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ABSTRACT. In this paper we present an algorithm that takes as input a gener-
ating function of the form []s,, [Tn2, (1 — @®™)s = 3°%° Ja(n)g™ and three
positive integers m, t, p, and which returns true if a(mn+t) = 0 (mod p),n > 0,
or false otherwise. Our method builds on work by Rademacher [12], Kolberg
[6], Sturm [17], Eichhorn and Ono [3].
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INTRODUCTION

Throughout this article M denotes a positive integer, and r = (r5) denotes a se-
quence of integers r5 indexed by all positive integer divisors § of M.

In this paper we present an algorithm that takes as input a generating function of
the form J[; 5, [0, (1 —¢®™)ms =35> ja(n)g™ and three positive integers m, ¢, p,
and which returns true if a(mn +t) = 0 (mod p),n > 0, or false otherwise. A
similar algorithm for generating functions of the form []°7 , (1 —¢™)™ (i.e. the case
M = 1) has already been given in [3]. Our original plan was to implement that
algorithm in order to prove some congruences from [1]. The algorithm we present
here and the one in [3] both have in common that at the end one has to check that
the congruence is true for the first coefficients up to a bound v that the algorithm
returns, and then to use the theorem of Sturm [17] to conclude that it is true for
all coefficients. However we noticed that for our purpose the bound v given in [3]
was extremely high for some inputs. Encouraged by comments of Peter Paule we
examined the problem in more detail. Finally our study resulted in a significant
improvement of estimating the bound v a priori. Our main tools to derive a better
bound v are the ones used by Rademacher [12], Newman [10]; Kolberg [6] was
another major source of inspiration.

The organization of this paper is as follows: In section 1 we present the basic
terminology. In section 2 we prepare some results needed to apply the theorem
of Sturm. The main result, Theorem 2.13, can be viewed as a generalization of a
theorem of R. Lewis [8]. In section 3 we estimate functions at different points; this
is needed in order to prove they are indeed modular forms. In section 4 we show
how to apply the theorem of Sturm in order to prove our desired congruence. In
section 5 we conclude by giving some examples.

sradu@risc.uni-linz.ac.at, supported by the FWF grant SFB F1305.
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1. Basic TERMINOLOGY AND FORMULAS

We use the notation X =, Y if X and Y are congruent modulo v.

For integers m and n we let throughout ged(m,n) denote the greatest common
divisor of m and n which is always normalized to return positive values.

Let a be an integer relatively prime to 6, i.e. ged(a,6) = 1. For such a one can
easily show that a? — 1 =94 0. Similarly if ged(a,3) = 1 then a? — 1 =3 0, and
finally, if ged(a,2) = 1 then a? — 1 =g 0. This facts will be used throughout the

text.

For a positive integer N we define the following matrix groups:

My(Z)* = {( ‘Cl Z ) |a,b,c,d€Z,ad—bc>0},

>€M2(Z)*|ad—bc:1},

There is an explicit formula for the index (e.g. [15]):

(1) T:To(N)] =N]J(1+p7").
pIN

Throughout we use the following conventions:

N* denotes the positive integers.
q:= eQﬂ‘iT.

7(7) denotes the Dedekind eta function for which
(2) n(r):=q» [J(1-q").
n=1

H:= {z € C|Im(z) > 0}.
H* :=HUQU {co}.

o v = i Z € My(Z)* acts on elements 7 € H* as y7 := ?:_ts because of
the formula Im(y7) = (ad — be) ‘Ef}f;fz (e.g.[15]). Let f(7) be a function of

7. We will later use that f(v1(y27)) = f((7172)7) where 71,72 € My (Z)*.
o [z],, denotes an element of Z,,. (Note: [z],, = [y|m iff z =, y.)

Definition 1.1. Let k € Z. A modular form of weight k for a subgroup G of T is
a function f(7) defined on H* such that:

(1) f(7r) is holomorphic in H;
(2) (et +d)~*f(y7) = f(7) for all T € H* and all v € G;
(3) for all y € T the function (ct +d)~* f(y7) has a Taylor series expansion in

powers of q%, n a positive integer, which converges in a nontrivial neigh-
borhood of 0.
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Definition 1.2. Let a € Z. For an odd integer n > 0 we define:

e Ifn=1 then:

» (&)=

e Ifn is a prime p then:

o @

k

0 ifpla
) = 1 if a is a square modulo p
—1  otherwise

o Ifpit -...-pp¥ is the prime factorization of n then:

)G

The symbol ( ) is called the Legendre-Jacobi symbol.

a
n

Lemma 1.3. Let n > 0 be an odd integer, then the following relations hold:

e Ifa and b are integers then

® ()= () o

Proof. See [13], page 71. |

a

Definition 1.4. We define € : {(a,b,c,d) | ( .

Z ) € I'} — C to be the unique
mapping that satisfies

9) () = (—i(er + d))? e(a, b, e, d)n(r),

a b *
forall'y(c d>EFandTEH.

a

Remark 1.5. This definition is meaningful because for all v = b > e I' and

d
7 € H* we have n?*(y7) = (e + b)2n**(7) (e.g. [14]). This also implies that

€24 (a,b,c,d) = 1 for all ( LCL Z ) el.

For v € T with ged(a,6) = 1,a > 0 and ¢ > 0 Newman [10] determined € as

(10) e(a,b,c,d) = (E) o %5t (c—b-3)

a
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Lemma 1.6 (Newman [10]). Let N € N*, k € Z and f : H* — C a function

such that for all v = ( CCL Z > € T'o(N) with ged(a,6) = 1,a > 0,¢ > 0 we
a b

have f(y7) = (et + d)?)f(7). Then for all v = ( e d

fyr) = (er +d)** (7).
Definition 1.7. Given a positive integer m let o(t,7) : [0,m — 1] x H* — H* be
a function with expansion ¢(t,7) = ¢~'> " ja(n)q™. Let S, be a complete set
of non-equivalent representatives of the residue classes modulo m. For k € N with
ged(m, k) =1 we define:

(11) Mot = 3 o (1752

AESm

) € To(N) we have

In this paper we are always choosing

(12) k= ged(1 — m?, 24).

With this choice clearly ged(k, m) = 1.

Another property needed later is as follows:

Lemma 1.8. Let x be as defined in (12), then 6|xm.

Proof. One can proceed by case distinction. For instance, if 2 4 m and 3|m, then
m? — 1 =g 0 because of ged(m,2) = 1. Hence by (12) we have 8|k, thus 6|xm. The
other cases are similar.

O

Lemma 1.9. Given positive integers m and k, let p(t,7) be as in Definition 1.7.
Then we have:

(13) My, ((t, 7)) =m Z a(mn +t)q

Proof. By Definition 1.7 we have

(e%S)
Mm,ﬂ(‘P(LT)) B Z 6727‘-7;75‘,-?7A Za(n> 27r1n"+"’\
AES, n=0
Z 2‘"“—t 27”7”- Z 6271'1)\ »t+»ww
n=0 AESm
27\"m't 2mwinT
=2m o™
_20
:mza(mnﬂ)q%qﬁq"
n=0
00
3 almn + 0
n=0

Note that the sum ), o e 2mIA TR equals m if —kt + kn =, 0. This is exactly

m

the case when n =, t. For n #,, t the sum is 0. O
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Definition 1.10. Let M € N*. By R(M) we denote the set of all integer sequences
(rs) indexed by all positive divisors 6 of M.

Definition 1.11. For m,M € N*, t € N such that 0 <t <m —1 and r = (r5) €
R(M), we define:

(14) far)y =Tl TJa =" =) aln)q",
8| M n=0 n=0
and
2404+ 5) s 575 oo
(15) gma(T,r) =g Y a(mn+1)g".

n=0
Lemma 1.12. Form,M € N*, t € N such that 0 <t <m—1 andr = (r5) € R(M)

we obtain the following representation:

2min A (=24t =Y 5| 0y 675)

(16) Gmt(T,7) = % X_: e s [ (CS(T:;H/\)) '
A=0

5| M

25|M ST

Proof. Using (2) we see that f(r,r) = ¢-— = H6|M 7" (d1). Next applying
M, to o(t,7) := q " f(7,7), by Definition 1.7 we see that:

3

- S THR > Sr 6 )\
My a(ip(t, 7)) = 3 TR =0 T s (mm)

m
A=0 Y
—24t—Y 5|51 076 m—1 2rind(—24t—3 5| 0p 675) S(T + KN)
=q 24m E e 24m H nTS — 7).
m
A=0 Y

Alternatively by Lemma 1.9 we obtain:

24145 0s 575

Mol 7)) = m 3 almn 410" = mg " FH (),
n=0

Comparing the two expressions for M, .(¢(t, 7)) we obtain our assertion. O

The following lemma will be used at several occasions:

Lemma 1.13. Given a real number k and maps f : H* +— C and g : T’ x H* — C.

Suppose for all v = ( Z Z ) eI and for all T € H*:

(et +d)Ff(v7) = g(v, 7).

Then for all £ = < g g ) € My(Z)* and for all T € H*:

—k
(ESaCr 4D sien)

— (( waio Y > ged(A,O)r + B + Dy)

B CR - AD—BC
ged(A,C) gcd(A,0)

where the integers x and y are chosen such that Az + Cy = ged (A, C).
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Proof. Define

A
— [ edtae) Y ;[ gcd(A,C) Bz + Dy
vi=| Y and 7 = ( AD-BC |-
<gd<Ac> & ) 0 £ed(A.0)

Then the statement follows from the relation £ = vy’ and by

k
fEr) = f(y(v'n)) = (md(ic)(ﬁ) + :v) g(v.A'7).

2. THE FUNCTION gy, (7,7) UNDER MODULAR SUBSTITUTIONS

Throughout this section we will assume that ged(a,6) = 1,a > 0 and ¢ > 0 so
that (10) will always apply and a? =,4 1. For this reason it will be convenient to
introduce the following notation:

(17) To(N)* :={y €Ty(N)|a > 0,c> 0,ged(a,6) = 1}.

Because M and r = (rs) are assumed as fixed we will write g, +(7) = gm.(7,7)
and f(7):= f(r,r) throughout.

We are interested in deriving a formula for g,, ((y7) with v € I'o(N)* where N is
an integer such that for every prime p with p|m we have also p|N, i.e.,

(18) p|m implies p|N,

and such that for every §|M with r5 # 0 we have §|mN, i.e.,

(19) 0|M implies §|mN;

and some additional properties which we will specify later. For our purpose it is
convenient to define the following set:

Definition 2.1. We define

A= {(m,M, N, (rs)) € (N*)? x R(M) | ™M N and (rs) satisfy }

the conditions (18) and (19).

a b

Lemma 2.2. Let (m,M,N,(rs)) € A, v = ( e d ) € To(N)* and X\ a nonnega-

tive integer. Then:

(i) There exist integers x and y such that
(20) (a + kAXe)x +mey =1
and where y := yo(mrc)? for some integer yq.
(ii) There exists an integer a’ satisfying a’a =24, 1.
Let x,y and o’ be as in (i) and (ii). Then for
bx — ba'm?

(21) W= Adzx +

the following statements hold:
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(iii) For € as in Definition 1.4, 7 € H* and 6| M with rs # 0 we have
O(yT + KN)
K m

(22) — |
= (=i(er + ) e(a + rAc, —8y, <=, x)n (wa) o Zmighme
0 m
and
mc mcd (at+rAc)mi .
0y, —,x) = [ ——— e = (me/o=3)
(23) e(a+ rAe, —dy, 5 ,T) <a " /1)\0) e .

(iv) The value p is an integer, and if A runs through a complete set of represen-
tatives of residue classes modulo m then so does u; i.e., A — p is a bijection
of L, .

(v)

(24) A\ =, pa* — ab

1—m?

Proof. We prove each part of Lemma 2.2 separately.

(i). We know that the equation

(25) (a + KAc)z + meyo(mre)® = 1
has integer solutions = and yq iff

(26) ged(a + ke, me(mre)?) = 1.

To prove (26) it suffices to prove ged(a+ kAe, m) = 1 and ged(a+ ke, ke) = 1. We
have that

ged(a + kAe, ke) = ged(a, ke).
But ged(a, ¢) = 1 because of ad — be = 1, and ged(a, k) = 1 because of ged(a,6) =1
by assumption and k being a divisor of 24. Next we see that ged(a + ke, ¢) =
1 implies ged(a + kAe, N) = 1 because Nlc. But ged(a + kAe, N) = 1 implies
ged(a 4+ kAe,m) = 1 by (18). This proves (26).

Note: Because of y = yo(mrc)® Lemma 1.8 gives
(27) Y =20.

(#i). The assumptions ged(a,6) = 1 and ged(a, ¢) = 1 imply that ged(a, 24¢) = 1,
which is equivalent to the existence of an integer a’ such that a’a =24, 1.

(22). For € as in Definition 1.4 let

(28) C = (—i(er + d))? e(a + ke, —5y,%,x).

For this part of the proof we exploit the relation:

(29)

) (5((a+/<a)\c)7+b+n>\d)> — o <6T+5(b+f£)\d)x+md6y>

metr + md m

which is valid under the assumption that (a + xAc)z + oy = 1.

Note that "¢ is a positive integer (N|c and, by (19), §|mN), and that (a+ kAc)z +
dy™s¢ = 1 because of (20).
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Relation (29) is proven by applying Lemma 1.13 with f(7) = n(7), k = 1/2,

AL b
g(’Y,T) = (_1)26(a07bO’COadO)n<T)77 - ( CCLO do ) el
0 0

me md

and ¢ ( 0(a+ rAc) 0(b+ rAd) ) .
We will also need that for all integers j we have as a trivial consequence of (2):

2mij

(30) n(r +7) =n(r)e=r.

Consequently,

(by substituting for )

77(5(77+M)> n(5((a+mc) +b+n>\d))

m meT + md

(57’ +o(b+ /f)\d)x + mdéy)
=Cn

(by (29))

<5T+5 b+md) )

Cn (by (30) and (27))

_cn (67’—1—5 b—l—f{)\d)x—ébam

+ 6ba'm)

01 + o( b—l—/{)\daz—ébam 2misa’bm
—on ) )= oy (20)
5 T+ K 2widalbm "bm
=Cn ( a ) E (by (21))
=Cn <5 T p ) g (because of a’ =24 a).

In the last line we used fact (ii), namely aa’ =4, 1. This together with a? =4 1
implies that a =24 @’ because of uniqueness of the inverse.

(23). First note that

(31) ged(a + kKAe,6) =1,

because of k¢ =g 0 by Lemma 1.8 and (18) together with N|c.

We have that
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e(a + kX, =0y, 5C,JC)
_ (anicécj\c) o~ AT (1 /546y —3) (by (10) and (31))
_ <anicéic> o AT (e /53) (by (27))
N <anlcféic> (a —fiAc) o e bl
- <a Tfj)\c) ¢ I Ome/3-9) (by (6))

The third equality is shown as follows. If ged(a 4+ kAc,0) = 1 then Definition

1.2 implies that (a fi/\c) = 1. To prove relative primeness we see by (18) and

(19) that each prime p dividing 0 also divides N and consequently also ¢. So
ged(a + kAe,p) = ged(a, p). But since ple and ged(a,¢) = 1 by ad — be = 1, we
conclude that ged(a + kAce,d) = 1.

(iv). In order to prove that y is an integer we need to show that bz — ba'm? =, 0.
By (25) we obtain ax =,; 1. We also know by (%) that aa’ =24, 1. Because of k|24
by (12), we have that aa’ =, 1. From this follows that z =,; (d’a)x =, d'(ax) =, '.
Consequently,

bx — ba'm? =, bx — brm? =, bx(1 —m?) =, 0,

using x|(1 — m?) from (12).

Next we show that the mapping A — p is a bijection of Z,, by providing an inverse
using the observation that:
bz — ba'm? bz — ba'm?
— o oam =, Mz implies A =,,, (zd) ™ (u — w).

K K
The only non-trivial step is to show that d and z are indeed invertible modulo m.
First of all, z is invertible modulo m because of (25). Because of ad — bc = 1 we
have that ged(c,d) = 1, and since N|c we have that ged(V,d) = 1. By (18) we get
that ged(m,d) = 1 which shows that also d is invertible modulo m.

(v). By (25) we have that ax =,. 1. From aa’ =24 1 and k|24 we conclude that
aa’ =, 1 which implies z =,. @’ by uniqueness of the inverse.

Because of the relation ad — be = 1 we have that ad =, 1. From ax =, 1 it follows
that az =, 1 which implies d =, = by uniqueness of the inverse.

Next we will show the validity of

1—m?

(32) t=c A 4 bd
K

by the following chain of arguments starting with the Definition (21):

1—m?

Kt =ke kAdx + b — ba'm? =,.. kAdx + bx — bxm? =,.. k(Adx + bx

)

which implies that

1—m? 1—m?
M — A%+ bd %m.

1 =c Adzx + bx
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We thus have proven (32). By multiplying the last congruence with a2, we obtain:

1—
pa® — ba =\
K

We have again used that the inverse of d is @ modulo c.

O

In order to arrive at our main result, Theorem 2.13, we need to introduce some
additional assertions, Lemmas 2.3 to 2.10.

Lemma 2.3. Let l,j be integers and C,a,s non-negative integers such that:

he relation p|l implies p|C' for any prime p;
cd(a,l) = 1;
=2%j where 7 is odd;

) ¢
) &
)1
) a is odd and C is even.

(1
(2
(3
(4

Then for any non-negative integer \:
l l AC(i—1) 2aAC4A2C?
— )= (-1 1) ® .
(3) (s550) = (5) o =

Proof. By a similar reasoning as in the proof of (23) we see that ged(a + \C, 1) =
for all integers \.

Next we can write j = jijo where j; is squarefree and js is a square. Clearly j;|C
by assumption. Then:

(a +j/\0> - <a le0> (af)\c> (by (6))

= (a le0) (because of ged(a + AC, j) = 1)
e e L

:(_1)%% (a —;1A0> (because of jo =4 1)
=)y (;) (because of a + AC =;, a)
—-* (L) (by (8)

—(-1) (i) (by (6) and because of (‘7;) =1).

Summarizing, we have proven:

(i) - (2)

Next,

() o= ()
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is easily seen by

<a+2m> =) (by (7))

—-1=e (2) (by (7).

a

The following derivation concludes the proof:

(a+lxc> - <a+2>\0>5 (a+j)\C) (by (6))

_ <2) (J) (21)254=2 (Lq)sepie? (by (34) and (35))

- (i) e e e (by (6)).

O

In order to make the next lemmas more readable we need to introduce some helpful
definitions:

Definition 2.4. A tuple (m, M, N, (r5)) € A is said to be k-proper, if

mN
(36) kN Z Ts 75 =924 O’
§|M
and
(37) KN 15 =50,
8| M

for k = ged(1 — m?,24).

Definition 2.5. For (m,M,N,(rs5)) € A, v = < . d

a b > € T'o(N)* and X a non-

negative integer we define:

a+ KA

rirgsam Irsl (aimacymi
(38) ﬂ(,y’ )\) — 625‘M : gi E H ( med > 67% EM}VI r(;(mc/éfi?»).
6| M

Definition 2.6. For M a positive integer and (rs) € R(M) let n(M, (r5)) :== (s,7)
where s is a non-negative integer and j an odd integer uniquely determined by
H6|M §lrsl = 254,

a b
d
(s,7) :=7(M,(rs5)). Then for A a non-negative integer the following relations hold:

[rs] )
(39) 6(7’)\) — H < med ) e S (Z(ﬂl\l %’"5725|NT55mb*325|M ’"5)7

Lemma 2.7. Let (m,M,N,(r5)) € A be k-proper, v = € To(N)*,

Ry a+ KAc
and
B(v,0) s if ke=g 0
40 I6] 7,)\ = rAc(j—1) g2amdetnZaZe? .
@) - Ar ) { B, 0)(—1) 2 (LRt s 2
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Proof. (39): From its definition 8(v, A) can be rewritten as

sl v
:H< meo ) e_Wnga(Z(;\M7‘5%_25\1\4”11767‘5_326\MTB)

S a+ KA

e "7"1”2“(25\1\4 s BE =335 rs).

Because of Nlc, (36) and (37) we can conclude that } s, rsck®¢ =24 0 and
mczé‘Mrg =g 0. Hence

(41) i OV e PIRIVEL

(40): Condition (37) implies that either } 5,75 =2 0 or kKN =g 0. From (39) by
Lemma 2.3 we see that if kc =g 0 then 5(y,\) = B(v,0), A > 0.

If > 510 s =2 0 we have
0 ( sme >T6' _ <H§|M5”|> oy (6)
v a+ KAc a+ kAe

N <H5|M glrs!

rXce(j— arAc mz 262
) (-1 Re=t) (—1)32 At (by Lemma 2.3)
a

ome\"!meen esesstae
11 <a) (—1) 25 (Lpye e (by (6)).
o|M

In view of (39) this implies that
(42) B, A) = B(7,0)(-1)

rAce(j—1) gQanAc+»2>\2cz
4 “ 8

(1)
Note that in order to apply Lemma 2.3 above we need to verify that p| H6|M slrsl

implies p|kc and that gcd(a,HalMéh”é‘) = 1. This follows from (18) and (19)
together with ged(a, ¢) = 1 because of ad — be = 1.

a
Lemma 2.8. Let (m, M, N, (rs5)) € A be k-proper, v = ( ZL Z ) elo(N)* and t
an integer with 0 <t < m — 1 such that the relation
24
(43) e I N,

ged(k (=24t = 355 07s), 24m)
holds, then for T € H* we have that

Xs|MTs 27riab(17m,2)(24t+25‘]w 5rs)
2 e 24m

gm,t(77) = (—i(er +d))

(44) 1 m—1 2minpa®(—24t—Y 5|5 675) O+ K
r H
o E B, Ne am H U <( )) )

m
A=0 s|M

where 1 is defined as in (21).

Proof. Given two integers A, \’ such that A =, X, relation (43) implies
A N,

24m
gcd(247n,—24t726|1u Srs)

consequently
2miXk (=24t = 5| pp 575) 27ri>\/n(724t725‘M srs)
e 24m = e 24m
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Therefore by (v) in Lemma 2.2 we conclude that:

2miXk (=24t 5| g 575) 2”““&27,;1)(%”#))(724%26‘1\4 sr3)
(45) € 24m =e 2dm
Hence,

1 m—1 2miRA(—24t— 5| pp 876) 5 1 RA

gm,t(”)/T) = Z e 24m = H 77""5 <M)
m m
A=0 5|M
(by (16))
25|M TS
=(—i(ct +d))” 2

2minA(—24t=3 5 ps O7s)

m—1 S
~ % > B Ne 2 117 (W)
A=0

5| M

(by (22), (23) and (38))

Xs|MTs 27riab(171n2)(24t+25‘]\/1 5rs)

=(—i(er+d)) = e 2am
m—1

2minpa?(—24t—3 Srg) K}
B(%)\)e 24m AR Hnm ((T—I_H'u)>

m
A=0 s|M

(by (45)).

O

Z e To(N)*, and

t an integer with 0 <t < m — 1 such that (43) holds. Let t' be the unique integer
satisfying 0 <t <m —1 and t' =, ta®> + % Z&M ors. Assume that kKN =g 0,
then for T € H* we have that

(46)  gm.i(y7) = B(7,0) (—i(cT +d))

Lemma 2.9. Let (m,M,N,(rs)) € A be k-proper, v =

Tsjmrs  2miab(1-m?) (2464 5| 875)
2 e 24m gm,t’ (7—).

Proof.

Xs|M TS 27tiab(17'7712)(24t+26|M Srs)
2 e 24m .

gm.i(Y7) = B(7,0) (=i(er +d))

m—1 )
S ()
m m

A=0 8| M

(by (44) and because (7, 0) = B(7,A), A € Z by (40))

Xs|M TS 27riab(17m2)(24t+25‘]v1 5rs)

:/6(7’ 0) (_i(CT + d)) 2 e 2am gm,t’(T)
(by (16) and (iv) in Lemma 2.2).

O

b
© ) € Tov,

(s,7) == w(M,(rs)) and t an integer with 0 < t < m — 1 such that (43) holds.
Assume further that 3 5, rs =2 0 and 2|m.

Lemma 2.10. Let (m,M,N,(rs)) € A be k-proper, v =
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(i) If s =5 0 let t' be the unique integer satisfying t' =, ta® + %5+ Z&\M ors —
?’mcazifl) and 0 <t' <m — 1. Then for 7 € H* we have that

(47)
gmt(y7) = (=1) i B(7,0)
Xsm s 2miab(1—m?)(24¢+55 5y 575)

(iler+d) T e g (7).

(ii) If ke =4 0 let t' be the unique integer satisfying t' =, — 3’”65“ + ta® +
%ZMM ors and 0 <t' <m — 1. Then for T € H* we have that

Imi(yT) = (=1)" 1 [(%,0)
Ts|n s 2miab(1—m?)(240+ 55 pp 675)

(iler+d) T e G (7).

Proof. (i):
XM TS 27r7‘,ab(1—7n2)(24t,+25‘M 5rs)
gm (Y1) = (=iler +d)) 7 e o B8(7,0)
—1 2
1 »-fAr(] 1) 2minpa®(=24t—3 5|0y 675) 5(7- + H/J)
—_ 24m s _—
T [Dr ("
A=0 §|M
(by (44) and (42), together with 2|m which implies 2|c because of (18))
abe(1—m?2)(j—1) X5|IM TS 27r7‘.ab(177n2)(24t+25|M 5rg)
=(=1) ; B(v,0) (zi(er +d)) > e =
1 2= W@ C(J 1) 2mikpa?(—24t—5pp 675) . (5(7’—|—H,u)
R m ) P S
g E e g [ (=,
A=0 5| M

(by (24) and ¢ =5 0)

abe(1—m2)(j— = iab(1—m?)(24t+ 5| 51 076)
=) (0,0 (et ) e
imz 27rim‘ua.2(37nc(j;i)7;24t726|1u 5rs) Hnm (5(7—4,/{#))
i 5|M m
c(1—m2)(j—1) Ssim s 2miab(1—m?)(24t+3 BRI
:(_1)ab 1 T—Z j—1 6(770) (—i(CT 4 d)) 5 e o 5| M
-1 i
e e 1 EL (av + nm)
m = v m
(by substituting for t')
abe(l—m?2)(j—1) ) E5|IM TS 27riu,b(177n.2)(24t+25|1u 5rg)
=(-1) i B(v,0) (=iler +d)) = e 2am G (T)

(by (16) and (iv) in Lemma 2.2).
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(ii):
EsiM s 2miab(1—m?)(24t+Y 5 p 75)
gma(y7) = (—iler +d)) = e 5(7,0)
1

m—

2minpa?(—24t— 5r
1 Jeagpe 2 (2025 1y 79) ke (5(T+nu)>
m m
/\:0 s|M

(by (44) and (42))
sa?be(1—m? Ssim s 2miab(1—m?)(24t+3 5rs)
== B0.0) (iler +d) T e T

knades 27riwua2(—24t725 M OTs)
. l (_1) “4 (& 24m : | I nTJ (6(7— + KJM))
m m
A=0 5| M

(by (24) and ¢ =5 0))

saZbe(1—m2) Tsim s 2miab(1—m?)(24t+5 5|5y 675)

=(=1)" T B(,0) (miler +d)) 7 e =
m—1 ]
1 2minp (=24t =Yg 0y 67g) 5(7 + ’f,u)
P— m TS —_—
Ly e (2

5| M

(by substituting for t')

sa2be(1—m?2) X5|IM TS 21riab(17m2)(24t+28‘M srs)

=(=1)" T B 0) (—iler +d)) 7 e 2 Gm,v(7)

(by (16) and (iv) in Lemma 2.2).

Note that if 24 m then kN =g 0 and Lemma 2.9 applies. If 2|m and kN #g 0 then
the Lemma 2.10 applies.

Let (m, M, N,(rs)) € A and s, j integers such that 7(M, (r5)) = (s,7). In the next
theorem we will also assume that:

(49) kN =400r s =50,
and
(50) 24N or 8N(1—j) or 8 Ns.

Definition 2.11. We define
A" :={ all tuples (m, N, N,t,(rs)) with properties as listed in (51)} :

(m, M,N,(rs)) € A is k-proper, t e N0 <t <m —1;

1
(51) in addition (43), (49) and (50) hold.
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Definition 2.12. Let m, M, N € N* and (rs) € R(M). Define the operation ® :
To(N)* x{0,...,m—1} —{0,....,m—1}, (v,t) — v O, where fory = ( ZL Z )
the image v ® t is uniquely defined by the relation

2
-1
(52) YOt =y, ta® + a4 Z ors.

Finally we arrive at the main theorem of this section which can be viewed as a
generalization of a theorem of R. Lewis; see Remark 2.14 below.

Theorem 2.13. Let (m, M, N,t,(rs) =r) € A*, gy (7,7) be as in Definition 1.11,

v = < Ccl b > e To(N)*, and 8 as in Definition 2.5. Then for all T € H* we have

d
that
(53)
S5|M TS Cab(1-m?) (241435 ps O75)
271

gm.i (y7,7) = B(7,0) (=i(er +d)) 7 e 2o "Gt (75 7).

Proof. If kN =g 0 then (53) follows from Lemma 2.9. If KN #g 0 then 2|m, and
because of (49), either (i) or (7)) in Lemma 2.10 apply. When (i) applies we have

% =,, 0 because of (50), and consequently ' = v ®¢. Also because of (50)
abe(l=m?) (-1 . . a b
we have that (—1)— 2~ in (47) is equal to 1 for all < ¢ d ) € I'y(N)* and

(53) holds. When (ii) applies, the proof is analogous.

Remark 2.14. Theorem 2.13 extends Theorem 1 in [8] which covers products of the
form [[2 (1 —¢™)™ where r; is a fixed integer.

3. FORMULAS FOR @y, ((y7) WHEN v € T’

Usually ¢im,i(7) = gm,(7,7) as defined in Definition 1.11 is not a modular form.
But if we choose a sequence (as) € R(N) properly, we can always make sure that

(Htlep(t) gm,t/(T)) (H6|N nes (57’)) (with P(t) as in (66)) is a modular form. To
prove this we need some formulas for [[s 1" (6(y7)) and for gm(y7) that are
valid for all v in T', in order to check condition (&) in Definition 1.1 of a modular
form. This is done in the Lemmas 3.1 to 3.6 below.

Recall that k = ged(1 — m?,24).

a b

d
d >0 and A an integer let (0, ) and y(J,\) be any fized solutions to the equation
d(a+ rAc) - (9, X) +me - y(0, X) = ged(d(a + kAc), mc). Further define

_ged(d(a + rAe), me)T + (b + kAd)z(5, X) + mdy(d, \)
- )
gcd(6(a+7:)\c),mc)

Lemma 3.1. Let (m,M,N,(r5)) € A and v = € I'. For §|M with

(54) w(d, A, y) :

Then there exists a map C' : T +— C such that for ally € T and 7 € H* the following
relation holds:

) Do (") = ctpter + o [T (w6, 0)).

s\ M S| M
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In addition, there exist mappings C' : T' +— C and p : Z — 7Z such that for all
v €To(N) and 7 € H* the following relation holds:

56) [[n (W) = C'()(er +d)F Zam s [ (5(”“#@))) 7

m
§|M §|M

where (i is chosen such that [Ny — [(A)]m s a bijection of Zy,.

Proof. (55): Let v = ( Z Z > € I'. Apply Lemma 1.13 with k set to %, f(7)

d(a+ kAe) 5(b+ KkAd) ) * then
m md

to n(r), g(~,7) to (—i)%e(a7 b, c,d)n(7) and & to ( .

for all 6|M with § > 0 the following relation holds:

ged(6(a + kAc), me) 3 0((a+ KAS)T + b+ kAd)
(e e ) (M)
d(a + KkAc) me

=D edGte+ e, me) VO gedat mae),mo)

(8, ) n(w(d, A, 7))
Taking the product over 6|M on both sides and using that

o (T (Mot b))

proves (55).

(56): In order to prove (56) we first will prove that ged(d(a + kKAc), me) = ¢ if Nlc.
By (19) we see that é|mc hence ged(d(a + kAc),me) = dged(a + ke, %5¢). Also
since ged(a + kAc, ¢) = 1 because of ad — be = 1, and ged(a + kAe,m) = 1 because
of (18), we can conclude that ged(a 4 kAc, %€) = 1. Next, for A € Z let 2¢(\) and
yo(A) be any solutions to the equation (a+ kAc)zo(A) + meyo(A) = 1. Then we can
define x(0, \) := xo(A) and y(d, ) := dyo(A) because of ged(d(a + kKAc), me) = 4.
Consequently,

(57) n(w(E A7) = 1 (

Next, let X and Y be integers such that kX +mY = 1. Such integers clearly exist
by (12). Define p(A) := (b + kAd)Xzo(\). Then

, <6(T+W(A))> ) (5(T+ k(b + nAd)Xmo()\)))

0T + 0(b+ kAd)xo(N)
m

+ 5dyo()\)) .

(58) m m
— <5(T +(® t:Ad)xO(A)) Y+ nAd)xo()\)) .
This shows that
n(w(d, A, 7)) = en (W)

for some 24-th root of unity e because of (30) and by (57) and (58). It only remains
to show that u is a bijection of Z,,. Note that xo(\) is invertible modulo m because
of (a + kXe)zo(N) + meyo(A) = 1 implying (u(A\)X txg(N) "t — b))k~ td~t =, .
Note that d is invertible modulo m because of ged(e, d) = 1 which by (18) implies
ged(m, d) = 1. O

Remark 3.2. Note that (56) is very similar to (22) in Lemma 2.2 but here we lifted
the restriction ged(a,6) =1, a >0, ¢ > 0.
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Lemma 3.3. Let vo € T, (m, M,N,(r5)) € A, t € Z with 0 <t < m —1, and
define the mappings p: T x [0,...,m —1]— Q andp: T — Q by

1 ged?(8(a + kAe), me)
(59) P =57 > s o :
5| M
and
(60) p(y) = AE{O{g{r;n_l}p(%/\)-

Then for all v = ( UCL Z > € Io(N)vwls there exists a positive integer k and a

Taylor series h(q) in powers of q% such that for T € H* we have
(61) (cr +d) ™% 2o T g, (y7) = h(g)g").

Proof. We write vy = ( Z Z ) = YNY0Veo Where yy = ( av by ) €L(N), V00 =

CN dN
1 bso _( a0 bo
( 0 1 > el and’yo—( o do € I'. Then

guam) == 3" e [ (W)
A=0

5| M

(by (16)) with suitably chosen C; : {0,...,m — 1} — C)

=(en(107e07) + i) F Eone s

m—1
% > ColpN) [ <6(7°%°T ha W()\)))
pn=0

m
5| M

(by (56) with suitably chosen C5 : {0,...,m — 1} — C)

=((en (YoYooT) + dn ) (co(YooT) + do)) 2 2sina s

% Z_ Cg(,u()\)) H 0 (ng (5(&0 + HM(A)E;)L, mC)T + C4(M()‘)))
n=0 8| M

(by (55) with suitably chosen C3 : {0,...,m—1} — Cand Cy : {0,...,m—1} +— C)

1

=(cT 4 d)2 Zsim "

1 ’"Z o) 51}4 o (ng2(5(ao e me)r ¢ C4(M(>\)))
et (2020 ) (20 &) (5 )= (0 0)

m—1

=(eT + d)% 2sim T Z 03(H(A))QP(W’H(A))h(N()‘)v q)
1(A)=0
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(where for each u()), h(i()),q) is a Taylor series in powers of ¢>**(70:#(N) by (2))

=(cT + d)% SsmTs qp(’yo)h(q)

(with h(q) := gP() ZZZOI 03(N()\))qp(%,ﬂ()\))*?(%)h(u()\)’ q))-

(]
Lemma 3.4. Let N € N, (a5) € R(N), f(7) := [[5;xn*(67), and define the

mapping p* : I' — C by p* (( ag Zz )) — izaw%ﬁico)_ Then for all

Co
v = Z Z € I there exists an integer k and a Taylor series h*(q) in powers of

q% such that
(62) (cm+d) "2 o 2 f(37) = b ()g” D).

Furthermore, for v1 € T' and 5 € To(N)71 T we have p*(v1) = p*(y2)-

Proof. Let ws = ged(da, c) ng(‘sa’c)T;‘M”d“ where x5,ys € Z such that adxs +
cys = ged(ad, ¢) for any fixed §|N with 6 > 0. Then

da
a,c) Ws —Ys
(e + d)ié 25N s H n® (ovy1) =(cT + d)*% 25N @5 H ne (W{_)
5|N 5N ged(da,c) WO T T

=C [ n" (ws)

5N

(by (9)) with suitably chosen C' € C)

=Cqg?" H h*(6,q)
5IN

(by (2) for some Taylor series h*(d,q) where §|N (with constant term 1)). This
proves (62).

To prove the remaining part of Lemma 3.4 let v; = < (Cl 2 ) and v, = < é g )
al

/
Because of vo € T'o(IV)71T o we have that 79 = YN ¥17e0 for some vy = ( N Z/ > €

To(N) and 7o = (1) bi’o € I's. This shows that ¢ = ad’ N + d'c¢ and
clearly ged(d',¢/’N) = 1 because of a’d’ — ¢/ Nd’ = 1. For §|N this implies that
ged(0,C) = ged(d, ac’é% + d'c) = ged(d,d'c) = ged(d,¢). By this we have shown
that the sums p*(v1) and p*(72) have the same summands which proves that they
are identical. (|
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Theorem 3.5. Let (m, M, N, (r5)) € A, t € Z with0 <t <m—1, p be as in Lemma

3.8, (as) and p* be as in Lemma 3.4, and vy € I'. Then for all v = ( CCL Z ) €

To(N)voT s the expression

(63) g~ PO (0 (or 4 d)fé PINTVECEEDINIY % gt (Y7) H 1% (5(77))
3IN

. . . 1 ., .
finds a representation as a Taylor series in powers of q% for some positive integer
k.

Proof. By Lemmas 3.3 and 3.4, for each v = ( Z Z ) € I'p(N)y s there exists
a positive integer k, and Taylor series h(q) and h*(gq) in powers of ¢* such that

(64) (cr +d)~2Eoma s+ Eain @) g (y7) [ 7% 6(y7)) = h(@)h*(q)g? o)+ o),
5|IN

O

Lemma 3.6. Let F': H* — C be a mapping, k an integer, and | a positive integer.

Assume that for all v = ( LCL Z

series h(7, q) in powers of ¢ such that for all T € H* the relation (cr+d)~*F(y7) =

h(v,q) holds. Then for all v = ( ‘Cl Z

a Taylor series h*(vy,q) in powers of qv%’ such that for all T € H* the relation
(et +d)"FF(I(y7)) = h* (7, q) holds.

) € I there exists a positive integer n and a Taylor

) € T there exists a positive integer n' and

Proof. We apply Lemma 1.13 with f(7) = F(7), g(v,7) = h(v,q), £ = < acl l()il >,

g := ged(al, ¢), and x, y some integers such that alz 4+ cy = ¢g. As a consequence we

have that
Y q#e%rlig (blz+dy) .
x )

Choosing n’ = 7271 and

h*(v.q) = (g/)*h << _xy ) et (b1m+dy)>

concludes the proof. O

@) (Yertd) fam) =0 ((

Qlowe |8,

Qlow |,

Definition 3.7. We define
Ly, =[]0 € Zn|ged(z,n) = 1},
and
Sn = {y’ly € Z;,}.

Lemma 3.8. For all integers w > 2 we have 243 ¢ s = [0],. If ged(w,6) = 1
then 3 cs. 5= [0]w-
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Proof. 1f ged(w,6) = 1 then [22],, € S,, which implies that [2%], Doses, S =
Zsesw s. This is because multiplication by an element of S,, just permutes the
summands. Consequently [2% — 1], > s s = [0]w, but 22 — 1 is invertible mod-
ulo w and we can conclude that > ¢ s = [0],. If we assume that w = 2°3" then
[5° 1w D45, 8 = [0]w. Next consider a general w = 2°3"u, ged(u, 6) = 1. We have
a ring isomorphism ¢ : Zasze, +— Zgsgt X Zy, given by ¢([x]aezey) = ([x]2s3¢, [T]0)-
Obviously,

$(24w Y o) =o(24l) D (s
sESy, sc SU7
s’ e Sosat

=¢([24]w)([See3lu Y 8, [ISullosae Y 9)

€8, 5E€8,s4t
=([24Sull2sze > 5, [24S2e5ellu Y 8) = ([0]2e3¢, [0]u).
S€S253t SESy,
Since ¢ is an isomorphism its kernel is {0}, which proves the lemma. O

Definition 3.9. For m,M € N*, (r5) € R(M) andt € N with 0 <t < m —1
we define the map ©® : Sogm x {0,...,m — 1} +— {0,...,m — 1} where the image
[s]2am®t is uniquely determined by the relation [s]oam®t =, ts + 5t 26 0T
We also define

(66) P(t) := {[s]24m®t[s]24m € S2am}-

Lemma 3.10. Let m,t, M, N be positive integers with 0 <t < m—1 such that (18)
holds. Let (r5) € R(M), v = < z Z ) € T'o(N)*, and © as in (52). Moreover,
define

- 24m
 ged(k(24t + D siaa 7o)y 24m)

Then the following statements hold:

(1) Ot = [a2]24m@t.
(ii) [ J24m Ot = [Y]2am Ot iff x = y for all z,y € Z.
i

ii)

(i
(67) P(t) ={yotly e To(N)"}.
(iv) For [$]oam € Saum we have

)

(68 P(t) = {[s]oamOt'|t' € P(t)}.

Cab(1—m?) (24t + 35 pp O7s)
K2

(V) x = [Tyepm €7 S is a 24-th root of unity.

Proof. (i): If v € To(N)* then ged(a,6) = 1. By (18) and because of ged(a, N) =1
we also have that ged(a, m) = 1, hence ged(a, 24m) = 1. This means that [a?]24,, €
Sg4m. (’LZ) Assume that [81]24m6t = [82]24m6t for [81]24m, [82]24m S Sg4m. Then

24 Z 0rs)

8| M 8| M

slt—I—i

because of ged(k, m) = 1. Consequently,

K(24t+ ) 075)(51 — 52) Zo4m 0
S| M
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and thus,
S1 — S92 = 0.

(#i): By (i) we have
(69)
{yotlyelo(N)"}
a b

:{[a2]24m@t| ( c d ) S Fo(N)*} - {[8]24m6t|[8]24m S S24m}.

To show the other inclusion let [$]a4s, € Sa4sn. By definition there exists an [a]o4,, €
Z 4 such that [s]aam = [a%]24m. Because ged(a,24) = 1 we have ged(a,6) = 1. We
want to show that there exists a A such that ged(a + 24 m, N) = 1 because then
there exist integers x and y such that

a+ 24 m -y
N z

and the other inclusion is shown. It is sufficient to show that for each prime p with
p|N there exists an integer A\, s.t. ged(a + 24 ,m,p) = 1 because then by Chinese
remaindering there exists a A s.t. for all p|N we have that A =, X\,. If p is such
that p|N and p|24m then we simply choose A, = 0. If p|N and p { 24m and p|a
then choose A\, =1, if p { a choose A, = 0.

) Ot = [s]oam®t

(iv): We have to show that given [s]aam € Saam, the mapping [s]o4m®t : P(t) —
P(t) is a bijection. This is clear because the inverse is [s]5,} ©t.

(v): Let S be a subset of Sayy,, such that for [r1]oam, [r2]2am € S we have ry Z,, 1o,
and such that for all [s]oam € Soam there exists [r]aam € S with r =, s. Then by
(ii):
P(t) = {15+ 222 S0 0rs[slaan € 5},
5| M
It is straight-forward to prove that the set S gives a complete set of representatives
of S,,. Next note that

n,b(l—m,z)(24t/+z5“\/f 5rg)

X = H e2mi 24m

t'eP(t)

sab(1—m?)(24t4+3 5| 57 675)

= I | e2mi 2dm

[s]w ESw

27riab(1—m2)(24t+z5u\4 5rs)
=e 30m 2w

Since £|(1—m?) and 24 Y s s =, 0, by Lemma 3.8 we conclude that y is a 24-th
root of unity.

O

4. PROVING CONGRUENCES BY STURM’S THEOREM

4.1. Proof Strategy. Let M be a positive integer and r = (rs) € R(M). Let
Frr) = s [nzy (1 = @)% = 3202 a(n)g™ be as in Definition 1.11. Let m
and u be positive integers and ¢t an integer satisfying 0 <t < m — 1. We want to
prove or disprove the conjecture a(mn-+t) =, 0,n > 0. It is convenient to introduce
the following definition:
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Definition 4.1. For u a positive integer and c(1) := Y. ° c(n)g" a power series
we define ord, (¢(7)) := inf{n | utec(n)}; we write ¢(7) =, 0 if ord, (c(7)) = oc.

First note that if ¢;(7) and co(7) are power series in ¢ and if p is a prime number
then the relation ¢;(7)c2(7) =, 0 implies either ¢1(7) =, 0 or c2(7) =, 0.

Let v/ be a divisor of u and assume that we already know that u'|a(mn + t) for all
n > 0. If we can prove that 2mntt) =, 0 for some prime p dividing u/u’, clearly
it follows by induction that a(mn +t) =, 0,n > 0. In other words, our aim is to

prove

which in turn is equivalent to proving

(70) H(r):= (i/ Z a(mn + t)q") hi(1) =, 0,

n=0

where hq(7) is a power series in ¢ with hq(7) #, 0. We will choose h1(7) in such
a way that H(7) becomes a modular form of weight &k for some subgroup G of T’
and some positive integer k. Then by Theorem 4.2 below it is sufficient to show
that ord,(H(r)) > &[' : G] in order to conclude that H(r) =, 0 and hence
a(mn +t)/u’ =, 0,n > 0. In order to derive a bound for ord,(H (7)) we will use
that for given power series ¢1(7) and co(7) with ord,(ci(7)) > by for some b; € N

and ord,(cz(7)) > by for some by € N then ord,(c1(7)ca(7)) > by + ba.
We will consider two types of congruences:

Type 1: a(mn+1t) =, 0,n > 0;
Type 2: a(mn+t') =, 0,t' € P(t),n > 0.

Obviously congruences of Type 2 are special cases of congruences of Type 1 but we
have observed that one can be “|P(t)| times faster in practical computations” when
considering congruences of Type 2. At the current stage this observation relies on
experimental data and is not yet proved;for a comparison see Example 5.2.

Before entering a detailed discussion of how to prove congruences of Type 1 and 2
we recall a theorem of J. Sturm.

Theorem 4.2 (Sturm [17]). Let k be an integer and c(t) = >~ ¢(n)q™ a modular
form of weight k for a subgroup G of T'. Assume that ord, (c(1)) > %[F : G] then
c(1) =, 0.

For setting up the lemmas in the next two subsections we have collected valuable
ideas from [16, p. 134, Cor. 9.1.4], attributed to Buzzard.
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Proving Congruences of Type 1.

Lemma 4.3. Let (m, M, N,t,(r5) = r) € A*, (a5) € R(N), n be the number of
double cosets inTo(N)\I'/Too and {71,...,7} C T a complete set of representatives
of the double cosets To(N)\I'/T'so. Assume that p*(v;)+|P(t)|p(y:) >0 for1 <i <
n and with p and p* as in the lemmas 3.3 and 3.4. Next define:

1
vimor | | 2o as+IPOIY s | [D:To(N)] = Y das
5IN 3|M SIN
1 ,|P(t)]
_ - Z t — A Z(ST(;.
t' e P(t) S|IM

Then for f(r,7) = > " a(n)q" and gm(7,r) as in Definition 1.11 the following
statements hold:

(1) {(TTyepy gme ()T LN 0 (07))}** is a modular form for the group T'o(N)
of weight 123 5 n as + 12[P(t)[ 2250, 75

(ii) For anyu € N* we have: Iford, (Y .o ,a(mn+t)q™) > v then Y~ a(mn+
t)q" =, 0.

Proof. (i): Let v = ( ch Z > € To(N)* and let x be as in (v) in Lemma 3.10.

Then:
24

[T gmer) ] =(B(v.00)* (er + d)*FOI2smms | T gy a1, 00 (7)
t'eP(t) t'eP(t)

(by (53), and (i) in Lemma 3.10)

24
(71) :(CT+d)12|P(t)|Zs\M rs H gm,t’(’r)
e P(t)
(by (iv) and (v) in Lemma 3.10).
By (9) we get:
24 24
a((ST) + b(;) 123 a
72 ne (C = (ct+d s o n* (ot
(0 (S5 (er +d) IT(6m

By (71) and (72) we obtain:
24
IT gneGm) | | TTn" GG

t'eP(t) SN
24

=(er +d)'? 2o et PO s rs (T g (r) | [T 07)
t'eP(t) 5|N
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We want to prove that
24

(74) V(r) = [T e | [ TTn"m)
e P(t) §|N
is a modular form of weight 1235\ as + 12|P(t)[ 3255, 7s for the group I'o(N).
Clearly, condition (1) of Definition 1.1 is satisfied. Also condition (2) is satisfied
because of (73) and because of Lemma 1.6. The only assertion left to verify is
condition (3). Let v € To(N)yl'w,? € {1,...,n}, then by Lemmas 3.4 and 3.3
there exists a positive integer k such that h1(q), ..., hp)(q), h*(q) are Taylor series
in powers of g% such that:
(75)
[P0
(e + d) 12 20iv A FLAPMI 20 T8 Y/ (1) = 240" 24P DI (g H hy(

But by assumption p*(y;) + |P(t)|p(7:) > 0, so also condition (3) of Definition 1.1
is satisfied.

(ii): Assume that a(mn +t) =, 0 for some integer v’ that divides u. Let | € N*
be such that
24 24

(76) ho(T) = % H (Z a(mn + t’)qn) H H(l — q5n)a6 ;

t'eP(t),t’#t \n=0 n=16§|N

is a power series with integral coefficients such that for any prime p we have ho(7) %,
0. Then V(,22 in (74) can be written as:

24
Y(’;) l }qut'ep(t)(%t/*i:&w ors)/m H <Z a(mn+t')q”>
v v t’eP(t) \n=0
24

. s das ﬁH (1— g™
n=1§|N

/

0o 24
) (1 > a(mn + t)qn> g7 (A vepo ¥ HPOIZoia 016)+ i 005y (7).
n=0

If we choose hy(7) := ¢™ 7 (24w ep o EHPOI S a0 075)+ 251 %5 ho(7) then in order
a(mn+t) _

to prove =, 0,n > 0 for some prime p dividing u/u’ we need to prove
Vir) = 24
T n —
(77) T = (u, > a(mn + t)g ) hi(r) =, 0,
n=0

which is exactly (70) above. From the above derivation we note that

(78) ordp(hl(T))>% 24 3 P Yo |+ das

teP(t) s|M §|M

which is an integer because of V(7 4 1) = V(7). Because of

L 24
ord, (u’ Z a(mn + t)q") > 24v,

n=0
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by assumption, we have that

1
ordy (757 V(1) > | D as + [P(1)] D _rs | [T+ To(N)]

5N s|M

because of (77), (78) and by substituting according to the definition of . Theorem

4.2 allows us to conclude that ;-5 V(1) =, 0 which implies that M =,0,n>
0.

]

Proving Congruences of Type 2.

Lemma 4.4. Let u be a positive integer, (m, M, N, t,(rs)) € A*, (as) € R(N), n
be the number of double cosets in To(N)\I'/T'w and {v1,...,7n} C T a complete set
of representatives of the double cosets T'o(N)\I'/T'. Assume that p(v;) + p*(vi) >
0,2 = 1,...,n, with p and p* as in the Lemmas 3.3 and 3.4. Furthermore, let
[:=2% i i=mingepe t’ and

1/::% Zag—i—ng [[':To(N)] — Zéag —ﬁZém—t:;n.

5N 5IM 5N 5| M
Then

(1) (ILsn e (167) Yoy e pry Ima (I7))?* is a modular form of weight 12(3 50 st
>_sn @s) for the group T'o(IN).

11 ordy, _pa(mn+t')q") > v jor allt’” € P(t) then _oalmn+t")q" =,

i) Iford, (32°°, )a") > v for allt’ € P(t) then 3277, e
0 for all t’ € P(t).

Proof. (i): Clearly condition (1) of Definition 1.1 is satisfied.

In order to prove condition (2) we only need to consider v € T'o(IN)* because of
Lemma 1.6. Let v = ( ch Z ) € To(IN)* then by Theorem 2.13 the following

relation holds:

~la Q

b ) 2s5|M TS
gm.e (1(y7)) =0 (( d ) ,0) (—i(er+d))” 2
abl(l—m,2)(24t+25‘M 5rg)

(79) . 627”' 24m

(2

p ) ,0) (—i(er + d))

By (79) and (iv), (i) of Lemma 3.10 we obtain:
24 24

(80) ST gme () | = (er +d)=omms | N g0 (ir)

t'€P(t) t'€P(t)

" Im,[a2]oam Ot (lT)
X5|M TS

gm,[a2]24m6t (lT)

~o

By (80) and (72) we obtain:



AN ALGORITHMIC APPROACH TO RAMANUJAN CONGRUENCES 27

24

H 77‘” (5l(77—)) Z Im,t/ (Z(FYT))
SIN veP(t)
24

= ((cr +d)) 2o sot2one ) ( TTpes(5ir) 3™ gp(n) |
5N teP(t)

hence condition (2) of Definition 1.1 is satisfied.

In order to prove (8) in Definition 1.1 fix a ¢’ € P(t), and a v € To(N)y,T'w,i €
{1,...,n}. Then by Lemmas 3.3 and 3.4 there exist positive integers k,k’ and
Taylor series h(q), h*(q) in powers of ¢* and q%, respectively, such that

(82) (er+ d)_u(E&\N AP Té)gm,t,('yr) H 7% (8(y7)) = h(q)h* (q)g? ) +P (00,
8| M

Because of the positivity of p(v;) + p*(7:), there exists an positive integer j such

that h(q)h* (q)g?O)+P" () is a Taylor series in powers of q%. Summarizing, we have
proven that for all ¢’ € P(t) and all  there exists a positive integer k and a Taylor
series h(7, q) such that

(83) (er 4+ d)" P s a5t s 1) g (yr) T 0 (8(v7)) = (v, q).
5| M

Then by Lemma 3.6 there exist positive integers kj,,¢' € P(t) and Taylor series
1
R*(t',7,q),t" € P(t) in powers of ¢** such that
(84) (et +d) o et e g (1(yr)) ] 0 (61(vm)) = 1 (¢, 7, 9).
5| M

This proves that
24

(7 4 d) 2z oo | T (61(37) D g (7)
S|N t'eP(t)

(85) o4

= > »t'va

t'EP(t)

So we have proven condition (3) of Definition 1.1.

(i1): First we note that given positive integers v/, and a power series ¢(7) :=
> s c(n)g™ such that ord, (c(r)) > v/ we have that ord, (3 ;- c(n)g*" ™) >
av' + b for any positive integers a and b.

We have proven above that Va(7) := (L5 x 1% (107) Yoy e p(s) gm.(17))** is a mod-
ular form of weight 12(3 sy as + X250, 75)-

Let v/ be a divisor of u and p a divisor of u/u’. Assume that u'|a(mn+1t") forn >0
and t' € P(t). We have that
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24
Va(r) — g% T ot S Sast 2 b 3 Z m”+t g2t i)
' t’eP(t) n=0
24
H H l5n as
n=1§|N

For this rewriting we have used the definition of g, (), the definition of ! and that
n(7) can be written as an infinite product according to ( ). We observe that

242
(86) ord,( ) > — Z ors +1 Z das —|— tmin + 77711/,
B SIN

by looking at the above rewriting of ‘;2/(22) and using the assumption that

ord, (Z a(mn + t/)qn> > v,

n=0

for t' € P(t). If we substitute for v in (86) we obtain:

Ord Z as + Z rs | [I': To(N)]L.

§|N 5| M

Next observe that [I': To(N)Jl = [T" : To(N1)] because there in no prime ¢ such that
g|l and ¢ 1 N together with (1). Next apply Theorem 4.2 and we obtain ‘;2/(22) =, 0.

This completes the proof.

5. EXAMPLES

Example 5.1. The generating function for broken 2-diamonds according to Andrews
and Paule [1] is given by
rr (-1 —g¢™
A
H(l—q) 1_q10n Z 2

n=1

In this paper they are stating some conjectures about the congruence properties of
this function such as

and
(88) As(25n +14) =5 0,n > 0.

The first congruence (87) has been proven in [5] and the second (88) in [2]. Follow-
ing our approach, alternative proofs can be provided as follows. Since Chan [2] also
proved that Ag(25n4-24) =5 0,n > 0 we can consider this to be congruences of Type
2; i.e., we will apply Lemma 4.4. We observe that (25, 10,10, 14, (1,72, 75,710) =
(=3,1,1,—1)) € A*. A complete set of representatives of the double cosets T'o(10)\I'/T'»
is given by

(10 (0 -1 (10 (10
’YO_ 0 1 7’Y1_ 1 0 772_ 2 1 ?73_ 5 1 .
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Also let (a1, as,as,a19) = (73,—21,—15,5) € R(10). According to Lemma 4.4 we
need to show that p*(vx) + p(vk) > 0,k = 0,1,2,3 which can be readily verified
from the data below.

73 .21 15 5 6
1209 9220 219 qg29 O
P () = 24( 1 5 0 HI) =g
)= (B2 15 5, 60
POv=o\T "9 75 T T
Lo 1,730,210 15,5 30
pr() = g (P =275 = 17 10) = 21
. 1,73 ,21 15 .5
. _12 o2 5222
P (73) 24( 1 3 7 10) ,
1 2 3 2
- (14240-0), 25-0)—°— 2-(14+241-0), 25-0) ——
+ged?(5- (14241 -0),25 - O)L— cd?(10 - (1 + 24X -0),25 - 0) ! )f—i
& 5.25 © : 10-25° 100
(71) = ! — (—ged?(1-(04241-1), 25 1)i+ cd?(2-(04+24)-1) 25.1)L
PO = eformoay 248 BT R P IT:
+gcd?(5- (0 + 24X -1),25 1)L— cd?(10- (0 424X -1),25- 1) ! )——§
& ’ %.5 & ’ 10-25) 2

1 ) 3 ) 1

d?(1-(1424)-2), 25-2) ——— +ged? (2-(14241-2), 25-2) ——

p(72) = et ’24}24( ged™(1-(1+ ),25:2) ;5= teed (2 (1+ ),252) 5=
+ged?®(5- (14241 2),25 - z)i— cd®(10 - (14 24X -2),25 - 2) ! )——§
& 9%5.5 © ’ 10-25" 4

1 ) 3 ) 1
= (14-24\-5), 25.5) —— 2.(1424\-5), 25:5) ———
1 1
d? 14 24\-5),2 —— —ocd?(10 - (1 +24)X-5),25 - =0.
+ged®(5- (1 + 5),25 - 5)5 o5 & (10 (1 + 5),25 5)10'25) 0

Further we have that [I": Io(10)] = 18, 3510 as = 42, 3 51076 = —2 25‘10 ors =
—6 and } 5,00as = 6 hence v = 77(40 - 18 — 6) — 575z - (—6) — 32 = 146/5 ~
30. Consequently by Lemma 4.4 (ii) we have that if Ay(25n + 14) =5 0 and
Ay(25m +24) =5 0 for n = 0,...,30 then Ay(25n + 14) =5 A(25n + 24) =5 0 for
all nonnegative n. Also note that by (i7) in Lemma 4.4 we have that

24

e 24
H (Z Ag(25n + 14)¢>" M 4 Ay (25n + 24)q25"+24> H ] - g®m)yes

n=0 n=16|10

is a modular form of weight 480 for the group I'g(250).

Hirschhorn and Sellers [5] proved that As(10n + 6) =2 0,n > 0. To prove (87)
and Hirschhorn and Sellers result we can again apply Lemma 4.4. This time
we have that (10,10,40,2, (r1,72,75,710) = (—3,1,1,—1)) € A*. If we choose
(as) = (a1,a9,a4,as,as,aig, az, ag9) = (33,—15,0,—6,0,3,0,0) then all condi-
tions of Lemma 4.4 applies and we get that v > 39. Consequently, verification
of Ag(10n 4 2) =5 0 and Az(10n + 6) =5 0 for 0 < n < 39 implies that (87) is true
for all n > 0.
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Example 5.2. The generating function

o0 1 o0 .
L a=ma g = 2 ol

appears in [11]. Here Ono proves that the numbers a(63n + j), j = 22,40,49,n > 0
are divisible by 7.

Ono uses Sturms criterion and needs to compute 148147 coefficients of a certain
generating function.

In order to solve this problem we can again apply Lemma 4.4. We find that
(63,3,21,22,(r1,r3) = (—3,—1)) € A* and see that the Lemma applies with
(as) = (a1,as,a7,a21) = (240,—77,—33,11). We find that v > 182 hence we
need to verify that a(63n 4 22) =7 a(63n +40) =7 a(63n+49) =0 for 0 < n < 182
in order to conclude that this congruences hold for all nonnegative n.

However Ono restates the problem by defining:

o5} [e%e} 1_gn 14 [e%e}
Z b(n)q" = (H 21_373)2> Z a(n)q".
n=0 n=1 n=0

He observes that a(63n+j) =7 0,5 = 22,40, 49 is equivalent to b(63n+7) =7 0,7 =

77.14

22,40,49. This is clear since [[ 7, ﬁ =7 1.

We can again apply Lemma 4.4 to this reformulated problem. With input (63, 21, 21,
22, (r1,r3,r7,7m01) = (11,—1,-2,0)) € A* we see that the lemma applies with
(as) = (a1,as,a7,a21) = (5,—1,0,0). This time we find that v > 16 which is a
huge improvement. Because of a(n) =7 b(n) for all nonnegative n we need to show
a(63n + 22) =7 a(63n+ 40) =7 a(63n+49) = 0 for 0 < n < 16 in order to conclude
that this congruences hold for all nonnegative n.

We can also prove the congruence b(63n + 22) =7 0 with Lemma 4.3 and with
the same input (63,21,21,22, (ry,7r3,77,721) = (11,—1,-2,0)) € A*. We see that
all conditions of Lemma 4.3 are satisfied if we choose (as) = (a1,a3,a7,a21) =
(15,—4,0,0), and we get that v > 45 (approximately 3 times higher in comparison
to using Lemma 4.4). Hence we need to verify that b(63n +22) =7 0 for 0 <n < 45
in order for the congruence to be true for all nonnegative n. Also () in Lemma 4.3
gives us that

24

24
. = (1-—
ST (o)) (5
t/€{22,40,49}

is a modular form of weight 420 for the group I'g(21).

Example 5.3. In this example we are considering several generating functions and
consider their congruence properties. Given a positive integer M we assume a
generating function to be of the form [[y,, [, (=g =3 ja(n)g", and
we abbreviate such a generating function by [[46"¢. In the table below the second
column describes the generating function that we are considering. In columns 3,4
and 5 we specify the integers m, t and p for which we wish to prove that a(mn+t) =,
0,n > 0. The column labeled by N specifies the integer N as in Lemma 4.4. The last
column specifies the (as) in R(N) such that Lemma 4.4 applies; this is also listed
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in the form [] SIN 0% . Finally the column v shows the bound for the “verification

proof”; i.e., that, number such that if a(mn +t) =, 0 is true for all 0 <n < v and
all t in column 4, then it is true for all n > 0.

Ex. | gen. funct. m t| »p v| N (as) € R(N)
1 [ 1732751107 T 25 14241 5 30 [ 10 [ 1727215-1510°
2 173251101 10 26| 2 39 | 40| 1332715576103

14 2405111
3 371173 63| 224049 | 7 182 | 21 LA
4 143- 171 63 22.40,49 7 8| 21 15771
5 1! 5 41 5 1| 5 15
6 11 7 5 7 9 7 187-1
7 1-! 11 6| 11 5| 11 IR
8 1t 25 24| 25 5/ 5 12655
9 1! 49 47| 49 4| 7 15077
10 17! 11313 | t € P(237) | 13 | 103145 | 143 e
11 12131 11313 |t € P(237) | 13 742 | 143 1104719
12 1! 125 74,124 | 125 26| 5 1130525
13 172 5 31 5 21 5 11152
14 172 25 23| 25 10 5 152510
15 178 11 41 11 37| 11 189118
16 131171 11 41 11 2| 11 1!
17 | 251442 625 5731625 | 1301 | 20| LooAlloll
18| Lo 45 2240 | 5 7| 15 163-215!
19 1’;77193 63 49| 7 12| 21 1731
20 | Lo 99 94| 11 22 | 33 1331
21 | L% 171 49| 19 63| 22 1

Remark 5.4. Note that the examples 5,6 and 7 are the famous Ramanujan con-
gruences. Let p(n) denote the number of partitions of n € N; then the entries in
example 5 show that in order to prove p(5n + 4) =5 0 for all n > 0, it is sufficient
to verify that 5|p(4). Similarly if 7|p(5) and 7|p(12) then p(7n + 5) =7 0 for all
n > 0. Finally in order to prove p(1ln + 6) =11 0 for all n > 0 we need to verify
that p(11n 4+ 6) =11 0 for 0 < n < 5. Ono [3] obtains twice as big bounds for the
same congruences.

Remark 5.5. Generally, for some congruences one obtains a much better bound

—_g™\P
if one multiplies the generating function by []°~; %
when one wants to prove a congruence modulo p. This trick has been found by Ono
[3]. In the table above examples 3 and 4 prove the same congruence because their
generating functions are equal modulo p; the same holds for examples 10,11 and

examples 15, 16; however the bounds v differ.

Remark 5.6. Example 17 in the table has been studied by Eichhorn and Sellers [4].
The generating function is denoted in their paper by >~ c$2(n) and corresponds
to 2-colored Frobenius partitions. They conclude that cg2(625n4573) =g25 0, > 0
iff e (625n+573) =625 0,0 < n < 198745. As seen in the table we only require that
c2(625n + 573) =625 0,0 < n < 1301. This improves the number of coefficients
needed to be checked by a factor of approximately 152. In the end of the paper
they are stating that the computation took 147 hours while with our bound we are
decreasing the computation time to less then one hour!

=, 1 for some prime p

Remark 5.7. The congruences in examples 18,19,20 and 21 are studied by Love-
joy [9]. If we multiply the generating function in examples 18,19,20 and 21 by
| % for p =5,7,11,19 we then obtain the same generating function f(q)
(and 9¢f(q) is the generating function for 3-colored Frobenius partitions, e.g., [7]).
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For examples 18,20 and 21, Lovejoy proves the congruences by checking the first
181,505 and 841 initial values while with the methods developed here we only need
to check the first 7,22 and 63 initial values. This gives an improvement by a factor
of 25,22 and 13, respectively.

Remark 5.8. Tt should be noted that there is a difference between what Ono and
Eichhorn (3] do and the approach here. Let f(q) = >~ ja(n)¢" and assume that
we want to prove that > - a(mn+t)¢™ =, 0. Ono multiplies f(q) be a suitable 7
product and gets a new generating function ZZOZO b(n)q™ which is a modular form.
Then he shows that

Z a(mn+t)q" =, 0 < Z b(m'n+t")q" =, 0
n=0 n=0

for suitable m’ and ¢’. Finally he uses a lemma which says that if Y~ b(n)g"

is a modular form for a group T” then also Y.°°  b(m'n + t')¢"™ "' is a modular

form for another group for which he applies the theorem of Sturm. We on the other
hand are transforming Y~ a(mn + ¢)¢" into a modular form by multiplying with
a suitable function hq(g). As we have seen, our method which is a generalization of
the method in Rademacher [12] in practice gives much better bounds v.
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