
On Formal Specification of Maple Programs�

Muhammad Taimoor Khan1 and Wolfgang Schreiner2

1 Doktoratskolleg Computational Mathematics
2 Research Institute for Symbolic Computation

Johannes Kepler University
Linz, Austria

muhammad.khan@dk-compmath.jku.at,
Wolfgang.Schreiner@risc.jku.at

http://www.risc.jku.at/people/mtkhan/dk10/

Abstract. This paper is an example-based demonstration of our ini-
tial results on the formal specification of programs written in the com-
puter algebra language MiniMaple (a substantial subset of Maple with
slight extensions). The main goal of this work is to define a verification
framework for MiniMaple. Formal specification of MiniMaple programs
is rather complex task as it supports non-standard types of objects, e.g.
symbols and unevaluated expressions, and additional functions and pred-
icates, e.g. runtime type tests etc. We have used the specification lan-
guage to specify various computer algebra concepts respective objects of
the Maple package DifferenceDifferential developed at our institute.

1 Introduction

We report on a project whose goal is to design and develop a tool to find behav-
ioral errors such as type inconsistencies and violations of method preconditions
in programs written in the language of the computer algebra system Maple; for
this purpose, these programs need to be annotated with the types of variables
and methods contracts [8].

As a starting point, we have defined a substantial subset of the computer
algebra language Maple, which we call MiniMaple. Since type safety is a prereq-
uisite of program correctness, we have formalized a type system for MiniMaple
and implemented a corresponding type checker. The type checker has been ap-
plied to the Maple package DifferenceDifferential [2] developed at our institute
for the computation of bivariate difference-differential dimension polynomials.
Furthermore, we have defined a language to formally specify the behavior of
MiniMaple programs. As the next step, we will develop a verification calculus
for MiniMaple. The other related technical details about the work presented in
this paper are discussed in the accompanying paper [7]. For project details and
related software, please visit http://www.risc.jku.at/people/mtkhan/dk10/.

The rest of the paper is organized as follows: in Section 2, we briefly demon-
strate formal type system for MiniMaple by an example. In Section 3, we

� The research was funded by the Austrian Science Fund (FWF): W1214-N15, project
DK10.

J. Jeuring et al. (Eds.): CICM 2012, LNAI 7362, pp. 442–446, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.risc.jku.at/people/mtkhan/dk10/
http://www.risc.jku.at/people/mtkhan/dk10/


On Formal Specification of Maple Programs 443

introduce and demonstrate the specification language for MiniMaple by an ex-
ample. Section 4 presents conclusions and future work.

2 A Type System for MiniMaple

MiniMaple procedure parameters, return types and corresponding local (vari-
able) declarations needs to be (manually) type annotated. Type inference would
be partially possible and is planed as a later goal. The results we derive with
type checking Maple can also be applied to Mathematica, as Mathematica has
almost the same kinds of runtime objects as Maple.

Listing 1 gives an example of a MiniMaple program which we will use in the
following section for the discussion of type checking respective formal specifica-
tion. Also the type information produced by the type system is shown by the
mapping π of program variables to types. For other related technical details of
the type system, please see [4].

1. status:=0;
2. prod := proc(l::list(Or(integer,float)))::[integer,float];
3. # π={l:list(Or(integer,float))}
4. global status;
5. local i, x::Or(integer,float), si::integer:=1, sf::float:=1.0;
6. # π={..., i:symbol, x:Or(integer,float),..., status:anything}
7. for i from 1 by 1 to nops(l) do
8. x:=l[i]; status:=i;
9. # π={..., i:integer, ..., status:integer}
10. if type(x,integer) then
11. # π={..., i:integer, x:integer, si:integer, ..., status:integer}
12. if (x = 0) then
13. return [si,sf];
14. end if ;
15. si:=si*x;
16. elif type(x,float) then
17. # π={..., i:integer, x:float, ..., sf:float, status:integer}
18. if (x < 0.5) then
19. return [si,sf];
20. end if ;
21. sf:=sf*x;
22. end if ;
23. # π={..., i:integer, x:Or(integer,float),..., status:integer}
24. end do;
25. # π={..., i:symbol, x:Or(integer,float),..., status:anything}
26. status:=-1;
27. # π={..., i:symbol, x:Or(integer,float),..., status:integer}
28. return [si,sf];
29. end proc;
30. result := prod([1, 8.54, 34.4, 6, 8.1, 10, 12, 5.4]);

Listing 1. The example MiniMaple procedure type-checked



444 M.T. Khan and W. Schreiner

The following problems arise from type checking MiniMaple programs:

– Global variables (declarations) can not be type annotated; therefore values
of arbitrary types can be assigned to global variables in Maple. Therefore we
introduce global and local contexts to handle the different semantics of the
variables inside and outside of the body of a procedure respectively loop.
• In a global context new variables may be introduced by assignments and
the types of variables may change arbitrarily by assignments.

• In a local context variables can only be introduced by declarations. The
types of variables can only be specialized i.e. the new value of a vari-
able should be a sub-type of the declared variable type. The sub-typing
relation is observed while specializing the types of variables.

– A predicate type(E,T ) (which is true if the value of expression E has type
T ) may direct the control flow of a program. If this predicate is used in
a conditional, then different branches of the conditional may have different
type information for the same variable. We keep track of the type information
introduced by the different type tests from different branches to adequately
reason about the possible types of a variable. For instance, if a variable x has
type Or(integer,float), in a conditional statement where the ”if” branch is
guarded by a test type(x,integer), in the ”else” branch x has automatically
type float. This automatic type inferencing only applies if an identifier has
a union type. A warning is generated, if a test is redundant (always yields
true or false).

The type checker has been applied to the Maple packageDifferenceDifferential [2].
No crucial typing errors have been found but some bad code parts have been
identified that can cause problems, e.g., variables that are declared but not used
(and therefore cannot be type checked) and variables that have duplicate global
and local declarations.

3 A Specification Language for MiniMaple

Based on the type system presented in the previous section, we have developed a
formal specification language for MiniMaple. This language is a logical formula
language which is based on Maple notations but extended by new concepts.
The formula language supports various forms of quantifiers, logical quantifiers
(exists and forall), numerical quantifiers (add, mul, min and max) and se-
quential quantifier (seq) representing truth values, numeric values and sequence
of values respectively. We have extended the corresponding Maple syntax, e.g.,
logical quantifiers use typed variables and numerical quantifiers are equipped
with logical conditions that filter values from the specified variable range.

Also the language allows to formally specify the behavior of procedures by pre-
and post-conditions and other constraints; it also supports loop specifications
and assertions. In contrast to specification languages such as Java Modeling
Language [3], abstract data types can be introduced to specify abstract concepts
and notions from computer algebra.



On Formal Specification of Maple Programs 445

(*@

requires true;

global status;

ensures

(status = -1 and RESULT[1] = mul(e, e in l, type(e,integer))

and RESULT[2] = mul(e, e in l, type(e,float))

and forall(i::integer, 1<=i and i<=nops(l) and type(l[i],integer) implies l[i]<>0)

and forall(i::integer, 1<=i and i<=nops(l) and type(l[i],float) implies l[i]>=0.5))

or

(1<=status and status<=nops(l) and RESULT[1] = mul(l[i], i=1..status-1, type(l[i],integer))

and RESULT[2] = mul(l[i], i=1..status-1, type(l[i],float))

and ((type(l[status],integer) and l[status]=0) or (type(l[status],float) and l[status]<0.5))

and forall(i::integer, 1<=i and i<status and type(l[i],integer) implies l[i]<>0)

and forall(i::integer, 1<=i and i<status and type(l[i],float) implies l[i]>=0.5));

@*)

proc(l::list(Or(integer,float)))::[integer,float]; ... end proc;

Listing 2. The example MiniMaple procedure formally specified

Listing 2 gives a formal specification of the example procedure introduced
in Section 2. The procedure has no pre-condition as shown in the requires
clause; the global clause says that a global variable status can be modified by
the body of the procedure. The normal behavior of the procedure is specified
in the ensures clause. The post condition specifies that, if the complete list
is processed then we get the result as the product of all integers and floats in
the list but if procedure terminates pre-maturely then we only get the product
of integers and floats till the value of variable status (index of the input list).
For the complete syntax and other details of the formal specification language
see [6]. To test the specification language, we have formally specified some parts
of the Maple package DifferenceDifferential [2] developed at our institute as the
main test for the specification language.

4 Conclusions

We may use the specification language sketched in this short paper to gener-
ate executable assertions that are embedded in MiniMaple programs and check
at runtime the validity of pre/post conditions. Our main goal, however, is to
use the specification language to verify the correctness of MiniMaple annotated
programs by static analysis, in particular to detect violations of methods precon-
ditions. For this purpose, based on the results of a prior investigation, we intend
to use the verification framework Why3 [1] to implement the verification calcu-
lus for MiniMaple, i.e., to translate MiniMaple into the intermediate language
of Why3 and to apply its verification condition generator to generate verifica-
tion conditions and prove their correctness with various back-end provers. Since
the verification calculus must be sound, we have defined a formal semantics of
MiniMaple [5] such that the correctness of the transformation can be shown.



446 M.T. Khan and W. Schreiner

References

1. Bobot, F., Filliâtre, J.-C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages, Wroc�law, Poland (August 2011)

2. Dönch, C.: Bivariate Difference-Differential Dimension Polynomials and Their Com-
putation in Maple. Technical report, Research Institute for Symbolic Computation,
Johannes Kepler University, Linz (2009)

3. Leavens, G.T., Cheon, Y.: Design by Contract with JML. A Tutorial (2006),
ftp://ftp.cs.iastate.edu/pub/leavens/JML/jmldbc.pdf

4. Khan, M.T.: A Type Checker for MiniMaple. RISC Technical Report 11-05, also DK
Technical Report 2011-05, Research Institute for Symbolic Computation, Johannes
Kepler University, Linz (2011)

5. Khan, M.T.: Formal Semantics of MiniMaple. DK Technical Report 2012-01, Re-
search Institute for Symbolic Computation, Johannes Kepler University, Linz (Jan-
uary 2012)

6. Khan, M.T., Schreiner, W.: Towards a Behavioral Analysis of Computer Algebra
Programs (Extended Abstract). In: Pettersson, P., Seceleanu, C. (eds.) Proceedings
of the 23rd Nordic Workshop on Programming Theory (NWPT 2011), Vasteras,
Sweden, pp. 42–44 (October 2011)

7. Khan, M.T., Schreiner, W.: Towards the Formal Specification and Verification of
Maple Programs. In: Conferences on Intelligent Computer Mathematics, Calculemus
Track (submitted, 2012)

8. Meyer, B.: Applying Design by Contract. Computer 25, 40–51 (1992)

ftp://ftp.cs.iastate.edu/pub/leavens/JML/jmldbc.pdf

	On Formal Specification of Maple Programs
	Introduction
	A Type System for MiniMaple
	A Specification Language for MiniMaple
	Conclusions


