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Abstract. In this paper we prove several new parity results for broken
k-diamond partitions introduced in 2007 by Andrews and Paule. In the
process, we also prove numerous congruence properties for (2k + 1)-core
partitions. The proof technique involves a general lemma on congruences
which is based on modular forms.

1. Introduction

Broken k-diamond partitions were introduced recently by Andrews and

Paule [1]. These are constructed in such a way that the generating functions

of their counting sequences (∆k(n))n≥0 are closely related to modular forms.

Namely,

∞∑
n=0

∆k(n)qn =
∞∏
n=1

(1− q2n)(1− q(2k+1)n)

(1− qn)3(1− q(4k+2)n)

= q(k+1)/12η(2τ)η((2k + 1)τ)

η(τ)3η((4k + 2)τ)
, k ≥ 1,

where we recall the Dedekind eta function

η(τ) := q
1
24

∞∏
n=1

(1− qn) (q = e2πiτ ).

In [1], Andrews and Paule proved that, for all n ≥ 0, ∆1(2n + 1) ≡ 0

(mod 3) and conjectured a few other congruences modulo 2 satisfied by

certain families of k-broken diamond partitions.

Since then, a number of authors have provided proofs of additional con-

gruences satisfied by broken k-diamond partitions. Hirschhorn and Sellers

[9] provided a new proof of the modulo 3 result mentioned above as well as
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elementary proofs of the following parity results: For all n ≥ 1,

∆1(4n+ 2) ≡ 0 (mod 2),

∆1(4n+ 3) ≡ 0 (mod 2),

∆2(10n+ 2) ≡ 0 (mod 2),

∆2(10n+ 6) ≡ 0 (mod 2)

The third result in the list above appeared in [1] as a conjecture while the

other three did not. Soon after the publication of [9], Chan [3] provided a

different proof of the parity results for ∆2 mentioned above as well as a

number of congruences modulo powers of 5.

In this paper, we significantly extend the list of known parity results

for broken k-diamonds by proving a large number of congruences which are

similar to those mentioned above. Indeed, we will do so by proving a similar

set of parity results satisfied by certain t-core partitions.

A partition is called a t-core if none of its hook lengths is divisible by t.

These partitions have been studied extensively by many, especially thanks

to their strong connection to representation theory. Numerous congruence

properties are known for t-cores, although few such results are known mod-

ulo 2. Such parity results can be found in [7], [6], [10], [8], [2], [4]. In all of

these papers, the value of t which was considered was even; in this paper,

we provide a new set of parity results for t-cores wherein t is odd.

The generating function for t-core partitions (for a fixed t ≥ 1) is given

by

∞∑
n=0

at(n)qn =
∞∏
n=1

(1− qtn)t

1− qn
.

Given this fact, we can quickly see a connection between broken k-diamonds

and (2k + 1)-cores which we will utilize below.

Lemma 1.1. For all k ≥ 1 we have

(
∞∏
n=1

(1− q(4k+2)n)k+1

)(
∞∑
n=0

∆k(n)qn

)
≡

∞∑
n=0

a2k+1(n)qn (mod 2).



BROKEN k–DIAMOND PARTITIONS AND (2k + 1)–CORES 3

Proof. Using the relation (1− qn)2 ≡ (1− q2n) (mod 2) we find(
∞∏
n=1

(1− q(4k+2)n)k+1

)(
∞∑
n=0

∆k(n)qn

)

=
∞∏
n=1

(1− q(4k+2)n)k(1− q2n)(1− q(2k+1)n)

(1− qn)3

≡
∞∏
n=1

(1− q(2k+1)n)2k+1

(1− qn)
(mod 2)

=
∞∑
n=0

a2k+1(n)qn.

�

We assume throughout that ∆k(v) = ak(v) = 0 if v ≤ 0.

Corollary 1.2. Let r ∈ N. Then for all k ≥ 1 we have

∆k((4k+2)n+r) ≡ 0 (mod 2) for all n ∈ Z⇔ a2k+1((4k+2)n+r) ≡ 0 (mod 2) for all n ∈ Z.

Proof. Let k and r be fixed and assume that ∆k((4k+2)n+r) ≡ 0 (mod 2)

for all n ∈ Z. Let ∑
n∈Z

b(n)q(4k+2)n =
∞∏
n=1

(1− q(4k+2)n)k+1.

Then using Lemma 1.1 we find that∑
n∈Z

a2k+1((4k + 2)n+ r)q(4k+2)n+r

≡
∑

n,m ∈ Z,
(4k + 2)n+m ≡ r (mod 4k + 2)

b(n)∆k(m)q(4k+2)n+m

≡
∑

n,m ∈ Z,
m ≡ r (mod 4k + 2)

b(n)∆k(m)q(4k+2)n+m

≡
∑
n,v∈Z

b(n)∆k((4k + 2)v + r)q(4k+2)n+(4k+2)v+r

≡ 0 (mod 2).

The reverse direction is analogous. �

With this motivation, we now state the full list of parity results we will

prove in this paper. With the goal of minimizing the notation, we will write

f(tn+ r1, r2, . . . , rm) ≡ 0 (mod 2)



4 S. RADU AND J. A. SELLERS

to mean that, for each i ∈ {1, 2, . . . ,m},

f(tn+ ri) ≡ 0 (mod 2).

Theorem 1.3. For all n ≥ 0,

∆2(10n+ 2, 6) ≡ 0 (mod 2),(1.1)

∆3(14n+ 7, 9, 13) ≡ 0 (mod 2),(1.2)

∆5(22n+ 2, 8, 12, 14, 16) ≡ 0 (mod 2),(1.3)

∆6(26n+ 2, 10, 16, 18, 20, 22) ≡ 0 (mod 2),(1.4)

∆8(34n+ 11, 15, 17, 19, 25, 27, 29, 33) ≡ 0 (mod 2),(1.5)

∆9(38n+ 2, 8, 10, 20, 24, 28, 30, 32, 34) ≡ 0 (mod 2),(1.6)

∆11(46n+ 11, 15, 21, 23, 29, 31, 35, 39, 41, 43, 45) ≡ 0 (mod 2).(1.7)

(Note that (1.1) was proved in [9].) Thanks to Corollary 1.2, we see that

Theorem 1.3 is proved once we prove the following corresponding theorem

involving t-cores:

Theorem 1.4. For all n ≥ 0,

a5(10n+ 2, 6) ≡ 0 (mod 2),(1.8)

a7(14n+ 7, 9, 13) ≡ 0 (mod 8),(1.9)

a11(22n+ 2, 8, 12, 14, 16) ≡ 0 (mod 2),(1.10)

a13(26n+ 2, 10, 16, 18, 20, 22) ≡ 0 (mod 2),(1.11)

a17(34n+ 11, 15, 17, 19, 25, 27, 29, 33) ≡ 0 (mod 8),(1.12)

a19(38n+ 2, 8, 10, 20, 24, 28, 30, 32, 34) ≡ 0 (mod 2),(1.13)

a23(46n+ 11, 15, 21, 23, 29, 31, 35, 39, 41, 43, 45) ≡ 0 (mod 8).(1.14)

Note that every prime p, 5 ≤ p ≤ 23, is represented in Theorem 1.4,

which helps to explain why certain families of broken k–diamond partitions

appear in Theorem 1.3 (and others do not). Our ultimate goal now is to

provide a proof of Theorem 1.4. We close this section by developing the

machinery necessary to prove this theorem.

For M a positive integer let R(M) be the set of integer sequences indexed

by the positive divisors δ of M . Let 1 = δ1, . . . , δk = M be the positive

divisors of M and r ∈ R(M). Then we will write r = (rδ1 , . . . , rδk).

For s an integer and m a positive integer we denote by [s]m the set of

all elements congruent to s modulo m, in other words [s]m ∈ Zm. Let Z∗m
be the set of all invertible elements in Zm. Let Sm ⊂ Z∗m be the set of all

squares in Z∗m.
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Definition 1.5. For m,M ∈ N∗,(rδ) ∈ R(M) and t ∈ {0, . . . ,m − 1} we

define the map � : S24m×{0, . . . ,m−1} → {0, . . . ,m−1} with ([s]24m, t) 7→
[s]24m�t and the image is uniquely determined by the relation [s]24m�t ≡
ts+ s−1

24

∑
δ|M δrδ (mod m). We define the set

Pm,r(t) := {[s]24m�t|[s]24m ∈ S24m}.

Lemma 1.6. Let p ≥ 5 be a prime. Let r(p) := (r
(p)
1 , r

(p)
p ) = (−1, p) ∈ R(p).

Then

(1.15)

P2p,r(p)(t) =

{
t′|
(

24t− 1

p

)
=

(
24t′ − 1

p

)
, t ≡ t′ (mod 2), 0 ≤ t′ ≤ 2p− 1

}
.

Proof. First note that

1

24

∑
δ|p

δr
(p)
δ =

p2 − 1

24
∈ Z.

Let m = 2p. If s1 ≡ s2 (mod m) then [s1]24m�t = [s2]24m�t because p2−1
24

is

an integer. This implies that

(1.16)

P2p,r(p)(t) = {t′|t′ ≡ ts+ (s− 1)
p2 − 1

24
(mod p), s ∈ Sm, 0 ≤ t ≤ 2p− 1}.

We see that

(1.17) P2p,r(p)(t) (mod 2) = {t (mod 2)}.

Next we compute P2p,r(p)(t) (mod p). By (1.16) we know

P2p,r(p)(t) (mod p) =

{
t′ (mod p)|t′ ≡ ts+ (s− 1)

p2 − 1

24
(mod p), s ∈ Sp

}
= {t′ (mod p)|24t′ − 1 ≡ s(24t− 1) (mod p), s ∈ Sp}

=

{
t′ (mod p)|

(
24t− 1

p

)
=

(
24t′ − 1

p

)}
.

(1.18)

By (1.17) and (1.18) and the Chinese remainder theorem we obtain P2p,r(p)(t)

(mod 2p) and we obtain the formula (1.15) by imposing that the elements

of P2p,r(p)(t) lie between 0 and 2p− 1. �

We now use Lemma 1.6 to compute P2p,r(p)(t) for p = 5, 7, 11, 13, 17, 19, 23

and t = 2, 7, 2, 2, 11, 2, 11 below, respectively.

p = 5, t = 2. We see that
(

24t−1
p

)
=
(

2
5

)
= −1. For t′ ∈ {1, 2} we

have
(

24t′−1
5

)
= −1 and for t′ ∈ {0, 3, 4} we have

(
24t′−1

5

)
∈ {0, 1}. This

implies that P10,r(5)(2) ≡ {1, 2} (mod 5). Since t ≡ 0 (mod 2) we have that
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P10,r(5)(2) ≡ 0 (mod 2). Hence by Lemma 1.6 we have

P10,r(5)(2) = {2, 1 + 5} = {2, 6}.

p = 7, t = 7. We see that
(

24t−1
p

)
=
(−1

7

)
= −1. We see that for

t′ ∈ {0, 2, 6} we have
(

24t′−1
7

)
= −1 (and this is all t′ with this property) so

P14,r(7) ≡ {0, 2, 6} (mod 7). Because t ≡ 1 (mod 2) we obtain by Lemma

1.6

P14,r(7)(7) = {0 + 7, 2 + 7, 6 + 7} = {7, 9, 13}.

p = 11, t = 2. Here
(

24t−1
11

)
=
(

52

11

)
= 1. We see that for t′ ∈ {1, 2, 3, 5, 8}

we have
(

24t′−1
11

)
= 1 so

P22,r(11)(2) = {1 + 11, 2, 3 + 11, 5 + 11, 8} = {2, 8, 12, 14, 16}.

Similarly we get by Lemma 1.6

P26,r(13)(2) = {2, 10, 16, 18, 20, 22},

P34,r(17)(11) = {11, 15, 17, 19, 25, 27, 29, 33},
P38,r(19)(2) = {2, 8, 10, 20, 24, 28, 30, 32, 34}

and

P46,r(23)(11) = {11, 15, 21, 23, 29, 31, 35, 39, 41, 43, 45}.
We see immediately from the above that Theorem 1.4 is equivalent to the

following theorem.

Theorem 1.7. Let t : {5, 7, 11, 13, 17, 19, 23} → {2, 7, 11} with p 7→ tp be

defined by

(t5, t7, t11, t13, t17, t19, t23) := (2, 7, 2, 2, 11, 2, 11).

Then for all n ≥ 0, p prime with 5 ≤ p ≤ 23, and t′ ∈ P2p,r(p)(tp), we have

(1.19) ap(2pn+ t′) ≡ 0 (mod 2i(p)),

where

i(p) =

{
1 if p = 5, 11, 13, 19,

3 if p = 7, 17, 23.

For each r ∈ R(M) we assign a generating function

fr(q) :=
∏
δ|M

∞∏
n=1

(1− qδn)rδ =
∞∑
n=0

cr(n)qn.

Given p a prime, m ∈ N and t ∈ {0, . . . ,m − 1} we are concerned with

proving congruences of the type cr(mn + t) ≡ 0 (mod p), n ∈ N. The con-

gruences we are concerned with here have some additional structure; namely

ar(mn + t′) ≡ 0 (mod p), n ≥ 0, t′ ∈ Pm,r(t). In other words a congruence
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is a tuple (r,M,m, t, p) with r ∈ R(M), m ≥ 1, t ∈ {0, . . . ,m− 1} and p a

prime such that

ar(mn+ t′) ≡ 0 (mod p), n ≥ 0, t′ ∈ P (t).

Throughout when we say that ar(mn + t) ≡ 0 (mod p) we mean that

ar(mn + t′) ≡ 0 (mod p) for all n ≥ 0 and all t′ ∈ P (t). The purpose

of this paper is show the congruences

ap(2pn+ tp) ≡ 0 (mod 2)

when p = 5, 7, 11, 13, 17, 19, 23 and tp = 2, 7, 2, 2, 11, 2, 11.

In order to accomplish our goal we need a lemma ([11, Lemma 4.5]). We

first state it and then explain the terminology.

Lemma 1.8. Let u be a positive integer, (m,M,N, t, r = (rδ)) ∈ ∆∗,

a = (aδ) ∈ R(N), n the number of double cosets in Γ0(N)\Γ/Γ∞ and

{γ1, . . . , γn} ⊂ Γ a complete set of representatives of the double coset Γ0(N)\Γ/Γ∞.

Assume that pm,r(γi) + p∗a(γi) ≥ 0, i ∈ {1, . . . , n}. Let tmin := mint′∈Pm,r(t) t
′

and

ν :=
1

24

∑
δ|N

aδ +
∑
δ|M

rδ

 [Γ : Γ0(N)]−
∑
δ|N

δaδ

− 1

24m

∑
δ|M

δrδ −
tmin
m

.

Then if
bνc∑
n=0

cr(mn+ t′)qn ≡ 0 (mod u)

for all t′ ∈ Pm,r(t) then

∞∑
n=0

cr(mn+ t′)qn ≡ 0 (mod u)

for all t′ ∈ Pm,r(t).

The lemma reduces the proof of a congruence modulo u to checking that

finitely many values are divisible by u. We first define the set ∆∗. Let κ =

κ(m) = gcd(m2 − 1, 24) and π(M, (rδ)) := (s, j) where s is a non-negative

integer and j an odd integer uniquely determined by
∏

δ|M δ|rδ| = 2sj. Then

a tuple (m,M,N, (rδ), t) belongs to ∆∗ iff

• m ≥ 1,M ≥ 1, N ≥ 1, (rδ) ∈ R(M), t ∈ {0, . . . ,m− 1};
• p|m implies p|N for every prime p;

• δ|M implies δ|mN for every δ ≥ 1 such that rδ 6= 0;

• κN
∑

δ|M rδ
mN
δ
≡ 0 (mod 24);

• κN
∑

δ|M rδ ≡ 0 (mod 8);
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• 24m

gcd(κ(−24t−
∑

δ|M δrδ), 24m)
| N ;

• for (s, j) = π(M, (rδ)) we have (4|κN and 8|Ns) or (2|s and 8|N(1−
j)).

Next we need to define the groups Γ,Γ0(N) and Γ∞:

Γ :=

{(
a b
c d

)
| a, b, c, d ∈ Z, ad− bc = 1

}
,

Γ0(N) :=

{(
a b
c d

)
∈ Γ | N |c

}
for N a positive integer, and

Γ∞ :=

{(
1 h
0 1

)
| h ∈ Z

}
.

For the index we have [Γ : Γ0(N)] := N
∏

p|N(1 + p−1) (see, for example,

[12]).

Finally for m ≥ 1,M ≥ 1, and r ∈ R(M) and γ =

(
a b
c d

)
we define

(1.20) pm,r(γ) := min
λ∈{0,...,m−1}

1

24

∑
δ|M

rδ
gcd2(δ(a+ κλc),mc)

δm

and

p∗r(γ) :=
1

24

∑
δ|M

rδgcd2(δ, c)

δ
.

2. The Congruences

Let r(p) = (−1, p) throughout this section where p ≥ 5 is a prime. Before

we prove the congruences we will show that p2p,r(p)(γ) ≥ 0 for all γ ∈ SL2(Z).

For γ =

(
a b
c d

)
we know by (1.20) that

p2p,r(p)(γ) = min
λ∈{0,...,2p−1}

1

24

(
−gcd2(a+ κλc, 2pc)

2p
+ p

gcd2(p(a+ κλc), 2pc)

2p2

)
= min

λ∈{0,...,2p−1}

1

24

(
−gcd2(a+ κλc, 2pc)

2p
+ p

gcd2(a+ κλc, 2c)

2

)
= min

λ∈{0,...,2p−1}

1

24

(
−gcd2(a+ κλc, 2p)

2p
+ p

gcd2(a+ κλc, 2)

2

)
.

The last rewriting follows from gcd(a, c) = 1 because ad− bc = 1. Next we

will show that p2p,r(p) is nonnegative by proving that

F (a, c, p, λ) := −gcd2(a+ κλc, 2p)

2p
+ p

gcd2(a+ κλc, 2)

2
≥ 0
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for all integers a, c, p and λ. We split the proof in four cases:

gcd(a+ κλc, 2p) = 1 ⇒ F (a, c, p, λ) = − 1

2p
+
p

2
≥ 0

gcd(a+ κλc, 2p) = 2 ⇒ F (a, c, p, λ) = −2

p
+ 2p ≥ 0

gcd(a+ κλc, 2p) = p ⇒ F (a, c, p, λ) = −p
2

+
p

2
= 0

gcd(a+ κλc, 2p) = 2p ⇒ F (a, c, p, λ) = −2p+ 2p = 0

Because p2p,r(p)(γ) = minλ∈{0,...,2p−1}
1
24
F (a, c, p, λ) we know p2p,r(p)(γ) ≥ 0.

We are now ready to prove the congruences in Theorem 1.4. We start

with (1.8):

a5(10n+ 2, 6) ≡ 0 (mod 2)

We apply Lemma 1.8. We see that (10, 5, 10, 2, r(5) = (−1, 5)) ∈ ∆∗. We

choose the sequence (aδ) in Lemma 1.8 to be the zero sequence (this will

be so for all the congruences in this paper). Because (aδ) ≡ 0 and because

p10,r(5) ≥ 0 we see that p10,r(5)(γ) + p∗a(γ) ≥ 0 for any γ ∈ SL2(Z). Finally

ν =
1

24
(5− 1)(5 + 1)(2 + 1)− 1

10
− 1

5
= 3− 3

10
.

We choose u = 2 in the lemma and note that cr(n) = a5(n) for all n ≥ 0.

Then (1.8) is true iff

a5(2) ≡ a5(12) ≡ a5(22) ≡ a5(6) ≡ a5(16) ≡ a5(26) (mod 2).

These values of a5 are all even as can be seen in the Appendix below, so

(1.8) is proven.

A similar approach can be used to prove (1.9)–(1.14). In particular let

tp be as in Theorem 1.7 and r(p) = (−1, p). Then

(2p, p, 2
3−(−1)

p−1
2

2 p, tp, r
(p)) ∈ ∆∗.

We again set (aδ) ≡ 0 and see as before that

p2p,r(p)(γ) + p∗a(γ) ≥ 0

for any γ ∈ SL2(Z). We further obtain

ν = νp =
1

24
(p− 1)2

3−(−1)
p−1
2

2 p(1 +
1

p
)(1 +

1

2
)− p2 − 1

48p
− tp

2p

=
1

8
(p2 − 1)2

1−(−1)
p−1
2

2 − p2 − 1

48p
− tp

2p
.

Putting these values in a table we obtain
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p νp bνpc
5 3− 1

10
− 2

10
2

7 12− 1
7
− 1

2
11

11 30− 5
22
− 2

22
29

13 21− 7
26
− 2

26
20

17 36− 6
17
− 11

34
35

19 90− 15
38
− 2

38
89

23 132− 11
23
− 11

46
131

We conclude by Lemma 1.8 that for all n ≥ 0 we have

ap(2pn+ t′) ≡ 0 (mod u), t′ ∈ P2p,r(p)(tp),

if for 0 ≤ n ≤ bνpc

ap(2pn+ t′) ≡ 0 (mod u), t′ ∈ P2p,r(p)(tp).

In particular we choose u = 2 in the case p = 5, 11, 13, 19 and u = 8 for

p = 7, 17, 23.

The values of at(n) have been calculated in MAPLE for 5 ≤ t ≤ 23 and

we confirm that they satisfy the desired congruences. The authors would be

happy to supply this data to anyone interested.

Given that all of these values are congruent to zero modulo 2 (or 8,

respectively), it is the case that Theorem 1.4 is proved.
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