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ABSTRACT
We approach the algebraic problem of computing topological
invariants for the singularities of a plane complex algebraic
curve defined by a squarefree polynomial with inexactly-
known coefficients. Consequently, we deal with an ill-posed
problem in the sense that, tiny changes in the input data
lead to dramatic modifications in the output solution.

We present a regularization method for handling the ill-
posedness of the problem. For this purpose, we first design
symbolic-numeric algorithms to extract structural informa-
tion on the plane complex algebraic curve: (i) we compute
the link of each singularity by numerical equation solving;
(ii) we compute the Alexander polynomial of each link by us-
ing algorithms from computational geometry and combina-
torial objects from knot theory; (iii) we derive a formula for
the delta-invariant and the genus. We then prove the conver-
gence for inexact data of the symbolic-numeric algorithms
by using concepts from algebraic geometry and topology.

Moreover we perform several numerical experiments, which
support the validity for the convergence statement.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: algo-
rithms—algebraic algorithms; G.4 [Mathematics of Com-
puting]: Mathematical Software; G.1.2 [Numerical Anal-
ysis]: Approximation—approximation of surfaces, piecewise
polynomial approximation; G.1.0 [Numerical Analysis]:
General—numerical algorithms, stability (and instability)

General Terms
Algorithms, Design, Experimentation, Theory

Keywords
Plane curve singularity, ill-posed problem, regularization,
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1. INTRODUCTION
In this paper, we treat the algebraic problem of computing

topological invariants for each singularity of a plane complex
algebraic curve defined by a squarefree polynomial with co-
efficients of limited accuracy, i.e. the coefficients are both
exact and inexact data. The problem is ill-posed in the sense
that tiny changes in the input data cause huge changes in
the output solution. We employ an adapted regularization
method based on [6, 18] to handle the ill-posedness of the
problem. This regularization method allows us to construct
approximate solutions to the ill-posed problem, which are
stable under small changes in the initial data.

We first design symbolic-numeric algorithms for comput-
ing invariants for each singularity of a plane complex alge-
braic curve defined by a squarefree polynomial. We com-
pute the link of each singularity by intersecting the curve
with a sphere centered in the singularity and of a small ra-
dius, based on [3, 14]. The computation of the link of the
singularity allows us to analyze the local topology of each
singularity. We then compute the Alexander polynomial at-
tached to the link of the singularity using algorithms from
computational geometry [5] and combinatorial objects from
knot theory, based on [4, 12]. The Alexander polynomial is
a complete invariant for links of singularities, i.e. different
links of singularities have different Alexander polynomials
[22]. As applications, from the Alexander polynomial we de-
rive formulas for the delta-invariant of each singularity and
for the genus of the curve. In [1] a numerical method based
on homotopy continuation for computing the genus of any
one-dimensional irreducible component of an algebraic set
is presented, while in [16] the authors provide a formula for
the genus of an algebraic curve with all singularities affine
and ordinary.

We implement the designed symbolic-numeric algorithms
for invariants of plane curves singularities in the free library
called GENOM3CK-GENus cOMputation of plane Complex
algebraiC Curves using Knot theory-written in the free alge-
braic geometric modeler Axel [21] and in the free computer
algebra system Mathemagix [10].

We sketch the proof for the convergence for inexact data
property of the designed symbolic-numeric algorithms using
concepts from algebraic geometry and topology. We perform
several numerical experiments with the library GENOM3CK,
which confirm the convergence for inexact data property.

We organize this paper as follows. In Section 2 we define
the plane complex algebraic curves and their singularities.
We also introduce invariants for each singularity of a plane



complex algebraic curve: the link of each singularity, the
Alexander polynomial attached to the link, and the delta-
invariant of each singularity. In Section 3 we present the
symbolic-numeric algorithms developed for the computation
of the defined invariants. Section 4 contains regularization
principles that we employ to handle the ill-posedness of the
problem. We also sketch the proof for the convergence for
inexact data property of the designed symbolic-numeric al-
gorithms. In Section 5 we discuss implementation issues
and we perform several test experiments. We give the con-
clusions in Section 6.

2. PLANE COMPLEX ALGEBRAIC
CURVES

2.1 Singularities of Plane Complex Algebraic
Curves

For our study, we define the (affine) plane complex alge-
braic curves following [17, 19]:

Definition 1. Let C be the algebraically closed field of
complex numbers, and A2(C) = {(z, w) ∈ C2} the affine
complex plane. Let p(z, w) ∈ C[z, w] be an irreducible poly-
nomial in z and w with coefficients in C of degree m. An
affine plane algebraic curve over C of degree m defined by
p(z, w) is the set of zeroes of the polynomial p(z, w), i.e.

C = {(z, w) ∈ A2(C)|p(z, w) = 0}.

We define the singular points of a plane complex algebraic
curve in the following way:

Definition 2. Let C be a plane complex algebraic curve
defined by the irreducible polynomial p(z, w) ∈ C[z, w]. We
denote by ∂zp := ∂p(z, w)/∂z and by ∂wp := ∂p(z, w)/∂w
the partial derivatives of p(z, w) with respect to z and w.
The set of singular points (or singularities) of C is defined as

Sing(C) = {(z0, w0) ∈ A2(C)|p(z0, w0) =
∂zp(z0, w0) = ∂wp(z0, w0) = 0}.

The points of a plane complex algebraic curve that are
not singular are called nonsingular or regular points. An ir-
reducible plane complex algebraic curve has at most finitely
many singular points, and if it has none it is called nonsingu-
lar (or smooth). For simplicity reasons we denote the affine
complex plane by C2. Since C2 is isomorphic with R4, we
consider a plane complex algebraic curve C ⊂ C2 as a real
two-dimensional object in R4. For visualization purposes, we
cannot draw this object in R4, but we sketch the equivalent
curve in R2.

An important observation is that computing the singular-
ities of a plane complex algebraic curve is an ill-posed prob-
lem, in the sense that small changes in the coefficients of the
defining polynomial of the curve lead to dramatic changes
in the topology (shape) of the curve itself.

Example 1. In Figure 1 the red inner curve represents the
topology of C = {(z, w) ∈ R2 : −z3−zw+w2 = 0} with a sin-
gularity in the origin (0, 0). The blue outer curve represents
the topology ofD = {(z, w) ∈ R2 : −z3−zw+w2−0.01 = 0}.
We notice that for small perturbations of the defining poly-
nomial of C the singularity of the curve disappears.

Figure 1: Example of ill-posedness of the singularity
(0, 0) of −z3 − zw + w2. Picture produced with Axel,
see Section 5 for more information.

2.2 Invariants of Plane Complex Algebraic
Curves

First, we define an homeomorphism in the following way:

Definition 3. Two subsets U ⊂ Rk, V ⊂ Rn are topologi-
cally equivalent or homeomorphic if there exists a bijective
function ϕ : U → V such that both ϕ and its inverse are
continuous. In this case, ϕ is called an homeomorphism.

A pair (X,A) of spaces is a topological space together
with a subspace A ⊆ X. A mapping ϕ : (X,A) → (Y,B) of
pairs is a continuous mapping ϕ : X → Y with ϕ(A) ⊆ B. A
homeomorphism ϕ : (X,A) → (Y,B) of pairs is a mapping
of pairs which is a homeomorphism ϕ : X → Y and induces
a homeomorphism ϕ/A : A→ B.

In this paper, the (topological) invariants of a plane com-
plex algebraic curve C are those properties of C and its singu-
larities that are unchanged under homeomorphism of small
disks around 0 mapping the first curve onto the second curve.

We consider the stereographic projection from R3 to R2

as a mapping that projects a sphere onto a plane. It is
constructed as follows: we take a sphere; we draw a line from
the north pole N of the sphere to a point P̂ in the equator
plane to intersect the sphere at a point P . The stereographic
projection of P̂ is P . The stereographic projection gives
an explicit homeomorphism from the unit sphere minus the
north pole to the Euclidean plane.

The stereographic projection may be applied to a n-sphere
Sn in Rn+1: consider a n-sphere in Rn+1, which we denote
Sn = {(x1, x2, ..., xn+1) ⊂ Rn+1|x2

1 + x2
2 + ...+ x2

n+1 = 1},
and the north point of the n-sphere Q(0, ..., 1) ∈ Sn. If H
is a hyperplane in Rn+1 not containing Q, then the stereo-

graphic projection of the point P ∈ Sn \Q is the point P
′

of
the intersection of the line QP with H. The stereographic
projection is a homeomorphism from Sn \Q ⊂ Rn+1 → Rn.
For our study, we use the stereographic projection from R4

to R3 to project objects from R4 to R3 by preserving their
topological properties.

Link of a Plane Curve Singularity
We introduce notions from knot theory, which are useful for
the purpose of this paper. We define a knot and a link in



the following way:

Definition 4. A knot is a piecewise linear or a differen-
tiable simple closed curve in R3 and a link is a finite union
of disjoint knots, see Figure 2. The knots that make up a
link are called the components of the link, and thus a knot
is a link with one component.

Figure
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Figure 2: Examples of links/knot. From left to right:
the Hopf link, the Borromean rings, the trefoil knot

We define the equivalence of two links as follows:

Definition 5. We say that two links are equivalent if there
exists an orientation-preserving homeomorphism on R3 that
maps one link onto the other. This equivalence is called
(ambient) isotopy.

When we work with knots we actually work with their
projections in R2. For our study, we work with a special
type of projection called a diagram, which we introduce in
the following way: (i) we consider that a regular projection
is a linear projection for which no three points on the knot
project to the same point, and no vertex projects to the
same point as any other point on the knot. A crossing point
is an image of two knot points of such a regular projection
to R2; (ii) then a diagram is the image under regular projec-
tion, together with the information on each crossing point
telling which branch goes over and which goes under (Fig-
ure 3). Thus we speak about overcrossings and undercross-
ings; (iii) a diagram together with an arbitrary orientation
of each knot in the link is called an oriented diagram.

We introduce the elements of a diagram as follows: (i) a
crossing is called lefthanded (denoted with −1) if the under-
pass traffic goes from left to right or it is called righthanded
(denoted with +1) if the underpass traffic goes from right to
left; (ii) an arc is the part of a diagram between two under-
crossings. Whether lefthanded or righthanded, each crossing
is determined by three arcs and we denote the overgoing arc
with i, and the undergoing arcs with j and k (Figure 4). The
number of arcs in a link diagram is equal to the number of
crossings in the same link diagram.

Figure 3: Example of a trefoil knot and its diagram

We employ the following theorem, which asserts that the
equivalence class of a special type of link determines the
homeomorphism type of the singularity:
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Figure 4: Types of crossings: lefthanded (-1) and
righthanded(+1), together with the labels for the 3
arcs of a crossing

Theorem 1. (Milnor[14]) Let V ⊂ Cn+1 be a hypersur-
face in Cn+1, i.e. an algebraic variety defined by a single
polynomial f. Assume ~0 ∈ V and ~0 is an isolated singular-
ity, i.e. there is no other singularity on a sufficiently small
neighborhood of (0, 0); Sε is the sphere centered in ~0 and of

radius ε; and Dε is the disk centered in ~0 of radius ε. Then,
for sufficiently small ε, Lε = Sε∩V is a (2n−1)-dimensional
nonsingular set and the pair (Dε, Dε ∩ V ) is homeomorphic
to the pair consisting of the cone over Sε and the cone over
Lε = Sε ∩ V.

For the case n = 1, Milnor’s theorem says that there exists
ε0 ∈ R>0 such that for any ε1, ε2 ∈ R>0 with ε1 < ε0 and
ε2 < ε0 the links Lε1 ⊂ Sε1 and Lε2 ⊂ Sε2 are equivalent,
i.e. Dε1 ∩ C and Dε2 ∩ C are homeomorphic. In addition,
for any 0 < ε < ε0 the link L = Lε is called the link of the
singularity of f (or of C) at (0, 0), and L is well-defined up
to homeomorphism of pairs. In this case, the link Lε ⊂ Sε
determines the topological type of the singularity (0, 0) of C.
In theory, a link is called algebraic if it is equivalent to the
link of a plane curve singularity.

Under the same hypotheses from Theorem 1 and consid-
ering S1 the unit circle, Milnor fibration theorem states that
the mapping φ : Sε \ L → S1, φ(z, w) = f(z, w)/|f(z, w)| is
a fibration, i.e. the complement Sε \L is a union of smooth
surfaces, each being the preimage of one point.

Alexander Polynomial of a Plane Curve Singularity
An important result of Yamamoto [22] says that the Alexan-
der polynomial is a complete invariant for the algebraic links,
i.e. the Alexander polynomial uniquely defines all the alge-
braic links up to an (ambient) isotopy. In this way, we can
use the Alexander polynomial of the link of a singularity to
distinguish the topological type of the singularity itself. In
[8] we present a straightforward algorithm to compute the
Alexander polynomial attached to the link of a singularity
by using combinatorial objects from knot theory such as the
diagram of the link and the elements of the diagram. For
introducing the Alexander polynomial, we need some pre-
liminary definitions based on [12]:

Definition 6. Let D(L) be an oriented link diagram with
r components and n crossings xq : q ∈ {1, ..., n}. We denote
the arcs of D(L) with the labels {1, ..., n} and separately
the crossings of D(L) with {1, ..., n}. We denote the label-
ing matrix of D(L) with LM(L) ∈ M(n, 4,Z). We define
LM(L) = (bql)q,l with q ∈ {1, ..., n}, l ∈ {1, ..., 4} row by
row for each crossing xq as follows: (i) at bq1 store the type
of the crossing xq (+1 or − 1); (ii) at bq2 store the label of
the arc i of xq in D(L); (iii) at bq3 store the label of the arc



j of xq in D(L); (iv) at bq4 store the label of the arc k of xq
in D(L).

Definition 7. Let D(L) be an oriented link diagram with
r components and n crossings xq : q ∈ {1, ..., n}. We de-
note the arcs and the crossings of D(L) as in Definition 6.
We consider LM(L) the labeling matrix of D(L) as in Def-
inition 6. We denote the prealexander matrix of L with
PM(L) ∈ M(n, n,Z[t1, t1, ..., tr]). We define PM(L) row
by row for each crossing xq depending on LM(L). For xq we
consider the variable ts, where s ∈ {1, ..., r} is the s-th knot
component of D(L), which contains the overgoing arc that
determines the crossing xq. Then: (i) if xq is righthanded,
i.e. bq1 = +1 in LM(L), then at position bq2 of PM(L) store
the label 1− ts, at position bq3 store −1 and at position bq4
store ts; (ii) if xq is lefthanded, i.e. bq1 = −1 in LM(L),
then at position bq2 of PM(L) store the label 1− ts, at posi-
tion bq3 store ts and at position bq4 store −1; (iii) if two or all
of the positions bq2, bq3, bq4 have the same value, then store
the sum of the corresponding labels at the corresponding
position. All other entries of the matrix are 0.

We define the Alexander polynomial of D(L) depending
on the number of knot components in L:

Definition 8. Let D(L) be an oriented link diagram with
r components and n crossings, LM(L) be its labeling matrix
as in Definition 6 and PM(L) be its prealexander matrix as
in Definition 7. Then: (i) the univariate Alexander poly-
nomial [12] ∆L(t1) ∈ Z[t±1

1 ] is the normalized polynomial
computed as the determinant of any (n− 1)× (n− 1) minor
of the prealexander matrix of D(L). A normalized polyno-
mial is a polynomial in which the term of the lowest degree
is a positive constant; (ii) the multivariate Alexander poly-
nomial [4] ∆L(t1, ..., tr) ∈ Z[t±1

1 , ..., t±1
r ] is the normalized

polynomial computed as the greatest common divisor of all
the (n−1)× (n−1) minor determinants of the prealexander
matrix of D(L).

Delta-Invariant of a Plane Curve Singularity
From the Alexander polynomial we derive a formula for the
delta-invariant of the singularity of a plane complex alge-
braic curve in the following way:

Definition 9. (based on Milnor[14]) Let ∆L(t1, . . . , tr) be
the Alexander polynomial of the link of the isolated singu-
larity P = (0, 0) of a plane complex algebraic curve. Let
r be the number of variables in ∆L and µ the degree of
∆L. If r = 1, then the delta-invariant of P is computed as
δP = µ/2, otherwise δP = (µ+ r)/2.

We can derive a formula for the genus of a plane complex
algebraic curve as described in [14]:

Definition 10. Let C be a plane complex algebraic curve
in the projective plane as introduced in [20]. We denote
by Sing(C) the singularities of C, and by δP ∈ N the delta-
invariant of the singularity P. The genus of C, genus(C) ∈ Z,
is defined as: genus(C) = ((m−1)(m−2))/2−

X
P∈Sing(C)

δP .

Approximate Invariants of a Plane Curve Singularity
We have previously introduced several invariants for a plane
complex algebraic curve C with an isolated singularity, i.e.

the Alexander polynomial attached to the link of the singu-
larity, the delta-invariant of the singularity and the genus
of the curve. We notice that the computation of these in-
variants is conditioned by the computation of the link of the
singularity L = Lε that depends on the parameter ε ∈ R+.

Hence we are motivated to define the ε-invariants of a
plane complex algebraic curve with an isolated singularity,
which depend on a parameter ε ∈ R>0:

Definition 11. Let C be a plane complex algebraic curve
defined by the squarefree polynomial p(z, w) ∈ C[z, w]. Let
P = (z0, w0) ∈ C2 be an isolated singularity of C and let
Sε(P ) = {(z, w) ∈ C2 : |z − z0|2 + |w − w0|2 = ε2} be
the sphere centered in P of radius ε ∈ R>0. We take Y =
C ∩ Sε(P ). We consider π(ε,N) the stereographic projection
of the sphere Sε(P ) from its north pole N, which does not
belong to C and which is defined as:

π(ε,N) : Sε \ {N} ⊂ R4 → R3

(a, b, c, d)→ (x, y, z) = ( a
ε−d ,

b
ε−d ,

c
ε−d )

. (1)

If π(ε,N)(Y ) has no singularities, then:

• we call π(ε,N)(Y ) the ε-link of the singularity of p(z, w)
(or of C) at P. We call π(ε,N)(Y ) an ε-algebraic link.

• we define the ε-Alexander polynomial of C at P as the
Alexander polynomial of π(ε,N)(Y ).

• we define the ε-delta-invariant of P as the delta-invariant
of the ε-Alexander polynomial of C at P.

3. SYMBOLIC-NUMERIC ALGORITHMS
FOR INVARIANTS OF PLANE CURVE
SINGULARITIES

We shortly describe the symbolic-numeric algorithms we
design for computing the ε-invariants of a plane complex
algebraic curve as introduced in Subsection 2.2. For more
information on these algorithms see [8, 9].

Problem 1. Given the following: (i) a squarefree polyno-
mial p(z, w) ∈ C[z, w] that defines a plane complex algebraic
curve C ⊂ C2; (ii) a parameter ε ∈ R>0 that determines the
sphere Sε centered in the origin (0, 0) of radius ε.

our goal is: (1) to compute the singularities of C in C2;
(2) to compute a set of ε-invariants of C, i.e. the ε-algebraic
link, the ε-Alexander polynomial, the ε-delta-invariant as
introduced in Definition 11;

We compute the numerical singularities Sing(C) of the
plane complex algebraic curve C defined by the squarefree
polynomial p(z, w) by solving the system of polynomial equa-
tions p(z0, w0) = ∂zp(z0, w0) = ∂wp(z0, w0) = 0 with subdi-
vision methods from [15]. These methods require two input
parameters, i.e. a subset B = [−a, a] × [−b, b] of R2 and
a positive real number σ ∈ R>0. These methods return as
output a list of boxes S ⊂ B smaller than σ and a list M
containing the middle points of all the boxes from S s.t.:
(i) the value of p(z, w) and its derivatives in the points from
M are small; (ii) every singularity from Sing(C) is in one of
the boxes from S.

We describe the algorithm APPROXLINK(p, C, P, ε) for com-
puting the ε-algebraic link Lε of the singularity P of the
plane complex algebraic curve C defined by the squarefree



polynomial p(z, w) ∈ C[z, w]. The parameter ε denotes the
radius of the sphere Sε ⊂ C2 which we intersect with the
zero set of p(z, w), as described in Definition 11.

Algorithm 1 ε-link of the singularity P of the plane curve
C defined by p(z, w): APPROXLINK(p, C, P, ε)
Input: p(z, w) ∈ C[z, w] a squarefree complex polynomial
C = {(z, w) ∈ C2|p(z, w) = 0} a plane algebraic curve
P = (z0, w0) a numerical singularity of C
ε ∈ R>0 a positive real number
Output: G, H ∈ R[x, y, z]
where the common zero set of G,H equals Lε.

1. Substitute z ← a+ ib, w ← c+ id in p(z, w) and obtain

p(a, b, c, d) = R(a, b, c, d) + iI(a, b, c, d),

with R, I ∈ R[a, b, c, d].

2. Extract R(a, b, c, d) = I(a, b, c, d) = 0 which define

C = {(a, b, c, d) ∈ R4 : R(a, b, c, d) = I(a, b, c, d) = 0}.

3. Compute the inverse of π(ε,N) from Definition 1:

π−1
(ε,N) : R3 → Sε \ {N} ⊂ R4

(x, y, z) 7→ (a, b, c, d) = ( 2xε
n
, 2yε
n
, 2zε
n
, −ε+x

2ε+y2ε+z2ε
n

),

where n = 1 + x2 + y2 + z2 .

4. Define α =: ( 2xε
n
, 2yε
n
, 2zε
n
, −ε+x

2ε+y2ε+z2ε
n

),

5. Substitute (a, b, c, d)← α in C to get R(α) = I(α) = 0.

6. Eliminate the denominators in R(α) = I(α) = 0 to
get gε(x, y, z) = hε(x, y, z) = 0, with gε, hε ∈ R[x, y, z],
which for Y = C ∩ Sε(P ) define

π(ε,N)(Y ) = {(x, y, z) ∈ R3 :
gε(x, y, z) = hε(x, y, z) = 0}.

7. If π(ε,N)(Y ) has no singularities then

• return G =: gε(x, y, z) and H =: hε(x, y, z).

• else return “failure”.

We implement the algorithm APPROXLINK in the Axel [21]
system as Axel offers a wide range of algebraic and geometric
functions for manipulating algebraic curves and surfaces.

We notice that the ε-link of the singularity Lε computed
by the algorithm APPROXLINK is an implicit smooth space
algebraic curve given as the intersection of two implicit sur-
faces S1, S2 with defining equations gε, hε ∈ R[x, y, z]. For
visualization reasons, we also compute the surfaces defined
by the sum S1 + S2 and the difference S1 − S2. Thus Lε is
at the intersection of any two of the surfaces {S1, S2, S1 +
S2, S1−S2}, that are all part of the Milnor fibration. We em-
ploy subdivision methods [11] from Axel to compute the cer-
tified piecewise linear approximation (topology) of the im-
plicit smooth space algebraic curve Lε. This approximation
of Lε is computed as a graph Graph(Lε). The data structure
Graph(Lε) is given as a set of vertices V together with their
Euclidean coordinates in R3, and a set of edges E connect-
ing them. In addition Graph(Lε) = 〈V,E〉 is isotopic to Lε.

In Figure 5 we visualize the link (trefoil knot) of the singu-
larity (0, 0) of the plane complex algebraic curve C defined
by the polynomial p(z, w) = z3 − w2. By using subdivision
methods, Axel computes the piecewise linear approximation
of the trefoil knot as a graph data structure.

Figure 5: Piecewise linear approximation of the tre-
foil knot, computed as the intersection of two im-
plicit surfaces with algorithm APPROXLINK in Axel

We next manipulate the approximation Graph(Lε) sym-
bolically to compute the ε-Alexander polynomial of Lε. We
first design an algorithm to compute the diagram D(Lε) of
the approximation Graph(Lε), as defined in Subsection 2.2.
We based this algorithm on computational geometry algo-
rithms [5]. The algorithm requires as input the approxi-
mation Graph(Lε) = 〈V,E〉, and it returns as output the
diagram D(Lε), and that is: (1) the list of n crossings of
D(Lε) computed as all the intersections of the edges from
E; (2) the list of n pairs of edges containing each intersec-
tion point. Each pair of edges (ei, ej) is ordered, i.e. ei is
under ej in R3; (3) the r lists of edges from E for all the r
knot components of D(Lε); (4) the list of arcs of D(Lε) and
the type of each crossing. For more details on this algorithm
see [9]. In Figure 6 we visualize the diagram D(Lε) of the
approximation Graph(Lε) of the trefoil knot.

2

1 3

c1

c2

c3

Figure 6: Diagram with 3 crossings and 3 arcs of the
piecewise linear approximation of the trefoil knot

We now give the algorithm APPROXALEXPOLY(D(Lε), r, n)
for computing the ε-Alexander polynomial of the diagram
D(Lε) with r components and n crossings. We base this
algorithm on Definition 8 from Subsection 2.2. For more
details on this algorithm and an example see [8].



Algorithm 2 ε-Alexander polynomial of the diagram D(Lε)
of the APPROXALEXPOLY(D(Lε), r, n)

Input: D(Lε) oriented algebraic link diagram of Lε with r
components, n crossings
Output: ∆ε(t1, ..., tr) ∈ Z[t±1

1 , ..., t±1
r ]

where ∆ε(t1, ..., tr) is the ε-Alexander polynomial of Lε with
diagram D(Lε).

1. Denote the arcs and separately the crossings of D(Lε)
with {1, ..., n};

2. Compute LM(Lε) the labelling matrix of D(Lε) ;

3. Compute PM(Lε) the prealexander matrix of D(Lε);

4. If r = 1 then:

(a) Compute M any (n − 1) × (n − 1) minor of
PM(Lε);

(b) Compute D the determinant of the minor M ;

(c) Return ∆ε(t1) = Normalize(Dε);

5. If r ≥ 2 then:

(a) Compute all the (n − 1) × (n − 1) minors of
PM(Lε);

(b) Compute G the greatest common divisor of all the
computed minors in 5.(a);

(c) Return ∆ε(t1, ...tr) = Normalize(G).

We now present the algorithm APPROXDELTA(∆ε, µ, r) for
computing the ε-delta-invariant from the ε-Alexander poly-
nomial of degree µ and with r variables.

Algorithm 3 ε-delta-invariant of the singularity P of the
plane curve C defined by p(z, w): APPROXDELTA(∆ε, µ, r)

Input: ∆ε(t1, ..., tm) the ε-Alexander polynomial of Lε
Lε the ε-algebraic link of the singularity P = (z0, w0),
µ the degree of ∆ε, r the number of variables in ∆Lε

Output: δε ∈ Z>0

where δε is the ε-delta-invariant of P = (z0, w0).

1. If r = 1 then return δε = µ/2.

2. If r ≥ 2 then return δε = (µ+ r)/2.

4. REGULARIZATION PRINCIPLES

4.1 Basic Notations
We denote by I the set of coefficient vectors of all the

squarefree polynomials from C[z, w] of fixed degree. The set
P := {Z[t1] ∪ Z[t1, t2] ∪ ... ∪ Z[t1, ..., ti] ∪ ...} represents the
set of all normalized Alexander polynomials either in the t1
variable, or in the t1, t2 variables, or in the t1, t2, ...ti se-
quence of variables with i ∈ N, etc. We denote by O the
discrete set of integer coefficient vectors of all the polyno-
mials from P. For a polynomial p(x, y) of fixed degree we
denote with p its corresponding coefficient vector. The sets
I,O are metric spaces by the Euclidean distance of coeffi-

cient vectors, denoted with || · ||. The notation | · | represents
the absolute value function.

For p(z, w) ∈ C[z, w] we denote by:

Mp :=

 
∂zp(z, w) ∂wp(z, w)

z w

!
the two-by-two matrix formed by the partial derivatives of
p(z, w) with respect to z and w, and by the complex conju-
gates z, w. We denote by Zeroes(p) the set of zeroes of the
polynomial p(z, w).

4.2 Definitions
First we establish a general framework for handling ill-

posed algebraic problems using adapted regularization prin-
ciples from [6, 18]. We then apply these principles to Prob-
lem 1 from Section 3, which we treat in this paper.

We define a well-posed problem as it was first formulated
by J. Hadamard: a problem is said well-posed if: (i) there
exists a solution to the problem (existence); (ii) the so-
lution is unique (uniqueness); (iii) the solution depends
continuously on the data in some given topological space
(stability). Otherwise the problem is called ill-posed.

We consider the discontinuous function:

E : X → Y, f 7→ E(f), (2)

on the metric spaces X,Y with metrics given by the Eu-
clidean norm. The problem of computing E(f) ∈ Y for
given f ∈ X is ill-posed as the computed output does not
continuously depend on the input, i.e. the stability state-
ment from the definition of well-posed problems does not
hold. We define a perturbation function as follows:

Definition 12. A perturbation of f ∈ X is defined as the
function f− : R>0 → X, δ 7→ fδ with ||f−fδ|| ≤ δ for all δ ∈
R>0. In this case f is called the exact data, fδ the perturbed
data and δ the noise level (error, tolerance).

In this framework we define a regularization as follows:

Definition 13. For any ε ∈ R>0, let:

Rε : X → Y, f 7→ Rε(f)

be a continuous function. The function Rε is called a reg-
ularization if there exists a bijective, monotonic function
ε = α(δ), α : R>0 → R>0 with:

lim
δ→0

α(δ) = 0, (3)

such that for any f ∈ X and for any perturbation function
f− with ||f −fδ|| ≤ δ for all δ ∈ R>0, the following property
holds:

lim
δ→0

Rα(δ)(fδ) = E(f) (4)

The function α is called a parameter choice rule, ε is called
the regularization parameter and Rα is called the regularized
solution of E. The equation (4) is called the convergence
for noisy data property of Rα. The pair (Rα, α) is called a
regularization method for solving the ill-posed problem E if
the equations (3) and (4) hold.

For our problem, we consider X the set I of coefficient
vectors of squarefree polynomials p(z, w) ∈ C[z, w] of fixed



degree and Y the set O of integer coefficient vectors of nor-
malized Alexander polynomials. In addition, we let:

E : I → O, f 7→ E(f) (5)

be the exact algorithm for computing the Alexander poly-
nomial of a plane curve singularity. Since O is a discrete
set, the function E is discontinuous. Therefore, the problem
of computing the Alexander polynomial E(f) ∈ O for given
f ∈ I is ill-posed.

For every ε ∈ R>0, we denote by:

Aε : U ⊂ I → O, p 7→ Aε(p) (6)

the symbolic-numeric that computes the ε-Alexander poly-
nomial Aε(p) for given (p, ε) ∈ I × R>0, as described in
Section 3. This polynomial arises as the intersection of the
sphere Sε with the curve C defined by p. We notice that Aε
is a partial function, because it is not defined in case the
intersection Sε ∩ C has singularities. Still the function Aε is
continuous in its domain of definition denoted by U .

We wish to show that Aε is a regularization function for
every (p, ε) ∈ U ⊂ I × R>0. Therefore, from Definition 13
we need to find a parameter choice rule ε = α(δ) with prop-
erty (3) and that satisfies equation (4). Consequently, the
pair (Aα, α) would be a regularization method for solving
the ill-posed Problem 1.

4.3 Convergence Results
In this subsection, we include the lemmas and the theo-

rems that we formulate to prove the convergence for noisy
data property of the algorithm Aε considered in (6). In this
subsection, we sketch the main steps of the proofs. A com-
plete proof would be beyond the scope of this submission.

First we set the general mathematical setting required for
our study. Let f(z, w) be arbitrary but fixed. For simplicity
we denote fδ(z, w) := g(z, w) ∈ C[z, w] with ||g − f || ≤ δ.
Based on Theorem 1, we take K > 0 such that the system:

f(z, w) = det(Mf )(z, w) = 0 (7)

has no common solution except for (0, 0) in the closed ball

BK :=
n

(z, w) ∈ C2 :
“
|z|2 + |w|2

”1/2

≤ K
o

of radius K

around (0, 0) ∈ C2. Thus the following relation holds:

f(0, 0) = det(Mf )(0, 0) = 0, (8)

and the intersection BK ∩ Zeroes(f) has no singularities
except for (0, 0).

To prove the convergence for noisy data property, we re-
quire a preliminary lemma.

Lemma 1. There exists N > 0 such that for all δ > 0,
and for all g with ||g − f || ≤ δ there exists no zero for
the system of polynomial equations determined by g(z, w) =

det(Mg)(z, w) = 0 whose length is greater than δ1/N and
less than K.

To prove Lemma 1 we prove the equivalent statement:

∃N > 0 ∀δ > 0 ∀g : ||g − f || ≤ 0 ∀(z, w) :
g(z, w) = det(Mg)(z, w) = 0 and“

|z|2 + |w2|
”1/2

≤ K ⇒
“
|z|2 + |w2|

”1/2

≤ δ1/N .

(9)

We take δ > 0 and g with ||g − f || ≤ δ.

First, we define the set Zδ of “special” zeroes of g :

Zδ =
n“

(z, w), g
”

: ||g − f || ≤ δ,
g(z, w) = det(Mg)(z, w) = 0,“
|z|2 + |w|2

”1/2

≤ K
o
.

(10)

We introduce the function:

τ : BK × I → R≥0“
(z, w), g

”
7→ τ

“
(z, w), g

”
=
“
|z|2 + |w|2

”1/2

.
(11)

By using the theorem on Euclidean extreme values of real-
valued functions, we prove that τ attains its maximum and
we define the monotonic, semialgebraic function:

β : R>0 → R≥0

δ 7→ β(δ) = max {τ(a) : a ∈ Zδ}.
(12)

Secondly, we prove the convergence of β by using the the-
orem of Bolzano-Weierstrass on compact sets.

Finally, we show that the function β is bounded from
above. We use the following theorem for estimating the rate
of growth of a semialgebraic function of one variable:

Theorem 2. ([2]) Let f : (a,∞)→ R be a semialgebraic
function (not necessarily continuous). There exists b ≥ a
and an integer N ∈ N such that |f(x)| ≤ xN for all x ∈
(b,∞).

Moreover, we use the following theorem for ensuring the
piecewise continuity of a semialgebraic function:

Theorem 3. ([13]) Let F be a real closed field and f :
F → F be a semialgebraic function. Then, we can partition
F into I1 ∪ ...Im ∪X, where X is finite and Ij are pairwise
disjoint open intervals with endpoints in F ∪{±∞} such that
f is continuous on each Ij with j ∈ {1, ...,m} and m ∈ N.

We get that there exists N ∈ N \ {0}, b ∈ R+ such that:

βr(δ) ≤ δ1/N ,

for all δ < η = b−1, where βr is the restriction of β to the
first open interval.

We use Lemma 1 as a tool for proving the convergence for
noisy data statement (4) and for ensuring the existence of a
parameter choice rule (3) for Aε. This convergence statement
is given by the following theorem:

Theorem 4. There exists N > 0 and η ∈ R>0 such that
for all δ > 0 with δ < η, for all g with ||g−f || ≤ δ and for all

ε ∈ [δ1/N ,K], the following property holds: Aε(g) = E(f).

We prove Theorem 4 by constructing the isotopy:

gt : C2 × [0, 1]→ C
(z, w)→ gt(z, w) = tf(z, w) + (1− t)g(z, w),

(13)

with gt continuous function for all 0 ≤ t ≤ 1, and g0 = g,
g1 = f, and by showing that Aε(gt) is an ε-algebraic link
based on Lemma 1.

From Theorem 4 it follows that ε = δ1/N is a parameter
choice rule for Aε, for which the convergence for noisy data
statement (4) of Aε holds. Still, this parameter choice rule
depends on N which is unknown. The following lemma pro-
vides us with an upper bound for δ1/N which is independent
on N :



Lemma 2. For all N > 0 there exists θ ∈ R+ such that

for all δ > 0 with δ < θ, the inequality δ1/N ≤ 1

|lnδ| is true.

We prove Lemma 2 by basic calculus and by using l’Hôpital
rule. The preceding two lemmas allow us to formulate the
following theorem concerning the existence of a parameter
choice rule for Aε which only depends on the given δ ∈ R+:

Theorem 5. The function α : R>0 → R>0, α(δ) =
1

|lnδ|
is a parameter choice rule, i.e.

lim
δ→0

Aα(δ)(fδ) = E(f) (14)

The theorem is true based on Lemma 1, Theorem 4 and
Lemma 2.

Remark 1. The parameter choice rule indicates that the
“degree of ill-posedness” is rather high (cf. with linear reg-

ularization theory [18], where α(δ) = δ1/2 frequently oc-
curs). For fixed input instance f , the smallest function
α : R>0 → R>0 such that (noisy convergence) is true is
equal to the function β from Lemma 1. The choice of α
was done in order to ensure that α dominates β for every
possible f . Here is a series of examples that show that a
semi-algebraic parameter choice rule cannot be used as a
choice rule.

Example 2. Let n > 0 be an integer. Let f(z, w) = z2 −
wn+2. We consider the perturbation g(z, w) = fδ(z, w) =
z2−wn+2 + δw2, for δ ∈ (0, 1). Then we have a special zero

of (g,Mg) at (z, w) = (0, δ1/n). A closer analysis shows that
the ε-link of g is the Hopf link for every sphere with radius
less than δ1/n, while the link of f is equal to the torus link
(2, n + 2). Consequently, β(δ) > δ1/n for this choice of f .
Since n can be arbitrary, no function which is dominated by
a function of the from δ 7→ δ1/m for some m can be chosen
as a parameter choice rule.

5. IMPLEMENTATION

5.1 A Library for Algebraic Curves
We implemented the symbolic-numeric algorithms for com-

puting invariants of a plane complex algebraic curve de-
scribed in Section 3 in the free library GENOM3CK [7]-
GENus cOMputation of a plane Complex algebraiC Curve
using Knot theory-written in the Axel free algebraic geo-
metric modeler [21] and in the Mathemagix free computer
algebra system [10], i.e. in C++ using Qt Script for Appli-
cations and OpenGL. By using Axel, we integrate symbolic,
numeric and graphical capabilities into a single library. To-
gether with its main functionality to compute the genus,
the library performs operations in topology, algebraic geom-
etry and knot theory. More information on GENOM3CK
(including download, installation and complete documenta-
tion) can be found at: http://people.ricam.oeaw.ac.at/

m.hodorog/software.html.

5.2 Test Experiments
We include several experiments performed with the library

GENOM3CK in Axel. In Figure 7 we consider the plane
complex algebraic curve defined by the squarefree polyno-
mial p(z, w) = z3 − w3, with a singularity in the origin and

the input parameter ε = 1.00. From left to right, we vi-
sualize: (1) the link Lε of the singularity computed as the
intersection of two implicit surfaces S1, S2; (2) the two sur-
faces S1, S2; (3) the four surfaces S1, S2, S1 + S2, S1 − S2,
which are all part of the Milnor fibration of the singularity.

The test experiments indicates the convergence for noisy
data property of the regularization method as proved in Sec-
tion 4. In Table 1 we consider several input curves defined
by squarefree polynomials, which have the singularity in the
origin or close to the origin. The first column indicates the
defining polynomial of the curve, the second column indi-
cates the value for ε and the next columns contain the com-
puted values for the ε-link, the ε-Alexander polynomial and
respectively the ε-delta-invariant of the singularity.

We emphasize that for the curves C and D defined by
p(z, w) = −z3−zw+w2 and p̃(z, w) = −z3−zw+w2−0.01
from Example 1, the singularity (0, 0) of C disappears under
small perturbations of p(z, w) and we obtain the nonsingular
curve D. By using the algorithm APPROXLINK we observe that
for ε = 0.25 the link of (0, 0) of C coincide with the link of
(0, 0) of D.

6. CONCLUSION
We presented symbolic-numeric algorithms for computing

invariants for each singularity of a plane complex algebraic
curve: the link of each singularity, the Alexander polynomial
attached to each link, and the delta-invariant of each singu-
larity. We implemented the symbolic-numeric algorithms in
a free library which combines graphical, numerical and sym-
bolic capabilities. We employed regularization principles to
handle the ill-posedness of the problem.
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[16] S. Pérez-Dı́az, J. R. Sendra, S. L. Rueda, and
J. Sendra. Approximate parametrization of plane
algebraic curves by linear systems of curves. Computer
Aided Geometric Design, 27(2):212–231, February
2010.

[17] J. R. Sendra, F. Winkler, and S. Pérez-Dı́az. Rational
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