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Abstract — Recently, Hofreither, Langer and Pechstein have analgzechstandard finite element
method based on element-local boundary integral operdtbesmethod is able to treat general poly-
hedral meshes and employs locally PDE-harmonic trial fonst In the previous work, the primal
formulation of the method has been analyzed as an inexaerkialscheme, obtaining® error es-
timates. In this work, we pass to an equivalent mixed fortimta This allows us to derive error
estimates in thé-norm, which were so far not available. Many technical tdoden our previous
analysis remain applicable in this setting.
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1. Introduction

In certain applications, it is advantageous to discretemtigl differential equations
(PDESs) on non-standard grids consisting of heterogenealybgdral elements and
incorporating hanging nodes. For instance, in reservoitukition, polygonal or
polyhedral meshes are in common use (cf., e.g., [12]). Iruksiting drug diffu-
sion through the human skin, tetrakaidecahedra (14-factgh@dra) have been
employed to model cells in the outermost skin layer, scedatiorneocytes [7].
Previously established methods which are able to treatgemcbralized meshes
are, among others, the Mimetic Finite Difference Methode(s®g., [12] or [2]),
special Mixed Finite Element Methods (see [10] and [11])th& Discontinuous
Galerkin Method (see, e.g., [6]). Copeland, Langer and IPhswe recently intro-
duced a novel technique for treating boundary value problempolyhedral meshes
[5]. They have demonstrated that this new method works weltlifferent classes
of problems including diffusion problems, the Helmholtziation and the Maxwell
equations in the frequency domain (see also [4]). This ampremploys locally
PDE-harmonic trial functions, i.e., trial functions whishtisfy the PDE locally on
each element, and uses boundary element techniques toldsshmelement stiff-
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ness matrices. For this reason, the new non-standard fieiteeat method was also
called BEM-based FEM.

First steps towards a rigorous analysis of this approack baen taken in [8],
where the method was studied in the framework of a primabtianal formulation
with elementwise Dirichlet traces of the solution as itsnmkns. The realization
of this Galerkin method requires the inversion of the sidgler potential operator
in every element, which can typically only be done approxéatya This implicates
a “variational crime” in the form of an inexact bilinear foramd introduces a con-
sistency error to the numerical scheme, maliagerror estimates hard to obtain
via standard techniques. In the present work, we show amatteapproach to the
analysis via a mixed formulation having both Dirichlet anduxhann traces as its
unknowns. Building upon the technical tools developed inprevious work [8],
we will be able to recover the error estimates in Henorm obtained therein as
well as derive previously unavailable error estimates.

The remainder of this paper is organized as follows. In $a@j we derive both
the primal variational formulation and the equivalent ntix@riational formulation,
and discretize the latter. In Section 3, we formulate ragylassumptions for gen-
eral polyhedral meshes, and state an approximation resuhieoskeletons of such
meshes. Section 4 is devoted to the derivation of mesh-ertmt error estimates
for the BEM-based FEM in both thd!- and thelL,-norms. In the final Section 5,
we draw some conclusion.

2. Formulations of a BEM-based FEM

2.1. The primal skeletal variational formulation

Let Q c R3 be a bounded Lipschitz domain afid= dQ its boundary. We consider
the pure Dirichlet boundary value problem for the Poissamgign,

—Au=finQ and u=gonTl,

with g e HY2(I") and f € L,(Q), as our model problem. The standard variational
formulation is the following: findi € H1(Q) such that the tracgu of uonT equals
g and the standard variational equation

/ Du-Dvdx:/ fudx  WeHH(Q). 2.1)
Q Q

holds.
We now consider a family of non-overlapping decompositi6hyg' , of Q,

=

i=1

into finite elementsT; which are assumed to be open Lipschitz polyhedra. Fur-
thermore, we provide every element boundBry= dT; with a conforming trian-



L, estimates for a BEM-based FEM 3

gulation .%; = {1; C I';}; composed of open triangles. We call such a decom-
position (T)N; a polyhedral mestof Q. We further assume that the elements
are matchingin the sense that, for all triangles € .%; and 1; € .%;, we have
iNTj #0& 1 =1 € % N.%j. In other words, boundary triangles from two neigh-
boring elements should either be identical or not interaeatl.

For any suitable domaim, let

Hy¢(T) = {ueHl(T):/T'Du-Dvdx:/vadx = H&(T)}

denote the manifold of weak local solutions of the Poissaragqgn.
Following McLean [13], we introduce the Dirichlet and Neumarace opera-
tors

W= tHI W) = HY2(M) and yh =y HA ((T) — HY2(T)

which satisfy, for allu € Hj ((Ti) andv € H'(T;), the Green’s identity

(ytu, yov) = —/T fvdx+/T Ou- Ovdx (2.2)

where(-, -) denotes the duality pairing betweet ¥/2(I";) andHY/2(T";). Further-
more, we define the extension operators

A" HY(T) = HE ((T)

such that, for any € HY/2(Iy), its image,%’{f(tp) is the uniquely defined element
of HAl’f(Ti) having¢ as its Dirichlet data. By a superposition argument, it is/das
see thav;' (¢) = " (0)+ 7°(9).

Finally, we introduce th®irichlet-to-Neumann maps

§ =yt L HY(I) — HY2(my),
and from the above we infer that
S (9) = ¥4 (0) + °(9)) =5 (0) + (9). (2.3)

Note that# := 7#° andS := S are linear operators.

Lets:= N, I denote theskeletorof the mesh, an#i /2(T's) the trace space
of H-functions onto the skeleton. Furthermore Wet= {v € HY?(I's) : v|r = 0}
be the space of all skeletal functions with vanishing bouyndalues. A discussion
analogous to the one used to prove Proposition 2.1 in [8]inoeg us that the
following two variational problems are equivalent:
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e standard VFfind ug € H(Q) such thatfu =g and

/ Oug - Ovg :/ fugdx Y € H3(Q);
Q Q

o skeletal VFfind u € HY?(I's) such thau|r = gand

N

Zi<$f(ui)7Vi> =0 WeWw. (2.4)

(Here and henceforth we adopt the notational conventios v|r, for skeletal
functions.) The equivalence is to be understood in the sthatay = yiouQ, and

Ug = %’{f(ui) on every element;. In other wordsu is the skeletal trace of the
solutionug, andug can be locally reconstructed as the extension. of

The Green'’s identity (2.2) with the choice= %’jf (0) andv = s# ¢ for arbitrary
¢ € HYA(T)) yields

§(0.0)= - [ 1A0dxt | 040 -0Agdx=- [ tApax @5

Using relations (2.3) and (2.5), we may rewrite the varisigroblem (2.4) as

N N

-Z<S”"Vi>:;/n f oAV dx YveWw,

We introduce the shorthand notations : HY2(I's) — H1(Q) for the piecewise
harmonic extension from the skeleton to each elerfiertlso, for convenience, we
identify the given Dirichlet datg with a suitable skeletal extensigne HY?(I"g),
which always exists. We thus have the variational problena dic g+ W with

N .
Zl(Sui,vQ:/ f tvdx W eW. 2.6)
£ Q

i
2.2. The mixed skeletal variational formulation
The Dirichlet-to-Neumann maf has the representations

Su =V, (21 +K)u = Diu + (31 + KV, (31 +Ki)u (2.7)
in terms of the boundary integral operators

Vit HY2(m) = HY2(M), Kot HY2() — HY2(r),
K/ :H Y2(M) > H YT, D HYA(M) - HYA4T).
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The latter are called, in turn, thsingle layer potentialdouble layer potentialad-
joint double layer potentialandhypersingularoperators. Their definition requires
the explicit knowledge of a fundamental solution of theatiéntial operator in ques-
tion. For details, we refer the reader to, e.g., McLean [XY&teinbach [15].

We introduce the space of elementwise Neumann traces,

Z:= QI\I{)H-l/Z(ri).
i=1

In contrast to the spad¥, whose members are globally continuous on the skeleton,
Z contains functions which are discontinuous and doublaedbn inner triangles.
In this space, we choose the auxiliary variable

1 .
t:i=(t), ez tiz\/fl(EIJrKi)ui fori=1,2,...,N.

Equivalently,ti € H-Y/2(I";) is determined by the local variational equation
(z,Vit) = (@, (31 +K)u) vz e HY2(T).

Note thatt; = Su; is just the Neumann trace belonginguo With (2.7), we have

Su, = Dju; + (%I + K/)t;, and hence we can write the following equivalent mixed

formulation for (2.6): find(u,t) € X :=W x Z such that

a(u,v) +b(vt) = (F, v) Wew,
—b(u,2)+c(zt) = (G, 2) Vze Z,

where

z

a(u,v) =Y (Diui, v), b(v,t):i<ti,(%l+Ki)vi>, c(zt) =y (z,Viti),

P4

(F,v) = /Q f evdx—a(g,v), (G,2) =b(g,2).
With the combined bilinear form

< ((u,t),(v,2) :=a(u,v) +b(v,t) —b(u,z) + c(z 1),
we may write more compactly: fin@i,t) € X such that

g((ut),(v,2) =(F,v+(G,2) V(v,z) €X. (2.8)
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2.3. Discretization

Recall that the elementd; } are equipped with boundary triangulatioh%; } which
match across neighboring elements. Therefgre== | J; .%; describes a triangulation
of the skeletorT s. With this, we introduce the discretized trial spaces

Wh:={veW:v|; e PX(1) VT € .#}, and
N

Zn = ®Zh,i> whereZhJ = {ZG Lz(ri) . Z|1- S PO(T) VT € %}
i=1

Here,PX(1) denotes the polynomial space of degkem the triangler.
We discretize the variational formulation (2.8) by lookifay some(up,tn) €
Xh : =W, x Zy C X such that

< ((Un,th), (Vh,Zn)) = (F, Vi) + (G, zn)  V(Vh,Z) € Xh. (2.9)

In practice, the auxiliary variablg can be eliminated locally on each element, and
only the primal unknownsl, enter the linear system to be solved. In this way, we
obtain the same numerical scheme as in the previous an{8yse/en though the
variational formulation is now a mixed one. Indeed, thediszvariational formula-
tion (2.9) is equivalent to a primal formulation where thei€hlet-to-Neumann map

S has been replaced with a symmetric approximation, leadinghiat is commonly
called a variational crime. Based on Strang’s Lemma, Hibfeej Langer and Pech-
stein provide a discretization error analysis of this irex@alerkin scheme with
respect to théd-norm in [8]. Now, the detour via the mixed variational refara-
tion leads to the conforming Galerkin discretization (28§2.8). In particular, we
have the Galerkin orthogonality

o ((U=Un,t —th), (Vh,Zn)) =0 V(Vn,Zn) € X (2.10)

3. Mesh regularity

For general polyhedral meshes with arbitrary element shape cannot use the
standard technique of transforming to a reference elentenbtain uniform ap-
proximation properties. In [8], Sect. 4.3, two generalizedularity assumptions
on such meshes are given which substitute for more standarsférmation-based
regularity assumptions. For the sake of completeness vematépese assumptions
here.

Assumption 3.1. We assume that the polyhedral mé¢3pN ; satisfies the fol-
lowing conditions.

e There is a small, fixed integer uniformly bounding the nundfdsoundary
triangles of every element.
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e Every elementiThas an auxiliary conforming, quasi-regular, tetrahedra t
angulation with regularity parameters which are uniformr@ess all elements;
cf. [3].

Definition 3.1 (Uniform domain [9]). A bounded and connected §&t- RY is
called auniform domainif there exists a constai@y such that any pair of points
x1 € D andx, € D can be joined by a rectifiable cury&) : [0, 1] — D with y(0) = x1
andy(1) = xp, such that the arc length ¢fis bounded byC, |x; — X2| and

min % —y(t)] < Cy dist(y(t), D) ¥t < [0,1].

If D is a uniform domain, we denote the smallest such con§lariy Cy (D) and
call it the Jones parameteof D.

Any Lipschitz domain is a uniform domain. However, its Jopasameter may
be arbitrarily large.

The second parameter we use is the constant in Poincaggsiality. For a
uniform domainD, letCp(D) be the smallest constant such that

inf |u—cl, o) < Ce(D) diamD) o) VUEHD).  (@1)

For convex domain®, one can show tha@p(D) < 1, cf. [1]. Estimates for star-
shaped domains can be found in [16,17].

Since each individual elemefit is Lipschitz, the Jones parametes(T;) and
the constanCp(T;) in Poincaré’s inequality are both bounded. Our notion glire
larity for polyhedral meshes now demands that these cass@swell as the analo-
gous parameters for a suitable exterior domain per elerasntjniformly bounded
across the whole family of meshes.

Assumption 3.2. We assume that there are constants0 and G5 > 0 such
that, for allie {1,...,N},

Cu(T)<Cy,  Cu(B\Ti)<Cy,
Ce(Ti) <G5,  Cp(Bi\T

where B is a ball (or a suitable Lipschitz domain) enclosing Which satisfies
dist(9B;, 9Ti) > 3 diam(T;).

In the following, we will assume that all polyhedral mesheswwork with sat-
isfy Assumption 3.1 and Assumption 3.2. We will call such heessegular. Fur-
thermore, we will generically use to refer to constants which depend only on the
regularity parameters from the two assumptions, and cehl sonstantsiniform
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For the convergence and approximation results that folesvequip the space
X =W x Z with the norm

N N
e = IMIE+ 2l = 3 (S, w) + 3 vz, 2)

Let h:= max{diamT;} denote thenesh sizeOn regular meshes, we have the
following approximation theorem.

Theorem 3.1. Assume that the medf¥;)N ; is regular, i.e., Assumption3.1
and 3.2 hold. If wq € H2(Q) with piecewise linear boundary conditions g, and if
(¢,n) € (9,0) + X denotes its skeletal Dirichlet and Neumann data, respelgti
then

i”f — ¢ =) x < Chjw -
(¢h,f7h)€(g,0)+xh”(¢ ¢h n r]h)HX ‘ Q‘HZ(Q> ( )

with a uniform constant C.

Proof. This theorem subsumes results on approximation of botlciéi and
Neumann traces which were originally derived in [8]. Thessuits were therein
stated for the case where the functieg to be approximated is the exact solution
of (2.1), but inspecting the proofs makes it clear that ohéygropertywg € H?(Q)
is actually used. In particular, Theorem 4.8 from [8] ass#mat, under the above
assumptions,

inf — <Ch .
¢h€'Q+M\H¢ nllls < Chlwali2(q)

Analogously, for the Neumann traces, Theorem 4.11 from @ps that on every
elementT;,

pinf [N — Mhilly, < C(diamT) [Wa|jyz(7,)-

Obtaining the statement is then a simple matter of combitiinge results. O

4. Error estimates

In this section, we provide error estimates for the diszeetiproblem (2.9). Error
estimates in skeletal function spaces, while inherentlglwgependent, are an im-
portant intermediate result in the derivation of mesh-patelent estimates, and are
given first. Next we provide an error estimate in tHé-norm which was already
given in [8], but is here rederived using our new mixed vaoral framework. Fi-
nally, we present an estimate in thg-norm which constitutes the main new result
of this paper.
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4.1. Convergence on the skeleton

Theorem 4.1. Let Assumptio3.1and AssumptioB3.2be fulfilled. Then the dis-
crete solution(un,th) € X, of (2.9)is a quasi-optimal approximation to the solution
(ut) € X of (2.8). That is,

[(U=tnt—th)|lx <C inf [[(U=Vht—2z)|x (4.1)
(Vh,2Zh) €Xn

with a uniform constant C.

Proof. The resultis proved using Céa’s Lemma. Hence, only unifooarcivity
and boundedness of the bilinear foxsnneed to be shown.
We take note of the spectral equivalence

é(SVi, Vi> < <DiVi,Vi> < <SVi, Vi> Yv e Hl/z(ri), (4.2)

which is well-known in boundary integral operator theorﬁ][]Pechsteln has shown
in [14], Lemma 6.6, thaD; > ¢5; S, wherecp; = FCe(Bi\T)2(1+Cp(Bi \

T)2)~1, and the extension consta®i(B; \ T;) depends only oy (Bi \ Ti) < G-
Therefore, the consta@ > 1 in (4.2) can be bounded explicitly in terms@f and
C{; and is thus uniform. Hence we obtain coercivity of the béineorm .«7 via

A ((v2),(w2)) = (Divi, Vi) + 3 (7, Miz)

1 1
;EIZ(SM,V. IZZ\/u > 2 (w2)|%

In order to get upper bounds, we again use (4.2) as well asahehy Schwarz
inequality for the symmetric and positive (semi-)definibenfis (-, Vi -) and(D; -, -)
to see that

la(uv)| < lullglivils,  let,2)] < [Itllv[1Z]y-

By duality of the normg| - [|\, and|| - [|,-1, we get

D) = 36, (31+K0w) < 3[4l (3 Kul
|
(*
< Il Ml < CltlivIIMls
|

N

The inequality marked witk) stems from the relatiofi(31 + K;)v; Hv <ek,i(1-

cki) Y?|vi|s proved in [8], Equation (3.1). Pechstein [14] has shown theicon-
traction constantsk ; can be bounded explicitly in terms 6 andCy), and thus
C > 1is a uniform constant.
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Combined, the above bounds yield

| ((u,t), (v 2)] < C(llullglvils+ [t lIvlls + ulllslZv + ity l1zily)

= C(llullls+ el ) lIvils +lizllv)
< 2C[(uY)llx [[(v2)llx-

]
While error estimates on the skeleton follow directly framstresult and The-
orem 3.1, they are inherently mesh-dependent and therefdmmited use. More
interesting is the error within the domain with respect ® éixact solution of (2.1),

which will typically have additional regularity, sayg € H2(Q). Within a given
elementT;, this error is given by

U — " (Un+0) = 7 (U+0) — 7 (Un+0) = H(u—t),

and hence it suffices to bound the erggg(u — un).

4.2. Convergence in thed1-norm

From Green'’s identity, it is easy to see that
|Gy = (S9,9) Vo e HYAT).

Hence, with Theorem 4.1 and Theorem 3.1, it follows

|- 7(U—=Un)[p1(q) = [[u—Unlls < [[(U=tn,t =th)[|x < Chlualpzq)-

4.3. Convergence in the_,-norm

The proof of the error estimate in the-norm proceeds by a standard Aubin-Nitsche
duality argument. We assume that the adjoint to variatigmablem (2.1) isH?-
coercive and take the harmonic extensi@(u — uy,) of the discretization error as
the right-hand side in the adjoint variational problem. itiee solutiorw € H} of
the adjoint problem

/ Dv-Dwdx:/%’é(u—uh)vdx Vv e H3(Q) (4.3)
Q Q
even lies itH?(Q) and satisfies the estimate

Wie(q) < CllA8(U—tn) L, q)- (4.4)

Because of the equivalence of the standard and the sketeiational formulation,
its skeletal trace$¢,n), whereg; := yow, nj := yw for i = 1,...,N, satisfy the
(adjoint) mixed skeletal variational formulation (2.8g.i

g ((v,2),(¢,n)) = /g;%”s(u— un) s#avdx  Y(v,z) € X.



L, estimates for a BEM-based FEM 11

In particular, with the choicév,z) = (u— un,t —ty) and exploiting the Galerkin
orthogonality (2.10) as well as uniform boundedness/gfwe get

(U= n)IF ) = </ (U= Un,t—th), (9,1))
= ((U=Un,t —tn), (¢ — n,n — 1))
<Cll(u—un,t—to) [l (@ — dn, 7 — 1)1

for arbitrary (¢n, nn) € Xp. Taking the infimum ove(¢n, nn) and applying Theo-
rem 4.1 and Theorem 3.1, we obtain

2
[[-728(u—Un)[|{,q) <C P Uahz(q) Wlk2(o)-
Using now estimate (4.4), we arrive at thgerror estimate
|7(u = )|,y < CHP|Ualyz(g)- (4.5)
This proves our main theorem.

Theorem 4.2. Let the assumptions of Theoreri be satisfied. Furthermore,
assume that the adjoint problef.3) is H2-coercive. If the solution u of the vari-
ational problem(2.1) belongs to H(Q), then the quasi-optimal A discretization
error estimatg(4.5) holds.

5. Conclusions

The detour via a mixed variational formulation allows usdtablish a quasi-optimal

L, discretization error estimate for the BEM-based FE discagbn of the diffu-
sion equation on polyhedral meshes that was introduced lpgl@od, Langer and
Pusch in [5] and whosel!-convergence has been analyzed in [8]. Numerical re-
sults demonstrating th®(h?) behavior of thel, discretization error were already
presented in [5] and [8] for two- and three-dimensionaludifbn problems, respec-
tively.
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