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a b s t r a c t

In this paper we study non-autonomous algebraic ODEs F(x, y, y′)
= 0, where F(x, y, z) ∈ Q[x, y, z], provided a proper rational
parametrization P (s, t) of the corresponding algebraic surface
F(x, y, z) = 0. We show the relation between a rational general
solution of the non-autonomous differential equation F(x, y, y′) =

0 and a rational general solution of its associated autonomous
system with respect to P (s, t). The degrees of a rational solution
(s(x), t(x)) of the associated system are studied by giving a degree
bound for t(x) in terms of the degree of s(x) and the degree
with respect to s of the first component of P (s, t). We also give
a criterion for the existence of rational general solutions of the
associated system provided a degree bound of its rational general
solutions. The criterion is based on the vanishing of the differential
pseudo remainder of Gao’s differential polynomials with respect to
the chain of differential polynomials derived from the associated
system. We use this criterion to classify all autonomous linear
systems of ODEs of order 1 having a rational general solution.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In differential algebra, the solution set of a non-linear algebraic differential equation F(x, y, y′) = 0,
where F(x, y, z) ∈ Q[x, y, z], can be decomposed into the components that are defined by their prime
differential ideals. The general component is the one on which the separant of F does not vanish.
In Hubert (1996), the general solutions of non-autonomous algebraic ordinary differential equations
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(ODEs) of the form F(x, y, y′) = 0 are studied by giving a method to compute a basis of the prime
differential ideal defining the general component.

The rational general solutions of autonomous algebraic ODEs of order 1, F(y, y′) = 0, are well
studied by R. Feng and X-S. Gao in recent papers Feng and Gao (2004, 2006). In these papers, the
authors give an algorithm for explicitly computing a rational general solution of the autonomous
algebraic ODE F(y, y′) = 0. The method is based on a rational parametrization of the corresponding
algebraic curve F(y, z) = 0.

In fact, F(y, y′) is supposed to be a non-zero irreducible differential polynomial of order 1 with
coefficients in Q. One of the key observations in these papers is that a non-trivial rational solution
of F(y, y′) = 0 defines a proper rational parametrization of the corresponding algebraic curve
F(y, z) = 0.Conversely, if a proper rational parametrization of the algebraic curve F(y, z) = 0 satisfies
certain conditions, then a rational solution of F(y, y′) = 0 can be derived from this parametrization.
Moreover, from a non-trivial rational solution y(x) of F(y, y′) = 0, one can immediately create a
rational general solution by shifting the variable x by an arbitrary constant c , namely y(x + c) is a
rational general solution of F(y, y′) = 0. Therefore, the class of autonomous algebraic ODEs F(y, y′) =

0 having a rational general solution can be viewed as a subclass of the class of rational algebraic
curves. Moreover, the problem of computing a rational general solution is reduced to the problem
of computing a non-trivial rational solution and hence computing a proper rational parametrization
of a rational algebraic curve. This geometric approach has a great advantage because one can use the
theory of rational algebraic curves (cf. for instance Walker, 1978; Sendra et al., 2008) to study the
nature of rational solutions of autonomous algebraic ODEs of order 1. For instance, the degree of a
non-trivial rational solution is exactly equal to the degree of y′ in the algebraic differential equation
F(y, y′) = 0 (Feng and Gao, 2004, 2006; Sendra et al., 2008).

In this paper we study non-autonomous algebraic ODEs F(x, y, y′) = 0 with unknown y = y(x),
where F(x, y, z) is an irreducible polynomial in Q[x, y, z], provided a proper rational parametrization
P (s, t) of the corresponding algebraic surface F(x, y, z) = 0.

In Section 3 we use the parametrization P (s, t) to derive an autonomous system of ODEs in
two differential indeterminates s, t of order 1 and of degree 1 in s′ and t ′. This system is called the
associated system of the algebraic differential equation F(x, y, y′) = 0 with respect to P (s, t). We
show the relation between a rational general solution of the differential equation F(x, y, y′) = 0 and
a rational general solution of its associated system with respect to the given parametrization P (s, t).

In Section 4 we study the degrees of a rational solution (s(x), t(x)) of the associated system with
respect to a parametrization P (s, t). We show that the degree of t(x) can be bounded by the degree
of s(x) and the degree with respect to s of the first component of P (s, t).

In Section 5 we give a criterion for the existence of a rational general solution of the associated
systemprovided a degree bound of its rational general solution. The criterion is based on the vanishing
of the differential pseudo remainder of Gao’s differential polynomials (Feng and Gao, 2006) with
respect to a chain of differential polynomials coming from the associated system. Finally, we use this
criterion to classify all autonomous linear systems of ODEs having a rational general solution.

2. Preliminaries

In this section we recall some basic notions in differential algebra such as order, initial, separant,
ranking and Ritt’s reduction in a ring of differential polynomials in two indeterminates. The more
general definitions can be found in Ritt (1950) and Kolchin (1973).

Let Q(x) be the differential field of rational functions over Q with the usual derivation d
dx which

we also simply denote by ′. Let s, t be two differential indeterminates over Q(x). The i-th derivatives
of s and t are denoted by si and ti, respectively. The differential polynomial ring Q(x){s, t} is the ring
consisting of all polynomials in s, t and all their derivatives of any order. In this paper we deal with
both differential rings Q(x){s, t} and Q(x){y}, where y is another differential indeterminate. We will
define most notions for the case of two differential indeterminates. When we specify the situation to
one indeterminate, these notions still apply.

Let F be a differential polynomial inQ(x){s, t}. The i-th derivative of F is denoted by F (i). We simply
write s and t instead of s0 and t0, respectively, or simply write F ′ instead of F (1). The order of F in s,
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denoted by ords(F), is the highest n such that sn occurs in F . We define ords(F) to be −1 if F does not
involve any derivative of s. Analogously these notions are defined for t .

Definition 2.1. Let F ,G ∈ Q(x){s, t}. F is said to be of higher rank than G in s iff one of the following
conditions holds:

(1) ords(F) > ords(G);
(2) ords(F) = ords(G) = n and degsn(F) > degsn(G).

If F is of higher rank than G in s, then we also say G is of lower rank than F in s. Analogously these
notions are defined for t .

Definition 2.2. Let A = {si | i ∈ N} ∪ {ti | i ∈ N}. The ord-lex ranking on A is the total order defined
as follows:

si < sj if i < j,
ti < tj if i < j,
ti < sj if i ≤ j,
si < tj if i < j.

The ord-lex ranking is an orderly ranking. For a formal definition of orderly ranking we prefer to
Kolchin (1973, page 75).

Definition 2.3. Let F be a differential polynomial inQ(x){s, t}. The leader of F is the highest derivative
occurring in F with respect to the ord-lex ranking on the set of derivatives {si | i ∈ N} ∪ {ti | i ∈ N}.
The initial of F is the leading coefficient of F with respect to its leader. The separant of F is the partial
derivative of F with respect to its leader.

Observe that the separant of F is also the initial of any proper derivative F (i) of F .

Definition 2.4. Let F and G be differential polynomials in Q(x){s, t}. G is said to be reduced with
respect to F iff G is of lower rank than F in the indeterminate defining the leader of F .

Remark 2.5. With the notion of leader, we can view a differential polynomial F in Q(x){s, t} as a
univariate polynomial in the derivative defining its leader. Then both the initial and the separant of F
are reduced with respect to F .

Definition 2.6. Let F ∈ Q(x){s, t}. By Ritt’s reduction, for any G ∈ Q(x){s, t} there exists a unique
representation

SmInG =

−
i≥0

QiF (i) + R,

where S is the separant of F , I is the initial of F , Qi ∈ Q(x){s, t}, F (i) are the i-th derivatives of F ,
m, n ∈ N and R ∈ Q(x){s, t} is reduced with respect to F . The differential polynomial R is called the
differential pseudo remainder of Gwith respect to F , denoted by

R = prem(G, F).

The reduction of Gwith respect to F is trivial iff R = G. Otherwise, the reduction is non-trivial.

Now let F be an irreducible differential polynomial in Q(x){y} and let S be the separant of F . Then
{F}, the radical differential ideal generated by F , can be decomposed as

{F} = ({F} : S) ∩ {F , S},

where {F} : S is the quotient of {F} by the ideal ⟨S⟩ generated by S. Moreover, {F} : S is a prime
differential ideal in the differential ring Q(x){y} and G belongs to {F} : S iff prem(G, F) = 0 (Ritt,
1950, II, Section 13). The prime differential ideal {F} : S defines the general component of F(y) = 0.
The differential ideal {F , S} defines the singular solutions of F(y) = 0.
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Definition 2.7. Let I be a non-trivial prime differential ideal in Q(x){y}. A zero η, in a differential field
extension of Q(x), of I is called a generic zero of I iff for any differential polynomial P ∈ Q(x){y}, P
vanishes on η if and only if P belongs to I .

By Ritt (Ritt, 1950, II, Section 6), there exists a differential field extension ofQ(x) inwhich the prime
differential ideal {F} : S has a generic zero.

Definition 2.8. Let F be an irreducible differential polynomial in Q(x){y}. A generic zero of the prime
differential ideal {F} : S is called a general solution of the differential equation F(y) = 0. A rational
general solution of the differential equation F(y) = 0 is defined as a general solution of F(y) = 0 of
the form

y =
anxn + an−1xn−1

+ · · · + a0
bmxm + bm−1xm−1 + · · · + b0

,

where ai, bj are in some field of constants K and bm ≠ 0.

Definition 2.9. Let F be an irreducible differential polynomial in Q(x){y}. Let U be a differential field
extension of Q(x) in which a general solution of the differential equation F(y) = 0 is contained. The
constant field K of U is called a field of constants of solutions of F(y) = 0.

3. The associated system of the parametrizable equation F(x, y, y′) = 0

In this section we consider an ODE of order 1,

F(x, y, y′) = 0, (1)

such that F(x, y, z) is an irreducible polynomial inQ[x, y, z]. If F is not involving x, then the differential
equation (1) is called autonomous. If F is possibly involving x, then the differential equation (1) is called
non-autonomous. We will view the autonomous case as a special case of the non-autonomous one.

Definition 3.1. Let F be an irreducible polynomial in Q[x, y, z]. Let K be a field of constants of
solutions of F(x, y, y′) = 0. By viewing x, y and z as independent variables, the algebraic equation
F(x, y, z) = 0 defines an algebraic surface S over K. S is called the solution surface of F(x, y, y′) = 0.

A rational solution y = f (x) of (1) is an element of K(x) such that

F(x, f (x), f ′(x)) = 0. (2)

If f is a rational solution of (1), then the parametric space curve

C = {(x, y, z) | x ∈ K, y = f (x), z = f ′(x)}

lies on the solution surface S.

Definition 3.2. Let y = f (x) be a rational solution of F(x, y, y′) = 0. The parametric space curve

C = {(x, y, z) | x ∈ K, y = f (x), z = f ′(x)}

is called the solution curve of f .

Let F(x, y, z) be an irreducible polynomial in Q[x, y, z]. The algebraic surface

F(x, y, z) = 0

is called a rational surface iff there exists a rational mapping

P (s, t) = (χ1(s, t), χ2(s, t), χ3(s, t))

such that F(P (s, t)) = 0, where χ1, χ2 and χ3 are rational functions in s and t , at least two of them
non-constant. In this case P (s, t) is called a rational parametrization of F(x, y, z) = 0. A rational
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parametrization P (s, t) of F(x, y, z) = 0 is called proper iff it has an inverse, i.e., there is a rational
mapping

Q(x, y, z) = (ψ1(x, y, z), ψ2(x, y, z))

such that (Q ◦ P )(s, t) = (s, t) for almost all s, t and

(P ◦ Q)(x, y, z) = (x, y, z)

for almost all x, y, z with F(x, y, z) = 0.
In this paper we always consider the differential equation F(x, y, y′) = 0 where the polynomial

F(x, y, z) defines a rational surface. We also assume that

P (s, t) = (χ1(s, t), χ2(s, t), χ3(s, t))

is a proper rational parametrization of F(x, y, z) = 0, where

χ1(s, t), χ2(s, t), χ3(s, t) ∈ Q(s, t).

The inverse map of P , denoted by P −1, is defined on the surface S, except for finitely many curves or
points on S.

Definition 3.3. Let f (x) be a rational solution of the equation F(x, y, y′) = 0. Let S be the solution
surface of F(x, y, y′) = 0 and C be the solution curve of f . Let P be a proper rational parametrization
of F(x, y, z) = 0. The solution curve C is parametrizable by P iff C is almost contained in im(P ) ∩

dom(P −1), i.e., except for finitely many points on C.

Proposition 3.4. Let F(x, y, z) = 0 be such that the solution surface of F is rational with a proper
parametrization

P (s, t) = (χ1(s, t), χ2(s, t), χ3(s, t)).

The differential equation F(x, y, y′) = 0 has a rational solution whose solution curve is parametrizable by
P if and only if the system

χ1(s(x), t(x)) = x
χ2(s(x), t(x))′ = χ3(s(x), t(x))

(3)

has a rational solution (s(x), t(x)). In that case y = χ2(s(x), t(x)) is a rational solution of F(x, y, y′) = 0.

Proof. Assume that y = f (x) is a rational solution of F(x, y, y′) = 0, which is parametrizable by P .
Let

(s(x), t(x)) = P −1(x, f (x), f ′(x)).

Then s(x) and t(x) are rational functions because f (x) is a rational function and P −1 is a rational map.
We have

P (s(x), t(x)) = P (P −1(x, f (x), f ′(x))) = (x, f (x), f ′(x)).

In other words, (s(x), t(x)) is a rational solution of the system
χ1(s(x), t(x)) = x
χ2(s(x), t(x)) = f (x)
χ3(s(x), t(x)) = f ′(x).

(4)

Therefore,
χ1(s(x), t(x)) = x
χ2(s(x), t(x))′ = χ3(s(x), t(x)).

Conversely, if two rational functions s = s(x) and t = t(x) satisfy the system (3), then y =

χ2(s(x), t(x)) is a rational solution of the differential equation F(x, y, y′) = 0 because F(P (s(x), t(x)))
= 0. �
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Remark 3.5. The rational parametrizations of the solution surface of F(x, y, z) = 0 are not unique.
Suppose thatP1(s, t) andP2(s, t) are two different proper rational parametrizations of F(x, y, z) = 0.
It may happen that a rational solution y = f (x) of F(x, y, y′) = 0 is parametrizable by P1(s, t) but it
is not parametrizable by P2(s, t). This is the case when the solution curve of f is not almost contained
in im(P2) ∩ dom(P −1

2 ).

The system (3) can be expanded in more detail. Differentiating the first equation of (3) and
expanding the last equation of (3), we obtain a linear system of equations in s′(x) and t ′(x)

∂χ1(s(x), t(x))
∂s

· s′(x)+
∂χ1(s(x), t(x))

∂t
· t ′(x) = 1

∂χ2(s(x), t(x))
∂s

· s′(x)+
∂χ2(s(x), t(x))

∂t
· t ′(x) = χ3(s(x), t(x)).

(5)

If

det


∂χ1(s(x), t(x))

∂s
∂χ1(s(x), t(x))

∂t

∂χ2(s(x), t(x))
∂s

∂χ2(s(x), t(x))
∂t

 ≢ 0, (6)

then (s(x), t(x)) is a rational solution of the autonomous system of differential equations
s′ =

f1(s, t)
g(s, t)

t ′ =
f2(s, t)
g(s, t)

,

(7)

where f1(s, t), f2(s, t), g(s, t) ∈ Q(s, t) are defined by

f1(s, t) =
∂χ2(s, t)
∂t

− χ3(s, t) ·
∂χ1(s, t)
∂t

,

f2(s, t) = χ3(s, t) ·
∂χ1(s, t)
∂s

−
∂χ2(s, t)
∂s

,

g(s, t) =
∂χ1(s, t)
∂s

·
∂χ2(s, t)
∂t

−
∂χ1(s, t)
∂t

·
∂χ2(s, t)
∂s

.

(8)

If the determinant (6) is equal to 0, then (s(x), t(x)) is a solution of the system
ḡ(s, t) = 0
f̄1(s, t) = 0,

(9)

where ḡ(s, t) and f̄1(s, t) are the numerators of g(s, t) and f1(s, t), respectively. Thus (s(x), t(x))
defines a curve if and only if gcd(ḡ(s, t), f̄1(s, t)) is a non-constant polynomial in s, t . Otherwise,
(s(x), t(x)) is just an intersection point of two algebraic curves ḡ(s, t) = 0 and f̄1(s, t) = 0, which
does not satisfy the relation (3).

Definition 3.6. The autonomous system (7) is called the associated system of the differential equation
F(x, y, y′) = 0 with respect to P (s, t).

Wewould expect that a rational general solution of the system (7) completely determines a rational
general solution of the differential equation F(x, y, y′) = 0. At this point we define what we mean by
a rational general solution of the system (7). For this purpose we need some preparation.

From now on, we considerM1,N1,M2,N2 ∈ Q[s, t], M1 ≠ 0,M2 ≠ 0 and two special differential
polynomials F1 and F2 in Q(x){s, t} defined as follows

F1 := M1s′ − N1, F2 := M2t ′ − N2.
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In this paper the ranking in the differential ring Q(x){s, t} is the ord-lex ranking defined in
Definition 2.2. Note that the initial and separant of F1 (respectively, of F2) are the same. The differential
ideal generated by F1 and F2 is denoted by [F1, F2]. Later we will take M1,M2,N1,N2 to be the
polynomials in the denominators and the numerators of the right hand side of the system (7).

The set A = {F1, F2} is an autoreduced set relative to the ord-lex ranking because F1 is reduced with
respect to F2 and F2 is reducedwith respect to F1. Let G ∈ Q(x){s, t}. By Ritt’s reduction (Kolchin, 1973,
Proposition 1, page 79), we can reduce Gwith respect to the autoreduced set A, i.e., we have a unique
representation

Mm
1 Mn

2G =

−
i≥0

Q1iF
(i)
1 +

−
i≥0

Q2iF
(i)
2 + R,

where Q1i,Q2i ∈ Q(x){s, t}, m, n ∈ N, F (i)1 and F (i)2 are the i-th derivatives of F1 and F2 respectively,
R ∈ Q(x)[s, t] is reduced with respect to both F1 and F2. We call R the differential pseudo remainder of
Gwith respect to the autoreduced set {F1, F2} and we denote it by

R = prem(G, F1, F2).

Remark 3.7. The differential pseudo remainder R = prem(G, F1, F2) is always a polynomial in
Q(x)[s, t] because F1 and F2 are of order 1 and of degree 1.

Lemma 3.8. Let

I = {G ∈ Q(x){s, t} | prem(G, F1, F2) = 0}.

Then I is a prime differential ideal in Q(x){s, t}.

Proof. Consider the set HA = {M1,M2}. Denote H∞

A = {Mm1
1 Mm2

2 | m1,m2 ∈ N}. Then

[F1, F2] : H∞

A := {G ∈ Q(x){s, t} | ∃J ∈ H∞

A , JG ∈ [F1, F2]}

is a prime differential ideal (Ritt, 1950, V, Section 3, page 107). Let

I = {G ∈ Q(x){s, t} | prem(G, F1, F2) = 0}.

We prove that

I = [F1, F2] : H∞

A .

In fact it is clear that I ⊆ [F1, F2] : H∞

A . Let G ∈ [F1, F2] : H∞

A . Then there exists J ∈ H∞

A such that
JG ∈ [F1, F2]. On the other hand, let R = prem(G, F1, F2),we have

J1G − R ∈ [F1, F2]

for some J1 ∈ H∞

A . It follows that JR ∈ [F1, F2]. Since R, J ∈ Q(x)[s, t], this happens if and only if JR = 0.
We must have R = 0 because J ≠ 0. Therefore, I = [F1, F2] : H∞

A . Hence the lemma is proven. �

Definition 3.9. Let M1,N1,M2,N2 ∈ Q[s, t], M1,M2 ≠ 0. A rational solution (s(x), t(x)) of the
autonomous system

s′ =
N1(s, t)
M1(s, t)

t ′ =
N2(s, t)
M2(s, t)

(10)

is called a rational general solution iff for any G ∈ Q(x){s, t} we have

G(s(x), t(x)) = 0 ⇐⇒ prem(G,M1s′ − N1,M2t ′ − N2) = 0.
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Remark 3.10. A rational general solution of the system (10) is a generic zero of the prime differential
ideal

I = {G ∈ Q(x){s, t} | prem(G,M1s′ − N1,M2t ′ − N2) = 0}.

Again there is a differential field extension U of Q(x) in which the prime differential ideal I has a
generic zero. We can take the smallest differential field extension of Q(x) containing both general
solutions of the differential equation F(x, y, y′) = 0 and general solutions of the system (10) to be
the common differential field. Therefore, we can assume that the associated system of the differential
equation F(x, y, y′) = 0 and the differential equation F(x, y, y′) = 0 have the same field of constants
of solutions, denoted by K.

Lemma 3.11. Let (s(x), t(x)) be a rational general solution of the system (10). Let G be a bivariate
polynomial in Q(x)[s, t]. If G(s(x), t(x)) = 0, then G = 0 in Q(x)[s, t].

Proof. Since G ∈ Q(x)[s, t], we have

prem(G, s′M1(s, t)− N1(s, t), t ′M2(s, t)− N2(s, t)) = G.

By definition of general solutions, G(s(x), t(x)) = 0 implies G = 0 in Q(x)[s, t]. �

Lemma 3.12. Let K be a field of constants of solutions of the system (10). Let

s(x) =
akxk + ak−1xk−1

+ · · · + a0
blxl + bl−1xl−1 + · · · + b0

and

t(x) =
cnxn + cn−1xn−1

+ · · · + c0
dmxm + dm−1xm−1 + · · · + d0

be a non-trivial rational solution of the system (10), where ai, bi, ci, di ∈ K, bl, dm ≠ 0. If (s(x), t(x)) is
a rational general solution of the system (10), then there exists a constant among the coefficients of s(x)
and t(x), which is transcendental over Q.

Proof. Let

S = (blxl + bl−1xl−1
+ · · · + b0)s − (akxk + ak−1xk−1

+ · · · + a0)

and

T = (dmxm + dm−1xm−1
+ · · · + d0)t − (cnxn + cn−1xn−1

+ · · · + c0).

Let G = resx(S, T ) be the resultant of S and T with respect to x. Then G is a polynomial in s and
t with the coefficients depending on ai, bi, ci, di. If all ai, bi, ci, di were in Q, then G ∈ Q[s, t] and
G(s(x), t(x)) = 0. Since (s(x), t(x)) is a rational general solution, it follows by Lemma 3.11 that G = 0.
But G is the implicit equation of the rational curvewith parametrization (s(x), t(x)); compare Chapter
4 Section 4.5 in Sendra et al. (2008). So G ≠ 0, in contradiction. Therefore, there is a coefficient of s(x)
or t(x) that does not belong to Q. Since Q is an algebraically closed field, a constant which is not in Q
must be a transcendental element over Q. �

This lemma gives us a necessary condition for (s(x), t(x)) to be a rational general solution of the
system (10). It requires that the rational general solution of the system has to contain at least one
coefficient transcendental over the constant field of the system itself. Typically this transcendental
coefficient appears as an arbitrary constant. Next we give a sufficient condition for a rational solution
(s(x), t(x)) of the system (10) to be a rational general solution.

Lemma 3.13. Let (s(x), t(x)) be a rational solution of the system (10). Let H(s, t) be the defining
polynomial of the rational algebraic curve defined by (s(x), t(x)). If there is an arbitrary constant in the
set of coefficients of H(s, t), then (s(x), t(x)) is a rational general solution of the system (10).
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Proof. Suppose that (s(x), t(x)) is a rational solution of the system (10). Let G ∈ Q(x){s, t} be a
differential polynomial such that G(s(x), t(x)) = 0. Let

R = prem(G,M1s′ − N1,M2t ′ − N2).

Then R ∈ Q(x)[s, t] and R(s(x), t(x)) = 0. Since the set of coefficients of H(s, t) contains an arbitrary
constant, H(s, t) can be viewed as a family of polynomials in Q[s, t] by specializing the arbitrary
constants by algebraic numbers in Q. Moreover, H(s, t) is a family of irreducible polynomials because
H(s, t) = 0 is a family of rational algebraic curves (Sendra et al., 2008, Theorem 4.4). Therefore, the
polynomial R(s, t)must be a multiple of each individual irreducible polynomial of the infinite family
H(s, t). This happens if and only if R = 0. It follows that (s(x), t(x)) is a rational general solution of
the system (10). �

Theorem 3.14. Let y = f (x) be a rational general solution of F(x, y, y′) = 0. Suppose that the solution
curve of f is parametrizable by P (s, t) = (χ1(s, t), χ2(s, t), χ3(s, t)). Let

(s(x), t(x)) = P −1(x, f (x), f ′(x))

and

g(s, t) =
∂χ1(s, t)
∂s

·
∂χ2(s, t)
∂t

−
∂χ1(s, t)
∂t

·
∂χ2(s, t)
∂s

.

If g(s(x), t(x)) ≠ 0, then (s(x), t(x)) is a rational general solution of the system (7).

Proof. Since g(s(x), t(x)) ≠ 0, (s(x), t(x)) is a solution of (7). Suppose that P ∈ Q(x){s, t} is a
differential polynomial such that P(s(x), t(x)) = 0. Let

R = prem(P, s′M1(s, t)− N1(s, t), t ′M2(s, t)− N2(s, t)),

where N1,N2,M1 and M2 are numerators and denominators of the right hand side of the system (7).
Then R ∈ Q(x)[s, t]. We have to prove that R = 0.We know that

R(s(x), t(x)) = R(P −1(x, f (x), f ′(x))) = 0.

Let us consider the rational function R(P −1(x, y, z)) =
U(x,y,z)
V (x,y,z) . Then U(x, y, y′) is a differential

polynomial satisfying the condition

U(x, f (x), f ′(x)) = 0.

Since f (x) is a rational general solution of F(y) = 0 andU(x, y, y′) vanishes on y = f (x), the differential
pseudo remainder ofU with respect to F must be zero. On the other hand, both F andU are differential
polynomials of order 1, we only divide U by F and not by any of its derivatives. Hence, we have the
reduction

ImU(x, y, y′) = Q0F ,

where I is the initial of F , m ∈ N and Q0 is a differential polynomial of order 1 in Q(x){y}. Therefore,

R(s, t) = R(P −1(P (s, t))) =
U(P (s, t))
V (P (s, t))

=
Q0(P (s, t))F(P (s, t))
Im(P (s, t))V (P (s, t))

= 0

because F(P (s, t)) = 0 and I(P (s, t)) ≠ 0. Thus (s(x), t(x)) is a rational general solution of (7). �

Now let us demonstrate how to construct a rational general solution of F(x, y, y′) = 0 from a
rational general solution of its associated system. Assume that (s(x), t(x)) is a rational general solution
of the associated system (7). Substituting s(x) and t(x) into χ1(s, t) and using the relation (5) we get

χ1(s(x), t(x)) = x + c

for some constant c . Hence

χ1(s(x − c), t(x − c)) = x.
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It follows that y = χ2(s(x − c), t(x − c)) is a solution of the differential equation

F(x, y, y′) = 0.

Moreover, wewill prove that y = χ2(s(x−c), t(x−c)) is a rational general solution of F(x, y, y′) = 0.
The main theorem is the following.
Theorem 3.15. Let (s(x), t(x)) be a rational general solution of the system (7). Let c = χ1(s(x), t(x))−x.
Then

y = χ2(s(x − c), t(x − c))

is a rational general solution of F(x, y, y′) = 0.
Proof. By the above discussion, it is clear that y = χ2(s(x − c), t(x − c)) is a rational solution of
F(x, y, y′) = 0. Let G be an arbitrary differential polynomial in Q(x){y} such that G(y) = 0. Let

R = prem(G, F)

be the differential pseudo remainder of G with respect to F . It follows that

R(y) = 0.

We have to prove that R = 0. Assume that R ≠ 0. Then

R(χ1(s, t), χ2(s, t), χ3(s, t)) =
W (s, t)
Z(s, t)

∈ Q(s, t).

On the other hand,

R(χ1(s(x), t(x)), χ2(s(x), t(x)), χ3(s(x), t(x))) = 0.

It follows that W (s(x), t(x)) = 0. By Lemma 3.11 we must haveW (s, t) = 0. Thus

R(χ1(s, t), χ2(s, t), χ3(s, t)) = 0.

Since F is irreducible and degy′ R < degy′ F , we have R = 0 in Q[x, y, z]. Therefore, y is a rational
general solution of F(x, y, y′) = 0. �

4. A degree bound for rational solutions of the associated system

We have studied the algebraic ODE of order 1, F(x, y, y′) = 0, provided a proper rational
parametrization

P (s, t) = (χ1(s, t), χ2(s, t), χ3(s, t))

of the solution surface F(x, y, z) = 0. We know that every rational solution (s(x), t(x)) of the
associated system of F(x, y, y′) = 0 w.r.t P (s, t) satisfies the condition

χ1(s(x), t(x)) = x.

From this condition we can deduce that the degree of t(x) is bounded in terms of the degree of s(x)
and the degree of χ1(s, t)with respect to s.
Theorem 4.1. Let

χ1(s, t) =
an(t)sn + an−1(t)sn−1

+ · · · + a0(t)
bm(t)sm + bm−1(t)sm−1 + · · · + b0(t)

∈ K(s, t)

be such that χ1(s, t) /∈ K(s) and χ1(s, t) /∈ K(t), where m, n ∈ N and bm(t) ≠ 0. Suppose that s(x) and
t(x) are rational functions in K(x), which satisfy the condition

χ1(s(x), t(x)) = x.

Let δ = deg s(x). Then

deg t(x) ≤ 1 + δmax{m, n}.
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Proof. We have

χ1(s(x), t(x)) = x ⇐⇒
an(t(x))s(x)n + an−1(t(x))s(x)n−1

+ · · · + a0(t(x))
bm(t(x))s(x)m + bm−1(t)s(x)m−1 + · · · + b0(t(x))

= x.

We know that for any rational function t ∈ K(x), x is algebraic over K(t) and

deg t(x) = [K(x) : K(t)].

Therefore, in order to find a degree bound for t , it is enough to find an algebraic equation for x over
K(t). Let s(x) =

P
Q , where P,Q ∈ K[x], Q ≠ 0. Let

δ = deg s(x) = max{deg P, degQ }, l = degQ .

We have

x =
Qm

Q n
·
(an(t)Pn

+ · · · + a0(t)Q n)

(bm(t)Pm + · · · + b0(t)Qm)

= Qm−n
·
(an(t)Pn

+ · · · + a0(t)Q n)

(bm(t)Pm + · · · + b0(t)Qm)
·

This equation derives a non-zero algebraic equation of x over K(t) because χ1(s, t) /∈ K(s) and
χ1(s, t) /∈ K(t). We can compute the degree of x in the above equation regarding l ≤ δ.

If n ≥ m, then

deg t(x) ≤ max{1 + mδ + l(n − m), nδ} ≤ 1 + nδ.

If n < m, then

deg t(x) ≤ max{1 + mδ, nδ + l(m − n)} ≤ 1 + mδ.

Therefore, deg t(x) ≤ 1 + δmax{m, n}. �

Of course, the degree of s(x) can also be bounded in the same way by the degree of t(x) and the
degree of the first component of P (s, t)with respect to t .

5. A criterion for existence of rational general solutions of the associated system

In this sectionwe derive a criterion for the existence of a rational general solution of the associated
system of the equation F(x, y, y′) = 0. The following lemma can be found in Feng and Gao (2006).

Lemma 5.1. Let n,m ∈ N. There exists a differential polynomial Dn,m(y) such that every rational function

y =
anxn + an−1xn−1

+ · · · + a0
bmxm + bm−1xm−1 + · · · + b0

is a solution of Dn,m(y), where ai, bj are constants in K. Moreover, the differential polynomial Dn,m(y) has
only rational solutions.

Definition 5.2. The differential polynomial in Lemma 5.1 is given by

Dn,m(y) =



n+1
0


y(n+1)

n+1
1


y(n) · · ·

n+1
m


y(n+1−m)n+2

0


y(n+2)

n+2
1


y(n+1)

· · ·
n+2

m


y(n+2−m)

...
... · · ·

...n+1+m
0


y(n+1+m)

n+1+m
1


y(n+m)

· · ·
n+1+m

m


y(n+1)


.

We call Dn,m(y) Gao’s differential polynomials.

Using Gao’s differential polynomials we have the following criterion.
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Theorem 5.3. Let M1,N1,M2,N2 ∈ Q[s, t], M1,M2 ≠ 0. The autonomous system
s′ =

N1(s, t)
M1(s, t)

t ′ =
N2(s, t)
M2(s, t)

(11)

has a rational general solution (s(x), t(x)) with deg s(x)≤ n and deg t(x) ≤ m if and only if
prem(Dn,n(s),M1s′ − N1,M2t′ − N2) = 0
prem(Dm,m(t),M1s′ − N1,M2t′ − N2) = 0.

(12)

Proof. Suppose that the system (11) has a rational general solution (s(x), t(x))with deg s(x)≤ n and
deg t(x) ≤ m. Then (s(x), t(x)) is a solution of Dn,n(s) and Dm,m(t) as well. By definition of rational
general solutions of the system (11) we have

prem(Dn,n(s),M1s′ − N1,M2t′ − N2) = 0
prem(Dm,m(t),M1s′ − N1,M2t′ − N2) = 0.

Conversely, if these two conditions hold, thenDn,n(s) andDm,m(t) belong to the set I defined as follows

I := {G ∈ Q(x){s, t} | prem(G,M1s′ − N1,M2t ′ − N2) = 0}.

Since I is a primedifferential ideal, I has a generic zero. This generic zero is a zero ofDn,n(s) andDm,m(t).
By Lemma 5.1, these two differential polynomials have only rational solutions. Therefore, the generic
zero of I must be rational. �

Remark 5.4. If we know a degree bound of the rational solutions of the system (11), then Theorem5.3
gives us a criterion for the existence of a rational general solution of the system (11).

6. The linear system of autonomous ODEs with rational general solutions

We have seen that the associated system of the differential equation F(x, y, y′) = 0 is an
autonomous system. In this section we consider the linear system of autonomous differential
equations

s′ = as + bt + e
t ′ = cs + dt + h

(13)

where a, b, c, d, e, h are constants in Q.
Before studying rational solutions of the system (13) we need to introduce the notation of order of

an irreducible polynomial in a rational function.

Definition 6.1. Let K be a field. Let s ∈ K(x) be a rational function in x. Suppose that s has a complete
decomposition as follows

s =
A

pα11 · · · pαnn

where A ∈ K[x] and pi are distinct irreducible polynomials over K and gcd(A, pi) = 1 for all
i = 1, . . . , n. The power αi in this representation of s is called the order of s with respect to pi,
denoted by ordpi(s). By convention, if an irreducible polynomial p does not effectively appear in the
denominator of s, then we define ordp(s) = 0.

Lemma 6.2. Every rational solution of the linear system (13) is a polynomial solution.
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Proof. Suppose that (s(x), t(x)) is a rational solution of the linear system (13). If s(x) or t(x) is not a
polynomial, then we can assume without loss of generality that

s =
A

pα11 · · · pαnn
,

where A ∈ K[x], pi are irreducible polynomials over K, gcd(A, pi) = 1 and αi > 0 for all i = 1, . . . , n.
Let

βi = ordpi(t) ≥ 0 ∀i = 1, . . . , n.

Since αi > 0, computing the derivative of s(x)we have

ordpi(s
′) = αi + 1 ∀i = 1, . . . , n.

On the other hand,

ordpi(as + bt + e) ≤ max{αi, βi}, ordpi(cs + dt + h) ≤ max{αi, βi}.

Let us compare the orders with respect to pi of the left and the right hand sides of the linear system
(13). There are two cases as follows.

• Either αi ≥ βi, then ordpi(as + bt + e) ≤ αi < ordpi(s
′), which is impossible;

• or 0 < αi < βi, then ordpi(cs + dt + h) ≤ βi < ordpi(t
′), which is also impossible.

Therefore, αi = 0 for all i = 1, . . . , n. Thus s is a polynomial. Replacing the role of s and t we also
prove that t is a polynomial. Therefore, (s(x), t(x)) is a polynomial solution. �

Theorem 6.3. Every rational general solution of the linear system (13) is a couple of polynomials of degree
at most 2.

Proof. By Lemma 6.2, every rational solution of the linear system (13) is a polynomial solution. In this
case the Gao’s differential polynomials for checking polynomial general solutions of the system are of
simple forms s(n+1) and t(n+1) for some n. We can write the linear system in the matrix form

s′
t ′


=


a b
c d

 
s
t


+


e
h


.

Hence
s′′
t ′′


=


a b
c d

2 
s
t


+


a b
c d

 
e
h


,

...
s(n+1)

t(n+1)


=


a b
c d

n+1 
s
t


+


a b
c d

n 
e
h


,

for n ∈ N. By Theorem 5.3, the system (13) has a polynomial general solution of degree at most n if
and only if

prem(s(n+1), s′ − as − bt − e, t ′ − cs − dt − h) = 0
prem(t(n+1), s′ − as − bt − e, t ′ − cs − dt − h) = 0,

or equivalently when
a b
c d

n+1

= 0 and

a b
c d

n 
e
h


= 0.

These relations hold for n ≥ 2 if and only if
a b
c d

2

= 0.
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Therefore, the conclusion of the theorem follows immediately. �
The above proof also tell us the necessary and sufficient conditions of the linear system for having

rational general solutions. Namely,
a b
c d

2

= 0.

We can easily find all possibilities of the coefficients a, b, c, d. In fact,


a b
c d

2

= 0 ⇐⇒


a2 + bc = 0
b(a + d) = 0
c(a + d) = 0
d2 + bc = 0.

Solving this algebraic system we obtain the following cases

• if b = 0, then a = d = 0;
• if b ≠ 0, then a = −d and c = −

d2
b .

Thus the explicit polynomial solutions of the linear system are given by the following table, where
C1, C2 are arbitrary constants.

System Rational general solutions
0 0
0 0

 
s(x) = ex + C1

t(x) = hx + C2
0 0
c 0

 s(x) = ex + C1

t(x) = ce
x2

2
+ (cC1 + h)x + C2 −d b

−
d2

b
d



s(x) =

hb − ed
2

x2 + (bC1 + e)x + C2

t(x) =
(hb − ed)d

2b
x2 + (dC1 + h)x +

d
b
C2 + C1

Note that the last line of the table also covers the other symmetric cases, for instance

d = 0 −→


0 b
0 0


; d = −a, b = −

a2

c
−→

a −
a2

c
c −a

 .

Wecanprove that the solutions in the table are rational general solutions of the corresponding system.
For instance, consider a simple system

s′ = e
t ′ = h

where e and h are constants but not all zero. It turns out that the system has a solution given by

s(x) = ex + C1, t(x) = hx + C2,

where C1, C2 are arbitrary constants. The implicit defining polynomial of (s(x), t(x)) is

H(s, t) = hs − et − hC1 + eC2.

Since the coefficients of H(s, t) contain an arbitrary constant, namely −hC1 + eC2, using Lemma 3.13
we obtain that (s(x), t(x)) is a rational general solution.
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Using a similar argument for the other systems in the table we prove that these solutions are
rational general solutions of the corresponding systems.

7. Algorithm and example

Wesummarize the procedure in Section 3 by the following semi-algorithm. It depends on amethod
for solving a system (7).

Algorithm 1. Input: F(x, y, y′) = 0 with F ∈ Q[x, y, z] and a proper rational parametrization of
F(x, y, z) = 0,

P (s, t) = (χ1(s, t), χ2(s, t), χ3(s, t)),

where χ1, χ2, χ3 ∈ Q(s, t).
Output: a rational general solution of F(x, y, y′) = 0.

(1) Compute f1(s, t), f2(s, t), g(s, t) as in (8).
(2) Solve the associated system of F(x, y, y′) = 0 for a rational general solution (s(x), t(x))

s′ =
f1(s, t)
g(s, t)

t ′ =
f2(s, t)
g(s, t)

.

(3) Compute the constant c := χ1(s(x), t(x))− x.
(4) Return y = χ2(s(x − c), t(x − c)).

Note thatwe still have to solve the associated system for its rational general solutions in general cases.
Currently we are developing a method for finding a rational general solution of such systems.

Example 7.1. Consider the differential equation

F(x, y, y′) ≡ y′3
− 4xyy′

+ 8y2 = 0. (14)

This differential equation appears in the paper by Hubert (1996). Here we demonstrate our approach
for this differential equation. The algebraic surface F(x, y, z) = 0 has a proper parametrization

P (s, t) = (t,−4s2 · (2s − t),−4s · (2s − t)).

The inverse map is

P −1(x, y, z) =

y
z
, x


.

We compute

g(s, t) = 8s · (3s − t),
f1(s, t) = 4s · (3s − t), f2(s, t) = 8s · (3s − t).

In this case the associated system is simples′ =
1
2

t ′ = 1.

Solving this system we obtain a rational general solution s(x) =
x
2 + C2, t(x) = x + C1 for arbitrary

constants C1, C2. The above algorithm follows that the rational general solution of the differential
equation F(x, y, y′) = 0 is

y = −4s(x − C1)
2
· (2s(x − C1)− t(x − C1)) = −C(x + C)2, (15)

where C = 2C2 − C1.
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Note that in this example gcd(g(s, t), f1(s, t)) = 4s · (3s − t).We may still find some solutions of
the differential equation (14), whose solution curves are parametrizable by P , by solving the system

t(x) = x
−4s(x)2 · (2s(x)− t(x)) = f (x)
−4s(x) · (2s(x)− t(x)) = f ′(x)
4s(x) · (3s(x)− t(x)) = 0.

(16)

This system has two different solutions, namely

(s(x), t(x)) = (0, x) and (s(x), t(x)) =

 x
3
, x


.

These solutions give us two other solutions of Eq. (14), namely y = 0 and y =
4
27x

3. The solution y = 0
can be obtained by specifying the constant C = 0 in the general solution (15). However, we can not get
the solution y =

4
27x

3 from the general solution (15). Note that the separant of F is S = 3y′2
−4xy. We

can prove that the common solutions of F and S, which are called singular solutions of F(x, y, y′) = 0,
are only y = 0 and y =

4
27x

3.

8. Conclusion

We have shown the correspondence between a rational general solution of the non-autonomous
differential equation F(x, y, y′) = 0 and a rational general solution of its associated system of
autonomous ODEs with respect to a proper rational parametrization P (s, t) of the solution surface
F(x, y, z) = 0. The degrees of the components of a rational solution of the associated system are
related to each other in the sense that one of them can be bounded by the degree of the other one
and the appropriate degree of the first component of P (s, t). We have derived a criterion for the
existence of a rational general solution of the associated system provided a degree bound of the
solution. Currently we are working on turning the semi-algorithm Algorithm 1 into a full algorithm.
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