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Abstract. We report on an adapted version of the Bentley-Ottmann
algorithm for computing all the intersection points among the edges of
the projection of a three-dimensional graph. This graph is given as a set
of vertices together with their space Euclidean coordinates, and a set
of edges connecting them. More precisely, the three-dimensional graph
represents the approximation of a closed and smooth implicitly defined
space algebraic curve, that allows us a simplified treatment of the events
encountered in the Bentley-Ottmann algorithm. As applications, we use
the adapted algorithm to compute invariants for each singularity of a
plane complex algebraic curve, i.e. Alexander polynomial, Milnor num-
ber, delta-invariant, etc.
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1 Introduction

The algorithms from computational geometry are used in many applications do-
mains, such as robotics, computer vision, computer aided design and modeling,
geographic information systems, scientific visualization, etc. In particular, the
Bentley-Ottmann algorithm for reporting the pairwise intersections among a set
of objects in the plane proved itself useful in many applications from combinato-
rial geometry, computer graphics. A generalized version of the Bentley-Ottmann
algorithm [4] computes the pairwise intersections among geometric objects in
the space Rd. The Bentley-Ottmann algorithm uses a sweep technique, i.e. a
sweep plane (or a sweep line in R2) sweeps the space Rd (or R2) which contains
a set of geometric objects. At certain positions called event points, the sweep is
interrupted and the problem is locally solved. The sweep is greedy, without any
backtracking.
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In this paper, we propose an adapted version of the Bentley-Ottmann algo-
rithm [3] for computing all the intersection points among the edges of the pro-
jection of a 3-dimensional graph. In addition, the adapted algorithm computes
extra information on each intersection point and on the pair of edges that con-
tains it. The adapted Bentley-Ottmann algorithm operates on a 3-dimensional
graph data structure, which represents the piecewise linear approximation of a
closed and smooth implicitly defined space algebraic curve. We compute this
particular implicitly defined space algebraic curve as the link of the singularity
of a plane complex algebraic curve as described in [9].

We manage the adapted version of the Bentley-Ottmann algorithms in a
simpler way than in the original version because the 3-dimensional graph has
some special properties [6]: (i) it consists of several cycles; (ii) it is a regular
graph, i.e. it contains no loops or multiple edges; (iii) and its projection contains
at most one crossing point. The first two properties are always guaranteed since
the 3-dimensional graph represents the piecewise linear approximation of an
implicitly defined space algebraic curve, which is closed and smooth (i.e. it does
not intersects itself). We perform a test to check whether the third property
holds for the given 3-dimensional graph and in case the test fails we report a
failure message. Using the free algebraic geometric modeler Axel [12] we compute
efficient and robust results.

For our purpose, the adapted Bentley-Ottmann algorithm offers essential
benefits: it allows us to compute the Alexander polynomial of the singularity of a
plane complex algebraic curve as reported in [7]. From the Alexander polynomial
we compute other invariants of the singularity. In this way, we recover topological
local information on each singularity of a plane complex algebraic curve. Thus
we can use the adapted algorithm to solve a specific problem from algebraic
geometry, i.e. the problem of computing several topological invariants for each
singularity of a plane complex algebraic curve. These topological invariants play
an important role in the classification and the analysis of the singularities of a
plane complex algebraic curve as discussed in [2].

2 Description of the Algorithm

2.1 Data Structures

For our study, we define a 3-dimensional graph data structure as follows:

Definition 1 A (3-dimensional) graph is defined as a pair G = 〈V,E〉, where
V is a list of points (vertices) in the 3-dimensional space together with their Eu-
clidean coordinates, and E is a list of edges connecting them, i.e. V = {p(x, y, z) ∈
R3} and E = {e(i, j)|i, j ∈ V }.

We are interested in the following elements of a 3-dimensional graph:

Definition 2 A point in the 3-dimensional graph is a 4-tuple p(index, x, y, z),
where index ∈ Z uniquely identifies each point in the graph, and (x, y, z) ∈ R3
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are the Euclidean coordinates of the point. An edge in the 3-dimensional graph
is defined as a 2-tuple e(s, d), where s is the index of the source point of e and
d is the index of the destination point of e.

We introduce the following notations: (i) we use xycoord(index) for denoting
the x, y coordinates of index and ycoord for denoting the y coordinate of index;
(ii) we access the i-th component of a list sw using the underscore notation for
the index i, i.e swi. We consider that the indexes of a list start from 0.

We recall that a path in the 3-dimensional graph is a sequence of consecutive
edges in a graph, and a cycle (circuit) is a path which ends at the vertex it begins.
In addition, a loop is an edge that connects a vertex to itself, and multiple edges
are two or more edges connecting the same two vertices, see [6] for details.

For our purpose, we are interested in the projection of a 3-dimensional graph
which always consists of several cycles, see Figure 1 for an example. We also
assume that the 3-dimensional graph is simple (regular), i.e. it has no loops or
multiple edges.

Fig. 1. A 3-dimensional graph G with 3 cycles. Pictures produced with GENOM3CK,
see Section 4 for details

In addition, we consider the edges of a 3-dimensional graph G to be “small”
edges, i.e. the projection of any edge of G has at most one crossing point as
in Figure 2. If this property is not true for a certain pair of edges from a 3-
dimensional graph, then we report a failure message during runtime.

Remark 1 The 3-dimensional graph that we study in this paper represents the
piecewise linear approximation of a closed and smooth implicitly defined space
algebraic curve. We define this particular curve as the link of the singularity
(0, 0) of a plane complex algebraic curve C, which characterizes completely the
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Fig. 2. The projection of G which only has ”small” edges from Figure 1. Picture pro-
duced with GENOM3CK, see Section 4 for details

topology of the curve C around its singularity (0, 0). For instance, in Figure 1
we visualize the link of the singularity (0, 0) of the plane complex algebraic curve
defined by the squarefree polynomial x3−y3 = 0. In literature, the 3-dimensional
graph computed as the piecewise linear approximation of an implicitly defined
space algebraic curve is called the topology of the curve [1], [11]. We use the
Axel [12] free algebraic geometric modeler to compute the 3-dimensional graph
as presented in [7], [9]. For the special case of smooth implicitly defined algebraic
space curves, Axel uses certified algorithms to compute their topology.

We state the problem that we want to solve:

Problem 1 Given a 3-dimensional graph G = 〈V,E〉 as in Definitions 1 and 2,
which has only ”small” edges, compute the intersection points among all the edges
of the projection of G. In addition, compute some extra information: (i) for each
intersection point p find the pair of edges (em, en) that contains it. (ii) the pair
of edges (em, en) is ordered, i.e. em is under en in R3.

2.2 Methods

In order to solve Problem 1, we first compute all the intersection points of the
edges of the projection of a 3-dimensional graph and for each intersection point
the pair of edges that contains it. For this purpose, we design a sweep line
based algorithm as in [3]. We distinguish several steps for our algorithm, that
we describe in comparison with the original Bentley-Ottmann algorithm:
Step 1 (Ordering criteria). The edges of the projection of G are oriented
from left to right and they are ordered in the list of edges E = {e0, ..., eN} as in
Figure 3: (1) by the x-coordinates of their source points; (2) if the x-coordinates
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of the source points of two edges coincide, then the two edges are ordered by
the two slopes of their supporting lines; (3) if the x-coordinates of the source
points and the slopes of two edges coincide, then the two edges are ordered by
the y-coordinates of their destination points. The ordering criteria is necessary
for the correctness of the algorithm.

e0

??���������
e1

!!CC
CC

CC
C

XXX

W W W

z
z

z

z
z

z
e1

=={{{{{{{
e0 ++XXXXXXXX

e0

77ooooooo

e1

77ooooooo

Fig. 3. Ordering criteria for the edges

Step 2 (Sweep line paradigm). As in the Bentley-Ottmann algorithm, we
consider a vertical sweep line l that sweeps the plane from left to right. While
l moves it intersects several edges from E, that are stored in a list denoted
SW which we call the sweep list. SW changes while l sweeps the plane and
is updated only at certain points of the edges from E called event points. In
this algorithm, the sweep list SW is ordered by the y-coordinates of the inter-
sections of the edges of E with the sweep line l. As in the Bentley-Ottmann
SW represents the status of the algorithm. Step 3 (Sweep line manage-
ment). We observe that in E each index appears two times since E always
contains several cycles. This allows us to manage SW in a simpler way in our
adapted Bentley-Ottmann algorithm than in the original version. While we tra-
verse E, we insert the current edge em(sm, dm) from E in SW in the right
position and that is: (1) we search for an edge en(sn, dn) in SW such that
its destination coincide with the source of em ∈ E, i.e. dn = sm; if we find
such an en ∈ SW we replace it with em ∈ E; (2) if such an edge en ∈ SW
does not exist, we insert em in SW depending on its position against the cur-
rent edges from SW . We assume SW = {ei0 , ei1 , ei2 , ..., eik

}, with eiq
∈ E for

all q ∈ {1, ..., k}. There exists a unique index j with 0 ≤ j ≤ k such that
ycoord(sm) is larger than the y-coordinates of all the intersections of ei0 , ..., eij

with l and smaller than the y-coordinates of all the intersections of eij+1 , ..., eik

with l. This index j can be found by checking all the signs of the determi-
nants constructed with (xycoord(sm), 1), (xycoord(sij

), 1) and (xycoord(dij
), 1).

Then we insert em in SW between the two edges eij
and eij+1 and we obtain

SW = {ei0 , ei1 , ..., eij , em, eij+1 , ..., eik
}. When we insert an edge from E into

SW on the right position, we have to additionally update SW depending on the
encountered event points:

– we test each inserted edge in SW against its two neighbors for intersection. If
an intersection point p is found we report it together with the pair of edges
that contains it. In addition we swap the edges that intersect in SW . As
opposed to the original Bentley-Ottmann algorithm after swapping the edges
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in SW , we do not test the edges against their new neighbors for intersections
because we consider only ”small” edges.

– we test each inserted edge in SW against its two neighbors for common
destination. In addition, when two edges are swapped in SW after report-
ing their intersection point, we test them against their new neighbors for
common destination. Whenever we find two consecutive edges with common
destinations we erase them from SW . As opposed to the original Bentley-
Ottmann algorithm after deleting edges from SW , we do not test the new
neighbors for intersection because we consider only ”small” edges.

We notice that in the adapted Bentley-Ottmann algorithm we basically process
the pre-ordered list of edges E in a for-loop in a way which makes the explicit
use of a sweep list redundant.

Remark 2 We mention briefly a way to modify the adapted Bentley-Ottmann
algorithm such that in the case of a the 3-dimensional graph G with ”long” edges
(i.e. the projection of any edge of G has at least one crossing point) the algorithm
would detect all the intersection points and would not only report a failure mes-
sage at runtime. The main idea is to update the ordered list of edges E each time
the algorithm reports an intersection point as follows: if the algorithm reports the
intersection point p(x, y) ∈ R2 together with the pair of edges (e, f) 3 p(x, y),
then we split each edge of intersection e in two new edges el, er, which we insert
in the ordered list E. The new vertices of el are determined by the source index
of e and by the coordinates of p(x, y), while the new vertices of er are determined
by the coordinates of p(x, y) and by the destination index of e.

In the following we assume that we have computed: (1) a list I = {(xi, yi) ∈
R2} of the intersection points of all the edges of the projection of a 3-dimensional
graph; (2) and a list EI of pairs of edges for I such that the i-th element of EI
represents the pair of edges that contains the i-th intersection point from I. In
the example from Figure 2, our adapted Bentley-Ottmann algorithm computes
all the 6 intersection points together with the list of pairs of edges, which contain
these intersections.

In order to solve Problem 1, we now have to order each pair of edges from EI
depending on the Euclidean space coordinates of the intersection points from I.
For instance, in Figure 4 we consider p(x, y) ∈ I the intersection point of the
pair of edges (e1, e2) ∈ EI. We order this pair such that the first component
always lies under the second component in R3. We assume that for i = {1, 2}
the source and the destination points of ei are Ai(ai, bi, 0), Bi(di, ei, 0), which
are the projections of A

′

i(ai, bi, ci), B
′

i(di, ei, fi) from R3. To order the pair of
edges we proceed as follows:

1. For i = {1, 2} we compute the equations of the support lines Li for the
edges ei. We use the determinant formula for the equations of the lines
Li, i = {1, 2} and we obtain:

Li(x, y) : det

ai bi 1
di ei 1
x y 1

 = 0, (1)
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and thus Li(x, y) : (bi − ei)x+ (di − ai)y + aiei − bidi = 0.
2. We compute the coordinates z1, z2 of p1(x, y, z1) and p2(x, y, z2) as in Fig-

ure 4. As an example we compute z1 (we proceed in the same way for z2).
Firstly we compute α1 from

α1L2(A1) + (1− α1)L2(B1) = 0.

Then we compute z1 as z1 = α1c1 + (1− α1)f1.
3. If z1 < z2 then e1 is under e2 in R3 and we return the pair (e1, e2) for p(x, y)

(i.e. e1 is the undergoing edge and e2 is the overgoing edge for (e1, e2));
otherwise e2 is under e1 and we return the pair (e2, e1) for p(x, y).

A
′
1(a1, b1, c1)

B
′
1(d1, e1, f1)

A
′
2(a2, b2, c2)

B
′
2(d2, e2, f2)

•
p2(x, y, z2)

p1(x, y, z1)

A1(a1, b1, 0)

B1(d1, e1, 0)
A2(a2, b2, 0)

B2(d2, e2, 0)
•

p(x, y)

22dddddddddddddddddddddddd --[[[[[[[[[[[

22ddddddddddddddddddddddddd --[[[[[[[[[[[[[[[[[[[[[[

Fig. 4. Ordering the pair of edges that contains an intersection point

3 Applications of the Algorithm

Our main goal is to compute the topological invariants for each singularity of a
plane complex algebraic curve. For this purpose, it is essential for the adapted
Bentley-Ottmann algorithm to compute the extra information on each detected
pair of edges that contains an intersection point, i.e. to order the edges such
that we distinguish the undergoing and the overgoing edge in the pair as de-
scribed in Subsection 2.2. This extra information allows us: to compute for each
3-dimensional graph a special type of projection in the 2-dimensional space called
diagram. A diagram is a special type of projection in the 2-dimensional space
together with the information on each crossing telling which branch goes under
and which goes over. This information is captured by creating a break in the
branch going underneath. In our case, this information is provided by the un-
dergoing edge. For instance, in Figure 5 we visualize the diagram of the graph
data structure G from Figure 1. In addition, we compute all the cycles of a 3-
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Fig. 5. Diagram of the graph G from Figure 2

dimensional graph. For example, in Figure 6 we notice the 3 cycles of the graph
data structure from Figure 1. From this diagram and the cycles of the graph,

Fig. 6. The 3 cycles of the graph G from Figure 1

we compute the Alexander polynomial of each singularity of a plane complex
algebraic curve as presented in [7]. In addition, from the Alexander polynomial
we compute more topological invariants for the plane complex algebraic curve,
i.e. the Milnor number, the delta-invariant of each singularity, the genus, as
described in [9].

4 Implementation of the Algorithm

We implemented the adapted Bentley-Ottmann algorithm in GENOM3CK [8], a
library which was originally developed for GENus cOMputation of plane Com-
plex algebraiC Curves using Knot theory. The library is written in the free
algebraic geometric modeler Axel [12] and in the free computer algebra system
Mathemagix [10], i.e in C++ using Qt Script for Applications and Open Graph-
ics Library. At present, the library is available for both Macintosh and Linux.
More information about GENOM3CK (including documentation, download, in-
stallation instructions) can be found at http://people.ricam.oeaw.ac.at/m.
hodorog/software.html. For an example see Figure 7, where we visualize the 6
intersection points among the edges of Figure 2, which represents the projection
of the 3-dimensional graph from Figure 1.

We give some reasons for motivating our choice to use Axel [12] for the imple-
mentation of the algorithms. The Computational Geometry Algorithms Library,

http://people.ricam.oeaw.ac.at/m.hodorog/software.html
http://people.ricam.oeaw.ac.at/m.hodorog/software.html
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Fig. 7. Implementation of the adapted Bentley-Ottmann algorithm in GENOM3CK

CGAL [5], implemented in C++ is the standard library in the computational
geometry community. The library provides data structures and algorithms that
operate on geometric objects and thus it represents a good candidate to imple-
ment algorithms in computational geometry. Still for our purpose, the Bentley-
Ottmann algorithm implemented in CGAL must provide for each detected inter-
section point the extra information on the reported pair of edges of intersection
as discussed in Subsection 2.2. We notice that we computed the input data (i.e.
the 3-dimensional graph) for the adapted Bentley-Ottmann algorithm using Axel
as explained in Remark 1. Axel offers algebraic and geometric tools for comput-
ing the topology of smooth space algebraic curves as a 3-dimensional graph data
structure in a certified way. In order to use directly this computed 3-dimensional
graph and in order to obtain the essential extra information on each intersec-
tion point, we use Axel for the implementation of the adapted Bentley-Ottmann
algorithm in a simplified form. Consequently, the adapted Bentley-Ottmann al-
gorithm allows us to design more algorithms for computing the topological prop-
erties of each singularity of a plane complex algebraic curve as described in [9].
Another reason for the choice of the implementation system was that we wanted
to write our package in one language, and we also needed algebraic functions
for surface-surface intersection. To our knowledge, at present this is not imple-
mented (yet) in CGAL.

5 Conclusion

We presented an adapted version of the Bentley-Ottmann algorithm for com-
puting all the intersection points among the edges of the projection of a regular
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3-dimensional graph. We computed efficient and robust results using for the im-
plementation free systems as Axel and Mathemagix. As applications, we use the
adapted algorithm to solve a particular problem from algebraic geometry, i.e. the
problem of computing the topological invariants for each singularity of a plane
complex algebraic curve.
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