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INFINITE FAMILIES OF STRANGE PARTITION

CONGRUENCES FOR BROKEN 2-DIAMONDS
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Dedicated to our friend George E. Andrews on the occasion of his 70th birthday

Abstract. In 2007 George E. Andrews and Peter Paule [1] introduced a new

class of combinatorial objects called broken k-diamonds. Their generating func-
tions connect to modular forms and give rise to a variety of partition congru-
ences. In 2008 Song Heng Chan proved the first infinite family of congruences
when k = 2. In this note we present two non-standard infinite families of

broken 2-diamond congruences derived from work of Oliver Atkin and Morris
Newman. In addition, four conjectures related to k = 3 and k = 5 are stated.

1. Introduction

A combinatorial study guided by MacMahon’s Partition Analysis led G. E. Andrews
and P. Paule [1] to the construction of a new class of directed graphs called broken
k -diamonds. These objects were constructed in such a way that the generating
functions of their counting sequences (∆k(n))n≥0 are closely related to modular
forms, namely:

∞
∑

n=0

∆k(n)qn =

∞
∏

n=1

(1 − q2n)(1 − q(2k+1)n)

(1 − qn)3(1 − q(4k+2)n)

= q(k+1)/12 η(2τ)η((2k + 1)τ)

η(τ)3η((4k + 2)τ)
, k ≥ 1,

where we recall the Dedekind eta function

η(τ) := q
1

24

∞
∏

n=1

(1 − qn) (q = e2πiτ ).

This modular aspect in turn led to various arithmetic theorems and conjectures.
For example, M. Hirschhorn and J. Sellers [5] supplied a proof of

(1) ∆2(10n + 2) ≡ 0 (mod 2), n ≥ 0,

which is Conjecture 1 of [1]. In addition, they observed and proved the congruences

∆1(4n + 2) ≡ 0 (mod 2), n ≥ 0

∆1(4n + 3) ≡ 0 (mod 2), n ≥ 0,

and

(2) ∆2(10n + 6) ≡ 0 (mod 2), n ≥ 0,

the latter being a class-mate of (1). The first parametrized families of congruences
were given by S. H. Chan [4]; namely for α ≥ 1:

(3) ∆2(5
α+1n + λα) ≡ 0 (mod 5), n ≥ 0,

P. Paule was partially supported by grant P2016-N18 of the Austrian Science Funds FWF.

S. Radu was supported by DK grant W1214-DK6 of the Austrian Science Funds FWF.

1



2 PETER PAULE AND SILVIU RADU

and

(4) ∆2(5
α+1n + µα) ≡ 0 (mod 5), n ≥ 0,

where λα and µα are the smallest positive integer solutions to

4λα ≡ 1 (mod 11 · 5α) and 4µα ≡ 1 (mod 19 · 5α),

respectively. For example, α = 1 gives the congruences

(5) ∆2(25n + 14) ≡ ∆2(25n + 24) ≡ 0 (mod 5), n ≥ 0;

the first one was stated as Conjecture 2 in [1].

Based on numerical experiments the authors of [1] wrote, “The following observa-
tions about congruences suggest strongly that there are undoubtedly a myriad of
partition congruences for ∆k(n). This list is only to indicate the tip of the iceberg.”
This note tries to continue along this line by presenting further evidence of the rich
arithmetical structure of broken k -diamonds. Our parametrized families of congru-
ences are different from those of Ramanujan type for ordinary partitions; in this
sense our attribute “strange” has to be understood. For example, inspired by Atkin
[3] and Atkin and O’Brien [2], in Section 2 we shall prove (Theorem 2.5) that if p
is a prime such that p ≡ 13 (mod 20) or p ≡ 17 (mod 20), then

(6) ∆2

(

(5n + 4)p −
p − 1

4

)

≡ 0 (mod 5)

for all nonnegative integers n such that 20n + 15 6≡ 0 (mod p). Also in Section
2, inspired by M. Newman we shall prove (Lemma 2.10) that for all nonnegative
integers k:

(7) ∆2

(

4 · 29k −
29k − 1

4

)

≡ k + 1 (mod 5).

As a consequence the entries of the sequence (∆2(n))n≥0 visit all residue classes
modulo 5 infinitely often. In Section 3 we present some concluding remarks and
three open problems.

2. Strange Partition Congruences

The set of natural numbers is supposed to include 0; i.e., we have N = {0, 1, . . .}
and N∗ = {1, 2, . . .}. Writing f(q) ≡ g(q) (mod n) for power series f(q) and g(q)
as usually means: the coefficient sequences agree modulo n. Finally, it will be con-
venient to introduce the following convention: For coefficient sequences (a(n))n≥0

of power series
∑

n≥0 a(n)qn we extend the domain of the argument to the rational
numbers by defining

a(r) := 0 if r ∈ Q\N.

Lemma 2.1.
∞
∑

n=0

∆2(5n + 4)qn ≡
∞
∏

n=1

(1 − q2n)12

(1 − qn)6
(mod 5).

Proof. This follows immediately from S. H. Chan’s result [4, (3.6)],

∞
∑

n=0

∆2(5n − 1)qn ≡ q

∞
∏

n=1

(1 − q10n)4(1 − qn)4

(1 − q5n)2(1 − q2n)8
(mod 5),

by utilizing the fact that 1 − q5m ≡ (1 − qm)5 (mod 5). �
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Defining
∞
∑

n=0

c(n)qn :=

∞
∏

n=1

(1 − q2n)12

(1 − qn)6

we recall a special case of Newman’s Theorem 3 in [6]:

Lemma 2.2. For each prime p with p ≡ 1 (mod 4) there exists an integer x(p)
such that for all n ∈ N:

(8) c

(

np + 3
p − 1

4

)

+ p2c

(

n

p
− 3

p − 1

4p

)

= x(p)c(n).

Lemma 2.2, in view of c(N) ≡ ∆2(5N + 4) (mod 5), implies that for each prime p,
p ≡ 1 (mod 4), and all n ∈ N:

∆2

(

(5n + 4)p −
p − 1

4

)

≡ c

(

np + 3
p − 1

4

)

≡ x(p)∆2(5n + 4)−p2∆2

(

5n + 4

p
+

p − 1

4p

)

(mod 5).

(9)

Setting n = 0 and noting that ∆2(4) ≡ c(0) = 1 we obtain

∆2

(

4p −
p − 1

4

)

≡ x(p) − p2∆2

(

p + 15

4p

)

(mod 5).

Noting that

p 6= 5 ⇒
p + 15

4p
6∈ N ⇒ ∆2

(

p + 15

4p

)

= 0,

one obtains the

Corollary 2.3. For all primes p with p ≡ 1 (mod 4) we have

(10) ∆2

(

(5n + 4)p −
p − 1

4

)

≡ ∆2

(

4p −
p − 1

4

)

∆2(5n + 4) (mod 5)

for all n ∈ N such that 20n + 15 6≡ 0 (mod p).

Lemma 2.4. For all primes p with p ≡ 13 or p ≡ 17 (mod 20) we have

∆2(4p − (p − 1)/4) ≡ 0 (mod 5).

Proof. By (5) we know that ∆2(4p − (p − 1)/4) ≡ 0 (mod 5) if

(11) 4p − (p − 1)/4 ≡ 14 (mod 25),

or

(12) 4p − (p − 1)/4 ≡ 24 (mod 25).

The statement follows by verifying (11) and (12) for p ≡ 17 (mod 20) and p ≡ 13
(mod 20), respectively. �

Finally Corollary 2.3 and Lemma 2.4 imply the

Theorem 2.5. For any prime p with p ≡ 13 (mod 20) or p ≡ 17 (mod 20) we

have

∆2(p(5n + 4) − (p − 1)/4) ≡ 0 (mod 5),

for all n ∈ N such that 20n + 15 6≡ 0 (mod p).



4 PETER PAULE AND SILVIU RADU

Considering such n where n = pk we see that condition 20n+15 6≡ 0 (mod p) holds
for all nonnegative integers k if p 6= 3, 5. Hence we have

(13) ∆2(p(5pk + 4) − (p − 1)/4) ≡ 0 (mod 5),

whenever p ≡ 13, 17 (mod 20) and k a nonnegative integer.

For example, the primes 13, 17, 37, 53, 73, 97 are either congruent 13 or 17 modulo
20. Hence by (13):

∆2(5 · 132n + 49) ≡ 0 (mod 5),

∆2(5 · 172n + 64) ≡ 0 (mod 5),

∆2(5 · 372n + 139) ≡ 0 (mod 5),

∆2(5 · 532n + 199) ≡ 0 (mod 5),

∆2(5 · 732n + 274) ≡ 0 (mod 5),

and
∆2(5 · 972n + 364) ≡ 0 (mod 5)

for all n ∈ N.

We also like to mention that the special case (9) of Newman’s Lemma 2.2 implies
[4, eq. 3.5], namely:

Lemma 2.6. For k ∈ N∗:

(14) ∆2(5n + 4) ≡ ∆2

(

5kn +
1 + 3 · 5k

4

)

(mod 5), n ≥ 0.

Proof. Setting p = 5 in (9) gives

(15) ∆2(25n + 19) ≡ x(5)∆2(5n + 4) (mod 5).

Since ∆2(19) = 85606 ≡ 1 (mod 5) and ∆2(4) ≡ 1 (mod 5) we obtain from (15)
that x(5) ≡ 1 (mod 5). Hence (14) is true for k = 2. Next assume that (14) is true
for 2 ≤ k < N . From this we conclude correctness for k = N as follows. By the
induction hypothesis we have for v ∈ N:

∆2(5(5v + 3) + 4) ≡ ∆2

(

5N−1(5v + 3) +
1 + 3 · 5N−1

4

)

(mod 5)

which is equivalent to

∆2(25v + 19) ≡ ∆2

(

5Nv +
1 + 3 · 5N

4

)

(mod 5).

Next we apply (15) to conclude that ∆2(5v + 4) ≡ ∆2(25v + 19) (mod 5) and the
proof is finished. �

Motivated by Newman’s work [7], in combination with (9) we obtain interesting
congruences for primes with p ≡ 1 (mod 4) and x(p) 6≡ 0 (mod 5). For this purpose
we introduce the following definition:

Definition 2.7. For n ∈ Z and p a prime with p ≡ 1 (mod 4) we define a map

ap,n : Z → Z by

ap,n(k) := ∆2(p
k(5n + 4) − (pk − 1)/4).

The next proposition is a straight-forward verification; it will be used to prove
Lemma 2.9.

Proposition 2.8. For n ∈ Z and p a prime with p ≡ 1 (mod 4) we have

ap,pn+3(p−1)/4(k) = ap,n(k + 1), k ∈ Z.
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Lemma 2.9. For n ∈ Z and p a prime with p ≡ 1 (mod 4) we have

(16) ap,n(k + 2) − x(p)ap,n(k + 1) + p2ap,n(k) ≡ 0 (mod 5), k ≥ −1,

where x(p) is as in (9).

Proof. By (9) we have for all n ∈ Z and all primes such that p ≡ 1 (mod 4):

(17) ap,n(1) − x(p)ap,n(0) + p2ap,n(−1) ≡ 0 (mod 5).

So (16) holds for k = −1. Proceeding by induction assume that (16) holds for all
k > N ≥ −1. To prove (16) for k = N , apply to

(18) ap,n(N + 1) − x(p)ap,n(N) + p2ap,n(N − 1) ≡ 0 (mod 5),

which is (16) with k = N − 1, the transformation n 7→ pn + 3(p − 1)/4. Using
Proposition 2.8 completes the proof of Lemma 2.9. �

Finally we consider the special choice p = 29 with p ≡ 1 (mod 4). One computes

∆2(4p − (p − 1)/4) = 339953476833877 ≡ 2 (mod 5).

We find that x(29) = 2 (mod 5). For the choice p = 29 and n = 0 Lemma 2.9 turns
into

a29,0(k + 2) − 2a29,0(k + 1) + a29,0(k) ≡ 0 (mod 5), k ∈ Z.

This congruence, viewed as an integer recurrence in k for k ≥ −1, has the general
solution c1k + c0 with c0, c1 ∈ Z. From a29,0(−1) = 0 and a29,0(0) = ∆2(4) ≡ 1
(mod 5) we obtain the particular solution k + 1 with c0 = c1 = 1. Thus we have
proven statement (7), namely:

Lemma 2.10. For k ∈ N:

a29,0(k) = ∆2(29k · 4 − (29k − 1)/4) ≡ k + 1 (mod 5).

3. Some Conjectures

Newman’s Theorem 3 from [6], implying Lemma 2.2 as a special case, played a
crucial role in this note. Concerning broken diamond congruences it seems that its
scope of applications exceeds the ∆2 case by far. To illustrate this point we pose
some conjectures that involve analogous congruences to the ones we presented. Let

σ3(n) =
∑

d|n

d3, n ∈ N∗.

Let

E4(q) = 1 + 240
∞
∑

n=1

σ3(n)qn

be the Eisenstein series of weight 4 for the full modular group. Numerical compu-
tations show strong evidence for the following three conjectures to be true.

Conjecture 3.1.

∞
∏

n=1

(1 − qn)4(1 − q2n)6 ≡ 6

∞
∑

n=0

∆3(7n + 5)qn (mod 7).

Conjecture 3.2.

∆3(7
3n + 82) ≡ ∆3(7

3n + 278) ≡ ∆3(7
3n + 327) ≡ 0 (mod 7), n ∈ N.
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Conjecture 3.3.

E4(q
2)

∞
∏

n=1

(1 − qn)8(1 − q2n)2 ≡ 8

∞
∑

n=0

∆5(11n + 6)qn (mod 11).

Conjecture 3.4. Let
∑∞

n=0 c(n)qn := E4(q
2)

∏∞
n=1(1 − qn)8(1 − q2n)2. Then for

every prime p with p ≡ 1 (mod 4) there exists an integer y(p) such that

c

(

pn +
p − 1

2

)

+ p8c

(

n − (p − 1)/2

p

)

= y(p)c(n)

for all n ∈ N.

Let
∞
∑

n=0

b(n)qn :=
∞
∏

n=1

(1 − qn)4(1 − q2n)6.

We find again in the list of Newman [6, p. 486] that for all primes p such that p ≡ 1
(mod 12) there exists an integer z(p) such that

(19) b

(

np +
2(p − 1)

3

)

+ p4b

(

n − 2(p − 1)/3

p

)

= z(p)b(n)

for all n ∈ N. In particular (19), together with Conjecture 3.1 implies an identity
analogous to (9). Similarly, Conjecture 3.3 together with Conjecture 3.4 also implies
an identity analogous to (9), which lead to some generalizations of the results of
this paper. Conjecture 3.2 is analogous to (5). We also tried to find a congruence
similar to (5) for ∆5 but failed. However when z(p) ≡ 0 (mod 7) in (19) we obtain
congruences modulo 7 for ∆3. Similarly when y(p) ≡ 0 (mod 11) in Conjecture 3.4
we obtain congruences modulo 11 for ∆5.
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