermore, if
k∗(0, y) = ∞ and if for all k ∈ N there holds

λ0k(λ
0
k + 1) ‖xk − xk−1‖2 <

Ψ

µ
α0
k ‖y − F (zk)‖2 , (3.98)

then zδk∗ converges to a solution of F (x) = y as δ → 0. If additionally
N (F ′(x†)) ⊂ N (F ′(x)) for all x ∈ B4ρ(x

†), then zδk∗ converges to x† as δ → 0.
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Proof. The proof of this theorem is analogous to the proof of Theorem 3.2.4. Note that
due to checking whether

∥

∥yδ − F (zδk)
∥

∥ ≤ τδ, the stepsize αδ
k is guaranteed to be well

defined during the search procedure and the iteration. Furthermore, the assumption
that k∗(0, y) = ∞ together with (3.98) and the continuity of the involved quantities
implies that for fixed k, λδk → λ0k as δ → 0.

Note that the analysis carried out above in Theorem 3.2.4 and Theorem 3.2.5 also
applies to constant stepsizes αδ

k = ω, as long as ω ≤ 1/ω̄2 with ω̄ satisfying (3.70),
since for that choice, as we have already seen in the proof of Theorem 3.1.11, the results
of Lemma 3.2.2 hold as well. Furthermore, in this case, the If branch in the DBTS
algorithm which checks whether

∥

∥yδ − F (zδk)
∥

∥ ≤ τδ can be dropped, since the stepsize
is now always well-defined. Consequently, also the requirement that k∗(0, y) = ∞ in
the second part of Theorem 3.2.5 can then be removed. Hence, using a TPG method
with a constant stepsize combined with the BTS algorithm for λδk gives rise to a
convergent regularization method as well.

Note that in order to apply either of the backtracking search algorithms presented
above one needs to have an estimate of the same parameters as for ordinary nonlinear
Landweber iteration, that is, of δ and η. Whereas in ordinary Landweber iteration η
only plays a role in choosing τ , here it also enters into the BTS and DBTS algorithms
by Ψ. For linear problems, η = 0 can be chosen and therefore

Ψ = 1− 2τ−1 , with τ > 2 . (3.99)

If we take for example τ = 4, then we get Ψ = 1/2. Note that one would want to
have τ as small and Ψ as big as possible. However, since by the above equation τ and
Ψ are direct proportional, one has to settle for a compromise when choosing τ . Note
also that usually the exact value of η is not known. In this case, a value for η close to
0.5 is chosen in numerical algorithms requiring η explicitly.



Chapter 4

Convergence under a Local
Convexity Condition

The convergence analysis of TPG methods (2.23) based on a tangential cone condition
presented in the previous chapter does not cover the coupling parameter

λδk =
k − 1

k + α− 1
, (4.1)

i.e., the choice originally proposed by Nesterov and the one which shows by far the
best results numerically (see [37, 38, 44] and Part II of this thesis). The main reason
for this is that the proof technique employed there works with the monotonicity of the
iteration, i.e., the iterate xδk+1 always has to be a better approximation of a solution x∗
than xδk, which is not necessarily satisfied for the choice (4.1). Hence, in this chapter,
we consider a different approach for proving convergence of TPG methods using the
combination parameter (4.1). For this, it is necessary to replace the tangential cone
condition by a local convexity assumption on the residual functional

Φδ(x) := 1
2

∥

∥F (x)− yδ
∥

∥

2
, (4.2)

which is more natural in connection with the choice (4.1). Furthermore, we use the
extended Nesterov’s acceleration scheme (2.19) instead of (2.16), which leads to a
slight adaptation of the TPG methods (2.23); see below.

As a motivation, note that the key ingredient for proving the fast rates (2.17) and (2.21)
is the convexity of the functional Φδ(x). Since, except for linear operators, we cannot
hope that this holds globally, we assume that Φ0(x), i.e., the functional Φδ(x) defined
by (2.5) with exact data y = yδ, corresponding to δ = 0, is convex in a neighbourhood
of the initial guess. This neighbourhood has to be sufficiently large encompassing the
sought solution x∗, or equivalently, the initial guess x0 has to be sufficiently close to
the solution x∗. Assuming that F (x) = y has a solution x∗ in Bρ(x0), where, as above,
Bρ(x0) denotes the closed ball with radius ρ around x0, the key assumption is that
Φ0 is convex in B6ρ(x0). As mentioned before, Nesterov’s acceleration scheme yields

33
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a non-monotonous sequence of iterates, which might possibly leave the ball B6ρ(x0).
However, by assumption the sought for solution x∗ lies in the ball Bρ(x0). Hence,
defining the functional

Ψ(x) :=

{

0 , x ∈ B2ρ(x0) ,

∞ , x /∈ B2ρ(x0) ,
(4.3)

we can, instead of using (2.16), which would lead to algorithm (2.22), use (2.19), noting
that still the fast rate (2.21) can be expected for δ = 0. This leads to the algorithm

zδk = xδk +
k−1

k+α−1
(xδk − xδk−1) ,

xδk+1 = proxωΨ
(

zδk + ωF ′(zδk)
∗(yδ − F (zδk))

)

,

xδ0 = xδ−1 = x0 ,

(4.4)

which we consider throughout this chapter. The presented research is taken from [39].

4.1 Convergence Analysis II

In this section, we provide a convergence analysis of method (4.4). Concerning no-
tation, whenever we consider the noise-free case y = yδ corresponding to δ = 0, we
replace δ by 0 in all variables depending on δ, e.g., we write Φ0 instead of Φδ. For
carrying out the analysis, we have to make a set of assumptions, already indicated
above.

Assumption 4.1.1. Let ρ be a positive number such that B6ρ(x0) ⊂ D(F ).

1. The operator F : D(F ) ⊂ X → Y is continuously Fréchet differentiable be-
tween the real Hilbert spaces X and Y with inner products 〈 ., . 〉 and norms ‖.‖.
Furthermore, let F be weakly sequentially closed on B2ρ(x0).

2. The equation F (x) = y has a solution x∗ ∈ Bρ(x0).

3. The data yδ satisfies
∥

∥y − yδ
∥

∥ ≤ δ.

4. The functional Φ0 defined by (2.5) with δ = 0 is convex and has a Lipschitz
continuous gradient ∇Φ0 with Lipschitz constant L on B6ρ(x0), i.e.,

Φ0(λx1 + (1− λ)x2) ≤ λΦ0(x1) + (1− λ)Φ0(x2) , ∀x1, x2 ∈ B6ρ(x0) , (4.5)

∥

∥∇Φ0(x1)−∇Φ0(x2)
∥

∥ ≤ L ‖x1 − x2‖ , ∀x1, x2 ∈ B6ρ(x0) . (4.6)

5. For α in (4.4) there holds α > 3 and the scaling parameter ω satisfies 0 < ω < 1
L
.

Note that since B2ρ(x0) is weakly closed and given the continuity of F , a sufficient
condition for the weak sequential closedness assumption to hold is that F is compact.
We now turn to the convergence analysis of Nesterov’s accelerated gradient method
(4.4). Throughout this analysis, if not explicitly stated otherwise, Assumption 4.1.1
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is in force. Note first that from F being continuously Fréchet differentiable, we can
derive that there exists an ω̄ such that

‖F ′(x)‖ ≤ ω̄ , ∀x ∈ B6ρ(x0) . (4.7)

Next, note that since B2ρ(x) denotes a closed ball around x, the functional Ψ, in addi-
tion to being proper and convex, is also lower-semicontinous, an assumption required
in the proofs in [3], which we need in various places of this chapter. Furthermore, it
immediately follows from the definition (2.20) of the proximal operator proxωΨ (.) that

proxωΨ (x) = argmin
u∈X

{

ωΨ(u) + 1
2
‖x− u‖2

}

= argmin
u∈B2ρ(x0)

{

1
2
‖x− u‖2

}

, (4.8)

since Ψ defined by (4.3) is equal to ∞ outside B2ρ(x0). Hence, since obviously B2ρ(x0)
is a convex set, proxωΨ (.) is nothing else than the metric projection onto B2ρ(x0),
and is therefore Lipschitz continuous with Lipschitz constant smaller or equal to 1.
Consequently, given an estimate of ρ, the implementation of proxωΨ (.) is exceedingly
simple in this setting, and therefore, one iteration step of (4.4) and (2.4) require
roughly the same amount of computational effort.
Finally, note that due to the convexity of Φ0, the set S defined by

S := {x ∈ B2ρ(x0) |F (x) = y} , (4.9)

is a convex subset of B2ρ(x0) and hence, there exists a unique x0-minimum-norm
solution x†, which is defined by

x† := argmin
x∈S

‖x− x0‖ , (4.10)

which is nothing else than the orthogonal projection of x0 onto the set S.
The following convergence analysis is largely based on the ideas of the paper [3] of
Attouch and Peypouquet, which we reference from frequently throughout this analysis.
Following their arguments, we start by making the following

Definition 4.1.1. For Φδ and Ψ defined by (2.5) and (4.3), we define

Θδ(x) := Φδ(x) + Ψ(x) . (4.11)

The energy functional Eδ is defined by

Eδ(k) :=
2ω

α− 1
(k + α− 2)2(Θδ(xδk)−Θδ(x∗)) + (α− 1)

∥

∥wδ
k − x∗

∥

∥

2
, (4.12)

where the sequence wδ
k is defined by

wδ
k :=

k + α− 1

α− 1
zδk −

k

α− 1
xδk = xδk +

k − 1

α− 1

(

xδk − xδk−1

)

. (4.13)

Furthermore, we introduce the operator Gδ
ω : D(F ) ⊂ X → Y , given by

Gδ
ω(x) :=

1

ω

(

x− proxωΨ
(

x− ω∇Φδ(x)
))

. (4.14)
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Using Definition 4.1.1, we can now write to update step for xδk+1 in the form

xδk+1 = zδk − ωGδ
ω(z

δ
k) ,

and furthermore, it is possible to write

wδ
k+1 =

k + α− 1

α− 1

(

zδk − ωGδ
ω(z

δ
k)
)

− k

α− 1
xδk = wδ

k−
ω

α− 1
(k+α−1)Gδ

ω(z
δ
k) . (4.15)

As a first result, we show that both zδk and x
δ
k stay within B6ρ(x0) during the iteration.

Lemma 4.1.1. Under the Assumption 4.1.1, the sequence of iterates xδk and zδk defined
by (4.4) is well-defined. Furthermore, xδk ∈ B2ρ(x0) and z

δ
k ∈ B6ρ(x0) for all k ∈ N.

Proof. This follows by induction from xδ0 = xδ−1 = x0 ∈ Bρ(x0), the observation

∥

∥zδk − x0
∥

∥ ≤ (1 + k−1
k+α−1

)
∥

∥xδk − x0
∥

∥+ k−1
k+α−1

∥

∥xδk−1 − x0
∥

∥

≤ 2
∥

∥xδk − x0
∥

∥+
∥

∥xδk−1 − x0
∥

∥ ,

and the fact that by the definition of proxωΨ (x), xδk is always an element of B2ρ(x0).

Since the functional Θ0 is assumed to be convex in B6ρ(x0), we can deduce:

Lemma 4.1.2. Under Assumption 4.1.1, for all x, z ∈ B6ρ(x0) there holds

Θ0(z − ωG0
ω(z)) ≤ Θ0(x) +

〈

G0
ω(z), z − x

〉

− ω

2

∥

∥G0
ω(z)

∥

∥

2
.

Proof. This lemma is also used in [3]. However, the sources for it cited there do not
exactly cover our setting with Φδ being defined on D(F ) ⊂ X only. Hence, we here give
an elementary proof of the assertion. Note first that due to the Lipschitz continuity
of Φ0 in B6ρ(x0) and the fact that ω < 1/L we have

Φ0(u) ≤ Φ0(v) +
〈

∇Φ0(v), u− v
〉

+
1

2ω
‖u− v‖2 , ∀ u, v ∈ B6ρ(x0) .

Now since Φ0 is convex on B6ρ(x0), also have [6]

Φ0(v) +
〈

∇Φ0(v), w − v
〉

≤ Φ0(w) , ∀ v, w ∈ B6ρ(x0) ,

and therefore, combining the above two inequalities, we get

Φ0(u) ≤ Φ0(w) +
〈

∇Φ0(v), u− w
〉

+
1

2ω
‖u− v‖2 , ∀ u, v, w ∈ B6ρ(x0) .

Using this result for u = z − ωG0
ω(z), v = z, w = x, noting that for x, z ∈ B6ρ(x0)

there holds u, v, w ∈ B6ρ(x0), we get

Φ0(z − ωG0
ω(z)) ≤ Φ0(x) +

〈

∇Φ0(z), z − ωG0
ω(z)− x

〉

+
ω

2

∥

∥G0
ω(z)

∥

∥

2
. (4.16)
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Next, note that since z − ωG0
ω(z) = proxωΨ (z − ω∇Φ0(z)), a standard result from

proximal operator theory [6, Proposition 12.26] implies that there holds

Ψ(z − ωG0
ω(z)) ≤ Ψ(x) +

1

ω

〈

(z − ωG0
ω(z))− x, (z − ω∇Φ0(z))− (z − ωG0

ω(z))
〉

= Ψ(x) +
〈

z − ωG0
ω(z)− x,−∇Φ0(z) +G0

ω(z)
〉

= Ψ(x)−
〈

z − ωG0
ω(z)− x,∇Φ0(z)

〉

+
〈

z − x,G0
ω(z)

〉

− ω
∥

∥G0
ω(z)

∥

∥

2
.

Adding this inequality to (4.16) and using the fact that by definition Θ0 = Φ0 + Ψ
immediately yields the assertion.

We want to derive a similar inequality also for the functionals Θδ. The following lemma
is of vital importance for doing that:

Lemma 4.1.3. Let Assumption 4.1.1 hold, let x, z ∈ B6ρ(x0) and define

R1 := Θ0(z − ωGδ
ω(z))−Θ0(z − ωG0

ω(z)) ,

R2 := Θδ(z − ωGδ
ω(z))−Θ0(z − ωGδ

ω(z)) ,

R3 := Θ0(x)−Θδ(x) , R4 :=
〈

G0
ω(z)−Gδ

ω(z), z − x
〉

,

R5 :=
ω

2

(

∥

∥Gδ
ω(z)

∥

∥

2 −
∥

∥G0
ω(z)

∥

∥

2
)

,

(4.17)

as well as
R := R1 +R2 +R3 +R4 +R5 . (4.18)

Then there holds

Θδ(z − ωGδ
ω(z)) ≤ Θδ(x) +

〈

Gδ
ω(z), z − x

〉

− ω

2

∥

∥Gδ
ω(z)

∥

∥

2
+R .

Proof. Using Lemma 4.1.2 we get

Θδ(z − ωGδ
ω(z)) = Θ0(z − ωG0

ω(z)) +R1 +R2

≤ Θ0(x) +
〈

G0
ω(z), z − x

〉

− ω

2

∥

∥G0
ω(z)

∥

∥

2
+R1 +R2

= Θδ(x) +
〈

Gδ
ω(z), z − x

〉

− ω

2

∥

∥Gδ
ω(z)

∥

∥

2
+R1 +R2 +R3 +R4 +R5 ,

from which the statement of the theorem immediately follows.

Next, we show that the Ri and hence, also R, can be bounded in terms of δ + δ2.

Proposition 4.1.4. Let Assumption 4.1.1 hold, let x ∈ B2ρ(x0) and z ∈ B6ρ(x0) and
let the R1, . . . , R5 be defined by (4.18). Then there holds

R1 ≤ 1
2
ω̄4ω2δ2 + 2ω̄3ωρδ ,

R2 ≤ 3
2
δ2 + 2ρ ω̄ δ ,

R3 ≤ 3
2
δ2 + 2ρ ω̄ δ ,

R4 ≤ 8ρ ω̄δ ,

R5 ≤
ω

2
ω̄2 δ2 + 8ρ ω̄ δ .
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Proof. The following somewhat long but elementary proof uses mainly the bound-
edness and Lipschitz continuity assumptions made above. For the following, let
x ∈ B2ρ(x0) and z ∈ B6ρ(x0). We treat each of the Ri terms separately, starting
with

R1 = Θ0(z − ωGδ
ω(z))−Θ0(z − ωG0

ω(z))

= 1
2

∥

∥F (z − ωGδ
ω(z))− y

∥

∥

2 − 1
2

∥

∥F (z − ωG0
ω(z))− y

∥

∥

2

= 1
2

∥

∥F (z − ωGδ
ω(z))− F (z − ωG0

ω(z))
∥

∥

2

−
〈

F (z − ωGδ
ω(z))− F (z − ωG0

ω(z)), F (z − ωG0
ω(z))− y

〉

≤ 1
2

∥

∥F (z − ωGδ
ω(z))− F (z − ωG0

ω(z))
∥

∥

2

+
∥

∥F (z − ωGδ
ω(z))− F (z − ωG0

ω(z))
∥

∥

∥

∥F (z − ωG0
ω(z))− y

∥

∥ .

Since we have
∥

∥F (z − ωGδ
ω(z))− F (z − ωG0

ω(z))
∥

∥ ≤ ω̄
∥

∥ωGδ
ω(z)− ωG0

ω(z)
∥

∥

≤ ω̄
∥

∥proxωΨ
(

z − ω∇Φδ(z)
)

− proxωΨ (z − ω∇Φ(z))
∥

∥

≤ ω̄ ω
∥

∥∇Φδ(z)−∇Φ(z)
∥

∥

= ω̄ ω
∥

∥F ′(z)∗(y − yδ)
∥

∥ ≤ ω̄2 ω
∥

∥y − yδ
∥

∥ ≤ ω̄2 ω δ ,

and
∥

∥F (z − ωG0
ω(z))− y

∥

∥ ≤ ω̄
∥

∥proxωΨ
(

z − ω∇Φδ(z)
)

− x∗
∥

∥ ≤ 2ρ ω̄ ,

there holds

R1 ≤ 1
2
(ω̄2 ω δ)2 + (ω̄2 ω δ)2ρ ω̄ =

(

1
2
ω̄4ω2

)

δ2 +
(

2ω̄3ωρ
)

δ .

Next, we look at

R2 = Θδ(z − ωGδ
ω(z))−Θ0(z − ωGδ

ω(z))

= 1
2

∥

∥y − yδ
∥

∥

2
+
〈

F (z − ωGδ
ω(z))− yδ, y − yδ

〉

= 3
2

∥

∥y − yδ
∥

∥

2
+
〈

F (z − ωGδ
ω(z))− y, y − yδ

〉

≤ 3
2
δ2 +

∥

∥F (z − ωGδ
ω(z))− F (x∗)

∥

∥ δ

≤ 3
2
δ2 + 2ρ ω̄ δ .

Similarly to above, for the next term we get

R3 = Θ0(x)−Θδ(x) = 1
2
‖F (x)− y‖2 − 1

2

∥

∥F (x)− yδ
∥

∥

2

= 1
2

∥

∥y − yδ
∥

∥

2
+
〈

F (x)− yδ, y − yδ
〉

= 3
2

∥

∥y − yδ
∥

∥

2
+
〈

F (x)− y, y − yδ
〉

≤ 3
2
δ2 + ‖F (x)− F (x∗)‖ δ

≤ 3
2
δ2 + 2ρ ω̄ δ .
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Furthermore, together with the Lipschitz continuity of proxωΨ (.), we get

R4 =
〈

G0
ω(z)−Gδ

ω(z), z − x
〉

=
1

ω

〈

proxωΨ
(

z − ω∇Φδ(z)
)

− proxωΨ
(

z − ω∇Φ0(z)
)

, z − x
〉

≤ 1

ω

∥

∥proxωΨ
(

z − ω∇Φδ(z)
)

− proxωΨ
(

z − ω∇Φ0(z)
)∥

∥ ‖z − x‖
≤
∥

∥∇Φδ(z)−∇Φ0(z)
∥

∥ ‖z − x‖ ≤ 8ρ
∥

∥F ′(z)(y − yδ)
∥

∥ ≤ 8ρ ω̄δ .

Finally, for the last term, we get

R5 =
ω

2

(

∥

∥Gδ
ω(z)

∥

∥

2 −
∥

∥G0
ω(z)

∥

∥

2
)

=
ω

2

∥

∥Gδ
ω(z)−G0

ω(z)
∥

∥

2
+ ω

〈

Gδ
ω(z)−G0

ω(z), G
0
ω(z)

〉

≤ ω

2

∥

∥Gδ
ω(z)−G0

ω(z)
∥

∥

2
+ ω

∥

∥Gδ
ω(z)−G0

ω(z)
∥

∥

∥

∥G0
ω(z)

∥

∥

≤ ω

2
ω̄2 δ2 + ω ω̄ δ

∥

∥G0
ω(z)

∥

∥ ≤ ω

2
ω̄2 δ2 + 8ρ ω̄ δ ,

which concludes the proof.

As an immediate consequence, we get the following

Corollary 4.1.5. Let Assumption 4.1.1 hold and let x, z ∈ B6ρ(x0). If we define

c1 = 2 ω̄3 ω ρ+ 20ρ ω̄ ,

c2 = 3 + 1
2
ω̄4ω2 + 1

2
ωω̄2 ,

(4.19)

then there holds

Θδ(z − ωGδ
ω(z)) ≤ Θδ(x) +

〈

Gδ
ω(z), z − x

〉

− ω

2

∥

∥Gδ
ω(z)

∥

∥

2
+ c1δ + c2δ

2 .

Proof. This immediately follows from Lemma 4.1.2 and Proposition 4.1.4.

Combining the above, we are now able to arrive at the following important result:

Proposition 4.1.6. Let Assumption 4.1.1 hold, let the sequence of iterates xδk and zδk
be given by (4.4) and let c1 and c2 be defined by (4.19). If we define

∆(δ) := c1δ + c2δ
2 , (4.20)

then there holds

Θδ(zδk − ωGδ
ω(z

δ
k)) ≤ Θδ(xδk) +

〈

Gδ
ω(z

δ
k), z

δ
k − xδk

〉

− ω

2

∥

∥Gδ
ω(z

δ
k)
∥

∥

2
+∆(δ) , (4.21)

Θδ(zδk − ωGδ
ω(z

δ
k)) ≤ Θδ(x∗) +

〈

Gδ
ω(z

δ
k), z

δ
k − x∗

〉

− ω

2

∥

∥Gδ
ω(z

δ
k)
∥

∥

2
+∆(δ) . (4.22)

Proof. This immediately follows from Lemma 4.1.1 and Corollary 4.1.5.
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Using the above proposition, we are now able to derive the important

Theorem 4.1.7. Let Assumption 4.1.1 hold and let the sequence of iterates xδk and zδk
be given by (4.4) and let ∆(δ) be defined by (4.20). Then there holds

Eδ(k + 1) +
2ω

α− 1

(

k(α− 3)
(

Θδ(xδk)−Θδ(x∗)
)

− (k + α− 1)2∆(δ)
)

≤ Eδ(k) . (4.23)

Proof. This proof is adapted from the corresponding result in [3], the difference being
the term ∆(δ). We start by multiplying inequality (4.21) by k

k+α−1
and inequality

(4.22) by α−1
k+α−1

. Adding the results and using the fact that xδk+1 = zδk − ωGδ
ω(z

δ
k), we

get

Θδ(xδk+1) ≤
k

k + α− 1
Θδ(xδk) +

α− 1

k + α− 1
Θδ(x∗)−

ω

2

∥

∥Gδ
ω(z

δ
k)
∥

∥

2
+∆(δ)

+

〈

Gδ
ω(z

δ
k),

k

k + α− 1
(zδk − xδk) +

α− 1

k + α− 1
(zδk − x∗)

〉

.

Since
k

k + α− 1
(zδk − xδk) +

α− 1

k + α− 1
(zδk − x∗) =

α− 1

k + α− 1
(wδ

k − x∗) ,

we obtain

Θδ(xδk+1) ≤
k

k + α− 1
Θδ(xδk) +

α− 1

k + α− 1
Θδ(x∗)−

ω

2

∥

∥Gδ
ω(z

δ
k)
∥

∥

2
+∆(δ)

α− 1

k + α− 1

〈

Gδ
ω(z

δ
k), w

δ
k − x∗

〉

.

(4.24)

Next, observe that it follows from (4.15) that

wδ
k+1 − x∗ = wδ

k − x∗ −
ω

α− 1
(k + α− 1)Gδ

ω(z
δ
k) .

After developing

∥

∥wδ
k+1 − x∗

∥

∥

2
=
∥

∥wδ
k − x∗

∥

∥

2 − 2
ω

α− 1
(k + α− 1)

〈

wδ
k − x∗, G

δ
ω(z

δ
k)
〉

+
ω2

(α− 1)2
(k + α− 1)2

∥

∥Gδ
ω(z

δ
k)
∥

∥

2
,

and multiplying the above expression by (α−1)2

2ω(k+α−1)2
, we get

(α− 1)2

2ω(k + α− 1)2

(

∥

∥wδ
k − x∗

∥

∥

2 −
∥

∥wδ
k+1 − x∗

∥

∥

2
)

=
α− 1

k + α− 1

〈

Gδ
ω(z

δ
k), w

δ
k − x∗

〉

− ω

2

∥

∥Gδ
ω(z

δ
k)
∥

∥

2
.
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Replacing this in inequality (4.24) above, we get

Θδ(xδk+1) ≤
k

k + α− 1
Θδ(xδk) +

α− 1

k + α− 1
Θδ(x∗) + ∆(δ)

+
(α− 1)2

2ω(k + α− 1)2

(

∥

∥wδ
k − x∗

∥

∥

2 −
∥

∥wδ
k+1 − x∗

∥

∥

2
)

.

Equivalently, we can write this as

Θδ(xδk+1)−Θδ(x∗) ≤
k

k + α− 1

(

Θδ(xδk)−Θδ(x∗)
)

+∆(δ)

+
(α− 1)2

2ω(k + α− 1)2

(

∥

∥wδ
k − x∗

∥

∥

2 −
∥

∥wδ
k+1 − x∗

∥

∥

2
)

.

Multiplying by 2ω
α−1

(k + α− 1)2, we obtain

2ω

α− 1
(k + α− 1)2

(

Θδ(xδk+1)−Θδ(x∗)
)

≤ 2ω

α− 1
k(k + α− 1)

(

Θδ(xδk)−Θδ(x∗)
)

+
2ω

α− 1
(k + α− 1)2∆(δ) + (α− 1)

(

∥

∥wδ
k − x∗

∥

∥

2 −
∥

∥wδ
k+1 − x∗

∥

∥

2
)

,

and therefore, since there holds

k(k + α− 1) = (k + α− 1)2 − k(α− 3)− (α− 2)2 ≤ (k + α− 1)2 − k(α− 3) ,

we get that

2ω

α− 1
(k + α− 1)2

(

Θδ(xδk+1)−Θδ(x∗)
)

≤ − 2ω

α− 1
k(α− 3)

(

Θδ(xδk)−Θδ(x∗)
)

+
2ω

α− 1
(k + α− 1)2

(

Θδ(xδk)−Θδ(x∗)
)

+
2ω

α− 1
(k + α− 1)2∆(δ)

+ (α− 1)
(

∥

∥wδ
k − x∗

∥

∥

2 −
∥

∥wδ
k+1 − x∗

∥

∥

2
)

.

Together with the definition (4.12) of Eδ, this implies

Eδ(k + 1) +
2ω

α− 1
k(α− 3)

(

Θδ(xδk)−Θδ(x∗)
)

≤ Eδ(k) +
2ω

α− 1
(k + α− 1)2∆(δ) ,

or equivalently, after rearranging, we get

Eδ(k + 1) +
2ω

α− 1

(

k(α− 3)
(

Θδ(xδk)−Θδ(x∗)
)

− (k + α− 1)2∆(δ)
)

≤ Eδ(k) ,

which concludes the proof.

Inequality (4.23) is the key ingredient for showing that (4.4), combined with a suitable
stopping rule, gives rise to a convergent regularization method. In order to derive a
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suitable stopping rule, note first that in the case of exact data, i.e., δ = 0, inequality
(4.23) reduces to

E0(k + 1) +
2ω

α− 1
k(α− 3)

(

Θ0(x0k)−Θ0(x∗)
)

≤ E0(k) . (4.25)

Since by Assumption 4.1.1 the functional Φ0 is convex, the arguments used in [3] are
applicable, and we can deduce the following:

Theorem 4.1.8. Let Assumption 4.1.1 hold, let the sequence of iterates x0k and z0k be
given by (4.4) with exact data y = yδ, i.e., δ = 0 and let S be defined by (4.9). Then
the following statements hold:

• The sequence (E0(k)) is non-increasing and lim
k→∞

E0(k) exists.

• For each k ≥ 0, there holds

∥

∥F (x0k)− y
∥

∥

2 ≤ (α− 1)E0(0)

ω(k + α− 2)2
,

∥

∥w0
k − x∗

∥

∥

2 ≤ E0(0)

α− 1
.

• There holds
∞
∑

k=1

k
∥

∥F (x0k)− y
∥

∥

2 ≤ (α− 1)E0(1)

ω(α− 3)
,

as well as
∞
∑

k=1

k
∥

∥x0k+1 − x0k
∥

∥

2 ≤ (α− 1)E0(1)

ω(α− 3)
.

• There holds
lim inf
k→∞

(

k2 ln(k)
∥

∥F (x0k)− y
∥

∥

2
)

= 0 ,

as well as
lim inf
k→∞

(

k ln(k)
∥

∥x0k+1 − x0k
∥

∥

2
)

= 0 .

• There exists an x̃ in S, such that the sequence (x0k) converges weakly to x̃, i.e.,

lim
δ→0

〈

x0k, h
〉

= 〈 x̃, h 〉 , ∀h ∈ X . (4.26)

Proof. The statements follow from Facts 1-4, Remark 2 and Theorem 3 in [3].

Thanks to Theorem 4.1.8, we now know that Nesterov’s accelerated gradient method
(4.4) converges weakly to a solution x̃ from the solution set S in case of exact data
y = yδ, i.e., δ = 0.
Hence, it remains to consider the behaviour of (4.4) in the case of inexact data yδ.
As mentioned above, the key for doing so is inequality (4.23). We want to use it to
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show that, similarly to the exact data case, the sequence (Eδ(k)) is non-increasing up
to some k ∈ N. To do this, note first that Eδ(k) is positive as long as

Θδ(xδk) ≥ Θδ(x∗) ,

which is true, as long as
∥

∥F (xδk)− yδ
∥

∥ ≥ δ . (4.27)

On the other hand, the term

2ω

α− 1

(

k(α− 3)
(

Θδ(xδk)−Θδ(x∗)
)

− (k + α− 1)2∆(δ)
)

(4.28)

in (4.23) is positive, as long as

Θδ(xδk)−Θδ(x∗) ≥
(k + α− 1)2

k(α− 3)
∆(δ) ,

which is satisfied, as long as

∥

∥F (xδk)− yδ
∥

∥

2 ≥ 2(k + α− 1)2

k(α− 3)
∆(δ) + δ2 , (4.29)

which obviously implies (4.27). These considerations suggest, given a small τ > 1, to
choose the stopping index k∗ = k∗(δ, y

δ) as the smallest integer such that

∥

∥F (xδk∗)− yδ
∥

∥

2 ≤ 2(k + α− 1)2

k(α− 3)
∆(δ) + τ 2δ2 <

∥

∥F (xδk)− yδ
∥

∥

2
, k∗ > k . (4.30)

Concerning the well-definedness of k∗, we are able to prove the following

Lemma 4.1.9. Let Assumption 4.1.1 hold, let the sequence of iterates xδk and zδk be
given by (4.4) and let c1 and c2 be defined by (4.19). Then the stopping index k∗ defined
by (4.30) with τ > 1 is well-defined and there holds

k∗ = O(δ−1) , (4.31)

Proof. By the definition (4.20) of ∆(δ) and due to

∥

∥F (xδk)− yδ
∥

∥

2 ≤
(∥

∥F (xδk)− y
∥

∥+
∥

∥y − yδ
∥

∥

)2 ≤ (2ω̄ρ+ δ)2 ,

it follows from (4.30) that for all k < k∗ there holds

2(k + α− 1)2

k(α− 3)
(c1δ + c2δ

2) + τ 2δ2 ≤ (2ω̄ρ+ δ)2 ,

which can be rewritten as

(k + α− 1)2

k(α− 3)
(c1δ + c2δ

2) ≤ 2ω̄2ρ2 + 2ω̄ρδ + (1− τ 2)δ2 ≤ 2ω̄2ρ2 + 2ω̄ρδ , (4.32)
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where we have used that τ > 1. Since the left hand side in the above inequality goes
to ∞ for k → ∞, while the right hand side stays bounded, it follows that k∗ is finite
and hence well-defined for δ 6= 0. Furthermore, since

(k + α− 1)2

k(α− 3)
≥ k

2(α− 3)
,

which can see by multiplying the above inequality by k(α − 3), and since (4.32) also
holds for k = k∗ − 1, we get

k∗ − 1

2(α− 3)
(c1δ + c2δ

2) ≤ 2ω̄2ρ2 + 2ω̄ρδ .

Reordering the terms, we arrive at

k∗ ≤ 2(α− 3)

(

2ω̄2ρ2 + 2ω̄ρ δ

c1δ + c2δ2

)

+ 1 .

from which the assertion now immediately follows.

The rate k∗ = O(δ−1) given in (4.31) for the iteration method (4.4) should be compared
with the corresponding result [46, Corollary 2.3] for Landweber iteration (2.4), where
one only obtains k∗ = O(δ−2). In order to obtain the rate k∗ = O(δ−1) for Landweber
iteration, apart from others, a source condition of the form

x† − x0 ∈ R(F ′(x†)∗) (4.33)

has to hold, which is not required for Nesterov’s accelerated gradient method (4.4).
Before we turn to our main result, we first prove a couple of important consequences
of (4.23) and the stopping rule (4.30).

Proposition 4.1.10. Let Assumption 4.1.1 be satisfied, let xδk and zδk be defined by
(4.4) and let Eδ be defined by (4.12). Assuming that the stopping index k∗ is determined
by (4.30) with some τ > 1, then, for all 0 ≤ k ≤ k∗, the sequence (Eδ(k)) is non-
increasing and in particular, Eδ(k) ≤ Eδ(0). Furthermore, for all 0 ≤ k ≤ k∗ there
holds

Θδ(xδk)−Θδ(x∗) ≤
(α− 1)Eδ(0)

2ω(k + α− 2)2
, (4.34)

as well as
∥

∥wδ
k − x∗

∥

∥

2 ≤ Eδ(0)

(α− 1)
, (4.35)

and

k∗−1
∑

k=1

(

k
(

Θδ(xδk)−Θδ(x∗)
)

− (k + α− 1)2

(α− 3)
∆(δ)

)

≤ (α− 1)Eδ(1)

2ω(α− 3)
. (4.36)
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Proof. Due to the definition of the stopping rule (4.30) and the arguments preceding
it, the term (4.28) is positive for all k ≤ k∗ − 1. Hence, due to (4.23), Eδ(k) is non-
increasing for all k ≤ k∗ and in particular, Eδ(k) ≤ Eδ(0). From this observation,
(4.34) and (4.35) immediately follow from the definition (4.12) of Eδ(k).
Furthermore, rearranging (4.23) we have

2ω(α− 3)

α− 1

(

k
(

Θδ(xδk)−Θδ(x∗)
)

− (k + α− 1)2

(α− 3)
∆(δ)

)

≤ Eδ(k)− Eδ(k + 1) .

Now, summing over this inequality and using telescoping and the fact that Eδ(k∗) ≥ 0
we immediately arrive at (4.36), which concludes the proof.

From the above proposition, we are able to deduce two interesting corollaries.

Corollary 4.1.11. Under the assumptions of Proposition 4.1.10 there holds

∥

∥F (xδk)− yδ
∥

∥

2 ≤ 2(α− 1)Eδ(0)

ω(k + α− 2)2
+ δ2 , 0 ≤ k ≤ k∗ . (4.37)

Proof. Using the fact that both xδk, x∗ ∈ B2ρ(x0), it follows from the definition of Θδ

that Θδ(xδk) = Φδ(xδk) and Θδ(x∗) = Φδ(x∗). Hence, inequality (4.34) yields

∥

∥F (xδk)− yδ
∥

∥

2 ≤ 2(α− 1)Eδ(0)

ω(k + α− 2)2
+
∥

∥y − yδ
∥

∥

2
, 0 ≤ k ≤ k∗ ,

from which, using
∥

∥y − yδ
∥

∥ ≤ δ, the statement immediately follows.

Corollary 4.1.12. Under the assumptions of Proposition 4.1.10 there holds

k∗(k∗ − 1) ≤
(

2(α− 1)Eδ(1)

ω(α− 3)(τ 2 − 1)

)

1

δ2
.

Proof. Using the fact that both xδk, x∗ ∈ B2ρ(x0), it follows from the definition of Θδ

that Θδ(xδk) = Φδ(xδk) and Θδ(x∗) = Φδ(x∗) Hence, it follows with
∥

∥y − yδ
∥

∥ ≤ δ that

k
(

Θδ(xδk)−Θδ(x∗)
)

− (k + α− 1)2

(α− 3)
∆(δ)

≥ k

2

(

∥

∥F (xδk)− yδ
∥

∥

2 − δ2
)

− (k + α− 1)2

(α− 3)
∆(δ) .

Together with the definition of the stopping rule (4.30), this implies that for all k ≤
k∗ − 1

k
(

Θδ(xδk)−Θδ(x∗)
)

− (k + α− 1)2

(α− 3)
∆(δ) > k

(τ 2 − 1)δ2

2

Using this in (4.36) yields

(τ 2 − 1)δ2

2

k∗−1
∑

k=1

k ≤ (α− 1)Eδ(1)

2ω(α− 3)
,

from which the statement now immediately follows.
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Again, this shows that k∗ = O(δ−1), i.e., k∗ ≤ cδ−1, however this time the constant
c does not depend on c1 and c2, an observation which we use when analysing (4.4)
under slightly different assumptions then Assumption 4.1.1 below.
We are now able to prove one of our main results:

Theorem 4.1.13. Let Assumption 4.1.1 hold and let the iterates xδk and zδk be defined
by (4.4). Furthermore, let k∗ = k∗(δ, y

δ) be determined by (4.30) with some τ > 1 and
let the solution set S be given by (4.9). Then there exists an x̃ ∈ S and a subsequence
x̃δk∗ of xδk∗ which converges weakly to x̃ as δ → 0, i.e.,

lim
δ→0

〈

x̃δk∗ , h
〉

= 〈 x̃, h 〉 , ∀h ∈ X .

If S is a singleton, then xδk∗ converges weakly to the then unique solution x̃ ∈ S.
Proof. This proof follows some ideas of [32]. Let yn := yδn be a sequence of noisy
data satisfying ‖y − yn‖ ≤ δn. Furthermore, let kn := k∗(δn, yn) be the stopping index
determined by (4.30) applied to the pair (δn, yn). There are two cases. First, assume
that k is a finite accumulation point of kn. Without loss of generality, we can assume
that kn = k for all n ∈ N. Thus, from (4.30), it follows that

∥

∥F (xδnk )− yn
∥

∥ <
2(k + α− 1)2

k(α− 3)
∆(δn) + τ 2δn

2 ,

which, together with the triangle inequality, implies

∥

∥F (xδnk )− y
∥

∥ ≤
∥

∥F (xδnk )− yn
∥

∥+ ‖yn − y‖ ≤ 2(k + α− 1)2

k(α− 3)
∆(δn) + τ 2δn

2 + δn .

Since for fixed k the iterates xδk depend continuously on the data yδ, by taking the
limit n→ ∞ in the above inequality we can derive

xδnk → x0k , F (xδnk ) → F (x0k) = y , as n→ ∞ .

For the second case, assume that kn → ∞ as n → ∞. Since xδnkn ∈ B2ρ(x0), it is

bounded and hence, has a weakly convergent subsequence xδ̃n
k̃n
, corresponding to a

subsequence δ̃n of δn and k̃n := k∗(δ̃n, y
δ̃n). Denoting the weak limit of xδ̃n

k̃n
by x̃, it

remains to show that x̃ ∈ S. For this, observe that it follows from (4.37) that

∥

∥

∥
F (xδ̃n

k̃n
)− yδ

∥

∥

∥

2

≤ 2(α− 1)E δ̃n(0)

ω(k̃n + α− 2)2
+ δ̃2n −→ 0 , as n→ ∞ .

where we have used that k̃n → ∞ and δ̃n → 0 as n → ∞, which follows from the
assumption that so do the sequences kn and δn, and the fact that Eδ(0) stays bounded
for δ → 0. Hence, since we know that yδ → y as δ → 0, we can deduce that

F
(

xδ̃n
k̃n

)

→ y , as n→ ∞ ,
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and therefore, using the weak sequential closedness of F on B2ρ(x0), we deduce that
F (x̃) = y, i.e., x̃ ∈ S, which was what we wanted to show.
It remains to show that if S is a singleton then xδk∗ converges weakly to x̃. Since this
was already proven above in the case that kn has a finite accumulation point, it remains
to consider the second case, i.e., kn → ∞. For this, consider an arbitrary subsequence
of xδk∗ . Since this sequence is bounded, it has a weakly convergent subsequence which,
by the same arguments as above, converges to a solution x̃ ∈ S. However, since we
have assumed that S is a singleton, it follows that xδk∗ converges weakly to x̃, which
concludes the proof.

Remark. In Theorem 4.1.13, we have shown weak subsequential convergence to an
element x̃ in the solution set S. However, this element might be different from the
x0-minimum norm solution x† defined by (4.10), unless of course in case that S is a
singleton.

4.2 Convergence Analysis III

Some simplifications of the above presented convergence analysis are possible if we
assume that instead of only Φ0, all the functionals Φδ are convex. Hence, for the
remainder of this section, we work with the following

Assumption 4.2.1. Let ρ be a positive number such that B6ρ(x0) ⊂ D(F ).

1. The operator F : D(F ) ⊂ X → Y is continuously Fréchet differentiable be-
tween the real Hilbert spaces X and Y with inner products 〈 ., . 〉 and norms ‖.‖.
Furthermore, let F be weakly sequentially closed on B2ρ(x0).

2. The equation F (x) = y has a solution x∗ ∈ Bρ(x0).

3. The data yδ satisfies
∥

∥y − yδ
∥

∥ ≤ δ.

4. The functionals Φδ are convex and have Lipschitz continuous gradients ∇Φδ with
uniform Lipschitz constant L on B6ρ(x0), i.e.,

Φδ(λx1 + (1− λ)x2) ≤ λΦδ(x1) + (1− λ)Φδ(x2) , ∀x1, x2 ∈ B6ρ(x0) , (4.38)

∥

∥∇Φδ(x1)−∇Φδ(x2)
∥

∥ ≤ L ‖x1 − x2‖ , ∀x1, x2 ∈ B6ρ(x0) .

5. For α in (4.4) there holds α > 3 and the scaling parameter ω satisfies 0 < ω < 1
L
.

Note that Assumption 4.2.1 is only a special case of Assumption 4.1.1. Hence, the
above convergence analysis presented above is applicable and we get weak convergence
of the iterates of (4.4). However, the stopping rule (4.30) depends on the constants
c1 and c2 defined by (4.19), which are not always available in practise. Fortunately,
using the Assumption 4.2.1, we can get rid of c1 and c2. The key idea is to observe
that the following lemma holds:
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Lemma 4.2.1. Under Assumption 4.2.1, for all x, z ∈ B6ρ(x0) there holds

Θδ(z − ωGδ
ω(z)) ≤ Θδ(x) +

〈

Gδ
ω(z), z − x

〉

− ω

2

∥

∥Gδ
ω(z)

∥

∥

2
.

Proof. This follows from the convexity of Θδ in the same way as in Lemma 4.1.2.

From the above lemma, it follows that the results of Corollary 4.1.5 and Proposi-
tion 4.1.6 hold with ∆(δ) = 0. Therefore, the stopping rule (4.30) simplifies to

∥

∥F (xδk∗)− yδ
∥

∥ ≤ τδ <
∥

∥F (xδk)− yδ
∥

∥ , k∗ ≥ k , (4.39)

for some τ > 1, which is nothing else than the discrepancy principle (2.6). Note that
in contrast to (4.30), only the noise level δ needs to be known in order to determine
the stopping index k∗. With the same arguments as above, we are now able to prove
our second main result:

Theorem 4.2.2. Let Assumption 4.2.1 hold and let the iterates xδk and zδk be defined
by (4.4). Furthermore, let k∗ = k∗(δ, y

δ) be determined by (4.39) with some τ > 1 and
let the solution set S be given by (4.9). Then for the stopping index k∗ there holds
k∗ = O(δ−1). Furthermore, there exists an x̃ ∈ S and a subsequence x̃δk∗ of xδk∗ which
converges weakly to x̃ as δ → 0, i.e.,

lim
δ→0

〈

x̃δk∗ , h
〉

= 〈 x̃, h 〉 , ∀h ∈ X .

If S is a singleton, then xδk∗ converges weakly to the then unique solution x̃ ∈ S.

Proof. The proof of this theorem is analogous to the proof of Theorem 4.1.13. The
only main difference is the well definedness of k∗, which now cannot be derived from
Lemma 4.1.9 but follows from (4.36) by Corollary 4.1.12, which also yields k∗ =
O(δ−1).

Remark. Note that since Theorem 4.2.2 only gives an asymptotic result, i.e., for δ → 0,
the requirement in Assumption 4.2.1 that the functionals Φδ have to be convex for all
δ > 0 can be relaxed to 0 ≤ δ ≤ δ̄, as long as we only consider data yδ satisfying the
noise constraint

∥

∥y − yδ
∥

∥ ≤ δ ≤ δ̄.

Remark. Note that if the functionals Φδ are globally convex and uniformly Lipschitz
continuous, which is for example the case if F is a bounded linear operator, then one
can choose ρ arbitrarily large in the definition of Ψ. Now, as we have seen above, the
proximal mapping proxωΨ (.) is nothing else than the projection onto B2ρ(x0). This
implies that for practical purposes, proxωΨ (.) may be dropped in (4.4), which means
that one effectively uses (2.22) instead of (4.4).
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4.3 Strong Convexity and Nonlinearity Conditions

In this section, we consider the question of strong convergence of the iterates of (4.4)
and comment on the connection between the assumption of local convexity and the
(weak) tangential cone condition.
Concerning the strong convergence of the iterates of (4.4) and (2.22), note that it
could be achieved if the functional Φ0 were locally strongly convex, i.e., if

〈F ′(x1)
∗(F (x1)− y)− F ′(x2)

∗(F (x2)− y), x1 − x2 〉 ≥ α ‖x1 − x2‖2 ,
∀ x1, x2 ∈ B2ρ(x0) ,

(4.40)

since then, for the choice of x1 = x0k and x2 = x∗, one gets

α
∥

∥x0k − x∗
∥

∥ ≤
〈

F ′(x0k)
∗(F (x0k)− y), x0k − x∗

〉

≤ 2ω̄ρ
∥

∥F (x0k)− y
∥

∥ ,

from which, since we have ‖F (x0k)− y‖ → 0 as δ → 0, it follows that xδk converges
strongly to x∗ as δ → 0. Hence, retracing the proof of Theorem 4.1.13, one would get

lim
δ→0

xδk∗ = x∗ .

Unfortunately, already for linear ill-posed operators F = A, strong convexity of the
form (4.40) cannot be satisfied, since then one would get

‖Ax1 − Ax2‖ ≥ α ‖x1 − x2‖ , ∀ x1, x2 ∈ B2ρ(x0) ,

which already implies the well-posedness of Ax = y in B2ρ(x0). However, defining

Mτ (A) :=
{

x ∈ B2ρ | ∃w ∈ Y , ‖w‖ ≤ τ , x− x† = A∗w
}

, (4.41)

it was shown in [36, Lemma 3.3] that there holds

∥

∥x− x†
∥

∥

2 ≤ τ
∥

∥Ax− Ax†
∥

∥ , ∀ x ∈ Mτ (A) ,

Hence, if one could show that x0k ∈ Mτ for some τ > 0 and all k ∈ N, then it would
follow that

∥

∥x0k − x†
∥

∥

2 ≤ τ
∥

∥Ax0k − y
∥

∥ , ∀ x ∈ Mτ (A) ,

from which strong convergence of x0k, and consequently also of xδk∗ to x† would follow.
In essence, this was done in [61] with tools from spectral theory in the classical frame-
work for analysing linear ill-posed problem [21] under the source condition x† ∈ R(A∗).

Remark. Note that it is sometimes possible, given weak convergence of a sequence
xk ∈ X to some element x̃ ∈ X , to infer strong convergence of xk to x̃ in a weaker
topology. For example, if xk ∈ H1(Ω) converges weakly to x̃ in the H1(Ω) norm,
then it follows that xk converges strongly to x̃ with respect to the L2(Ω) norm. Many
generalizations of this example are possible. Note further that in finite dimensions,
weak and strong convergence coincide.
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In the remaining part of this section, we want to comment on the connection of the
local convexity assumption (4.5) to other nonlinearity conditions like (3.1) and (2.10)
commonly used in the analysis of nonlinear inverse problems.

First of all, note that due to the results of Kindermann [47], we know that both convex-
ity and the (weak) tangential cone condition imply weak convergence of Landweber
iteration (2.4). However, it is not entirely clear in which way those conditions are
connected.

One connection of the two conditions was given in [71], where it was shown that the
nonlinearity condition implies a certain directional convexity condition. Another con-
nection was provided in [47], where it was shown that the tangential cone condition
implies a quasi-convexity condition. However, it is not clear whether or not the tan-
gential cone condition implies convexity or not. What we can say is that convexity
does not imply the (weak) tangential cone condition, which is shown in the following

Example 4.3.1. Consider the operator F : H1[0, 1] → L2[0, 1] defined by

F (x)(s) :=

∫ s

0

x(t)2 dt . (4.42)

This nonlinear Hammerstein operator was extensively treated as an example problem
for nonlinear inverse problems (see for example [32,59]). It is well known that for this
operator the tangential cone condition is satisfied around x† as long as x† ≥ c > 0.
However, the (weak) tangential cone condition is not satisfied in case that x† ≡ 0.
Moreover, it can easily be seen (for example from (4.43)) that Φ0(x) is globally convex,
which shows that convexity does not imply the tangential cone condition.

Remark. Note that if F is twice continuously Fréchet differentiable, then convexity
of Φδ is equivalent to positive semi-definiteness of its second Fréchet derivative [69].
More precisely, we have that (4.38) is equivalent to

‖F ′(x)h‖2 +
〈

F (x)− yδ, F ′′(x)(h, h)
〉

≥ 0 , ∀ x ∈ B6ρ(x0) , ∀h ∈ D(F ) , (4.43)

which we use to prove local convexity for some of the examples considered in Part II.
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Application of TPG Methods

51



Chapter 5

Application and Comparison of
General TPG Methods

In this chapter, we consider the application and comparison of general TPG meth-
ods of the form (2.23) based on various stepsizes αδ

k and combination parameters λδk.
We apply the methods to two problems involving a nonlinear Hammerstein operator
and the medical imaging technique of Single Photon Emission Computed Tomogra-
phy (SPECT), respectively. Numerical examples demonstrate the various acceleration
effects of different TPG methods compared to classical Landweber iteration (2.4).

5.1 Nonlinear Hammerstein Operator

As the first example, we consider the nonlinear Hammerstein integral operator

F : H1[0, 1] → L2[0, 1] , F (x)(s) :=

∫ s

0

(x(t))3 dt , (5.1)

which is often used in the literature (see for example [32, 58–60]) to illustrate con-
vergence conditions, demonstrate convergence rates and show the effects of different
stepsizes and acceleration techniques. Importantly, the operator F is Fréchet differ-
entiable and furthermore, if x(t) ≥ κ > 0 for all x ∈ B4ρ(x0) and t ∈ [0, 1], then one
can show that there exists a family of bounded linear operators Rx(x̃) : Y → Y and a
constant c > 0 such that

F ′(x) = Rx(x̃)F
′(x̃) , ‖Rx(x̃)− I‖ ≤ c ‖x− x̃‖ , (5.2)

for all x, x̃ ∈ B4ρ(x0) ⊂ D(F ), which in particular implies that

‖F (x)− F (x̃)− F ′(x̃)(x− x̃)‖ ≤ c

2− c ‖x− x̃‖ ‖x− x̃‖ ‖F (x)− F (x̃)‖ . (5.3)

Hence, if x† ∈ Bρ(x0) satisfies x
† ≥ κ̄ > 0 and if ρ > 0 is small enough such that both

x ≥ κ > 0 for all x ∈ B6ρ(x0) and 6cρ < 1 are satisfied, then the nonlinearity condition
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(3.1) holds with

η =
2cρ

1− 2cρ
<

1

2
. (5.4)

Hence, since for this problem the operators Rx(x̃) can be given explicitly by (see [32])

Rx(x̃)
∗w = −





φ′(x)

φ′(x̃)

1
∫

•

w(t) dt





′

, (5.5)

it is possible to determine an η from (5.4) by deriving an estimate of the constant c in
(5.2). Since explicit estimates of this constant are usually not sharp enough, one often
tries to numerically compute an estimate for c. However, since we do not require c
but only η for our tests, we numerically estimate η directly from (3.1).

For our tests we use the same setup as in [60], i.e., we assume that y = F (x†) with

x†(t) := 1 + 10−2(7− 3t2 + 2t3) , (5.6)

and that x0(t) = 1. Hence, we have that

x† − x0 ∈ R(F ′(x†)∗) and ρ =
∥

∥x† − x0
∥

∥ =
1

100

√

305

7
≈ 0.066 . (5.7)

Numerical calculations show that the constant c in (5.2) is given by c ≈ 3, which, by
(5.4) would imply that η ≈ 0.656 > 1

2
. However, numerically estimating η directly

via (3.1) shows that η is actually much smaller, i.e., η ≈ 0.4. Moreover, when using
classical Landweber iteration, with or without the steepest descent or the minimal
error stepsize, condition (3.1) only has to hold on B2ρ(x0) (see [46]). Estimating η on
this set gives η ≈ 0.2, the choice of which leads to strongly improved results also for
our TPG methods. Hence, we use η = 0.2 in all of the numerical tests below.

In order to discretize the problem, we subdivide the interval [0, 1] into n = 128 equally
spaced subintervals and replace the operators F , F ′(x) and F ′(x)∗ by finite dimensional
approximations defined in the same way as in [58,60]. The data was created on a finer
grid and a random relative data error of 0.001% was added to get yδ.

The implementation of the problem was done in MATLAB on a stationary computer
with a Xeon W3680 CPU (6 cores, 3.33GHz, 12MB cache) and 24GB RAM (6x4GB
DDR3, 1333 MHz). This is also the case for all other numerical results in this thesis.

We now want to compare the TPG methods (2.23) based on a constant stepsize ω, the
steepest descent stepsize αSD

k and the minimal error stepsize αME
k , which we introduced

in Section 3.2, with their classical, non-accelerated counterparts. For choosing λδk, we
use the Nesterov combination parameter (compare with (4.1)),

λNk :=
k − 1

k + α− 1
, (5.8)
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where we only consider the standard choice α = 3, the sequence of λδk defined by the
DBTS algorithm 3.2.2, which we denote by λBk , as well as the sequences given explicitly
by (3.20) and (3.86), which are equivalent, since we use ω = 1/ω̄2, and which we denote
by λEk .

For using the DBTS algorithm, but also for choosing a suitable τ in the discrepancy
principle, the approximation for η described above was used. From this, Ψ was calcu-
lated by (3.8) and τ was chosen by

τ = 2τ̃
1 + η

1− 2η
, (5.9)

where τ̃ = 1.01, which ensures that condition (3.14) is satisfied. In the backtracking
algorithm for λBk , we use jmax = 5 and µ = 2. For the function q : R+

0 → R
+
0 , we use

q(m) = 1/m1.1, which obviously satisfies the necessary condition (3.93). When using
a constant stepsize, we have use the scaling parameter ω = 0.3175, which is chosen by
numerically estimating the constant ω̄ in (3.70) and then taking ω = 1/ω̄2.

Stepsize λδk = 0 λδk = λEk λδk = λBk λδk = λNk k∗ Time

Steepest Descent x 125 79 s
Steepest Descent x 35 22 s
Steepest Descent x 41 26 s
Steepest Descent x 14 9 s
Minimal Error x 7 4 s
Minimal Error x 183 116 s
Minimal Error x 192 135 s
Minimal Error x 78 45 s

Constant, ω = 0.3175 x 260 178 s
Constant, ω = 0.3175 x 42 29 s
Constant, ω = 0.3175 x 48 33 s
Constant, ω = 0.3175 x 32 22 s

Table 5.1: Comparison of different stepsizes αδ
k and combination parameters λδk: Num-

ber of iterations k∗ and total amount of time necessary to satisfy the discrepancy
principle. A relative data error of 0.001% was used.

A summary of the results can be found in Table 5.1. For both the constant and
the steepest descent stepsize all three non-zero combination parameters λδk lead to a
considerable decrease in the required number of iterations and computation time to
meet the stopping rule. The choices λδk = λEk and λδk = λBk seem to perform equally
well, with the explicit choice λδk = λEk requiring slightly less time and iterations in
both cases. Furthermore, using the combination parameter λδk = λNk requires the least
amount of time and iterations, the necessary time being more than halved in the case
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of the steepest descent stepsize. For the minimal error stepsize, the choice λδk = λNk is
again the best of all three non-zero combination parameters λδk = 0. However, using
λδk = 0, i.e., the pure minimal error method without acceleration, only 7 iterations are
required, making it the best reconstruction method for this example. This fact was
already observed in [60], where regardless of the discretization and the noise level, a
constant number of iterations was required to meet the stopping rule. No explanation
for this could be given in [60] for this pathological case and here we only state that
in the numerical example treated in the next section, the choice λδk = λNk requires
significantly less iterations than the choice λδk = 0 also for the minimal error stepsize.

5.2 Single Photon Emission Computed Tomogra-

phy

In the second example, we take a look the medical imaging technique of SPECT, where
one aims at reconstructing a radioactive distribution f , termed activity function, from
radiation measurements outside the body, denoted by y. The usual modelling approach
connects f and y by the attenuated Radon transform (ATRT), see for example [56],
which is given by

y = A(f, µ)(s, ω) :=

∫

R

f(sω⊥ + tω) exp



−
∞
∫

t

µ(sω⊥ + rω) dr



 dt , (5.10)

where s ∈ R, ω ∈ S1. The function µ is called an attenuation map and is related to
the density of different tissues. If µ is known, then reconstructing f from y is a linear
problem. However, unless an additional CT (computerized tomography) scan is per-
formed, which is not preferable due to the increased cost of the medical examination,
µ is unknown as well. Hence, we face the nonlinear inverse problem of reconstructing
the pair (f, µ) from y, or rather, from a noisy version yδ of y.

This inverse problem and its numerical treatment, under various additional conditions
like sparsity, has already been extensively studied (see for example [15, 16, 63, 67] and
the references therein). Considering the definition space of the ATRT operator, it was
shown in [15], that if

D(A) := Hs1
0 (Ω)×Hs2

0 (Ω) , (5.11)

where Hs
0(Ω) is the classical Sobolev space of order s over the bounded domain Ω with

zero boundary conditions, then, assuming that s1 and s2 are chosen large enough, the
operator A is twice continuously Fréchet differentiable with a Lipschitz continuous
first derivative. Since one expects some discontinuities in (f, µ), one wants to choose
s1 and s2 as small as possible. In [15] it was shown that it is possible to use s1 > 4/9
and s2 = 1/3, a choice which also allows a certain amount of non-smoothness of (f, µ).
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For our numerical simulations, we used the so-called MCAT-phantom [42], which is
depicted in Figure 5.1. As one can see, the simulated activity function f∗ is concen-
trated in the heart and the attenuation function µ∗ models a cut through the thorax.
Both functions are given as 80 × 80 pixel images. The Radon transform, its Fréchet
derivative and the adjoint thereof were discretized to work on those pixel images, using
79 angles ω, equally distributed over 360 degrees, and 80 samples for s.

Figure 5.1: Activity function f∗ (left) and attenuation function µ∗ (right).

The data y was calculated by y = A(f∗, µ∗), i.e., by applying the discretized version
of the attenuated Radon transform to the pair (f∗, µ∗). The resulting sinogram is
depicted in Figure 5.2, once for the already shown attenuation function µ∗ and once
for µ∗ = 0. Afterwards, random data error was added in order to arrive at yδ.

Figure 5.2: The generated data y = A(f∗, 0) (left) and y = A(f∗, µ∗) (right).

As in the previous section, we now want to compare the TPG methods (2.23) based on
a constant stepsize ω, the steepest descent stepsize αSD

k and the minimal error stepsize
αME
k with their classical, non-accelerated counterparts. Again we use the notation λEk ,
λBk and λNk to distinguish between the different combination parameters λδk.
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Concerning the nonlinearity constant η, it is not clear weather a condition like (3.1)
holds for SPECT. Unfortunately, this is the case for almost all nonlinear inverse prob-
lems of practical importance. However, a value for η is needed both in the DBTS
algorithm and for calculating Ψ and τ . Hence, we used the conservative estimate of
η = 0.4 for obtaining the presented results. From this, Ψ was calculated by (3.8) and
τ was chosen by

τ = 2τ̃
1 + η

1− 2η
, (5.12)

where this time τ̃ = 4 was chosen. The resulting τ = 56 might seem rather large but
numerical tests show that decreasing τ for example to the canonical choice τ = 2 leads
to numerical instabilities which make it impossible for any of the methods to decrease
the residual to the level of τδ. Hence, the choice of τ as stated above seems to be at
least of optimal order. Furthermore, as noted in the last paragraph of Section 3.2, τ
should not be chosen too small since otherwise Ψ would become undesirably small.
Concerning the remaining parameters, they were all chosen as in the previous section,
with the obvious exception of ω, for which the value ω = 4.7 · 10−4 was found by
numerical calculations.

We now compare the effects of combining different choices of λδk with different stepsizes
αδ
k. For this test, the results of which are presented in Table 5.2, we used a relative

data error of 0.25% 1. Note first that independently of the chosen stepsize αδ
k, using

λδk = λNk leads to the smallest number of iterations necessary before meeting the
stopping rule, with only about one tenth of iterations and computation time required!
For λδk = λBk defined by the DBTS algorithm, we can see that for the constant stepsize
ω = 10−5 and the steepest descent stepsize αSD

k , although requiring more iterations
and computation time, the overall effort is still significantly lower than when not using
any acceleration. The bad behaviour of the combination of λBk with the minimal error
stepsize αME

k can best be explained by the fact that using the minimal error stepsize,
the residuals are not decreasing monotonously and hence, the DBTS algorithm has
difficulties finding a suitable parameter λBk . As for the choice λδk = λEk , one can see
that in combination with the steepest descent stepsize αSD

k , about three times as many
iterations are required than when using λδk = λNk . However, still much less iterations
are required than when using no acceleration at all. A similar phenomenon can also
be observed for the constant stepsize ω, where the choice λδk = λEk can even compete
with the choice λδk = λBk , needing only slightly more iterations but significantly less
computation time. As was also the case for the choice λδk = λBk , the choice λδk = λEk
behaves badly in combination with the minimal error stepsize αME

k . Again the most
likely reason is the non-monotone nature of this stepsize choice.
Since the acceleration effect is due to λδk, it makes sense to look at it’s evolution over
the course of the iteration. The left sub-figure in Figure 5.3 depicts the development of

1This is a very optimistic estimate for SPECT, since in practice one would expect the relative
data error to be upwards of 5%. However, for such a high amount of noise, only a couple of iterations
are required to satisfy the stopping criterion (3.13) even for Landweber iteration and hence, no
acceleration effect would be observable.
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Stepsize λδk = 0 λδk = λEk λδk = λBk λδk = λNk k∗ Time

Steepest Descent x 3433 489 s
Steepest Descent x 631 90 s
Steepest Descent x 345 77 s
Steepest Descent x 205 30 s
Minimal Error x 2021 185 s
Minimal Error x 6665 603 s
Minimal Error x 6253 600 s
Minimal Error x 288 28 s

Constant, ω = 4.7 · 10−4 x 2019 186 s
Constant, ω = 4.7 · 10−4 x 474 46 s
Constant, ω = 4.7 · 10−4 x 467 57 s
Constant, ω = 4.7 · 10−4 x 265 26 s

Table 5.2: Comparison of different stepsizes αδ
k and combination parameters λδk: Num-

ber of iterations k∗ and total amount of time necessary to satisfy the discrepancy
principle. A relative data error of 0.25% was used.

λEk , λ
B
k and λNk when used in the TPG method with steepest descent stepsize αSD

k for
the SPECT problem considered above. One can see that in all three cases λδk goes to
1 as the iteration progresses, which is the reason for the acceleration effect. Although
seemingly going to 1 with growing k, λBk stays 0 for some of the first iterations and
then exhibits a steep jump followed by some small oscillations, before starting to
increase monotonously. This can be explained by the backtracking search procedure
of the DBTS algorithm, which first has to go through some unsuccessful search cycles
before the function q(m) has decreased to the right order of magnitude. Afterwards,
a monotonous increase also of λBk can be seen. A similar phenomenon can also be
observed when the DBTS algorithm is applied to the TPG method with constant
stepsize ω. In the first iterations, λBk is zero, then switches between 0 and 1 before
it changes to monotonous increase starting from some value in [0, 1], after which it
again drops to some value in [0, 1] and stars yet again to increase monotonously. In
combination with the minimal error stepsize, λBk first exhibits the same pattern as
with the steepest descent stepsize αSD

k but, after a certain amount of increase, starts
to decreases monotonously, which explains why the acceleration effect is lost.

Note that if the function q is chosen such that it decreases too fast, then λBk becomes a
decreasing sequence. For example, the function q(m) = 1/2m often led to a decreasing
sequence λBk in our experiments. Hence, in order to profit from an acceleration effect,
one has to choose a slowly decreasing function satisfying (3.93), like q(m) = 1/m1+α

with a small α > 0. Similar restrictions can also be observed for second order methods
like the Levenberg-Marquardt or the iteratively regularized Gauss-Newton method.

The right figure in Figure 5.3 depicts the development of the norm of the residuals
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during the iterations of the TPG methods using the steepest descent stepsize αSD
k

together with the different choices of λδk considered above. Once again, one can clearly
see the acceleration effect due to the three considered parameters λEk , λ

B
k and λNk ,

which manage to decrease the residual norm much faster than in the case when no
acceleration, i.e., λδk = 0, is being used.

Figure 5.3: Results of using the TPG methods with steepest descent stepsize αSD
k and

various choices of λδk, using a relative data error of 0.25%. Left: Plot of the values of
λk over the iteration number k. Right: Plot of the residual

∥

∥A(fk, µk)− yδ
∥

∥ over the
iteration number k. Dashed red line: λδk = λNk , solid blue line: λδk = λBk , dash-dotted
black line: λδk = λEk , solid magenta line in the right sub-figure (extending up to the
y-axis value 1500): λδk = 0.

Note that the residual norms decrease monotonously, which is also the case for the
other stepsizes, except for the case when the minimal error stepsize αME

k is used in
combination with either λδk = λEk or λδk = 0, in which case oscillations occur.

In Figure 5.4, one can see the results of the reconstruction of the activity and the atten-
uation function achieved when using the TPG method with steepest descent stepsize
αSD
k combined with λBk for the choices of parameters as above and with a relative data

error δ = 0.25%. One can see that the activity function f∗ is nicely reconstructed.
The attenuation function, however, does not resemble the true attenuation function
µ∗ at all. This phenomenon is common for SPECT and has already been observed
in [67]. The reason for this is the high nonlinearity of the problem, leading to non-
uniqueness of the solution and therefore, since the reconstruction algorithm selects a
solution with minimal distance to (f0, µ0) = (0, 0), to the reconstruction of µ∗ as seen
in Figure 5.4. Possible remedies already mentioned in [67] are for example a better
initial guess or a coupled tomography approach. In any case, the main reason for in-
cluding µ in the reconstruction is to arrive at reconstructions conforming to the data.
Besides, this chapter does not aim at improving the reconstruction quality of SPECT,
but at showing the acceleration effect of TPG methods of the form (2.23).
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Figure 5.4: Results of the TPGmethod using the steepest descent stepsize αSD
k together

with λδk = λBk for the SPECT example problem with a relative data error of δ = 0.25%.
Activity function fk∗ (left) and attenuation function µk∗ (right).

Repeating the comparison of different combinations of αδ
k and λδk, with the same pa-

rameters as before but now using a slightly smaller relative data error δ = 0.2%, leads
to the results presented in Table 5.3. Again, one can clearly see the strong acceleration
effect due to λNk and the somewhat less but still significant acceleration effect due to
λBk and λEk , when used together with a constant or the steepest descent stepsize αSD

k ,
as well as the suboptimal results for combining the minimal error stepsize αME

k with
either λEk or λBk .

Stepsize λδk = 0 λδk = λEk λδk = λBk λδk = λNk k∗ Time

Steepest Descent x 5977 856 s
Steepest Descent x 847 120 s
Steepest Descent x 431 91 s
Steepest Descent x 264 40 s
Minimal Error x 3312 301 s
Minimal Error x 11600 1039 s
Minimal Error x 10404 975 s
Minimal Error x 529 52 s

Constant, ω = 4.7 · 10−4 x 3367 305 s
Constant, ω = 4.7 · 10−4 x 1229 115 s
Constant, ω = 4.7 · 10−4 x 895 96 s
Constant, ω = 4.7 · 10−4 x 326 32 s

Table 5.3: Comparison of different stepsizes αδ
k and combination parameters λδk: Num-

ber of iterations k∗ and total amount of time necessary to satisfy the discrepancy
principle. A relative data error of 0.2% was used.



Chapter 6

Applications of Specific TPG
Methods

In this chapter, we consider the application of specific versions of TPG method to
various ill-posed problems. For the first two examples, based on a nonlinear Ham-
merstein operator and an auto-convolution problem, we prove the local convexity
condition used in Chapter 4 and present numerical examples using the TPG method
(2.22). Afterwards, we consider the recently developed medical imaging technique of
Magnetic Resonance Advection Imaging (MRAI), for which we present a detailed back-
ground and derivation of the underlying parameter estimation problem, and which is
then solved by a TPG method based on the extend version of Nesterov’s acceleration
scheme (2.19). In a final section of this chapter, we survey further problems for which
TPG methods have been successfully employed.

6.1 Nonlinear Diagonal Operator

For the first example, we consider the following class of nonlinear diagonal operators

F : ℓ2 → ℓ2 , x := (xn)n∈N 7→
∞
∑

n=1

fn(xn) en

where (en)n∈N is the canonical orthonormal basis of ℓ2. These operators are reminiscent
of the singular value decomposition of compact linear operators. Here we consider the
special choice

fn(z) :=
1

n
·
{

z2 , n ≤M ,

z , n > M ,
(6.1)

for some fixed M > 0. For this choice, F takes the form

F (x) =
M
∑

n=1

1

n
x2nen +

∞
∑

n=M+1

1

n
xnen .

61
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It is easy to see that F is a well-defined, twice continuously Fréchet differentiable
operator with

F ′(x)h = 2
M
∑

n=1

1

n
xnhnen + 2

∞
∑

n=M+1

1

n
hnen ,

F ′′(x)(h, w) = 2
M
∑

n=1

1

n
hnwnen .

Furthermore, note that solving F (x) = y is equivalent to

xn = n

{√
yn , n ≤M ,

yn , n > M ,

from which it is easy to see that we are dealing with an ill-posed problem.
We now turn to the convexity of Φδ(x) around a solution x†.

Proposition 6.1.1. Let x† be a solution of F (x) = y such that
∣

∣x†n
∣

∣ > 0 holds for all
n ∈ {1 , . . . ,M}. Furthermore, let ρ > 0 and δ̄ ≥ 0 be small enough such that

(x†n)
2 ≥ 28|x†n|ρ+ δ̄

(

2 ‖y‖ℓ2 + δ̄
)

, ∀n ∈ (1 , . . . ,M) , (6.2)

and let x0 ∈ Bρ(x
†). Then for all 0 ≤ δ ≤ δ̄, the functional Φδ(x) is convex in B6ρ(x0).

Proof. Due to (4.43) it is sufficient to show that

0 ≤ ‖F ′(x)h‖2 +
〈

F (x)− yδ, F ′′(x)(h, h)
〉

=

= ‖F ′(x)h‖2 + 〈F (x)− y, F ′′(x)(h, h) 〉+
〈

yδ − y, F ′′(x)(h, h)
〉

Using the definition of F , the fact that en is an orthonormal basis of ℓ2 and that
F (x†) = y, this inequality can be rewritten into

2

(

M
∑

n=1

1

n2
x2nh

2
n +

∞
∑

n=M+1

1

n2
h2n

)

+ 2
M
∑

n=1

(x2n − (x†n)
2)h2n + 2

M
∑

n=1

(y2n − (yδn)
2)h2n ≥ 0 ,

which after simplification, becomes

2
M
∑

n=1

h2n
(

2x2n − (x†n)
2 + y2n − (yδn)

2
)

+ 2
∞
∑

n=M+1

1

n2
h2n ≥ 0 .

Since the right of the above two sums is always positive, in order for the above in-
equality to be satisfied it suffices to show that

2x2n − (x†n)
2 + y2n − (yδn)

2 ≥ 0 , ∀n ∈ {1 , . . . ,M} . (6.3)
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Now, since by the triangle inequality we have

∣

∣y2n − (yδn)
2
∣

∣ =
∣

∣yn − yδn
∣

∣

∣

∣yn + yδn
∣

∣ ≤
∥

∥y − yδ
∥

∥

ℓ2

∥

∥y + yδ
∥

∥

ℓ2

≤ δ
(

2 ‖y‖ℓ2 +
∥

∥y − yδ
∥

∥

ℓ2

)

≤ δ (2 ‖y‖ℓ2 + δ) ,
(6.4)

it follows that in order to prove (6.3) it suffices to show

2x2n − (x†n)
2 − δ (2 ‖y‖ℓ2 + δ) ≥ 0 , ∀n ∈ {1 , . . . ,M} .

Now, writing x = x† + ε, this can be rewritten into

(x†n)
2 + 4x†nεn + 2ε2n − δ (2 ‖y‖ℓ2 + δ) ≥ 0 , ∀n ∈ {1 , . . . ,M} .

Since ε2n ≥ 0, the above inequality is satisfied given that

(x†n)
2 − 4

∣

∣x†n
∣

∣ |εn| − δ (2 ‖y‖ℓ2 + δ) ≥ 0 , ∀n ∈ {1 , . . . ,M} .

However, since |εk| ≤ ‖ε‖ℓ2 =
∥

∥x− x†
∥

∥

ℓ2
≤ ‖x− x0‖ℓ2 +

∥

∥x0 − x†
∥

∥

ℓ2
≤ 7ρ, this follows

immediately from (6.2), which concludes the proof.

Remark. Due to
∣

∣

∣
x†k

∣

∣

∣ ≤
∥

∥

∥
x†k

∥

∥

∥

ℓ2
, condition (6.2) is satisfied given that

min
n=1 ,... ,M

{

(x†n)
2
}

≥ 28
∥

∥x†
∥

∥

ℓ2
ρ+ δ̄

(

‖y‖ℓ2 + δ̄
)

,

which can always be satisfied given that
∣

∣x†n
∣

∣ > 0 for all n ∈ {1 , . . . ,M}.
After proving local convexity of the residual functional around the solution, we now
proceed to demonstrate the usefulness of method (4.4) based on the following numerical

Example 6.1.1. For this example we choose fn as in (6.1) with M = 100. For the
exact solution x† we take the sequence x†n = 100/n which leads to the exact data

yn = F (x†)n =

{

104/n3 , n ≤ 100 ,

102/n2 , n > 100 .

Hence, condition (6.3) reads as follows

104/n2 ≥ 28(102/n)ρ+ δ̄(2 ‖y‖ℓ2 + δ̄) , ∀n ∈ {1 , . . . , 100} .

Therefore, the functional Φ0 is convex in B6ρ(x0) given that ρ ≤ 1/28 ≈ 0.036, which
is for example the case for the choice

x0 = x† +

(

(−1)n
ρ
√
6

πn

)

n∈N

. (6.5)
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Furthermore, for any noise level δ̄ small enough, one has that for all δ ≤ δ̄ the functional
Φδ is convex in B6ρ(x0) as long as

ρ ≤ 104/n− n δ̄(2 ‖y‖ℓ2 + δ̄)

2800
, ∀n ∈ {1 , . . . , 100} ,

which for example is satisfied if

ρ ≤ 1− δ̄(2 ‖y‖ℓ2 + δ̄)

28
.

For numerically treating the problem, instead of considering full sequences x =
(xn)n∈N, we only consider ~x = (xn)n=1,...,N where we choose N = 200 in this example.
This means that we are considering the following discretized version of F :

Fn(~x) =
100
∑

n=1

1

n
x2nen +

200
∑

n=101

1

n
xnen .

We now compare the behaviour of method (4.4) with its non-accelerated Landweber
counterpart (2.4) when applied to the problem with x† and x0 as defined above. For
both methods, we choose the same scaling parameter ω = 3.2682∗10−5 estimated from
the norm of F (x†) and we stop the iteration with the discrepancy principle (2.6) with
τ = 1. Furthermore, random noise with a relative noise level of 0.001% was added to
the data to arrive at the noisy data yδ and, following the argument presented after
(4.2.2) and since the iterates xδk remain bounded even without it, we drop the proximal
operator proxωΨ (·) in (4.4). The results of the experiments, computed in MATLAB,
are displayed in Table 6.1. The speedup both in time and in the number of iterations
achieved by Nesterov’s acceleration scheme is obvious. Not only does (4.4) satisfy the
discrepancy principle much earlier than (2.4), but also the relative error is even a bit
smaller for method (4.4).

Method k∗ Time
∥

∥x† − xδk
∥

∥ /
∥

∥x†
∥

∥

Landweber 82 0.057 s 0.0109 %
Nesterov 23 0.019 s 0.0108 %

Table 6.1: Comparison of Landweber iteration (2.4) and its Nesterov accelerated ver-
sion (4.4) when applied to the diagonal operator problem considered in Example 6.1.1.

6.2 Auto-Convolution Problem

For the second example, we look at an inverse problem involving an auto-convolution
operator. Due to its importance in laser optics, the auto-convolution problem has
been extensively studied in the literature [2, 8, 25], its ill-posedness has been shown
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in [11, 23, 27] and its special structure was successfully exploited in [63]. For our
purposes, we consider the following version of the auto-convolution operator

F : L2(0, 1) → L2(0, 1) , F (x)(s) := (x ∗ x)(s) :=
1
∫

0

x(s− t)x(t) dt , (6.6)

where we interpret functions in L2(0, 1) as 1-periodic functions on R. For the following,
denote by (e(k))k∈Z the canonical real Fourier basis of L2(0, 1), i.e.,

e(k)(t) :=











1 , k = 0 ,√
2 sin(2πkt) , k ≥ 1 ,√
2 cos(2πkt) , k ≤ −1 ,

t ∈ (0, 1) ,

and by xk :=
〈

x, e(k)
〉

the Fourier coefficients of x. It follows that

x ∗ w =
∑

k∈Z

xkwke
(k) . (6.7)

It was shown in [10] that if only finitely many Fourier components xk are non-zero, then
a variational source condition is satisfied leading to convergence rates for Tikhonov
regularization. We now use this assumption of a sparse Fourier representation to prove
convexity of Φδ for the auto-convolution operator in the following

Proposition 6.2.1. Let x† be a solution of F (x) = y such that there exists an index
set ΛN ⊂ Z with |ΛN | = N such that for the Fourier coefficients x†k of x† there holds

x†k = 0 , ∀ k ∈ Z \ ΛN .

Furthermore, let ρ > 0 and δ̄ ≥ 0 be small enough such that

(x†k)
2 ≥ 28|x†k| ρ+ δ̄

(

2 ‖y‖L2 + δ̄
)

, ∀ k ∈ ΛN (6.8)

and let x0 ∈ Bρ(x
†). Then for all 0 ≤ δ ≤ δ̄, the functional Φδ(x) is convex in B6ρ(x0).

Proof. As in the previous example, we want to show that (4.43) is satisfied, which,
due to (6.7) and the fact that the e(k) form an orthonormal basis is equivalent to

∑

k∈Z

x2kh
2
k +

∑

k∈Z

(x2k − (x†k)
2)h2k +

∑

k∈Z

((yδk)
2 − y2k)h

2
k ≥ 0 ,

which, after simplification, becomes

∑

k∈Z

h2k

(

2x2k − (x†k)
2 + (yδk)

2 − y2k

)

≥ 0 ,

and hence, it is sufficient to show that

2x2k − (x†k)
2 + (yδk)

2 − y2k ≥ 0 , ∀ k ∈ Z . (6.9)
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Note that this is essentially the same condition as (6.3) in the previous example, apart
from that here we have to show the inequality for all k ∈ Z. However, if k /∈ ΛN , then
x†k = yk = 0 and hence, (6.9) is trivially satisfied. Hence, it remains to prove (6.9)

only for k ∈ ΛN . For this, we write xk = x†k + εk, which allows us to rewrite (6.3) into

(x†k)
2 + 4x†kεk + 2ε2k + (yδk)

2 − y2k ≥ 0 ∀ k ∈ ΛN .

Now since we get as in (6.4) that
∣

∣y2k − (yδk)
2
∣

∣ ≤ δ (2 ‖y‖L2 + δ), it follows that for the
above inequality to be satisfied, it suffices to have

(x†k)
2 − 4

∣

∣

∣x
†
k

∣

∣

∣ |εk| − δ (2 ‖y‖L2 + δ) ≥ 0 , ∀ k ∈ ΛN .

However, since |εk| ≤ ‖ε‖L2 =
∥

∥x− x†
∥

∥ ≤ ‖x− x0‖ +
∥

∥x0 − x†
∥

∥ ≤ 7ρ, this immedi-
ately follows from (6.8), which completes the proof.

Remark. Similarly to the previous example, condition (6.2) is satisfied given that

min
k∈ΛN

{

(x†k)
2
}

≥ 28
∥

∥x†
∥

∥

L2 ρ+ δ̄
(

‖y‖ℓ2 + δ̄
)

,

which can always be satisfied given that
∣

∣x†n
∣

∣ > 0 for all n ∈ {1 , . . . ,M}.
Remark. Note that one could also consider F as an operator from H1(0, 1) → L2(0, 1),
in which case the local convexity of Φδ is still satisfied. Since, as noted in Section 4.3,
weak convergence in H1(0, 1) implies strong convergence in L2(0, 1), the convergence
analysis carried out in the previous section then implies strong subsequential L2(0, 1)
convergence of the iterates xδk of (4.4) to an element x̃ ∈ S from the solution set.

Example 6.2.1. For this example, we consider the auto-convolution problem with
exact solution x†(s) := 10 +

√
2 sin(2πs). It follows that

x†k =
〈

x†, e(k)
〉

=











10 , k = 0 ,

1 , k = 1 ,

0 , else .

and therefore, the convexity condition (6.8) simplifies to the following two inequalities

100 ≥ 280ρ+ δ̄
(

2 ‖y‖L2 + δ̄
)

, 1 ≥ 28ρ+ δ̄
(

2 ‖y‖L2 + δ̄
)

.

Hence, for the noise-free case (i.e., δ̄ = 0) the functional Φ0 is convex in B6ρ(x0) given
that ρ ≤ 1/28 ≈ 0.036 and that x0 ∈ Bρ(x

†), which is for example the case for the
choice x0 = 10 + 27

28

√
2 sin(2πs).

For discretizing the problem, we choose a uniform discretization of the interval [0, 1]
into N = 32 equally spaced subintervals and introduce the standard finite element
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hat functions {ψi}Ni=0 on this subdivision, which we use to discretize both X and Y .
Following the idea used in [58], we discretize F by the finite dimensional operator

FN(x)(s) :=
N
∑

i=0

fi(x)ψi(s) , where fi(x) :=

1
∫

0

x
(

i
N
− t
)

x(t) dt . (6.10)

For computing the coefficients fi(x), we employ a 4-point Gaussian quadrature rule
on each of the subintervals to approximate the integral in (6.10).
Now we again compare method (4.4) with (2.4). This time, the estimated scaling
parameter has the value ω = 0.005 and random noise with a relative noise level of
0.01% was added to the data. Again the discrepancy principle (2.6) with τ = 1 was
used and the proximal operator proxωΨ (.) in (4.4) was dropped. The results of the
experiments, computed in MATLAB, are displayed in the left part of Table 6.2. Again
the results clearly illustrate the advantages of Nesterov’s acceleration strategy, which
substantially decreases the required number of iterations and computational time,
while leading to a relative error of essentially the same size as Landweber iteration.
The initial guess x0 used for the experiment above is quite close to the exact solution x†.
Although this is necessary for being able to guarantee convergence by our developed
theory, it is not very practical. Hence, we want to see what happens if the solution and
the initial guess are so far apart that they are no longer within the guaranteed area of
convexity. For this, we consider the choice of x†(s) = 10 +

√
2 sin (8πs) and x0(s) =

10 +
√
2 sin (2πs). The result can be seen in the right part of Table 6.2. Landweber

iteration was stopped after 10000 iterations without having reached the discrepancy
principle since no more progress was visible numerically. Consequently, it is clearly
outperformed by (4.4), which manages to converge already after 797 iterations, and
with a much better relative error. The resulting reconstructions, depicted in Figure 6.1,
once again underline the usefulness of (4.4).
As an interesting remark, note that it seems that for the second example Landweber
iteration gets stuck in a local minimum, while (4.4), after staying at this minimum for
a while, manages to escape it, which is likely due to the combination step in (4.4).

Method k∗ Time
∥

∥x† − xδk
∥

∥ /
∥

∥x†
∥

∥

Landweber 526 57 s 0.0244 %
Nesterov 50 6 s 0.0271 %

Method k∗ Time
∥

∥x† − xδk
∥

∥ /
∥

∥x†
∥

∥

Landweber 10000 1067 s 9.57 %
Nesterov 797 87 s 0.65%

Table 6.2: Comparison of Landweber iteration (2.4) and its Nesterov accelerated ver-
sion (4.4) when applied to the auto-convolution problem considered in Example 6.2.1
for the choice x†(s) = 10 +

√
2 sin (2πs) and x0(s) = 10 + 27

28

√
2 sin (2πs) (left table)

and x†(s) = 10 +
√
2 sin (8πs) and x0(s) = 10 +

√
2 sin (2πs) (right table).
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Figure 6.1: Auto-convolution example: Initial guess x0 (blue), exact solution x
† (red),

Landweber (2.4) reconstruction (purple), Nesterov (4.4) reconstruction (yellow).

6.3 Magnetic Resonance Advection Imaging

For the third example, we take a look at the medical imaging technique of Magnetic
Resonance Advection Imaging (MRAI), where one aims at estimating the spatially
varying Pulse Wave Velocity (PWV) in blood vessels in the brain from dynamic echo
planar imaging (EPI) data, such as acquired in functional and resting state functional
Magnetic Resonance Imaging (MRI) experiments [80]. The underlying equation con-
necting the PWV vector field v(x, y, z) to the dynamic MRI signal ρ(x, y, z, t) is the
advection equation

∂

∂t
ρ(x, y, z, t) + v(x, y, z) · ∇ρ(x, y, z, t) = 0 . (6.11)

It has been suggested that MRAI may potentially serve as a biomarker for the health
of the cerebrovascular system. The reason is that MRAI is designed to reflect the
spatiotemporal properties of travelling waves, and pulse wave velocities (PWV) are a
main indicator for the physical properties of blood vessels. By means of the well-known
Moens-Korteweg equation (see (6.12) below), PWVs are related to vessel diameter,
wall thickness, and wall stiffness. In particular wall thickness and stiffness are key
parameters that change in vascular disease and with age.

In [80], a multiple local regression approach based on finite difference estimators of
the differential operators in (6.11) was used to solve the MRAI problem. However,
this approach suffered from the ill-posedness of the underlying parameter estimation
problem. Hence, we here present a way of treating MRAI within the framework of
Ill-Posed Problems and a solution approach based on TPG methods. For this, the
problem is formulated as a nonlinear operator equation of the form (2.1). Afterwards,
a space-time discretization is used and the resulting large-scale inverse problem is
solved using a TPG method of the form (4.4) incorporating sparsity constraints and
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utilizing a wavelet embedding. Numerical example problems and a real-world data
test show a significant improvement over the results obtained by the previously used
method. This section is based on and in parts taken from the research paper [37].

6.3.1 Medical Background

Pulse Wave Velocity

Cardiovascular pulse waves provide a natural physical perturbation to vascular dy-
namics, and their effects have been utilized in clinical diagnostics for a long time. For
example, the PWV in major arteries can be measured directly and contains informa-
tion about arterial compliance [50], defined as the ratio of blood volume change to
blood pressure change. Arterial compliance is an important determinant of the state
of the cerebrovascular system. With respect to the brain, aortic stiffness has been as-
sociated with cerebral small-vessel disease in hypertensive patients [33] and cognitive
decline [64]. In addition, emerging concepts such as pulse wave encephalopathy would
profit from diagnostic imaging methods of cerebral vasculature [4, 22].

The PWV in arteries, or Moens-Korteweg velocity [51], follows from the Moens-
Korteweg formula [49, 55],

v =

√

Eh

ρBd
. (6.12)

The PWV depends on three parameters: the vascular diameter d, the wall thickness
h, and the Young’s modulus or distensibility E of the vessel wall, if the reasonable
approximation of constant density of the blood, ρB, is made. Equation 6.12 models
vessels as elastic tubes with isotropic walls [86]. Pressure gradients, which would be
required to determine blood flow, do not appear in the Moens-Korteweg formula. In
other words, PWVs can be modelled independently from blood flow velocity and in
fact can be one to two orders of magnitude faster [51].

For a blood vessel along the direction of v, Equation (6.11) describes the pulsatile
component of the blood flow velocity along that direction, with v being the PWV.
Importantly, the same advection equation would also hold for blood pressure waves
[19], which, by the Windkessel model [70], are a function of the integrated net flow
into the vessel reservoir [1]. Since the local blood volume is related to local blood
pressure by the compliance C as dV = C dp, the same advection equation applies
to the pulsatile component of the blood volume as well. For the rest of this section,
ρ(x, y, z, t) should be understood as the MRI signal variability attributable to volume
change, and we also interpret the three-dimensional velocity vector v as a PWV.

Though ρ(x, y, z, t) depends on the blood flow velocity by the relationship between
pulsatile flow, pressure, and volume, the constant component of the flow, or the average
blood flow, decouples from Equation (6.11), as it does not cause any spatial or temporal
signal change. It could cause signal variability, however, if blood is not assumed to have
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homogeneous properties in the model domain Ω, which may be caused by variations
in oxygenation or temperature, or any other property that might affect the particular
MRI contrast. Here we assume that the MRI signal is not affected by any of these
properties.

EPI Data

Figure 6.2: Example image of a clinical MRI scanner.

There are only few in-vivo options for imaging vascular dynamics in the human brain.
Arterial spin labelling (ASL) is the most advanced method and has high spatial reso-
lution [83]. It provides quantitative blood flow values in the capillary bed, assuming
steady flow. However, arterial compliance depends on the pulsatile component of the
flow. It can be imaged with specific ASL pulse sequences [82, 84]. Pulsatile flow
components can also be imaged over the whole brain with 4D phase contrast angiog-
raphy [24].

In this contribution we are aiming at deriving PWV related quantities from echo-
planar imaging [77] (EPI) data. EPI is the method of choice for functional MRI [62].
Here we are less interested in the functional aspects of EPI, but in the fact that EPI
can also yield fast dynamic data over the whole brain. Since the MRI signal intensity
is proportional to the total amount of resonant spins within a voxel, it reflects the local
proton distribution, which shows pulsatile information around vessels. This has been
demonstrated with phase coherence maps before [79, 80], as well as with statistical
parametric mapping [12, 78].

In EPI, images are acquired very rapidly to allow for whole brain coverage within
seconds. A typical EPI data set consists of three-dimensional volumes acquired re-
peatedly in time with a repetition time TR. Each volume contains either the whole
brain or always the same part of it. Volumes are acquired slice-by-slice. The typical
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spatial resolution or voxel volume depends on the field-of-view, in-plane or slice matrix
size, and slice thickness [18]. The field of view typically is 20 to 24 cm in order to
include the whole head in axial slices. Slices are either acquired sequentially or inter-
leaved. In sequential acquisition, first slice 1, then slice 2, etc., are acquired, where
slice 1 is adjacent to slice 2 and so on. In interleaved acquisition, for example first all
odd and then all even slices are acquired. Therefore, care has to be taken to assign
the correct acquisition time to each slice, and the model that we are proposing can
take slice acquisition order into account. It is described for sequential, specifically,
ascending slices, but can easily be adapted to other acquisition schemes. It might be
worth mentioning that we are not pursuing a slice-time correction [76], which is often
performed in the analysis of functional MRI data and consists of an interpolation of
intensity values to an evenly sampled time grid. Such a procedure is always of approx-
imative nature and would not sufficiently take into account the fast dynamics of for
example travelling pulse waves.

6.3.2 Mathematical Model

Our goal is to estimate velocities of travelling waves in blood vessels from spatiotem-
poral MRI data. As a first approximation, we neglect any frequency-dependence of the
velocity, or dispersion, as well as reflected pulses travelling against the main blood flow
direction. The latter assumption means that the back flow amplitude is considered to
be much smaller than the forward flow amplitude. This assumption might be violated
in some cerebral veins, though, see, e.g., [5].

Under those assumptions, the authors of [80]considered the following local model,
defined on small subdomains ΩS of the model domain Ω, e.g., 3 × 3 × 3 voxels in
size. On each subdomain, the dynamic MRI signal ρ(x, y, z, t) is assumed to fulfill the
advection equation

∂

∂t
ρ(x, y, z, t) + v̄ · ∇ρ(x, y, z, t) = 0 , (6.13)

where ∇ is the gradient with respect to the space variables (x, y, z) and v̄ = v̄(ΩS)
is a velocity assumed to be constant on each subdomain ΩS. Using finite difference
approximations of the derivatives of ρ, the authors of [80] used a multiple regression
approach to get estimates for the local velocities v̄. Although yielding maps of velocity
estimates that reflect main cerebral arteries, those estimates were not quantitative.
Furthermore, the local regression matrices used there were ill-conditioned for many of
the data points and additionally, the finite difference operators in z-direction used to
derive those matrices did not take into account the limited data due to the slice-time
acquisition procedure and therefore lead to crude approximations of the z-derivatives.

Hence, here we use an approach which is global in nature, retains the underlying ad-
vection equation and gets rid of the numerical instabilities of the regression approach.
Following the physical arguments of [81], one can see that ρ is in essence assumed to
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be a conserved quantity, for which there holds the following continuity equation

∂

∂t
ρ(x, y, z, t) + div (ρ(x, y, z, t) v(x, y, z)) = 0 , (6.14)

where v = v(x, y, z) is a constant-in-time velocity field now defined on the entire model
domain Ω. Assuming v to be divergence-free, i.e., div (v) = 0, which is reasonable since
we consider a basically incompressible carrier medium (blood), the product rule yields

∂

∂t
ρ(x, y, z, t) + v(x, y, z) · ∇ρ(x, y, z, t) = 0 , (6.15)

which is again an advection equation, now defined on the entire model domain Ω.
Given measurements of ρ(x, y, z, t), we want to recover the global but now space de-
pendent velocity vector field v satisfying the above equation. This is an ill-posed
problem, one reason being that derivatives of ρ are taken in (6.15), which, as the data
ρ is subject to measurement errors, is an ill-posed procedure in itself.

Note that v is assumed to be independent of the time t. This assumption stems
from the fact that the pulse-wave velocity is primarily dependent on time independent
quantities such as vessel wall property parameters, see (6.12).

Note now that we are trying to reconstruct the vector valued quantity v from one
single scalar equation. Even worse, assuming that v is a solution of (6.15), every
v + h, where h satisfies h · ∇ρ = 0, is a solution as well. However, following again the
physical arguments of [80], velocities h satisfying h · ∇ρ = 0 are of no interest to us
and are in fact not detectable by our algorithm.

We could now consider the inverse problem in the continuous setting, first defining a
nonlinear operator mapping between suitable function spaces, then choosing a solution
method and finally discretizing. This approach turns out to be highly complicated,
as the solution theory of advection equations with non-Lipschitz velocity vector fields
is quite involved, see e.g., [17]. Most problematic is the fact that the Lax-Milgram
framework commonly used for PDEs is no longer applicable in that case, resulting in
solution concepts which are hard to handle.

Hence, we use a first-discretize-then-regularize approach, which simplifies the subse-
quent computations significantly. However, we use one fact from the classical theory,
see [17], namely that v should be at least an H1, or locally H1 vector field.

6.3.3 Discretization

Motivated by the above considerations, we assume that as the pulse wave travels
through the brain, the dynamic MRI signal ρ = ρ(x, y, z, t) fulfills the advection equa-
tion, i.e.,

∂

∂t
ρ(x, y, z, t) +∇ρ(x, y, z, t) · v(x, y, z) = 0 , (x, y, z) ∈ Ω , t ∈ [0, T ] . (6.16)
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where v = (v1, v2, v3) is a velocity vector field assumed to be independent of time t
and which is additionally assumed to be divergence-free, i.e., satisfies div (v) = 0.

It is the aim to estimate v from measurements of ρ. We assume (for simplicity) that
the brain domain Ω is a cuboid and that pointwise measurements are available at
certain points. Unfortunately (see Section 6.3.1), the time coordinate is linked to the
z-coordinate, i.e., measurements are available only at points

(xi, yj, zk, tk,l) , 0 ≤ i ≤ I, 0 ≤ j ≤ J, 0 ≤ k ≤ K, 0 ≤ l ≤ L, (6.17)

where

xi := x0 + i∆x , yj := y0 + j∆y , zk := z0 + k∆z , tk,l := (k + (K + 1)l)∆t .

This corresponds to ascending slice acquisition and means that in each time step,
only one z-slice can be measured and that after a full cycle, the measurement process
restarts.

In a next step, the equation (6.16) is discretized according to the data, which leads
to a space-time discretization, which we see below. The derivative with respect to t
is approximated by a backwards differential quotient, the derivatives with respect to
x, y, z by central quotients in the interior and by forward or backward quotients at the
boundary. We then get the following discretized system of equations:

ρi,j,k,l − ρi,j,k,l−1

(K + 1)∆t
+Dxi

ρi,j,k,l v1,i,j,k +Dyjρi,j,k,l v2,i,j,k +Dzkρi,j,k,l v3,i,j,k = 0 , (6.18)

0 ≤ i ≤ I, 0 ≤ j ≤ J , 0 ≤ k ≤ K, and 1 ≤ l ≤ L. Here

ρi,j,k,l = ρ(xi, yj, zk, tk,l) and vs,i,j,k = vs(xi, yj, zk) , s = 1, 2, 3 .

We still have to define the differential quotients Dxi
, Dyj, Dzk . One has to be very

careful with Dzk , since ρ does not exist at neighbouring z values at the same time
steps. Therefore, the appropriate values are then obtained by interpolation or even
extrapolation if l = L:

Dxi
ρi,j,k,l :=























ρi+1,j,k,l − ρi−1,j,k,l

2∆x
, 1 ≤ i ≤ I − 1 ,

ρ1,j,k,l − ρ0,j,k,l
∆x

, i = 0 ,

ρI,j,k,l − ρI−1,j,k,l

∆x
, i = I ,

(6.19)

Dyjρi,j,k,l :=



























ρi,j+1,k,l − ρi,j−1,k,l

2∆y
, 1 ≤ j ≤ J − 1 ,

ρi,1,k,l − ρi,0,k,l
∆y

, j = 0 ,

ρi,J,k,l − ρi,J−1,k,l

∆y
, j = J ,

(6.20)
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Dzkρi,j,k,l :=











































































































(1− r)(ρi,j,k+1,l − ρi,j,k−1,l+1) + r(ρi,j,k+1,l−1 − ρi,j,k−1,l)

2∆z
,

1 ≤ k ≤ K − 1, 1 ≤ l < L ,

(1− r)ρi,j,k+1,L − (1 + r)ρi,j,k−1,L + r(ρi,j,k+1,L−1 + ρi,j,k−1,L−1)

2∆z
,

1 ≤ k ≤ K − 1, l = L ,

(1− r)ρi,j,1,l + rρi,j,1,l−1 − ρi,j,0,l
∆z

,

k = 0, 1 ≤ l ≤ L ,

ρi,j,K,l − (1− r)ρi,j,K−1,l+1 − rρi,j,K−1,l

∆z
,

k = K, 1 ≤ l < L ,

ρi,j,K,L − (1 + r)ρi,j,K−1,L + rρi,j,K−1,L−1

∆z
,

k = K, l = L ,

r :=
1

K + 1
.

Note that the denominator (K + 1)∆t in the approximation of the time derivative
in (6.18) seems rather large. However, due to the slice-time acquisition procedure,
i.e., since consecutive measurements at the same spatial position are made with a time
difference of exactly (K+1)∆t, this time step is the smallest one available. We observe
the consequences of this fact in the numerical simulations presented in Section 6.3.5.

We want to write the equations (6.18) in matrix-vector form. For this, we first collect
all ρi,j,k,l values (l > 1) in the vector ~ρ and all ρi,j,k,l values (l = 0) in the vector ~ρ0,
where we use the lexicographic ordering with respect to (i, j, k, l) to sort the values
inside ~ρ and ~ρ0. The vector ~ρ then has length m := (I + 1)(J + 1)(K + 1)L and the
vector ~ρ0 has length n := (I + 1)(J + 1)(K + 1). If we define the indices

indm
i,j,k,l := i(J + 1)(K + 1)L+ j(K + 1)L+ kL+ l ,

indn
i,j,k := i(J + 1)(K + 1) + j(K + 1) + k + 1 ,

(6.21)

then the relationship between ρi,j,k,l and ~ρ and ~ρ0 can be written precisely by

ρi,j,k,l = (~ρ) indmi,j,k,l ,

ρi,j,k,0 = (~ρ0) indni,j,k .
(6.22)

Next, we collect all vs,i,j,k values in a vector ~v of length 3n, using again a lexicographic
ordering but now with respect to (s, i, j, k), which leads to the relation

vs,i,k,l = (~v) (s−1)n+indni,j,k
. (6.23)

We want to write (6.18) in the following matrix-vector form:

A(~v)~ρ = b(~v, ~ρ0) , (6.24)
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where A(~v) is an m×m matrix and b(~v, ~ρ0) is a vector of length m. This is possible,
since ρi,j,k,l appears only linearly in (6.18). In order to assemble the system matrix
A(~v), note first that (6.18) naturally divides into four parts, each part corresponding
to the differential quotient with respect to one of the variables t, x, y or z. Hence, the
system matrix A(~v) naturally splits up into four parts, i.e.,

A(~v) := At + Ax(~v) + Ay(~v) + Az(~v) , (6.25)

where At, Ax(~v), Ay(~v) and Az(~v) are m×m matrices corresponding to the differen-
tial quotients. They can be assembled by looping over all possible values of (i, j, k, l)
and setting suitable values at the positions implicitly defined by the difference quo-
tients. For example, for the matrix Ax(~v), considering the definition (6.19) of Dxi

, this
assembly procedure looks as follows:

• Create an all-zero m×m matrix A.

• For i = 0, . . . , I, k = 0, . . . , K, j = 0, . . . , J and l = 1, . . . , L do:

Set ind := indm
i,j,k,l and step := (J + 1)(K + 1)L.

If (i = 0) {
Aind,ind+step = ~vind/∆x,
Aind,ind = −~vind/∆x.

}
Elseif (i = I) {
Aind,ind = ~vind/∆x,
Aind,ind−step = −~vind/∆x.

}
Else {
Aind,ind+step = ~vind/(2∆x),
Aind,ind−step = −~vind/(2∆x).

}

• Set Ax(~v) := A.

For the matrices At, Ay(~v) and Az(~v), the assembly procedure looks similar, with
obvious modifications due to the respective definitions of Dyj , Dzk and the backwards
time difference quotient in (6.18).

From the assembly procedure, one can see that At, Ax(~v), Ay(~v) and Az(~v) are sparse
matrices, with At having only 2 non-zero (off-)diagonals, both Ax(~v) and Ay(~v) having
3 non-zero (off-)diagonals and Az(~v) having 6 non-zero (off-)diagonals. Hence, the
system matrix A(~v) is sparse as well, with (note that all four matrices share the non-
zero main diagonal) only 11 non-zero (off-)diagonals.
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As for the right-hand side in (6.24), one could again loop over all indices (i, j, k, l) to
assemble it, or alternatively use the closed formula

b(~v, ~ρ0)indmi,j,k,l :=











1
(K+1)∆t

(~ρ0)indni,j,k − r
2∆z

(~ρ0)indni,j,k+1
(~v)2n+indni,j,k

, l = 1 , 1 ≤ k < K ,
1

(K+1)∆t
(~ρ0)indni,j,k − r

∆z
(~ρ0)indni,j,k+1

(~v)2n+indni,j,k
, l = 1 , 1 ≤ k < K ,

0 , else .

(6.26)
The forward problem consists in calculating ~ρ for given ~v and given initial data ~ρ0, by
solving (6.24). Let us denote this solution by ρ(~v, ~ρ0).

Note that in order to guarantee unique solvability of (6.15), one usually prescribes
boundary conditions on ∂Ω. However, since for our problem sufficient boundary data
are not available, we used forward and backward differential quotients in the definition
of Dxi

Dyj and Dzk at the boundary. It can easily be seen that this amounts to linear
extrapolation of ρ and is also the reason why (6.24) turns out to be solvable.

The Inverse Problem

Let us now turn to the inverse problem. It consist in calculating the velocity ~v and the
initial data ~ρ0 for given measurements of ~ρ and ~ρ0. Introducing the nonlinear operator

F (~v, ~ρ0) := (ρ(~v, ~ρ0), ~ρ0) ∈ R
m+n , (6.27)

our inverse problem can be written in the standard form

F (~v, ~ρ0) = (~ρ, ~ρ0) . (6.28)

The additional equation ρ0 = ρ0 in (6.28) seems to be superfluous at first. Note
however, that as a result of measurement errors, we are not really given ~ρ and ~ρ0, but
only noisy data ~ρ δ and ~ρ δ

0 and hence, including this equation becomes necessary.

Concerning the solvability of (6.28), note that in essence we are trying to reconstruct
~v ∈ (Rn)3 from ~ρ ∈ R

m, which means that we are given m data points and try to
solve for 3n unknowns. Hence, in general one can only hope for a unique solution to
this problem in case that m ≥ 3n, which is always satisfied given data with a large
enough L, i.e., a long enough scanning time, is being used. This is always be the case
in the tests below. If (6.28) happens to be overdetermined, our solution approach
presented below picks a suitable solution out of all possible ones. Moreover, it could
happen that even for m ≥ 3n problem (6.28) is underdetermined (compare with the
well-known aperture problem). As described above, the main reason for this is that it
could happen that the velocity vector field v is orthogonal to ∇ρ at certain points in
space for the entire scanning period. In this very unlikely case, velocity components
orthogonal to ∇ρ could not be detected at certain points. However, as noted above,
those components are not of interest to us and the reconstruction algorithm introduced
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below computes approximations of the velocity vector field without those orthogonal
components in this case.

In order to solve (6.28), we need the derivative and its adjoint of F . For this, we
consider F as an operator from X to Y , where

X = {(~v, ~ρ0) |~v ∈ (Rn)3 , ~ρ0 ∈ R
n} ,

Y = {(~ρ, ~ρ0) | ~ρ ∈ R
m , ~ρ0 ∈ R

n} . (6.29)

We equip X and Y with the inner products

〈 (~v, ~ρ0), (~x, ~w0) 〉X := ~v TH~x+ ~ρT
0 ~w0 ,

〈 (~ρ, ~ρ0), (~w, ~w0) 〉Y := ~ρT ~w + ~ρT
0 ~w0 ,

(6.30)

where H is a positive definite 3n × 3n matrix chosen such that the inner product is
an approximation of the H1-inner product of functions v, see also Section 6.3.3.

Before we proceed with the derivation of the Fréchet derivative and its adjoint, we
introduce the following notation: Whenever we have an arbitrary Fréchet-differentiable
function G between suitable spaces A and B and we are given x ∈ A and ∆x ∈ A,
then we denote by G′(x)∆x the Fréchet derivative of G at x in the direction of ∆x.
This notation is used multiple times in the following:

Lemma 6.3.1. Let F : X → Y be given as in (6.27) and let (~v, ~ρ0) ∈ R
3n+n and

(∆~v,∆~ρ0) ∈ R
3n+n. Then for the Fréchet derivative of F there holds

F ′(~v, ~ρ0)(∆~v,∆~ρ0) = (ρ′(~v, ~ρ0)(∆~v,∆~ρ0),∆~ρ0) , (6.31)

where ρ′(~v, ~ρ0)(∆~v,∆~ρ0), the Fréchet derivative of ρ, is given as the solution of

A(~v)[ρ′(~v, ~ρ0)(∆~v,∆~ρ0)] = −(A′(~v)∆~v)ρ(~v, ~ρ0) + b′(~v, ~ρ0)(∆~v,∆~ρ0) , (6.32)

where A′ and b′ are the Fréchet derivatives of A and b, respectively, and therefore
A′(~v)∆~v ∈ R

m×m and b′(~v, ~ρ0) ∈ R
m×(3n+n).

Proof. First, note that (6.31) follows immediately from the definition of the Fréchet
derivative. Now, from equation (6.24), we know that

A(~v)ρ(~v, ~ρ0) = b(~v, ~ρ0) . (6.33)

Applying the Fréchet-derivative at the point (~v, ~ρ0) in the direction of (∆~v,∆~ρ0) to
this equation and using the chain rule yields

(A′(v)∆~v)ρ(~v, ~ρ0) + A(~v)[ρ′(~v, ~ρ0)(∆~v,∆~ρ0)] = b′(~v, ~ρ0)(∆~v,∆~ρ0) , (6.34)

from which the statement of the lemma now immediately follows.
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It follows from (6.31) and (6.32) that in order to calculate F ′(~v, ~ρ0)(∆~v,∆~ρ0), a lin-
ear system of equations involving the vectors (A′(v)∆~v)ρ(~v, ~ρ0) and b

′(~v, ~ρ0)(∆~v,∆~ρ0)
needs to be solved. It is possible to calculate those vectors without assembling the
matrices (A′(v)∆~v) and b′(~v, ~ρ0). However, as we see in the lemma below, the assembly
of three specific matrices is inevitable for calculating the adjoint of the derivative of
F , and those matrices can then also be used to compute the two required vectors.

To arrive at these matrices, note first that it follows from the assembly procedure
described above that Ax(~v), Ay(~v) and Az(~v) depend only linearly on ~v. Together
with (6.25) and the definition of the Fréchet derivative, it follows that

A′(~v)∆~v = Ax(∆~v) + Ay(∆~v) + Az(∆~v) , (6.35)

and hence A′(~v)∆~v is not only linear in ∆~v but also independent of ~v. As a result, it
is possible to find a matrix DA(ρ) ∈ R

m×3n such that

(A′(~v)∆~v)ρ(~v, ~ρ0) = DA(ρ(~v, ~ρ0))∆~v . (6.36)

As for the other two matrices, note that once one has assembled b′(~w, ~ρ0), which can
be calculated easily using (6.26), this matrix can be split up into two sub-matrices,
i.e.,

b′(~w, ~ρ0) =
(

b′∆~v(~w, ~ρ0) | b′∆~ρ0
(~w, ~ρ0)

)

, (6.37)

where b′∆~v(~w, ~ρ0) ∈ R
m×3n and b′∆~ρ0

(~w, ~ρ0) ∈ R
m×n are the derivatives corresponding

to ∆~v and ∆~ρ0, respectively.

Thanks to the special structure of A(~v) and b(~v, ~ρ0), when following the above deriva-
tion steps in detail, one finds out that most of the elements of the matrices

DA(ρ) and b′(~v, ~ρ0) (6.38)

are zero, with at most three non-zero elements in each row in both cases.

Using the above derivations, we can now prove the following

Lemma 6.3.2. Let F : X → Y be given as in (6.27) and let (~v, ~ρ0) ∈ R
3n+n and

(~w, ~w0) ∈ R
m+n. Then for the adjoint of the Fréchet derivative of F there holds

F ′(~v, ~ρ0)
∗(~w, ~w0) :=

(

H−1
(

−DA(ρ(~v, ~ρ0))
T + b′∆~v(~v, ~ρ0)

T
)

A(~v)−T ~w
b′∆~ρ0

(~v, ~ρ0)
TA(~v)−T ~w + ~w0

)

. (6.39)

Proof. To compute the adjoint, consider first

〈F ′(~v, ~ρ0)(∆~v,∆~ρ0), (~w, ~w0) 〉Y =

=
〈

(−A(~v)−1DA(ρ(~v, ~ρ0))∆v + A(~v)−1b′(~v, ~ρ0)(∆~v,∆~ρ0),∆~ρ0), (~w, ~w0)
〉

Y

=
(

−A(~v)−1DA(ρ(~v, ~ρ0))∆v
)T

~w +
(

A(~v)−1b′(~v, ~ρ0)(∆~v,∆~ρ0)
)T

~w +∆~ρT0 ~w0

= −∆~vTDA(ρ(~v, ~ρ0))
TA(~v)−T ~w + (∆~v,∆~ρ0)

T b′(~v, ~ρ0)
TA(~v)−T ~w +∆~ρT0 ~w0
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Splitting up b′(~w, ~ρ0) as in (6.37), we get

〈F ′(~v, ~ρ0)(∆~v,∆~ρ0), (~w, ~w0) 〉Y = ∆~ρT
0 b

′
∆~ρ0

(~v, ~ρ0)
TA(~v)−T ~w +∆~ρT

0 ~w0

+∆~v T
(

−DA(ρ(~v, ~ρ0))
T + b′∆~v(~v, ~ρ0)

T
)

A(~v)−T ~w

and hence, using the definition of the inner product in X , the statement follows.

Incorporating the Divergence-Free Condition

Up to now, the divergence-free condition div (v) = 0 on the velocity field to be re-
constructed did not enter the reconstruction method. However, it is a modelling
assumption and has to be taken care of.

One possible way to do so would be to incorporate the condition into the space X ,
i.e., allowing only divergence-free vector fields in X . This approach essentially, except
at the boundary, implies v3 = v3(v1, v2). This changes the derivative and its adjoint
of F in a computationally unfavourable way and hence we avoid this approach.

Instead, we enforce the divergence-free condition in a weak way, by changing F to

F (~v, ~ρ0) := (ρ(~v, ~ρ0), ~ρ0, D~v) , (6.40)

where D is a matrix representing the divergence-free condition. The operator F now
maps from X to Y with X as before and

Y = {(~ρ, ~ρ0, ~w) | ~ρ ∈ R
m , ~ρ0 ∈ R

n , ~w ∈ R
n} , (6.41)

where we use the following inner product

〈 (~ρ, ~ρ0, ~vd), (~w, ~w0, ~wd) 〉Y = ~ρT ~w + ~ρT
0 ~w0 + ~v T

d ~wd . (6.42)

The resulting nonlinear inverse problem now reads as

F (~v, ~ρ0) = (ρ, ρ0,~0) . (6.43)

An analogous calculation as before yields that the Fréchet derivative of F is given by

F ′(~v, ~ρ0)(∆~v,∆~ρ0) = (ρ′(~v, ~ρ0),∆~ρ0, D∆~v) , (6.44)

and that the adjoint is given by

F ′(~v, ~ρ0)
∗(~w, ~w0, ~wd)

=

(

H−1
[(

−DA(ρ(~v, ~ρ0))
T + b′∆~v(~v, ~ρ0)

T
)

A(~v)−T ~w +DT ~wd

]

b′∆~ρ0
(~v, ~ρ0)

TA(~v)−T ~w + ~w0

)

.

As for the choice of the matrix D, note that since, due to the Divergence Theorem,

div (v) (x, y, z) = lim
|V |→0

1

|V |

∫

∂V

v dS(x, y, z) , (6.45)
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we may approximate the divergence in Ωi,j,k := [xi−1, xi]× [yj−1, yj]× [zk−1, zk] by the
integral above with V = Ωi,j,k. Assuming that each component of v is piecewise linear
(tri-linear), divergence-free then means

D1v1,i,j,k +D2v2,i,j,k +D3v3,i,j,k = 0 , (6.46)

where 1 ≤ i ≤ I, 1 ≤ j ≤ J , 1 ≤ k ≤ K, and

D1v1,i,j,k :=
1

4∆x
(v1,i,j−1,k−1 − v1,i−1,j−1,k−1 + v1,i,j−1,k − v1,i−1,j−1,k (6.47)

+ v1,i,j,k−1 − v1,i−1,j,k−1 + v1,i,j,k − v1,i−1,j,k) ,

D2v2,i,j,k :=
1

4∆y
(v2,i−1,j,k−1 − v2,i−1,j−1,k−1 + v2,i−1,j,k − v2,i−1,j−1,k (6.48)

+ v2,i,j,k−1 − v2,i,j−1,k−1 + v2,i,j,k − v2,i,j−1,k) ,

D3v3,i,j,k :=
1

4∆z
(v3,i−1,j−1,k − v3,i−1,j−1,k−1 + v3,i−1,j,k − v3,i−1,j,k−1 (6.49)

+ v3,i,j−1,k − v3,i,j−1,k−1 + v3,i,j,k − v3,i,j,k−1) .

The (sparse!) matrix D is now built such that D~v = 0 is equivalent to (6.46).

Whenever we speak of the weak divergence-free option in subsequent sections, we mean
that we use F defined as in (6.40). As it turns out in our numerical tests below, using
this option has a significant effect on the reconstructed solutions.

Choosing the Matrix H

We now turn to the choice of the matrix H in the inner product of X . From the theory
of transport equations (see e.g. [17]), we know that v should be at least an H1 velocity
field. Assuming as above that each component of v is piecewise linear and can hence
be written in the form

v(x, y, z) =
∑

i,j,k





v1,i,j,k
v2,i,j,k
v3,i,j,k



ψi,j,k(x, y, z) , (6.50)

where the ψi,j,k are the 3D hat functions commonly used to form a basis in H1-FEM,
we find that the optimal choice of H in this case would be,

H = cs diag(H̃, H̃, H̃) , H̃ = [〈ψi,j,k, ψl,m,n 〉H1 ] . (6.51)

where cs is a suitable scaling constant. As can easily be seen, H̃ is the FEM system
matrix of the equation −∆u + u = f . However, in the computation of the adjoint of
F we need to apply H−1, or equivalently three times H̃−1, which amounts to solving
three perturbed Laplace equations in each iteration step. This is way too costly and
hence we need to find a suitable alternative for inverting the matrix H.
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One possibility is to approximate H̃ by its diagonal part, which leads to a diagonal
matrix H that is easy to assemble and to invert, i.e.,

H = cs diag(H̃, H̃, H̃) , H̃ = diag(〈ψi,j,k, ψi,j,k 〉H1) . (6.52)

The scaling constant cs is chosen such that the two terms on the right hand side of
(6.30) are balanced and that the H1 and the L2 norm approximations of constant
vectors coincide, which leads to the choice

cs = 3n

(

3n
∑

i=1

Hii

)−1

. (6.53)

Another, more sophisticated possibility is to use an orthogonal system ψi,j,k, e.g.,
wavelets, since then the matrix H̃ becomes diagonal. One can see that applying H̃−1

coincides with applying the operator i∗1, where i1 : H
1 → L2 is the embedding operator.

For a given wavelet system {φ, ψ}, every function f ∈ L2 can be expanded as

f =
∑

k∈Z

〈 f, φ0k 〉φ0k +
∞
∑

j=0

∑

k∈Z

〈 f, ψjk 〉ψjk , (6.54)

where φ0k = φ(t− k) and ψjk(t) = 2j/2ψ(2jt− k). If the wavelet system is sufficiently
smooth, then for every Sobolev space, the Hs inner product of two functions f and g
is equivalent to

〈 f, g 〉Hs =
∑

k∈Z

〈 f, φ0k 〉 〈 g, φ0k 〉+
∞
∑

j=0

22js
∑

k∈Z

〈 f, ψjk 〉 〈 g, φjk 〉 . (6.55)

Following [66], we see that the adjoint i∗s of the embedding is : H
s → L2 is given by

i∗sg =
∑

k∈Z

〈 g, φ0k 〉φ0k +
∞
∑

j=0

∑

k∈Z

〈 g, ψjk 〉
22js

ψjk . (6.56)

Using this, we can, instead of applying H̃−1 to the components of ~v, compute their
discrete wavelet transforms, weight the resulting coefficients according to (6.56) and
then apply the inverse discrete wavelet transforms. The computation of ~v TH ~w in
(6.30) is then replaced by using a scaled version of (6.55), using again the discrete
wavelet transform. Thus, whenever we speak of using the wavelet embedding option in
subsequent sections, we mean that this procedure is being used.

Note that for the results presented below, due to the low spatial resolution, using the
wavelet embedding option with s = 1 in (6.55) and (6.56) leads to an undesirably high
amount of smoothing and subsequently to mediocre results. Using a smaller s and
hence less smoothing yields much better results and therefore, the choice s = 0.1 was
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used in all computations below. As for the choice of wavelets, Daubechies 3 wavelets
(see [13]) were used in all cases.

Both approximations of H−1, using only the diagonal entries of H and by the wavelet
embedding are very fast (diagonal matrix inversion and O(n) wavelet decomposition).
The use of wavelets has the additional advantage that it yields a very good approxi-
mation of the application of H−1, as compared to using the diagonal approximation,
which in essence only amounts to a scaling of the steps in the iterative solution method
introduced below.

6.3.4 Solution Approach

In this section, we consider the solution of the inverse problems (6.28) and (6.43).
Since we are dealing with an ill-posed problem, regularization has to be employed to
get stable solutions of these problems. For this, we use a slight extension of the TPG
method (2.22) based on (4.4) to incorporating sparsity constraints and combined with
the discrepancy principle (2.6) as a stopping rule.

Implementation Details

The implementation of (2.22) seems very straightforward at first, since we have explicit
expressions for F ′ and its adjoint available. However, even though we are dealing
with a rather coarse space discretization, since we are essentially using a space-time
approach with three space dimensions, the problem becomes large-scale, with around
3.3 million unknowns for one of the real-world data sets considered below. This causes
severe numerical difficulties.

Please note that for the calculation of one iteration step it is necessary to solve three
large sparse linear systems of equations, one for calculating F , one for F ′ and one
for ωδ. Since, due to the size of the problem, this can no longer be done directly,
the iterative solver biCGstab with an incomplete LU factorization preconditioner was
used.

The implementation of the method was done in MATLAB R2015b. Since some built-
in MATLAB functions were too slow for our purposes, we had to rely on fsparse.m, a
function for creating sparse matrices, see [20].

Enforcing Sparse Solutions

The relevant blood vessels in which the pulse waves travel constitute only a minor part
of the brain. Hence, the velocity vector field v which we seek to reconstruct should
take nonzero values in those blood vessels only.

In mathematical terms this means that v should be compactly supported and should
have a sparse representation in the basis ψi,j,k. The reconstruction algorithm should
take this into account, which leads directly to the concept of sparsity regularization.
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Following [67] and [52], we seek to compute (~v, ~ρ0) as a minimizer of the functional

1

2

∥

∥F (~v, ~ρ0)− (~ρ δ, ~ρ δ
0 )
∥

∥

2

Y
+ α

(

3
∑

l=1

∑

i,j,k

ω~vl
i,j,k |vl,i,j,k|p +

∑

i,j,k

ω~ρ0
i,j,k |ρi,j,k,0|p

)

, (6.57)

where ω~vl
i,j,k and ω

~ρ0
i,j,k are positive weights bounded away from zero, α is a regularization

parameter and p ∈ [1, 2]. The choice p = 1 yields sparse minimizers, while 1 < p < 2
is suspected to promote sparsity.

For further use below, and for 1 ≤ p < ∞ and τ > 0, we define the real valued
shrinkage function Sτ,p : R → R by

Sτ,p(x) =

{

sgn (x)max(|x| − τ, 0) , p = 1 ,

G−1
τ,p(x) , p ∈ (1, 2] ,

(6.58)

where
Gτ,p(x) = x+ τsgn (x) |x|p−1 . (6.59)

For a vector ~x = {xk}k∈Λ and weights ω = {ωk}k∈Λ we define the shrinkage function
Sω,p by

Sω,p(~x) := [Sωk,p(xk)]k∈Λ . (6.60)

Following [52], a possible method for solving nonlinear inverse problems F (x) = yδ

involving sparsity constraints is given by the so-called iterated soft shrinkage algorithm,
which reads as

xδk+1 = Sωkαω,p

(

xδk + ωkF
′(xδk)

∗(yδ − F (xδk))
)

, xδ0 = x0 . (6.61)

For our problem we combine this approach with method (2.22) to arrive, after collecting
the ω~vl and ω~ρ0 into a single sequence ωs, at the following iterative scheme:

(~w δ
k , ~w

δ
0,k) = (~v δ

k , ~ρ
δ
0,k) +

k−1
k+2

(

(~v δ
k , ~ρ

δ
0,k)− (~v δ

k−1, ~ρ
δ
0,k−1)

)

,

ωδ
k = ωδ((~w δ

k , ~w
δ
0,k)) ,

(~v δ
k+1, ~ρ

δ
0,k+1) = Sωδ

k
αωs,p

(

(~w δ
k , ~w

δ
0,k) + ωδ

k F
′(~w δ

k , ~w
δ
0,k)

∗((~ρ δ, ~ρ δ
0 )− F (~w δ

k , ~w
δ
0,k))

)

.

This is essentially Nesterov’s accelerated gradient method (2.19) applied to (6.57), as
it is used in FISTA to solve linear inverse problems with sparsity constraints [7].

Note that for this algorithm, values for α, ωs and p need to be specified. Moreover, if
p > 1, 4n nonlinear equations need to be solved for approximating G−1

τ,p. This is very
costly, hence we use p = 1 only. Furthermore, since we want to weight all vl,i,j,k and
ρi,j,k equally, ωs was set to 1 for the numerical examples presented below.

Obviously, the above algorithm can also, with minor modifications, be applied to the
case when F contains the divergence-free part as introduced in Section 6.3.3.



CHAPTER 6. APPLICATIONS OF SPECIFIC TPG METHODS 84

6.3.5 Numerical Results

In this section, we present several results obtained by using the method described
above on simulated and real-world data. We compare different choices of parameters
and the effects of the sparsity and the weak divergence-free option as well as the
different approximations of H described in Section 6.3.3.

For all examples, a maximum intensity projection (MIP) over the z-axis of the norm
of the velocity vector field was calculated. Afterwards, a colour direction MIP was
created by assigning a RGB value to every pixel of the MIP. This was done by first
considering, for every pixel of the MIP, that voxel whose velocity norm value was
responsible for the entry of the MIP at that pixel. The absolute values of the ~v1, ~v2
and ~v3 values of that voxel were then taken as the red, green and blue values of the
RGB triplet at that pixel, respectively. This means that a red pixel in the colour
direction MIP indicates movement along the x-axis, a green pixel along the y-axis and
a blue pixel along the z-axis. Finally, all RGB values were divided by the maximum
absolute RGB value of the colour direction MIP and the resulting map was divided
by a factor of 0.6 in order to enhance colours.

Simulated Data

In this subsection, we test our algorithm on simulated data. For this purpose, a
phantom of size 40×30×30 was created, featuring several blood vessels, i.e., pipes, of
variable thickness and orientation. A projection of this phantom over the z-axis can
be seen in Figure 6.3, which not only shows the vessels themselves but also the norm
of the velocity vector field (left figure) and the a colour direction MIP of the velocity
(right figure) moving through the vessels.

Figure 6.3: Simulation phantom: Magnitude of the norm of the velocity vector field
(left figure) and colour direction MIP of the velocity (right figure).

Looking at the colour direction MIP in Figure 6.3, the three red horizontal vessels on
the bottom of the phantom move along the x-axis and have a thickness of 1, 2 and
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3 voxels, respectively. The three blue vessels above them move along the z-axis, and
hence only a small part of them can be seen in the picture. Note that one of those
vessels has a plus-shaped cross-section, which is also the case for the bottommost of
the three red blood vessels. The three orange-red blood vessels move diagonally across
the x-y-plane and have a z-thickness of 1 voxel each. Both the orange and the red
vessels lie in the middle of the z-plane, while the blue vessels extend over the entire
range of the z-axis.

As for the simulation of the data ρi,j,k,l, consider first the case of a signal ρ0(x, y, z)
transported by a constant velocity field v̄ = (v̄1, v̄2, v̄3). It can be easily seen that in
this case

ρ(x, y, z, t) = ρ0(x− v̄1t, y − v̄2t, z − v̄3t) , (6.62)

solves the advection equation with initial guess ρ0. If in each vessel we prescribe a
constant velocity vector field pointing in one of the two directions of the vessel, then
for a given initial signal ρ0 we can calculate the solution of the advection equation
in that vessel by (6.62). Summing up those solutions for all the different vessels and
sampling at the correct space-time points then gives us the data ρi,j,k,l. Adding a
random data error of fixed magnitude, e.g., 1%, we arrive at the final data used in the
simulation.

In our simulation, for a vessel with given velocity v̄, we used the initial signal

ρ0(x, y, z) = sin

(

6π

‖v̄‖2

(

v̄1
I∆x

x+
v̄2
J∆y

y +
v̄3

K∆z
z

))

. (6.63)

To make the simulation procedure a bit clearer, consider the bottommost vessel in
Figure 6.3. Prescribing for example the velocity v̄ = (c, 0, 0) in that vessel leads to

ρ(x, y, z, t) = sin

(

6π(x− c t)

I∆x

)

, (6.64)

and the data ρi,j,k,l, for those (i, j, k) for which (xi, yj, zk) belongs to the vessel under
consideration, is then defined by

ρi,j,k,l = ρ(xi, yj, zk, tk,l) = sin

(

6π(xi − c tk,l)

I∆x

)

. (6.65)

We apply the same procedure to all the remaining vessels and set ρi,j,k,l to 0 whenever
(i, j, k) does not correspond to any vessel. Finally, a randomly generated data error of
magnitude delta is added.

Note that the velocity vector field v underlying this data simulation is constant in
each vessel and hence locally, but not globally, in H1. Even though we have derived
our solution method from the assumption of a globally H1 velocity vector field, using
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this simulation makes sense, since for real MRI data we also expect nonzero veloci-
ties to occur inside blood vessels only, which renders the velocity vector field to be
reconstructed only locally H1 as well.

For the results presented below, we have chosen ∆x = ∆y = ∆z = 1mm and, as
mentioned above, I = 39, J = 29, K = 29 for the space discretization, as well
as L = 4. As for the time discretization ∆t, note that our forward solver belongs
to the class of BTCS (backward in time, central in space) finite difference methods,
which are implicit methods requiring no restriction on the time stepsize ∆t to achieve
stability. However, in order to get good accuracy of the forward solver, ∆t should be
chosen small enough. Denoting with ∆T the duration of a full measurement circle,
i.e., ∆T = (K + 1)∆t, it turned out that a suitable bound is given by the CFL-type
condition

∆T ‖v‖2 .
∆x

10
. (6.66)

Using a ∆T significantly greater than this bound was found to introduce large errors
in the reconstructed velocity (see Figure 6.13). Hence, for our tests below, we used
∆T = 0.1 s, which by (6.66) allows for velocities with a maximum norm of 1mm/s.

Figure 6.4: Magnitudes of the velocity vector field components. Left: First component.
Middle: Second component. Right: Third component.

For our simulations, we have used velocities v̄ with three different magnitudes ‖v̄‖2,
which can be seen in Figure 6.3. The orientation of these velocity vector fields is
depicted in more detail in Figure 6.4, which shows the values of the three velocity
components, revealing also the different orientations of the simulated pulse waves.

For all tests below, a random data error of magnitude δ was added and the iteration
was stopped using the discrepancy principle (2.6) together with the choice of τ = 1.
Furthermore, if not noted otherwise, the matrix H introduced in Section 6.3.3 is used
instead of the wavelet embedding described in the same section.

As a first test, we use our method without any special options, i.e., neither using the
weak divergence-free option, nor the sparsity or the wavelet embedding option. The
resulting approximation, achieved after 90 iterations, can be seen in Figure 6.5. The
structure of the vessels can clearly be identified and also the reconstructed velocity is
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Figure 6.5: Result of the algorithm applied to the test problem (δ = 1%), using no
additional options. Velocity norm MIP (left) and colour direction MIP (right).

Figure 6.6: Result of the algorithm applied to the test problem (δ = 1%), using
the weak divergence-free option. Velocity norm MIP (left) and colour direction MIP
(right).

partially correct. However, the sinusoidal structure of the initial signal ρ0 is visibly
transferred to the reconstructed velocity.

Figure 6.6 shows the results of the second test: the weak-divergence free option was
included in the reconstruction algorithm, which now stopped after 126 iterations. The
reconstructed velocity is much smoother than before, now resembling the true solu-
tion much more closely. However, as could be expected, using the weak divergence-free
calculation option leads to a smoothing of the solution, clearly visible in the recon-
struction around the vessels.

For the next test, we apply the algorithm together with the wavelet embedding option.
The stopping criterion was met after 121 iterations and the results can be seen in
Figure 6.7. A comparison with Figure 6.5 shows that using this option mainly leads
to a smoothing of the reconstructed velocity, comparable to but not as strong as using
the weak divergence-free option.
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Figure 6.7: Result of the algorithm applied to the test problem (δ = 1%), using the
wavelet embedding option. Velocity norm MIP (left) and colour direction MIP (right).

Figure 6.8: Result of the algorithm applied to the test problem (δ = 1%), using the
weak divergence-free and the wavelet embedding option. Velocity norm MIP (left) and
colour direction MIP (right).

The results of combining the weak-divergence free and the wavelet embedding options
can be seen in Figure 6.8. This time, the iteration terminated after 162 iterations and
once again one can see the strong smoothing effects of the two calculation options. As
we later see in Table 6.3.5, of all the combinations of different reconstruction options,
this one yields the third best result.

Next, we present some results of using the sparsity option, together with either the
divergence-free or the wavelet embedding option. For this, we need to choose an α,
see (6.3.4). A good choice turns out to be α = 10−3, which was used for computing
all presented results. Figures 6.9, 6.10, 6.11 and 6.12 show the results of the different
combinations, the iteration stopping after 71, 100, 99 and 138 steps, respectively. Note
that all iterations involving the sparsity option were terminated before satisfying the
discrepancy principle, since the residual stopped decreasing monotonously but rather
started to oscillate around a certain value.
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Figure 6.9: Result of the algorithm applied to the test problem (δ = 1%), using the
sparsity option with α = 10−3. Velocity norm MIP (left) and colour direction MIP
(right).

Figure 6.10: Result of the algorithm applied to the test problem (δ = 1%), using the
wavelet embedding and the sparsity option with α = 10−3. Velocity norm MIP (left)
and colour direction MIP (right).

Comparing Figure 6.7 and Figure 6.10, we see that the edges are now more sharply
reconstructed, although the result itself does not look much better then when using
no additional options at all. This also holds true for only using the sparsity option
alone, see Figure 6.9. However, Figure 6.11 strongly shows the advantages of com-
bining the divergence-free and the sparsity options. The initial signal ρ0 only slightly
affects the reconstructed solution and the sparsity option removes some of the smear-
ing introduced by the divergence-free option, producing very nice results. Even better
results are obtained when combining all three calculation options, which can be seen
Figure 6.12, most notably at the plus shaped vessel in the centre of the figure and at
the diagonal vessels, especially at the middle one of the three, which, despite the crude
discretization and the smoothing introduced by the divergence-free and the wavelet
embedding option, is reconstructed rather nicely.

In Table 6.3.5 we have collected some important information about the results pre-
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Figure 6.11: Result of the algorithm applied to the test problem (δ = 1%), using the
weak divergence-free and the sparsity option with α = 10−3. Velocity norm MIP and
colour direction MIP.

Figure 6.12: Result of the algorithm applied to the test problem (δ = 1%), using the
weak divergence-free, the wavelet embedding and the sparsity option with α = 10−3.
Velocity norm MIP and colour direction MIP.

sented above. The first three columns contain information about the used calculation
options, the fourth column contains the iteration index k∗ at which the algorithm was
terminated and in the fifth column, the error between approximated and true solution
(denoted by (~v †, ~ρ †

0 )) is given. Here we have used the standard Euclidean ℓ2-norm
for measuring the error, in order to allow for a fair comparison between those results
which were achieved using the wavelet embedding option and the ones not using it.
Once again it can be seen that the best results are obtained using all three calculation
options in the reconstruction algorithm.

For our next test in this section, we adapt the simulation parameters to better fit
the natural stimulation data set considered below, i.e., we use the same simulation
phantom as before but now with spatiotemporal resolution ∆x = ∆y = ∆z = 1.4mm
and ∆t = 0.0417 s (i.e., ∆T = 1.25 s; note the difference in size between phantom
and natural stimulation data set) together with L = 9. Furthermore, since the PWV
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div-free wavelets sparsity k∗

∥

∥

∥
(~v δ

k∗
, ~ρ δ

0,k∗
)− (~v †, ~ρ †

0 )
∥

∥

∥

ℓ2

Figure 6.5 no no no 90 16.9658
Figure 6.6 yes no no 126 9.2904
Figure 6.7 no yes no 121 16.4324
Figure 6.8 yes yes no 162 8.8878
Figure 6.9 no no yes 71 17.179
Figure 6.10 no yes yes 100 16.7834
Figure 6.11 yes no yes 99 5.6577
Figure 6.12 yes yes yes 138 5.5245

Table 6.3: Comparison of the results of the reconstruction algorithm applied to the test
problem (δ = 1%), achieved using combinations of the different computation options.

Figure 6.13: Result of the algorithm applied to the modified problem (δ = 1%), where
all involved velocities were multiplied by a factor of 104, using the weak divergence-
free, the wavelet embedding and the sparsity option with α = 10−3. Velocity norm
MIP (left) and colour direction MIP (right).

can reach up to 10m/s, we multiply the velocities in all the vessels with a factor of
104 to simulate this fact. It is obvious that with those choices, condition (6.66) is far
from being satisfied and hence, one can no longer expect to achieve similarly good
results as before. The reconstructions computed with our algorithm using all three
computation options can be seen in Figure 6.13, the iteration having stopped after 7
iterations due to a detected increase of the residual. One can clearly see that as a result
of (6.66) not being satisfied, the velocities are strongly underestimated, which, even
if one were to ignore the increase in residual and continue the iteration, could not be
overcome. The problems related to high pulse velocities or large wavelengths, as well
as the artefacts arising from them, can only be overcome by improved data acquisition
techniques and have been discussed previously [79,80]. However, the algorithm is still
able to detect the location of the vessels as well as some small qualitative differences in
the norm of the velocity vector field. Furthermore, it is also still able to extract some
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information about the directions of the PWV, especially for vessels with a thickness
of one voxel. Due to the high velocities in this simulation, in vessels thicker than
one voxel neighbouring voxels perpendicular to the flow direction influence each other
strongly, which leads to a somewhat distorted velocity vector field reconstruction in
them.

Figure 6.14: Result of the algorithm applied to the modified problem (δ = 1%), where
all involved velocities were multiplied by a factor of 104 with initial signal (6.67), using
the weak divergence-free and the wavelet embedding option. Velocity norm MIP (left)
and colour direction MIP (right).

In the above examples, the initial signal ρ0 defined by (6.63) was used to create the
data. As can be seen from (6.64), this choice leads to a signal with a wavelength
independent of the PWV. However, in the real world data set examined below one
expects the wavelength to increase with the PWV, the signal having a pulse around 1
Hertz and a wavelength between 1 to 10 meters. In order to simulate this behaviour,
we adapt our initial signal as follows:

ρ0(x, y, z) = sin

(

2π (x+ y + z)

‖v̄‖2

)

. (6.67)

Prescribing for example the unidirectional velocity v̄ = (c, 0, 0) as in (6.64), we now
get

ρ(x, y, z, t) = sin

(

2π(x− c t)

c

)

, (6.68)

from which we see that the wavelength of the signal now depends on the PWV in
the desired way. Using the same phantom as in the previous test but with PWVs
up to 10m/s, the reconstruction algorithm using the weak divergence-free and the
wavelet embedding options produces the results depicted in Figure 6.14. The calcula-
tion stopped after 6 iterations due to a detected increase of the residual. As expected,
the periodic modulation in the horizontal vessel visible in some of the previous results
disappears, but also the direction estimate in the same region becomes inaccurate; the
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thinnest vessel disappears and the horizontal vessel direction is not visible anymore.
These results might show the limits of our simplified phantom simulations but also
should be considered as possible artefacts in interpreting real-world data, which is
studied next.

Natural Stimulation Data Set

In this subsection, we test the applicability of our algorithm to real-world data sets.
For this, we use a publicly available natural stimulation dynamic EPI data set obtained
on a 7.0 T MRI scanner [31]. Subjects were listening to an audio version of a movie.
The data set includes eight 15 minutes long segments for each subject, of which the
first 20 seconds of the second one were used for analysis. The transversal slices covered
most of the frontal and occipital cortex and the regions in between. Data was sampled
with a pulse repetition time (TR) of 2 s and an isotropic spatial resolution of 1.4
mm. The data set also contains time-of-flight angiography images of about the same
coverage as the EPI data, as well as pulse oximetry data.

We want to apply our algorithm to different subjects of this data set, for which Voss
et al. have already tried to reconstruct the pulse wave velocity using their multiple
regression approach [80]. In order to do so, we need to adapt our stopping rule, since
the discrepancy principle defined in (2.6) relies essentially on knowledge of δ, which,
as is usually the case in real-world situations, is not given explicitly. However, an
estimate of the data error can be made by looking at the background voxels, i.e., those
voxels which are known to lie outside the brain and which therefore should have value
0 if no noise were present. The corresponding calculations suggest that for our data
set, the relative data error is approximately 2 - 3%. This estimate, combined with the
discrepancy principle and a check for monotonous decrease of the residual suggests to
stop the iteration after 15 - 25 iterations.

The upper two figures of Figure 6.15 show the results of applying our algorithm with
the above described changes to subject 16 of the real world data set. Here we used the
divergence free, the wavelet embedding and the sparsity option, this time with α = 104

and the computation was stopped after 20 iterations. As before, the upper left image
shows the velocity norm MIP over the z-axis and the upper right image the colour
direction MIP of the reconstructed velocity ~v. One can clearly see the location of the
major blood vessels and arteries, as well as their orientation, even though the expected
PWV is severely underestimated (see below). The norm of the velocity vector field
has maximum 0.1495, mean µ = 0.0011 and standard deviation σ = 0.0034. In order
to generate the figure, a slight scaling was introduced, cutting all values in the MIP
which are above µ+5σ. The colour direction MIP was slightly brightened in order to
enhance visibility.

For comparison of our proposed and the previously used method, the lower two figures
of Figure 6.15 depict the results of the multiple regression approach, applied to the
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Figure 6.15: Results of our proposed algorithm (upper two figures, 20 seconds of data)
and the regression-based algorithm (lower two figures, 15 minutes of data), applied
to subject 16 of the data set. Velocity norm MIPs (left) and colour direction MIPs
(right).

same subject 16 of the data set, using a 0.05 Hz cut-off filtering preprocessing step
and all 15 minutes of the second segment of the data set. Again, a µ + 5σ scaling
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and a slight brightening of the colour direction MIP were used for better visibility.
One can see that while the previously used algorithm mainly yields estimates of the
PWV in the main arteries and blood vessels, our new algorithm is able to resolve finer
structures as well, using only a fraction of the data. Note that the previously used
algorithm applied to 20 seconds of data would yield a result hardly distinguishable
from white noise.

For certain subjects of the data set, the regression approach of [80] yields very unsat-
isfactory results. This appears to be due to the heart rate of the subjects having an
unfavourable frequency and the data error being higher in those cases. The results of
the regression approach and our proposed algorithm applied to one of those subjects,
subject 2 of the data set, can be seen in Figure 6.16. The differences are quite obvious
and can be attributed to two main reasons. Firstly, our algorithm works with much
less data then the regression approach and secondly, by stopping the iteration after a
certain amount of steps, we get a regularizing effect. Consequently, the effects of data
error can partly be compensated and therefore, better reconstructions are obtained.

Please also note, that the calculated velocities using the real-world data set, which are
around 10−5 m/s, differ by orders of magnitude from the expected pulse wave velocity,
which can exceed 10m/s. One reason for this is the high amount of noise in the data,
which can only be partially controlled using appropriate filters. Another reason is
the low spatiotemporal, in particular the low temporal resolution of the MRI data;
condition (6.66) is far from being fulfilled and hence the algorithm, after a certain
amount of iterations, is no longer able to improve the approximation, which leads to
underestimated velocities. The same problem has already been observed in [79], where
the velocities were severely underestimated as well. This phenomenon, although most
clearly understandable from the point of view of the finite difference approximation
and condition (6.66), is also quite likely to appear, in one or another form, when using
other discretization techniques as well.

6.3.6 Discussion of Results

The advection model was intended to model travelling pulse waves, but there might be
other travelling disturbances along blood vessels or nerves in the brain. For example,
it has been observed that endothelially mediated vasodilation related to functional
brain activation travels along small blood vessels [34]. High-resolution dynamic MRI
data that would be potentially able to resolve this phenomenon with MRAI already
exists [85], although on spatial scales much smaller than used here. Furthermore,
due to its sensitivity to pulsatile components of the signal and due to dramatic ad-
vances in dynamic MRI data acquisition [54], MRAI might have future potential to
contribute to the modelling of the cerebrovascular system and to serve as a biomarker
for cerebrovascular disease. It should also be noted that the methods described herein
are quite general and could in principle be applied to spatiotemporal dynamics across
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Figure 6.16: Results of our proposed algorithm (upper two figures, 20 seconds of data)
and the regression-based algorithm (lower two figures, 15 minutes of data), applied to
subject 2 of the data set. Velocity norm MIPs (left) and colour direction MIPs (right).

a wide range of dynamic imaging applications in medicine and other fields (with an
adaptation of the PDE model to the specific situation).

Concerning our proposed velocity estimation algorithm, the numerical simulation re-
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sults of Section 6.3.5 clearly demonstrate the good reconstruction abilities of our
method, especially when used with a suitable combination of the currently available
options (weak divergence-free, sparsity, wavelets). This points to an advantage over
the regression approach of Voss et al. [80], namely the high flexibility of our approach.
Considering the parameter estimation problem of MRAI in the framework of inverse
problems, a vast array of techniques becomes available, leading to improved results.
While the regression based method is more or less inflexible, our proposed approach
can easily be adapted to include different or newly developed reconstruction options.

Another advantage of our algorithm is its ability to produce appealing results with
only a small amount of data. Where the multiple regression approach requires at least
a couple of minutes of measurements, our algorithm, as we have seen in Section 6.3.5,
can produce nice qualitative results from only a couple of seconds of measurements.
This might prove advantageous in practice, where long scan times often need to be
avoided.

Although working on numerical phantom simulations, when applied to the real-world
data sets, both the regression based approach and our proposed reconstruction method
produce qualitative results only. As mentioned above, the most important reasons for
this are the high amount of data error and the low spatiotemporal resolution of the
data when compared to the expected magnitude of the PWV. Hence, in order to
achieve better results, MRI data with higher resolutions and less noise need to be used
in our algorithm. One possible way towards this would be to use advanced imaging
methods such as multiband EPI [54], where a whole stack of slices is acquired in a
time that normally allows only for the acquisition of a single slice, which leads to a
much higher spatiotemporal resolution.

6.4 Further Examples

In this section, we want to comment on further examples in which TPG methods or
variants thereof have been successfully employed to solve ill-posed problems.

Perhaps the first time Nesterov’s accelerated gradient method was used methodically
within the area of Inverse Problems is the Fast Iterative Shrinkage-Thresholding Al-
gorithm (FISTA) [7]. There, it is used to solve linear inverse problems with sparsity
constraints. More precisely, given a matrix A ∈ R

m×n and data b ∈ R
n, the minimiza-

tion problem of Tikhonov type

min
x

‖Ax− b‖22 + λ ‖x‖1 , (6.69)

is solved using the algorithm

zk = xk +
k−1
k+2

(xk − xk−1) ,

xk+1 = Sλt

(

zk − 2tAT (Azk − b)
)

,
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where t is a stepsize and Sα : Rn → R
n is the shrinkage operator defined by

Sα(x)i = (|xi| − α)+ sgn (xi) .

Note that this is just Nesterov’s acceleration scheme in its extended version (2.19),
applied to the minimization problem (6.69).

As noted in Chapter 2, the use of the TPG method (2.22) as a regularization method
for linear ill-posed problems was first investigated by Neubauer in [61]. In this paper,
the author presents examples based on a Fredholm integral equation of the first kind.

Possibly the first application of a TPG method of the form (2.22) to nonlinear ill-posed
problems was given in [44], where the author uses a variant of (2.22) in Banach spaces
to speed up a Landweber-Kaczmarz method with inexact inner solvers. In both a
numerical example concerning the estimation of the parameter c in

−∆u+ cu = f , in Ω , (6.70)

u = g , on ∂Ω , (6.71)

from measurements of u and an example from computed tomography, the idea of (2.22)
was used to speed up the employed iterative procedure.

Finally, the TPG method (2.22) was recently used in [40,75] to solve an inverse problem
of quantitative elastography with internal measurements, namely the estimation of the
spatially varying Lamé parameters (λ, µ) from displacement field measurements u
induced by external forces. The underlying model connecting these quantities are the
equations of linearized elasticity

− div (σ(u)) = f , in Ω ,

u |ΓD
= gD ,

σ(u)~n |ΓT
= gT ,

(6.72)

where ~n is an outward unit normal vector of ∂Ω and the stress tensor σ defining the
stress-strain relation in Ω is defined by

σ(u) := λ div (u) I + 2µ E (u) , E (u) :=
1

2

(

∇u+∇uT
)

, (6.73)

where I is the identity matrix and E is called the strain tensor. This problem was
formulated as a nonlinear operator equation and the strong tangential cone condition
(2.7) was proven for the (realistic) case that λ, µ are known in a neighbourhood of the
boundary. Afterwards, the TPG method (2.22) was used to obtain various numerical
reconstructions on both simulated and experimental data.



Chapter 7

Conclusion and Outlook

In this chapter, we summarize the contributions of this thesis and present a short
outlook with possible future work in connection with the presented results.

7.1 Conclusion

In the first part of this thesis, we considered general TPG methods of the form (2.23) as
regularization methods for nonlinear ill-posed problems in Hilbert spaces. It was shown
that under the standard assumption of a tangential cone condition and combined with
a suitable stopping rule, many TPG methods give rise to convergent regularization
methods. In particular, this includes TPG methods based on constant stepsizes as well
as the steepest descent and the minimal error stepsize. Additionally, different choices
for the combination parameters λδk were investigated and proven to lead to convergent
regularization methods. Furthermore, a TPG method based on the original choice for
λδk of Nesterov’s accelerated gradient method was investigated and convergence was
shown under a local convexity assumption on the residual functional.

In the second part of this thesis, we considered various numerical examples in which
TPG methods were applied to both academic and practically relevant problems.
The academic examples based on a nonlinear Hammerstein operator and a diagonal
operator served to show that the assumptions required for the convergence analy-
sis can indeed be satisfied for particular problems, and the presented numerical re-
sults are clearly in favour of TPG methods compared to other gradient-based meth-
ods. This motivated us to look at more practical problems based on SPECT and
Auto-Convolution. While the local convexity assumption is satisfied for the Auto-
Convolution problem under a sparsity assumption, it is not clear whether this is also
true for SPECT. However, also in this case the numerical results clearly illustrate the
advantages of TPG methods. Finally, numerical results on the medical imaging tech-
nique of MRAI were presented, for which TPG methods are especially important due
to the large datasets involved.
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Although no analytical results are yet available proving that indeed less iterations
are required when using TPG methods (2.23) compared to other first-order methods,
these numerical results clearly show their advantages in practise. Besides the fact that
much fewer iterations are necessary to arrive at suitable solutions, the implementation
of TPG methods is exceedingly simple. Furthermore, they requiring hardly more com-
putation time than their non-accelerated counterparts per iteration step. Due to the
numerically demonstrated great reduction of the required number of iterations, TPG
methods can serve as a viable alternative to commonly used second-order iterative
methods, especially when dealing with large-scale inverse problems, where the latter
ones often become impracticable.

7.2 Outlook

Various further directions and extensions of the work presented in this thesis are
possible, some of which are listed here:

• First, it would be interesting to find out whether weak convergence of the TPG
method based on the original Nesterov choice for λδk can be proven under the
assumption of a tangential cone condition instead of a local convexity assumption
and whether the result can be strengthened to strong convergence.

• Secondly, as for other iterative regularization methods, convergence rate results
under source conditions or variational inequalities are desirable.

• Thirdly, it would be interesting to see what would happen analytically if sparsity
conditions or other projections are built into the TPG methods via the proximal
operator and whether or not convergence can still be guaranteed in this case.

• Fourth, the task of finding weaker and more inclusive convergence conditions
both for TPG methods and for iterative regularization methods in general is a
pressing task for future work.

• Fifth, the improvement of the MRAI technique to obtain quantitative results for
example by using different PDE models or using new higher resolution datasets
will go a long way to make MRAI a medical imaging technique for the future.

• Sixth and finally, proving a nonlinearity or local convexity condition for SPECT
would guarantee local convergence of iterative regularization methods and hence
place SPECT on a more sturdy theoretical foundation.
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[49] D. J. Korteweg. Über die fortpflanzungsgeschwindigkeit des schalles in elastischen
röhren. Annalen der Physik, 241(12):525–542, 1878.

[50] S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz,
B. Pannier, C. Vlachopoulos, I. Wilkinson, H. Struijker-Boudier, and Eu-
ropean Network Non-invasive. Expert consensus document on arterial stiff-
ness: Methodological issues and clinical applications. European Heart Journal,
27(21):2588–2605, 2006.



BIBLIOGRAPHY 108

[51] J. K. J. Li. Dynamics of the Vascular System. Series on Bioengineering and
Biomedical Engineering. World Scientific, River Edge, N.J., 2004.

[52] D. A. Lorenz, P. Maass, and P. Q. Muoi. Gradient descent for Tikhonov func-
tionals with sparsity constraints: theory and numerical comparison of step size
rules. Electron. Trans. Numer. Anal., 39:437–463, 2012.

[53] A. K. Louis. Inverse und schlecht gestellte Probleme. Teubner Studienbücher
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