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Abstract

Topological sensitivities are a very useful tool for determining opti-
mal designs. The topological derivative of a domain-dependent functional
represents the sensitivity with respect to the insertion of an infinitesi-
mally small hole. In the gradient-based ON/OFF method, proposed by
M. Ohtake, Y. Okamoto and N. Takahashi in 2005, sensitivities of the
functional with respect to a local variation of the material coefficient are
considered. We show that, in the case of a linear state equation, these
two kinds of sensitivities coincide. For the sensitivities computed in the
ON/OFF method, the generalization to the case of a nonlinear state equa-
tion is straightforward, whereas the computation of topological derivatives
in the nonlinear case is ongoing work. We will show numerical results ob-
tained by applying the ON/OFF method in the nonlinear case to the
optimization of an electric motor.

1 Introduction

This paper deals with the optimization of electric machines by means of topolog-
ical sensitivities. Electric machines should be designed in such a way that their
performance is as optimal as possible with respect to some goal or to some goals
requested by the customers. For a survey on cost optimization of high-efficiency
brushless synchronous machines we refer the reader to [9]. For that purpose,
structural optimization techniques such as shape optimization and topology
optimization are employed. Both approaches originate from mechanical engi-
neering where usually the stiffness of mechanical structures is to be maximized.
However, in recent years, these techniques have also been successfully applied
to problems from electrical engineering, see, e.g., [1, 16, 17, 19].

In constrast to shape optimization, where only the shape of the boundary or
of an interface of an object can be modified, topology optimization techniques
also allow for the introduction of holes and thus for a change of the topology.
This work will be concerned with topology optimization.

In classical approaches to topology optimization, a density function ρ repre-
sents the design. The function takes the value 1 if there should be material at
a point x, or 0 if there should be void. In order to avoid discrete-valued opti-
mization problems, this 0-1 problem is relaxed by allowing ρ to attain any value
between 0 and 1, but at the same time penalizing intermediate function values
0 < ρ(x) < 1. This approach was first investigated by M. P. Bendsøe in [6] as
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the SIMP (solid isotropic material with penalization) approach. These classical
approaches are very likely to yield ill-posed optimization problems and therefore
regularization methods must be applied. For a detailed survey on the numerical
problems resulting from the ill-posedness of the problems we refer the reader
to [21]. For a comprehensive introduction to classical topology optimization we
refer the reader to the monographs [7] and [8].

In the phase-field method a regularization is achieved by adding a parameter-
dependent Cahn-Hilliard type penalization functional to the objective function.
This penalization functional is used to approximate and bound the perimeter of
the structure and to ensure that the material density converges pointwise to 0
and 1 as the parameter tends to 0. For further details we refer the reader to
[11] and [22].

In the level set method, which was developed in [20], an interface is repre-
sented by the zero level set of an evolving function φ(x, t), Γ(t) = {x|φ(x, t) = 0}.
One major drawback of this method is that it can hardly nucleate new holes in
the design. In order to circumvent this problem, the level set method has been
coupled with topological derivatives (see [2], [4], [5] and [10]).

The topological derivative represents the sensitivity of a given objective func-
tional with respect to the introduction of an infinitesimally small hole. Based
on this information, new holes can be created at the most favorable positions.
The topological derivative is based on the same idea as the bubble method [13].
A comprehensive introduction to topological derivatives can be found in the
monograph [18]. In principle, the introduction of a hole inside the computa-
tional domain can be viewed in two different ways. On the one hand, it can
be interpreted as a perturbation of the domain, and boundary conditions have
to be specified on the boundary of the small hole introduced. On the other
hand, it is sometimes possible to interpret the hole as an inclusion of material
with different material parameters (e.g. an inclusion of air) and thus only as a
perturbation of the material coefficient. In this case both the unperturbed and
the perturbed problem live on the same domain Ω = Ωε and interface conditions
have to be set on the boundary of the inclusion. In this paper we will follow the
latter approach, which is investigated in [3].

In [19], Ohtake et al. propose the gradient-based ON/OFF method for deter-
mining the optimal design of a magnetic shield for a magnetic recording system.
After discretization, for each element of the Finite Element (FE) mesh, the sen-
sitivity of the objective functional with respect to a perturbation of the magnetic
reluctivity in only this element is computed. Also here, based on this informa-
tion, holes are introduced at the most effective positions. Further applications
of the method can be found in [1], [16] and [17].

In this paper, we will investigate and compare the topological derivative
and the sensitivities computed in the ON/OFF method for an application from
electrical engineering. We will show that, in the case of a linear state equation,
those two kinds of sensitivities coincide up to a constant factor under some
additional assumptions. We also mention that, in the case of a nonlinear state
equation, the ON/OFF sensitivities can be computed without much additional
effort, whereas the computation of the topological derivative in this case is still
an open question.

The remainder of the paper is organized as follows. In Section 2, we will
introduce the model problem from electrical engineering. Section 3 is devoted
to the computation of the topological derivative for our model problem. In
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Figure 1: Left: One quarter of eletric motor with magnets (green), coils (light
blue), ferromagnetic material (brown) and air (dark blue); Right: Design area
(red)

Section 4, we will present the computation of the ON/OFF sensitivities first on
the discrete level and then we will generalize the idea to the continuous level. In
Section 5, we will compare those two kinds of topological sensitivities. Finally,
we discuss our first numerical results obtained by the ON/OFF method for our
nonlinear model problem and draw some conclusions.

2 Problem Description

We consider an interior permanent magnet (IPM) brushless electric motor con-
sisting of a rotor (inner part) and a stator (outer part), which are separated by
a small air gap, as our model problem. Both parts have an iron core (see brown
area in the left picture of Figure 1). The rotor contains permanent magnets
which are magnetized in the indicated directions. The coil areas are located
in the inner part of the stator. In general, inducing current in the coils will
cause the rotor to rotate due to the interaction between the electric field and
the magnetic field generated by the magnets.
In this special application, we are only interested in the magnetic field B for
one fixed rotor position without any current induced. Since the electro-magnetic
properties of the copper in the coils are the same as those of air, we can consider
these areas as air and imagine to have a wider air gap. Given the geometry and
the magnetization data M, one can compute the magnetic induction field

B =

 B1

B2

0

 =

 ∂2u
−∂1u

0

 = curl

 0
0
u



3



via the potential equations of 2D magnetostatics

−div (ν∇u) = F in Ω,

u = 0 on ∂Ω,

where the right hand side in its distributional form is given by

〈F, v〉 =

∫
Ω

(J v + M⊥ · ∇v) dx (1)

with the current density J and the perpendicular of the magnetization M⊥,
which are piecewise constant and vanish outside the coil areas and the magnet
areas, respectively. For our problem, J vanishes everywhere. Let Ωiron be the
subdomain of Ω with ferromagnetic material (brown area in the left picture of
Figure 1) and define Ωair = Ω\Ωiron. The magnetic reluctivity ν is piecewise
constant if we assume only linear material behavior

ν(x) =

{
ν0 x ∈ Ωair,
ν1 x ∈ Ωiron,

(2)

or is defined as

ν(x, |∇u|) =

{
ν0 x ∈ Ωair,
ν̂(|∇u|) x ∈ Ωiron,

(3)

in the nonlinear case. Here, ν0 = 107/(4π) is the magnetic reluctivity of air and
ν1 = ν0 ∗ νr with the relative reluctivity νr � 1 of the ferromagnetic material.
The nonlinear function ν̂ is in practice obtained from measured values, see [15]
for more details. Mention that the simplified linear model (2) is not always

applicable in practice. Note that |B| = |curl (0, 0, u)
T | = |∇u|.

The aim of the optimization problem is to find a design such that the radial
component of the magnetic induction B = B(u) in the air gap is driven as close
as possible to a given sine curve (see Figure 2). The design area Ωd ⊂ Ωiron
are the areas between the magnets and the air gap, as indicated in the right
picture of Figure 1. Removing material in a triangle is equaivalent to assigning
the reluctivity value of air.

Summarizing, we are interested in the PDE-constrained optimization problem

min
Ω
J (u) = ‖ (B(u))rad −B

d
rad‖2L2(Γ0) (4a)

s.t.

{
−div(ν∇u) = F in Ω

u = 0 on ∂Ω
(4b)

where Bdrad = 1
2 sin(4θ(·)) is the desired state and Γ0 is a circle inside the air gap,

ν is either given by (2) or (3). Also note that for Γ0 being a circle, (B(u))rad =
∂
∂τ u. Here the minimization min

Ω
means the minimization over the material

distribution in the design region Ωd.
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Figure 2: Radial component of magnetic field for initial geometry (blue) vs.
desired curve (green)

3 Topological Derivatives

The topological derivative or topological gradient of a domain-dependent func-
tional J = J (Ω) describes its sensitivity with respect to the insertion of an
infinitesimally small hole. Without changing the notation, we note that, in
our case, the objective functional depends on Ω only via the state u, i.e.,
J (Ω) = J (u(Ω)) As mentioned in the introduction in Section 1, there are
basically two ways of interpreting the introduction of a hole in a domain. On
the one hand, it can be viewed as a perturbation of the domain. Given a point
x0 ∈ Ω and a fixed bounded domain D containing the origin, whose boundary
∂D is connected and piecewise of class C1, we consider a hole ωε = x0 + εD
around the point x0. One is interested in a topological asymptotic expansion of
the form

J (Ωε)− J (Ω) = f(ε)G(x0) + o(f(ε)) (5)

where Ωε = Ω\ωε is the perturbed domain and f(ε) is a positive function going
to zero with ε. Here, G(x0) denotes the topological derivative at point x0.

In many applications, however, a hole can alternatively be considered as
an inclusion of material with different material properties and thus only the
material coefficient is perturbed.

In electrical engineering this approach is applicable whereas in elasticity it
is usually not since the material coefficient of air vanishes. In the first inter-
pretation, boundary conditions (usually of Neumann or Dirichlet type) have to
be set on ∂ωε, whereas in the second approach interface conditions have to be
satisfied.

For our model problem from electromagnetics, the second approach is appli-
cable since the introduction of a hole is equivalent to the insertion of an inclusion
of air which has a non-vanishing material coefficient ν = ν0. For the time being,
we will consider problem (4) only in the case of the linear state equation

−div (ν∇u) = F in Ω,

u = 0 on ∂Ω,
(6)
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with the positive coefficient function ν given by (2) being independent of the
solution u. We will follow the idea presented in [3]. We consider an inclu-
sion ωε = x0 + εD around the point x0 ∈ Ωd where ε > 0 is a small parameter
such that ωε ⊂ Ωd and D ⊂ R2 is a fixed bounded domain containing the ori-
gin, whose boundary ∂D is connected and piecewise of class C1. Let uε be the
solution to the perturbed boundary value problem

−div (νε∇uε) = F in Ω,

uε = 0 on ∂Ω,
(7)

with the perturbed coefficient

νε =

 ν0 if x ∈ Ωair,
ν1 if x ∈ Ωiron \ ωε,
ν0 if x ∈ ωε.

(8)

The variational formulation corresponding to problem (7) reads as follows: find
uε ∈ H1

0 (Ω) such that

aε(uε, v) = l(v) ∀v ∈ H1
0 (Ω), (9)

with the bilinear and linear forms

aε(uε, v) =

∫
Ω

νε∇uε · ∇v dx and (10)

l(v) = 〈F, v〉, (11)

with F ∈ H−1(Ω) as in (1), respectively. Note that for ε = 0 we obtain the
original, unperturbed problem.

The following result describes an adjoint method for the derivation of the
first variation of a given cost functional.

Proposition 1. Let V be a real Hilbert space. For all parameters ε ∈ [0, ε0),
ε0 > 0, consider a function uε ∈ V solving a variational problem of the form

aε(uε, v) = lε(v) ∀v ∈ V,
where aε and lε are a bilinear and a linear form on V, respectively. Consider a
cost function

j(ε) = Jε(uε)

where, for ε ∈ [0ε0), the functional Jε : V → R is Fréchet differentiable at the
point u0. Suppose that the following hypotheses hold:

1. There exist two numbers δa and δl and a function f(ε) ≥ 0 such that,
when ε goes to zero,

(aε − a0)(u0, pε) = f(ε) δa+ o(f(ε)), (12)

(lε − l0)(pε) = f(ε) δl + o(f(ε)), (13)

lim
ε→0

f(ε) = 0, (14)

where pε ∈ V is an adjoint state satisfying
aε(ϕ, pε) = −DJ(u0)ϕ ∀ϕ ∈ V. (15)
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2. There exist two numbers δJ1 and δJ2 such that

Jε(uε) = Jε(u0) +DJε(u0)(uε − u0) + f(ε) δJ1 + o(f(ε)), (16)

Jε(u0) = J0(u0) + f(ε) δJ2 + o(f(ε)). (17)

Then the first variation of the cost function with respect to ε is given by

j(ε)− j(0) = f(ε) (δa− δl + δJ1 + δJ2) + o(f(ε)).

The proof can be found in [3].

3.1 Application to the Model Problem

In this subsection, we will give explicitly the variations δa, δl, δJ1 and δJ2 and
derive the topological derivative for the model problem (4) in the case of a linear
state equation, i.e. when the magnetic reluctivity ν is given by (2).

3.1.1 Variation of the Bilinear Form

The calculation of the variation δa of the bilinear form a is done in [3]. For the
sake of completeness of the presentation, we give the derivation for our model
problem here. Although, in our model problem, the spatial dimension is d = 2,
we will give the derivation for general d.

We are interested in the asymptotic analysis of the variation

(aε − a0)(u0, pε) =

∫
ωε

(ν0 − ν1)∇u0 · ∇pε dx. (18)

Let us first look at the behavior of the adjoint state pε. The classical formulation
of the PDE associated to (15) reads

−div (νε∇pε) = −DJε(u0) in Ω, (19)

pε = 0 on ∂Ω, (20)

which has a unique solution in our setting. By splitting in (18) pε into pε =
p0 + (pε − p0) and by introducing the “small” term (this statement will be
checked later on)

E1(ε) =

∫
ωε

(ν0 − ν1)(∇u0 · ∇p0 −∇u0(x0) · ∇p0(x0)) dx, (21)

we obtain

(aε − a0)(u0, pε) = εd|D|(ν0 − ν1)∇u0(x0) · ∇p0(x0) + F(ε) + E1(ε). (22)

For convenience, we have isolated the term

F(ε) = (ν0 − ν1)

∫
ωε

∇u0 · ∇(pε − p0) dx (23)

and we will now study its asymptotic behavior. To begin with, we approximate
the variation vε − v0 by the function

hε = −ε(ν0 − ν1)H(
x− x0

ε
), (24)
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where the function H (independent of ε) is the unique solution of

−∆H = 0 in D ∪ (Rd \D), (25a)

H+ −H− = 0 on ∂D, (25b)

ν0(∇H · n)+ − ν1(∇H · n)− = ∇p0(0) · n on∂D, (25c)

H → 0 at ∞. (25d)

Therefore, we write

F(ε) = (ν0 − ν1)

∫
ωε

∇u0 · ∇hε dx+ E2(ε), (26)

with

E2(ε) = (ν0 − ν1)

∫
ωε

∇u0 · ∇(pε − p0 − hε) dx. (27)

Green’s formula and a change of variables yield successively

F(ε) = (ν0 − ν1)

∫
ωε

∇(u0 − u0(x0)) · ∇hε dx+ E2(ε) (28)

= (ν0 − ν1)

∫
∂ωε

(u0 − u0(x0)) (∇hε · n)
+

ds+ E2(ε) (29)

= −εd−1(ν0 − ν1)2

∫
∂D

(u0(x0 + εy)− u0(x0))(∇H(y) · n(y))+ds(y)

+ E2(ε). (30)

Then, by setting

E3(ε) = c(ε)

∫
∂D

(u0(x0 + εy)− u0(x0)−∇u0(x0) · εy)(∇H(y) · n(y))+ds(y),

(31)

with c(ε) = −εd−1(ν0 − ν1)2 we obtain

F(ε) = −εd(ν0 − ν1)2

∫
∂D

(∇u0(x0) · y)(∇H(y) · n(y))+ ds(y) + E2(ε) + E3(ε)

(32)

= −εd(ν0 − ν1)2∇u0(x0) ·
∫
∂D

(∇H(y) · n(y))+y ds(y) + E2(ε) + E3(ε).

(33)

Since the function H is continuous across ∂D, it can be represented by means
of a single layer potential (see, e.g., [23]), i.e., there exists q ∈ H−1/2(∂D) such
that ∫

∂D

q dx = 0, (34)

H(x) =

∫
∂D

q(y)

ν0 − ν1
E(x− y) ds(y), (35)
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where E denotes the fundamental solution of the operator −∆. The division of
the density by ν0 − ν1 is meant to simplify some forthcoming expressions. The
trivial case ν0 = ν1, for which F(ε) = 0, is excluded until the end of this section.
It follows from the jump relation

(∇H · n)
+ − (∇H · n)

−
=

q

ν0 − ν1
(36)

together with (25c) that

(ν0 − ν1) (∇H · n)
+

= − ν1

ν0 − ν1
q +∇p0(x0) · n. (37)

Hence

F(ε) = εd(ν0 − ν1)∇u0(x0)

∫
∂D

ν1

ν0 − ν1
q −∇p0(x0) · n xds+ E2(ε) + E3(ε).

(38)

To compute the density q, we replace in (25c) the normal derivatives by their
expressions

(ν0 − ν1) (∇H · n)
±

= ±q(x)

2
+

∫
∂D

q(y) (∇E(x− y) · n(x)) ds(y). (39)

This leads to the integral equation

ν0 + ν1

ν0 − ν1

q(x)

2
+

∫
∂D

q(y) (∇E(x− y) · n(x)) ds(y) = ∇p0(x0) · n(x) ∀x ∈ ∂D.

(40)

According to the classical theory of integral equations of the second kind, Equa-
tion (40) admits one and only one solution q ∈ H−1/2(∂D). Moreover, by
linearity, there exists a d× d matrix PD,ν0/ν1 such that∫

∂D

q xds = PD,ν0/ν1∇p0(x0). (41)

Besides, an integration by parts provides∫
∂D

xnT ds = |D|I, (42)

where I is the identity matrix. Gathering (22), (38), (41) and (42), we get

(aε − a0)(u0, pε) = εdν1∇u0(x0)TPD,ν0/ν1∇p0(x0) +

3∑
i=1

Ei(ε). (43)

It is shown in Section 9 of [3] that |Ei(ε)| = o(εd) for all i = 1, 2, 3. Therefore,
Equations (12) and (14) hold with

δa = ν1∇u0(x0)TPD,ν0/ν1∇p0(x0) (44)

f(ε) = εd. (45)
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3.1.2 Variation of the Linear Form

Since, in our problem, the right hand side F is not affected by the introduction
of a hole inside the design domain Ωd, it holds that

lε = l0 (46)

and relation (13) holds with δl = 0.

3.1.3 Variation of the Cost Function

The following Lemma is from [3] (Lemma 9.3):

Lemma 1. Let uε be the solution to (7) and u0 the solution to (6). Then

‖uε − u0‖H1(Ω\B(0,R))
= o(εd/2). (47)

Using this lemma, we can compute the variation δJ1 for our objective func-
tional: Since J as defined in (4a) is C2-Fréchet-differentiable and it holds that
Jε(u) = J (u|

Ω\B(x0,R)
), we have

Jε(uε)− Jε(u0)−DJε(u0)(uε − u0) = O(‖uε − u0‖2H1(Ω\B(x0,R))
) (48)

which, due to Lemma 1, leads to (16) with δJ1 = 0.
Since the cost functional (4a) only involves an integral over the circle Γ0 and

does not depend explicitly on the geometry inside the design domain, we have

Jε(u0) = J0(u0) (49)

and relation (17) holds with δJ2 = 0.

3.1.4 Summary

Summarizing, by applying Proposition 1 we have found the topological asymp-
totic expansion

Jε(uε)− J0(u0) = εd
(
ν1∇u0(x0)TPD,ν0/ν1∇p0(x0)

)
+ o(εd) (50)

and the topological derivative at a point x0 reads

G(x0) = ν1∇u0(x0)TPD,ν0/ν1∇p0(x0) (51)

where the polarization matrix PD,ν0/ν1 depends on the shape of the introduced
hole. For example, if D is the unit disk, then

PD,ν0/ν1 = 2
ν0 − ν1

ν0 + ν1
|D|I = 2

ν0 − ν1

ν0 + ν1
πI, (52)

where I is the identity matrix, see Corollary 3.5 in [12], and the topological
derivative at point x0 reads

G(x0) = 2ν1
ν0 − ν1

ν0 + ν1
π∇u0(x0) · ∇p0(x0). (53)
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4 ON/OFF Method

In [19], M. Ohtake et al. proposed the gradient-based ON/OFF method for
an application from electrical engineering where ferromagnetic material is dis-
tributed according to sensitivities of the objective functional with respect to a
local perturbation of a material coefficient. The method is based on the idea
that the difference between ferromagnetic material and air is only reflected in
the magnetic reluctivity. For each element of the FE mesh inside the design
area, the sensitivity of the objective function with respect to a change of the
material coefficient only in this one element is calculated. If the sensitivity is
negative, a larger value of the magnetic reluctivity ν is favorable for reducing
the value of the objective function, which is realized by setting this element to
air (i.e., switching it “OFF”). On the other hand, if the sensitivity is positive it
is favorable to have the ferromagnetic material in this element, the element is
switched “ON”.

In this section, we will first present the sensitivity analysis method proposed
by M. Ohtake et al. in [19] where the sensitivities are calculated for each element
of the FE mesh inside the design area. Then, we will generalize the idea to the
continuous level by considering perturbations of coefficients in arbitrary, smooth
subdomains ω of the design domain Ωd.

4.1 Discrete Sensitivity Analysis

In the following, we will present the sensitivity analysis method proposed by
Ohtake et al. in [19]. The method is based on the adjoint variable method. Using
this approach, only one linear problem has to be solved in order to determine
the sensitivities of the objective function with respect to a perturbation of the
magnetic reluctivity in every element of the FE mesh inside the design area.

In this section, we will consider problem (4) in the case of the nonlinear state
equation with ν given in (3). Note that the case of a linear state equation with
ν given in (2) is a special case of our demonstrations. The discretization of the
state equation (4b) by means of linear triangular finite elements yields a system
of nonlinear finite element equations of the form

K(u)u = F, (54)

where u denotes the nodal parameter vector that we have to determine, see,
e.g., [14]. Given an objective function J = J (νk,u), we are interested in the
sensitivities

dJ
d νk

=
∂J
∂νk

+
∂J
∂u

T ∂u

∂νk
, (55)

where the design parameter νk is nothing but the magnetic reluctivity in a
triangular element Tk in the FE mesh inside the design area. Since we are using
linear triangular elements, the gradient of the finite element function is constant
in every finite element. Thus, for the finite element solution, the reluctivity is
constant in every finite element as well. In our model problem, the objective
functional J does not depend explicitly on the reluctivity inside the design area,
therefore, ∂J

∂νk
= 0. In order to determine the sensitivities ∂u

∂νk
, we consider the

residual identity

r(νk, ν(u(νk)),u(νk)) := K(νk, ν(u(νk)))u(νk)− F ≡ 0 (56)
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at the solution, where the dependencies on νk are now explicitely specified.
Differentiating both sides of (56) with respect to νk, we obtain the equations

0 =
dr

dνk
=

∂r

∂νk
+
∂r

∂ν

∂ν

∂u

∂u

∂νk
+
∂r

∂u

∂u

∂νk
(57)

=
∂K

∂νk
u+ (N + K)

∂u

∂νk
(58)

from which the sensensitivity ∂u/∂νk can be defined as follows:

∂u

∂νk
= −(N + K)−1 ∂K

∂νk
u (59)

with

N =
∂r

∂ν

∂ν

∂u
= uT

∂K

∂ν

∂ν

∂u
= uT

dK

du
.

Here we used the fact that, for our model problem, ∂F
∂νk

= 0 since the right hand
side F does not depend explicitly on the reluctivity νk in elements in the design
area. Inserting (59) into (55) yields the formula for the ON/OFF sensitivities

dJ
d νk

= pT
(
∂K

∂νk
u

)
(60)

where the adjoint state p solves the adjoint equation

(K + N)
T
p = −∂J

∂u
. (61)

Remark 1. In the case of a linear state equation the nonlinear operator K(u)
in (54) degenerates to the linear operator K (the stiffness matrix of the partial
differential equation (PDE) (4b)). The only difference in the computation of the
ON/OFF sensitivities lies in the computation of the adjoint state as the matrix
N in (61) vanishes.

4.2 Generalization to Continuous Level

In this section we will generalize the idea of Ohtake et al. [19], which is based
on a FE discretization, to the continuous level. We will consider perturbations
of the material parameter on arbitrary, smooth subdomains ω of the design
domain Ωd rather than only on the single elements of the FE mesh, and we will
derive the formula for the sensitivities in terms of operators.

Again, we consider a functional J = J (ν, u(ν)) and are interested in its
sensitivity with respect to a perturbation of the magnetic reluctivity in ω,

dJ
d νω

=
∂J
∂ν

∂ν

∂νω
+
∂J
∂u

∂u

∂νω
. (62)

Again the sensitivity ∂u
∂νω

is obtained by setting the residual operator to zero
and forming the Fréchet derivative of both sides:
Let ω ⊂ Ωd be fixed and define its complement ω′ = Ω \ ω. Define

g : H1
0 (Ω)→ L2(Ω)

g(u) := |∇u(·)|
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with the Fréchet derivative

g′ : H1
0 (Ω)→ L(H1

0 (Ω), L2(Ω))

g′(u) =
1

|∇u|
∇u · ∇(·).

Moreover, we define

ν̃ : H1
0 (Ω)→ L∞(Ω)

ν̃(u) = ν̂(g(u))

where ν̂ : R→ R is given via the BH curve. Then we have

ν̃′ : H1
0 (Ω)→ L(H1

0 (Ω), L∞(Ω))

ν̃′(u) = ν̂′(g(u))g′(u) =
ν̂′(|∇u|)
|∇u|

∇u · ∇(·). (63)

Split the reluctivity ν̃ into two parts,

ν̃(u) = ν̃ω(u)χω(x) + ν̃ω′(u)χω′(x) ∀x ∈ Ω a.e., (64)

where ν̃ω and ν̃ω′ are the restrictions of ν̃ onto ω and ω′, respectively. Now
consider the residual

r(ν̃ω(u(ν̃ω)), ν̃ω′(u(ν̃ω)), u(ν̃ω)) := R(ν̃ω) := R1(ν̃ω) +R2(ν̃ω)− F (65)

:=

∫
ω

ν̃ω(u(ν̃ω))∇u(ν̃ω) · ∇(·)dx+

∫
ω′
ν̃ω′(u(ν̃ω))∇u(ν̃ω) · ∇(·)dx− F. (66)

Note that, for the solution u of the PDE (4b), the residual R vanishes. Also
note that, in our case, the right hand side F is independent of the magnetic
reluctivity ν. We differentiate both sides with respect to ν̃ω. We begin with R1:

0 =
dR1

dν̃ω
= lim
t→0

1

t
(R1(ν̃ω + thω)−R1(ν̃ω)) (67)

=lim
t→0

1

t

{∫
ω

(ν̃ω + thω)(u(ν̃ω + thω))∇u(ν̃ω + thω) · ∇(·)dx (68)

−
∫
ω

ν̃ω(u(ν̃ω))∇u(ν̃ω) · ∇(·)dx
}

(69)

=lim
t→0

1

t

{∫
ω

(ν̃ω)(u(ν̃ω + thω))∇u(ν̃ω + thω) · ∇(·)− ν̃ω(u(ν̃ω))∇u(ν̃ω) · ∇(·)dx

(70)

+ t

∫
ω

hω(u(ν̃ω + thω))∇u(ν̃ω + thω) · ∇(·)
}

(71)

Using the expansions

u(ν̃ω + thω) = u(ν̃ω) + t
∂u

∂ν̃ω
hω +O(t2) (72)

ν̃ω

(
u(ν̃ω) + t

∂u

∂ν̃ω
hω

)
= ν̃ω(u(ν̃ω)) + t ν̃′ω(u(ν̃ω))

∂u

∂ν̃ω
hω +O(t2), (73)
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we get

dR1

dν̃ω
=

∫
ω

ν̃ω(u(ν̃ω))∇ ∂u

∂ν̃ω
· ∇(·) + ν̃′ω(u(ν̃ω))

∂u

∂ν̃ω
hω∇u(ν̃ω) · ∇(·)

+

∫
ω

hω(u(ν̃ω))∇(u(ν̃ω)) · ∇(·).
(74)

For R2(ν̃ω) we get

0 =
dR2

dν̃ω
= lim
t→0

1

t
(R2(ν̃ω + thω)−R2(ν̃ω))

=lim
t→0

1

t

{∫
ω′
ν̃ω′(u(ν̃ω + thω))∇u(ν̃ω + thω) · ∇(·)dx

−
∫
ω′
ν̃ω′(u(ν̃ω))∇u(ν̃ω) · ∇(·)dx

}
Using expansions (72) and (73), we get

dR2

dν̃ω
=

∫
ω′
ν̃ω′(u(ν̃ω))∇ ∂u

∂ν̃ω
· ∇(·) + ν̃′ω′(u(ν̃ω))

∂u

∂ν̃ω
hω∇u(ν̃ω) · ∇(·) (75)

Combining (74) and (75) yields

0 =
dR

dν̃ω
hω =

dR1

dν̃ω
+
dR2

dν̃ω
(76)

=

∫
Ω

ν̃(u(ν̃ω))∇ ∂u

∂ν̃ω
· ∇(·) + ν̃′(u(ν̃ω))

∂u

∂ν̃ω
hω∇u(ν̃ω) · ∇(·) (77)

+

∫
ω

hω(u(ν̃ω))∇(u(ν̃ω)) · ∇(·) (78)

Here, hω ∈ L∞(ω) is the direction of the perturbation we are considering. For
our purposes, it is sufficient to consider constant perturbations of ν̃ω, therefore
we set

hω ≡ 1. (79)

(Note that by using general hω ∈ L∞(ω), a weighted perturbation of ν̃ω can be
simulated.) Plugging in (79) and (63), we get the equality

0 =

∫
Ω

ν̂(|∇u|)∇ ∂u

∂ν̃ω
· ∇(·) +

∫
Ω

ν̂′(|∇u|)
|∇u|)

(∇u · ∇ ∂u

∂ν̃ω
)(∇u · ∇(·)) (80)

+

∫
ω

∇(u) · ∇(·) (81)

from which we can obtain ∂u
∂ν̃ω

. Introducing the invertible linear operators

Ku : H1
0 (Ω)→ H−1(Ω) (82)

Kuw =

∫
Ω

ν̂(|∇u|)∇w · ∇(·) (83)

Nu : H1
0 (Ω)→ H−1(Ω) (84)

Nuw =

∫
Ω

ν̂′(|∇u|)
|∇u|)

(∇u · ∇w)(∇u · ∇(·)) (85)
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for fixed u ∈ H1
0 (Ω), we can formally write

∂u

∂ν̃ω
= −(Ku +Nu)−1Mωu (86)

with

Mω : H1
0 (Ω)→ H−1(Ω) (87)

Mωu =

∫
ω

∇u · ∇(·) (88)

Combining (62) and (86) gives

dJ
dνω

=
∂J
∂ν

∂ν

∂νω
+
∂J
∂u

∂u

∂νω
(89)

=
∂J
∂ν

∂ν

∂νω
− ∂J
∂u

(Ku +Nu)
−1
Mωu (90)

=
∂J
∂ν

∂ν

∂νω
+ p∗Mωu (91)

where the adjoint state p is given by the adjoint equation

(Ku +Nu)
∗
p = −∂J

∂u
. (92)

Again, noting that in our model problem J does not depend on ν explicitly,
(91) can be written as

dJ
dνω

=

∫
ω

∇u · ∇pdx (93)

with p defined by (92).
Note that, in contrast to the topological derivative, the computation of the
sensitivities in the ON/OFF method does not make any additional difficulties
in the case of a nonlinear state equation.

5 Comparison

In Section 3, we used the results by Amstutz [3] to compute the topological
derivative for the model problem that we introduced in Section 2 for the case
of a linear state equation. Topological derivatives for nonlinear state equations
are an open question.

In Section 4, we first computed the sensitivities propoed by Ohtake et al.
[19] on the discrete level and then generalized the idea to perturbations in
arbitrary subdomains ω of Ωd by means of Fréchet derivatives. We remark
that, in contrast to topological derivatives, the computation of the ON/OFF
sensitivities does not cause much additional troubles in the case of a nonlinear
state equation.

In Table 1, we summarize the computed sensitivities. We consider the sen-
sitivities at a fixed point x0 in Ωd and ω ⊂ Ωd contains x0.
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ON/OFF sensitivity topological derivative
linear

∫
ω
∇ulin0 · ∇plin0 dx C∇ulin0 (x0) · ∇plin0 (x0)

nonlinear
∫
ω
∇unl0 · ∇pnl0 dx ?

Table 1: Comparison of ON/OFF sensitivities and topological derivative.

Here ulin0 and unl0 are the solutions of the state equation (4b) with ν defined
in (2) and (3), respectively, and plin0 and pnl0 are the solution to (92) in the
linear and nonlinear case, respectively. We immediately observe that the linear
case (92) coincides with (15). Note that in both cases only the state u and
the co-state p of the unperturbed problem are involved. If the sensitivities
are computed using the Finite Element Method with piecewise linear ansatz
functions and we take ω = Tk as the element of the mesh that contains the
point x0 ∈ Ωd, the two sensitivities read as follows:

dJ
d νk

=

∫
Tk

∇ulin0 · ∇plin0 dx (94)

= |Tk| ∇ulin0 (x0) · ∇plin0 (x0), (95)

G(x0) = C ∇ulin0 (x0) · ∇plin0 (x0). (96)

Moreover, if the computation is performed on a uniform grid where |Tk| = |T |
for all k, these two kinds of sensitivities really coincide up to a constant factor.
Since one is only interested in the sign or the local extrema of the sensitivities,
this constant factor does not affect the optimization results.

6 Numerical Experiments

In this section, we will apply the ON/OFF method to problem (4) in the case of
a nonlinear state equation, i.e. with the material coefficient given by (3). The
ON/OFF sensitivities, which we derived in Section 4, indicate those positions
where it is most favorable to remove material. We start with an initial design
where all elements in the design area are switched ON, compute the ON/OFF
sensitivities and remove material around the local minima. This procedure is
repeated several times. The optimization process is summarized in Algorithm 1:

Algorithm 1. Initialization: all elements iron (ON).
For it=1, 2, 3, . . .

• Solve (4) for u and (61) for p,

• Compute sensitivity for each triangle in design area by (60),

• Determine minima and introduce hole of radius rit around them.

The improved design after 29 iterations of Algorithm 1 can be seen in Fig-
ure 3. Figure 4 shows the radial component of the B-field of the improved
design compared to the initial design and the desired curve. Figure 5 shows the
significant decrease of the objective functional in the course of the optimization
process.
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Figure 3: Left: material that was removed in the optimization process (yellow);
Right: optimized design of motor.

Figure 4: Radial Component optimized design (red) compared to initial (green)
and desired (blue) curve.
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Figure 5: Decrease of objective functional in the course of iterations.

7 Conclusions

In this paper we presented two concepts of topological sensitivities: the mathe-
matically sound topological derivative and the more heuristic ON/OFF sensitiv-
ities. We showed that, in the case of a linear state equation, those two concepts
coincide if a finite element method with linear ansatz functions is employed. The
topological derivative for the nonlinear case is still an open question, whereas
the computation of the ON/OFF sensitivities is not much more difficult com-
pared to the linear case. We applied the nonlinear ON/OFF method to a model
problem from electromagnetics and obtained an optimal design that yielded a
decrease of the objective function by 38%.
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