CONGRUENCE PROPERTIES MODULO 5 AND 7 FOR THE
POD FUNCTION

SILVIU RADU AND JAMES A. SELLERS

ABSTRACT. In this paper, we prove arithmetic properties modulo 5 and 7
satisfied by the function pod(n) which denotes the number of partitions of
n wherein odd parts must be distinct (and even parts are unrestricted). In
particular, we prove the following: For all n > 0,

pod(135mn +8) = 0 (mod 5),
pod(135n4+107) = 0 (mod 5),
pod(135n +116) = 0 (mod 5),
pod(675m +647) = 0 (mod 25),
pod(3375m +1997) = 0 (mod 125),
pod(3375mn 4+ 3347) = 0 (mod 125),
pod(567Tn +260) = 0 (mod 7),
and
pod(567Tn +449) = 0 (mod 7).

1. INTRODUCTION

The focus of this paper is the function pod(n) which denotes the number of parti-
tions of n in which odd parts are distinct (and even parts are unrestricted). This
function pod(n) has been considered by many from a product—series point of view
as well as from other directions. For example, pod(n) appears in the works of
Andrews [2, 3] and Berkovich and Garvan [6]. Moreover, Berkovich and Garvan
note that Andrews [5] considered a restricted version of pod(n) wherein each part
was required to be larger than 1. In very recent work, Alladi [1] obtained a series
expansion for the product generating function for pod(n). It is significant to note
that Hirschhorn and Sellers [7] appear to be the first to consider pod(n) from an
arithmetic viewpoint.

In contrast to the work of Hirschhorn and Sellers [7], in which pod(n) was extensively
studied modulo 3, we now wish to prove Ramanujan-like properties modulo 5 and
7 which are satisfied by pod(n). In particular, we prove the following theorem:
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Theorem 1.1. For all n > 0,
(1)  pod(135n + 8) = pod(135n + 107) = pod(135n + 116) =0 (mod 5),

(2) pod(675n +647) =0 (mod 25),

(3) pod(3375n + 1997) = pod(3375n + 3347) =0 (mod 125),
and

(4) pod(567n + 260) = pod(567n + 449) =0 (mod 7).

For the proof of our congruences we need the following lemma.
Lemma 1.2. Let p be a prime and o a positive integer. Then

rm (=" e
(5) L[l(lfq,m)pafl—l (mod p%).

Proof. We note that for all primes p and X an indeterminate we have
(6) X=1 (modp*)= XP=1 (mod p**th).

We see that (5) is true for @ = 1 because of the relation (1 — ¢"?) = (1 — ¢")?
(mod p). Next we prove that if (5) is true for « = N with N > 1, then (5) is true

n pN
for a = N + 1. This follows by applying (6) with X = [[°2, ((1*‘17)_ O

1—gqrm)pN 1

By elementary partition theory we see that

> 0 1_|_q2n—1
" >~ podtmya” = [T 50
m=0 n=1

From here, we can prove some additional elementary generating function results
which are critical to our proof of these congruences.

Lemma 1.3.
oo o0

1—q"

Z pod(m)(—q)™ = H m
m=0 n=1
Proof. By (7) we find
00 . 0 1— q2n—1
> podm)(—)™ = ] T
m=0 n=1
B ﬁ 1—q" 1
ot 1— q2n 1— q2n
i (1—¢2)%
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In order to prove the congruences (1)-(4) we could use Lemma 2.4 (below) directly.
However, experiments show that a simple pre—processing of the congruences be-
fore the application of Lemma 2.4 gives us a proof where fewer computations are
required. For this purpose we use the following related generating function and
lemma to rewrite (1)-(4) in a form more convenient for us.

Definition 1.4. For all positive integers o and primes p we define

> 0 (1 _ qn>p°‘+1
pody, ,(m)q™ = —.
711220 »(m) nl;[l (1—@2)2(1 — grn )"

Lemma 1.5. The congruences (1)-(4) are true iff, for all n >0,
pods 5(135n + 8) = pody 5(135n + 107) = pod; 5(135n + 116) =0  (mod 5),
poda 5(675n 4 647) =0 (mod 25),
pods 5(3375n 4 1997) = pods 5(3375n + 3347) =0 (mod 125),

and
pody 7(567n + 260) = pod; 7(567n +449) =0 (mod 7).

Proof. The lemma follows immediately by observing that
poda p(n) = (—1)"pod(n) (mod p*),

which follows from Lemma 1.2, Lemma 1.3 and Definition 1.4. U

2. THE MAIN PROOF MACHINERY — MODULAR FORMS

For M a positive integer let R(M) be the set of integer sequences indexed by the
positive divisors § of M. Let 1 =61 < --- < = M be the positive divisors of M
and r € R(M). Then we will write r = (rs,,...,7s, )

For s an integer and m a positive integer we denote by [s],, the set of all elements
congruent to s modulo m, in other words [s],, € Z,. Let Z7, be the set of all
invertible elements in Z,,. Let S,, C Z;, be the set of all squares in Z,.

Definition 2.1. Form, M € N*, r = (r;) € R(M) andt € {0,...,m—1} we define
the map ©, : Saam x {0,...,m —1} — {0,...,m — 1} with ([s]aam,t) — [S]24mOrt
and the image is uniquely determined by the relation [s]ogm Ot = ts+ % 25\1\/1 ors
(mod m). We define the set

Pm,r(t) = {[5]24m67-t|[8}24m S Sg4m}.

Let a € Z and p an odd prime, then (%) is the Legendre symbol.
Lemma 2.2. Let p > 5 be a prime and « a positive integer. Let
pler) = (r%a’p),réa’p),rl()a’p)) = (1+p*, —2,—p*) € R(2p).
Let a,b be positive integers, m := 3%p® and g := ged(m, 8t — 1). Then if
397 Ipb =L (8t — 1)
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we have

8t—1 8t —1 m
P oom(t) = {t/| g|(8t' = 1), (( ¢ p)/g) — (( ¢ = )/g) for each p|? }

0<t'<m-—1

Proof. By Definition 2.1 we have

] N
Pry o (£) = {t'[t = ts + SW ST (mod m),0 <t <m — 1, [s]aum € Saum}
dlm
1—
={t'|t' =ts+ TS (mod m),0 <t <m —1,[s]oam € Soam}
={t'|s(8 —1)=8'—1 (mod m),0 <t <m —1,[s|2am € Soam}

fi 5160 =D g = @ ~1fg (mod ), |

0<t <m-—1, [S]m/g € Sm/g

The proof is finished by noting that the existence of [s],, /4 € S,,/, such that
s(8—1)/g= (8t —1)/g mod m/g

is, for the case % squarefree, equivalent to

((8t pl)/g) _ ((St’ pl)/g> ’

for each p|%. We also used the fact that the canonical homomorphism ¢ : §,, —
Sy /4 is surjective for any positive integers n,d such that d|n. [

We now use Lemma 2.2 to compute P, .. (t) for
(a,p,m, t) =(1,5,135,8), (1, 5,135, 107), (2, 5, 675, 647), (3, 5, 3375, 1997),
(1,7,567,260) and (1,7,567,449).

(a, p,m,t) = (1,5,135,8) : We see that g = ged(135,88 — 1) = 32 and (W)
is (%) = —1for p=1>5 and (%) =1 for p = 3. By Lemma 2.2 we need to solve the

following equations for ¢':

(B52)-(2) o (2522)-()

We see that (£) = —1 has the solutions z = 2,3 (mod 5) and (£) = 1 has the
solution z = 1 (mod 3). By the Chinese Remainder Theorem we obtain z = 7,13
(mod 15). Consequently we need to solve the following congruences for ¢':

(8t —1)/g=17,13 (mod 15),
which is equivalent to
(8t — 1) =7g,13g (mod 15g),

and hence
t' = (1+79)/8,(13g+1)/8 (mod 15g).
Finally using g = 9 we obtain ¢ = 8,116 (mod 135). This shows that

(8) Pyss 0.5 (8) = {8, 116}.
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(a,p,m,t) = (1,5,135,107) : We see that g = gcd(135,8-107 — 1) = 45 and

(%) = (%) Note that the only prime which divides m/g = 3 is 3. By

Lemma 2.2 we need to solve the following equation for ¢':
(5= 6)
3 3
This gives

(8 —1)/g=1 (mod 3)= (8 —1)=g mod 3g=1t = (1+g)/8 (mod 3g).
Using g = 45 we obtain ¢’ = 107 (mod 135). We conclude
(9) P13577.(1,5)(].07) = {107}

Applying Lemma 2.2 in analogous fashion we obtain:

(10) P675,r(2v5)(647) = {647},
(11) Pygrs o (1997) = {1997,3347},
(12) Psgr 0. (260) = {260},
(13) Psgrpam(449) = {449},

By using (8)-(13) and Lemma 1.5 we see that Theorem 1.1 can be rewritten as:

Lemma 2.3. The congruences in Theorem 1.1 are true iff, for all n > 0,

(14) pody5(135n +t) = 0 (mod 5), t€ Pys5,0.(8),

(15) pody5(135n+t) = 0 (mod 5), t€ Py35,a.5(107),
(16) pods5(675n+1) = 0 (mod 25), t€ Py, (647),
(17) pods5(3375n +1t) = 0 (mod 125), ¢ € Py375 .55 (1997),
(18) pody 7(56Tn +t) = 0 (mod7), € Psgr,a.m(260),
and

(19) pody 7(56Tn +1) =0 (mod 7), t € Psgy 0.7 (449).

For each r € R(M) we assign a generating function

frl@) =TT IO =" =" erln)g™

8| M n=1

Given p a prime, m € N and t € {0,...,m — 1} we are concerned with proving
congruences of the type ¢.(mn +t) = 0 (mod p),n € N. The congruences we
are concerned with here have some additional structure; namely ¢,(mn +t') =0
(mod p),n > 0,t' € P, ,(t). In other words a congruence is a tuple (r, M, m,t, p)
with r € R(M), m>1,t€{0,...,m — 1} and p a prime such that

cr(mn+t)=0 (mod p),n>0,t' € Py, ().
Throughout when we say that ¢,.(mn+t) =0 (mod p) we mean that ¢, (mn-+t') =0
(mod p) for all n > 0 and all ¢’ € P(t).

In order to prove the congruences (1)-(4) we need a lemma ([8, Lemma 4.5]). We
first state it and then explain the terminology.
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Lemma 2.4. Let u be a positive integer, (m, M, N,t,r = (r5)) € A*, a = (a5) €
R(N), n the number of double cosets in To(N)\I'/Tee and {v1,...,7m} C T a
complete set of representatives of the double coset To(N)\I'/T'. Assume that
P (Vi) +05(v:) >0, i €{1,...,n}. Let tyi :=mingep, (1 and

1 tmin
vi= o Za5+27’6 [FZFO(N)]—ZM& ~ %am ors — o

5N 5| M 5N §|M

Then if

for allt’ € Py, .(t) then

for allt' € Py, . (t).

The lemma reduces the proof of a congruence modulo v to checking that finitely
many values are divisible by u. We first define the set A*. Let x = r(m) = ged(m?—
1,24) and w(M, (r5)) := (s, j) where s is a non-negative integer and j an odd integer
uniquely determined by H(;lM 6l"sl = 255, Then a tuple (m, M, N, (rs),t) belongs
to A* iff

m, M, N are positive integers, (rs) € R(M), t € {0,...,m — 1};
p|m implies p|N for every prime p;
0| M implies §|mN for every ¢ > 1 such that rs # 0;
&N Y510 rs™¥ =0 (mod 24);
KN 3 575 =0 (mod 8);
24m N
ged(r (=24t — 3755, 07s), 24m) | Vi
e for (s,j) = m(M,(rs)) we have (4|xN and 8| Ns) or (2|s and 8| N(1 — j)) if
2|m.

Remark 2.5. We note that the condition 2|m in the last line is not in the definition
of A* in [8]. However every result in [8] holds with no modification having this extra
condition. In fact this condition was somehow missed in [8] when A* was defined
and although the results hold without it, in some cases we obtain less optimality.

Next we need to define the groups I', Tg(IV) and T'y:

F;:{(a b>|a,b,c,d€Z,ad—bc:l},
c d
a b
FO(N):{(C d>€F|N|C}

for N a positive integer, and

rm;:{(é ’f)|hez}.
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For the index we have

(20) Do) = N[ +p7)
p|N

(see, for example, [9]).

a
Cc

SR~

Finally for m, M, N positive integers, r € R(M), a € R(N) and v = (
define

) we

(6(a + KAc), me)

. 1 ged?
Prm.r(7) = )\6{0171}.1,1717171} 24 Z "o

om
§|M
and
. 1 a(;gch(é7 c)
pily) = gy > B0,
S|M

Lemma 2.6. Let N be a squarefree integer. Then

U [o(N) ((1;(1)) I =T.

5N

Proof. Let (&) € T Then if h € Z such that

(21) c+ (ch—d)ged(e, N) =0 (mod N)

we have

<ZZ> ((1)_1h> (—gcdl(c,N> 2) N (c+ (ch—;)gcd(c,N) :) € To(N).

This implies that
ab 1 0
To(N Il
(¢0) =™ (e 1)

In particular we have proven that v = (‘Z 2) e I" implies

ve o (51) e

5N

if for any ¢, d € Z with ged(c,d) = 1 there exists a h € Z such that (21) holds. Next
observe that (21) is equivalent to

c
=d- - N N
ch=d od(e, V) (mod N/ ged(e, N)),

which has a solution if ged(c, N/ ged(e, N)) = 1. This is always true because N is
squarefree. 0
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3. THE CONGRUENCES

We start by proving (14). We apply Lemma 2.4 with
(m, M,N,t,r = (r1,r2,75)) = (135,10, 30,8, (6, —2,—1)) € A",
and
a = (a1, az,as,as, as, a10, 415, azo) = (—7,14,2,0,-4,0,0,0).
For § € Z let 75 := ((1S ?) Then by Lemma 2.6 a complete set of double coset
representatives is contained in the set

{vs: 6IN}.
Hence verifying the condition

pmﬂ’('}/é) JFPZ(’Y(S) >0

for each 0|N is sufficient to fulfill the assumption of Lemma 2.4. This verification
has been carried out using MAPLE. Next we obtain

vi= g D as+ Y s | [D:To(N)] = das — o D 0=

S|N 5|M SIN S| M
1 3 8
B R R TR T T
1429
60

Here we have used (20) to compute [I' : T'9(30)] = (1 +2)(1 + 3)(1 4+ 5) = 72. This
gives || = 23. By Lemma 2.4 we obtain that

(22) pod; 5(135n + 8) = pod; 5(135n 4+ 116) =0 (mod 5) for each 0 <n < 23
implies
pods 5(135n + 8) = pody 5(135n + 116) =0 (mod 5) for all n > 0.
We have verified (22) with MAPLE. This proves (14). In an analogous fashion, ap-
plying Lemma 2.4 we prove the congruences (15)-(19) below:
Congruence (15). We apply Lemma 2.4 with
(m, M,N,t,r) = (r1,r2,75)) = (135,10, 30, 107, (6, —2, —1))

and
a = (a1, az,as,as,ag, a1, a1s, azo) = (—7,14,2,0,-4,0,0,0).
We obtain |v| = 23 and P(t) = {107}.

Congruence (16). We apply Lemma 2.4 with
(m, M,N,t,r) = (r1,r2,75)) = (675,10, 30,647, (26, —2, —5))
and
a = (a1, as,as,as, ag, a10, a1, az0) = (—32,64,10,6, —20, —12, —2, —4).
We obtain || = 109 and P(t) = {647}.

Congruence (17). We apply Lemma 2.4 with
(m, M, N, t,7) = (r1,72,75)) = (3375, 10, 30,1997, (126, —2, —25))
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and
a = (Cbl, as,as,ds5,06,010, A15, a30) = (—159, 317, 54, 32, —106, —62, —11, 21).
We obtain |v] =554 and P(t) = {1997, 3347}.

Congruence (18). We apply Lemma 2.4 with
(m, M,N,t,r) = (r1,ro,77)) = (567,14, 42,260, (8, —2, —1))
and
a = (a1, as,as,ar,ag, @14, a21,a42) = (—13,26,4,-8,0,0,0,0).
We obtain |v| = 55 and P(t) = {260}.

Congruence (19). We apply Lemma 2.4 with
(m, M,N,t,r) = (r1,re,17)) = (567,14, 42,449, (8, -2, —1))
and

a = (ah az,as, ar, e, d14, a21, 0,42) = (_137 267 47 _87 07 07 07 0)
We obtain |v| = 55 and P(t) = {449}.

The above information is summarized in the following table:

Cong. | (m,M,N,t,r) | vl | a | P(t)
(14) (135, 10, 30, 8, (6, —2, —1) 23 (—7,14,2,0, —4,0,0, 0) 78,116}
(15) (135, 10, 30, 107, (6, —2, —1)) 23 (—7,14,2,0, —4,0,0,0) 1107}
(16) (675, 10, 30, 647, (26, —2, —5) 109 (—32,64, 10,6, —20, —12, —2, —4) 1647}
(17) | (3375, 10, 30, 1997, (126, —2, —25)) | 554 | (—159,317, 54,32, —106, —62, —11,21) | {1997, 3347}
(18) (567, 14, 42, 260, (8, —2, —1)) 55 (—13,26,4, —8,0,0,0,0) {260}
(19) (567, 14, 42, 449, (8, —2, —1)) 55 (—13,26, 4, —8,0,0,0,0) {449}

In each of the cases, we used MAPLE to verify that the congruences (14)-(19) hold
up to the bound |v]. Thus, by Lemma 2.4 we have proven (14)-(19). Hence, by
Lemma 1.5, we have proven Theorem 1.1.

4. NOTES ON COMPUTATIONS

In our proofs above, we needed to check the divisibility by p® of pod, ,(n) for
certain a,n € N and a prime p. However, we observe that

plpodap(n) < p®lpod(n) < p*|(=1)"pod(n).
These facts simplify the check of divisibility because we can build a nice recurrence

for (—1)™pod(n) which we deduce in the following way. ;From Jacobi’s Triple
Product Identity [4, Theorem 2.8], we see that

S
1+ an(?n 1) +q n(2n+1) an(2n+1 H 11—_qq
n=1 nez n=1

Together with Lemma 1.3, we have

(1 + i " + qn(2”+1)> <i(—1)”p0d(n)q”> =1

n=1 n=0
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Therefore, by using the formula for the Cauchy product of two sequences and
simplifying, one obtains the following for all positive integers n:

(~)™pod(n) = S pod(n — k(2k — 1))(=1)""*
k>1,k(2k—1)<n

+ Y pod(n—k(2k+1))(-1)" "
k>1,k(2k+1)<n

This provides an extremely efficient method for calculating the values of pod(n)
which are needed to complete our proofs.

5. CLOSING THOUGHTS

It is truly satisfying to prove these congruences modulo 5 and 7 for the pod function.
However, our ultimate goal was to identify an infinite family of congruences modulo
arbitrarily large powers of 5 or 7 satisfied by pod(n). Unfortunately, we were unable
to find such a family. We may return to this theme in the future.
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