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Abstract — Recently, Hofreither, Langer and Pechstein have analyzeda nonstandard finite element
method based on element-local boundary integral operators. The method is able to treat general poly-
hedral meshes and employs locally PDE-harmonic trial functions. In the previous work, the primal
formulation of the method has been analyzed as an inexact Galerkin scheme, obtainingH1 error es-
timates. In this work, we pass to an equivalent mixed formulation. This allows us to derive error
estimates in theL2-norm, which were so far not available. Many technical toolsfrom our previous
analysis remain applicable in this setting.
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1. Introduction

In certain applications, it is advantageous to discretize partial differential equations
(PDEs) on non-standard grids consisting of heterogeneous polyhedral elements and
incorporating hanging nodes. For instance, in reservoir simulation, polygonal or
polyhedral meshes are in common use (cf., e.g., [12]). In simulating drug diffu-
sion through the human skin, tetrakaidecahedra (14-faced polyhedra) have been
employed to model cells in the outermost skin layer, so-called corneocytes [7].

Previously established methods which are able to treat suchgeneralized meshes
are, among others, the Mimetic Finite Difference Method (see, e.g., [12] or [2]),
special Mixed Finite Element Methods (see [10] and [11]), orthe Discontinuous
Galerkin Method (see, e.g., [6]). Copeland, Langer and Pusch have recently intro-
duced a novel technique for treating boundary value problems on polyhedral meshes
[5]. They have demonstrated that this new method works well for different classes
of problems including diffusion problems, the Helmholtz equation and the Maxwell
equations in the frequency domain (see also [4]). This approach employs locally
PDE-harmonic trial functions, i.e., trial functions whichsatisfy the PDE locally on
each element, and uses boundary element techniques to assemble the element stiff-
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ness matrices. For this reason, the new non-standard finite element method was also
called BEM-based FEM.

First steps towards a rigorous analysis of this approach have been taken in [8],
where the method was studied in the framework of a primal variational formulation
with elementwise Dirichlet traces of the solution as its unknowns. The realization
of this Galerkin method requires the inversion of the singlelayer potential operator
in every element, which can typically only be done approximately. This implicates
a “variational crime” in the form of an inexact bilinear formand introduces a con-
sistency error to the numerical scheme, makingL2 error estimates hard to obtain
via standard techniques. In the present work, we show an alternate approach to the
analysis via a mixed formulation having both Dirichlet and Neumann traces as its
unknowns. Building upon the technical tools developed in our previous work [8],
we will be able to recover the error estimates in theH1-norm obtained therein as
well as derive previously unavailableL2 error estimates.

The remainder of this paper is organized as follows. In Section 2, we derive both
the primal variational formulation and the equivalent mixed variational formulation,
and discretize the latter. In Section 3, we formulate regularity assumptions for gen-
eral polyhedral meshes, and state an approximation result on the skeletons of such
meshes. Section 4 is devoted to the derivation of mesh-independent error estimates
for the BEM-based FEM in both theH1- and theL2-norms. In the final Section 5,
we draw some conclusion.

2. Formulations of a BEM-based FEM

2.1. The primal skeletal variational formulation

Let Ω ⊂ R
3 be a bounded Lipschitz domain andΓ = ∂Ω its boundary. We consider

the pure Dirichlet boundary value problem for the Poisson equation,

−∆u= f in Ω and u= g on Γ,

with g∈ H1/2(Γ) and f ∈ L2(Ω), as our model problem. The standard variational
formulation is the following: findu∈H1(Ω) such that the traceγ0

Γu of u onΓ equals
g and the standard variational equation

∫

Ω
∇u·∇vdx=

∫

Ω
f vdx ∀v∈ H1

0(Ω). (2.1)

holds.
We now consider a family of non-overlapping decompositions(Ti)

N
i=1 of Ω,

Ω =
N
⋃

i=1

T i, Ti ∩Tj = /0 ∀i 6= j,

into finite elementsTi which are assumed to be open Lipschitz polyhedra. Fur-
thermore, we provide every element boundaryΓi = ∂Ti with a conforming trian-
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gulation Fi = {τi j ⊂ Γi} j composed of open triangles. We call such a decom-
position (Ti)

N
i=1 a polyhedral meshof Ω. We further assume that the elements

are matching in the sense that, for all trianglesτi ∈ Fi and τ j ∈ F j , we have
τi ∩τ j 6= /0⇔ τi = τ j ∈Fi ∩F j . In other words, boundary triangles from two neigh-
boring elements should either be identical or not intersectat all.

For any suitable domainT, let

H1
∆, f (T) :=

{

u∈ H1(T) :
∫

T
∇u·∇vdx=

∫

T
f vdx ∀v∈ H1

0(T)

}

denote the manifold of weak local solutions of the Poisson equation.
Following McLean [13], we introduce the Dirichlet and Neumann trace opera-

tors

γ0
i = γ0

Γi
: H1(Ti)→ H1/2(Γi) and γ1

i = γ1
Γi

: H1
∆, f (Ti)→ H−1/2(Γi)

which satisfy, for allu∈ H1
∆, f (Ti) andv∈ H1(Ti), the Green’s identity

〈γ1
i u, γ0

i v〉=−

∫

Ti

f vdx+
∫

Ti

∇u·∇vdx, (2.2)

where〈· , ·〉 denotes the duality pairing betweenH−1/2(Γi) andH1/2(Γi). Further-
more, we define the extension operators

H
f

i : H1/2(Γi)→ H1
∆, f (Ti)

such that, for anyϕ ∈ H1/2(Γi), its imageH
f

i (ϕ) is the uniquely defined element
of H1

∆, f (Ti) havingϕ as its Dirichlet data. By a superposition argument, it is easy to

see thatH f
i (ϕ) = H

f
i (0)+H 0

i (ϕ).
Finally, we introduce theDirichlet-to-Neumann maps

Sf
i := γ1

i ◦H
f

i : H1/2(Γi)→ H−1/2(Γi),

and from the above we infer that

Sf
i (ϕ) = γ1

i (H
f

i (0)+H
0

i (ϕ)) = Sf
i (0)+S0

i (ϕ). (2.3)

Note thatHi := H 0
i andSi := S0

i are linear operators.
Let ΓS :=

⋃N
i=1 Γi denote theskeletonof the mesh, andH1/2(ΓS) the trace space

of H1-functions onto the skeleton. Furthermore, letW = {v ∈ H1/2(ΓS) : v|Γ = 0}
be the space of all skeletal functions with vanishing boundary values. A discussion
analogous to the one used to prove Proposition 2.1 in [8] convinces us that the
following two variational problems are equivalent:
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• standard VF:find uΩ ∈ H1(Ω) such thatγ0
Γu= g and

∫

Ω
∇uΩ ·∇vΩ =

∫

Ω
f vΩ dx ∀vΩ ∈ H1

0(Ω);

• skeletal VF:find u∈ H1/2(ΓS) such thatu|Γ = g and

N

∑
i=1

〈Sf
i (ui), vi〉= 0 ∀v∈W. (2.4)

(Here and henceforth we adopt the notational conventionvi = v|Γi for skeletal
functions.) The equivalence is to be understood in the sensethat ui = γ0

i uΩ, and
uΩ = H

f
i (ui) on every elementTi . In other words,u is the skeletal trace of the

solutionuΩ, anduΩ can be locally reconstructed as the extension ofu.
The Green’s identity (2.2) with the choiceu=H

f
i (0) andv=Hiϕ for arbitrary

ϕ ∈ H1/2(Γi) yields

〈Sf
i (0), ϕ〉=−

∫

Ti

fHiϕ dx+
∫

Ti

∇H
f

i (0) ·∇Hiϕ dx=−

∫

Ti

fHiϕ dx. (2.5)

Using relations (2.3) and (2.5), we may rewrite the variational problem (2.4) as

N

∑
i=1

〈Siui , vi〉=
N

∑
i=1

∫

Ti

f Hivi dx ∀v∈W,

We introduce the shorthand notationHS : H1/2(ΓS) → H1(Ω) for the piecewise
harmonic extension from the skeleton to each elementTi . Also, for convenience, we
identify the given Dirichlet datag with a suitable skeletal extensiong∈ H1/2(ΓS),
which always exists. We thus have the variational problem: findu∈ g+W with

N

∑
i=1

〈Siui , vi〉=

∫

Ω
f HSvdx ∀v∈W. (2.6)

2.2. The mixed skeletal variational formulation

The Dirichlet-to-Neumann mapSi has the representations

Siui =V−1
i (1

2I +Ki)ui = Diui +(1
2I +K′

i )V
−1
i (1

2I +Ki)ui (2.7)

in terms of the boundary integral operators

Vi : H−1/2(Γi)→ H1/2(Γi), Ki : H1/2(Γi)→ H1/2(Γi),

K′
i : H−1/2(Γi)→ H−1/2(Γi), Di : H1/2(Γi)→ H−1/2(Γi).
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The latter are called, in turn, thesingle layer potential, double layer potential, ad-
joint double layer potential, andhypersingularoperators. Their definition requires
the explicit knowledge of a fundamental solution of the differential operator in ques-
tion. For details, we refer the reader to, e.g., McLean [13] or Steinbach [15].

We introduce the space of elementwise Neumann traces,

Z :=
N
⊗

i=1

H−1/2(Γi).

In contrast to the spaceW, whose members are globally continuous on the skeleton,
Z contains functions which are discontinuous and double-valued on inner triangles.
In this space, we choose the auxiliary variable

t := (ti)
N
i=1 ∈ Z, ti =V−1

i (
1
2

I +Ki)ui for i = 1,2, . . . ,N.

Equivalently,ti ∈ H−1/2(Γi) is determined by the local variational equation

〈zi ,Viti〉= 〈zi , (
1
2I +Ki)ui〉 ∀zi ∈ H−1/2(Γi).

Note thatti = Siui is just the Neumann trace belonging toui . With (2.7), we have
Siui = Diui +(1

2I +K′
i )ti , and hence we can write the following equivalent mixed

formulation for (2.6): find(u, t) ∈ X :=W×Z such that

a(u,v)+b(v, t) = 〈F, v〉 ∀v∈W,

−b(u,z)+c(z, t) = 〈G, z〉 ∀z∈ Z,

where

a(u,v) =
N

∑
i=1

〈Diui , vi〉, b(v, t) =
N

∑
i=1

〈ti , (1
2I +Ki)vi〉, c(z, t) =

N

∑
i=1

〈zi ,Viti〉,

〈F, v〉=
∫

Ω
f HSvdx−a(g,v), 〈G, z〉= b(g,z).

With the combined bilinear form

A ((u, t),(v,z)) := a(u,v)+b(v, t)−b(u,z)+c(z, t),

we may write more compactly: find(u, t) ∈ X such that

A ((u, t),(v,z)) = 〈F, v〉+ 〈G, z〉 ∀(v,z) ∈ X. (2.8)
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2.3. Discretization

Recall that the elements{Ti} are equipped with boundary triangulations{Fi}which
match across neighboring elements. Therefore,F :=

⋃

i Fi describes a triangulation
of the skeletonΓS. With this, we introduce the discretized trial spaces

Wh := {v∈W : v|τ ∈ P1(τ) ∀τ ∈ F}, and

Zh :=
N
⊗

i=1

Zh,i , whereZh,i := {z∈ L2(Γi) : z|τ ∈ P0(τ) ∀τ ∈ Fi}.

Here,Pk(τ) denotes the polynomial space of degreek on the triangleτ .
We discretize the variational formulation (2.8) by lookingfor some(uh, th) ∈

Xh :=Wh×Zh ⊂ X such that

A ((uh, th),(vh,zh)) = 〈F, vh〉+ 〈G, zh〉 ∀(vh,zh) ∈ Xh. (2.9)

In practice, the auxiliary variableth can be eliminated locally on each element, and
only the primal unknownsuh enter the linear system to be solved. In this way, we
obtain the same numerical scheme as in the previous analysis[8], even though the
variational formulation is now a mixed one. Indeed, the discrete variational formula-
tion (2.9) is equivalent to a primal formulation where the Dirichlet-to-Neumann map
Si has been replaced with a symmetric approximation, leading to what is commonly
called a variational crime. Based on Strang’s Lemma, Hofreither, Langer and Pech-
stein provide a discretization error analysis of this inexact Galerkin scheme with
respect to theH1-norm in [8]. Now, the detour via the mixed variational reformula-
tion leads to the conforming Galerkin discretization (2.9)of (2.8). In particular, we
have the Galerkin orthogonality

A ((u−uh, t − th),(vh,zh)) = 0 ∀(vh,zh) ∈ Xh. (2.10)

3. Mesh regularity

For general polyhedral meshes with arbitrary element shapes, we cannot use the
standard technique of transforming to a reference element to obtain uniform ap-
proximation properties. In [8], Sect. 4.3, two generalizedregularity assumptions
on such meshes are given which substitute for more standard transformation-based
regularity assumptions. For the sake of completeness we repeat these assumptions
here.

Assumption 3.1. We assume that the polyhedral mesh(Ti)
N
i=1 satisfies the fol-

lowing conditions.

• There is a small, fixed integer uniformly bounding the numberof boundary
triangles of every element.
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• Every element Ti has an auxiliary conforming, quasi-regular, tetrahedral tri-
angulation with regularity parameters which are uniform across all elements;
cf. [3].

Definition 3.1 (Uniform domain [9]). A bounded and connected setD ⊂R
d is

called auniform domainif there exists a constantCU such that any pair of points
x1 ∈D andx2 ∈D can be joined by a rectifiable curveγ(t) : [0, 1]→D with γ(0) = x1
andγ(1) = x2, such that the arc length ofγ is bounded byCU |x1−x2| and

min
i=1,2

|xi − γ(t)|6CU dist(γ(t), ∂D) ∀t ∈ [0,1].

If D is a uniform domain, we denote the smallest such constantCU by CU(D) and
call it theJones parameterof D.

Any Lipschitz domain is a uniform domain. However, its Jonesparameter may
be arbitrarily large.

The second parameter we use is the constant in Poincaré’s inequality. For a
uniform domainD, letCP(D) be the smallest constant such that

inf
c∈R

‖u−c‖L2(D) 6CP(D) diam(D) |u|H1(D) ∀u∈ H1(D). (3.1)

For convex domainsD, one can show thatCP(D)6 π−1, cf. [1]. Estimates for star-
shaped domains can be found in [16,17].

Since each individual elementTi is Lipschitz, the Jones parameterCU(Ti) and
the constantCP(Ti) in Poincaré’s inequality are both bounded. Our notion of regu-
larity for polyhedral meshes now demands that these constants, as well as the analo-
gous parameters for a suitable exterior domain per element,are uniformly bounded
across the whole family of meshes.

Assumption 3.2. We assume that there are constants C∗
U > 0 and C∗P > 0 such

that, for all i ∈ {1, . . . ,N},

CU(Ti)6C∗
U , CU(Bi \T i)6C∗

U ,

CP(Ti)6C∗
P, CP(Bi \T i)6C∗

P,

where Bi is a ball (or a suitable Lipschitz domain) enclosing Ti which satisfies
dist(∂Bi , ∂Ti)>

1
2 diam(Ti).

In the following, we will assume that all polyhedral meshes we work with sat-
isfy Assumption 3.1 and Assumption 3.2. We will call such meshesregular. Fur-
thermore, we will generically useC to refer to constants which depend only on the
regularity parameters from the two assumptions, and call such constantsuniform.
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For the convergence and approximation results that follow,we equip the space
X =W×Z with the norm

‖(v,z)‖2
X := |||v|||2S+‖z‖2

V :=
N

∑
i=1

〈Sivi , vi〉+
N

∑
i=1

〈Vizi , zi〉.

Let h := maxi{diamTi} denote themesh size. On regular meshes, we have the
following approximation theorem.

Theorem 3.1. Assume that the mesh(Ti)
N
i=1 is regular, i.e., Assumptions3.1

and 3.2 hold. If wΩ ∈ H2(Ω) with piecewise linear boundary conditions g, and if
(ϕ ,η) ∈ (g,0) +X denotes its skeletal Dirichlet and Neumann data, respectively,
then

inf
(ϕh,ηh)∈(g,0)+Xh

‖(ϕ −ϕh,η −ηh)‖X 6Ch|wΩ|H2(Ω) (3.2)

with a uniform constant C.

Proof. This theorem subsumes results on approximation of both Dirichlet and
Neumann traces which were originally derived in [8]. These results were therein
stated for the case where the functionwΩ to be approximated is the exact solution
of (2.1), but inspecting the proofs makes it clear that only the propertywΩ ∈ H2(Ω)
is actually used. In particular, Theorem 4.8 from [8] asserts that, under the above
assumptions,

inf
ϕh∈g+Wh

|||ϕ −ϕh|||S6Ch|wΩ|H2(Ω).

Analogously, for the Neumann traces, Theorem 4.11 from [8] states that on every
elementTi,

inf
ηh,i∈Zh,i

‖ηi −ηh,i‖Vi
6C(diamTi) |wΩ|H2(Ti)

.

Obtaining the statement is then a simple matter of combiningthese results. �

4. Error estimates

In this section, we provide error estimates for the discretized problem (2.9). Error
estimates in skeletal function spaces, while inherently mesh-dependent, are an im-
portant intermediate result in the derivation of mesh-independent estimates, and are
given first. Next we provide an error estimate in theH1-norm which was already
given in [8], but is here rederived using our new mixed variational framework. Fi-
nally, we present an estimate in theL2-norm which constitutes the main new result
of this paper.
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4.1. Convergence on the skeleton

Theorem 4.1. Let Assumption3.1and Assumption3.2be fulfilled. Then the dis-
crete solution(uh, th) ∈ Xh of (2.9) is a quasi-optimal approximation to the solution
(u, t) ∈ X of (2.8). That is,

‖(u−uh, t − th)‖X 6C inf
(vh,zh)∈Xh

‖(u−vh, t −zh)‖X (4.1)

with a uniform constant C.

Proof. The result is proved using Céa’s Lemma. Hence, only uniformcoercivity
and boundedness of the bilinear formA need to be shown.

We take note of the spectral equivalence

1
C
〈Sivi , vi〉6 〈Divi , vi〉6 〈Sivi , vi〉 ∀v∈ H1/2(Γi), (4.2)

which is well-known in boundary integral operator theory [15]. Pechstein has shown
in [14], Lemma 6.6, thatDi > c⋆D,i Si , wherec⋆D,i =

1
2 CE(Bi \ Ti)

−2(1+CP(Bi \

Ti)
2)−1, and the extension constantCE(Bi \Ti) depends only onCU(Bi \Ti) 6 C∗

U .
Therefore, the constantC > 1 in (4.2) can be bounded explicitly in terms ofC∗

P and
C∗

U and is thus uniform. Hence we obtain coercivity of the bilinear formA via

A ((v,z),(v,z)) = ∑
i
〈Divi , vi〉+∑

i
〈zi ,Vizi〉

>
1
C ∑

i

〈Sivi , vi〉+∑
i

〈zi ,Vizi〉>
1
C
‖(v,z)‖2

X.

In order to get upper bounds, we again use (4.2) as well as the Cauchy-Schwarz
inequality for the symmetric and positive (semi-)definite forms〈·,Vi ·〉 and〈Di ·, ·〉
to see that

|a(u,v)| 6 |||u|||S|||v|||S, |c(t,z)| 6 ‖t‖V‖z‖V .

By duality of the norms‖ · ‖Vi
and‖ · ‖V−1

i
, we get

b(v, t) = ∑
i
〈ti , (1

2I +Ki)vi〉6 ∑
i
‖ti‖Vi

‖(1
2I +Ki)vi‖V−1

i

(∗)

6 C∑
i

‖ti‖Vi
|vi |Si

6C‖t‖V |||v|||S.

The inequality marked with(∗) stems from the relation‖(1
2I +Ki)vi‖V−1

i
6 cK,i(1−

cK,i)
−1/2|vi |Si proved in [8], Equation (3.1). Pechstein [14] has shown thatthe con-

traction constantscK,i can be bounded explicitly in terms ofC∗
P andC∗

U , and thus
C> 1 is a uniform constant.
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Combined, the above bounds yield

|A ((u, t),(v,z))| 6C
(

|||u|||S|||v|||S+‖t‖V |||v|||S+ |||u|||S‖z‖V +‖t‖V‖z‖V

)

=C(|||u|||S+‖t‖V)(|||v|||S+‖z‖V)

6 2C‖(u, t)‖X ‖(v,z)‖X.

�

While error estimates on the skeleton follow directly from this result and The-
orem 3.1, they are inherently mesh-dependent and thereforeof limited use. More
interesting is the error within the domain with respect to the exact solution of (2.1),
which will typically have additional regularity, say,uΩ ∈ H2(Ω). Within a given
elementTi, this error is given by

uΩ −H
f

i (uh+g) = H
f

i (u+g)−H
f

i (uh+g) = Hi(u−uh),

and hence it suffices to bound the errorHS(u−uh).

4.2. Convergence in theH1-norm

From Green’s identity, it is easy to see that

|Hiϕ |2H1(Ti)
= 〈Siϕ , ϕ〉 ∀ϕ ∈ H1/2(Γi).

Hence, with Theorem 4.1 and Theorem 3.1, it follows

|HS(u−uh)|H1(Ω) = |||u−uh|||S6 ‖(u−uh, t − th)‖X 6Ch|uΩ|H2(Ω).

4.3. Convergence in theL2-norm

The proof of the error estimate in theL2-norm proceeds by a standard Aubin-Nitsche
duality argument. We assume that the adjoint to variationalproblem (2.1) isH2-
coercive and take the harmonic extensionHS(u−uh) of the discretization error as
the right-hand side in the adjoint variational problem. Then the solutionw∈ H1

0 of
the adjoint problem

∫

Ω
∇v·∇wdx=

∫

Ω
HS(u−uh)vdx ∀v∈ H1

0(Ω) (4.3)

even lies inH2(Ω) and satisfies the estimate

|w|H2(Ω) 6C‖HS(u−uh)‖L2(Ω). (4.4)

Because of the equivalence of the standard and the skeletal variational formulation,
its skeletal traces(ϕ ,η), whereϕi := γ0

i w, ηi := γ1
i w for i = 1, . . . ,N, satisfy the

(adjoint) mixed skeletal variational formulation (2.8), i.e.,

A ((v,z),(ϕ ,η)) =

∫

Ω
HS(u−uh)HSvdx ∀(v,z) ∈ X.
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In particular, with the choice(v,z) = (u− uh, t − th) and exploiting the Galerkin
orthogonality (2.10) as well as uniform boundedness ofA , we get

‖HS(u−uh)‖
2
L2(Ω) = A ((u−uh, t − th),(ϕ ,η))

= A ((u−uh, t − th),(ϕ −ϕh,η −ηh))

6C‖(u−uh, t − th)‖X ‖(ϕ −ϕh,η −ηh)‖X

for arbitrary (ϕh,ηh) ∈ Xh. Taking the infimum over(ϕh,ηh) and applying Theo-
rem 4.1 and Theorem 3.1, we obtain

‖HS(u−uh)‖
2
L2(Ω) 6Ch2 |uΩ|H2(Ω) |w|H2(Ω).

Using now estimate (4.4), we arrive at theL2 error estimate

‖HS(u−uh)‖L2(Ω) 6Ch2 |uΩ|H2(Ω). (4.5)

This proves our main theorem.

Theorem 4.2. Let the assumptions of Theorem3.1 be satisfied. Furthermore,
assume that the adjoint problem(4.3) is H2-coercive. If the solution u of the vari-
ational problem(2.1) belongs to H2(Ω), then the quasi-optimal L2 discretization
error estimate(4.5)holds.

5. Conclusions

The detour via a mixed variational formulation allows us to establish a quasi-optimal
L2 discretization error estimate for the BEM-based FE discretization of the diffu-
sion equation on polyhedral meshes that was introduced by Copeland, Langer and
Pusch in [5] and whoseH1-convergence has been analyzed in [8]. Numerical re-
sults demonstrating theO(h2) behavior of theL2 discretization error were already
presented in [5] and [8] for two- and three-dimensional diffusion problems, respec-
tively.
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