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Abstract

We show that Czichowski’s algorithm for computing the logarithmic part of
the integral of a rational function can be carried over to a rather general class of
transcendental functions.

1 Introduction

A standard approach in symbolic integration is to use differential fields for modeling the
integrand. When integrating in terms of elementary functions one tries to construct an
elementary extension of the field such that an indefinite integral can be found there. In
view of Liouville’s Theorem, terms of the integral not lying in the field originally given are
called the “logarithmic part” of the integral. In the 1970’s Rothstein and Trager [8, 9] gave
a formula for the logarithmic part without factoring the denominator using the minimal
algebraic extension of the field necessary. Later Lazard and Rioboo [6] presented an
algorithm avoiding any calculations in algebraic extensions for computing the logarithmic
part of the integral of rational functions based on subresultants, according to [1] Trager
also discovered that algorithm but did not publish it. In [2] Czichowski observed that
alternatively Gröbner bases can be used for the same purpose. An extension of the Lazard-
Rioboo-Trager algorithm from the rational case to certain transcendental integrands can
be found in [1]. In this note we will show that also Czichowski’s algorithm can be carried
over to the same class of transcendental functions. In contrast to [2] the proofs given
here are more detailed and make explicit use of Lazard’s structure theorem [5] instead of
reproving the relevant parts. Indeed, that theorem plays a key role in our presentation
of Czichowski’s method and we find it remarkable that a structure theorem, established
in the context of primary decomposition of ideals, finds a direct connection to symbolic
integration. For algebraic integrands, first attempts have been made by Kauers [4].

In section 2 we give the definitions used and for the convenience of the reader necessary
preliminary results are stated and some context is provided as well. Section 3 contains the
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main result Theorem 8 and some remarks on efficiency. In particular no postprocessing
of the logands is necessary once the Gröbner basis has been computed in contrast to the
necessity in the Lazard-Rioboo-Trager algorithm that has been pointed out in [7]. After
that some examples are presented in section 4.

All fields are implicitly understood to be of characteristic zero. In addition, we need to
define res(0, b) := 1 for the special case deg(b) = 0 in order to simplify the statements,
since then a vanishing resultant corresponds to common roots of polynomials.

2 Preliminaries

Recall the following definitions needed to formulate the main result.

Definition 1. Let (F,D) be a differential field, K a differential subfield and t ∈ F then
t is called a monomial over (K,D) if

1. t is transcendental over K and

2. Dt ∈ K[t].

For such t we define K〈t〉 :=
{
a
b

∣∣ a, b ∈ K[t], b|Db
}
the set of reduced elements of K(t).

Note that in this case K[t] and K〈t〉 are differential rings and K[t] ⊆ K〈t〉 since b = 1
trivially satisfies b|Db.

Definition 2. A differential field (F (t1, . . . , tn), D) is called an elementary extension of
F if each ti is elementary over Fi := F (t1, . . . , ti−1), i.e.

• ti is algebraic over Fi, or

• Dti = Df
f

for some f ∈ Fi (i.e. ti is a logarithm of f), or

• Dti
ti

= Df for some f ∈ Fi (i.e. ti is an exponential of f).

We say that f ∈ F has an elementary integral over (F,D) if there exists an elementary
extension (E,D) of (F,D) and g ∈ E such that

Dg = f.

Using these definitions we can think of the following variant of integration in finite terms
for providing the context for the algorithm presented later, which can be used as a
subroutine for solving it.

Given (F,D) = (C(t1) . . . (tn), D) a tower of successive differential field extensions of
C = Const(F ) by monomials and f ∈ F . Decide in finitely many steps whether f has an
elementary integral over (F,D), and compute one if it exists.

Recursive Risch-type algorithms (in contrast to Risch-Norman-type algorithms) proceed
through the field extensions one by one. Integrands from F =: K(tn) are reduced to
integrands from the differential subfield K = C(t1) . . . (tn−1) and at the same time parts
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of the integral are computed. At each step of the recursion part of the logarithmic part
of the integral can be computed relying on the following theorem, which is a corrected
and stronger version of Theorem 5.6.1 from [1]. All necessary proof ingredients can be
adapted in a straightforward way, so no proof is given here. Following preceding results it
relies on the Rothstein-Trager resultant, see [8, 9] for example. In statement 2 it gives a
necessary criterion on when the integral of an element f ∈ K(t) is elementary over K(t).

Theorem 3. Let t a monomial over the differential field (K,D) and assume that C :=
Const(K(t)) = Const(K). Let a, b ∈ K[t] with b 6= 0 and gcd(b,Db) = 1 and let z be an
indeterminate over K[t]. Define

r := rest(a− zDb, b) ∈ K[z] (1)

and
g :=

∑
r(α)=0

α
Dgα
gα
∈ K(t), (2)

where gα := gcd(a− αDb, b) ∈ K(α)[t] for each root α ∈ K of r.

1. Then g ∈ K(t) and a
b
− g ∈ K[t].

2. If there exists h ∈ K〈t〉 such that h+ a
b
has an elementary integral over (K(t), D),

then all roots α ∈ K of r are in C.

3. If E is an algebraic extension of C such that there are h ∈ K〈t〉, v ∈ K(t),
c1, . . . , cn ∈ E, and u1, . . . , un ∈ EK(t) with h + a

b
= Dv +

∑n
i=1 ci

Dui

ui
, then E

contains all roots α ∈ K of r.

The algorithm which we are going to present relies on the following structure theorem
for bivariate lexicographic Gröbner bases, see [5, Thm 1]. Since we will use it a lot in the
next section, it is restated here for the reader’s convenience.

Theorem 4. (Structure Theorem) Let K be any field, consider the commutative polyno-
mial ring K[x, y] with lexicographic ordering x < y.

1. Let {P0, . . . , Pm} ∈ K[x, y] be a minimal Gröbner basis of an ideal in K[x, y] such
that lt(Pi−1) < lt(Pi) for all i ∈ {1, . . . ,m}. Then

∀i ∈ {0, . . . ,m} : Pi = Qi+1· . . . ·Qm+1·R·Si,

where Q1, . . . , Qm+1 ∈ K[x], Qm+1 = conty(Pm), R = ppy(P0) ∈ K[x, y], S0 = 1,
and S1, . . . , Sm ∈ K[x, y] such that for all i ∈ {1, . . . ,m}:

(a) Si is monic w.r.t. y,

(b) degy(Si−1) < degy(Si), and

(c) Si ∈ 〈Qj+1· . . . ·Qi−1·Sj | j ∈ {0, . . . , i−1}〉.

2. Every set of polynomials which satisfies the preceding conditions is a Gröbner basis;
it is minimal if and only if ∀i ∈ {1, . . . ,m} : Qi 6∈ K.
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3 Computing the Logarithmic Part

For computing elementary integrals using Theorem 3 we would need to compute all the
gα = gcd(a − αDb, b) as gcd’s in various algebraic extensions K(α)[t]. There are two
methods for avoiding gcd computation in algebraic extensions at this point. In [1] it is
shown how the idea of Lazard, Rioboo and Trager of using the subresultant PRS for
computing the Rothstein-Trager resultant (1) to obtain the gα can be carried over from
rational functions to this general setting of monomials t. We do not discuss this here.
Instead we show how Czichowski’s idea of using a bivariate Gröbner basis to obtain the
gα carries over from rational functions to this general setting as well. For the following
three lemmas the field K does not need to carry a differential structure. These are
generalizations of the Lemmas 2.1, 2.2.iii, and 2.3 from [2] with essentially the same
proofs. The proofs given here are more detailed and make explicit use of Theorem 4
instead of reproving the relevant parts.

Lemma 5. Let a, b, c ∈ K[t] with b 6= 0 squarefree and gcd(b, c) = 1, let z be an inde-
terminate over K[t]. Then the ideal I := 〈a− zc, b〉 ⊆ K[t, z] is zero-dimensional and
radical. Moreover, {b, z−pa} is a minimal Gröbner basis of I w.r.t. lexicographic ordering
t < z for p ∈ K[t] such that pc ≡ 1 (mod b).

Proof. First, we show that {b, z−pa} is a minimal Gröbner basis of I w.r.t. lexicographic
ordering t < z. Since gcd(b, c) = 1 such a p ∈ K[t] always exists and let q ∈ K[t] such
that pc+ qb = 1. Hence we have (−p)·(a− zc) + (zq)·b = −pa+ zpc+ zqb = z − pa, i.e.,
z − pa ∈ I. On the other hand (qa)·b + (−c)·(z − pa) = a − zc. Thus {b, z − pa} is a
minimal Gröbner basis of I w.r.t. the lexicographic ordering t < z.

Now, for proving zero-dimensionality we show that the corresponding algebraic variety
of the ideal I is a finite set. To this end, let β1, . . . βd ∈ K be the roots of b ∈ K[t].
From gcd(b, c) = 1 it follows that c(βi) 6= 0 for all i ∈ {1, . . . , d}. Hence for each βi
there is exactly one αi ∈ K such that a(βi) − αic(βi) = 0. So the system of equations
a(t)− z·c(t) = 0, b(t) = 0 has only finitely many solutions (t, z) ∈ K2.

Next, we show that the radical ideal Rad(I) is contained in I. Let r ∈ Rad(I) and reduce
it by {b, z − pa} as follows: r(t, z) is reduced by z − pa to r(t, p(t)a(t)), which in turn
is reduced by b to some r̃ ∈ K[t] with deg(r̃) < deg(b). In addition, r̃ vanishes on the
deg(b) distinct roots (in K) of b because of r̃ ∈ Rad(I). Altogether this implies r̃ = 0,
i.e., r ∈ I.

Lemma 6. Let a, b, c ∈ K[t] with b 6= 0 squarefree and gcd(b, c) = 1, let z be an indeter-
minate over K[t], and let {P0, . . . , Pm} ⊆ K[z, t] be a minimal Gröbner basis of the ideal
I := 〈a− zc, b〉 ⊆ K[z, t] w.r.t. lexicographic ordering z < t such that lt(P0) < lt(Pi) for
all i ∈ {1, . . . ,m}.
Then P0 ∈ K[z] is the squarefree part of r(z) := rest(a− zc, b) ∈ K[z].

Proof. By the elimination property {P0, . . . , Pm} ∩K[z] is a Gröbner basis of I ∩K[z].
Since by Lemma 5 the ideal I is zero-dimensional {P0, . . . , Pm} ∩ K[z] is not empty.
Since P0 is the basis element with smallest leading term we obtain P0 ∈ K[z]. From the
minimality of the Gröbner basis we conclude {P0, . . . , Pm} ∩K[z] = {P0}. So the roots
of P0 ∈ K[z] are those α ∈ K such that the polynomials {P0(α, t), . . . , Pm(α, t)} ⊆ K[t]
have a common root in K. In addition, by Lemma 5 the ideal I is radical, hence also
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I ∩K[z] = 〈P0〉 is radical. This implies that P0 is squarefree.
The roots of r ∈ K[z] are those α ∈ K such that a−αc ∈ K[t] and b have a common root
in K. Now, {a − zc, b} and {P0, . . . , Pm} generate the same ideal (in K[z, t]) so by the
evaluation homomorphism z 7→ α also {a − αc, b} and {P0(α, t), . . . , Pm(α, t)} generate
the same ideal (in K[t]). Hence the roots of r and P0 are the same.

Lemma 7. Let a, b, c ∈ K[t] with b 6= 0 squarefree and gcd(b, c) = 1, let z be an indeter-
minate over K[t], and let {P0, . . . , Pm} ⊆ K[z, t] be a minimal Gröbner basis of the ideal
I := 〈a− zc, b〉 ⊆ K[z, t] w.r.t. lexicographic ordering z < t with lt(Pi−1) < lt(Pi) for all
i ∈ {1, . . . ,m}. Furthermore, let Q1, . . . , Qm+1 ∈ K[z] and R, S0, . . . , Sm ∈ K[z, t] be as
in Theorem 4.
Then for any α ∈ K root of r(z) := rest(a−zc, b) ∈ K[z] there is a unique i ∈ {1, . . . ,m}
such that Qi(α) = 0. With this i we have

Si(α, t) = gcd(a− αc, b) ∈ K(α)[t].

Proof. From Lemma 6 we know that R = 1 and P0 = Q1· . . . ·Qm+1 is squarefree and has
the same roots as r. So there is a unique i ∈ {1, . . . ,m+1} such that Qi(α) = 0. Since by
Lemma 5 I is zero-dimensional we have deg(Qm+1) = 0, otherwise for the roots α̃ ∈ K
of Qm+1 all Pj(α̃, t) would vanish on all t ∈ K. So i 6= m+ 1.

Next, using this i we prove ∀k ∈ {0, . . . ,m} : Pi(α, t)|Pk(α, t) by induction on k. For
k < i we have Qi|Pk and hence Pk(α, t) = 0; for k = i we have Pk(α, t) 6= 0 by the
uniqueness of i and the statement is trivial. For k ∈ {i+1, . . . ,m} Theorem 4 im-
plies Sk ∈ 〈Qj+1· . . . ·Qk−1·Sj | j ∈ {0, . . . , k−1}〉. Multiplication by Qk· . . . ·Qm+1 yields

QkPk ∈ 〈Pj | j ∈ {0, . . . , k−1}〉. Hence we obtain QkPk =
k−1∑
j=0

TjPj for some Tj ∈ K[z, t].

Evaluation at z = α yields

Qk(α)Pk(α, t) =
k−1∑
j=0

Tj(α, t)Pj(α, t) ∈ K(α)[t].

By the induction hypothesis each summand of the right hand side is divisible by Pi(α, t).
Dividing by Qk(α) ∈ K(α)∗ concludes the induction step.

Now, from this it follows that gcd(Pk(α, t) | k∈{0, . . . ,m}) = Si(α, t), note that Si(α, t)
is monic by Theorem 4. But we also have gcd(Pk(α, t) | k∈{0, . . . ,m}) = gcd(a− αc, b),
since by the evaluation homomorphism z 7→ α we know that {Pk(α, t) | k∈{0, . . . ,m}}
and {a− αc, b} generate the same ideal in K(α)[t].

The algorithm that can be read off from the proof of the following result may be used
as a building block in a recursive reduction strategy for finding elementary integrals of
elements from K(t). In short it provides a way to reduce simple integrands to polynomial
integrands and at the same time logarithms appearing in the integral are found. Note
that “simple” refers to a certain property of the denominator and “polynomial” refers to
elements from K[t] here.

Theorem 8. Let t a monomial over the differential field (K,D) and assume that C :=
Const(K(t)) = Const(K). Let a, b ∈ K[t] with b 6= 0 and gcd(b,Db) = 1 and let z be an
indeterminate. Then using modular inversion in K[t] and linear systems over K we can
compute Q1, . . . , Qm ∈ K[z] and S1, . . . , Sm ∈ K[z, t] such that
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1. r ∈ K[z] as defined in (1) has all its roots α ∈ K lying in C if and only if
Q1, . . . , Qm ∈ C[z] and

2. Q1, . . . , Qm are squarefree, S1, . . . , Sm are monic w.r.t. t and

a

b
−

m∑
i=1

∑
Qi(α)=0

α
DSi(α, t)

Si(α, t)
∈ K[t].

Proof. First, in K[t] we compute p ∈ K[t] such that

pDb ≡ 1 (mod b).

Then {b, z− pa} ⊆ K[z, t] is a Gröbner basis of 〈a− zDb, b〉 w.r.t. lexicographic ordering
t < z by Lemma 5. From this, by the FGLM-algorithm [3], we compute a monic minimal
Gröbner basis {P0, . . . , Pm} ⊆ K[z, t] for the same ideal but w.r.t. lexicographic ordering
z < t, with lt(Pi−1) < lt(Pi) for all i ∈ {1, . . . ,m}. By finding solutions of linear systems
over K and Lemma 5 we can do this. Next, for i ∈ {0, . . . ,m} we extract

Ri := lct(Pi) ∈ K[z]

and finally we compute for i ∈ {1, . . . ,m}

Qi :=
Ri−1

Ri

∈ K(z) and Si :=
Pi
Ri

∈ K(z)[t].

Now we verify the desired properties. By construction S1, . . . , Sm are monic w.r.t. t. Addi-
tionally, since the ideal is zero-dimensional we have lct(Pm) = lc(Pm) = 1 and degt(P0) =
0, hence contt(Pm) = 1 and ppt(P0) = 1. So by Theorem 4 we get Q1, . . . , Qm ∈ K[z],
S1, . . . , Sm ∈ K[z, t] and P0 = Q1· . . . ·Qm. Now Lemma 6 implies that {α ∈ K |
r(α) = 0} is the disjoint union of {α ∈ K | Qi(α) = 0} for i ∈ {1, . . . ,m} and that
Q1, . . . , Qm are squarefree. From this assertion 1 follows trivially since by construc-
tion lc(Qi) = lc(Pi−1)

lc(Pi)
= 1. Also assertion 2 follows immediately using Theorem 3.1 and

Lemma 7.

Remark Regarding the algorithmic efficiency in the proof of Theorem 8 note the fol-
lowing:

1. The Gröbner basis {b, z − pa} of I is minimal. Computing p ∈ K[t] with deg(p) <
deg(b) such that pDb ≡ a (mod b) instead, we would obtain {b, z− p} as a reduced
Gröbner basis for I, which shortens computation of normal forms in the FGLM-
algorithm.

2. During execution of the FGLM-algorithm P0 ∈ K[z] is the first element of the
Gröbner basis that is computed. In view of Theorems 3.2 and 8.1 this can be
used as a necessary criterion whether h + a

b
can have an elementary integral over

(K(t), D) without computing the full Gröbner basis {P0, . . . , Pm}.

3. It can be shown that deg(b) = dimK(K[z, t]/I) =
m∑
i=1

deg(Qi) degt(Si). This can be

exploited during the FGLM-algorithm in the following way. When computing Pk
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we consider all partitions of deg(b)−
k−1∑
i=1

deg(Qi) degt(Si) into m0 := degz(lt(Pk−1))

parts where each part is greater than degt(Sk−1). By looking at the size m1 and
multiplicitym2 of the smallest part in each of those partitions we obtain restrictions
on the possible leading terms zm0−m2tm1 of Pk. Thereby we can identify some steps
in the FGLM-algorithm where the linear system will not have a solution. More
explicitly, exactly the terms 1, t, . . . , tdegt(Pm)−1 can be dropped from the candidates
for leading terms.

4. Defining Si := Pi ∈ K[z, t] instead of computing the quotient Pi

Ri
we would retain

all necessary properties (except monicity) since gcd(Qi, Pi) = 1. In this case we

still have
m∑
i=1

∑
Qi(α)=0

αDSi(α,t)
Si(α,t)

− g =
m∑
i=1

∑
Qi(α)=0

αDRi(α)
Ri(α)

∈ K, where g is as in (2).

4 Examples

In the examples we keep the notation of Theorem 8. For simplicity all examples were

chosen such that C = Q and
m∑
i=1

∑
Qi(α)=0

αDSi(α,t)
Si(α,t)

= a
b
.

Example 1 Let (K,D) = (Q, 0), then the function tanh(x) can be represented by t
with Dt = −t2 + 1 ∈ K[t]. Now let a = t3 − t, b = 2

27
t3 − t + 1, then a monic minimal

Gröbner basis of 〈a− zDb, b〉 ⊆ K[z, t] w.r.t. z <lex t is given by

{(z + 3)(z − 3
2
), (z − 3

2
)(t− 3), t2 + 3t+ 3z − 9}.

Since in this example K = C the necessary condition for having an elementary integral
P0 ∈ C[z] is satisfied automatically. We read off Q1(z) = z + 3, Q2(z) = z − 3

2
and

S1(z, t) = t−3, S2(z, t) = t2 +3t− 9
2
. So we successfully computed the following integral:

∫
tanh(x)3 − tanh(x)

2
27

tanh(x)3 − tanh(x) + 1
dx = −3 log (tanh(x)− 3)+

3

2
log

(
tanh(x)2 + 3 tanh(x)− 9

2

)
.

Example 2 Let (K,D) = (Q(x), D) with Dx = 1, then the function Bi′(x)
Bi(x)

, where
Bi(x) is an Airy function, can be represented by t with Dt = −t2 + x ∈ K[t]. Now let
a = t3− xt, b = t3 + t2 + 1, then a monic minimal Gröbner basis of 〈a− zDb, b〉 ⊆ K[z, t]
w.r.t. z <lex t is given by

{z3 − 3
31
z − 1

31
, t+ 31

3
z2 − 1

3
}.

So in this simple case we have Q1(z) = P0(z) = z3− 3
31
z− 1

31
and S1(z, t) = t+ 31

3
z2− 1

3
.

Hence we successfully computed the following integral, where Mathematica, Maple, and
Maxima currently do not succeed to find an integral:

∫
Bi′(x)3 − xBi′(x)Bi(x)2

Bi′(x)3 + Bi′(x)2Bi(x) + Bi(x)3
dx =

∑
31α3−3α−1=0

α log

(
Bi′(x)

Bi(x)
+

31

3
α2 − 1

3

)
.
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Example 3 Let (K,D) = (Q(x), D) with Dx = 1, then the function log(x) can be
represented by t with Dt = 1

x
∈ K[t]. Now let a = (x + 1)t2 + x, b = xt(t2 + 1), then a

monic minimal Gröbner basis of 〈a− zDb, b〉 ⊆ K[z, t] w.r.t. z <lex t is given by

{(z − x)(z − 1
2
), (z − 1

2
)t, t2 − 2

2x−1
z + 2x

2x−1
}.

So we have Q1(z) = z − x,Q2(z) = z − 1
2
and S1(z, t) = t, S2(z, t) = t2 − 2

2x−1
z + 2x

2x−1
.

Since P0(z) = (z−x)(z− 1
2
) 6∈ C[z] we know that a

b
does not have an elementary integral

over (K(t), D). Nevertheless, due to Q2(z) ∈ C[z] we at least can write

∫
(x+ 1) log(x) + x

x log(x)(log(x)2 + 1)
dx =

∫
x

d
dx

log(x)

log(x)
dx+

1

2
log
(
log(x)2 + 1

)
.

As a matter of fact the logarithmic integral
∫

1
log(x)

dx = li(x) is not an elementary
function.
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2011-02 L.X.Châu Ngô: Finding rational solutions of rational systems of autonomous ODEs February
2011. Eds.: F. Winkler, P. Paule
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